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Abstract

In this dissertation, we explore the use of temporal logic and model checking in systems
biology. Our thesis is that temporal logic provides a powerful language to formalize complex
yet imprecise dynamical properties of biological systems and to partly automate model building
as a constraint satisfaction problem. We take advantage of this logical paradigm for systems
biology to capture properties emerging from complex regulatory networks.

First, we investigate the ability of Computation Tree Logic to verify dynamical properties
in asynchronous state transition graphs derived from logical models of the mammalian cell
cycle. Logical modeling provides a qualitative and potentially non-deterministic description
of a biological system. This feature is useful to account for a variety of dynamical properties,
observed in different conditions within a generic model. We develop an approach of iterative
property verification to assist the building and updating of logical models.

Then we consider quantitative deterministic models. For such models, oscillatory prop-
erties such as pseudo-periods and pseudo-phases are formalized by quantitative constraints
in First-Order Linear Time Logic. A continuous model can provide a precise description of
the mechanisms governing a complex regulatory network, and a quantitative prediction of
its dynamics. However, the classical difficulties associated with this approach are brought by
numerous and often poorly characterized kinetic parameters. We address this challenge by im-
plementing two complementary strategies to obtain efficient solving of dynamical constraints
over a finite time horizon: the design of useful temporal logic formula patterns associated with
dedicated constraint solvers, and some trace simplification rules to safely reduce the size of the
traces to analyze.

We show that this approach enables the calibration of high-dimensional models on quanti-
tative single-cell data with an application to model coupling for the mammalian cell cycle and
the circadian clock. Understanding the relationships between these two molecular oscillators is
an important problem in the field of chronobiology. We draw several coupling hypotheses and
investigate their consequences.



Résumé

Cette dissertation explore l’utilisation de la logique temporelle et de la vérification de mod-
èle en biologie des systèmes. Nous soutenons que la logique temporalle constitue un outil puis-
sant pour formaliser des propriétés dynamiques à la fois complexes et imprécises permettant
de caractériser un système biologique. Cet outil peut être utilisé pour partiellement automatiser
la construction de modèle, comme une résolution d’un problème de satisfaction de contraintes.

Tout d’abord, nous étudions l’emploi de la logique arborecente (Computation Tree Logic)
pour vérifier des propriétés dynamiques dans des graphes de transitions d’états discrets asyn-
chrones, dérivés de modèles logiques du cycle cellulaire mammifère. La modélisation logique
fournit une description qualitative et potentiellement non-déterministe d’un système biologique.
Elle offre un cadre utile pour rendre compte des diverses propriétés dynamiques observées
dans différentes conditions au sein d’un modèle générique. Nous développons une approche
de vérification itérative de propriétés pour assister la construction et la mise à jour de modèles
logiques.

Puis, nous considérons des modèles quantitatifs déterministes. Pour de tels modèles, des
propriétés sur les oscillations, telles que pseudo-période ou pseudo-phase, peuvent être for-
malisées par des contraintes quantitatives en logique du premier ordre à temps linéaire (First-
Order Linear Time Logic, FO-LTL). Un modèle continu peut fournir une description précise des
mécanismes impliqués dans un réseau de régulations complexe, ainsi qu’une prédiction quan-
titative de ses dynamiques. Cependant, une difficulté bien connue associée à cette approche
provient du grand nombre de paramètres cinétiques, qui sont souvent mal caractérisés. Afin de
répondre à ce problème, nous implémentons deux stratégies complémentaires pour améliorer
l’efficacité de la résolution de contraintes dynamiques sur un horizon de temps fini. Une
première approche exploite la définition d’une liste de motifs de logique temporelle fréquem-
ment utilisés, associés à des solveurs de contraintes dédiés. Dans la deuxième approche, nous
définissons et appliquons des règles de simplification de trace permettant de réduire la trace à
analyser sans perte d’information.

