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Résumé

La présente thèse traite la modélisation mathématique des risques souverains et ses
applications.

Dans le premier chapitre, motivé par la crise de la dette souveraine de la zone euro, nous
proposons un modèle de risque de défaut souverain. Ce modèle prend en compte aussi
bien le mouvement de la solvabilité souveraine que l’impact des événements politiques
critiques, en y additionnant un risque de crédit idiosyncratique. Nous nous intéressons
aux probabilités que le défaut survienne aux dates d’événements politiques critiques, pour
lesquelles nous obtenons des formules analytiques dans un cadre markovien, où nous
traitons minutieusement quelques particularités inhabituelles, entre autres le modèle CEV
lorsque le paramètre d’élasticité β > 1. Nous déterminons de manière explicite le processus
compensateur du défaut et montrons que le processus d’intensité n’existe pas, ce qui
oppose notre modèle aux approches classiques.

Dans le deuxième chapitre, en examinant certains modèles hybrides issus de la lit-
térature, nous considérons une classe de temps aléatoires dont la loi conditionnelle est
discontinue et pour lesquels les hypothèses classiques du grossissement de filtrations ne
sont pas satisfaites. Nous étendons l’approche de densité à un cadre plus général, où
l’hypothèse de Jacod s’assouplit, afin de traiter de tels temps aléatoires dans l’univers
du grossissement progressif de filtrations. Nous étudions également des problèmes clas-
siques : le calcul du compensateur, la décomposition de la surmartingale d’Azéma, ainsi
que la caractérisation des martingales. La décomposition des martingales et des semimar-
tingales dans la filtration élargie affirme que l’hypothèse H’ demeure valable dans ce cadre
généralisé.



vi

Dans le troisième chapitre, nous présentons des applications des modèles proposés dans
les chapitres précédents. L’application la plus importante du modèle de défaut souverain et
de l’approche de densité généralisée est l’évaluation des titres soumis au risque de défaut.
Les résultats expliquent les sauts négatifs importants dans le rendement actuariel de
l’obligation à long terme de la Grèce pendant la crise de la dette souveraine. La solvabilité
de la Grèce a tendance à s’empirer au fil des années et le rendement de l’obligation a des
sauts négatifs lors des événements politiques critiques. En particulier, la taille d’un saut
dépend de la gravité d’un choc exogène, du temps écoulé depuis le dernier événement
politique, et de la valeur du recouvrement. L’approche de densité généralisée rend aussi
possible la modélisation des défauts simultanés qui, bien que rares, ont un impact grave
sur le marché.

Mots-clefs

Risque souverain, solvabilité souveraine, risque de crédit idiosyncratique, décomposi-
tion de temps d’arrêt, hypothèse de densité généralisée, grossissement progressif de fil-
trations, caractérisation de martingale, décomposition de semimartingale, propriété d’im-
mersion, défauts simultanés, obligation souveraine à long terme.



Abstract

This dissertation deals with the mathematical modelling of sovereign credit risk and
its applications.

In Chapter 1, motivated by the European sovereign debt crisis, we propose a hybrid
sovereign risk model which takes into account both the movement of the sovereign solvency
and the impact of critical political events besides the idiosyncratic credit risk. We are
interested in the probability that the default occurs at critical political dates, for which
we obtain closed-form formulae in a Markovian setting, where we deal with some unusual
features, such as a treatment of the CEV model when the elasticity parameter β > 1.
We compute explicitly the compensator process of default and show that the intensity
process does not exist.

In Chapter 2, by studying certain hybrid models in literature on credit risks, we
consider a type of random times whose conditional probability distribution is not con-
tinuous and by which standard intensity and density hypotheses in the enlargement of
filtrations are not satisfied. We propose a generalised density approach, where the hy-
pothesis of Jacod is relaxed, in order to deal with such random times in the framework of
progressive enlargement of filtrations We also study classic problems such as the compu-
tation of the compensator process of the random time, the decomposition of the Azéma
supermartingale, as well as the martingale characterisation. The martingale and semi-
martingale decompositions in the enlarged filtration show that the H’-hypothesis holds in
this generalised framework.

In Chapter 3, we display several applications of the models proposed in the previous
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chapters. The most important application of the hybrid default model and the generalised
density approach is the valuation of default claims. The results explain the significant
negative jumps in the long-term Greek government bond yield during the sovereign debt
crisis. The solvency of Greece tends to fall gradually through time and the bond yield
has negative jumps when critical political events are held. In particular, the size of a
jump depends on the seriousness of an exogenous shock, the elapsed time since the last
political event, and the value of the recovery payment. The generalised density approach
also makes possible the modelling of simultaneous defaults, which are rare but may have
an important impact.

Keywords

Sovereign risk, sovereign solvency, idiosyncratic credit risk, decomposition of stopping
times, generalised density hypothesis, progressive enlargement of filtrations, martingale
characterisation, semimartingale decomposition, immersion property, simultaneous de-
faults, long-term government bond.



Notations

Chapter 1

— (Ω,A,P) is a probability space equiped with a filtration F = (Ft)t≥0.
— τ is the default time.
— G = (Gt)t≥0 is the progressive enlargement of the filtration F by τ .
— W = (Wt, t ≥ 0) is an F-adapted standard Brownian motion.
— S = (St, t ≥ 0) is the solvency process of a sovereign.
— τ0 is the first hitting time of the barrier L > 0 by the process S.
— (τi)ni=1 is a sequence of first hitting times of the decreasing barrier sequence L1, . . . , Ln

by the process S.
— ζ and ζ∗ are accessible stopping times, and ξ is a totally inaccessible stopping time.
— N = (Nt, t ≥ 0) is a Poisson process.
— λN is the constant Poisson intensity, and λN(t) is the time-dependent Poisson

intensity function.
— λ = (λt, t ≥ 0) is the idiosyncratic default intensity process, and Λ = (Λt, t ≥ 0) =

(
∫ t

0 λs ds, t ≥ 0).
— η is an A-measurable random variable.
— σ1 ∧ σ2 is the minimum of two random times σ1 and σ2.
— pi = (pit, t ≥ 0) is the F-conditional probability that τ coincides with τi, i.e.,

pit = P(τ = τi|Ft), i ∈ {1, . . . , n}.

— G = (Gt, t ≥ 0) is the Azéma F-supermartingale of τ .
— ΛF = (ΛF

t , t ≥ 0) is the F-compensator process such that (1{τ≤t} − ΛF
t∧τ , t ≥ 0) is a
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G-martingale.
— ΛG = (ΛG

t , t ≥ 0) is the G-compensator process such that ΛG
t = ΛF

t∧τ .
— Γ = (Γt, t ≥ 0) is the hazard process of τ such that Γt = − lnGt.
— E(X) is the Doléans-Dade exponential of any process X.
— L is the infinitesimal generator of a diffusion.
— Iν(x) and Kν(x) are modified Bessel functions of the first and second kind.
— Mn,m(x) and Wn,m(x) are Whittaker functions of the first kind and second kind.
— F1(a, b, x) and F2(a, b, x) are Kummer confluent hypergeometric functions of the

first kind and second kind.

Chapter 2

— η is a non-atomic σ-finite Borel measure on R+.
— B is Borel σ-algebra.
— (Ω,A,F,P) is a filtered probability space where F = (Ft)t≥0 is the reference filtra-

tion satisfying the usual conditions.
— O(F) and P(F) are the optional and predictable σ-algebra associated to the filtra-

tion F.
— τ is an arbitrary random time which is not an F-stopping time.
— G = (Gt)t≥0 is the enlargement of the filtration F by τ .
— (τi)Ni=1 is a finite family of F-stopping times.
— α(· · · ) = (αt(· · · ), t ≥ 0) is the generalised density process.
— σ1 ∨ σ2 is the maximum of two random times σ1 and σ2.
— Di = (Di

t, t ≥ 0) is the indicator process associated to τi, i.e., Di
t = 1{τi≤t},

i ∈ {1, . . . , N}.
— Λi = (Λi

t, t ≥ 0) is the compensator of Di such that M i = Di − Λi is an F-
martingale, i ∈ {1, . . . , N}.

— A = (At, t ≥ 0) is the F-dual predictable projection of the indicator process
(1{τ≤t}, t ≥ 0).

Chapter 3
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— Q is an equivalent probability measure.
— (rt, t ≥ 0) is default-free interest rate process.
— (Rt, t ≥ 0) is the recovery paiement process.
— D(t, T ) is the value of the defaultable zero-coupon bond.
— Y d(t, T ) and Y (t, T ) are respectively the yield to maturity of the defaultable zero-

coupon bond and that of a classic default-free zero-coupon bond.
— S(t, T ) is the credit spread of the defaultable zero-coupon bond.
— κ is the CDS spread.
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Introduction générale en français

Cette thèse traite la modélisation mathématique du risque souverain ainsi que ses
applications en finance. Ces études se basent sur la crise de la dette souveraine dans la
zone euro, provoquée par la mise en lumière de la crise de la dette grecque, qui demeure
un sujet d’actualité depuis fin 2009.

La crise de la dette dans la zone euro résulte d’importants déficits publics et des effets
de contagion financière. Plusieurs états membres de la zone euro (Grèce, Portugal, Irlande,
Espagne, et Chypre) furent dans l’incapacité de rembourser ou de refinancer leurs dettes
publiques sans intervention d’un tiers, tel que d’autres états membres de la zone euro, la
Banque Centrale Européenne (BCE), et le Fond Monétaire International (FMI), etc.

Différent du risque de crédit d’entreprise, le risque souverain a des caractères mixtes
dus à une combinaison de facteurs macroéconomiques et géopolitiques complexes, comme
c’est le cas pour un état membre de la zone euro. Des études empiriques suggèrent que
les facteurs macroéconomiques déterminants peuvent être résumés par un facteur com-
mun nommé solvabilité souveraine (voir e.g. Alogoskoufis [Alo12]), et les impacts des
décisions politiques surviennent notamment lors d’un événement politique critique fixé
à l’avance. Ces impacts politiques sont caractérisés par une probabilité de défaut élevée
antérieurement à l’événement susmentionné, ainsi qu’une chute subite de cette probabilité
à la suite de celui-ci. Ce phénomène s’interprète par les équilibres multiples du marché
de dette en présence du risque de crédit et se visualise dans les variations importantes
du rendement actuariel des obligations souveraines. Précisément, du point de vue éco-
nomique, l’équilibre dominant dépend des attentes des investisseurs sur la probabilité
de défaut (e.g., Calvo [Cal88]). Avant un événement politique critique, les investisseurs
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s’attendent à un défaut souverain avec une probabilité élevée, et le marché d’obligations
souveraines manifeste donc un équilibre de spread 1 large. Peu après cet événement, les
attentes des investisseurs sur le défaut souverain diminuent soudainement de sorte que
le marché d’obligations d’état se trouve dans un équilibre de spread étroit. Pour cette
raison, la probabilité de défaut au moment de l’événement est non nulle, caractérisée par
un saut dans le rendement actuariel.

Dans les modèles en temps continu, le temps de défaut est habituellement modélisé
comme un temps aléatoire, et en particulier, un temps d’arrêt par rapport à une certaine
filtration. En théorie de probabilité, les temps d’arrêt sont classifiés en trois catégories :
temps d’arrêt prévisibles, accessibles, et totalement inaccessibles. Intuitivement, un temps
d’arrêt prévisible est connu juste avant l’arrivée d’un événement puisqu’il est annoncé par
une suite croissante de temps d’arrêt ; un temps d’arrêt accessible peut être parfaitement
couvert par une suite de temps d’arrêt prévisibles ; et un temps d’arrêt totalement in-
accessible est l’instant même d’une surprise totale qui ne coïncide jamais avec un temps
d’arrêt prévisible.

Dans la littérature sur les modélisations de risque de crédit, il existe déjà deux ap-
proches classiques (voir les livres de Bielecki et Rutkowski [BR02], de Duffie et Singleton
[DS03] et de Schönbucher [Sch03], et aussi les ouvrages de Bielecki, Jeanblanc et Rutkowski
[BJR04b] et de Schmidt et Stute [SS03] pour une description détaillée) : l’approche struc-
turelle (Black et Scholes [BS73], Merton [Mer74], Black et Cox [BC76]) où le temps de
défaut est souvent un temps d’arrêt prévisible, et l’approche à forme réduite (aussi com-
munément appelé approche d’intensité, Jarrow et Turnbull [JT92, JT95], Lando [Lan98],
Duffie et Singleton [DS99]), où le temps de défaut est un temps d’arrêt totalement in-
accessible. D’ailleurs, dans certains modèles structurels avec rapports de comptabilité
imparfaits (e.g., Duffie et Lando [DL01b], Giesecke [Gie06]), le temps de défaut est éga-
lement totalement inaccessible. Récemment, Jarrow and Protter ([JP04]) montrent d’un
point de vue informationnel que l’on peut transformer un temps d’arrêt en modifiant
l’ensemble d’information à la disposition du modélisateur.

1. Spread est un anglicisme qui signifie l’écart entre le rendement actuariel d’une obligation et un taux
de référence.
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Pour l’analyse de risque de crédit, le grossissement progressif de filtrations (e.g., Bar-
low, Jacod, Yor, et Jeulin [Bar78, Jac85, Jeu80, JY78, Yor78]) a été systématiquement
adopté pour modéliser les événements de défaut qu’un modélisateur ne peut pas observer
du flux informationel du marché hors défaut, ou de manière mathématique, le temps de
défaut n’est pas modélisé comme un temps d’arrêt par rapport à la filtration de réfé-
rence (voir également Mansuy et Yor [MY06], Protter [Pro05], Dellacherie, Maisonneuve
et Meyer [DMM92], Yor [Yor12], Brémaud et Yor [BY78], Nikeghbali [Nik06], Ankirchner
[Ank05], Song [Son87], Ankirchner, Dereich et Imkeller [ADI07], Yœurp [Yœu85]). Dans
les travaux de Elliott, Jeanblanc et Yor [EJY00] et de Bielecki et Rutkowski [BR02], les
auteurs ont proposé d’utiliser le grossissement progressif de filtrations pour décrire les
informations du marché qui incluent tant l’information hors défaut que celle à l’égard du
défaut. Précisément, les informations globales du marché sont modélisées comme la plus
petite filtration contenant toute l’information hors défaut telle que le temps de défaut est
un temps d’arrêt. Plus récemment, afin d’étudier l’impact des événements de défaut, une
nouvelle approche a été développée par El Karoui, Jeanblanc and Jiao [EKJJ10, EKJJ15]
où l’on suppose l’hypothèse de densité. En particulier, l’approche de densité nous permet
d’analyser ce qui arrive postérieurement à un événement de défaut et fait naître des ap-
plications intéressantes dans les études de risque de défaut de contrepartie. Remarquons
que, dans l’approche d’intensité et l’approche de densité, le temps de défaut est un temps
d’arrêt totalement inaccessible.

La théorie de la décomposition de temps d’arrêt stipule que chaque temps d’arrêt
peut être décomposé de façon unique en une partie accessible et une autre totalement
inaccessible (Dellacherie [Del72]). La décomposition de temps aléatoire apparaît également
dans la littérature sur la théorie du grossissement de filtrations (e.g., Coculescu [Coc09],
Aksamit, Choulli et Jeanblanc [ACJ16]). Pour le cas du défaut souverain, du point de
vue d’une telle décomposition, si le temps de défaut peut coïncider avec une date critique
arrêtée d’avance dont la probabilité est strictement positive, alors cela signifie que le
temps de défaut possède une partie accessible outre qu’une partie totalement inaccessible.
D’une part, ni l’approche à forme réduite ni l’approche de densité ne sont réalistes car
le temps de défaut ainsi modélisé est totalement inaccessible et évite tous les temps
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d’arrêt prévisibles. D’autre part, un modèle structurel n’est pas adapté au défaut souverain
comme révèle Matsumura dans [Mat06], parce qu’il n’est pas clair quelle est la valeur
d’actif à prendre pour référence et l’impact des décisions politiques ne se reflète pas sur
la définition structurelle dans la littérature. Pour cette raison, nous proposons un modèle
hybride qui se base sur les deux approches classiques et en même temps prend en compte
aussi bien le niveau de la solvabilité souveraine que l’impact des événements politiques
critiques.

Andreasen [And03] est l’un des premiers à étudier ce type de modèle hybride. Il existe
dans la littérature sur le risque de crédit d’autres modèles hybrides tels que le modèle
généralisé à processus de Cox de Bélanger, Shreve et Wong [BSW04], le modèle hybride
de migration de crédit de Chen et Filipović [CF05], les modèles CEV 2 de défaut ponctuel
de Carr et Linetsky [CL06] et de Campi, Polbennikov et Sbuelz [CPS09], ainsi que le cadre
général sans intensité de Gehmlich et Schmidt [GS16] et Fontana et Schmidt [FS16]. Plus
précisément, dans [BSW04], le processus de compensateur peut posséder des sauts ; dans
[CF05], le défaut de la firme est provoqué soit par des dégradations successives de sa note
de crédit, soit par un saut imprévisible d’un simple processus ponctuel ; dans [CL06], la
valeur d’action est une diffusion CEV ponctuée par un possible saut à zéro qui correspond
à un défaut, et le temps de défaut est décomposé en une partie prévisible, qui est le premier
temps de passage à zéro par le processus de la valeur d’action, et une partie totalement
inaccessible donnée par un modèle à processus de Cox ; dans [CPS09], la valeur d’action
est un processus CEV, et le temps de défaut est le minimum du premier instant de saut du
processus de Poisson et le premier temps d’absorption du processus de la valeur d’action
par zéro en l’absence de sauts ; dans [GS16], la surmartingale d’Azéma du temps de défaut
contient des sauts de telle sorte que l’intensité n’existe pas, et [FS16] généralise l’approche
de [GS16].

Dans le Chapitre 1, nous proposons un modèle hybride de défaut souverain où le temps
de défaut combine une partie accessible prenant en compte le mouvement de la solvabi-
lité souveraine et l’impact des événements politiques critiques, et une partie totalement
inaccessible pour le risque de crédit idiosyncratique. Les caractéristiques principales de

2. Modèles à élasticité de variance constante.
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notre modèle comprennent : le temps de défaut peut coïncider avec une famille de temps
d’arrêt prévisibles, la modélisation de l’impact des facteurs macroéconomiques et des évé-
nements politiques est séparée de celle du risque idiosyncratique, la solvabilité peut être
corrélée avec le risque idiosyncratique, la propriété d’immersion est satisfaite et peut être
facilement relaxée.

Nous nous inspirons des modèles CEV de défaut ponctuel dans [CL06] et [CPS09],
qui furent initialement proposés pour évaluer les risques de crédit d’entreprise. Ce qui
fait la différence, c’est que le défaut dans notre modèle peut coïncider avec de multiples
événements politiques et peut arriver à la suite de n’importe lequel de ces événements,
alors que le temps de défaut dans [CL06] et [CPS09] est borné par son seul composant
prévisible.

La notion de solvabilité souveraine est importante dans notre modèle. la solvabilité
est une variable unifiée qui reflète l’impact des facteurs macroéconomiques sur la capa-
cité d’un souverain de remplir ses obligations à long terme. Nous utilisons la définition
existante de la solvabilité souveraine en temps discret ([Alo12]) à un modèle en temps
continu et considérons un souverain (e.g., Grèce) avec processus de solvabilité (St, t ≥ 0),
adapté par rapport à la filtration de référence F. Notre modèle est basé sur l’abstraction
mathématique du scénario suivant : les autorités (BCE, Commission Européenne, FMI,
etc.) établissent une condition de budget pour le souverain. Si le processus de solvabilité S
tombe en-dessous du niveau requis, nous considérons que le souverain devient sévèrement
insolvable, et un événement politique critique doit être organisé, et lors de celui-ci des
décisions politiques doivent être prises à l’égard du souverain. Le résultat des décisions
peut être la faillite immédiate du souverain ou un plan d’aide financière pour celui-ci dans
le but d’améliorer sa situation budgétaire. Dans ce dernier cas, si la situation aggravée
de la dette et du déficit est excessive et ne permet pas d’amélioration satisfaisante, les
autorités peuvent relaxer la condition budgétaire et anticipent de nouveaux événements
politiques critiques.

Le temps de défaut τ dans notre modèle se décompose de manière unique en une partie
accessible ζ∗ et une partie totalement inaccessible ξ sur une unique partition de l’ensemble
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d’échantillons Ω :
τ(ω) = ζ∗(ω) ∧ ξ(ω).

La partie accessible ζ∗ est recouverte par une suite croissante de premiers temps de passage
(F-temps d’arrêt) à n seuils de solvabilité τ1, . . . , τn :

τi = inf{t ≥ 0 : St < Li}.

Le fait de savoir si le défaut coïncide ou non avec l’un des F-temps d’arrêt τi dépend d’un
facteur exogène (e.g., l’ampleur d’un choc financier externe qui précède τi), modélisé pour
simplicité par un processus de Poisson inhomogène (Nt, t ≥ 0) avec fonction d’intensité
λN(t). La partie totalement inaccessible ξ admet un processus d’intensité (λt, t ≥ 0),
qui peut être corrélé avec la solvabilité S. La structure globale d’information G est le
grossissement progressif de la filtration F par le temps de défaut τ .

Nous calculons les probabilités que le défaut souverain ait lieu à des dates spécifiques
d’événements politiques critiques :

P(τ = τi|Ft) = E
[(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
)
e−
∫ τi

0 λs ds
∣∣∣∣Ft] .

Tout comme ce que nous voudrions montrer, ces probabilités de défaut sont strictement
positives dans notre modèle hybride, ce qui implique la présence des singularités dans la
loi du temps de défaut τ :

P(τ > u|Ft) = E
[
exp

(
−

n∑
i=1

1{τi≤u}
∫ τi

τi−1
λN(s)ds−

∫ u

0
λs ds

)∣∣∣∣Ft
]
.

Par conséquent, la surmartingale d’Azéma n’est pas continue à τ1, . . . , τn, et le processus
de hasard 3 (∫ t

0
λs ds+

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds, t ≥ 0

)
.

n’est pas égal au processus F-compensateur(∫ t

0
λs ds+

n∑
i=1

1{τi≤t}
(

1− e−
∫ τi
τi−1

λN (s)ds
)
, t ≥ 0

)

bien qu’ils aient la même partie continue.

3. La traduction littérale du terme en anglais hazard process.
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Dans un cadre markovien spécifique, où le processus de solvabilité et le processus
de Poisson sont homogènes, les probabilités P(τ = τi|Ft) peuvent être déduites de la
transformée de Laplace du temps d’arrêt ρ = inf{t ≥ 0 : St ≤ L} :

E
[
exp

(
−kρ−

∫ ρ

0
λ(Su) du

)]
,

qui est la répresentation de la solution au problème de Dirichlet suivant

µ(z)u′(z) + 1
2σ

2(z)u′′(z) = (λ(z) + k)u(z) sur {z > L};

u(L) = 1.

Nous obtenons les formules analytiques en résolvant des équations de Sturm-Liouville
dans les cas de mouvement brownien géométrique et de processus CEV. Plus précisément,
quand le processus de solvabilité est modélisé par un mouvement brownien géométrique

dSt = St(µ dt+ σ dWt),

il s’agit des expressions en termes des solutions à une équation de Bessel modifée

(xy′)′ − c1x
−1y′ = c2xy

où c1, c2 > 0, alors que dans le cas du processus de solvabilité modélisé par une diffusion
CEV

dSt = St(µ dt+ δSβt dWt),

nous devons résoudre l’équation différentielle suivante

1
2δ

2x2+2βu′′ + µxu′ − (ax−2|β| + b+ k)u = 0,

où nous discutons le signe du paramètre d’élasticité β et obtenons les solutions fondamen-
tales en employant les fonctions de Whittaker et les fonctions de Bessel modifiées.

La propriété d’immersion possède l’avantage d’impliquer la complétude du marché (e.g.
[JLC09a]). Cependant, il est généralement impossible de supposer l’immersion dans les
cas de marché incomplet, de multi-defauts non-ordonnés, et de corrélation entre différents
temps de défaut. Dans notre modèle hybride, la propriété d’immersion est controlée par la
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barrière aléatoire, ou plus précisément, la propriété d’immersion est satisfaite si la barière
aléatoire est indépendante de F∞. En relaxant l’hypothèse d’indépendance susmentionnée,
nous pouvons étendre le modèle au delà du paradigme d’immersion. Par conséquent, la
surmartingale d’Azéma n’est plus un processus décroissant, et nous devons faire appel à
la décomposition multiplicative pour obtenir le processus compensateur.

D’un point de vue probabiliste appuyé par notre calcul, les probabilités de défaut
non nulle aux dates d’événements politiques critiques signifient que la loi du temps de
défaut τ admet des singularités. Afin d’étendre notre modèle de risque souverain à un
cadre plus général, nous considérons un type de temps aléatoires qui peuvent être soit
accessibles soit totalement inaccessibles et proposons de généraliser l’approche de densité
dans [EKJJ10]. Plus précisément, nous supposons que la loi conditionnelle de τ contient
une partie singulière outre que la partie absolument continue qui a une densité.

Dans le Chapitre 2, F = (Ft)t≥0 est la filtration de référence et G = (Gt)t≥0 est le
grossissement progressif de F par τ , et nous supposons l’hypothèse de densité généralisée
que la loi F-conditionnelle de τ évitant une famille de F-temps d’arrêt (τi)ni=1 a une densité
(nommée densité généralisée) par rapport à une mesure borélienne σ-finie non-atomique
η sur R+ :

E[1Hh(τ) | Ft] =
∫
R+
h(u)αt(u) η(du) P-p.s.,

où H désigne l’ensemble aléatoire

{τ <∞} ∩
n⋂
i=1
{τ 6= τi}.

Notre hypothèse clef est satisfaite par d’autres modèles hybrides précédemment cités tels
que [BSW04, CF05, CL06, CPS09, GS16], ainsi que notre modèle de risque souverain du
Chapitre 1 dans les deux versions avec et sans propriété d’immersion, et nous pouvons
expliciter le processus de densité généralisée pour chacun de ces modèles. Sous l’hypothèse
de densité généralisée, τ n’a que la possibilité de rencontrer les F-temps d’arrêt qui peuvent
coïncider avec (τi)ni=1. Nous prouvons que le processus de densité généralisée α(·) est une
F-martingale càdlàg paramétrée. Notons (pit, t ≥ 0) les probabilités F-conditionnelle que
τ rencontre τi, i ∈ {1, . . . , n}, alors toute espérance Gt-conditionnelle peut être calculée
sous la forme décomposée en termes de α(·) et (pi)ni=1. En outre, nous pouvons montrer
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que la formule de décomposition suivante pour les processus G-optionnels est valable, ce
qui n’est pas le cas en général

Y G
t = 1{τ>t}Yt + 1{τ≤t}Yt(τ), P-p.s.

La validité de la formule ci-dessus a été vérifiée à maintes reprises pour les modèles
existants, entre autres sous l’hypothèse de densité, et on peut en trouver les conditions
dans Song [Son14].

Le processus compensateur sous l’hypothèse de densité généralisée n’est pas en général
un processus continu et donc le processus d’intensité n’existe pas toujours. Nous traitons
la décomposition de Doob-Meyer de la surmartingale d’Azéma G et nous nous concentrons
sur sa partie discontinue afin d’obtenir la forme générale du compensateur

ΛG
t =

∫ t∧τ

0
1{Gs−>0}

αs(s)η(ds)
Gs−

+
n∑
i=1

∫
(0,t∧τ ]

1{Gs−>0}
pis−dΛi

s + d〈M i, pi〉s
Gs−

, t ≥ 0,

où Λi = (Λi
t, t ≥ 0) est le compensateur de (1{τi≤t}, t ≥ 0) et

M i =
(
1{τi≤t} − Λi

t, t ≥ 0
)

pour tout i = {1, . . . , n}. Si (τi)ni=1 sont des F-temps d’arrêt prévisibles, alors τ est un
G-temps d’arrêt accessible et le processus de compensateur de τ possède une partie ab-
solument continue et une partie avec des sauts à (τi)ni=1 ; s’ils sont par ailleurs F-temps
d’arrêt totalement inaccessibles, alors τ est un G-temps d’arrêt totalement inaccessible et
le processus compensateur de τ est continu.

Nous caractérisons également les martingales dans la filtration G en vérifiant trois
conditions sur des F-martingales. Différent de [EKJJ10], les conditions nécessaires et les
conditions suffisantes sont subtilement distinguées. La stabilité des semimartingales est
aussi un problème classique à étudier quand la filtration de référence est élargie. Nous
obtenons la décomposition d’une F-martingale locale en tant que G-semimartingale

UF
t = UG

t +
∫

(0,t∧τ ]

d〈UF, M̄〉s
Gs−

+ 1∩Ni=1{τ 6=τi}

∫
(τ,t∨τ ]

d〈UF, α(u)〉s
αs−(u)

∣∣∣∣
u=τ

+
n∑
i=1

1{τ=τi}

∫
(τ,t∨τ ]

d〈UF, pi〉s
pis−

,
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où UG est une G-martingale locale et M̄ est une F-martingale BMO, calculée par

M̄t = E
[∫ ∞

0
αu(u)η(du)

∣∣∣∣Ft]+
n∑
i=1

pit∧τi + p∞t , t ≥ 0,

qui est en général différente de celle dans la décompostion de Doob-Meyer de G. La
formule de décomposition ci-dessus signifie que l’hypothèse (H’) de Jacod est satisfaite
sous l’hypothèse de densité généralisée.

Dans le Chapitre 3, nous appliquons les résultats des chapitres précédents à l’évaluation
et à la couverture des risques de crédit. L’une des applications les plus importantes du
modèle de risque souverain est l’évaluation des titres soumis au risque souverain tels que
les obligations souveraines. Nous nous intéressons particulièrement au comportement du
rendement actuariel à long terme durant la crise de la dette souveraine, et nous montrons
que le modèle hybride fournit une interprétation au comportement des sauts autour des
dates d’événements politiques critiques. Précisément, le saut dans la valeur d’obligation
D(t, T ) à la date τi est caractérisé en termes du montant de recouvrement et du processus
F-compensateur, donné par la formule suivante

∆D(τi, T ) = (D(τi, T )−Rτi)ΛF
τi

on {τi < T}.

Le spread de crédit se comporte dans le sens inverse du prix d’obligation, qui est en général
plus élevé que le recouvrement, il est donc vraisemblable que le spread de crédit ait des
sauts négatifs.

Nous donnons un exemple de valorisation à l’aide de l’optimisation de portefeuille
dans un modèle hybride, où un investisseur s’investit dans une action soumise au risque
de banqueroute. Hodges et Neuberger [HN89] ont introduit l’évaluation par indifférence
dans les marchés incomplets (voir Henderson et Hobson [HH04] pour un survol général de
littérature sur le sujet, et aussi les travaux de Bielecki, Jeanblanc et Rutkowski [BJR04a]
et la thèse de Sigloch [Sig09] pour un aperçu dans le contexte de risque de défaut). Le
temps de défaut peut être, soit le premier temps de passage à zero du prix d’action
modélisé par une diffusion CEV, soit l’instant même d’une banqueroute ponctuelle qui
entraîne la disparition de l’action. Alors, la richesse totale X̂ dépend de deux régimes de
défaut. Étant donnée la fonction d’utilité U qui remplit certaines conditions générales,
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nous formulons le problème de contrôle suivant :

v(x) = sup
ϕ∈A

E
[
U(X̂x,ϕ

T )
]
,

où la fonction de gain a un horizon fini avec gain terminal dépendant d’un régime d’arrêt.

Nous étudions également l’évaluation des titres soumis au risque de défaut dans le
cadre général, où un titre peut procurer des paiements de coupons. D’ailleurs, aucune
propriété d’immersion n’est a priori satisfaite, et aucune probabilité risque-neutre n’est a
priori connue. Dans Coculescu, Jeanblanc et Nikeghbali [CJN12], les auteurs ont montré
de quelle manière la propriété d’immersion a été modifiée à travers d’un changement de
probabilité. Dans le cadre de densité généralisée étudié dans le Chapitre 2, nous montrons
que l’hypothèse de densité généralisée est invariable sous un changement de probabilité,
et que nous pouvons toujours trouver une mesure de probabilité équivalente sous laquelle
la propriété d’immersion est satisfaite, ce qui implique donc la condition non-arbitrage.
Nous donnons l’expression d’un G-mouvement brownien en appliquant la formule de dé-
composition canonique des semimartingales et procédons à un changement de probabilité.