Nous montrons que cette approche permet de calibrer des modèles de haute dimension sur
des données quantitatives sur cellule individuelle. Elle est appliquée au couplage de modèles
du cycle cellulaire et de l’horloge circadienne mammifères. Comprendre la relation entre ces
deux rythmes moléculaires est un problème important dans le domaine de la chronobiologie.
Nous déduisons différentes hypothèses de couplage et étudions leurs conséquences.
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1. Introduction

“ Every object that biology studies is a system of systems.

François Jacob, 1974”
1.1 Computational Systems Biology

Systems approach for biology
Molecular systems biology: from molecules to processes

Describing biological processes with mathematics is a challenge of increasing importance in mod-
ern biology. On the molecular level, biochemical reactions form intra- and intercellular relation-
ships between molecular components and delineate networks of interconnected and mutually
dependent molecules.

The study of regulatory networks relies on a systems approach, formalized with computa-
tional models. This approach explains the paradoxical tolerance of huge variability of behaviors
observed among similar organisms, organs and cells: inherently stochastic individual trajecto-
ries are constrained in robust biological systems. Feedback-based constraints cause high-level
behaviors to emerge and are responsible for maintaining the stability of global properties.

The approach of building explanatory and predictive computational models from the bio-
chemical elements of living organisms is central in the field of systems biology. The goal of this
extensively multidisciplinary research field, fed with techniques borrowed from other disciplines
such as non-linear dynamics, statistics, control theory, graph theory, was described by Kitano
in 1999: "Gain system-level understanding of multi-scale biological processes in terms of their
elementary interactions at the molecular level." Proposing a model accounting for the observed
cell responses, or better, predicting novel behaviors, is now regarded as an essential step to
validate a proposed mechanism in systems biology.

Cells as complex biochemical integrative circuits

The development of systems biology is fueled with the constant improvement of experimental
tools, resulting in informative data on biological systems responses in various environmental and
stimulation conditions and at different scales, from single cell to whole organism. At the molec-
ular level in particular, the increasingly precise knowledge of interactions composing molecular
networks and their mechanisms derives from the huge amount of biological data generated by
high-throughput methods and analyzed by functional genomics. A high variety characterizes
these mechanisms: chemical reaction, complex formation, binding, transcriptional regulation, etc.
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1.2. Abstraction of biological systems

Abstracting molecules as functional elements that execute operations on a signal helps reducing
the complexity.

From this point of view, cells can be seen as biochemical integrative circuits in which com-
plex regulatory networks integrate and process information from multiple external signals, and
compute an adequate answer. Accumulation and optimization driven by evolution make them
efficient, robust and flexible. The approach of describing biological systems as executable models
is detailed in particular in [Fisher and Henzinger, 2007]. The difficulties of understanding such
circuits lie in part in the number of molecular species and their interactions, but most of all in
the nature of the biochemical computation, which is high dimensional, concurrent, distributed
and stochastic, and relies on tight controls to enforce specific cellular responses. In particular,
biological processes operate at widely disparate time and spatial scales and commonly involve
nonlinearities. Hence, processing biochemical information requires an understanding of control
notions such as structural stability, resilience, and robustness.

It creates a strong push for the development of methods that analyze large interaction net-
works and produce quantitative predictions that match single cell data precision and robustness,
and multiscale models that take into account biological variability and population effects. Dedi-
cated mathematical and computational approaches are needed to calibrate models to experimen-
tal data.

Formal methods for systems biology
Computational Science, as the field of study concerned with the theoretical foundations of in-
formation and computation, brings useful techniques to the modeling and understanding of
molecular biological networks. Beyond the algorithm and computing power, able to deal with
the high number of behaviors produced by combinatorial composition and stochastic trajecto-
ries, and the definition of common standards and methods that structure the systems biology
community (such as repositories for data, ontology or biological models), the most important
contribution is a wealth of formal methods borrowed from programming theory and designed
to deal with complex networks. These methods are increasingly used for the formal analysis of
natural processes such as biological behaviors.

Formal methods rely on abstraction to infer properties from complex systems. In particular,
methods for the systematic study of the structure, correctness and efficiency of computational
systems are adaptable to biological systems.

1.2 Abstraction of biological systems

Model building
Understanding the temporal behavior of biological regulatory networks requires the integration
of regulatory data into a formal dynamical model. This abstract representation of a biological
system fulfills several essential roles:

• to formalize existing knowledge,

• to bring understanding of dynamical features of biological networks,

• to make predictions on the system,

• to assist the rational design of novel informative experiments.

These roles fall within contradictory perspectives. On the one hand, knowledge representa-
tion implies to take into account all known interactions with the maximum of details. However,
some relations between molecules sometimes need to be abstracted for lack of knowledge of
the precise mechanism. On the other hand, complete, deep, and scalable analysis sometimes

9



1. INTRODUCTION

necessitates heavy abstractions. In general, models for making predictions should represent
the minimum information sufficient for answering particular questions, in order to maximize
the efficiency of available tools. This classic difficulty faced by modeling is highlighted by Olaf
Wolkenhauer [Wolkenhauer, 2014]: "The model should be as simple as possible and as detailed
as necessary. [...] Thus modeling is the art of making reasonable assumptions and appropriate
choices." The same trade-off appears for program analysis and is at the heart of the theory of
abstract interpretation [Cousot and Cousot, 1977, Fages and Soliman, 2008]. Therefore each
decision has to be made with the objective of a good balance between computational cost and
precision of the dynamics. For example, considering gene regulation, the activation of a gene
may be modeled by taking into account the different processes from transcription to translation,
or by simply considering that the gene is activated. Most of all, a model has to be built adequately
to address specific questions.

These objectives are best achieved through an iterative modeling process, ideally forming a cy-
cle of data-driven modeling and model-driven experimentation, as shown in Figure 1.1. Phases of
model building, refinement or extension, are interwoven with phases of model validation, where
experiments performed on the model allow to verify relevant properties and assess whether the
model achieves a useful approximation of the system. A negative outcome reveals the need of
changes in the model and give new insights into the underlying mechanisms. Many choices
have to be made along this process, starting with the level of precision of the initial model, to
the formalism and abstraction used to describe the dynamics, the properties to check, and the
successive refinements needed to reach a satisfactory description of the system.

Computational 
model 

Hypothesis 

Validation 
Dry experiment 

Wet 
experiment 

New 
data 

Biological 
phenomenon 

Experimental 
data 

validated 

invalidated 

Predictions 

Wet 
experiment 

New 
data 

Figure 1.1: The cycle of model building: a computational model is built on experimental data on
the basis of hypotheses accounting for missing data or unobserved conditions. These hypotheses
have to be validated with well-chosen experiments that generate new data, which are integrated
in the model and lead to modifications. If the model is invalidated, the model has to be revised
with different hypotheses, potentially with the help of new data.

Hierarchy of semantics
Whatever the chosen level of precision, abstracting a biological system in a formalized model is
done in several steps. It starts with a regulatory map that integrates and organizes the knowledge
on the system. Tools like CellDesigner [Funahashi et al., 2008] facilitate the construction and
maintenance of large or detailed maps. The map is then abstracted into an influence graph con-
stituting the model structure with chosen components and describing the relationships between

10



1.2. Abstraction of biological systems

modeled quantities. Finally, the influence graph is formalized in a model with a chosen semantics,
depending on the amount of dynamical parameters that can be estimated, the available data and
the expected result [Franke et al., 2010].

Different semantics have been developed to formalize biological systems, and can be classified
in two main categories: quantitative and qualitative. The most frequently used semantics are
introduced below.

• Logical models (qualitative)
If precise mechanisms for interactions are unknown and the data about the system’s behav-
ior is mostly qualitative, the influence graph can be directly used to build a logical model.
This qualitative approach based on Boolean algebra or generalization thereof [Glass and
Kauffman, 1973, Thomas, 1991] offers a flexible framework to delineate the main dynamical
properties of complex biological regulatory networks. In this formalism, the activity levels
of regulatory components are abstracted into discrete variables and their dynamics are
represented by transitions between discrete states of the system (see [Chaouiya and Remy,
2013] for more detail). The time is implicitly represented through the discrete transitions.
The logical framework has been used successfully to construct and analyze large networks
[Albert and Thakar, 2014, Naldi et al., 2015, Le Novere, 2015].