Dans la littérature de modélisation de multi-défauts, on suppose souvent que deux
événements de défaut n’arrivent jamais simultanément, notamment dans les modèles
d’intensité et de densité classiques. Très peu d’ouvrages traitent les modèles explicites
des double-défauts (e.g., Bielecki et al. [BCCH12, BCCH14], Brigo and Capponi [BC10],
Crépey and Song [CS14], Giesecke [Gie03]). Comme la crise de la dette souveraine s’est
aggravée à cause d’un effet de contagion, nous étudions également les risques extrêmes
tels que celui de deux défauts simultanés qui, bien que rares, peuvent avoir un impact
désastreux sur le marché financier. L’approche de densité généralisée fournit des outils
mathématiques puissants pour ce genre de problèmes en faisant appel à la méthode de
récurrence. Dans le modèle que nous étudions, le temps de défaut σ2 satisfait l’hypothèse
de densité généralisée et peut donc coïncider avec un autre temps de défaut σ1, qui est un
temps d’arrêt par rapport à la filtration de référence. Différent des autres exemples pré-
cédemment évoqués, σ1 est totalement inaccessible, ce qui implique que σ2 est également
totalement inaccessible.





Introduction

Based on the European sovereign debt crisis, which remains a worldwide topical issue
since the end of 2009, this dissertation deals with the mathematical modelling of sovereign
credit risk and its applications in the financial industry.

Briefly speaking, the European sovereign debt crisis is an on-going multi-year debt
crisis arising from important sovereign risks and strong financial contagion effects. Several
euro area member states (Greece, Portugal, Ireland, Spain, and Cyprus) were unable to
repay or refinance their government debt without the assistance of third parties such as
other Eurozone countries, the European Central Bank, and the International Monetary
Fund, etc.

Different from corporate credit risk, sovereign risk has mixed features which result from
a combination of complex macroeconomic and political factors, which is especially true for
a euro area member state. Empirical studies show that the determinant macroeconomic
factors can be summarised by a common one known as sovereign solvency (see e.g. Alogos-
koufis [Alo12]), and the impact of political decisions arises notably when a predetermined
critical political event happens. The political impact is described by a high probability of
default before a critical political event and a sharp fall slightly after it. This phenomenon
is pictured in the large variations of long-term government bond yield and interpreted
by the multiple equilibria in debt markets in presence of credit risk. More precisely, the
prevailing equilibrium depends on the expectations of investors about the probability of
default (e.g., Calvo [Cal88]). Before a critical political event, investors expect a sovereign
default with a high probability, in which case the government bond market is in a large-
spread equilibrium. Shortly after the critical political event, the expectation of investors
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about the sovereign default is suddenly reduced to keep the government bond market in
a narrow-spread equilibrium. Therefore, the probability of default at the time of a critical
political event is nonzero, characterised by a jump in long-term government bond yield.

In continuous-time models, the time of default is usually modelled as a random time,
in particular, a stopping time with respect to a proper filtration. In probability theory,
the stopping times can be classified into three categories : predictable stopping times,
accessible stopping times, and totally inaccessible stopping times. Intuitively, a predictable
stopping time is known just before the event happens since it is annouced by an increasing
sequence of stopping times ; an accessible stopping time can be perfectly covered by a
sequence of predictable stopping times ; and a totally inaccessible stopping time is the
instance of a total surprise which can never coincide with a predictable stopping time.

In the literature on credit risk modelling, two classic approaches already exist (see the
books of Bielecki and Rutkowski [BR02], of Duffie and Singleton [DS03], and of Schön-
bucher [Sch03], and also the surveys of Bielecki, Jeanblanc and Rutkowski [BJR04b] and
of Schmidt and Stute [SS03] for a detailed description) : structural approach (Black and
Scholes [BS73], Merton [Mer74], Black and Cox [BC76]), where the default time is usually
predictable, and reduced-form approach (also called intensity approach, Jarrow and Turn-
bull [JT92, JT95], Lando [Lan98], Duffie and Singleton [DS99]), where the default time is
totally inaccessible. Besides, in a structural model with imperfect accounting reports (e.g.,
Duffie and Lando [DL01b], Giesecke [Gie06]), the default time is also a totally inacces-
sible stopping time. Recently, Jarrow and Protter ([JP04]) point out from an informational
perspective that the difference between classes of stopping times can be characterised in
terms of the information known to the modeller and thus one can transform a predictable
stopping time into a totally inaccessible stopping time by modifying the information set
used by the modeller.

In credit risk analysis, the progressive enlargement of filtrations (e.g., Barlow, Jacod,
Yor, and Jeulin [Bar78, Jac85, Jeu80, JY78, Yor78]) has been systematically adopted to
model the default event that a modeller cannot observe from the default-free market infor-
mation flow, or mathematically speaking, the default time is not modelled as a stopping
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time with respect to the reference filtration (see also Mansuy and Yor [MY06], Protter
[Pro05], Dellacherie, Maisonneuve and Meyer [DMM92], Yor [Yor12], Brémaud and Yor
[BY78], Nikeghbali [Nik06], Ankirchner [Ank05], Song [Son87], Ankirchner, Dereich and
Imkeller [ADI07], Yœurp [Yœu85]). In the work of Elliot, Jeanblanc and Yor [EJY00]
and Bielecki and Rutkowski [BR02], the authors have proposed to use the progressive
enlargement of filtrations to describe the market information which includes both the
default-free information and the default information. Precisely, the global market infor-
mation is modelled as the smallest filtration containing all the default-free information
such that the default time is a stopping time. More recently, in order to study the impact
of default events, a new approach has been developed by El Karoui, Jeanblanc and Jiao
[EKJJ10, EKJJ15] where we assume the density hypothesis. In particular, the density
approach allows us to analyse what happens after a default event and has interesting
applications in the study of counterparty default risks. We note that, in both intensity
and density approaches, the default time is a totally inaccessible stopping time.

The theory of stopping time decomposition postulates that every stopping time can be
uniquely decomposed into an accessible stopping time and a totally accessible stopping
time (Dellacherie [Del72]). The decomposition of random times also appears in litera-
ture on the theory of enlargement of filtrations such as Coculescu [Coc09] and Aksamit,
Choulli and Jeanblanc [ACJ16]. For the case of sovereign default, from the point of view
of decomposition, if the default time can coincide with a predetermined critical date with
a positive probability, then it means that the default time has an accessible part in ad-
dition to a totally inaccessible one. On the one hand, neither the reduced-form approach
nor the density approach is realistic since the default time modelled by these approaches
is only totally inaccessible and avoids any predictable stopping time. On the other hand,
a structural model is not appropriate as revealed by Matsumura in [Mat06], because it
is not obvious which asset value could be taken as reference, and the impact of political
decisions are not reflected in the structural definition of default in literature. For this
reason, we propose a hybrid model which is based on both approaches of the classic credit
risk models and in the meantime takes into account the level of the sovereign solvency
and the impact of critical political events.
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Andreasen [And03] was one of the first to study this type of hybrid model. There
exist in the credit risk literature other hybrid models such as the generalised Cox process
model in Bélanger, Shreve and Wong [BSW04], the credit migration hybrid model in Chen
and Filipović [CF05], the jump to default CEV models in Carr and Linetsky [CL06] and
Campi, Polbennikov and Sbuelz [CPS09], and the generalised framework without intensity
in Gehmlich and Schmidt [GS16] and Fontana and Schmidt [FS16]. More precisely, in
[BSW04], the hazard process can have jumps ; in [CF05], the default of the firm is triggered
either by successive downgradings of the credit notes or an unpredictable jump of a
simple point process ; in [CL06], the equity value is a CEV diffusion punctuated by a
possible jump to zero which corresponds to default. The default time is decomposed into
a predictable part, which is the first hitting time of zero by the equity value process, and
a totally inaccessible part, given by a Cox process model ; in [CPS09], the equity value is
a CEV process, and the default time is the minimum of the first Poisson jump and the
first absorption time of the equity value process by zero in absence of jumps ; in [GS16],
the Azéma supermartingale of the default time contains jumps so that the intensity does
not exist, and [FS16] generalises the approach in [GS16].

In Chapter 1, we propose a hybrid sovereign default model which combines an acces-
sible part which takes into account the movement of the sovereign solvency and the impact
of critical political events, and a totally inaccessible part for the idiosyncratic credit risk.
The principal features of our model include that the default time can coincide with a
family of predictable stopping times, the modelling of the impacts of macroeconomic fac-
teurs and political events are separated from that of the idiosyncratic risk, the solvency
can be correlated with the idiosyncratic risk, and the immersion property holds but can
be easily relaxed. We are inspired by the jump to default CEV models in [CL06] and
[CPS09], which were originally proposed for assessing corporate credit risks. The main
differences are that the default in our model can coincide with multiple political events
and can occur after any of these events, while the default time in [CL06] and [CPS09] is
bounded by its single predictable part.

The notion of sovereign solvency is important in our sovereign risk model. The solvency
is a unified variable which reflets the impacts of macroeconomic factors on the ability
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of a sovereign to meet its long-term obligations. We use the existing definition of the
sovereign solvency in discrete-time case ([Alo12]) to the continuous-time case and consider
a sovereign (e.g. Greece) with solvency process (St, t ≥ 0), included in the reference
information F. Our model is based on the mathematical abstraction of the following
scenario : the authorities (European Central Bank, European Commission, International
Monetary Fund, etc.) set a re-adjustable budget requirement for the sovereign. If the
solvency process S falls below the required level, we consider that the sovereign becomes
seriously insolvent, and a critial political event should be organised at which political
decisions need to be made concerning the sovereign. The result of the decisions can be
an immediate bankruptcy of the sovereign or a financial aid package for the sovereign
in the aim of improving its financial situation. In the latter case, if the debt and deficit
situation of the sovereign is excessive and has no improvement, the authorities may relax
the budget requirement and anticipate other critical political events. Then, the default
time τ in our model can be (uniquely) decomposed into an accessible part ζ∗ and a totally
inaccessible part ξ with a unique partition of the sample set Ω :

τ = ζ∗ ∧ ξ.

The accessible part ζ∗ is covered by an increasing sequence of n solvency barrier hitting
times (F-stopping times) τ1, . . . , τn :

τi = inf{t ≥ 0 : St < Li},

and whether ζ∗ meets one of them depends on an exogenous facteur (e.g. the occurrence
of an external financial shock) modelled for simplicity by an inhomogenous Poisson pro-
cess (Nt, t ≥ 0) with intensity function λN(t). The totally inaccessible part ξ admits an
intensity process (λt, t ≥ 0), which can be correlated with the solvency process S. The
global information structure G is the progressive enlargement of the filtration F by the
sovereign default time τ .

We compute the probabilities that the sovereign default occurs on specific critical
political dates :

P(τ = τi|Ft) = E
[(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
)
e−
∫ τi

0 λs ds
∣∣∣∣Ft] .
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As we show, such default probabilities are nonzero in the hybrid model, which implies
singularities in the probability distribution of the default time τ :

P(τ > u|Ft) = E
[
exp

(
−

n∑
i=1

1{τi≤u}
∫ τi

τi−1
λN(s)ds−

∫ u

0
λs ds

)∣∣∣∣Ft
]
.

Consequently, the Azéma supermartingale is discontinuous at τ1, . . . , τn, and the hazard
process (∫ t

0
λs ds+

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds, t ≥ 0

)
.

is not equal to the F-compensator process(∫ t

0
λs ds+

n∑
i=1

1{τi≤t}
(

1− e−
∫ τi
τi−1

λN (s)ds
)
, t ≥ 0

)

although they have an identical countinuous part.

In specific Markovian settings, where the solvency process and the Poisson process are
homogeneous, the probabilities P(τ = τi|Ft) can be derived from the Laplace transform
of the stopping time ρx = inf{t ≥ 0 : Sxt ≤ L} :

E
[
exp

(
−kρx −

∫ ρx

0
λ(Sxu) du

)]
,

which is the representation of the solution to the following Dirichlet problem

µ(z)u′(z) + 1
2σ

2(z)u′′(z) = (λ(z) + k)u(z) on {z > L};

u(L) = 1.

We obtain closed-form formulae by solving Sturm-Liouville equations in the cases of geo-
metric brownian motion and CEV process. More precisely, when the solvency process is
modelled by a geometric Brownian motion

dSt = St(µ dt+ σ dWt),

it turns out to be expressed in terms of the solution to a modified Bessel equation

(xy′)′ − c1x
−1y′ = c2xy

where c1, c2 > 0, while in the case of the solvency process modelled by a CEV diffusion

dSt = St(µ dt+ δSβt dWt),
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we need to solve the following differential equation

1
2δ

2x2+2βu′′ + µxu′ − (ax−2|β| + b+ k)u = 0,

where we discuss the sign of the elasticity parameter β and obtain the fundamental solu-
tions by using Whittaker and modified Bessel functions.

The immersion property has the advantage to imply the market completeness (e.g.
[JLC09a]). However, it is usually impossible to assume the immersion property in the
cases of incomplete market, non-ordered multi-defaults, and correlation between different
default times. In our hybrid model, the immersion property is controlled by the random
barrier η, or more precisely, the immersion property holds when η is independent of
F∞. By relaxing the last assumption, we can extend the model beyond the immersion
paradigm. Consequently, the Azéma supermartingale is no more a decreasing process,
and we compute its multiplicative decomposition to obtain the compensator process.

From a probabilistic point of view, the nonzero probabilities of default on critical
political event dates means that the probability distribution of the default time admits
singularities. In order to extend our sovereign risk model to a general framework, we
consider a type of random times which can be either accessible or totally inaccessible and
propose to generalise the density approach in [EKJJ10]. More precisely, we assume that
the conditional probability distribution of τ contains a discontinuous part, besides the
absolutely continuous part which has a density.

In Chapter 2, F = (Ft)t≥0 is the reference filtration and G = (Gt)t≥0 is the progressive
enlargement of F by τ , and we assume the generalised density hypothesis that the F-
conditional probability distribution of τ avoiding a family of F-stopping times (τi)ni=1 has
a density (called generalised density) with respect to a non-atomic σ-finite Borel measure
η on R+ :

E[1Hh(τ) | Ft] =
∫
R+
h(u)αt(u) η(du) P-a.s.,

where H denotes the random set

{τ <∞} ∩
n⋂
i=1
{τ 6= τi}.
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Our key assumption is satisfied by other previously cited hybrid models such as the gene-
ralised reduced-form model in [BSW04], the credit migration model in [CF05], the jump
to default CEV models in [CL06] and [CPS09], the extension of the HJM-approach in
[GS16], as well as our own hybrid sovereign risk model in Chapter 1 in both the cases
with and without immersion, and we can compute the generalised density process for each
of these models. Under the generalised density hypothesis, τ has only the possibility to
meet the F-stopping times that can coincide with (τi)ni=1. We prove that the generalised
density process α(·) is a parametered càdlàg F-martingale. We denote by (pit, t ≥ 0) the
F-conditional probability that τ meets τi, i ∈ {1, . . . , n}, and then any Gt-conditional ex-
pection can be computed in a decomposed form in terms of α(·) and (pi)ni=1. Furthermore,
we can prove that the following decomposition formula for G-optional process is true,
which is not the case in general

Y G
t = 1{τ>t}Yt + 1{τ≤t}Yt(τ), P-a.s.

The last formula has been proved to be valid for the existing models, in particular under
the density hypothesis, and one can find the conditions in Song [Son14].

The compensator process under the generalised density hypothesis is not a continuous
process in general and so the intensity process does not always exist. We deal with the
Doob-Mayer decomposition of the Azéma supermartingale G and focus on its disconti-
nuous part, and we obtain the general form of the compensator

ΛG
t =

∫ t∧τ

0
1{Gs−>0}

αs(s)η(ds)
Gs−

+
n∑
i=1

∫
(0,t∧τ ]

1{Gs−>0}
pis−dΛi

s + d〈M i, pi〉s
Gs−

, t ≥ 0,

where Λi = (Λi
t, t ≥ 0) is the compensator process of (1{τi≤t}, t ≥ 0) and

M i =
(
1{τi≤t} − Λi

t, t ≥ 0
)

for any i = {1, . . . , n}. If (τi)ni=1 are predictable F-stopping times, then τ is an accessible
G-stopping time and the compensator process of τ has an absolutely continuous part
and a jump part ; if they are totally inaccessible F-stopping times, then τ is a totally
inaccessible G-stopping time and the compensator process of τ is continuous.

We also characterise the martingale processes in the filtration G by using three F-
martingale conditions. Different from [EKJJ10], the necessary conditions and the sufficient
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ones are subtly distinguished. It is also a classic problem to investigate the stability
of semimartingales when the reference filtration is enlarged. We obtain the canonical
decomposition of an F-local martingale as a G-semimartingale

UF
t = UG

t +
∫

(0,t∧τ ]

d〈UF, M̄〉s
Gs−

+ 1∩Ni=1{τ 6=τi}

∫
(τ,t∨τ ]

d〈UF, α(u)〉s
αs−(u)

∣∣∣∣
u=τ

+
n∑
i=1

1{τ=τi}

∫
(τ,t∨τ ]

d〈UF, pi〉s
pis−

,

where UG is a G-local martingale and M̄ is an BMO F-martingale computed by

M̄t = E
[∫ ∞

0
αu(u)η(du)

∣∣∣∣Ft]+
n∑
i=1

pit∧τi + p∞t , t ≥ 0.

The decompostion formula above means that the (H’)-hypothesis of Jacod is satisfied
under generalised density hypothesis.

In Chapter 3, we apply the results of the previous chapters to the valuation and hedging
of credit risks. [JLC09b] and Coculescu, Jeanblanc and Nikeghbali [CJN12]. Precisely, if
the immersion property is satisfied under the risk-neutral probability measure, then the
market model is arbitrage-free. In [JLC09b], the credit event is modelled by a random time
satisfying the density hypothesis, which insures that the semimartingales in the reference
filtration remain semimartingales in the enlarged filtration, which gives way to a change
of probability measure by using Girsanov theorem.

One of the most important applications of the sovereign default model is the valuation
of sovereign defaultable claims such as sovereign bonds. We are particularly interested in
the behaviour of long-term bond yield during the sovereign debt crisis and we show that
the hybrid model provides an explanation to the jump behaviours of the bond yield around
critical political event dates. Precisely, the jump in the bond value at a critial political
event date τi is characterised in terms of the recovery payment and the F-compensator
by the following equality

∆D(τi, T ) = (D(τi, T )−Rτi)ΛF
τi

on {τi < T}.

The credit spread behaves in the opposite direction of the bond price. Since the bond
price is in general higher than the recovery payment, the credit spread is likely to have
negative jumps.
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We give an example of indifference pricing with portfolio optimisation in a CEV credit
risk model, where an investor trades a stock with a bankruptcy risk. Hodges and Neuberger
[HN89] were the first to introduce utility indifference pricing in incomplete markets (see
Henderson and Hobson [HH04] for a general survey of literature on this topic, and the
research paper of Bielecki, Jeanblanc and Rutkowski [BJR04a] and the thesis of Sigloch
[Sig09] for an overview in the context of default risk). The default time can be either the
first hitting time of zero by the stock price modelled by a CEV diffusion or the time of a
jump to default which forces the stock price to zero. Then, the total wealth X̂ depends on
two different default regimes. Given a utility function U satisfying some general conditions,
we study the following control problem :

v(x) = sup
ϕ∈A

E
[
U(X̂x,ϕ

T )
]
,

where the gain function has a finite horizon with terminal payoff depending on a stopping
regime.

We also study the pricing of defaultable claims in a general framework, where no im-
mersion property holds and no risk-neutral probability is given. In Coculescu, Jeanblanc
and Nikeghbali [CJN12], the authors have also pointed out how the immersion property
is modified under an equivalent change of probability measure. In the generalised den-
sity framework studied in Chapter 2, we prove that the generalised density hypothesis
holds under an equivalent change of probability measure, and that we can always find an
equivalent probability measure under which the immersion property holds true, which im-
plies no-arbitrage conditions. We compute the G-Brownian motion by using the canonical
decomposition formula and conduct a change of probability.

In the literature of multi-default modelling, one often supposes that there are no
simultaneous defaults, notably in the classic intensity and density models. Only few pa-
pers consider explicit models of double defaults (e.g. Bielecki et al. [BCCH12], Giesecke
[Gie03]). Since the sovereign debt crisis is contagious, we also study extremal risks such
as simultaneous defaults whose occurrence is rare but will have significant impact on fi-
nancial market. The generalised density approach provides mathematical tools to study
multi-default models with simultaneous defaults by using a recurrence method. In the
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model that we study, the default time σ2 satisfies the generalised density hypothesis and
can coincide with another default time σ1, which is a stopping time in the reference fil-
tration. Different from other examples, σ1 is totally inaccessible, which implies that σ2 is
also totally inaccessible.





Chapter 1

A hybrid model for sovereign risk

Motivated by the European sovereign debt crisis, we propose a hybrid sovereign de-
fault model which combines an accessible part which takes into account the movement of
the sovereign solvency and the impact of critical political events, and a totally inaccessible
part for the idiosyncratic credit risk. As a consequence, the probability distribution of
the default time admits singularities. We are interested in the the probability that the
default occurs at critical political dates, for which we obtain closed-form formulae in a
Markovian setting. We compute the compensator process of default and show that the
intensity process does not exist.

Keywords : Sovereign risk, sovereign solvency, idiosyncratic credit risk, decomposi-
tion of stopping times.
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1.1 Introduction

The European sovereign debt crisis (often also referred to as the Eurozone crisis or
the European debt crisis) is an on-going multi-year debt crisis which took place at the
end of 2009, when the long-term interest rates of euro area countries began to diverge
significantly. Figure 1.1 is an interesting graph from Vicky Price of FTI Consulting
which shows the main story behind the Eurozone crisis 1. Several European countries
(e.g., Greece, Ireland, Portugal, Cyprus) faced the collapse of financial institutions, high
government debt and rapidly rising bond yield spreads in government securities, which
has made it difficult for them to refinance their public debts without aid of third parties.
The crisis has also led to a crisis of confidence for European businesses and economies and
a growing amount of attention to sovereign risks from governments and financial markets.

Figure 1.1 – Historical interest rates on 10-year government bonds before 2012

1. http://www.economonitor.com/blog/2011/12/which-graph-best-summarizes-the-eurozone-crisis/
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Sovereign risk is the possibility that the government of a country could default on its
debt or other obligations (definition from Financial Times Lexicon). It belongs to the
family of credit risks, and is a fundamental component of risks in government bond yield
curves. However, the modelling of sovereign risks is a challenging subject and may differ
from the corporate credit risks. Firstly, sovereign default is usually influenced by macroe-
conomic factors such as GDP, total public debt, government revenue and expenditure,
and inflation, etc.. Secondly, political events and decisions have important impacts on
the sovereign default, especially for a European Union member state: the government can
opt for defaulting on internal or external debt, and the same bond can be renegotiated
many times, etc..

In literature (see e.g. Alogoskoufis [Alo12]), the determinant macroeconomic variables
can be summarised by a single one known as sovereign solvency, which can be measured
and monitored easily. We are also interested in the impact of political decisions, notably
when a critical political event happens. In practice, we observe that on a critical date
when important political events are held, the probability of sovereign default can become
significant. This point may be justified by the following intuitive argument: when a
sovereign is unable to repay its public debt, it solicits an international financial aid as a
last resort; if the sovereign is not able to receive the financial support, it can end up in
bankruptcy. We have chosen as example three critical dates, noted as T1, T2 and T3, all
of which concern the financial aid packages for Greece:

1. on 2 May 2010 (T1), the euro area member states and International Monetary Fund
(IMF) agree on a 110-billion-euro financial aid package for Greece;

2. on 21 July 2011 (T2), the government heads of the euro area agree to support a new
financial aid program of 109-billion-euro for Greece;

3. on 8 March 2012 (T3), the European Central Bank (ECB) governing council ac-
knowledges the activation of the buy-back scheme for Greece and decides that debt
instruments issued or fully guaranteed by Greece will be again accepted as collat-
eral in European credit operations, without applying the minimum credit rating
threshold for collateral eligibility, until further notice.

We notice that T1, T2 and T3 are predetermined dates publicly known to investors since
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political events are in general arranged in advance and they can be found on the official
website of European Central Bank. The impact of these political events can be observed
in the long-term Greek government bond yield. Figure 1.2 shows the historical 10-year
bond yield of the Greek government from 2003 to 2013 (data from Bloomberg), where we
observe significant movements of the bond yield during the sovereign crisis. In particular,
as illustrated by Figure 1.3, where the three pictures are extracted from Figure 1 around
the three dates T1, T2 and T3 respectively, the bond yield has large variations with very
high levels of the yield before and negative jumps at or slightly after these critical dates.

Figure 1.2 – Historical 10-year Greek bond yield from 2003 to 2013

Macroeconomic models of debt crisis emphasise such phenomena by the multiple equi-
libria in debt markets in presence of credit risk. The prevailing equilibrium depends on
the expectations of investors about the probability of default (e.g., Calvo [Cal88]). Be-
fore a critical political event, investors expect a sovereign default with a high probability,
in which case the spread of the government bond is very large, and the debt market is
in a large-spread equilibrium. Shortly after the critical political event, the expectation
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Figure 1.3 – Greek bond yield around critical dates T1, T2 and T3 (extracted from Figure
1.2)

of investors about the sovereign default is suddenly discharged to keep a narrow-spread
equilibrium. Therefore, one can say that the probability of default at the time of a critical
political event is nonzero, characterised by a jump in long-term government bond yield.

From a mathematical point of view, the nonzero probability of default on a predeter-
mined date means that the random time of default has a predictable component. In the
literature on credit risk modelling, two classic approaches exist: structural approach and
reduced-form approach. In a standard structural model, the default time is often a pre-
dictable stopping time defined as the first hitting time of a certain default barrier by the
asset value process of a firm; while in a reduced-form model, it is usually made a totally
inaccessible (probabilistic jargon for an unexpected surprise) stopping time modelled as
the first jump time of a point process with stochastic intensity. Besides, in a structural
model with incomplete information (e.g., [DL01b]) where the accounting reports are im-
perfect, and the default time is a totally inaccessible stopping time. Both approaches
have been widely used to model corporate credit risks (see the books of Bielecki and
Rutkowski [BR02] and Duffie and Singleton [DS03] for a detailed description). For the
case of sovereign default, on the one hand, the reduced-form approach is not realistic
since the default time modelled by this approach is totally inaccessible and avoids any
predictable stopping time. On the other hand, a structural model is not appropriate as



30 Chapter 1. A hybrid model for sovereign risk

revealed by Matsumura in [Mat06], because it is not obvious which asset value could be
taken as reference, and the impact of political decisions are not reflected in the structural
definition of default in literature.

In this chapter, we propose a hybrid model which is based on both approaches of
the classic credit risk models and in the meantime takes into account the level of the
sovereign solvency and the impact of critical political events. We intend to explain in
Chapter 3 the significant movements of the sovereign bond yield during the sovereign
debt crisis by the mixed characteristic of the hybrid model. We are inspired by the jump
to default CEV (constant elasticity of variance) models in Carr and Linetsky [CL06] and
Campi, Polbennikov and Sbuelz [CPS09], which were originally proposed for assessing
corporate credit risks. In [CL06], the equity value is a CEV diffusion punctuated by a
possible jump to zero which corresponds to default. The default time is decomposed into
a predictable part, which is the first hitting time of zero by the equity value process, and
a totally inaccessible part, given by a Cox process model. In [CPS09], the equity value
is a CEV process, and the default time is the minimum of the first Poisson jump and
the first absorption time of the equity value process by zero in absence of jumps. So the
default time can be either predictable, according to the CEV process, or unpredictable,
according to a Poisson jump. In these models, we note that the default time is bounded by
its predictable part, that is, a default never occurs after a predictable stopping time, and
as a consequence, the Azéma supermatingale jumps to zero at the predictable stopping
time. In the credit risk literature, there exist other hybrid models such as the generalised
Cox process model in Bélanger, Shreve and Wong [BSW04] where the hazard process
admits jumps, and the credit migration hybrid model in Chen and Filipović [CF05] where
the default of the firm is triggered either by successive downgradings of the credit notes
or an unpredictable jump of a simple point process. Recently, Gehmlich and Schmidt
[GS16] consider models where the Azéma supermartingale of the default time contains
jumps (so that the intensity does not exist) and develop the associated HJM credit term
structures and no-arbitrage conditions. The decomposition of random times also appears
in literature on the theory of enlargement of filtrations such as Coculescu [Coc09] and
Aksamit, Choulli and Jeanblanc [ACJ16] in a more theoretical and general setting.
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The hybrid sovereign default model that we propose in this chapter also combines the
structural and the reduced-form approaches. On the one hand, the accessible part of the
sovereign default time, which depends on solvency process and exogenous macroeconomic
factors, describes the critical political dates. On the other hand, the totally inaccessible
part, which represents the idiosyncratic credit risk, is given by the standard Cox process
model. In this model, the probability distribution of the default time can have singularities
and the critical political dates and decisions have important impacts on the sovereign
default probability. In order to analyse the political impact, we compute the probability
that the sovereign default occurs at critical dates and we obtain closed-form formulae
in a Markovian setting by solving Sturm-Liouville equations. More precisely, when the
solvency process is modelled by a geometric Brownian motion, the default probability is
given in terms of the solution to a modified Bessel equation. In the case of the solvency
process modelled by a CEV diffusion, we discuss the sign of the elasticity parameter
and obtain the default probability by extending CEV ordinary differential equations in
[DL01a, Lin04] and using Whittaker and modified Bessel functions. Numerical tests show
that the political decisions have an important impact on the probability of sovereign
default. Different from [CPS09] and [CL06], the default time in this model can go beyond
its predictable components, while under suitable conditions we can recover the jump to
default CEV model. We will also revisit in Chapter 2 this sovereign default model in
a general setting which extends the default density approach introduced in El Karoui,
Jeanblanc and Jiao [EKJJ10].

1.2 Hybrid model of sovereign default time

In this section, we present a hybrid model for the sovereign default which takes into
account the macroeconomic situations of the country, the impact of critical political events
and the idiosyncratic default risk.
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1.2.1 Sovereign solvency: a structural model

We start by introducing the notion of solvency. Sovereign default is tightly related to
the macroeconomic factors of the country. Notably, the sovereign solvency is an impor-
tant indicator since it includes several determinant macroeconomic variables of sovereign
default, such as, public debt, primary surplus, GDP growth rates, etc.. For example, in
January 2010, the Greek Ministry of Finance published the Stability and Growth Pro-
gram 2010. The report listed main causes for eruption of the government-debt crisis
among which: low GDP growth rates, huge fiscal imbalances, and high government debt
level. Here, we borrow the definition used in [Alo12] for discrete-time case and derive the
continuous-time version.

Definition 1.1. The sovereign solvency at time t is defined by

lnSt = πt −
bt−1(rt − gt)

1 + gt
, (1.1)

where bt−1 denotes the public debt to GDP ratio of the previous observation year, πt is
the primary surplus to GDP ratio, rt is the real interest rate on government bonds, and gt
is the GDP growth rate. In particular, we say that the government is fiscally sustainable
if St ≥ 1, and is insolvent if St < 1.

The definition above can be derived by starting from the government budget con-
straint:

Bt −Bt−1 = rtBt−1 − Pt, (1.2)

where Bt and Bt−1 represent respectively the amount of public debt of the current ob-
servation year and that of the previous observation year, rt is the real interest rate on
government bonds, and Pt is the amount of the primary surplus of the government budget
of the year. Dividing through by GDP, one has

bt − bt−1 = bt−1(rt − gt)
1 + gt

− πt. (1.3)

The right-hand side of the equality above quantifies the government deficit, the negation
of which reflects thus the solvency. Slightly different from the initial definition, we use
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the exponential form such that the solvency takes only positive values. By definition,
four factors determine whether a government is solvent. The predetermined historical
debt is known from the government’s balance sheet of the preceding year. The real
interest rate on government bonds, which is the cost of debt refinancing, can be deduced
from bond yield curves and consumer price indices (or break-even indices). The GDP
growth rate is observable directly from the economic cycle. The primary surplus, which
is the measurement of government deficit, can be computed from the government revenue
and expenditure as well as the fiscal dynamics. In practice, these data are available for
discrete-time observations.

We illustrate in Figure 1.4 the solvency values from the first quater of 2003 to the
third quater of 2015 computed by using (1.5) for the following four member states of the
euro area: Cyprus, Greece, Ireland, and Portugal. The data for the interest rates comes
from the official website of European Central Bank (sdw.ecb.europa.eu) and that for the
other factors from the official website of European Commission (ec.europa.eu/eurostat).
We notice that all these countries are insolvent during the crisis (solvency lower than 1
from 2009), with Greece and Ireland in the worst situation. This observation is rather
coherent with the reality since Greece and Ireland are the first countries that solicit aid
from third parties (Greece on 23/04/2010 and Ireland on 21/11/2010). Furthermore, the
crisis starts at the end of 2009 when the solvency of several countries falls below 0.9, so
we can consider 0.9 as an approximate threshold of the debt crisis. Indeed, fears about a
debt crisis begin to spread when the solvency of a country hits down a certain threshold.