• Continuous models (quantitative)
Quantitative models are essentially based on systems of ordinary differential equations
(ODEs), representing the continuous evolution of each molecule concentration, with a con-
tinuous time. This formalism provides quantitative predictions, and dynamical systems
analyses techniques such as phase portrait and bifurcation analysis can be used to study
the possible dynamics (used for example in [Leloup and Goldbeter, 2003, Csikász-Nagy
et al., 2006, Novák and Tyson, 2008]). Since kinetic parameters have to be calibrated with
experimental data, this formalism suffers from the lack of reliable kinetic data for the regula-
tory mechanisms and the high levels of noise in experimental data. Analyzing a continuous
model is based on deterministic numerical simulations, which offers a partial view of the
system dynamics properties, restricted to a particular set of parameter values. Moreover,
detailed simulations are computationally expensive and often result in time consuming
analyses. In Figure 1.2, a simple reaction of repressed mRNA transcription is represented
as a regulatory map, and modeled with logical and continuous semantics.

• Stochastic models
Attempts at modeling intrinsic and extrinsic noise have increased the interest in stochastic
methods. Logical and continuous semantics can be extended to include stochastic rates,
in order to take into account the high variation exhibited by some processes that involve
a small number of molecules, such as transcription. For example, stochastic equations are
a refinement from differential models that includes additional stochastic variables repre-
senting uncertainty in parameters, reaction rates, or network structure. When biological
variability as well as uncertainty in measurements may significantly affect the interpretation
of data, stochastic models relying on Markov processes and simulated with Continuous
Time Markov Chains (CTMCs) are better suited, at the cost of a heavier computational effort
[Wilkinson, 2009]. The compositionality offered by process algebra, originally developed
for describing computer processes, is also a successful approach to model biological systems
as concurrent systems [Regev et al., 2001].

In this dissertation we focus on non-stochastic logical and continuous modeling. While this
choice impacts greatly on the dynamical results, theorems allow to draw conclusions from one
semantic to another one. Although it overtakes the scope of this thesis, it is important to have
in mind that links can be drawn between different modeling semantics, and that most analysis
techniques can be adapted from one semantic to another.

Some formalisms support various semantics with extensions. For example, Petri nets are a
graphical and mathematical formalism suitable for the modeling and the analysis of concurrent,
asynchronous, distributed systems. They were initially used in systems biology as equivalent of

11



1. INTRODUCTION
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mRNA 
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1 

Figure 1.2: Left: CellDesigner-style regulatory map of a repressed mRNA transcription. Middle:
Logical modeling of a repressed mRNA transcription with two Boolean components R (repressor)
and mRNA. The dynamics on the bottom exhibits two stable states (round nodes): mRNA
is active if R is inactive, and mRNA is inactive if R is active. Right: ODE modeling a
repressed mRNA transcription with a Hill function. R is the repressor concentration, k1 is the
maximal expression rate when there is no repressor, Km is the repression coefficient, equal to the
concentration of repressor needed to repressed by 50% the overall expression, and n is the Hill
Coefficient. It controls the steepness of the switch between no-repression to full-repression. On
the bottom, the level of transcribed mRNA versus R is displayed.

logical systems, based on the number of molecules for each species and simulated with multiset
rewriting [Reddy et al., 1996, Chaouiya, 2007]. However, extensions of the formalism allow the
consideration of stochastic or continuous models.

Based on the theory of abstract interpretation, links can be drawn between different semantics.
In [Fages and Soliman, 2008], Galois connections have been shown to link in the logical formalism
the syntactical, stochastic, discrete Petri Net and Boolean semantics. Moreover, for ample con-
ditions the ODE semantics approximates the mean stochastic behavior [Gillespie, 1977]. These
abstraction relationships are summarized in Figure 1.3.