In a long-term time scale, we model the sovereign solvency by a continuous-time
process. For this reason, we derive at first the continuous-time version of the solvency.
From the flow equation (1.2) we obtain the continuous-time equivalent

dB(t) = r(t)B(t)dt− dP (t),

where B(t) (respectively P (t)) is the instantaneous amount of public debt (respectively
primary surplus) and r(t) is the instantaneous real interest rate on government bonds
at time t. Let us now consider G(t) the amount of GDP at time t, with the additional
assumption that the GDP grows following the countinous compounding, characterised
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Figure 1.4 – Solvency of four countries of euro area.

by the differential equation dG(t) = G(t)g(t)dt, where g(t) is the instantaneous GDP
growth rate at time t. We assume that all the processes are continuous. Denoting by b(t)
(respectively π(t)) the instantaneous debt-to-GDP (respectively surplus-to-GDP) ratio at
time t, i.e., b(t) = B(t)/G(t) (respectively π(t) = P (t)/G(t)), one has

d

(
B(t)
G(t)

)
= dB(t)

G(t) −
B(t) dG(t)
G2(t)

= r(t)B(t)− dP (t)
G(t) − B(t)g(t) dt

G(t)

= (r(t)− g(t)) b(t) dt− d
(
P (t)
G(t)

)
− P (t)g(t) dt

G(t)

= [r(t)b(t)− g(t)b(t)− g(t)π(t)] dt− dπ(t).
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Finally, the continuous-time version of (1.3) is written as

db(t) = [r(t)b(t)− g(t)b(t)− g(t)π(t)] dt− dπ(t). (1.4)

Similar to the discrete-time case, the negation of the right-hand side of the equality above
defines the dynamic of the soveregn solvency, and we give the following definition before
the modelling in a probability space.

Definition 1.2. The continuous-time sovereign solvency at time t is defined by

S(t) = S(0) + π(t)− π(0) +
∫ t

0
[g(s)π(s) + g(s)b(s)− r(s)b(s)] ds, (1.5)

where b(t) denotes the debt-to-GDP ratio, π(t) is the surplus-to-GDP ratio, r(t) is the
instantaneous real interest rate on government bonds, and g(t) is the instantaneous GDP
growth rate.

Let (Ω,A,P) be a probability space equipped with a filtration F = (Ft)t≥0 satisfying
the usual conditions, i.e., F0 contains all the P-null sets and F is right-continuous: Ft =
Ft+ := ∩s>tFs. We recall the definitions of three types of stopping times in the Appendix
A, Definition A.1–A.3 (see e.g. the book of Protter [Pro05, Chapter III.2] or the survey
of Nikeghbali [Nik06, Chapter 2.3] for details).

Let W = (Wt, t ≥ 0) be a standard Brownian motion which is F-adapted. For a given
country, we assume that the solvency is governed by a process S = (St, t ≥ 0) satisfying
the following diffusion:

dSt = µ(t, St)dt+ σ(t, St)dWt, S0 = x, (1.6)

where µ and σ are Lipschitz continuous functions such that∫ T

0
|µ(t, St)|dt+

∫ T

0
σ2(t, St)dt <∞

for any T > 0. Let L be a real positive constant with L < S0 which represents a threshold
of the debt crisis. More precisely, if S falls below L, we consider that the sovereign
becomes seriously insolvent, i.e., the risk of default is extremely high. Then, we define a
random time τ0 as the first hitting time of the barrier L by the solvency process S, i.e.,

τ0 = inf{t ≥ 0 : St < L}, (1.7)
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with the convention inf ∅ =∞. Note that τ0 is a predictable F-stopping time. In general,
the début (“entering time”) of a predictable random set is a predictable stopping time
(Jacod and Shiryaev [JS13, Proposition 2.13]).

1.2.2 Critical political event

Generally speaking, when a sovereign becomes fiscally vulnerable, a political meeting
will be organised at which political decisions need to be made concerning the relevant
sovereign country. In reality, a multitude of political events are involved during these
meetings. In this section, we propose a simplified model to explore the political impact,
while real situations tend to be more complicated and less transparent. For the concerned
sovereign, the meeting date is a critical date and often comes shortly after the solvency
barrier hitting time τ0. In our model, we assume that the critical date coincides with the
time τ0. We also assume that the result of political decisions depends on some exogenous
factor, such as an economic or financial shock: if the shock has occurred before the
critical date, then the sovereign can possibly end up in default at τ0; otherwise, it receives
a financial aid package without immediate default at τ0. Indeed, the term financial aid
package is perceived as any assistance from third parties with the aim of improving the
solvency of the country in debt crisis, including a bailout loan, a quantitative easing policy,
etc., in return for which the beneficiary should take austerity measures to ameliorate its
financial situation. From an economic point of view, when the solvency is below the
threshold, an exogenous shock can make things worse so that the aids from third parties
will be too costly (for example, austerity policies can do harms to the economy and so
people vote against it) and the political decisions are in favour of a sovereign default.

We model the exogenous shock by the jump of a Poisson process N = (Nt, t ≥ 0) with
intensity λN > 0 which is independent of the filtration F. Then, the result of political
decisions depends on the value of N at the critical date τ0. More precisely, we define

ζ =


τ0, on {Nτ0 ≥ 1},

∞, on {Nτ0 = 0}.
(1.8)

The random time ζ takes into account both the sovereign solvency and the political
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decisions. Obviously, ζ is not an F-stopping time. However, ζ is an honest time (e.g.
Barlow [Bar78]), which by definition is Ft-measurable on {ζ ≤ t}. Definitely, the event
{ζ ≤ t} implies {τ0 ≤ t}, then for any t ≥ 0,

1{ζ≤t}ζ = 1{ζ≤t}τ0 = 1{ζ≤t}(t ∧ τ0),

where (t ∧ τ0) is Ft-measurable. We can make ζ a stopping time with respect to a larger
filtration: the progressive enlargement of F by ζ, namely the filtration Fζ = (F ζt )t≥0,
where

F ζt := ∩s>t(σ({ζ ≤ u} : u ≤ s) ∨ Ft), t ≥ 0.

We note that
P{ω : τ0(ω) = ζ(ω) <∞} = P(ζ <∞),

then ζ is an accessible stopping time with respect to Fζ .

1.2.3 Idiosyncratic credit risk: a Cox process model

In the book of Lando [Lan09], the author decomposes the structure of the intensity of
an individual firm into two independent components, one coming from a common factor
and one being idiosyncratic. In our model, besides the macroeconomic and political
impacts, we also consider the credit risk related to the idiosyncratic financial circumstance
of the sovereign, and we adopt the widely-used Cox process model.

Let λ = (λt, t ≥ 0) be a nonnegative F-adapted process, and η be an A-measurable
exponentially distributed random variable of unit parameter representing the idiosyncratic
factor, independent of both F∞ and the Poisson process N . In the literature on the
corporate credit risks, the default intensity can depend on the pre-default equity price
process. In our case, λ can depend on the solvency S, which in turn depends on common
factors, i.e., the macroeconomic factors. For example, let λt = λ(t, St), where λ : R+ ×
R+ → R+ is a function whose form differs from country to country. In general, the
intensity λ is decreasing with respect to the solvency S and remains bounded when S

tends to +∞, which implies that in a healthy situation of solvency, the idiosyncratic
default risk is limited. We call the process λ the idiosyncratic default intensity.
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We introduce the default hazard process Λ = (Λt, t ≥ 0) as Λt =
∫ t

0 λs ds. Let ξ be the
time of default due to the idiosyncratic credit risk, given by a Cox process model, i.e.,

ξ := inf {t ≥ 0 : Λt > η} . (1.9)

By definition, for any t ≥ 0, one has {ξ ≥ t} = {Λt ≤ η}. As usual, the random time ξ
is a totally inaccessible stopping time with respect to the progressive enlargement of the
filtration F by ξ, namely the filtration Fξ = (F ξt )t≥0, where

F ξt = ∩s>t(σ({ξ ≤ u} : u ≤ s) ∨ Ft), t ≥ 0.

1.2.4 Sovereign default time: a hybrid model

We now model the sovereign default by combining the economic and political influences
described by ζ and the idiosyncratic credit risk described by ξ. We recall the partition
theorem of any stopping time T . For any A-measurable set A, we denote by TA the
restriction of T on A, defined by

TA(ω) =


T (ω), ω ∈A,

∞, ω /∈A.

Theorem 1.3 ([DM75],Theorem 81). Let T be an F-stopping time. There exists a unique
(up to a P-null set) partition of the set {T < ∞} into two sets A and B which belong
to FT− such that TA is accessible and TB is totally inaccessible. The stopping time TA is
called the accessible part of T while TB is called the totally inaccessible part of T .

Conversely, given two stopping times, one accessible, the other totally inaccessible,
by taking the minimum, one can consider to construct a new stopping time (by making
precise the filtration of course). In this way, let the sovereign default time be

τ := ζ ∧ ξ, (1.10)

which means that the sovereign default can result either from macroeconomic and political
events, or from its own idiosyncratic financial situations. This sovereign default model
has a hybrid nature of both structural and reduced-form approaches.
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We make some comparisons with the jump to default extended CEV credit risk model:

1. We note that the default time τ in our model is not bounded by its predictable
component τ0. In fact, on the set {τ0 < ξ} ∩ {Nτ0 = 0}, τ = ξ > τ0. If (St, t ≥ 0)
follows a CEV diffusion, then the default time τ defined in (1.10) is an extension
of the jump to default extended CEV model in [CL06]. We refer the readers to
[DL01b, DS02] for the background about the CEV process and we shall discuss the
CEV case in detail in Section 1.3.3.2.

2. If the Poisson process intensity of the exogenous shock λN → 0, i.e., the external
environment of the sovereign is relatively stable, then the default never occurs
at τ0, and our model converges to a Cox process model. On the contrary, when
λN →∞, we have τ = τ0∧ξ. In this case, we recover the jump to default extended
CEV model for corporate credit risk.

1.2.5 Extension to re-adjusted solvency thresholds

In practice, if the debt and deficit situation of the sovereign is excessive and has no im-
provement, the authorities may be less confident and consequently relax the requirements
on the solvency barrier. For example, after the European Union and the International
Monetary Fund formally agreed a first bailout package for Greece, the European Central
Bank has been forced to relax the lending rules by suspending the minimum credit rating
required on collateral, which lowers indirectly the requirements on the greek solvency,
since the solvency is reflected by credit rating on the market. In this case, other critical
political events may be gradually anticipated. This observation motivates us to extend
the hybrid model to the case of multiple critical dates where solvency thresholds can be
re-adjusted.

Let n ∈ N, and L1, L2, . . . , Ln ∈ R+ such that S0 > L1 > L2 > . . . > Ln, representing
different levels of solvency requirements. We define a sequence of solvency barrier hitting
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times {τi}ni=1 as

τi = inf{t ≥ 0 : St < Li}, i ∈ {1, . . . , n}. (1.11)

The sequence {τi}ni=1 is increasing since the solvency requirements are decreasing. When
the solvency falls below a certain requirement Li, for i ∈ {1, . . . , n− 1}, we assume that a
critical political event is organised immediately at τi. If an exogenous shock has already
arrived before, then the sovereign can possibly default at τi and no more critical political
events will be planned; if no exogenous shock arrives before τi, the sovereign may obtain
a financial aid to avoid an immediate default, which makes it possible to predetermine
another critical political event when the solvency falls below Li+1, and so on and so forth,
until the requirements on the solvency are exhausted.

The exogenous factor is modelled by an inhomogeneous Poisson process N with inten-
sity function λN(t), and we define a random time ζ∗ as

ζ∗ = τi, on {Nτi−1 = 0} ∩ {Nτi ≥ 1}, i ∈ {1, . . . , n+ 1} (1.12)

with convention τ0 = 0 and τn+1 =∞. Note that for u ≥ 0, one has

1{ζ∗>u} =
n+1∑
i=1

1{τi>u}(1{Nτi−1=0} − 1{Nτi=0}) =
n+1∑
i=1

1{τi−1≤u<τi}1{Nτi−1=0}. (1.13)

We can check that

P(∪ni=1{ω : τi(ω) = ζ∗(ω) <∞}) = P(ζ∗ <∞),

then ζ∗ is an accessible stopping time with respect to the progressive enlargement of F by
ζ∗, namely the filtration Fζ∗ = (F ζ

∗

t )t≥0, where

F ζ
∗

t := ∩s>t(σ({ζ∗ ≤ u} : u ≤ s) ∨ Fs), t ≥ 0.

Similar to the case of single critical date, the sovereign can be caused either by the
successive downgrade of solvency or by the idiosyncratic credit risk. Then, the sovereign
default time is defined as

τ = ζ∗ ∧ ξ, (1.14)
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where ξ is still given by (1.9). Let the global information structure be given as usual by
the progressive enlargement of the filtration F by the sovereign default time τ , denoted
by G = (Gt)t≥0 and defined as

Gt =
⋂
s>t

(
σ({τ ≤ u} : u ≤ s) ∨ Fs

)
, t ≥ 0.

Then, τ is a G-stopping time. However, ζ∗ and ξ are not necessarily G-stopping time. In
order to investigate the decomposition τ = ζ∗ ∧ ξ where all the three random times are
stopping times, we need a still larger filtration. We denote by H = (H)t≥0 the progressive
enlargement of F by both ζ∗ and ξ. To be more precise, we set

Ht = ∩s>t(σ({ζ∗ ≤ u} : u ≤ s) ∨ σ({ξ ≤ u} : u ≤ s) ∨ Ft), t ≥ 0.

Obviously, Fζ∗ and Fξ are included in H.

Lemma 1.4. The following inclusion relations hold: F ( G ( H.

Proof: The first inclusion is obvious since τ is not an F-stopping time. For the second
inclusion, the σ-algebra

σ({τ ≤ s} : s ≤ t) = σ({ζ∗ ≤ s} ∪ {ξ ≤ s} : s ≤ t),

which is generated by the sets of the form {ζ∗ ≤ s} ∪ {ξ ≤ s} for any s ≤ t. On the one
hand, one has G ⊆ H since

{ζ∗ ≤ s} ∪ {ξ ≤ s} ∈ σ({ζ∗ ≤ s} : s ≤ t) ∨ σ({ξ ≤ s} : s ≤ t);

on the other hand, the sets of the form {ζ∗ ≤ s} ∩ {ξ ≤ s} for any s ≤ t do not belong to
σ({τ ≤ s} : s ≤ t), which implies G 6= H. The lemma is thus proved. �

The following proposition makes precise the unique partition of the set {τ < ∞} on
the filtered probability space (Ω,A,H,P).

Proposition 1.5. Let τ be defined by (1.14) and let

A = ∪ni=1

(
{τi < ξ} ∩ {Nτi−1 = 0} ∩ {Nτi ≥ 1}

)
,

B = {τ <∞}/A.
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Then, A,B ∈ Hτ− and TA is accessible and TB is totally inaccessible, and τ = TA ∧ TB is
the unique decomposition a.s..

Proof: Firstly, the set {τ < ∞} belongs to Hτ− since τ is measurable with respect to
Hτ−. Secondly, since τi is a predictable stopping time for any i = 1, . . . , n, by [Nik06,
Theorem 2.23] one has

{τi < ξ} ∩ {Nτi−1 = 0} ∩ {Nτi ≥ 1} = {τ = τi} ∈ Hτ−,

which implies that A,B ∈ Hτ−. Furthermore, one can check that τA = ζ∗ and τB = ξ.
Then, by Theorem 1.3, τ = τA ∧ τB is the unique decomposition up to a P-null set. �

In this case, the stopping time τ is decomposed into an accessible part, which has n
predictable components, and a totally inaccessible part.

1.2.6 Immersion property under minimum

In literature on the theory of enlargements of filtrations, we say that the couple (F,G)
satisfies the immersion property or the so-called (H)-hypothesis (or F is immersed in G) if
any F-martingale remains a G-martingale. In the previous section, the sovereign default
time τ is defined as the minimum of two random times ζ∗ and ξ. In [Li12, Chapter
6], the author has studied the problem of stability for the immersion property under
minimum of two random times. More precisely, given two random times σi for i = 1, 2,
if the immersion property holds between the reference filtration F and the respective
progressive enlargements of F by σi for i = 1, 2, the author gives conditions under which
the immersion property is satisfied between F and the progressive enlargement of F by
σ1 ∧ σ2. By using this result, we investigate separately the two parts of τ and prove,
without computing explicitly the conditional probability distribution, that F is immersed
in H and then by filtration shrinkage that (F,G) satisfies the immersion property.

It is well known (e.g., Bielecki and Rutkowski [BR02]) that if the random time ξ
is constructed by Cox process model, then the couple (F,Fξ) satisfies the immersion
property. We prove that it is also the case for (F,Fζ∗).
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Lemma 1.6. The immersion property holds for the couple (F,Fζ∗).

Proof: For any s, t ∈ R+ and s ≤ t, by (1.13) one has

P(ζ∗ ≤ s|F∞) = 1−
n+1∑
i=1

1{τi−1≤s<τi}P(Nτi−1 = 0|F∞).

The independence of the Poisson process and the filtration F implies that

P(Nτi−1 = 0|F∞) = P(Nτi−1 = 0|Ft)

on the set {τi−1 ≤ s}, which in turn implies

P(ζ∗ ≤ s|F∞) = P(ζ∗ ≤ s|Ft).

This last equality is (H5)-condition in Elliott, Jeanblanc and Yor [EJY00], which is equiv-
alent to (H)-hypothesis. �

Proposition 1.7. The filtration F is immersed in H.

Proof: For any c, k ∈ R+, by (1.13) one has

P(ζ∗ > c, ξ > k|F∞) =
n+1∑
i=1

1{τi−1≤c<τi}P(Nτi−1 = 0, ξ > k|F∞)

=
n+1∑
i=1

1{τi−1≤c<τi}P(Nτi−1 = 0, η > Λk|F∞).

Since both η and the Poisson process N are independent of F∞, we deduce that

P(Nτi−1 = 0, η > Λk|F∞) = P(Nτi−1 = 0, η > Λk|Ft)

on the set {τi−1 ≤ c}, which yields

P(ζ∗ > c, ξ > k|F∞) = P(ζ∗ > c, ξ > k|Ft).

By [Li12, Chapter 6, Lemma 6.2.4], the immersion property holds for the couple (F,H).
�

Since any F-martingale is G-adapted, Proposition 1.7 and [FP11, Theorem 2] imply
that F is immersed in G (see also [Li12, Chapter 6, Lemma 6.2.3]).
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1.3 Probability of default on multiple critical dates

In this section, we are interested in the probability that the sovereign default occurs
on specific critical political dates. As we show, such default probabilities are nonzero in
the hybrid model, which implies singularities in the probability distribution of default.

1.3.1 Conditional default and survival probabilities

We consider the sovereign default given by the hybrid model (1.14). For any i ∈
{1, . . . , n}, let the F-conditional probability that the sovereign default time τ coincides
with τi be denoted by pit := P(τ = τi|Ft), t ≥ 0.

Proposition 1.8. The process (pit, t ≥ 0) is an F-martingale stopped at τi and is given by

pit = E
[(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
)
e−Λτi |Ft

]
, i = 1, . . . n, (1.15)

where we recall that λN is the time-dependent Poisson intensity.

Proof: The event {τ = τi} equals {τi ≤ ξ,Nτi−1 = 0, Nτi ≥ 1}. Since τi is an F-stopping
time, the Poisson process N and the random variable η are mutually independent and in
addition independent of F, one has

P(τ = τi|F∞) = P(τi ≤ ξ,Nτi−1 = 0, Nτi ≥ 1|F∞)

= P(Λτi ≤ η,Nτi−1 = 0, Nτi ≥ 1|F∞)

= P(Λτi ≤ η|F∞)P(Nτi−1 = 0, Nτi ≥ 1|F∞)

= e−Λτi
(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
)
, (1.16)

which implies (1.15) and that pit is stopped at τi, i.e., pit∧τi = pit. �

We notice from the above proposition that on the set {τi ≤ t}, pit does not depend
on t, which means that the information concerning the impact of a political decision is
neutralised after the event. In particular, we have

P(τ = τi) = pi0 = E
[(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
)
e−Λτi

]
. (1.17)
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We now compute the F-conditional survival probability of the sovereign and re-visit
the immersion property.

Proposition 1.9. For all u, t ∈ R+, the F-conditional survival probability is given by

P(τ > u|Ft) = E
[

exp
(
−

n∑
i=1

1{τi≤u}
∫ τi

τi−1
λN(s)ds− Λu

)∣∣∣Ft]. (1.18)

Proof: For all u, t ∈ R+, by (1.13) one has

P(τ > u|Ft) = P(ζ∗ > u, ξ > u|Ft)

= E
[( n+1∑

i=1
1{τi−1≤u<τi}1{Nτi−1=0}

)
1{ξ>u}

∣∣∣∣Ft].
If u ≤ t, then

P(τ > u|Ft) =
n+1∑
i=1

1{τi−1≤u<τi}E
[
1{Nτi−1=0}1{ξ>u}

∣∣∣Ft]

=
n+1∑
i=1

1{τi−1≤u<τi}E
[
1{Nτi−1=0}1{η>Λu}

∣∣∣Ft]

=
( n+1∑
i=1

1{τi−1≤u<τi}e
−
∫ τi−1

0 λN (s)ds
)
e−Λu .

= exp
(
−

n+1∑
i=1

1{τi−1≤u<τi}

∫ τi−1

0
λN(s)ds

)
e−Λu

= exp
(
−

n∑
i=1

1{τi≤u}
∫ τi

τi−1
λN(s)ds− Λu

)
.

If u > t, we compute P(τ > u|Ft) as the Ft-conditional expectation of P(τ > u|Fu), which
implies (1.18). �

We can easily check that the couple (F,G) satisfies the immersion property. Definitely,
by Proposition 1.9, when u ≤ t, the F-conditional probability does not depend on t, i.e.,

P(τ > u|Ft) = P(τ > u|Fu), u ≤ t.

This last equality is equivalent to (H)-hypothesis (see Elliott, Jeanblanc and Yor [EJY00]).

Corollary 1.10. For all t, T ∈ R+ such that t ≤ T , the G-conditional survival probability
is given by

P(τ > T |Gt) = 1{τ>t}E
[

exp
(
−

n∑
i=1

1{t<τi≤T}
∫ τi

τi−1
λN(s)ds−

∫ T

t
λs ds

)∣∣∣Ft]. (1.19)
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Proof: This is the direct result of the key lemma in Elliott, Jeanblanc and Yor (c.f.
[EJY00, Lemma 3.1]). Precisely,

P(τ > T |Gt) = 1{τ>t}
P(τ > T |Ft)
P(τ > t|Ft)

= 1{τ>t}

E
[
e
−
∑n

i=1 1{τi≤T}
∫ τi
τi−1

λN (s)ds−
∫ T

0 λs ds
∣∣∣∣Ft
]

e
−
∑n

i=1 1{τi≤t}
∫ τi
τi−1

λN (s)ds−
∫ t

0 λs ds
,

which finishes the proof. �

1.3.2 Compensator process

The compensator and the intensity processes of default play an important role in
the reduced-form approach of credit risk modelling. In a hybrid model, however, the
compensator process of τ is in general discontinuous and the intensity does not necessarily
exist.

Recall that an increasing càdlàg F-predictable process ΛF is called F-compensator
process of a random time τ if the process (1{τ≤t} − ΛF

t∧τ , t ≥ 0) is a G-martingale. The
process ΛG = (ΛF

t∧τ , t ≥ 0) is called the G-compensator of τ . The general method for
computing the compensator is given in [EJY00] (see also [JY78, Proposition 2]) by using
the Doob-Meyer decomposition of the Azéma supermartingale. This theorem is recalled
in Appendix A.

In the case where the immersion property holds, the Azéma supermartingale becomes
a decreasing process and then A = 1 − G. In this case, G is the unique solution of the
following stochastic differential equation

dGt = −Gt−dΛF
t , t > 0, G0 = 0.

The solution to the equation above is well-known: G = E(−ΛF), where E denotes the
Doléan-Dade exponential ([Pro05, Chapter II, page 85]). More precisely,

Gt = E(−ΛF)t = exp
(
−ΛF

t −
1
2[ΛF,ΛF]t

)
.

In the sovereign default model (1.14), the Azéma supermartingale has an explicit form
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given by Proposition 1.9 as

Gt = P(τ > t|Ft) = exp
(
−
∫ t

0
λs ds−

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds

)
, t ∈ R+, (1.20)

which is a decreasing process. We can also compute the hazard process Γ ([BR02, Chapter
5]) of the sovereign default time τ as

Γt = − lnGt =
∫ t

0
λs ds+

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds, t ∈ R+. (1.21)

By applying Itō’s formula for semimartingales to exp(−Γ), one has

e−Γt = −
∫ t

0
e−Γs−dΓs +

∑
0<s≤t

(e−Γs − e−Γs− + e−Γs−)∆Γs,

where ∆Γt = Γt − Γt−. By consequence, we obtain

ΛF
t = −

∫ t

0

dGs

Gs−
= −

∫ t

0

de−Γs

e−Γs−
= Γt +

∑
0<s≤t

(
1− e−∆Γs −∆Γs

)
,

which yields the following relationship between the processes ΛF and Γ

ΛF
t = Γct +

∑
0<s≤t

(
1− e−∆Γs

)
, t ∈ R+,

where Γc is the continuous part of Γ. Thus, the F-compensator is

ΛF
t =

∫ t

0
λs ds+

n∑
i=1

1{τi≤t}
(

1− e−
∫ τi
τi−1

λN (s)ds
)
, t ∈ R+, (1.22)

and the G-compensator is

ΛG
t =

∫ t∧τ

0
λs ds+

n∑
i=1

1{τi≤t∧τ}
(

1− e−
∫ τi
τi−1

λN (s)ds
)
, t ∈ R+. (1.23)

We underline that the intensity process of sovereign default does not exist because of the
discontinuity of the compensator process at the F-stopping times (τi)ni=1. In literature,
Gehmlich and Schmidt [GS16] provide a class of examples where the Azéma supermartin-
gale contains jumps and propose a generalisation of this class with an additional stochastic
integral containing singularities at predictable stopping times.

We observe that the absolutely continuous part of ΛF and that of Γ are identical and
depend on the idiosyncratic default intensity λ, while their jump parts are different and
depend on the solvency (through the political critical dates) and the exogenous shock.
When the external shock is small (λN(t) is small), we can approximate ΛF by Γ.



48 Chapter 1. A hybrid model for sovereign risk

Remark 1.11. It is known that if the compensator process is continuous, then so is the
hazard process and the two processes coincide with each other ([BR02, Proposition 6.2.2]).
Bélanger, Shreve and Wong ([BSW04]) has pointed out that when there are jumps in the
Azéma supermartingale, the hazard process defined in their paper (which is technically
the F-compensator) differs from the one defined in [BR02]. In the sovereign default model
previously mentionned in this section, we provide an example where the hazard process
is not equal to the F-compensator.

1.3.3 Default probability in a Markovian setting

The general form of the sovereign default probability at critical dates pit, i = 1, . . . , n,
is given by Proposition 1.8. We now consider several specific settings and provide ex-
plicit formulae when the solvency process is a geometric Brownian motion or a Constant
Elasiticity of Variance (CEV) process.

We first make some simplified assumptions. We assume that the equation (1.6) is
homogeneous and that the solvency process is given by

dSt = µ(St)dt+ σ(St)dWt, S0 = x,

where µ(·) : R+ → R and σ(·) : R+ → R+ satisfy regular enough conditions for the
existence and the pathwise uniqueness of a strong solution {Sxt , t ≥ 0}. Recall that the
existence and pathwise uniqueness holds in each of the following cases (see e.g. Oksendal
[Oks03, Theorem 5.2.1] and Revuz and Yor [RY99, Theorem 3.5] for details):

(a) µ and σ are Lipschitz continuous, and for any x ∈ R+ there exists a constant C
such that |µ(x)|+ |σ(x)| ≤ C(1 + |x|);

(b) µ is Lipschitz continuous, and for any x, y ∈ R+, |σ(x)− σ(y)|2 ≤ ϕ(|x− y|);
(c) µ and σ are bounded, and for any x, y ∈ R+, |σ(x)−σ(y)|2 ≤ ϕ(|x−y|), σ ≥ ε > 0;
(d) µ is bounded, and for any x, y ∈ R+, |σ(x) − σ(y)|2 ≤ |g(x) − g(y)| where the

function g : R+ → R is increasing and bounded, σ ≥ ε > 0.
Let L denote the generator of S, i.e., for any function f ∈ C2 : R+ → R,

Lf(z) = µ(z)f ′(z) + 1
2σ

2(z)f ′′(z).
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The technical hypotheses in [CL06] remain valid here with suitable financial interpre-
tation. We specify the idiosyncratic intensity as a decreasing function of the solvency,
i.e., λt = λ(St) with λ(·) : R+ → R+ being decreasing. When the solvency S → ∞, the
sovereign has almost no chance to default, then λ should remain bounded. When S → 0,
the solvency is bad enough to trigger a default, so that the idiosyncratic default intensity
can explode to infinity in this case.

Suppose in addition that the intensity of the exogenous shock is constant, so in the
inhomogeneous Poisson process, the intensity function is λN(t) = λN > 0 for any t ≥
0. Furthermore, we specify the idiosyncratic default intensity process λ as a decreasing
function of the solvency λt = λ(St) with λ(·) : R+ → R+ being decreasing.

We consider the Laplace transform for the F-stopping time

ρx := inf{t ≥ 0 : Sxt ≤ L} with Sx0 = x.

For any k ≥ 0, let

Q(x; k, L) := E
[

exp
(
− kρx −

∫ ρx

0
λ(Sxu) du

)]
. (1.24)

Intuitively, if the process S starts from a higher level than x, then it takes on average
more time to hit the threshold L, and so the function in (1.24) should be decreasing.
However, this is not necessarily true when the process S is inhomogeneous.

Proposition 1.12. The parameterised function Q(·; k, L) defined in (1.24) is decreasing.

Proof: For any ω ∈ Ω, any x, x′ ∈ R+ such that x ≤ x′, define the F-stopping times

ρx′,x(ω) := inf{t ≥ 0 : Sx′t (ω) ≤ x} and

ρx′(ω) := inf{t ≥ 0 : Sx′t (ω) ≤ L} with Sx
′

0 (ω) = x′.

The random time ρx is in distribution equal to ρx′ − ρx′,x, then by pathwise uniqueness



50 Chapter 1. A hybrid model for sovereign risk

and markovian properties one has

Q(x′; k, L) = E
[
exp

(
− k(ρx′ − ρx′,x + ρx′,x)−

∫ ρx′

ρx′,x

λ(Sx′u )du−
∫ ρx′,x

0
λ(Sx′u )du

)]

≤ E
[
exp

(
− k(ρx′ − ρx′,x)−

∫ ρx′

ρx′,x

λ(Sx′u )du
)]

= E
[
exp

(
− kρx −

∫ ρx

0
λ(Sxu)du

)]
= Q(x; k, L)

since kρx′,x +
∫ ρx′,x
0 λ(Sx′u )du ≥ 0. The proposition is thus proved. �

It is difficult to compute directly the right-hand side of (1.24). However, one can prove
that (1.24) is the representation of the solution to a differential equation. Then one can
compute the Laplace transform by solving an ODE.

Theorem 1.13. The right-hand side of (1.24) is the representation of the solution to the
following Dirichlet problem

Lu(z)− (λ(z) + k)u(z) = 0 on {z > L};

u(L) = 1. (1.25)

Proof: Indeed, since ρx is a predictable stopping time, there exists an increasing se-
quence of stopping times (ρm)m≥1 such that ρm < ρx and limm→∞ ρm = ρx P-a.s.. Let

βxt = exp
(
−
∫ t

0
(k + λ(Sxs ))ds

)
for any t ≥ 0. By Itō’s formula, on the set {t < ρx} one has

d(βxt u(Sxt )) = −u(Sxt )βxt (k + λ(Sxt ))dt+ βxt Lu(Sxt )dt+ βxt u
′(Sxt )σ(Sxt )dWt

= βxt u
′(Sxt )σ(Sxt )dWt, (1.26)

where u is a solution to the Dirichlet problem (1.25). We then have

E[βxρmu(Sxρm)]− u(x) = E
[∫ ρm

0
βxs u

′(Sxs )σ(Sxs )dWs

]
,

where the right-hand side vanishes thanks to the boundedness of β, the smoothness of u.
Thus, when m tends to +∞,

u(x) = E[βxρxu(L)] = E
[
exp

(
−
∫ ρx

0
(λ(Sxs ) + k)ds

)]
.
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The theorem is thus proved. �

We refer the reader to Karatzas and Shreve [KS02, Chapter 5, Proposition 7.2] and
Touzi [Tou13, Theorem 2.8] for a general representation of this kind of Dirichlet problem.

The probability that the sovereign bankruptcy occurs on a critical political date can
be derived from Q(·; k, L).

Proposition 1.14. The F-martingale (pit, t ≥ 0), i ∈ {1, . . . , n}, is computed as

pit = e−
∫ t∧τi

0 λ(Su)duQ(St∧τi−1 ;λN , Li−1)

·
[
e−λ

N (t∧τi−1)Q(S(t∧τi)∨τi−1 ; 0, Li)− e−λ
N (t∧τi)Q(S(t∧τi)∨τi−1 ;λN , Li)

]
, t ≥ 0,

(1.27)
with L0 = S0 = x.

Proof: By Proposition 1.8 and the section assumptions, we have for any i ∈ {1, . . . , n}
and t ∈ R+ that

pit = E
[
(e−λN τi−1 − e−λN τi)e−

∫ τi
0 λ(Su)du

∣∣∣Ft] .
Since pi is a martingale stopped at τi, it suffices to compute pit on the set {t < τi}. On
the set {τi−1 ≤ t < τi}, by the Markovian property of the process S, we obtain

pit = e−λ
N τi−1E

[
e−
∫ τi

0 λ(Su)du
∣∣∣Ft]− E

[
e−λ

N τi−
∫ τi

0 λ(Su)du
∣∣∣Ft]

= e−
∫ t

0 λ(Su)du
[
e−λ

N τi−1Q(St; 0, Li)− e−λ
N tQ(St;λN , Li)

]
.

In particular, one has

piτi−1
= e−λ

N τi−1−
∫ τi−1

0 λ(Su)du
[
Q(Li−1; 0, Li)−Q(Li−1;λN , Li)

]
,

which yields that on the set {t < τi−1},

pit = e−λ
N t−

∫ t
0 λ(Su)duQ(St;λN , Li−1)

[
Q(Li−1; 0, Li)−Q(Li−1;λN , Li)

]
.

Finally, we note that Q(Sτi−1 ; k, Li−1) = Q(Li−1; k, Li−1) = 1 for any k, which implies
(1.27). �

The proposition above shows that it is essential to compute the quantity Q(x; k, L) to
obtain explicit form of the probabilities of default at critical political events. We present
below explicit formulae for two widely used cases.
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1.3.3.1 Case of geometric Brownian motion

Let the solvency process S be a geometric Brownian motion which is the solution to

dSt = St(µdt+ σdWt), t ≥ 0,

where W is a standard Brownian motion, µ, σ ∈ R with σ > 0 and S0 = x. Similar as in
[CL06], we suppose that the idiosyncratic default intensity λ is a decreasing function of
the solvency S:

λt = λ(St) = a

S2β
t

+ b, (1.28)

where a > 0, b, β ≥ 0 represent respectively the scale parameter governing the sensitivity
of λ to S, the constant lower bound and the elasticity parameter. Then, by (1.25),
u(x) = Q(x; k, L) is the solution to the following Sturm-Liouville equation (see [Eve05]):

1
2σ

2x2u′′(x) + µxu′(x)− (ax−2β + b+ k)u(x) = 0 on (L,+∞);

u(L) = 1.
(1.29)

Case β = 0: Let k̂ = a+ b+ k. Then, the equation (1.29) becomes

1
2σ

2x2u′′(x) + µxu′(x)− k̂u(x) = 0, (L,+∞);

u(L) = 1,
(1.30)

to which the fundamental solution has the form xγ, where γ ∈ R is a constant to be
identified. Then, one can compute that γ1,2 = −ν ±

√
ν2 + 2k̂

σ2 , where ν = µ/σ2 − 1/2.
The general solution to the equation (1.30) has the form

u(x) = A1x
γ1 + A2x

γ2 ,

where A1, A2 ∈ R. Since u(x) is bounded when x→∞, we deduce that A1 = 0, and the
boundary condition u(L) = 1 yields A2 = L−γ2 .

Apart from solving the equation (1.30), one can also compute directly the expectation
E[e−k̂ρx ]. Precisely,

St = xe(µ−σ
2
2 )t+σWt = xeσW̃t , t ≥ 0,
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where W̃t = νσt+Wt, and the first hitting time ρx can be defined equivalently as

ρx = inf{t ≥ 0 : W̃t ≤
1
σ

ln(L/x)}.

By Girsanov’s theorem, we can define a probability P̃ under which W̃ is a Brownian
motion. The Radon-Nikodym density of P with respect to P̃ restricted on Ft is given by

dP
dP̃

∣∣∣∣
Ft

= eνσW̃t− 1
2ν

2σ2t, t ≥ 0.

Then, by a change of probability one has

E
[
e−k̂ρx

]
= Ẽ

[
exp{νσW̃ρx −

1
2ν

2σ2ρx − k̂ρx}
]

=
(
L

x

)ν
Ẽ
[
exp

{
−
(1

2ν
2σ2 + k̂

)
ρx

}]
,

where Ẽ denotes the expectation under the probability P̃. Since the process(
exp

{
−
√
ν2σ2 + 2k̂W̃t∧ρx − (ν2σ2/2 + k̂)(t ∧ ρx)

}
, t ≥ 0

)

is bounded by e−
√
ν2σ2+2k̂(lnL−lnx)/σ, it is a uniformly integrable P̃-martingale. Doob’s

optional sampling theorem (e.g. [Pro05, Theorem 16]) yields the same result (see c.f.
[BS02, Part II, Chapter 9, 2.0.1])

Q(x; k, L) =
(
L

x

)√ν2+2k̂/σ2+ν
.

Case β > 0: We let w(z) = u(z−
1
β )z−

ν
β . Then, w satisfies the following Bessel equation

in a modified form (e.g. [Eve05, Chapter 17])

(zw′(z))′ − 1
β2

(
ν2 + 2(k + b)/σ2

)
z−1w′(z) = 2az

β2σ2w(z), z ∈ (0, L−β). (1.31)

Let ψ = 1
β

√
ν2 + 2(k + b)/σ2, then the equation above admits two linearly independent

fundamental solutions Iψ(z
√

2a/σβ) and Kψ(z
√

2a/σβ), where I and K are modified
Bessel functions of the first and second kind, and are defined by

Iψ(x) :=
∞∑
i=0

(x/2)ψ+2i

i!Γ(ψ + i+ 1) ,

Kψ(x) := π

2
I−ψ(x)− Iψ(x)

sin(ψπ) ,
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with Γ being the gamma function. Then, the general solution to the equation (1.31) has
the form

w(z) = B1Iψ(z
√

2a/σβ) +B2Kψ(z
√

2a/σβ),

where B1, B2 ∈ R. The modified Bessel functions have the following asympthotic be-
haviours when z → 0 (see e.g. [BS02, Appendix 2.4]):

Iψ(z) ' 1
Γ(ψ)

(
z

2

)ψ
,

Kψ(z) ' Γ(ψ)
2

(
z

2

)−ψ
, ψ > 0, K0(z) ' − ln z.

The boundedness of u(z−
1
β ) as z → 0 implies that B2 = 0 and the boundary condition

u(L) = 1 yields B1 = Lν/Iψ(
√

2a/σβLβ). Thus, we have (see also [Ken78, Theorem 3.1]
and [BS02, Part II, Chapter 9, 2.8.3])

Q(x; k, L) = w(x−β)
xν

=
(
L

x

)ν Iψ(
√

2a/σβxβ)
Iψ(
√

2a/σβLβ)
.

We can notice that, in the both cases, when the threshold L tends to 0, Q(x; k, L) → 0,
which implies that the sovereign bankrupt occurs on a critical political date with zero
probability. This is because the solvency process modelled by a geometric Brownian
motion never hits 0.

1.3.3.2 Case of the CEV process

In practice, for sovereigns in severe financial crise (e.g. Greece), the volatility of the
solvency fluctuates notably over time. We now consider another widely used process in
the financial industry, the CEV model in which the volatility is a monotonic function of
the solvency. Let the solvency process be a CEV process driven by the following diffusion

dSt = µSt dt+ δSβ+1
t dWt, S0 = x, (1.32)

where β ∈ R and δ > 0 are respectively the elasticity parameter and the scale parameter
of the volatility. In particular, the process S is a geometric Brownian motion if β = 0.
We distinguish two cases according to the sign of β. For β < 0, the volatility σ(S) = δSβ
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is a decreasing function of S. From a financial point of view, when the solvency decreases,
lower solvency (higher deficit) indicates higher level of government borrowing, leading
to lower growth rate, as well as smaller future expenditure to improve the budgetary
situation. All these add more uncertainty to the solvency. For β > 0, the volatility is
an increasing function of S. Namely, when the solvency increases, besides higher growth
rate, higher solvency (surplus) may imply higher fiscal revenue which the government
is under pressure to disburse for social welfare, also making the solvency become more
uncertain. In other words, the volatility has the possibility to be either an increasing or a
decreasing function of the solvency. We note in addition that when β > 0, the conditions
for the existence and the pathwise uniqueness of a strong solution are not satisfied and the
process S is a strictly local martingale (c.f. [EM82]) , which describes situations where
bubbles may exist on financial market. To remedy the situation, one needs to regularise
the process for large values (see Davydov and Linetsky [DL01b, Appendix C] for details).

Recall that the CEV diffusion has the following boundary characterisation. For β < 0,
+∞ is a natural boundary and zero is reached almost surely. For −1/2 ≤ β < 0, zero
is an absorbing boundary. For β < −1/2, zero is a reflecting boundary. For β = 0, the
CEV process reduces to a geometric Brownian motion, and both zero and +∞ are natural
boundaries. For β > 0, zero is a natural boundary and +∞ is an entrance boundary.

The specification of the idiosyncratic default intensity λ(S) depends on the sign of the
parameter β. More precisely, when β > 0 (respectively β < 0), λ(S) is an affine function
of 1

σ2(S) (respectively σ2(S)), i.e.,

λ(S) = a

S2|β| + b, a > 0, b ≥ 0, β ∈ R. (1.33)

Then, u(x) = Q(x; k, L) is the decreasing solution of the following equation:

1
2δ

2x2+2βu′′ + µxu′ − (ax−2|β| + b+ k)u = 0, on (L,+∞);

u(L) = 1.
(1.34)

The fundamental solutions to this last equation are different according to the sign of β.

In the following, we consider separately the two cases according to the sign of β. In
literature, the case β < 0 has been studied for the valuation of path-dependent options
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in [Lin04] and the jump to default CEV model in [MACL10, MAL11]. The case β > 0
is more unusual. We shall use another similar equation, called CEV ordinary differential
equation (ODE), which has been studied in [DL01b] where the coefficient of u is a negative
constant. We make use of the knowledge of the solutions to the CEV ODE to solve the
equation (1.34).

Case β > 0: We let v(x) = u(x)eκx−2β , where κ = 1
2βδ2 (
√
µ2 + 2aδ2 − µ) > 0. Then, v

satisfies the following CEV ODE:

1
2δ

2x2+2βv′′ +
√
µ2 + 2aδ2xv′ −

(
κβ(2β + 1)δ2 + b+ k

)
v = 0, x ∈ (L,∞). (1.35)

The equation above corresponds to another CEV diffusion:

dxt = xt(
√
µ2 + 2aδ2 dt+ δxβt dWt), t ≥ 0,

for which +∞ is an entrance boundary. Then, the equation (1.35) admits two linearly
independent fundamental solutions v+ and v−, respectively increasing and decreasing,
satisfying the following boundary conditions at +∞ ([BS02, pages 18-19]):

lim
x→+∞

v+(x) = +∞, lim
x→+∞

v−(x) > 0,

and the generaly solution to the equation (1.35) has the form

v(x) = C1v+(x) + C2v−(x),

where C1, C2 ∈ R. Since u(x) is bounded as x → ∞, so is v(x), and we deduce that
C1 = 0, C2 = e−κ/L

2β
/v−(L). The decreasing fundamental solution v− is given by [DL01b,

Proposition 5] as

v−(x) = xβ+ 1
2 e

√
µ2+2aδ2
2βδ2

x−2β
Mn,m

(√
µ2 + 2aδ2

βδ2 x−2β
)
,

where n = 1
2+ 1

4β−
κβ(2β+1)δ2+b+k

2β
√
µ2+2aσ2

= µ(2β+1)+2b+2k
4β
√
µ2+2aδ2

,m = 1
4β andMn,m(z) := zm+1/2e−z/2F1(m−

n+ 1/2, 2m+ 1, z) is Whittaker function of the first kind with

F1(a, b, z) := 1 +
∞∑
j=1

a(a+ 1) . . . (a+ j − 1)zj
b(b+ 1) . . . (b+ j − 1)j!



1.3. Probability of default on multiple critical dates 57

being Kummer confluent hypergeometric function of the first kind. This fundamental
solution implies that

Q(x; k, L) = C2v−(x)e−κ/x2β =
xβ+ 1

2 e
µ

2βδ2
x−2β

Mn,m

(√
µ2+2aδ2

βδ2 x−2β
)

Lβ+ 1
2 e

µ

2βδ2
L−2β

Mn,m

(√
µ2+2aδ2

βδ2 L−2β
) ,

which is valid for any µ ∈ R.

Case β < 0: We let y(z) = u(z
1
γ )z

1
2−

1
2γ , where

γ =


√

1 + 8a/δ2, µ > 0,

−
√

1 + 8a/δ2, µ ≤ 0.

If γ < −1, y is an increasing function on (0, Lγ) and limz→0+ y(z) = 0; if γ > 1, y is
a decreasing function on (Lγ,+∞) and limz→+∞ y(z) = 0. Moreover, y satisfies another
CEV ODE as follows:

1
2δ

2γ2z2+2β̂y′′ + µγzy′ −
(
b+ k + µγ − µ

2

)
y = 0, (1.36)

where β̂ = β
γ
, the sign of which depends on the sign of µ, and we note that b+k+ µγ−µ

2 > 0
for any µ ∈ R. The equation above corresponds to another CEV diffusion:

dzt = γzt(µ dt+ δzβ̂t dWt), t ≥ 0.

The equation (1.36) has two linearly independent solutions y+ (increasing) and y− (de-
creasing), and the general solution is the linear combination of y+ and y−.

If β̂ < 0 (namely µ > 0 and γ > 1), then +∞ is a natural boundary, and one has

lim
z→+∞

y−(z) = 0 and lim
z→+∞

y+(z) = +∞

and hence y is proportional to y−. If β̂ > 0 (namely µ ≥ 0 and γ < −1), then 0 is a
natural boundary, and one has

lim
z→0+

y−(z) = +∞ and lim
z→0+

y+(z) = 0

and hence y is proportional to y+. Therefore, by [DL01b, Proposition 5], when µ 6= 0
there exists a constant D > 0 such that

y(z) = Dz
β
γ

+ 1
2 e

µ

2βδ2
z−2β/γ

Wn′,m′

(
− |µ|
βδ2 z

−2β/γ
)
,
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where n′ = sgn(µβ)(1
2 + γ

4β ) − 2b+2k+µγ−µ
4|µβ| = 2b+2k−µ(2β+1)

4|µ|β , m′ = − |γ|4β = −
√

1+8a/δ2

4β and
the function Wn,m(x) := xm+1/2e−x/2F2(m− n+ 1/2, 2m+ 1, x) is Whittaker function of
the second kind with

F2(a, b, x) := Γ(1− b)
Γ(1 + a− b)F1(a, b, x) + Γ(b− 1)

Γ(a) x1−bF1(1 + a− b, 2− b, x)

being Kummer confluent hypergeometric function of the second kind. One can compute
the constant D by using the relation y(Lγ) = Lγ/2−1/2. If µ = 0 and thus γ < −1 and
β̂ > 0, then

y(z) = Dy+(z) = D
√
zK2m′

(
−z
−β/γ

δβ

√
2b+ 2k + µγ − µ

)
,

where Kψ(x) is modified Bessel function of the second kind, defined as

Kψ(x) := π

2 sin(ψπ) (I−ψ(x)− Iψ(x)) .

Therefore we obtain

Q(x; k, L) = y(xγ)x 1
2−

γ
2 =



xβ+ 1
2 e

µ

2βδ2
x−2β

Wn′,m′

(
− |µ|
βδ2

x−2β
)

Lβ+ 1
2 e

µ

2βδ2
L−2β

Wn′,m′

(
− |µ|
βδ2

L−2β
) , µ 6= 0,

√
xK2m′

(
−x
−β
δβ

√
2b+2k+µγ−µ

)
√
LK2m′

(
−L−β

δβ

√
2b+2k+µγ−µ

) , µ = 0.

1.3.4 Numerical illustrations

We now present numerical examples to illustrate the results obtained previously con-
cerning the sovereign default probability and the defaultable bond yield. s

In the first example, we are interested in the default probability pi0 on a political critical
date τi, (i = 1, 2, 3), given by (1.17). We assume that the solvency process S is modelled by
a geometric Brownian motion as in Section 1.3.3.1, and we use the solvency data of Greece
during the period from 2003 to 2013 to estimate the parameters and obtain S0 = 1.01,
µ = −0.01 and σ = 0.14. Let the idiosyncratic default intensity process λ be specified
by λ(S) = a

S2β + b as in (1.28) and the Poisson intensity be a constant λN . The solvency
barrier is re-adjustable with three values L1 = 0.9, L2 = 0.8 and L3 = 0.7. Figure 1.5
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Figure 1.5 – Probability of sovereign default on τ1, τ2 and τ3 respectively.

plots the probabilities that the sovereign default occurs on τ1, τ2 and τ3 respectively as
functions of the Poisson intensity λN for different parameters a, b and β, and we show
in particular the impact of the of the exogenous shock intensity λN on political decisions
and sovereign default. We observe that the probability of default on τ1 is an increasing
function of λN since it is more probable for the exogenous shock to occur when λN is
larger, in which case the sovereign has higher possibility to default at the first critical
date τ1 due to unfavorable political decisions. However, when λN is large, the probability
of default on other critical dates after τ1 is reduced because the exogenous shock has
more chance to occur before τ1. As a result, the probabilities of default on τ2 and τ3

are increasing functions of λN for small λN and decreasing for large λN . For comparison
concerning the parameters of the idiosyncratic intensity process, we set the parameters
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a = 0.1, b = 0.01 and β = 1 and examine the impact of each parameter by considering
values a = 0.5, b = 0.1 and β = 4 respectively. Other things being equal, the probabilities
of default on τ1, τ2 and τ3 are smaller for bigger a (respectively bigger b) because it is
more probable for the sovereign to default due to the idiosyncratic credit risk when λ(S)
is bigger. The impact of the elasticity parameter β depends on the level of solvency, more
precisely, λ(S) is decreasing (respectively increasing) when S ≥ 1 (respectively S < 1).
Consequently, the probability of default on τ1 (respectively τ2, τ3) is smaller for smaller
β (respectively bigger β).

Figure 1.6 – Sovereign default probability.

In the second example, we consider the sovereign default probability P(τ ≤ T ), which
can be computed by Proposition 1.9. The solvency process S is given as a geometric
Brownian motion with the same parameters as in the previous example. We fix the values
of a = 0.1, b = 0.01 and β = 1 for idiosyncratic default intensity. Figure 1.6 plots
the probability of default from 1 to 30 years for different values λN = 0, 0.05 and 0.2
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respectively. We note that an exogenous shock with larger intensity value increases the
sovereign default probability.

1.4 Hybrid model beyond immersion paradigm

The links between the market completeness and the immersion property have been
studied in the credit risk literature (e.g. [JLC09a]). The advantage of the immersion
is that the market risk premium takes into account the jump risk premium and so the
risk-neutral probability does not need to be changed. However, it is usually impossible
to assume the immersion property in the cases of incomplete market, non-ordered multi-
defaults, and correlation between different default times. For this reason, we tend to
adapt our model to a more general level.

The discussions in Subsection 1.2.6 show that the immersion property of the couple
(F,G) preserved by the model results principally from the independence between the
random barrier η and F∞ in the Cox process model when we define the totally inaccessible
part of the default time. In order to obtain a model without immersion, similar to
[EKJJZ14, Section 4.2], we relax the assumption that the random variable η is independent
of F∞ by simply assuming that the F-conditional probability distribution of η is absolutely
continuous. We make the following density hypothesis.

Assumption 1.15. We assume that η is a positive random variable whose conditional
probability distribution with respect to F admits a density process, i.e., there exists an
Ft ⊗ B(R+)-measurable function βt(u) such that

P(η > θ|Ft) =
∫ ∞
θ

βt(u)du.

This assumption made on a random barrier is especially useful in studies on insider
trading (see e.g. [GP98]). By the fact that Λ is increasing and absolutely continuous

P(η > Λu|Ft) =
∫ ∞

Λu
βt(s)ds =

∫ ∞
u

βt(Λs)λs ds.

One can re-compute the conditional default and survival probabilities in the new setting.
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On the set {τi ≤ t}, one has

P(τ = τi|Ft) = P(τi < ξ,Nτi−1 = 0, Nτi ≥ 1|Ft)

= P(Λτi < η,Nτi−1 = 0, Nτi ≥ 1|Ft)

= P(Λτi < η|Ft)P(Nτi−1 = 0, Nτi ≥ 1|Ft)

=
(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
) ∫ ∞

τi
βt(Λs)λs ds,

and on {τi > t}, we compute P(τ = τi|Ft) as the Ft-conditional expectation of P(τ =
τi|Fτi). Furthermore, if u ≤ t, then

P(τ > u|Ft) = E
[( n+1∑

i=1
1{τi−1≤u<τi}1{Nτi−1=0}

)
1{ξ>u}

∣∣∣∣Ft]

=
n+1∑
i=1

1{τi−1≤u<τi}E
[
1{Nτi−1=0}1{ξ>u}

∣∣∣Ft]

=
n+1∑
i=1

1{τi−1≤u<τi}E
[
1{Nτi−1=0}1{η>Λu}

∣∣∣Ft]

= exp
(
−

n+1∑
i=1

1{τi−1≤u<τi}

∫ τi−1

0
λN(s)ds

) ∫ ∞
u

βt(Λs)λs ds

= exp
(
−

n∑
i=1

1{τi≤u}
∫ τi

τi−1
λN(s)ds

) ∫ ∞
u

βt(Λs)λs ds.

If u > t, we compute P(τ > u|Ft) as the Ft-conditional expectation of P(τ > u|Fu).

Let Zt =
∫∞
t βt(Λs)λs ds, which is an F-supermartingale. Then the Azéma super-

martingale of τ is

Gt = Zt exp
(
−

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds

)
.

It is much more difficult to compute the compensator process because the additive form of
the Doob-Meyer decomposition of G is difficult to be performed when G has a multiplica-
tive form. It is well known that a nonnegative càdlàg supermartingale can be uniquely
factorised as a positive local martingale multiplied by a decreasing process (see e.g. Itō
and Watanabe [IW65]). By [EKJJ10, Proposition 4.1], the Doob-Meyer decomposition of
Z is given by

Zt = 1 +Mt −
∫ t

0
βs(Λs)λs ds,
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where M is the càdlàg square integrable F-martingale defined by

Mt =
∫ t

0
λs[βs(Λs)− βt(Λs)]ds, a.s..

Let θ = inf{t ≥ 0 : Zt− = 0} and define γt = βt(Λt)λt
Zt−

on {t < θ}, then the factorisation of
Z is given by

Zt = Lt exp
(
−
∫ t

0
γs∧θds

)
,

where L is a positive F-local martingale solution to the SDE

dLt = e
∫ t

0 γs∧θdsdMt, L0 = 1,

which implies the multiplicative decomposition of G:

Gt = Lt exp
(
−
∫ t

0
γs∧θds−

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds

)
. (1.37)

Again, we refer the readers to Gehmlich and Schmidt [GS16], where a class of examples
of Azéma supermartingale containing jumps are provided.

On the other hand, by [Jac79, Corollaire 6.35] and the uniqueness of the factorisation
of G, one has

Gt = LtE(−ΛF
t ) = Lte

−ΛF,c
t

∏
0<s≤t

(1−∆ΛF
s ),

where ΛF,c is the continuous part of ΛF, and by comparison, we obtain the F-compensator

ΛF
t =

∫ t

0
γs∧θds+

n∑
i=1

1{τi≤t}
(

1− e−
∫ τi
τi−1

λN (s)ds
)
, t ∈ R+, (1.38)

and the G-compensator

ΛG
t =

∫ t∧τ

0
γs∧θds+

n∑
i=1

1{τi≤t∧τ}
(

1− e−
∫ τi
τi−1

λN (s)ds
)
, t ∈ R+. (1.39)

Since the Azéma supmartingale G is no more a decreasing process, the classic definition
of the hazard process Γ = − lnG loses its significance. Let us give the following new
definition.

Definition 1.16. The hazard process of the default time τ , noted Γ, is the unique in-
creasing F-predictable process such that G exp(Γ) is a positive F-local martingale.
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By Definition 1.16 and (1.37), the hazard process is

Γt = − ln
(
Gt

Lt

)
=
∫ t

0
γs∧θds+

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s)ds.

We note that in the case of generalised random barrier, the continuous part shared by the
hazard process and the F-compensator has changed while the respective discontinuous
parts and the link between the two processes remain unchanged.

In a generic manner, we work on a complete probability space (Ω,A,P) equipped
with a reference filtration F = (Ft)t≥0. Let (τi)ni=1 be a sequence of F-predictable stop-
ping times, representing the dates on which political decisions are made concerning the
sovereign default. Let the result of political decisions depend on an A-measurable event
(set) Ei for any i = 1, . . . , n. More precisely,

— if the event Ei occurs (ω ∈ Ei), then the sovereign can possibly default at τi;

— otherwise, it goes without immediate default at τi (but the bankruptcy can still
occur at another time).

Then, we define a random time ζ which coincides only with τi when it is finite. Precisely,

ζ = τi, if ω ∈ Ei, i ∈ {1, . . . , n}, and ζ =∞, if ω ∈ Ω/(∪ni=1Ei).

Furthermore, let ξ be another possible default time, of which the conditional survival
probability is denoted by Zt(u) = P(ξ > u|Ft), u, t ≥ 0, and in particular, the Azéma
supermatingale of ξ is Zt := Zt(t). We assume that, for any i = 1, . . . , n, ξ and the events
Ei are independent. This assumption means that the occurrence of the events (Ei) have
no impact on the possible default time ξ. Let the sovereign default time be the minimum
of ζ and ξ,

τ = ζ ∧ ξ.

Then, the default can occur either at (τi)ni=1 or at ξ.

We denote by Qi a càdlàg martingale such that Qi
t = P(Ei|Ft), t ∈ R+. Then, for any
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u, t ∈ R+, the F-conditional survival probability is given by

P(τ > u|Ft) =


Zt(u)∑n

i=1 1{τi>u}Q
i
u, u ≤ t,

E
[
Zu
∑n
i=1 1{τi>u}Q

i
u

∣∣∣∣Ft] , u > t.

which yields in particular the Azéma supermatingale of τ :

Gt = P(τ > t|Ft) = Zt
n∑
i=1

1{τi>t}Q
i
t, t ∈ R+.

Finally, for any i ∈ {1, . . . , n}, the F-conditional probability that the sovereign default
time τ coincides with τi is computed as

pit = P(τ = τi|Ft) = 1{τi≤t}Q
i
tZt(τi) + 1{τi>t}E[Qi

τi
Zτi |Ft], t ∈ R+.

In the next chapter, we will extend this modelling to a more general framework where
we are interested in the structure of the probability distribution of the random time.





Chapter 2

Generalised density approach for

sovereign risk

By studying certain hybrid models in literature on credit risks, in particular the
sovereign default risk model in the previous chapter, we consider in the present chap-
ter a type of random times whose probability distribution can have singularities, where
standard intensity and density hypotheses in the enlargement of filtrations are not satis-
fied. We propose a generalised density approach in order to deal with such random times
in the framework of progressive enlargement of filtrations, and we study classic problems
such as the computation of the compensator process of the random time, the factorisation
of the Azéma supermartingale, as well as the martingale characterisation and the semi-
martingale decomposition in the enlarged filtration.

Keywords : Generalised density hypothesis, progressive enlargement of filtrations,
martingale characterisation, semimartingale decomposition, sovereign default modelling.
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2.1 Introduction

The theory of enlargement of filtrations has been developed since the 1970s by the
French school of probability (see e.g. Barlow [Bar78], Jacod [Jac85], Jeulin [Jeu80], Jeulin
and Yor [JY78] and Yor [Yor78]). There are two types of enlargement of filtrations: ini-
tial enlargement and progressive enlargement. In the credit risk analysis, the progressive
enlargement of filtrations has been systematically adopted to model the default event
that cannot be observed from the default-free market information flow, or mathematically
speaking, the default time is not modelled as a stopping time with respect to the reference
filtration (see also Mansuy and Yor [MY06], Protter [Pro05], Dellacherie, Maisonneuve
and Meyer [DMM92], Yor [Yor12], Brémaud and Yor [BY78], Nikeghbali [Nik06], Ankirch-
ner [Ank05], Song [Son87], Ankirchner, Dereich and Imkeller [ADI07], Yœurp [Yœu85]).
In the work of Elliot, Jeanblanc and Yor [EJY00] and Bielecki and Rutkowski [BR02],
the authors have proposed to use the progressive enlargement of filtrations to describe
the market information which includes both the default-free information and the default
information. Precisely, let (Ω,A,P) be a probability space equipped with a càdlàg ref-
erence filtration F = (Ft)t≥0 representing the default-free market information, and let τ
be a nonnegative random variable which represents the default time. Then, the global
market information is modelled by the filtration G = (Gt)t≥0, which is the smallest càdlàg
filtration containing F such that τ is a G-stopping time and G is called the progressive
enlargement of F by τ . In this framework, the reduced-form modelling approach has
been widely used, where one often assumes the existence of the G-intensity of τ , i.e. the
G-adapted process (λt, t ≥ 0) such that the process(

1{τ≤t} −
∫ τ∧t

0
λsds, t ≥ 0

)
is a G-martingale. The process λ, also called default intensity process, plays an important
role in the default event modelling. The intuitive meaning of the intensity, interpreted by
Duffie and Lando [DL01b], is that it gives a local default rate, in that

P(τ ∈ (t, t+ dt]|Gt) = λt1{τ>t} dt.

More recently, in order to study the impact of default events, a new approach has
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been developed by El Karoui, Jeanblanc and Jiao [EKJJ10, EKJJ15] where they assume
the density hypothesis: the F-conditional distribution of τ admits a density with respect
to a non-atomic measure η, i.e., for all θ, t ≥ 0,

P(τ ∈ dθ|Ft) = αt(θ)η(dθ),

where αt(·) is an Ft⊗B(R+)-measurable function. The density hypothesis has been firstly
introduced by Jacod [Jac85] in a theoretical setting of initial enlargement of filtrations and
is essential to ensure that an F-semimartingale remains a semimartingale in the initially
enlarged filtration. For this reason, the random time that satisfies the density hypothesis
is called initial time in some literature (e.g., Jeanblanc and Le Cam [JLC09b]). There
exist explicit links between the intensity and density processes of the default time τ , which
establish a relationship between the two approaches of default modelling. In particular,
the density approach allows us to analyse what happens after a default event, i.e., on the
set {τ ≤ t}, and has interesting applications in the study of counterparty default risks.
We note that, in both intensity and density approaches, the random time τ is a totally
inaccessible G-stopping time which usually avoids F-stopping times.

The stability of the class of semimartingales with respect to the enlargement of filtra-
tions is an important subject, which is in particular useful for change of probabilities and
implies no-arbitrage conditions in several applications in finance. We say that the couple
(F,G) satisfies the (H’)-hypothesis of Jacod (c.f. [Jac85]) if any F-semimartingale remains
a G-semimartingale, which, unfortunately, does not always hold. In the framework of the
progressive enlargement, no general theorem guarantees the (H’)-hypothesis, and it deeply
depends on the properties of the random time. Precisely, any F-semimartingale stopped
at τ is a G-semimartingale (e.g. [Yor78]), and the (H’)-hypothesis holds if τ is an honest
time, i.e., for any t ≥ 0, τ is equal to an Ft-measurable random variable {τ ≤ t} (e.g.,
Barlow [Bar78]). It is also well known that the (H’)-hypothesis holds if the density hy-
pothesis is satisfied, and any F-martingale X = (Xt)t≥0 admits a canonical decomposition
([JLC09b, Theorem 3.1]):

Xt = Mt +
∫

]0,t∧τ ]

d〈X,G〉u + X̆p
u

Gu−
+
∫

]t∧τ,t]

d〈X,α·(θ)〉u
αu−(θ)

∣∣∣∣
θ=τ

,
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where M = (Mt)t≥0 is a G-martingale, G = (Gt)t≥0 is the Azéma supermartingale, the
process X̆p = (X̆p

t )t≥0 is the dual F-predictable projection of the process (1{τ≤t}∆Xτ , t ≥
0).