Developing common formalisms for different semantics, and relationships between semantics
is useful to draw links between models. Techniques of model reduction [Naldi et al., 2011, Naldi
et al., 2012], modular modelling (see for example [Fauré et al., 2009]) or hybrid [Lincoln and
Tiwari, 2004, Chiang et al., 2015] and multiscale modeling can then take advantage of exist-
ing models to broaden the analysis of already studied biological systems at multiple levels of
organization (gene, protein/enzyme, cell, tissue, organ, organism). Population models can be
approximated by stochastic models that use ODEs modelling higher order moments to estimate
the mean and variance. Proper population models, based on PDEs and agent-based simulations
(for example in [Billy et al., 2014]), usually capture less details on the molecular machinery of the
cell, but account for cell-to-cell variability. Multiscale models attempt to describe both molecular
interactions and population characteristics such as growth rate [El Cheikh et al., 2014].

12



1.3. Model validation

concrete 

Stochastic CTMC 

Petri Nets 

abstract 

 Boolean 

Syntactical 

 Continuous ODE 

Figure 1.3: Hierarchy of semantics described in [Fages and Soliman, 2008]: Boolean semantics can
be abstracted from logical semantics, which can be abstracted from stochastic semantics based
on Continuous-Time Markov Chains. Continuous semantics based on ODEs abstracts the mean
behavior of stochastic semantics in some conditions.

1.3 Model validation

Formal specifications of dynamical behaviors
A model is validated relatively to a considered behavior by checking the coherence of its dy-
namics with available data on this behavior. Different in silico experiments can be used to infer
dynamic properties that will be most relevant to confront with the data, which can be quantitative
or qualitative, incomplete or uncertain, reflect different conditions of perturbations of the system,
and may need a phase of preprocessing.

Asymptotic properties can usually be determined with static analysis methods based on struc-
tural conditions rather than simulations. For example, steady-state analysis finds equilibrium
states of the systems on topology grounds. On the other hand, formalizing properties on the tra-
jectories of the system is more complex, because of the wide possibility of possible behaviors. Of
crucial importance is the selection and correct specification of relevant properties. For example,
comparing a simulation trajectory to an experimental trace with a general comparison method
such as curve-fitting poses great risks of over-specification in case of imprecise or noisy data.

This problem is addressed by the formalization of complex properties with temporal logic, a
formal system for representing and reasoning about propositions qualified by the orders of events
in time. Properties expressed in temporal logic are automatically verified against a model by
model checkers. In this dissertation, we explore the use of temporal logic to formalize complex
yet imprecise dynamical properties of biological systems for different semantics, and to partly
automate model building as a constraint satisfaction problem.

Model checking
Model checking is a computer science technique that aims at determining whether a dynamical
system, formalized as a finite-state automaton, satisfies a set of properties, themselves formalized
as logical specifications. It has been initially proposed in the 1980s to reason about very large
hardware and software systems, typically to check for the absence of deadlock and critical state
that can cause the system to crash. As it faces state explosion, this technique is often manually
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1. INTRODUCTION

intractable. This motivates the use of automated formal verification techniques that explore
exhaustively and automatically finite models of programs so as to determine whether undesirable
error states are accessible.

The system dynamics is formalized as a Kripke structure, which is an oriented graph repre-
senting the transitions between the different states of the system. Each path in the graph, starting
from some initial states, represents a sequence of states separated by permissible transitions, i.e. a
possible computation of the system. Model-checkers use specific algorithms to verify properties
in the graph.

The size of the model is critical for the checking phase to be practical. Traditional model check-
ing is based on Binary Decision Diagrams and is implemented in symbolic model checkers such as
NuSMV [Cavada et al., 2002]. This approach has been complemented by various successful model
checking algorithms based on SAT-solving, such as IC3 [Bradley, 2011]. In the frame of biological
systems viewed as programs, it is natural to use model checking tools to verify the validity of
biological properties in a system. In this respect, in mid 2000s, model checking started to be
applied in the broad field of Systems Biology, mainly for the verification of qualitative systems
dynamics. Successful applications include [Chabrier-Rivier et al., 2004, Bernot et al., 2004, Batt
et al., 2005, Gong et al., 2011].

This approach makes a bridge between theoretical models and biological experiments, through
the following identifications:

biological model = transition system,
biological property = temporal logic formula,

model validation = model checking,
model inference = constraint solving.