In this chapter, we consider a type of random times which can be either accessible or
totally inaccessible. The motivation comes from the recent European sovereign debt crisis.
As pointed out in Chapter 1, compared with the classic corporate credit risk, the sovereign
default is often influenced by political events. During the European sovereign debt crisis,
the decisions and interventions of European Central Bank are crucial. For example, the
euro area members and IMF agree on a 110-billion-euro financial aid package for Greece
on 02/05/2010 and another financial aid program of 109-billion-euro on 21/07/2011 (see
Chapter 1 for details). The eventuality of default-or-not of the Greek government depends
on the decisions made at the political meetings held at these dates. From the point of view
of a market investor, there are important risks that the Greek government may default
at such critical dates. Similar cases have inspired Gehmlich and Schmidt [GS16] where
a promised payment cannot be made, which leads to default at pre-specified times, such
as coupon dates, e.g., the recently missed coupon payment by Argentina as well as the
default of Greece on the 1st of July regarding the failure of 1.5 Billon euros on a scheduled
debt repayment to the International Monetary Fund.

From a mathematical point of view, the existence of these political events and critical
dates means that the probability distribution of the random time τ admits singularities.
Hence, the sovereign default time can coincide with some predetermined dates, modelled
as predictable F-stopping times (see Chapter 1 for details). In this case, the classic default
modelling approaches, in particular, both intensity and density models are no longer
adapted. To overcome this difficulty, we propose to generalise the density approach in
[EKJJ10] to add singularities to the probability distribution of τ . More precisely, we
assume that the F-conditional probability distribution of τ contains a discontinuous part,
besides the absolutely continuous part which has a density. This generalised density
approach allows us to consider a random time τ which has positive probability to meet a
finite family of F-stopping times.
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There are related works in literature on credit risk modelling. In Bélanger, Shreve
and Wong [BSW04], a general framework is proposed where reduced-form models, in
particular the widely-used Cox process model, can be extended to the case where default
can occur at specific dates. In Gehmlich and Schmidt [GS16], the authors consider models
where the Azéma supermartingale of τ , i.e., the process

(P(τ > t|Ft) , t ≥ 0)

contains jumps (so that the intensity process does not exist) and develop the associated
HJM credit term structures and no-arbitrage conditions. Chen and Filipović [CF05], Carr
and Linetsky [CL06], and Campi et al. [CPS09] have studied the hybrid credit models
where the default time depends on both a first hitting time in the structural approach and
an intensity-based random time in the reduced-form approach. The generalised density
approach that we propose can also be viewed as such hybrid credit risk models and all
the hybrid models cited above belong to this generalised framework.

We shall investigate, under the generalised density hypothesis, some classic problems
in the enlargement of filtrations from a theoretical point of view. In particular, we deduce
the compensator process of the random time τ , which can be discontinuous in this case.
This means that the intensity process does not necessarily exist. We also characterise the
martingale processes in the enlarged filtration G and obtain the canonical decomposition
of an F-martingale as an G-semimartingale, which shows that in the generalised density
setting, the (H’)-hypothesis of Jacod is satisfied. The main contribution of our work is to
focus on the impact of the discontinuous part of the F-conditional probability distribution
of τ and study the impact of the critical dates on the random time.

2.2 Generalised density hypothesis

In this section, we introduce our key assumption, the generalised density hypothesis,
and some basic properties. Let (Ω,A,F,P) be a filtered probability space, where F =
(Ft)t≥0 is a reference filtration satisfying the usual conditions, namely the filtration F is
right-continuous and F0 is a P-complete σ-algebra. We use the expressions O(F) and P(F)
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to denote respectively the optional and predictable σ-algebra associated to the filtration F.
Let τ be a random time on the probability space valued in [0,+∞]. Denote by G = (Gt)t≥0

the progressive enlargement of F by τ , defined as

Gt =
⋂
s>t

σ({τ ≤ u} : u ≤ s) ∨ Ft, t ≥ 0.

Let (τi)ni=1 be a finite family of F-stopping times.

2.2.1 Key assumption

We assume that the F-conditional probability distribution of τ avoiding (τi)ni=1 has a
density with respect to a non-atomic σ-finite Borel measure η on R+. Namely, for any
t ≥ 0, there exists a positive Ft ⊗ B(R+)-measurable random variable

(ω, u) 7→ αt(ω, u)

such that, for any bounded Borel function h on R+, one has

E[1Hh(τ) | Ft] =
∫
R+
h(u)αt(u) η(du) P-a.s., (2.1)

where H denotes the event

{τ <∞} ∩
n⋂
i=1
{τ 6= τi}.

The family αt(·) is called the F-density of τ avoiding the family (τi)ni=1 (generalised density
for short). In particular, the case where the function h is constant and takes the value 1
leads to the relation

P
(
{τ <∞} ∩

n⋂
i=1
{τ 6= τi}

∣∣∣∣Ft
)

=
∫
R+
αt(u) η(du) P-a.s.

Furthermore, some of the F-stopping times can be deterministic and known, which would
call of an extension of this framework.

Remark 2.1. The assumption above implies that the random time τ avoids any F-
stopping time σ such that P(σ = τi < ∞) = 0 for all i ∈ {1, · · · , n}. Namely for such
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F-stopping time σ, one has P(τ = σ <∞) = 0. Indeed, for any T ∈ R+ such that σ ≤ T ,
we have

P
(
{τ = σ} ∩

n⋂
i=1
{τ 6= τi}

)
= E

[
P
(
{τ = σ} ∩

n⋂
i=1
{τ 6= τi}

∣∣∣∣FT
)]

= E
[∫ ∞

0
1{u=σ}αT (u)η(du)

]
= 0,

which implies that P(τ = σ) = 0. However, the random time τ is allowed to coincide with
some of the stopping times in the family (τi)ni=1 with a nonzero probability. Moreover,
without loss of generality, we may assume that the family (τi)ni=1 is increasing. In fact, if
we denote by (τ (i))ni=1 the order statistics of (τi)ni=1, then

{τ <∞} ∩
n⋂
i=1
{τ 6= τi} = {τ <∞} ∩

n⋂
i=1
{τ 6= τ (i)}.

The following proposition shows that we can even assume that the family (τi)ni=1 is strictly
increasing until reaching infinity.

Proposition 2.2. Let (τi)ni=1 be an increasing family of F-stopping times. Then, there
exists a family of F-stopping times (σi)ni=1 which verify the following conditions:

(a) For any ω ∈ Ω and i, j ∈ {1, · · · , n}, i < j, if σi(ω) < ∞, then σi(ω) < σj(ω);
otherwise, σj(ω) =∞.

(b) For any ω ∈ Ω, one has {σ1(ω), · · · , σN(ω),∞} = {τ1(ω), · · · , τN(ω),∞}, which
implies

{τ <∞} ∩
n⋂
i=1
{τ 6= τi} = {τ <∞} ∩

n⋂
i=1
{τ 6= σi}.

Proof: The case where n = 1 is trivial. We prove the result by induction and assume
n > 2. Let τn+1 =∞ by convention. For each k ∈ {2, · · · , n}, let

Ek = {τ1 = · · · = τk <∞}.

Moreover, for k ∈ {2, . . . , n}, we define

τ ′k = 1Ec
k
τk +

n∑
i=k

1Ei\Ei+1τi+1.
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Note that for each i > k, the set Ei is Fτk-measurable. Therefore

∀ t ≥ 0, {τ ′k ≤ t} =
(
Ec
k ∩ {τk ≤ t}

)
∪

n⋃
i=k

(
(Ei \ Ei+1) ∩ {τi+1 ≤ t}

)
∈ Ft,

so τ ′k is an F-stopping time. By definition one has τ1 ≤ τ ′2 ≤ · · · ≤ τ ′N ≤ τ ′n+1, where
τ ′n+1 =∞. One also has, for any ω,

{τ1(ω), τ2(ω) · · · , τn+1(ω)} = {τ1(ω), τ ′2(ω), · · · , τ ′n+1(ω)}.

Moreover, the strict inequality τ1 < τ ′2 holds on {τ1 < ∞}. Then by the induction
hypothesis on (τ ′2, · · · , τ ′n+1), we obtain the required result. �

For the purpose of the dynamic study of the random time τ , we need the following
result which is analogous to [Jac85, Lemme 1.8].

Proposition 2.3. There exists a nonnegative O(F) ⊗ B(R+)-measurable function α̃(·)
such that α̃(θ) is a càdlàg F-martingale for any θ ∈ R+ and that

E[1Hh(τ)|Ft] =
∫
R+
h(u)α̃t(u) η(du) P-a.s. (2.2)

for any bounded Borel function h.

Proof: Let (αt(·))t>0 be a family of random functions such that the relation (2.1) holds
for any t > 0. We fix a countable dense subset D in R+ such as the set of all non-
negative rational numbers. If s and t are two elements in D, s < t, there exists a positive
Fs ⊗ B(R+)-measurable function αt|s(·) such that

∀ θ ∈ R+, αt|s(θ) = E[αt(θ) | Fs] P-a.s..

Note that for any bounded Borel function h, one has

E[1Hh(τ)|Fs] = E
[ ∫

R+
h(u)αt(u) η(du)

∣∣∣∣∣Fs
]

=
∫
R+
h(u)αt|s(u) η(du) P-a.s..

Hence there exists an η-negligeable set Bt,s such that αs(u) = αt|s(u) P-a.s. for any
u ∈ R+ \Bt,s. Let B = ⋃

(s,t)∈D2,s<tBt,s and let α̂t(·) = 1B(·)αt(·) for any t ∈ D. We then
obtain that

α̂s(u) = E[α̂t(u)|Fs]
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for any u ∈ R+ and all elements s, t in D such that s < t. Moreover, since B is still
η-negligeable, for any t ∈ D,

E[1Hh(τ)|Ft] =
∫
R+
h(u)α̂t(u) η(du) P-a.s.. (2.3)

By [DM80, Theorem VI.1.2], for any θ ∈ R+, there exists a P-negligeable subset Eθ of Ω
such that, for any ω ∈ Ω \ Eθ, the following limits exist

α̂t+(ω, θ) := lim
s∈D, s↓t

α̂t(ω, θ),

α̂t−(ω, θ) := lim
s∈D, s↑t

α̂t(ω, θ).

Moreover, we define

α̃t(ω, θ) =


α̂t(ω, θ), if ω 6∈ Eθ,

0, if ω ∈ Eθ.

Then α̃(θ) is a càdlàg F-martingale, and therefore the random function α̃(·) is O(F) ⊗
B(R+)-measurable. We then deduce the proposition from (2.3). �

We summarise the generalised density hypothesis as below. In what follows, we always
assume this hypothesis.

Assumption 2.4. We assume that there exist a non-atomic σ-finite Borel measure η on
R+, a finite family of F-stopping times (τi)ni=1, together with an O(F)⊗B(R+)-measurable
function α(·) such that α(θ) is a càdlàg F-martingale for any θ ∈ R+ and that

E
[
1{τ<∞}h(τ)

n∏
i=1

1{τ 6=τi}

∣∣∣∣∣Ft
]

=
∫
R+
h(u)αt(u) η(du) P-a.s.

for any bounded Borel function h.

Remark 2.5. 1) The condition P(τi = τj < ∞) = 0 is not assumed in Assumption
2.4 because it is not essential. In fact, for an arbitrary finite family of F-stopping times
(τi)ni=1, if we suppose that the random time τ has an F-density α(·) with respect to η
avoiding (τi)ni=1, then by Remark 2.1 and Proposition 2.2, we can always obtain another
family of F-stopping times (σi)ni=1 such that P(σi = σj <∞) = 0 for i 6= j and that τ has
an F-density avoiding the family (σi)ni=1. Moreover, the F-density of τ avoiding (σi)ni=1
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coincides with α(·).
2) For each i ∈ {1, · · · , n}, by Theorem 1.3, there exists a subset Ωi ∈ Fτi such that

τ ′i := τi1Ωi +∞1Ωci

is an accesible F-stopping time and

τ ′′i := τi1Ωci +∞1Ωi

is a totally inaccessible F-stopping time, and τi = τ ′i ∧ τ ′′i . Then, we have

{τ 6= τi} = {τ 6= τ ′i} ∩ {τ 6= τ ′′i },

which implies that τ also admits an F-density avoiding the family (τ ′i , τ ′′i )ni=1 and the F-
density is still α(·). Therefore, without loss of generality, we may assume in addition that
each F-stopping time τi is either accessible or totally inaccessible.

We present a simple example as below, where Assumption 2.4 is satisfied and the
generalised density can be explicitly computed.

Example 2.6. Let W = (Wt, t ≥ 0) be a standard Brownian motion and F be the
canonical Brownian filtration. Let N = (Nt, t ≥ 0) be a Poisson process with intensity
λ > 0. We denote by τ1 the first hitting time of a negative level by the Brownian motion

τ1 = inf{t ≥ 0 : Wt = a < 0},

and ξ the first jump time of N

ξ = inf{t ≥ 0 : Nt ≥ 1},

with the convention inf ∅ =∞. Define a random time τ as the minimum of τ1 and ξ

τ = τ1 ∧ ξ. (2.4)

We compute firstly the F-conditional distribution of τ1. For any 0 ≤ t < θ, one has

P(τ1 > θ|Ft) = P
(

min
0≤s≤θ

Ws > a

∣∣∣∣Ft) = 1{τ1>t}P
(

min
t≤s≤θ

Ws > a

∣∣∣∣Wt

)
.
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By reflection principle (see c.f. [BS02, 1.2.4, page 126]),

P
(

min
t≤s≤θ

Ws > a

∣∣∣∣Wt = x
)

= 1− Px
(

min
0≤s≤θ−t

Ws ≤ a
)

= erf
 x− a√

2(θ − t)

 ,
where erf(x) = 2√

π

∫ x
0 e
−v2

dv is the Gauss error function. Then,

P(τ1 > θ|Ft) = 1{τ1>t}erf
 Wt − a√

2(θ − t)

 , θ > t. (2.5)

Next, for any t ∈ R+,

P(τ = τ1|Ft) = P(τ1 ≤ ξ|Ft) = 1{τ1≤t}e
−λτ1 + 1{τ1>t}E[e−λτ1|Ft].

Recall that, for any l ∈ R+, the process

(
e−lWt− 1

2 l
2t, t ≥ 0

)
is a martingale. For a < 0, the stopped martingale(

e−lWt∧τ1−
l2
2 (t∧τ1), t ≥ 0

)

is uniformly integrable, bounded by e−la. Then, on the set {τ1 > t}, the optional sampling
theorem (see e.g. [Pro05, Theorem 16]) yields

E
[
e−lWτ1−

1
2 l

2τ1
∣∣∣Ft] = e−lWt− 1

2 l
2t,

which implies that

1{τ1>t}E
[
e−

1
2 l

2τ1
∣∣∣Ft] = el(a−Wt)− 1

2 l
2t.

Then, one has

P(τ = τ1|Ft) = 1{τ1≤t}e
−λτ1 + 1{τ1>t}e

√
2λ(a−Wt)−λt, t ≥ 0. (2.6)

Furthermore, τ satisfies Assumption 2.4 with generalised density

αt(θ) = λe−λθ

1{θ≤t}1{τ1>θ} + 1{θ>t}1{τ1>t}erf
 Wt − a√

2(θ − t)

 , t ≥ 0. (2.7)
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Indeed, for any 0 ≤ θ ≤ u ≤ t,

P(τ ≤ u, τ 6= τ1|Ft) = P(ξ ≤ u, ξ ≤ τ1|Ft)

= P(ξ ≤ u ∧ τ1|Ft)

= 1− e−λ(u∧τ1)

=
∫ u

0
λe−λθ1{θ<τ1}dθ,

which implies that αt(θ) = λe−λθ1{θ<τ1} if θ ≤ t. If θ > t, by martingale property and the
equality (2.5), one has

αt(θ) = E[αθ(θ)|Ft] = λe−λθP(τ1 > θ|Ft) = λe−λθ1{τ1>t}erf
 Wt − a√

2(θ − t)

 .
The following example is similar to the extension of Heath-Jarrow-Merton model (see

[GS16]), which gives the martingale representation of the generalised density process.

Example 2.7. Let W = (Wt, t ≥ 0) be a standard Brownian motion and F be the
canonical Brownian filtration, and τ a random time that is not an F-stopping time. Denote
by Gt(θ) the F-conditional probability distribution of τ , namely

Gt(θ) = P(τ > θ|Ft), t, θ ∈ R+,

It is clear that G(θ) is an F-martingale for any θ ≥ 0. By predictable representation
theorem, there exists a P(F)⊗ B(R+)-measurable function Z(·), satisfying Zt(0) = 0 for
any t ≥ 0, such that

dGt(θ) = Zt(θ)dWt, t ∈ R+.

We assume that there exist O(F)⊗ B(R+)-measurable functions x(·) and y(·) such that

Zt(θ) =
∫ θ

0
[xt(u)η(du) + yt(u)δA(du)]

with the constraint
∫∞

0 [xt(u)η(du) + yt(u)δA(du)] = 0, where A is the graph union of
a family of F-stopping times {τi}ni=1, namely A = ⋃n

i=1[[τi]], and δA is a Dirac measure
defined as

δA(u) =


1, u ∈ A,

0, otherwise.
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By Fubini theorem, one has

Gt(θ) = G0(θ) +
∫ t

0
Zs(θ)dWs

= G0(θ) +
∫ t

0
dWs

∫ θ

0
[xs(u)η(du) + ys(u)δA(du)]

= G0(θ) +
∫ θ

0

[
η(du)

∫ t

0
xs(u)dWs + δA(du)

∫ t

0
ys(u)dWs

]
= G0(θ)−

∫ ∞
θ

[
η(du)

∫ t

0
xs(u)dWs + δA(du)

∫ t

0
ys(u)dWs

]
.

If τ satisfies Assumption 2.4, we can deduce that the generalised density α(·) has the
following martingale representation

αt(u) = α0(θ)−
∫ t

0
xs(u)dWs, t ∈ R+.

For each i ∈ {1, · · · , n}, let pi be a càdlàg version of the F-martingale
(
E[1{τ=τi<∞}|Ft], t ≥ 0

)
,

which is closed by
pi∞ = E[1{τ=τi<∞}|F∞].

We also consider the case where τ may reach infinity and denote by p∞ a càdlàg version
of the F-martingale (

E[1{τ=∞}|Ft], t ≥ 0
)
,

which is closed by
p∞∞ = E[1{τ=∞}|F∞].

Note that Assumption 2.4 implies that, for any t ≥ 0,∫
R+
αt(u) η(du) +

n∑
i=1

pit + p∞t = 1 P-a.s. (2.8)

We define
Gt :=

∫ ∞
t

αt(θ)η(dθ) +
n∑
i=1

1{τi>t}p
i
t + p∞t . (2.9)

Note that Gt = P(τ > t|Ft), P-a.s. The process G is a càdlàg F-supermartingale and is
called Azéma supermatingale of the random time τ . Moreover, for any bounded Borel
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function h, one has

E[1{τ=τi<∞}h(τ)|Ft] = 1{τi≤t}h(τi)E[1{τ=τi}|Ft] + 1{τi>t}E
[
1{τi<∞}h(τi)E[1{τ=τi}|Fτi ]

∣∣∣Ft] .
= 1{τi≤t}h(τi)pit + 1{τi>t}E

[
1{τi<∞}h(τi)piτi |Ft

]
.

Then,

E[1{τ<∞}h(τ)|Ft] =
∫
R+
h(u)αt(u)η(du) +

n∑
i=1

E[1{τi<∞}h(τi)piτi∨t|Ft]. (2.10)

The following proposition shows that any Gt-conditional expectation can be computed
in a decomposed form, which can be viewed as a direct extension to [EKJJ10, Theorem
3.1].

Proposition 2.8. Let YT (·) be an FT ⊗ B(R+)-measurable random variable such that
1) 1∩ni=1{τi 6=θ}YT (θ)αT (θ) is integrable for any θ ∈ R+ and∫

R+

∣∣∣E[YT (θ)αT (θ)]
∣∣∣η(dθ) < +∞,

2) 1{τi<∞}YT (τi)piτi∨T is integrable for any i ∈ {1, · · · , n}.
Then the random variable 1{τ<∞}YT (τ) is integrable, and for any t ≤ T ,

E[1{τ<∞}YT (τ)|Gt] = 1{τ>t}Ỹt + 1{τ≤t}Ŷt(τ) P-a.s. (2.11)

where

Ỹt = 1{Gt>0}

Gt

[ ∫ +∞

t
E[YT (θ)αT (θ)|Ft]η(dθ) +

n∑
i=1

1{τi>t}E[1{τi<∞}YT (τi)piτi∨T |Ft]
]

(2.12)

and

Ŷt(θ) = 1∩ni=1{θ 6=τi}
1{αt(θ)>0}

αt(θ)
E[YT (θ)αT (θ)|Ft] +

n∑
i=1

1{θ=τi}
1{pit>0}

pit
E[YT (τi)piT |Ft], θ ≤ t.

(2.13)

Proof: We may assume that YT (·) is non-negative without loss of generality so that
the following proof works without discussing the integrability (as a byproduct, we can
prove the case where YT (·) is non-negative without any integrability condition). The
integrability of YT (τ) results from the finiteness of each term in the following formulae.
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The first term on the right-hand side of (2.11) is obtained as a consequence of the so-called
key lemma in the progressive enlargement of filtrations ([EJY00, Lemma 3.1]):

1{τ>t}E[1{τ<∞}YT (τ)|Gt] = 1{τ>t}
1{Gt>0}

Gt

E[1{t<τ<∞}YT (τ)|Ft].

Note that

E[1{t<τ<∞}YT (τ)|FT ] =
∫ +∞

t
YT (u)αT (u)η(du) +

n∑
i=1

E[1{t<τ=τi<∞}YT (τi)|FT ]

=
∫ +∞

t
YT (u)αT (u)η(du) +

n∑
i=1

E[1{t<τi<∞}YT (τi)piτi∨T |FT ]

which implies (2.12). For the second term in (2.11), we shall prove by verification. Let
Zt(·) be a bounded Ft ⊗ B(R+)-measurable random variable, one has

E[Ŷt(τ)Zt(τ)1{τ≤t}] = E
[
1H∩{τ≤t}

1{αt(τ)>0}

αt(τ) E[YT (θ)Zt(θ)αT (θ)|Ft]θ=τ
]

+
n∑
i=1

E
[
1{τ=τi≤t}

1{pit>0}

pit
E[YT (τi)Zt(θ)piT |Ft]θ=τ

]
.

Note that

E
[
1H∩{τ≤t}

1{αt(τ)>0}

αt(τ) E[YT (θ)Zt(θ)αT (θ)|Ft]θ=τ
]

= E
[ ∫ t

0
E[YT (θ)Zt(θ)αT (θ)|Ft]η(dθ)

]

=
∫ t

0
E[YT (θ)Zt(θ)αT (θ)]η(dθ)

= E
[
1H∩{τ≤t}YT (τ)Zt(τ)

]
.

Moreover,

E
[
1{τ=τi≤t}

1{pit>0}

pit
E[YT (τi)Zt(θ)piT |Ft]θ=τ

]
= E[1{τi≤t}YT (τi)Zt(τi)piT ]

= E[1{τ=τi≤t}YT (τ)Zt(τ)].

Therefore we obtain
E[1{τ≤t}YT (τ)|Gt] = 1{τ≤t}Ŷt(τ) P-a.s.

since Ŷt(·) is Ft ⊗ B([0, t])-measurable. The proposition is thus proved. �

Remark 2.9. (1) For any integrable GT -measurable random variable Z, one can always
find an FT ⊗ B(R+)-measurable function YT (·) such that

1{τ<∞}Z = 1{τ<∞}YT (τ), P-a.s.
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which verifies the conditions of integrability in the previous proposition. Without
loss of generality, we can assume that Z is nonnegative. We begin with an arbitrary
FT ⊗ B(R+)-measurable nonnegative random function ZT (·) such that

1{τ<∞}Z = 1{τ<∞}ZT (τ).

Then by Proposition 2.8 in the nonnegative case (where the integrability conditions
are not necessary), one has

∫ ∞
0

E[ZT (θ)αT (θ)]η(dθ) <∞.

Therefore, the set K of θ ∈ R+ such that E[ZT (θ)αT (θ)] = +∞ is η-negligeable. By
replacing ZT (·) by zero on the set

(Ω×K) ∩
n⋂
i=1
{(ω, θ) ∈ Ω× R+ | τi(ω) 6= θ},

we find another random function YT (·) such that YT (τ) = ZT (τ) P-a.s.. Moreover,
YT (·) satisfies the integrability conditions as in the proposition.

(2) As a direct consequence, for any t ≤ T , one has

P(τ > T |Gt) = 1{τ>t}
1
Gt

[ ∫ ∞
T

αt(θ)η(dθ) +
n∑
i=1

E[1{τi>T}piT |Ft] + p∞t

]
P-a.s. (2.14)

In the literature on progressive enlargement of filtrations, the following formula ([Jeu80],
Lemme 4.4) has been widely used: for any G-predictable process Y G = (Y G

t , t ≥ 0), there
exist an F-predictable process Y F = (Y F

t , t ≥ 0) and a P(F)⊗B(R+)-measurable function
Y (·) such that

Y G
t = 1{τ≥t}Y

F
t + 1{τ<t}Yt(τ), t ∈ R+. (2.15)

The equality (2.15) has been proved by monotone class theorem and is valid in general.
An optional version of the formula (2.15) has also been used: for any G-optional process
Y G = (Y G

t , t ≥ 0), there exist an F-optional process Y F = (Y F
t , t ≥ 0) and a O(F)⊗B(R+)-

measurable function Y (·) such that

Y G
t = 1{τ>t}Y

F
t + 1{τ≤t}Yt(τ), t ∈ R+. (2.16)
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However, as pointed out by Barlow [Bar78] and later by Song [Son14], the equality
(2.16) does not hold in general. We affirm that the formula (2.16) can be used under
generalised density hypothesis without doubt. Indeed, for any bounded FT ⊗ B(R+)-
measurable function h, Proposition 2.8 yields a decomposed form for the G-martingale
hG = (E[h(τ)|Gt], t ≥ 0). The F-optional projections in (2.12) and (2.13) have right-
continuous paths, and by taking right limit we prove that the martingale hG satisfies the
equality (2.16). When we send T to +∞, by [Son14, Lemma 3.6], the equality (2.16) is
valid for any G-optional process.

2.2.2 Examples in literature

In literature on credit risk, there are other hybrid models such as the generalised
reduced-form model in [BSW04], the credit migration model in [CF05], the jump to
default CEV models in [CL06] and [CPS09], as well as the extension of the HJM-approach
in [GS16]. In this section, we prove that these models can be included in the generalised
density framework. To avoid ambiguity, we keep the same notations as in the original
papers.

To make it precise, in [BSW04], the reference filtration F is the standard augmented
Brownian filtration and the default time τ is defined by a generalised Cox process model

τ = inf{0 ≤ t ≤ T̄ : Γt ≥ Θ},

where the fixed positive number T̄ is the horizon, and (Γt, 0 ≤ t ≤ T̄ ) is a nondecreasing
F-predictable process which satisfies Γ0 = 0 a.s., and Θ is a strictly positive random
variable independent of FT̄ . Denote F (·) the right-continuous cumulative distribution
function of Θ, then for any 0 ≤ u ≤ t, the F-conditional survival probability is

Su := P(τ > u|Ft)

= 1− P(Θ ≤ Γu|Ft)

= 1− P(Θ ≤ x|x = Γu)

= 1− F (Γu),
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where S is the survival process satisfying the stochastic differential equation

St = 1−
∫

(0,t]
Ss−dΓs, 0 ≤ t ≤ T̄ ,

where Γ = (Γt, 0 ≤ t ≤ T̄ ) is the F-compensator (the authors call it hazard process) with
discontinuous part ∆Γt = Γt−Γt− and continuous part Γct = Γt−

∑
0<u≤t ∆Γu. Then one

has
St = 1−

∫ t

0
Ss−dΓcs −

∑
0<s≤t

Ss−∆Γs.

The probability that the default occurs at u, 0 ≤ u ≤ t, is

P(τ = u|Ft) = Su− − Su = Su−∆Γu. (2.17)

If we assume in addition that the continuous part of Γ is absolutely continuous, namely

Γct =
∫ t

0
λt dt,

and Γ has N jumps at (τi)ni=1, then, on the set {τi ≤ t}, the F-conditional probability
that τ coincides with τi is

pit := P(τ = τi|Ft) = Sτi−∆Γτi .

On the set {τi > t}, pit = E[piτi |Ft]. Furthermore, for any 0 ≤ u ≤ t,

E
[
1{τ≤u}

n∏
i=1

1{τ 6=τi}

∣∣∣∣Ft
]

= P(τ ≤ u|Ft)− E
[
1{τ≤u}

n∑
i=1

1{τ=τi}

∣∣∣∣Ft
]

= 1− Su −
n∑
i=1

1{τi≤u}p
i
t

= 1− Su −
n∑
i=1

1{τi≤u}Sτi−∆Γτi

=
∫ u

0
Ss−λs ds,

which yields that the generalised density is αt(u) = Su−λu for any 0 ≤ u ≤ t. If u > t, by
martingale property we have αt(u) = E[αu(u)|Ft].

In [CF05], F represents the global filtration. To relate the results in this paper to our
framework, we let F∆ = (F∆

t )t≥0 be the filtration generated by the short rate process Y 1
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as well as the credit index Y 2. Then, F∆ is the reference filtration (F in our framework)
and F is the enlarged filtration (G in our framework). The firm can default due to
credit downgradings at T∆, which is an F∆-stopping time, or an unpredictable jump of an
associated point process Y 3 at TJ . We denote by TD the default time and G = (Gt, t ≥ 0)
the Azéma supermartingale associated to TD, namely Gt = P(TD > t|F∆

t ) for any t ∈ R+.
We compute firstly the F-conditional survival probability of T∆. For any 0 ≤ t < u, by
[CF05, Remark 2.1], one has

Ht(u) := P(T∆ > u|Ft) = E[1{Yu 6=∆}|Ft]

= eφ(u−t,0)+ψ1(u−t,0)Y 1
t +ψ2(u−t,0)Y 2

t +ψ3(u−t,0)Y 3
t

=
∫ ∞
u

gt(θ)dθ, (2.18)

where the functions φ = φ(t, v) and ψi = ψi(t, v), i = 1, 2, 3, solve the generalised Riccati
equations [CF05, (7)], and g(·) is an O(F) ⊗ B(R+)-measurable function such that, for
any 0 ≤ t < θ

gt(θ) = −Ht(θ)(∂tφ(θ − t, 0) + ∂tψ1(θ − t, 0)Y 1
t + ∂tψ2(θ − t, 0)Y 2

t + ∂tψ3(θ − t, 0)Y 3
t ).

Let α∆
t (θ) = E[gt(θ)|F∆

t ], then the F∆-conditional survival probability of T∆ is given by

P(T∆ > u|F∆
t ) = E[P(T∆ > u|Ft)|F∆

t ] = E
[∫ ∞
u

gt(θ)dθ|F∆
t

]
=
∫ ∞
u

α∆
t (θ)dθ, t ≤ u.

The default time coincides with T∆ if T∆ occurs before the first jump time of the point
process Y 3, then we have

1{TD=T∆} = 1{Y 3
T∆

=0} = lim
k→∞

e
−kY 3

T∆ .

Then, on the set {T∆ > t}, the F∆-conditional probability that TD coincides with T∆ is

p∆
t := P(TD = T∆|F∆

t )

= E[P(TD = T∆|Ft)|F∆
t ]

= E
[
E[ lim

k→∞
exp(−kY 3

T )|Ft, T = T∆]
∣∣∣∣F∆

t

]
= E

[
1{TJ>t}e

φ̃(T∆−t,0)+ψ̃1(T∆−t,0)Y 1
t +ψ̃2(T∆−t,0)Y 2

t

∣∣∣F∆
t

]
.
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Furthermore, by [CF05, (13)], for any 0 ≤ t < u, the F∆-conditional survival probability
of TD is computed as

GDt (u) := P(TD > u|F∆
t )

= E[P(TD > u|Ft)|F∆
t ]

= Gte
φ̃(u−t,0)+ψ̃1(u−t,0)Y 1

t +ψ̃2(u−t,0)Y 2
t ,

where φ̃, ψ̃1 and ψ̃2 are solutions to generalised Riccati equations [CF05, (14)]. Define an
O(F∆)⊗ B(R+)-measurable function αD(·) such that, for any 0 ≤ t < θ,

αDt (θ) = −GDt (θ)
(
∂tφ̃(θ − t, 0) + ∂tψ̃1(θ − t, 0)Y 1

t + ∂tψ̃2(θ − t, 0)Y 2
t

)
.

Then, for any 0 ≤ t < u,

P(TD > u, TD 6= T∆|F∆
t ) = P(TD > u|F∆

t )− P(TD > u, TD = T∆|F∆
t

= P(TD > u|F∆
t )− E[1{TD>u}p∆

T∆
|F∆

t ]

=
∫ ∞
u

(
αDt (θ)− p∆

θ α
∆
t (θ)

)
dθ,

which implies that the F∆-generalised density is αt(θ) := αDt (θ) − p∆
θ α

∆
t (θ) for any 0 ≤

t < θ. However, we cannot obtain the full knowledge of α(·) without specific conditions
(e.g. under the immersion property).

In [CL06], default can occur either at T0 via equity price diffusion S to zero or prior to
T0 via a jump to bankruptcy at ζ̃, intensity of which λ(S, t) is time-and-state-dependent.
The reference filtration F is generated by S. The F-conditional probability that the default
time ξ coincides with T0 is

p0
t := P(ξ = T0|Ft) = P(T0 < ζ̃|Ft) = E

[
e−
∫ T0

0 λ(Ss,s)ds
∣∣∣∣Ft] .

Then, for any 0 ≤ u ≤ t,

P(ξ ≤ u, ξ 6= T0|Ft) = P(ξ ≤ u|Ft)− P(ξ ≤ u, ξ = T0|Ft)

= 1− P(ξ > u|Ft)− 1{T0≤u}P(ξ = T0|Ft)

= 1− 1{T0>u}e
−
∫ u

0 λ(Ss,s)ds − 1{T0≤u}e
−
∫ T0

0 λ(Ss,s)ds

= 1− e−
∫ u∧T0

0 λ(Ss,s)ds

=
∫ u

0
1{θ≤T0}λ(Sθ, θ)e−

∫ θ
0 λ(Sθ,θ)dθ,
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which implies that the generalised density is

αt(θ) = 1{θ≤T0}λ(Sθ, θ)e−
∫ θ

0 λ(Sθ,θ)

for any 0 ≤ θ ≤ t. If θ > t, by martingale property we have αt(θ) = E[αθ(θ)|Ft].

In [CPS09], the default time is defined as the time of absorption at zero of a jump
diffusion S, noted τ ∧ ξ, where τ is the jump time and ξ is the time of absorption at zero
without jump. We denote by Fz the canonical Brownian filtration, which corresponds to
the reference filtration in our framework (our F). This model is similar to that in [CL06]
with constant λ. Let ξc be the time of absorption at zero of the continuous part of S,
which is an Fz-stopping time. Then, by similar computation as in the previous paragraph,
the Fz-conditional probability that τ ∧ ξ coincides with ξc is

P(τ ∧ ξ = ξc|F zt ) = E[exp(−λξc)|F zt ],

where λ > 0 is the intensity of the Poisson jump, and the default time satisfies Assumption
2.4 with the Fz-generalised density computed as

αt(θ) = λ exp(−λθ)P(ξc ≥ θ|F zt ), t ∈ R+

The Example [GS16, Example 2.1] is a particular case of the generalised reduced-form
model in [BSW04], where the random time τ defined by a generalised Cox process model
satisfies Assumption 2.4 with

αt(u) = E
[
λ(u)e−

∫ u
0 λ(s)ds−

∑
ui<u

λ′i

∣∣∣∣Ft] , t ∈ R+,

where λ = (λ(t), t ≥ 0) is a nonnegative process, 0 < u1 < . . . < uN are constants, and
λ′1, . . . , λ

′
N are positive random variables. Still, τ can coincide with the constants (ui)ni=1,

with

pit := P(τ = ui|Ft) = E[e−
∫ ui

0 λ(s)ds−
∑

λ′i−1(1− e−λ′i)|Ft].

2.3 Compensator process

As we have mentioned in the previous chapter, the compensator and the intensity
processes of τ play an important role in the default event modelling. The general method
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for computing the compensator is Theorem A.11. Particularly, the compensator in the Cox
process model is just the stopped hazard process (

∫ t∧τ
0 λs ds, t ≥ 0), where λ = (λt, t ≥ 0)

is the default intensity process. In [EKJJ10], an explicit result is obtained under the
density hypothesis (see also [GJLR10] and [Li12])(∫ t

0

αu(u)du∫∞
u αu(s)ds

, t ≥ 0
)
,

where α(·) = (αt(·), t ≥ 0) is the density process, and the compensator is absolutely
continuous, which implies the existence of the intensity process.

In this section, we focus on the compensator process under the generalised density
hypothesis, when the intensity process does not always exist because of the singularities
in the probability distribution of τ . We introduce the following notations. For any
i ∈ {1, · · · , n}, denote by Di the process (1{τi≤t}, t ≥ 0). We use the expression Λi to
denote the F-compensator process of Di, that is, Λi is an increasing F-predictable process
such that M i := Di−Λi is an F-martingale with M i

0 = 0. Note that, if τi is a predictable
F-stopping time, then Λi = Di and M i = 0. The following result generalises [EKJJ10,
Proposition 4.1(1)]. Here, the Azéma supermartingale G is a process with jumps and
needs to be treated with care.

Proposition 2.10. The Doob-Meyer decomposition of the Azéma supermartingale G is
given by Gt = G0 +Mt − At, where A is an F-predictable increasing process given by

At =
∫ t

0
αθ(θ)η(dθ) +

n∑
i=1

∫
(0,t]

pis−dΛi
s +

n∑
i=1
〈M i, pi〉t. (2.19)

Proof: For any t ≥ 0, let
Ct =

∫ t

0
αθ(θ)η(dθ).

The process C = (Ct, t ≥ 0) is F-adapted and increasing. It is moreover continuous since
η is assumed to be non-atomic. Note that by (2.9),

Gt = E
[ ∫ ∞

t
αθ(θ)η(dθ)

∣∣∣∣∣Ft
]

+
n∑
i=1

1{τi>t}p
i
t + p∞t .

The process

Ct +
∫ ∞
t

αt(θ)η(dθ) = E
[ ∫ ∞

0
αθ(θ)η(dθ)

∣∣∣∣∣Ft
]
, t ≥ 0
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is a square integrable F-martingale since

E
[( ∫ ∞

0
αθ(θ)η(dθ)

)2]

= 2E
[ ∫ ∞

0
η(dθ)αθ(θ)

∫ ∞
θ

η(du)αu(u)
]

= 2E
[ ∫ ∞

0
αθ(θ)E[1H∩{τ>θ}|Fθ]η(dθ)

]

≤ 2.

Moreover, one has

1{τi>t}p
i
t = 1{τi>0}p

i
0 +

∫
(0,t]

1{τi≥s}dp
i
s −

∫
(0,t]

pis−dD
i
s − [Di, pi]t,

= 1{τi>0}p
i
0 +

∫
(0,t]

1{τi≥s}dp
i
s −

∫
(0,t]

pis−dM
i
s −

∫
(0,t]

pis−dΛi
s − [Di, pi]t,

where
[Di, pi]t =

∑
0<s≤t

∆Di
s∆pis = 1{τi≤t}∆piτi .

One can also rewrite [Di, pi] as

[Di, pi] = [Λi, pi] + [M i, pi]

= [Λi, pi] + ([M i, pi]− 〈M i, pi〉) + 〈M i, pi〉.

Note that [Λi, pi] is an F-martingale since Λi is F-predictible and pi is an F-martingale
(see [DM80, VIII.19]). Moreover 〈M i, pi〉 is an F-predictable process such that [M i, pi]−
〈M i, pi〉 is an F-martingale. Therefore we obtain that

At = Ct +
∫

(0,t]
pis−dΛi

s + 〈M i, pi〉t, t ≥ 0

is a predictable process, and G+ A is an F-martingale. �

In the following, we denote by ΛF the process(
ΛF
t :=

∫
(0,t]

1{Gs−>0}

Gs−
dAs, t ≥ 0

)
(2.20)

which is an F-predictable process. By Theorem A.11, the G-compensator of τ is

ΛG = (ΛG
t , t ≥ 0) = (ΛF

τ∧t, t ≥ 0).
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More precisely,

ΛG
t =

∫ t∧τ

0
1{Gs−>0}

αs(s)η(ds)
Gs−

+
n∑
i=1

∫
(0,t∧τ ]

1{Gs−>0}
pis−dΛi

s + d〈M i, pi〉s
Gs−

. (2.21)

We observe from (2.21) that the compensator ΛG is in general a discontinuous process
and the intensity does not exist in this case. Remember that a general model where the
Azéma supermartingale is discontinuous has also been studied in [BSW04, GS16].

We can deal with general F-stopping times (τi)ni=1(see Remark 2.5). On the one hand,
if they are predictable F-stopping times, then Λi

t = 1{τi≤t} and M i
t = 0, so the last term

on the right-hand side of (2.19) vanishes and we obtain

ΛG
t =

∫ t∧τ

0
1{Gs−>0}

αs(s)η(ds)
Gs−

+
n∑
i=1

1{τi≤t∧τ,Gτi−>0}
piτi−
Gτi−

. (2.22)

On the other hand, if {τi}Ni=1 are totally inaccessible F-stopping times, then τ is a totally
inaccessible G-stopping time. In this case, the compensator process of τ is continuous. A
similar result can be found in Coculescu [Coc09].

Proposition 2.11. If (τi)ni=1 is a family of totally inaccessible F-stopping times, then τ

is a totally inaccessible G-stopping time.

Proof: Since τi is totally inaccessible, the F-compensator process Λi is continuous.
Moreover, 〈M i, pi〉 is the compensator of the process

[Di, pi] =
(
1{τi≤t}∆piτi , t ≥ 0

)
and hence is continuous (see [DM80, VI.78] and the second part of its proof for details).
Therefore the process A in the Doob-Meyer decomposition of G is continuous since η is
non-atomic. This implies that the F-compensator ΛF is continuous. Thus the process

(
1{τ>t} + ΛF

τ∧t, t ≥ 0
)

is a uniformly integrable G-martingale, which is continuous outside the graph of τ , and
has jump of size 1 at τ . Still by [DM80, VI.78], τ is a totally inaccessible G-stopping
time. �
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Recall that there exists a unique multiplicative decomposition of the Azéma super-
martingale (e.g. [IW65]). In the following, we give the explicit multiplicative decomposi-
tion under the generalised density hypothesis as a general case of [EKJJ10, Proposition
4.1 (2)].

Proposition 2.12. Let ξ := inf{t > 0 : Gt = 0} and denote by ΛF,c the continuous part
of ΛF. The multiplicative decomposition of the Azéma supermartingale G is given by

Gt = Lte
−ΛF,c

t

∏
0<u≤t

(1−∆ΛF
u), t ≥ 0, (2.23)

where L is an F-martingale solution of the stochastic differential equation

Lt = 1 +
∫

(0,t∧ξ]

Ls−
(1−∆ΛF

s )Gs−
dMs, t ≥ 0. (2.24)

Proof. For any processX on (Ω,A,P), we denote by oX and pX respectively the F-optional
projection and F-predictable projection of X. We have the relations

∆A = o(1[[0,τ ]])− o(1[[0,τ [[)

and G− = p(1]]0,τ ]]) on the set {0 < τ < ∞} (Jeulin [Jeu80, page 63]). Since ∆ΛF is
F-predictable, we have

∆ΛF = p(∆ΛF) = p

(
∆A
G−

)
= p

(
o(1[[0,τ ]])− o(1[[0,τ [[)

G−

)
=

p(1[[τ ]])
p(1[[0,τ ]])

≤ 1.

On the one hand, for any t ≥ 0, if there exists u ∈ (0, t] such that ∆ΛF
u = 1, making

the right-hand side of (2.23) vanish, then we have p(1[[0,τ [[)u = 0, which implies that
Gu = 0. It is a classic result that G is a nonnegative supermartingale which sticks at 0
(c.f. [Pro05, page 379]), then Gt = 0. On the other hand, if ∆ΛF < 1, we denote by MF

the F-martingale defined as

dMF
t = 1{Gt−>0}

Gt−
dMt.

Let S = MF − ΛF. Then one has

Gt = G0 +
∫

(0,t]
Gu−dSu
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for all t ∈ R+. By [Jac79, Corollaire 6.35], G = E(S) = LE(−ΛF), where L = E(M̃F) such
that

dM̃F
t = 1{0<t≤ξ}

1−∆ΛF
t

dMF
t

(here we use the fact that ξ = inf{t > 0 : ∆St = −1} and −∆ΛF 6= −1 on ]]0, ξ]]). Then,
L is the solution of

Lt = 1 +
∫

(0,t]
Ls−dM̃

F
s , t ≥ 0.

The proposition is thus proved.

2.4 Sovereign default model revisited

The generalised density approach provides a general setting for hybrid default models.
In particular, the sovereign default model that we have developed in the previous chapter
is also a special case which satisfies the generalised density hypothesis.

Proposition 2.13. The random time τ defined in (1.14) satisfies Assumption 2.4, and
for all u, t ∈ R+, the generalised F-density α(·) is given by

αt(u) = E
[
λu exp

(
−
∫ u

0
λs ds−

n∑
i=1

1{τi<u}
∫ τi

τi−1
λN(s)ds

)∣∣∣Ft]. (2.25)

The proof of the proposition above is given in Appendix B.

We can check that the compensator process satisfies (2.22), which gives the same result
as in (1.23).

By using the same argument, one can also prove that if the random threshold η in the
Cox process model (1.9) satisfies Assumption 1.15, the sovereign default time still satisfies
the generalised density hypothesis, and for all u, t ∈ R+, the generalised F-density α(·) is
given by

αt(u) =


λuβt(Λu)e

−
∑n

i=1 1{τi<u}
∫ τi
τi−1

λN (s)ds
, if u ≤ t,

E
[
λuβu(Λu)e

−
∑n

i=1 1{τi<u}
∫ τi
τi−1

λN (s)ds
∣∣∣∣Ft] , if u > t.

(2.26)

In this case, the compensator process also satisfies (2.22), which yields the same result as
in (1.39).
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2.5 Martingales and semimartingales in G

In this section, we are interested in the G-martingales and semimartingales. We char-
acterise firstly the G-martingales by using F-martingale conditions, as done in [EKJJ10,
Proposition 5.6]. However, under the generalised density hypothesis, we shall distinguish
the necessary and sufficient conditions although they have similar forms at the first sight.
As a matter of fact, the decomposition of a G-adapted process is not unique, and the
martingale property can not hold true for all modifications. This makes the necessary
and sufficient conditions subtily different.

Proposition 2.14. Let Y G be a G-adapted process, which is written in the decomposed
form Y G

t = 1{τ>t}Yt + 1{τ≤t}Yt(τ), t ≥ 0, P-a.s., where Y is an F-adapted process and
Y (·) is an F⊗B(R+)-adapted process. Then Y G is a G-(local) martingale if the following
conditions are verified:

(a) 1∩ni=1{τi 6=θ}Y (θ)α(θ) is an F-(local) martingale on [θ,∞) for any θ ∈ R+;

(b) Y (τi)pi is an F-(local) martingale on [[τi,∞[[ for any i ∈ {1, · · · , n};

(c) the process (
YtGt +

∫ t

0
Yu(u)αu(u)η(du) +

n∑
i=1

1{τi≤t}Yτi(τi)piτi , t ≥ 0
)

is an F-(local) martingale.

Proof. We treat firstly the martingale case. By Proposition 2.8, the conditional expecta-
tion E[Y G

T |Gt] can be written as the sum of

1{τ>t}
1{Gt>0}

Gt

E[1{τ>T}YT + 1{t<τ≤T}YT (τ)|Ft] = 1{τ>t}
1{Gt>0}

Gt

(
E[YTGT |Ft]

+
∫ T

t
E[YT (u)αT (u)|Ft]η(du) +

n∑
i=1

E[1{t<τi≤T}YT (τi)piT |Ft]
)

and

1{τ≤t}

(
1∩ni=1{τ 6=τi}

1{αt(τ)>0}

αt(τ) E [YT (θ)αT (θ)|Ft]θ=τ +
n∑
i=1

1{τ=τi}
1{pit>0}

pit
E[YT (τi)piT |Ft]

)
.
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Hence, E[Y G
T |Gt]− Y G

t equals the sum of the following terms

1{τ>t}
1{Gt>0}

Gt

(
E [YTGT − YtGt|Ft] +

∫ T

t
E [YT (u)αT (u)|Ft] η(du)

+
n∑
i=1

E[1{t<τi≤T}YT (τi)piT |Ft]
) (2.27)

and

1{τ≤t}

(
− Yt(τ) + 1∩ni=1{τ 6=τi}

1{αt(τ)>0}

αt(τ) E [YT (θ)αT (θ)|Ft]θ=τ

+
n∑
i=1

1{τ=τi}
1{pit>0}

pit
E[YT (τi)piT |Ft]

)
.

(2.28)

Since the measure η is non-atomic, one has∫ T

t
E[YT (u)αT (u)|Ft]η(du) = E

[∫ T

t
1∩ni=1{τi 6=u}YT (u)αT (u)η(du)

∣∣∣∣∣Ft
]
.

By condition (a), it is equal to[∫ T

t
1∩ni=1{τi 6=u}Yu(u)αu(u)η(du)

∣∣∣∣∣Ft
]

=
[∫ T

t
Yu(u)αu(u)η(du)

∣∣∣∣∣Ft
]
,

where we use again the fact that η is non-atomic. Therefore, by condition (b), one can
rewrite the term (2.27) as

1{τ>t}
1{Gt>0}

Gt

(
E [YTGT − YtGt|Ft] + E

[∫ T

t
Yu(u)αu(u)η(du)

∣∣∣∣Ft
]

+
n∑
i=1

E[1{t<τi≤T}Yτi(τi)piτi |Ft]
)
,

(2.29)

which vanishes thanks to condition (c). Moreover, by condition (a) and (b), we can rewrite
(2.28) as

1{τ≤t}

(
−Yt(τ) + 1∩ni=1{τ 6=τi}

1{αt(τ)>0}

αt(τ) Yt(τ)αt(τ) +
n∑
i=1

1{τ=τi}
1{pit>0}

pit
Yt(τi)pit

)
,

which also vanishes.

In the following, we treat the local martingale case. Assume that the processes in
conditions (a)-(c) are F-local martingales, then there exists a common sequence of F-
stopping times which localises the processes (a)-(c) simultaneously. Thus, it remains to
prove the following claim: assume that σ is an F-stopping time such that



2.5. Martingales and semimartingales in G 95

(1) 1∩ni=1{τi 6=θ}1{σ>0}Y
σ(θ)ασ(θ) is an F-martingale on [θ,∞) for any θ ∈ R+,

(2) 1{σ>0}Y
σ(τi)pi,σ is an F-martingale on [[τi,∞[[ for any i ∈ {1, · · · , n},

(3) the process 1{σ>0}(Y σ
t G

σ
t +

∫ t∧σ
0 Yu(u)αu(u)η(du) + ∑n

i=1 1{τi≤t∧σ}Yτi(τi)piτi , t ≥ 0) is
an F-martingale,

then the process 1{σ>0}Y
G,σ is a G-martingale.

Note that the process α(θ) and pi are all F-martingales for θ ∈ R+, i ∈ {1, . . . , n}.
Therefore, the conditions (1) and (2) imply the corresponding conditions if we replace
ασ(θ) and pi,σ by α(θ) and pi respectively. We then deduce the following conditions

(1’) 1∩ni=1{τi 6=θ}1{σ>0}
(
1{σ<θ}Y σ + 1{σ≥θ}Y σ(θ)

)
α(θ) is an F-martingale on [θ,∞) for any

θ ∈ R+,

(2’) 1{σ>0}
(
1{σ<τi}Y

σ + 1{σ≥τi}Y
σ(τi)

)
pi is an F-martingale on [[τi,∞[[ for any i ∈ {1, · · · , n},

(3’) the process

1{σ>0}

(
Y σ
t G

σ
t +

∫ t∧σ

0
(1{σ<u}Y σ

u + 1{σ≥u}Y
σ
u (u))αu(u)η(du)

+
n∑
i=1

1{τi≤t∧σ}(1{σ<τi}Y σ
τi

+ 1{σ≥τi}Y
σ
τi

(τi))piτi
)
, t ≥ 0

is an F-martingale.

One has 1{σ<θ}Y σ
t = 1{σ<θ}Yσ on [θ,∞) and hence

(
1{σ<θ}Y

σ
t + 1{σ≥θ}Y

σ
t (θ)

)
αt(θ)− Y σ

t (θ)ασt (θ)

= 1{σ<θ}
(
Yσαt(θ)− Yσ(θ)ασ(θ)

)
+ 1{σ≥θ}Yt∧σ(θ)

(
αt(θ)− αt∧σ(θ)

)
= 1{σ<θ}

(
Yσαt(θ)− Yσ(θ)ασ(θ)

)
+ 1{σ≥θ}Yσ(θ)

(
αt(θ)− αt∧σ(θ)

)
, t ≥ θ

is an F-martingale, which implies that (1) leads to (1’). Similarly, one has 1τi>σY
σ
t =

1{τi>σ}Yσ on [[τi,∞[[ and hence (2) leads to (2’). Finally, by (2.9) we obtain that the
process (

Gt +
∫ t

0
αu(u)η(du) +

n∑
i=1

1{τi≤t}p
i
τi
, t ≥ 0

)
is an F-martingale and hence the process

1{σ>0}Yσ

(
Gt −Gσ

t +
∫ t

t∧σ
αu(u)η(du) +

n∑
i=1

1{t∧σ<τi≤t}p
i
τi

)
, t ≥ 0
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is also an F-martingale. Hence the conditions (3) leads to (3’). By the martingale case of
the proposition proved above, applied to the process

1{σ>0}Y
G,σ
t = 1{τ>t}1{σ>0}Y

σ
t + 1{τ≤t}1{σ>0}

(
1{τ>σ}Y

σ
t + 1{τ≤σ}Y

σ
t (τ)

)
,

we obtain that 1{σ>0}Y
G,σ is a G-martingale. In fact, if we replace in the conditions

(a)-(c) the process Y by 1{σ>0}Y
σ, and Yt(θ) by 1{σ>0}

(
1{σ<θ}Y σ + 1{σ≥θ}Y σ(θ)

)
, then

the conditions (a)-(c) become (1’)-(3’). The proposition is thus proved.

In view of Proposition 2.14, it is natural to examine whether the converse is true.
However, given a G-adapted process Y G, the decomposition Y G

t = 1{τ>t}Yt + 1{τ≤t}Yt(τ),
P-a.s. is not unique. For example, if one modifies arbitrarily the value of Y (θ) on ⋂Ni=1{τi 6=
θ} for θ in an η-negligiable set, the decomposition equality remains valid. However,
the F-martingale property of 1∩ni=1{τi 6=θ}Y (θ)α(θ) cannot hold for all such modifications.
In the following, we prove that, if Y G is a G-martingale, then one can find at least
one decomposition of Y G such that Y and Y (·) satisfy the F-martingale conditions in
Proposition 2.14.

Proposition 2.15. Let Y G be a G-martingale. There exist a càdlàg F-adapted process Y
and an O(F)⊗ B(R+)-measurable processes Y (·) which verify the following conditions :

(a) 1∩ni=1{τi 6=θ}Y (θ)α(θ) is an F-martingale on [θ,∞[ for any θ ∈ R+;

(b) Y (τi)pi is an F-martingale on [[τi,∞[[ for any i ∈ {1, · · · , n};

(c) the process (
YtGt +

∫ t

0
Yu(u)αu(u)η(du) +

n∑
i=1

1{τi≤t}Yτi(τi)piτi , t ≥ 0
)

is an F-martingale;

and such that, for any t ≥ 0, one has Y G
t = 1{τ>t}Yt + 1{τ≤t}Yt(τ), t ≥ 0, P-a.s..

Proof. The process Y G can be written in the following decomposition form

Y G
t = 1{τ>t}Ỹt + 1{τ≤t}Ŷt(τ), (2.30)
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where Ỹ and Ŷ (·) are respectively F-adpated and F ⊗ B(R+)-adapted processes. Since
Y G is a G-martingale, for i ∈ {1, · · · , n} and 0 ≤ t ≤ T , one has

E[Y G
T 1{τ=τi≤t}|Ft] = E[Y G

t 1{τ=τi≤t}|Ft],

which implies
1{τi≤t}E[ŶT (τi)piT |Ft] = 1{τi≤t}Ŷt(τi)pit.

This equality shows that Ŷ (τi)pi is an F-martingale on [[τi,∞[[. We take a càdlàg version
of this martingale and replace Ŷ (τi) on [[τi,∞[[ by the càdlàg version of this martingale
multiplied by 1{pi>0}(pi)−1. This gives an O(F)⊗ B(R+)-measurable version of Ŷ (·) and
the equality (2.30) remains true P-almost surely.

Similarly, for 0 ≤ t ≤ T , one has

E[Y G
T 1{τ≤t}1∩ni=1{τ 6=τi}|Ft] = E[Y G

t 1{τ≤t}1∩ni=1{τ 6=τi}|Ft],

which implies ∫ t

0
E[ŶT (θ)αT (θ)|Ft] η(dθ) =

∫ t

0
Ŷt(θ)αt(θ)η(dθ). (2.31)

Let D be a countable dense subset of R+. For any θ ∈ R+ and all s, t ∈ D such that
θ ≤ s ≤ t, let

Ŷt|s(θ) = 1{αs(θ)>0}

αs(θ)
E[Ŷt(θ)αt(θ)|Fs].

The equality (2.31) shows that there exists an η-negligeable Borel subset B of R+ such
that Ŷt|s(θ)αs(θ) = E[Ŷt(θ)αt(θ)|Fs] provided that θ 6∈ B. By the same arguments as in
the proof of Proposition 2.3, we obtain a càdlàg F⊗B(R+)-adapted process Y (·) verifying
the conditions (a) and (b), and such that Y G

t = 1{τ>t}Ỹt + 1{τ≤t}Yt(τ), P-a.s..

For the last condition (c), for any t ≥ 0, let

Y F
t = E[Y G

t |Ft] = ỸtGt +
∫ t

0
Yt(θ)αt(θ) η(dθ) +

n∑
i=1

1{τi≤t}Yt(τi)pit.

The process Y F is an F-martingale. Since the conditions (a) and (b) hold for Y (·), we
obtain that the process

ỸtGt +
∫ t

0
Yθ(θ)αθ(θ) η(dθ) +

n∑
i=1

1{τi≤t}Yτi(τi)piτi , t ≥ 0
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is also an F-martingale. Let Z be a càdlàg version of this F-martingale and let

Yt = 1{Gt>0}

Gt

(
Zt −

∫ t

0
Yθ(θ)αθ(θ) η(dθ)−

n∑
i=1

1{τi≤t}Yτi(τi)piτi

)
, t ≥ 0

which is a càdlàg version of the process Ỹ . The equality Y G
t = 1{τ>t}Yt + 1{τ≤t}Yt(τ),

P-a.s. still holds. The result is thus proved.

In the theory of enlargement of filtrations, it is a classic problem to study whether
an F-martingale remains a G-semimartingale. The standard assumption under which
this assertion holds true is the density hypothesis (c.f. [Jac85, Section 2] in the initial
enlargement of filtrations and [EKJJ10, Proposition 5.9] and [JLC09b, Theorem 3.1] in the
progressive enlargement of filtrations). Aksamit, Choulli and Jeanblanc [ACJ16, Theorem
3.5] proves this stability in a general framework. We now give an affirmative answer under
the generalised density hypothesis, which provides a weaker condition.

Proposition 2.16. Any F-local martingale UF is a G-semimartingale which has the fol-
lowing decomposition:

UF
t = UG

t +
∫

(0,t∧τ ]

d〈UF, M̄〉s
Gs−

+ 1∩ni=1{τ 6=τi}

∫
(τ,t∨τ ]

d〈UF, α(u)〉s
αs−(u)

∣∣∣∣
u=τ

+
n∑
i=1

1{τ=τi}

∫
(τ,t∨τ ]

d〈UF, pi〉s
pis−

, (2.32)

where UG is a G-local martingale and M̄ is an F-martingale defined as

M̄t = E
[∫ ∞

0
αu(u)η(du)

∣∣∣∣Ft]+
n∑
i=1

pit∧τi + p∞t , t ≥ 0. (2.33)

Proof. Let
Āt =

∫ t

0
αu(u)η(u) +

n∑
i=1

1{τi≤t}p
i
τi
.

One has G = M̄ − Ā. We denote by

Kt =
∫

(0,t]

d〈UF, M̄〉s
Gs−

and for θ ≤ t,

Kt(θ) = 1∩ni=1{θ 6=τi}

∫
(θ,t]

d〈UF, α(θ)〉s
αs−(θ) +

n∑
i=1

1{θ=τi}
∫

(θ,t]

d〈UF, pi〉s
pis−

.
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We define the process UG as

UG
t = 1{τ>t}

(
UF
t −Kt

)
+ 1{τ≤t}

(
UF
t −Kτ −Kt(τ)

)
= 1{τ>t}Ũt + 1{τ≤t}Ût(τ),

where Ũt = UF
t − Kt and Ût(θ) = UF

t − Kθ − Kt(θ). We check firstly that Ũ and Û(·)
verify the condition (c) in Proposition 2.14. Let Z = (Zt, t ≥ 0) be a process defined as

Zt = ŨtGt +
∫ t

0
Ûu(u)dĀu, t ≥ 0.

Then

dZt = d(ŨtGt) + Ût(t)dĀt

= d(UF
t Gt)− d(KtGt) + (UF

t −Kt)dĀt

= UF
t−dGt +Gt−dU

F
t + d[UF, G]t −KtdGt −Gt−dKt + UF

t−dĀt −KtdĀt + d[UF, Ā]t

= (UF
t− −Kt)dM̄t +Gt−dU

F
t + d[UF, M̄ ]t − d〈UF, M̄〉t.

Therefore Z is an F-local martingale.

We check now the conditions (a) and (b) in Proposition 2.14. On the set

{αt(θ) > 0} ∩
n⋂
i=1
{θ 6= τi}

one has

d
(
Ût(θ)αt(θ)

)
=
(
UF
t− −Kθ −Kt(θ)

)
dαt(θ)+αt−(θ)dUF

t +d[UF, α(θ)]t−d〈UF, α(θ)〉t, θ ≤ t

and on the set {τi ≤ t} ∩ {pit > 0} for all i ∈ {1, . . . , n},

d
(
Ût(τi)pit

)
=
(
UF
t− −Kτi −Kt(τi)

)
dpit + pit−dU

F
t + d[UF, pi]t − d〈UF, pi〉t.

Therefore the process 1∩ni=1{θ 6=τi}Û(θ)α(θ) is an F-local martingale on [θ,∞), and the
process Û(τi)pi is an F-local martingale on [[τi,∞[[ for all i ∈ {1, . . . , n}. By Proposition
2.14, we obtain that UG is a G-local martingale.

Remark 2.17. We note that the decomposition G = M̄ − Ā in the proof of the above
proposition is different from the Doob-Meyer decomposition of G since Ā is an F-optional
process. However, if F is quasi left continuous, this decomposition coincides with the
Doob-Meyer decomposition.





Chapter 3

Applications of sovereign default risk

models in finance

As applications of the generalised density approach, we discuss about the sufficient
condition for the immersion property in the generalised density framework, which is widely
adopted in the credit risk models, and study a two-name default model with simultaneous
defaults. Finally we apply the hybrid model and the generalised density to the valuation
of sovereign default claims and explain the significant jumps in the long-term government
bond yield during the sovereign crisis.

Keywords : Immersion property, simultaneous defaults, long-term government bond.
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3.1 Introduction

In this chapter, we apply the results of the previous chapters to the valuation and
hedgeing of credit risks. We first discuss about the immersion property (H-hypothesis)
which is widely adopted in the credit risk models in the framework of the progressive
enlargement of filtrations to guarantee the no-arbitrage conditions while we valuate some
defaultable claims by using a risk-neutral probability measure. Elliott, Jeanblanc and
Yor [EJY00] survey classic sufficient and necessary conditions for immersion property,
which is satisfied by, among others, the Cox process model. El Karoui, Jeanblanc and
Jiao [EKJJ10] propose another equivalent condition for immersion property in the density
framework, which postulates that the immersion property holds if and only if the density
process α(·) satisfies the condition αt(θ) = αθ(θ) for any t > θ. We extend this last
condition to the generalised density framework and underline the converse is not ture in
general.

The financial justification of the links between the immersion property and no-arbitrage
conditions has been studied by Jeanblanc and Le Cam [JLC09b] and Coculescu, Jean-
blanc and Nikeghbali [CJN12]. Precisely, if the immersion property is satisfied under the
risk-neutral probability measure, then the market model is arbitrage-free. In [JLC09b],
the credit event is modelled by a random time satisfying the density hypothesis, which
insures that the semimartingales in the reference filtration remain semimartingales in the
enlarged filtration, which opens a door to a change of probability measure by using Gir-
sanov theorem. In [CJN12], the authors have also pointed out how the immersion property
is modified under an equivalent change of probability measure. In the generalised density
framework studied in Chapter 2, we prove that the generalised density hypothesis holds
under an equivalent change of probability measure, and that we can always find an equiv-
alent probability measure under which the immersion property holds true, which means
that the generalised density hypothesis implies no-arbitrage conditions.

As soon as the no-arbitrage condition and the change of probability are clear in the
generalised density framework, we apply the sovereign default model and the generalised
density approach to the valuation of defaultable claims and particularly sovereign zero-
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coupon bonds and credit default swaps. The pre-default value of a defaultable zero-coupon
bond is composed of two parts: one related to the face value promised at maturity and
the other related to the recovery payment. We show that the bond yield deduced in the
model can have large jumps at the critical dates, which allows to explain the significant
movements of the sovereign bond yield during the sovereign debt crisis.

Since the sovereign debt crisis is contagious, we also study extremal risks such as
simultaneous defaults whose occurrence is rare but will have significant impact on financial
market.

Finally, we study an portofolio maximisation problem under a hybrid model.

3.2 Valuation of defaultable claims

In this section, we apply the sovereign default model in Chapter 1 and results of
the generalised density approach in Chapter 2 to sovereign defaultable claims such as
sovereign bonds and sovereign credit default swaps. We are particularly interested in the
behaviour of long-term bond yield during the sovereign debt crisis and we show that the
hybrid model provides an explanation to the jump behaviours of the bond yield around
critical political event dates.

3.2.1 Sovereign bond and credit spread

We consider a defaultable sovereign zero-coupon bond of maturity T ∈ R+ with face
value 1. The recovery payment at default is represented by an F-predictable process R
valued in [0, 1) if the sovereign default occurs prior to the maturity. The default time τ is
defined by the hybrid sovereign default model (1.14), where we recall that the immersion
property and the generalised density hypothesis are satisfied (see Subsection 1.2.6). In
a financial market with credit risk, when the immersion property holds, the risk-neutral
probability in F is also a risk-neutral probability in G (c.f. Coculescu, Jeanblanc and
Nikeghbali [CJN12]). By Proposition 3.5, the generalised density hypothesis remains valid
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under an equivalent probability change. For this reason, let Q be a risk-neutral probability
and we assume for the moment that all the dynamics of the sovereign default model are
defined under Q. We will see in the next subsection how a change of probability happens
when the sovereign default model is not defined under Q. We denote by r = (rt, t ≥ 0)
the default-free interest rate process and by D(t, T ) the value at t < T of the zero-coupon
bond.

Proposition 3.1. The value of the defaultable zero-coupon bond is given by

D(t, T ) = D0(t, T ) +D1(t, T ), (3.1)

where D0 is the pre-default price related to the payment at maturity, computed as

D0(t, T ) = 1{τ>t}EQ

[
exp

(
−
∫ T

t
(rs + λs)ds−

n∑
i=1

1{t<τi≤T}
∫ τi

τi−1
λN(s)ds

)∣∣∣Ft], (3.2)

and D1 is related to the recovery payment, given by

D1(t, T ) = 1{τ>t}
Gt

EQ

[ ∫ T

t
e−
∫ u
t
rs dsRuαu(u)du+

n∑
i=1

1{t<τi≤T}e
−
∫ τi
t
rs dsRτip

i
τi

∣∣∣Ft], (3.3)

where Gt = Q(τ > t|Ft).

Proof: The pre-default value of the bond is given by

D(t, T ) = EQ
[
e−
∫ T
t
rs ds1{τ>T}|Gt

]
+ EQ

[
e
∫ τ
t
rs ds1{t<τ≤T}Rτ |Gt

]
=: D0(t, T ) +D1(t, T ).

The first termD0(t, T ) is obtained by using the key-lemma of the enlargement of filtration:

D0(t, T ) = 1{τ>t}EQ

[
GT

Gt

e−
∫ T
t
rs ds

∣∣∣∣Ft]

together with (2.9), and the second term results from [BR02, Proposition 5.1.1] as

D1(t, T ) = 1{τ>t}
Gt

EQ

[
EQ

[
1{t<τ≤T} exp(−

∫ τ

t
rs ds)Rτ |FT

]∣∣∣∣Ft]
= 1{τ>t}

Gt

EQ

[ ∫ T

t
e−
∫ u
t
rs dsRuαT (u)du+

n∑
i=1

1{t<τi≤T}e
−
∫ τi
t
rs dsRτip

i
T

∣∣∣∣Ft].
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We complete the proof by using the equality (2.9) and the following properties:

αT (u) = αu(u) for t ≤ u ≤ T on
n⋂
i=1
{τi 6= u},

piT = piτi on {t < τi ≤ T} for any i ∈ {1, · · · , n}

(see Remark 3.4). �

We are interested in the bond prices on the political critical dates (τi)ni=1 and in
particular the jump behavior. Let

∆D(t, T ) := D(t, T )−D(t−, T ), t ≤ T,

which is the sum of
∆D0(t, T ) := D0(t, T )−D0(t−, T )

and
∆D1(t, T ) := D1(t, T )−D1(t−, T )

that we compute respectively in the following. In order to determine the jumps ∆D0(t, T )
and ∆D1(t, T ), we assume that the filtration F only supports continuous martingales. On
the one hand,

D0(t, T ) = 1{τ>t}EQ

[
exp

(
−
∫ T

0
(rs + λs) ds−

n∑
i=1

1{τi≤T}
∫ τi

τi−1
λN(s) ds

) ∣∣∣∣Ft]

· exp
( ∫ t

0
(rs + λs) ds+

n∑
i=1

1{τi≤t}
∫ τi

τi−1
λN(s) ds

)
, t ≤ T,

where the conditional expectation term on the right-hand side is a continuous process on
t ∈ [0, T ] due to the above assumption. Hence

∆D0(t, T ) = D0(t, T )
n∑
i=1

1{τi=t}
(

1− e−
∫ τi
τi−1

λN (s) ds
)
, on {τ > t}. (3.4)

On the other hand, for the similar reason, we deduce from (3.3) the following formula

∆D1(t, T ) = ∆(G−1
t )EQ

[ ∫ T

t
e−
∫ u
t
rsdsRuαT (u)du+

n∑
i=1

1{t<τi≤T}e
−
∫ τi
t
rs dsRτip

i
τi

∣∣∣∣Ft]

− 1
Gt−

n∑
i=1

1{τi=t}Rτip
i
τi
, on {τ > t}.
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Moreover, by (2.9) one has

∆(G−1
t ) = 1

Gt

n∑
i=1

1{τi=t}
(

1− e−
∫ τi
τi−1

λN (s) ds
)
.

We then deduce

∆D1(t, T ) = D1(t, T )
n∑
i=1

1{τi=t}
(

1− e−
∫ τi
τi−1

λN (s) ds
)
− 1
Gt−

n∑
i=1

1{τi=t}Rτip
i
τi

on {τ > t},

(3.5)

which implies, combining (3.4) and (3.5), that

∆D(t, T ) =
n∑
i=1

1{τi=t}D(τi, T )
(

1− e−
∫ τi
τi−1

λN (s) ds
)
−

n∑
i=1

1{τi=t}
1

Gτi−
Rτip

i
τi

on {τ > t}.

By using the relation
piτi
Gτi−

= 1− e−
∫ τi
τi−1

λN (s) ds
,

we obtain finally

∆D(t, T ) =
n∑
i=1

1{τi=t}
(
D(τi, T )−Rτi

)(
1− e−

∫ τi
τi−1

λN (s) ds
)
, (3.6)

and in particular,

∆D(τi, T ) =
(
D(τi, T )−Rτi

)(
1− e−

∫ τi
τi−1

λN (s) ds
)

on {τi ≤ T}. (3.7)

Let the pre-default yield to maturity of the defaultable bond on {t < τ} be

Y d(t, T ) = − lnD(t, T )
T − t

. (3.8)

Similarly, the yield to maturity of a classic default-free zero coupon bond is given as

Y (t, T ) = − lnB(t, T )
T − t

.

where B(t, T ) = EQ[e−
∫ T
t
rs ds|Ft] denotes the price at t ≤ T of the default-free zero-

coupon bond of maturity T . Let the pre-default credit spread, noted S(t, T ), be defined
as the difference between the two yields to maturity, i.e.,

S(t, T ) := Y d(t, T )− Y (t, T ) = − 1
T − t

ln D(t, T )
B(t, T ) .
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Then,

∆S(t, T ) = S(t, T )− S(t−, T ) = −∆ lnD(t, T )
T − t

= − 1
T − t

ln
(

1 + ∆D(t, T )
D(t−, T )

)
. (3.9)

which implies by (3.7) that the jump of the bond yield at a critical date τi is negative if
and only if ∆D(τi, T ) is positive. More precisely, ∆S(τi, T ) < 0 on {τi < T ∧ τ} if and
only if

D(τi, T ) > Rτi a.s.. (3.10)

In practice, the recovery rate is often assumed to be of expectation 0.48 according to
Moody’s service. Since the bond price is in general higher than this value, the inequality
(3.10) is often satisfied, which means that at critical dates, the credit spread is likely to
have negative jumps. In particular, if R ≡ 0, one has D1 = 0 and

∆ lnD0(t, T ) =
n∑
i=1

1{τi=t}
∫ τi

τi−1
λN(s)ds.

Then, we can compute explicitly the jump in the credit spread at τi as

∆S(τi, T ) = −1{τi<T}
∆ lnD0(τi, T )

T − τi
= −1{τi<T}

∫ τi
τi−1

λN(s)ds
T − τi

. (3.11)

We notice that whether the jump of sovereign bond yield at a critical date τi is negative
or not depends on the intensity of the exogenous shock, the elapsed time between τi−1

and τi (the solvency indirectly), and the value of the recovery payment at τi. When the
recovery payment is small enough, the condition in (3.10) can be satisfied. Moreover, if
no recovery payment is made, the size of the jumps only depends on the solvency and the
exogenous shock.

3.2.2 Sovereign CDS

We can also apply the sovereign default model to the credit default swap (CDS). Let
κ be the spread of the CDS, which is payed by the protection buyer throughout the life
of CDS until T ∧ τ . The value at t < T ∧ τ of the cash flow received by the protection
buyer is given by

Ot = EQ[1{τ≤T}e−
∫ τ
t
rs ds(1−Rτ )|Gt]
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and that payed is given by

It(κ) = EQ[
∫ T∧τ

t
κe−

∫ u
t
rs dsdu|Gt].

Then, the pre-default value of the CDS is given by

Ct(κ) = Ot − It(κ),

where O and I are respectively computed as

Ot = 1{τ>t}G
−1
t EQ

[∫ T

t
e−
∫ u
t
rs ds(1−Ru)αu(u)du+

n∑
i=1

1{t<τi≤T}e
−
∫ τi
t
rs ds(1−Rτi)qiτi

∣∣∣∣Ft
]
,

and
It(κ) = 1{τ>t}G

−1
t EQ

[
κ
∫ T

t
e−
∫ u
t
rs dsGu du

∣∣∣Ft
]
.

The value of the CDS spread is obtained such that C0(κ) = 0 and is given by

κ =
EQ

[∫ T
0 e−

∫ u
0 rs ds(1−Ru)αu(u)du+∑n

i=1 1{0<τi≤T}e
−
∫ τi

0 rs ds(1−Rτi)qiτi
]

EQ

[∫ T
0

αu(u)
λu

exp
(
−
∫ u
0 rs ds−

∑n
i=1 1{u=τi}

∫ τi
τi−1

λN(s)ds
)
du
] ,

where we use the relationship αt(t) = λtGt−, t ≥ 0, implied by (1.22) and (2.20).

3.2.3 Example of indifference pricing in a hybrid model

In the previous subsection, the valuation of defaultable claim has been done in a com-
plete market model. When the market is incomplete, the indifference pricing approach
is often used. The indifference price is the price at which an agent would have the same
expected utility level by exercising a financial transaction as by not doing so. Hodges
and Neuberger [HN89] were the first to introduce utility indifference pricing in incom-
plete markets (see Henderson and Hobson [HH04] for a general survey of literature on
this topic). As emphasised by El Karoui and Rouge [REK00], prices should depend on
the wealth of the underlying firm. So, we consider here a corporate instead of a sovereign
country, because it is difficult to value the total wealth of a country. The fundamental el-
ement of finding the indifference price lies in solving two portfolio optimisation problems,
and the standard methods are dynamic programming, martingale methods and backward
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stochastic differential equation (BSDE) approach (see, e.g., Pham [Pha09] for Brownian
diffusions and Øksendal and Sulem [ØS05] for jump diffusions). In the context of optimi-
sation and pricing under default risk, see the research paper of Bielecki, Jeanblanc and
Rutkowski [BJR04a] and the thesis of Sigloch [Sig09] for an overview, as well as Pham
[Pha10] in the case of multi-defaults. Besides, Lim and Quenez [LQ11] uses a BSDE
approach in which the default time has an intensity and the immersion property holds,
and Jiao and Pham [JP11] decompose a default-sensitive equity trading problem into two
optimisation problems according to the default regime under density hypothesis, which is
generalised in the case of multi-defaults under density hypothesis in Jiao, Kharroubi and
Pham [JKP13]. Recently, Kharroubi, Lim and Ngoupeyou [KLN13] study a problem of
mean-variance hedging with BSDE approach where the horizon is uncertain because of a
possible jump of the asset price process, and the jump time admits an intensity.

We introduce an example of indifference pricing of defaultable claim under a hybrid
model without density or intensity. We fix a constant horizon T > 0 and start with a
complete probability space (Ω,A,P) equipped with a Brownian motion W = (Wt)0≤t≤T

and an exponentially distributed random variable η of unit parameter independent of
W . We denote by F = (Ft)0≤t≤T the canonical filtration of W , which represents all the
information accessible to the investors.

We consider a defaultable stock whose pre-default price dynamic follows a Jump to
Default extended Constant Elasticity of Variance (JDCEV) diffusion

dPt = [µ(t) + λ(t, Pt)]Pt dt+ δ(t)P β+1
t dWt, P0 = p, (3.12)

where µ(t) is the bounded R-valued time-dependent return rate function, δ(t) > 0 is
the bounded time-dependent volatility scale function, β < 0 is the volatility elasticity
parameter, and λ(t, P ) ≥ 0 is the default intensity of the firm, which can depend on
both the time and the pre-default stock price process P . We assume that λ(t, P ) remains
uniformly bounded as P → +∞ and explodes to +∞ when P → 0. For example, as in
[CL06], we can let

λt = λ(t, Pt) = aδ2(t)P 2β
t + b(t), (3.13)

where a ≥ 0 is a positive constant parameter governing the sensitivity of λ to the local
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volatility, and b(t) ≥ 0 is a nonnegative deterministic function of t, in which case λ(t, P )
tends to infinity when P → 0.

We assume that the firm goes bankrupt when the stock price hits zero, and the price
process is killed at the first hitting time of zero τ0 = inf{t ≥ 0 : Pt = 0} with the
convention that τ0 = 0 if the price does not hit zero. Besides, the bankruptcy of the firm
can also be triggered by an unexpected jump to default at time ξ, modelled by the first
jump time of a Cox process with intensity process λ, precisely,

ξ = inf
{
t ≥ 0 :

∫ t

0
λs ds > η

}
. (3.14)

We assume that the stock price P is killed from a positive value when a jump to default
happens, so the stock process is actually (Pt1{ξ>t}, 0 ≤ t ≤ T ). Denote by D = (Dt)0≤t≤T

the indicator process associated to ξ, namely Dt = 1{ξ≤t}. Since D is a process of pure
jump, one has

[P,D]t =
∑
u≤t

∆Pu∆Du = 1{ξ≤t}∆Pξ.

Then, the dynamic of the stock process is

d(Pt1{ξ>t}) = 1{ξ≥t}Pt
[
(µ(t) + λ(t, Pt))dt+ δ(t)P β

t dWt

]
− Pt dDt.

The default of the firm in this model can occur either at time τ0 via diffusion to zero
or at time ξ via a jump to default, whichever comes first. The time of default is then
decomposed into a predictable part and a totally inaccessible part. We define the time of
default τ as

τ = min{τ0, ξ}. (3.15)

We note that τ0 is an F-stopping time but it is not the case for ξ. Let G = (Gt)0≤t≤T be
the progressive enlargement of F by τ , defined as

Gt =
⋂
s>t

(
σ({τ ≤ u} : u ≤ s) ∨ Fs

)
, t ∈ [0, T ],

representing the global information available for the investors over [0, T ].

Consider now an investor who trades continuously the stock on the financial market
by holding a positive total wealth at any time. The current account interest rate is
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set to 0 for simplicity. We denote by X = (Xt)0≤t≤T the wealth of the investor. The
trading strategy of the investor is a G-predictable process ϕ̂ = (ϕ̂t)t∈[0,T ] representing the
proportion of wealth invested in the stock. The stock disappears after the bankruptcy
of the firm and so the investor’s position on the stock becomes worthless. Then, for any
t ∈ [0, T ], ϕ̂t = 1{τ≥t}ϕt, where ϕ is an F-predictable process, and the dynamic of the
wealth process on {t < τ} is

dXt = Xtϕt
[
(µ(t) + λ(t, Pt))dt+ δ(t)P β

t dWt

]
, X0 = x, (3.16)

where X = (Xt)0≤t≤T is an F-adapted process. We denote by X̂ the G-adapted wealth
process. If the default occurs before t, the investor loses the wealth invested in the stock
at the moment of the default τ and holds the current account till t, i.e.,

1{τ≤t}X̂t = 1{τ≤t}X̂τ = 1{τ≤t}X̂τ−(1− ϕτ ).

Then, X̂ has the following decomposed form

X̂t = 1{τ>t}Xt + 1{τ≤t}X̂τ−(1− ϕτ ).

The preference of the investor is described by a utility function U : (0,∞)→ R which
is strictly increasing, strictly concave, C1 on (0,∞) with U(0) = 0, and satisfies the usual
Inada conditions: U ′(0+) := limx→0 U

′(x) = ∞, U ′(∞) := limx→∞ U
′(x) = 0. The aim

of the investor is to maximize the expectation of the utility over the finite horizon T .
We denote by A the set of admissible trading strategies. Then, the value function of the
optimal investment problem is

v(x) = sup
ϕ∈A

E
[
U(X̂x,ϕ

T )
]
. (3.17)

By law of iterated conditional expectations, one has

E
[
U(X̂T )

]
= E

[
1{τ>T}U(XT ) + 1{τ≤T}U(X̂τ )

]
= E

[
E[1{τ>T}U(XT )|FT ] + E[1{τ≤T}U

(
X̂τ−(1− ϕτ )

)
|FT ]

]
.

Furthermore, for all 0 < u ≤ T ,

P(τ > u|FT ) = 1{τ0>u}P(ξ > u|FT ) = 1{τ0>u} exp
(
−
∫ u

0
λ(s, Ps)ds

)
,
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and let FT (u) = P(τ ≤ u|FT ). Then,

E
[
U(X̂T )

]
= E

[
U(XT )P(τ > T |FT ) +

∫
(0,T ]

U
(
Xu(1− ϕu)

)
dFT (u)

]

= E
[∫ T∧τ0

0
e−
∫ u

0 λ(s,Ps)dsλ(u, Pu)U
(
Xu(1− ϕu)

)
du

+ 1{τ0>T}e
−
∫ T

0 λ(s,Ps)dsU(XT )
]
.

Let f : [0, T ]× R+ × R+ × R be a function defined as

f : (t, x, p, ϕ) 7→ λ(t, p)U(x(1− ϕ)).

For all (t, x, p) ∈ [0, T ]×R+×R+, we denote by A(t, x, p) the subset of the controls ϕ in
A such that

E
[∫ T

t

∣∣∣f(s,X t,x
s , P t,p

s , ϕs)
∣∣∣ ds] <∞, (3.18)

and we assume that A(t, x, p) is not empty for all (t, x, p) ∈ [0, T ]× R+ × R+.

Let τt = inf{s ∈ [t,+∞) : Ps = 0}, γ(t, s) = exp(−
∫ s
t λ(r, Pr)dr), and define the gain

function as

J(t, x, p, ϕ) = E
[∫ T∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds+ 1{τt>T}γ(t, T )U(X t,x

T )
]

(3.19)

for all (t, x, p) ∈ [0, T ] × R+ × R+ and all ϕ ∈ A(t, x, p). To maximize over control
processes the gain function J , we introduce the associated value function

v(t, x, p) = sup
ϕ∈A(t,x,p)

J(t, x, p, ϕ). (3.20)

The gain function (3.19) has a finite horizon with terminal payoff depending on a stop-
ping regime. We formulate the dynamic programming principle in the following theorem,
the proof of which is given in Appendix B.

Theorem 3.2. For any (t, x, p) ∈ [0, T ]×R+ ×R+ and any F-stopping time θ valued in
[t, T ], the value function (3.20) is

v(t, x, p) = sup
ϕ∈A(t,x,p)

E
[∫ θ∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds

+ 1{θ≤τt}γ(t, θ)v(θ,X t,x
θ , P t,p

θ )
]
.

(3.21)
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The Hamilton-Jacobi-Bellman (HJB) equation describes the infinitesimal behaviour of
the value function (3.21) when the stopping time θ tends to t. We assume that the value
function v is smooth enough, then v satisfies the following HJB equation with Cauchy
and Dirichlet conditions:

−∂v
∂t

+ λ(t, p)v − sup
φ∈A

[
Lφv + f(t, x, p, φ)

]
= 0, (t, x, p) ∈ [0, T )× R+ × (0,+∞),

v(T, x, p) = U(x),

v(t, x, 0) = 0,
(3.22)

where Lφ is the infinitesimal generator associated to the diffusions (3.12) and (3.16) for
the constant control φ, defined by

Lφv = [µ(t) + λ(t, p)]
(
xφ
∂v

∂x
+ p

∂v

∂p

)
+ 1

2δ
2(t)p2β

(
x2φ2 ∂

2v

∂x2 + p2∂
2v

∂p2

)
.

Let us consider a defaultable zero-coupon bond issued by the firm, whose price process
is a G-adapted process, noted (Ht, 0 ≤ t ≤ T ), where H0 = h. The payoff of the zero-
coupon bond is

HT = 1{τ>T} + 1{τ≤T}R(τ),

where R(·) is a [0, 1)-valued function. In order to compute the initial price h, we consider
another agent investing in this defaultable claim besides the stock with the same initial
endowment x. Then, the second investor is in face of the following optimal investment
problem:

ν(x− h) = sup
ϕ∈A

E
[
U(X̂x−h,ϕ

T +HT )
]
. (3.23)

By indifference pricing principle, the value functions of the two investors should be equal
if the price h is fair, i.e., v(x) = ν(x − h). If we write the dynamic version of the value
function above as ν(t, x, p), then ν satisfies the following HJB equation with Cauchy and
Dirichlet conditions:

−∂ν
∂t

+ λ(t, p)ν − sup
φ∈A

[
Lφν + g(t, x, p, φ)

]
= 0, (t, x, p) ∈ [0, T )× R+ × (0,+∞),

ν(T, x, p) = U(x+ 1),

ν(t, x, 0) = 0,
(3.24)
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where g(t, x, p, φ) = λ(t, p)U(x(1− φ) +R(t)).

3.2.4 Numerical illustrations

We now present numerical examples to illustrate the results obtained previously con-
cerning the defaultable bond yield. We use the solvency data of Greece during the period
from 2003 to 2013 to estimate the parameters.

Figure 3.1 – Jump at a critical date in the sovereign defaultable bond yield (with the corre-

sponding solvency sample path): λN = 0, 0.05 and 0.2 respectively.

In the first example, we illustrate the bond yield and its jump at a critical date for
a sovereign defaultable bond of maturity 5 years. The solvency is described by a CEV
process as in (1.32) and we set the parameters to be S0 = 1.01, µ = −0.01, δ = 0.03 and
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β = 1. The idiosyncratic default intensity process λ is specified by λ(S) = a
S2|β| + b as in

(3.13) with coefficients a = 0.005 and b = 0.01. We assume that there is only one critical
date with the solvency barrier L = 0.9 and that the risk-free interest rate is 0. Figure 3.1
plots the time-varying bond yield (3.8) of a defaultable zero-coupon bond without recovery
payment, as well as the corresponding simulation scenario of the solvency process. We
present two different exogenous shock intensities: λN = 0.005 and λN = 0.02. Note that
in this test, when the solvency hits 0.9, the bond yield has a negative jump, the size of
which depends on the value of λN . A larger λN results in a larger jump.

In the second example, we consider the long term Greece government bond yield of
maturity 10 years. The solvency of Greece is described by a CEV process. We estimate
the parameters by using the solvency data as in Figure 1.4 where δ and β are jointly
calibrated (c.f. [CEMY93] and [YYC01]) and obtain S0 = 1.01, µ = −0.01, δ = 0.03
and β = −4.92. The coefficients of the idiosyncratic default intensity (as in (3.13)) are
a = 0.013 and b = 0.035, estimated from the 3-month Greek bond yield. The solvency
barrier is re-adjustable with three values L1 = 0.9, L2 = 0.8 and L3 = 0.7.

We suppose that the exogenous shock intensity of the inhomogeneous Poisson process
is a piecewise constant function which change its value at each critical date. By Figure 1.2,
given the sizes of the three jumps, we let λN(t) = 0.07 for t ∈ [0, τ1], λN(t) = 0.16 for
t ∈ (τ1, τ2] and λN(t) = 3.15 for t ∈ (τ2, τ3], which are computed using (3.11). Figure
3.2 plots the time-varying bond yield of a 10-year Greek government zero-coupon bond,
as well as a sample path of the solvency of Greece which corresponds to the period of
2003-2013. We observe that the solvency of Greece tends to fall gradually through time.
The bond yield has three negative jumps at the barrier hitting times: there is a large
negative jump when the solvency falls below 0.7 since the exogenous shock intensity is at
a high level; while the first two are relatively small. This looks like the full view of the
historical data in Figure 1.2 where the three jumps correspond respectively to T1, T2 and
T3 in Figure 1.3.
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Figure 3.2 – Simulated 10-year Greek government bond yield with re-adjustable Poisson inten-

sity and the corresponding solvency sample path.

3.2.5 Pricing credit risk in generalised density framework

In this section, we provide a general framework for pricing credit risk. Recall that in the
theory of the enlargement of filtrations, given two filtrations F and G such that F ⊂ G, the
pair of filtrations (F,G) is said to verify the immersion property (or H-hypothesis) if any
F-martingale is a G-martingale. In the context of credit risk, F represents the default-
free market information and G is the global market information obtained through the
progressive enlargement of F by the default time τ . In the literature of default modelling,
the immersion property is often assumed for the pricing of credit derivatives before default
since the immersion property under a risk-neutral probability seems to be a suitable no-
arbitrage condition (see e.g. [JLC09a, CJN12]), and the risk-neutral probability in F is
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also that in G. We give below a criterion under the generalised density hypothesis for the
immersion property to hold true. In this section, we assume that Assumption 2.4 holds
for τ .

Proposition 3.3. The immersion property holds for (F,G) if the following conditions
are satisfied:

(a) αt(θ) = αθ(θ) for 0 ≤ θ ≤ t on ⋂ni=1{τi 6= θ};

(b) pit = piτi∧t for any i ∈ {1, · · · , n},

where pi is a càdlàg version of the F-martingale E[τ = τi <∞|Ft].

Proof. Let Y be an F-martingale. It can be considered as a G-adapted process and admits
the following decomposition

Yt = 1{τ>t}Yt + 1{τ≤t}Yt, t ≥ 0.

We intend to prove that Y is a G-martingale by using the characterisation in Proposi-
tion 2.14. The condition (a) implies that the process 1∩ni=1{τi 6=θ}α(θ)Y is an F-martingale
on [θ,∞) for any θ ≥ 0. The condition (b) implies that Y pi is an F-martingale on [[τi,∞[[
for any i ∈ {1, · · · , n}. For the last condition in Proposition 2.14, we have

YtGt +
∫ t

0
Yuαu(u)η(du) +

n∑
i=1

1{τi≤t}Yτip
i
τi

= Yt

∫ ∞
0

αt(u)η(du) +
n∑
i=1

Yτi∧tp
i
τi∧t + Ytp

∞
t

= Yt

(∫ ∞
0

αt(u)η(du) +
n∑
i=1

pit + p∞t

)
+

n∑
i=1

(Yτi∧t − Yt)piτi∧t

= Yt +
n∑
i=1

(Yτi∧t − Yt)piτi∧t,

where the second equality comes from the fact piτi∧t = pit and the third equality comes
from (2.8). Since Y is an F-martingale,

(
(Yτi∧t − Yt)piτi∧t, t ≥ 0

)
is an F-martingale for

any i ∈ {1, · · · , n}. Hence we obtain the result.

Remark 3.4. We note that in the sovereign default model (1.14), the following equalities
are satisfied: αt(u) = αu(u) for 0 ≤ u ≤ t on ⋂ni=1{τi 6= u} (see Proposition 2.13) and



118 Chapter 3. Applications of sovereign default risk models in finance

pit = piτi∧t for any i ∈ {1, · · · , n} (see Proposition 1.8), which implies the immersion
property. This implication is coherent with our analysis in Chapter 1. By the same
observation, among the examples in literature cited in Chapter 2, the immersion property
holds in the hybrid models [BSW04, CL06, CPS09, GS16].

Conversely, if the immersion property holds, then

(a’) we can choose suitable conditional density process α(·) such that αt(θ) = αθ(θ) for
0 ≤ θ ≤ t on ⋂ni=1{τi 6= θ}

(b’) for any i ∈ {1, . . . , n}, the F-martingale pi is stopped at τi.

However, the condition (a’) may not hold in general since we are allowed to change the
value of αt(θ) for θ on an η-negligible set without changing the F-conditional probability
distribution of τ .

The immersion property depends strongly on the probability measure that we have
chosen and is in general not preserved under a change of probability measure. For this
reason, the reduced-form models are usually given under a risk-neutral probability. In the
following propositions, we study the change of probability measures based on the results
of the G-martingale characterisation in Chapter 2. Firstly, we prove that the generalised
density hypothesis still holds after a change of probability measure and we deduce relevant
processes under the new probability measure. Secondly, we show that by starting from
an arbitrary probability measure (under which the immersion is not necessarily satisfied),
we can always find a change of probability which is invariant on F, and the immersion
property holds under the new probability measure.

Proposition 3.5. Let Y G be a positive G-martingale of expectation 1, which is written
in the decomposed form as Y G

t = 1{τ>t}Yt + 1{τ≤t}Yt(τ) where Y and Y (·) are positive
processes which are respectively F-adapted and F⊗B(R+)-adapted. Let Q be the probability
measure such that dQ/dP = Y G

t on Gt for any t ≥ 0. Then the random time τ satisfies
Assumption 2.4 under the probability Q, and the (F,Q)-conditional density avoiding (τi)ni=1

and the (F,Q)-conditional probability of {τ = τi < ∞} can be written in the following
form

αQ
t (θ) = 1{θ≤t}

Yt(θ)
Y F
t

αt(θ) + 1{θ>t}
E[Yθ(θ)αθ(θ)|Ft]

Y F
t

, pi,Qt = Yt(τi)pit
Y F
t

(3.25)
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where
Y F
t := E[Y G

t |Ft] = GtYt +
∫ t

0
Yt(θ)αt(θ) η(dθ) +

n∑
i=1

1{τi≤t}Yt(τi)pit.

Proof. Let Y G be a G-martingale defined as Y G
t = 1{τ>t}Yt + 1{τ≤t}Yt(τ), t ≥ 0. Let h be

a bounded Borel function, then

EQ[1{τ<∞}h(τ)|Ft] = lim
m→+∞

EQ[1{τ≤m}h(τ)|Ft] = lim
m→+∞

E[1{τ≤m}Y G
τ∨th(τ)|Ft]

E[Y G
t |Ft]

(3.26)

where we use the optional stopping theorem of Doob for the second equality. Note that

E[Y G
t |Ft] = GtYt +

∫ t

0
Yt(θ)αt(θ) η(dθ) +

n∑
i=1

1{τi≤t}Yt(τi)pit

and for any m ∈ N,

E[1{τ≤m}Y G
τ∨th(τ)|Ft] =

∫ m

0

(
1{θ≤t}Yt(θ)αt(θ) + 1{θ>t}E[Yθ(θ)αθ(θ)|Ft]

)
h(θ) η(dθ)

+
n∑
i=1

(
1{τi≤t∧m}Yt(τi)pith(τi) + 1{τi>t}E[Yτi(τi)piτih(τi)1{τi≤m}|Ft]

)
.

Hence

lim
m→+∞

E[1{τ≤m}Y G
τ∨th(τ)|Ft] =

∫ ∞
0

(
1{θ≤t}Yt(θ)αt(θ) + 1{θ>t}E[Yθ(θ)αθ(θ)|Ft]

)
h(θ) η(dθ)

+
n∑
i=1

(
1{τi≤t}Yt(τi)pith(τi) + 1{τi>t}E[Yτi(τi)piτih(τi)1{τi<∞}|Ft]

)
,

which implies the required result together with (3.26).

Proposition 3.6. We assume that the processes α(·) and pi, i ∈ {1, · · · , n}, are positive.
Let Y and Y (·) be respectively F-adapted and F⊗ B(R+)-adapted processes such that

Yt = 1
Gt

(
1−

∫ t

0
αθ(θ) η(dθ)−

n∑
i=1

1{τi≤t}p
i
τi

)
, (3.27)

Yt(θ) = 1∩ni=1{τi 6=θ}
αθ(θ)
αt(θ)

+
n∑
i=1

1{τi=θ}
piθ
pit
, 0 ≤ θ ≤ t. (3.28)

Then, the G-adapted process Y G defined by Y G
t = 1{τ>t}Yt + 1{τ≤t}Yt(τ) is a positive G-

martingale with expectation 1. Moreover, if we denote by Q the probability measure such
that dQ/dP = Y G

t on Gt, then the restriction of Q on F∞ coincides with P and (F,G)
verifies the immersion property under the probability Q. Moreover, one has αQ

θ (θ) = αθ(θ)
on ⋂ni=1{τi 6= θ} and pi,Qτi = piτi.
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Proof. The assertion that Y G is a G-martingale results from Proposition 2.14. Moreover,
one has

E[Y G
t |Ft] = GtYt +

∫ t

0
Yt(θ)αt(θ)η(dθ) +

n∑
i=1

1{τi≤t}Yt(τi)pit = 1.

Therefore the expectation of Y G
t is 1, and the restriction of Q to F∞ coincides with P. It

remains to verify that (F,G) satisfies the immersion property under the probability Q and
the invariance of the values of αθ(θ) and piτi . By the previous proposition, on ⋂ni=1{τi 6= θ}
one has

αQ
t (θ) = 1{θ≤t}Yt(θ)αt(θ) + 1{θ>t}E[Yθ(θ)αθ(θ)|Ft]

= 1{θ≤t}αθ(θ) + 1{θ>t}E[αθ(θ)|Ft]

and
pi,Qt = Yt(τi)pit = piτi on {τi ≤ t}.

In particular, one has αQ
θ (θ) = αθ(θ) on ⋂ni=1{τi 6= θ} and pi,Qτi = piτi . By Proposition 3.3,

we obtain that (F,G) satisfies the immersion property under the probability Q. The result
is thus proved.

We fix a constant horizon T <∞ and start with a complete probability space (Ω,A,P),
equipped with an n-dimensional standard Brownian motion W = (W 1, . . . ,W n)′. We
denote by F = (Ft)0≤t≤T the usual augmented Brownian filtration: Ft := σ(Ws, s ≤
t) ∨ A0 where A0 is the collection of all P-null sets. F represents the default-free market
information. We consider a market model which consists of one riskless asset (money
market instrument or short-rate bond) and n continuously-traded risky assets. The price
per unit of the riskless asset S0 is governed by the equation

dS0
t = S0

t rt dt, t ≥ 0,

where r = (rt, 0 ≤ t ≤ T ) is a nonnegative predictable process representing the short-
rate, and the price process for one share of i-th risky asset Si is modelled by the linear
stochastic differential equation

dSit = Sit

µitdt+
n∑
j=1

σi,jt dW
j
t

 , t ∈ (0, T ],
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where µ = (µ1, . . . , µn)′ is an Rn-valued F-predictable vector process, σ = (σi,j)1≤i,j≤n is
an F-predictable n×n matrix with full rank a.s.. We assume that there exists a bounded
Rn-valued F-predictable risk premium process θ = (θ1, . . . , θn)′ such that

µt − rt1 = σtθt, dP⊗ dt a.s., (3.29)

where 1 is a n-dimensional vector each component of which is 1.

Let us consider furthermore a defaultable claim (T, F, C, τ, R), where T is the maturity,
F is an FT -measurable random variable representing the nominal (face) value due at the
maturity, C = (Ct, 0 ≤ t ≤ T ) is an nonnegative F-predictable process of finite variation
with C0 = 0 representing the accrued interest payment (coupon) 1, τ is a nonnegative
random variable valued on [0,∞] representing the date when the counterpart of the claim
defaults, and R is an [0, 1)-valued F-predictable process representing the recovery payment
at τ if a default occurs prior to or at the maturity. We assume that P(τ > t) > 0 for any
t ∈ [0, T ]. The filtration G = (Gt)0≤t≤T , defined as Gt = ∩s>tσ({τ ≤ u} : u ≤ s) ∨ Ft,
represents the global market information. Let Assumption 2.4 hold for τ under Lebesgue
measure. Since the augmented Brownian filtration is quasi left continuous, the F-stopping
times τ1, . . ., τn are predictable.

By predictable representation theorem, there exists an Rn-valued P(F) ⊗ B(R+)-
measurable process ϕ such that

E
[∫ T

0
|ϕs(θ)|2ds

]
<∞ and αt(θ) = α0(θ) +

∫ t

0
αt(θ)ϕs(θ)dWs, t ∈ [0, T ], θ ∈ R+,

and there exists a family of Rn-valued F-predictable processes {ψi}ni=1 such that

E
[∫ T

0
|ψis|2ds

]
<∞ and pit =

∫ t

0
pitψ

i
sdWs, t ∈ [0, T ], i ∈ {1, . . . , n}.

The following lemma gives the canonical decomposition of the F-Brownian motion as a
G-martingale.

1. Depending on the type of claim, the coupon rate can be fixed at the very beginning or readjusted
every 3 months at the beginning of each 3-month period. So, we consider C to be an F-predictable
process.
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Lemma 3.7. The Brownian motion W is a continuous G-semimartingale, which can be
decomposed in the following form:

Wt = W̃t +
∫ t

0
ds

[
1{τ≥s}

Φs

Gs−
+ 1{τ<s}

(
n∑
i=1

1{τ=τi}ψ
i
s +

n∏
i=1

1{τ 6=τi}ϕs(τ)
)]

, t ∈ [0, T ],

(3.30)
where W̃ is an n-dimensional G-Brownian motion, and Φ is an Rn-valued F-predictable
process given by

Φt = −
∫ t

0
αt(u)ϕt(u)du−

n∑
i=1

1{τi<t}p
i
tψ

i
t.

Proof: By Proposition 2.16, the n-dimensional Brownian motionW admits the following
decomposition:

Wt = W̃t +
∫ t∧τ

0

d〈W, M̄〉s
Gs−

+
n∑
i=1

1{τ=τi}

∫ t∨τ

τ

d〈W, pi〉s
pis

+
n∏
i=1

1{τ 6=τi}
∫ t∨τ

τ

d〈W,α(u)〉s
αs(u)

∣∣∣∣
u=τ

,

where M̄ is the BMO martingale defined as

M̄t = E
[∫ ∞

0
αu(u)du

∣∣∣∣Ft]+
n∑
i=1

pit∧τi , t ∈ [0, T ].

The quasi left continuous filtration F makes M̄ coincide with the martingale part of the
Azéma supermartingale in the Doob-Meyer decomposition. Then, one has

M̄t = 1 +
∫ t

0
(αu(u)− αt(u))du+

n∑
i=1

1{τi≤t}(piτi − p
i
t)

= 1−
∫ t

0
du
∫ t

u
αs(u)ϕs(u)dWs −

n∑
i=1

∫ t

t∧τi
pisψ

i
sdWs

= 1−
∫ t

0
dWs

∫ s

0
αs(u)ϕs(u)du−

n∑
i=1

∫ t

0
1{τi<s}p

i
tψ

i
sdWs,

and 〈W, M̄〉 is n-dimensional with

d〈W, M̄〉t = −
(∫ t

0
αt(u)ϕt(u)du+

n∑
i=1

1{τi<t}p
i
tψ

i
t

)
dt.

Similarly, 〈W, pi〉 and 〈W,α(u)〉 are n-dimensional with

d〈W, pi〉t = pitψ
i
t dt, d〈W,α(u)〉t = αt(u)ϕt(u)dt.

The lemma is thus proved. �
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By Lemma 3.7, the F-Brownian motion can be written asWt = W̃t+
∫ t

0 bs ds, t ∈ [0, T ],
where b = (bt, 0 ≤ t ≤ T ) is an Rn-valued G-predictable process given by

bt = 1{τ≥t}
Φt

Gt−
+ 1{τ<t}

(
n∑
i=1

1{τ=τi}ψ
i
t +

n∏
i=1

1{τ 6=τi}ϕt(τ)
)
, t ∈ [0, T ].

Then the dynamics of the prices of the risky assets S = (S1, . . . , Sn)′ can be rewritten in
terms of the G-Brownian motion W̃ as:

dSt = St[(µt + σtbt)dt+ σtdW̃t], (3.31)

The condition (3.29) implies that

µt + σtbt − rt1 = σt(θt + bt), dP⊗ dt a.s..

Then, by Girsanov theorem, there exists an equivalent martingale measure Q ∼ P such
that

dQ
dP

∣∣∣∣
Gt

= exp
(
−
∫ t

0
(θs + bs)dW̃s −

1
2

∫ t

0
|θs + bs|2ds

)
,

and that S is a (Q,G)-martingale. In particular, if the immersion property holds, then
we have b ≡ 0, W̃ = W , and Q is the risk-neutral probability in F. By Proposition 3.5,
the default time τ still satisfies Assumption 2.4 under the probability Q, and the (F,Q)-
conditional density avoiding (τi)ni=1 and the (F,Q)-conditional probability of {τ = τi <∞}
are noted αQ(·) and pi,Q, computed by Proposition 3.5.

Recall that the F-compensator is given by

ΛF
t =

∫ t

0

αQ
s (s)η(ds)
Gs−

+
n∑
i=1

1{τi≤t}
pi,Qτi−
Gτi−

.

Let λt = αQ
t (t)
Gt−

for any t ∈ [0, T ]. Then, by Proposition 2.12, the Azéma supermartingale
G can be factorised as

Gt = Lte
−
∫ t

0 λu du
n∏
i=1

(
1− 1{τi≤t}

pi,Qτi−
Gτi−

)
, 0 ≤ t ≤ T,

where L is a positive F-martingale of expectation 1, solution to the following stochastic
differential equation

dLt = G−1
t− (1−∆ΛF

t )−1dMt, t ∈ [0, T ],
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where Mt =
∫ t

0(αQ
u (u)−αQ

t (u))du+∑n
i=1(pi,Qt∧τi − p

i,Q
t ). By Girsanov theorem, there exists

a probability Q∗ on (Ω,A,F) equivalent of Q such that

dQ∗

dQ

∣∣∣∣
FT

= LT = exp
(∫ T

0

dMs

Gs−(1−∆ΛF
s )
− 1

2

∫ T

0

d〈M,M〉s
G2
s−(1−∆ΛF

s )2

)
.

Let Bt = exp(
∫ t

0 rs ds) denote the current account value at t, then the discount factor
between t and T is given by BtB

−1
T . The pre-default value of the claim at a certain date

t ≤ τ ∧ T is the conditional expectation of the discounted value of all the future cash
flows between t and T given Gt:

V (t, T ) = EQ

[
BtB

−1
T

(
1{τ>T}F +

∫
]t,T ]

1{τ>u}B
−1
u BTdCu + 1{t<τ≤T}B

−1
τ BTRτ

) ∣∣∣∣Gt
]

= BtEQ

[
1{τ>T}B

−1
T F +

∫
]t∧τ,T∧τ ]

B−1
u dCu + 1{t<τ≤T}B

−1
τ Rτ

∣∣∣∣Gt
]

= BtEQ

[
1{τ>T}

(
B−1
T F +

∫
]t,T ]

B−1
u dCu

)
+ 1{t<τ≤T}

(
B−1
τ Rτ +

∫
]t,τ ]

B−1
u dCu

) ∣∣∣∣Gt
]
.

We note X(t, θ) =
∫

(t,θ] B
−1
u dCu and

I(t, T ) = BtEQ

[
1{τ>T}B

−1
T F

∣∣∣Gt] ,
J(t, T ) = BtEQ

[
1{τ>T}X(t, T ) + 1{t<τ≤T}X(t, τ)

∣∣∣∣Gt] ,
K(t, T ) = BtEQ

[
1{t<τ≤T}B

−1
τ Rτ

∣∣∣∣Gt] .
Then, V (t, T ) = I(t, T ) + J(t, T ) +K(t, T ). By using classic properties of enlargement of
filtrations, we get

I(t, T ) = 1{τ>t}BtG
−1
t EQ

[
B−1
T FGT

∣∣∣Ft] ,
J(t, T ) = 1{τ>t}BtG

−1
t EQ

[∫
(t,T ]

B−1
u Gu−dCu

∣∣∣∣Ft
]
,

K(t, T ) = 1{τ>t}BtG
−1
t EQ

[∫ T

t
B−1
u Ruα

Q
u (u)du+

n∑
i=1

1{t<τi≤T}B
−1
τi
Rτip

i,Q
τi

∣∣∣∣∣Ft
]
.

Furthermore, we have

I(t, T ) = 1{τ>t}BtEQ

[
LT
Lt
FB−1

T e−
∫ T
t
λu du

n∏
i=1

(
1− 1{t<τi≤T}

pi,Qτi−
Gτi−

) ∣∣∣∣Ft
]

= 1{τ>t}EQ∗

[
Fe−

∫ T
t

(ru+λu)du
n∏
i=1

(
1− 1{t<τi≤T}

pi,Qτi−
Gτi−

) ∣∣∣∣Ft
]
.
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3.3 A two-name model with simultaneous defaults

In the literature of multi-default modelling, one often supposes that there are no
simultaneous defaults, notably in the classic intensity and density models. For example,
if we suppose that the conditional joint F-density exists for two default times, then the
probability that the two defaults coincide equals to zero (see [EKJJ15]). Only few papers
consider explicit models of double defaults (e.g. Bielecki et al. [BCCH12], Giesecke
[Gie03]). During the crisis, it is important to study extremal risks such as simultaneous
defaults whose occurrence is rare but will have significant impact on financial market. The
generalised density approach provides mathematical tools to study multi-default models
with simultaneous defaults. The idea consists of using a recurrence method.

In the following, we consider two random times σ1 and σ2 defined on the probability
space (Ω,A,F,P) and we assume that

P(σ1 ∈ dθ1, σ2 ∈ dθ2|Ft) = βt(θ1, θ2)dθ1dθ2 + ∆∗(qt(θ)dθ), (3.32)

where β(·) and q(·) are respectively càdlàg F ⊗ B(R2
+) and F ⊗ B(R+)-adapted process,

and ∆ : R+ → R2
+ denotes the diagonal embedding which sends x ∈ R+ to (x, x) ∈ R2,

and ∆∗(qt(θ)dθ) is the direct image of the Borel measure qt(θ)dθ by the map ∆, namely
for any bounded Borel function h(·) on R2

+, one has

E[h(σ1, σ2)|Ft] =
∫
R2

+

βt(θ1, θ2)h(θ1, θ2)dθ1dθ2 +
∫
R+
qt(θ)h(θ, θ)dθ.

In particular
P[σ1 = σ2|Ft] =

∫
R+
qt(θ) dθ.

We shall apply the results obtained in the previous sections to this two-name model. More
precisely, let F1 be the progressive enlargement of F by the random time σ1. Then σ1 is
an F1-stopping time. The filtration F1 will play the role of the reference filtration in the
previous sections.

Proposition 3.8. The random time σ2 satisfies the generalized density hypothesis with
respect to the filtration F1 with the F1-conditional density of σ2 exceeding σ1 given as

α
2|1
t (θ) = 1{σ1>t}

∫∞
t βt(s, θ)ds

G1
t

+ 1{σ1≤t}
βt(σ1, θ)
α1
t (σ1) , t ≥ 0 (3.33)
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and

pt := P(σ2 = σ1|F1
t ) = 1{σ1>t}

∫∞
t qt(θ)dθ
G1
t

+ 1{σ1≤t}
qt(σ1)
α1
t (σ1) . (3.34)

Proof. The hypothesis (3.32) implies that

P(σ1 ∈ dθ|Ft) =
(∫

R+
βt(θ, θ2)dθ2 + qt(θ)

)
dθ.

So the random time σ1 admits an F-conditional density which is given by

α1
t (θ) :=

∫
R+
βt(θ, θ2)dθ2 + qt(θ). (3.35)

Let G1
t = P(σ1 > t|Ft) =

∫∞
t α1

t (θ)dθ. Direct computations yield

P(σ2 = σ1|F1
t ) = 1{σ1>t}

∫∞
t qt(θ)dθ
G1
t

+ 1{σ1≤t}
qt(σ1)
α1
t (σ1) .

In fact, the term on the set {σ1 > t} is classic. For the term on the set {σ1 ≤ t}, consider
a bounded test function Yt(·) which is Ft ⊗ B(R+)-measurable, by (3.32) one has

E[1{σ1=σ2≤t}Yt(σ1)] =
∫ t

0
E[qt(θ)Yt(θ)]dθ.

Since

E
[
1{σ1≤t}

qt(σ1)
α1
t (σ1)Yt(σ1)

]
=
∫ t

0
E
[
qt(θ)
α1
t (θ)

Yt(θ)α1
t (θ)

]
dθ =

∫ t

0
E[qt(θ)Yt(θ)]dθ,

then

1{σ1≤t}P(σ2 = σ1|F1
t ) = 1{σ1≤t}

qt(σ1)
α1
t (σ1) .

In a similar way, we obtain (3.33).

Since the random time σ1 admits an F-density, it is a totally inaccessible F1-stopping
time. We are interested in the compensator process of σ2 in the filtration G = (Gt)t≥0

which is the progressive enlargement of F1 by the random time σ2, i.e. Gt = ⋂
s>t

(
σ({σ1 ≤

u}, {σ2 ≤ u} : u ≤ s)∨Ft
)
. By Proposition 2.11, we know that σ2 is a totally inaccessible

G-stopping time and the intensity exists.
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Proposition 3.9. The random time σ2 has a G-intensity given by

λ2,G
t = 1{σ2>t}

(
1{σ1>t}

∫∞
t βt(θ1, t)dθ1 + qt(t)∫∞

t

∫∞
t βt(θ1, θ2)dθ1dθ2 +

∫∞
t qt(θ)dθ

+ 1{σ1≤t}
βt(σ1, t)∫+∞

t βt(σ1, θ)dθ

)
.

Similarly, the G-intensity of σ1 is given by

λ1,G
t = 1{σ1>t}

(
1{σ2>t}

∫∞
t βt(t, θ2)dθ2 + qt(t)∫∞

t

∫∞
t βt(θ1, θ2)dθ1dθ2 +

∫∞
t qt(θ)dθ

+ 1{σ2≤t}
βt(t, σ2)∫+∞

t βt(θ, σ2)dθ

)
.

Proof. By the symmetry between σ1 and σ2, it suffices to prove the first assertion. By
[EKJJ10, Proposition 4.4], we obtain from (3.35) that the F1-compensator of the process
(1{τ1≤t})t≥0 is

Λ1
t :=

∫ σ1∧t

0

α1
s(s)
G1
s

ds, t ≥ 0.

By Lemma 2.10, the compensator of the F1-conditional survival process of σ2 is −A2|1

with
A

2|1
t =

∫ t

0
α

2|1
θ (θ)dθ +

∫ t

0
ps−dΛ1

s + 〈M1, p〉t, t ≥ 0,

where M1
t = 1{τ1≤t} − Λ1

t . Note that 〈M1, p〉 is the compensator of the process

1{σ1≤t}∆pσ1 = 1{σ1≤t}

(
qσ1(σ1)
α1
σ1(σ1) −

∫∞
σ1
qσ1(θ)dθ
G1
σ1

)
, t ≥ 0,

which is ∫ σ1∧t

0

α1
s(s)Hs

G1
s

ds, t ≥ 0

by [EKJJ10, Corollary 4.6], where

Ht = qt(t)
α1
t (t)
−
∫∞
t qt(θ)dθ
G1
t

.

Hence we obtain that
A

2|1
t =

∫ t

0
α2|1
s (s)ds+

∫ σ1∧t

0

qs(s)
G1
s

ds.

Let

G
2|1
t = P(σ2 > t|F1

t ) = 1{σ1>t}

G1
t

(∫ ∞
t

∫ ∞
t

βt(s, θ)dsdθ+
∫ ∞
t

qt(θ)dθ
)

+1{σ1≤t}

α1
t (σ1)

∫ +∞

t
βt(σ1, θ)dθ.

By Proposition 2.10, the G-compensator of (1{σ2≤t})t≥0 is then

Λ2,G
t =

∫ τ2∧t

0

dA2|1
s

G
2|1
s

, t ≥ 0.
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Therefore, the random time σ2 has a G-intensity

λ2,G
t = 1{σ2>t}

(
1{σ1>t}

∫∞
t βt(θ1, t)dθ1 + qt(t)∫∞

t

∫∞
t βt(θ1, θ2)dθ1dθ2 +

∫∞
t qt(θ)dθ

+ 1{σ1≤t}
βt(σ1, t)∫+∞

t βt(σ1, θ)dθ

)
.

Remark 3.10. The relation

P(σ1 ∧ σ2 > t|Ft) =
∫ ∞
t

∫ ∞
t

βt(θ1, θ2)dθ1dθ2 +
∫ +∞

t
qt(θ)dθ

shows that F-intensity process of σ1 ∧ σ2 is

λmin
t :=

∫∞
t βt(θ, t) + βt(t, θ)dθ + qt(t)∫∞

t

∫∞
t βt(θ, θ2)dθ1dθ2 +

∫∞
t qt(θ)dθ

.

Note that the relation

1{σ1∧σ2>t}λ
min = 1{σ1∧σ2>t}(λ

1,G
t + λ2,G

t )

does not hold in general.

In the model that we study, the default time σ2 satisfies the generalised density hy-
pothesis and can coincide with another default time σ1, which is a stopping time in the
reference filtration. Different from other examples, σ1 is totally inaccessible, which implies
that σ2 is also totally inaccessible.



Appendix A

Some classic results

Definition A.1. A stopping time T is predictable if there exists an increasing sequence
of stopping times (Tn)n≥1 such that Tn < T on {T > 0} for all n and limn→∞ Tn = T a.s..
Such a sequence (Tn) is said to announce T .

Definition A.2. A stopping time T is accessible if there exists a sequence of predictable
stopping times (Tn)n≥1 such that

P
(⋃
n

{ω : Tn(ω) = T (ω) <∞}
)

= P(T <∞).

Definition A.3. A stopping time T is totally inaccessible if for every predictable stopping
time T̄ ,

P
{
ω : T (ω) = T̄ (ω) <∞

}
= 0.

Definition A.4. The optional σ-algebra O is the σ-algebra, defined on R+×Ω, generated
by all adapted processes with càdlàg paths.

Definition A.5. The predictable σ-algebra P is the σ-algebra, defined on R+ × Ω, gen-
erated by all adapted processes with left-continuous paths on (0,∞).

Theorem A.6. Let X be a measurable process either positive or bounded. There exists a
unique (up to indistinguishability) optional oX such that

E[Xσ1{σ<∞}|Fσ] = oXσ1{σ<∞} a.s.

for any stopping time σ. The process oX is called the optional projection of X.
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Theorem A.7. Let X be a measurable process either positive or bounded. There exists a
unique (up to indistinguishability) predictable pX such that

E[Xσ1{σ<∞}|Fσ−] = pXσ1{σ<∞} a.s.

for any predictable stopping time σ. The process pX is called the predictable projection of
X.

Definition A.8. Let (At) be an integrable submartingale. We call dual optional projec-
tion of A the optional increasing process (Aot ) defined by

E
[∫

[0,∞)
Xs dA

o
s

]
= E

[∫
[0,∞)

oXs dAs

]
,

for any bounded measurable process X. We call dual predictable projection of A the
predictable increasing process (Apt ) defined by

E
[∫

[0,∞)
Xs dA

p
s

]
= E

[∫
[0,∞)

pXs dAs

]
,

for any bounded measurable process X.

Theorem A.9 (Doob-Meyer decomposition). An adapted càdlàg process S is a submartin-
gale of class (D) null at 0 if and only if S may be written as

S = M + A

where M is a uniformly integrable martingale null at 0 and A a predictable integrable
increasing process null at 0. Moreover, the decomposition above is unique.

Theorem A.10 (Itō and Watanabe, [IW65]). Let (Zt) be a nonnegative càdlàg super-
martingale such that Z0 > 0 a.s. Then, Z can be factorised as

Zt = NtDt

where N is a positive local martingale and B is a decreasing process. The factorisation
above is unique on the random interval {t ≥ 0 : Zt(ω) > 0}.
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Theorem A.11 (Jeulin and Yor, [JY78]). Let G the progressive enlargement of filtration
F by τ . Then, the process(

1{τ≤t} −
∫

(0,t∧τ ]
1{Gs−>0}

dAs
Gs−

, t ≥ 0
)

is a G-martingale, where the process G is the Azéma supermartingale Gt = P(τ > t|Ft)
and the process A is the F-dual predictable projection of the submartingale (1{τ≤t}, t ≥ 0),
or in other words, the predictable increasing process in the Doob-Meyer decomposition of
1−G.

Theorem A.12 (Itō’s forumla). Let X be a semimartingale and f be a C2 function.
Then,

f(Xt) = f(X0)+
∫ t

0
f ′(Xs−)dXs+

1
2

∫ t

0
f ′′(Xs)d〈Xc, Xc〉s+

∑
0<s≤t

[f(Xs)−f(Xs−)−f ′(Xs−)∆Xs],

where Xc is the continuous part of X and ∆X = X −X−.

Let F be the reference filtration and τ a random time. Let G be the progressive en-
largement of F by τ . Denote by Z the Azéma supermartingale of τ . The supermartingale
Z can be decomposed as Z = U −A where U is a BMO martingale and A is an optional
increasing process.

Theorem A.13. Every F-martingale M stopped at τ is a G-semimartingale with canon-
ical decomposition

Mt∧τ = M̃t +
∫

0t∧τ

d〈M,U〉s
Zs−

,

where M̃ is a G-local martingale.

Definition A.14. A random time τ is honest if τ is equal to an Ft-measurable random
variable on {τ < t}.

Theorem A.15. Let τ be an honest time. We assume that τ avoids stopping times.
Then, evey F-local martingale M is a G-semimartingale with canonical decomposition

Mt∧τ = M̃t +
∫

0t∧τ

d〈M,U〉s
Zs−

−
∫ t∨τ

τ

d〈M,U〉s
1− Zs−

,

where M̃ is a G-local martingale.





Appendix B

Some proofs

B.1 Proof of Proposition 2.13

Proof: When u ≤ t, we only need to verify that, for any w ≤ t,

J(w) := P(τ ≤ w|Ft) =
∫ w

0
αt(u)du+

n∑
i=1

1{τi≤w}p
i
t

where we recall that pit = P(τ = τi|Ft) are given by Proposition 1.8 as

pit =
(
e−
∫ τi−1

0 λN (s)ds − e−
∫ τi

0 λN (s)ds
)
e−
∫ τi

0 λs ds, on {τi ≤ t}, i ∈ {1, . . . , n}.

Indeed, for any w ≤ t,

Jt(w) =
∫ w

0
λue

−
∫ u

0 λs ds−
∑n

i=1 1{τi<u}
∫ τi
τi−1

λN (s)ds
du+

n∑
i=1

1{τi≤w}p
i
t

= −
∫ w

0
e
−
∑n

i=1 1{τi<u}
∫ τi
τi−1

λN (s)ds
d(e−

∫ u
0 λs ds) +

n∑
i=1

1{τi≤w}p
i
t

= −
∫ w

0

( n+1∑
i=1

1{τi−1<u≤τi}e
−
∫ τi−1

0 λN (s)ds
)
d(e−

∫ u
0 λs ds) +

n∑
i=1

1{τi≤w}p
i
t

= −
n+1∑
i=1

e−
∫ τi−1

0 λN (s)ds
∫ w

0
1{τi−1<u≤τi}d(e−

∫ u
0 λs ds) +

n∑
i=1

1{τi≤w}p
i
t

= −
n+1∑
i=1

1{τi−1≤w}e
−
∫ τi−1

0 λN (s)ds
(
e−
∫ w∧τi

0 λs ds − e−
∫ τi−1

0 λs ds
)

+
n∑
i=1

1{τi≤w}p
i
t.
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By rewriting explicitly pi, one has

Jt(w) = 1−
n+1∑
i=1

1{τi−1≤w}e
−
∫ τi−1

0 λN (s)ds−
∫ w∧τi

0 λs ds +
n∑
i=1

1{τi≤w}e
−
∫ τi−1

0 λN (s)ds−
∫ τi

0 λs ds

= 1−
n+1∑
i=1

1{τi−1≤w<τi}e
−
∫ w

0 λs ds−
∫ τi−1

0 λN (s)ds

= 1− e−
∫ w

0 λs ds−
∑n

i=1 1{τi≤w}
∫ τi
τi−1

λN (s)ds

= 1− P(τ > w|Ft)

= P(τ ≤ w|Ft).

When u > t, we have by martingale property αt(u) = E[αu(u)|Ft], which finishes the
proof. �

B.2 Proof of Theorem 3.2

Proof: 1. By pathwise uniqueness of the solution to the stochastic differential equation
(3.16), one has

J(t, x, p, ϕ) = E
[∫ θ∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds+ γ(t, θ ∧ τt)J(θ ∧ τt, X t,x

θ∧τt , P
t,p
θ∧τt , ϕ)

]

= E
[∫ θ∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds+ 1{θ≤τt}γ(t, θ)J(θ,X t,x

θ , P t,p
θ , ϕ)

]
.

Since J(θ,Xθ, Pθ, ϕ) ≤ v(θ,Xθ, Pθ), we have proved the inequality

v(t, x, p) ≤ sup
ϕ∈A(t,x,p)

E
[∫ θ∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds

+ 1{θ≤τt}γ(t, θ)v(t,X t,x
θ , P t,p

θ )
]
. (B.1)

2. We fix some arbitrary control ϕ ∈ A(t, x, p) and θ valued in [t, T ]. By definition of the
value function, for any ε > 0 and ω ∈ Ω, there exists ϕε(ω) ∈ A(θ(ω), X t,x

θ(ω)(ω), P t,p
θ(ω)(ω)),

which is an ε-optimal control for the problem v(θ(ω), X t,x
θ(ω)(ω), P t,p

θ(ω)(ω)), i.e.,

v(θ(ω), X t,x
θ(ω)(ω), P t,p

θ(ω)(ω))− ε ≤ J(θ(ω), X t,x
θ(ω)(ω), P t,p

θ(ω)(ω), ϕε(ω)).
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Define the process

ϕ̃s(ω) =


ϕs(ω), s ∈ [t, θ(ω)],

ϕεs(ω), s ∈ [θ(ω), T ].

By measurable selection theorem, the process ϕ̃ = (ϕ̃t)0≤t≤T is progressively measurable
and lies in A(t, x, p). Then we have

J(t, x, p, ϕ̃) = E
[∫ θ∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds+ 1{θ≤τt}γ(t, θ)J(θ,X t,x

θ , P t,p
θ , ϕε)

]

≥ E
[∫ θ∧τt

t
γ(s, t)f(s,X t,x

s , P t,p
s , ϕs)ds

+ 1{θ≤τt}γ(t, θ)v(θ,X t,x
θ , P t,p

θ )
]
− εE[1{θ≤τt}γ(t, θ)]

≥ E
[∫ θ∧τt

t
γ(s, t)f(s,X t,x

s , P t,p
s , ϕs)ds+ 1{θ≤τt}γ(t, θ)v(θ,X t,x

θ , P t,p
θ )

]
− ε.

By arbitrariness of ϕ ∈ A(t, x, p) and ε > 0, we get the inequality

v(t, x, p) ≥ sup
ϕ∈A(t,x,p)

E
[∫ θ∧τt

t
γ(t, s)f(s,X t,x

s , P t,p
s , ϕs)ds

+ 1{θ≤τt}γ(t, θ)v(t,X t,x
θ , P t,p

θ )
]
. (B.2)

The theorem is thus proved by combining the two inequalities (B.1) and (B.2). �
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