Initially developed for discrete systems, model checking methodologies have been improved,
as well as their range of applicability, and the tools have been extended to deal with real-time
and limited forms of hybrid systems. Temporal logic specifications are applied differently on
logical models and continuous models, although the challenge is the same: automatically decide
if the dynamics of the model satisfies a given temporal property. On the one hand, the simplicity
of the logical framework allows the logical symbolic verification of qualitative temporal logic
specifications for all possible dynamics of the model with model checking methods. On the other
hand, extensions of temporal model checking techniques enable quantitative verifications with
continuous semantics, such as robustness. But the verification relies on numerical simulation and
is restricted to a given parameterization.

Formalizing dynamical behaviors with temporal logic
Different temporal logics exist, each with specific operators to reason about time. The most
widely used are the Linear Time Logic (LTL) and the Computation Tree Logic (CTL), which have
been developed successively and have become standards in the model checking community. All
properties expressible in either logic can also be expressed in the superset CTL*.

Computation Tree Logic (CTL)

CTL is a branching-time logic that can reason about multiple time lines [Clarke et al., 1999]
organized in a tree-like structure, and is thus adapted to non-deterministic automata derived
from discrete models. Symbolic methods avoid enumerating each state of an automaton, which
can be costly, by representing sets of states and transitions. A widely adopted method uses binary
decision diagrams (BDDs). Another method called Bounded Model Checking (BMC) [Clarke
et al., 2001] uses a propositional SAT solver rather than BDD manipulation techniques and looks
for solutions of size smaller than a user-provided bound. Extensions of CTL exist, for example
the Action Restricted Computation Tree Logic (ARCTL) [Monteiro and Chaouiya, 2012] is used
to account for a distinct semantics of inputs and internal (regulated) components. It imposes an
additional path restriction on a subset of inputs while letting others inputs to freely vary.
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Linear Temporal Logic (LTL)

LTL is restricted to reasoning about one time line, and can thus be successfully used to charac-
terize deterministic dynamics. Otherwise, it checks the satisfaction of a property successively on
all possible sequences of states. Similarly to CTL, solving LTL specifications can be done with
BDDs or SAT solvers in the BMC framework. Initially applied to discrete systems, LTL can be
generalized to quantitative models in two ways: either by discretizing the different regimes of
the dynamics in piece-wise linear or affine models [de Jong et al., 2004, Batt et al., 2010], or by
relying on numerical simulations instead of symbolic solving and taking a first-order version of
temporal logic (FO-LTL) with constraints on concentrations, as query language for the numerical
traces [Fages and Rizk, 2008]. Such language can be used not only to extract information from
numerical traces coming from either experimental data or model simulations, but also to specify
the expected behaviors as constraints for model calibration and robustness measure [Rizk et al.,
2009, Rizk et al., 2011, Donzé et al., 2013].

Other extensions of temporal logics have been developed for quantitative model checking,
like the continuous interpretation of Signal Temporal Logic [Donzé and Maler, 2010], which has
been successfully used in [Stoma et al., 2013] to build a model of TRAIL-induced apoptosis and
revisit the classification of T-cells, or for oscillation constraints in [Banks et al., 2015]. However,
STL is limited by the inability to distinguish signal values occurring in time points in which some
local property is satisfied. In [Brim et al., 2014], an extension of STL logic denoted STL* based
on a signal-value freeze quantification allows referencing a signal value in a time point. In this
formalism, suited for nontrivial real-time processes, a property satisfaction problem is solved
with an approximate monitoring procedure. The grammar uses bounded operators constrained
by time intervals.

FO-LTL, in contrast, is suited for smooth signals supporting derivatives and uses unbounded
operators, which allows the definition of complex specifications on a whole trace.

Thesis
The formalization of biological properties as a specification in temporal logic remains a delicate
task and a bottleneck of this approach.

In this dissertation, we explore the use of both CTL and FO-LTL for constraint solving in
systems biology. Although both have already been used in various studies, we investigate their
application to analyze oscillatory systems, which necessitate to formalize more complex behav-
iors than previously done.

For example, in [Batt et al., 2005] CTL specifications have been used with model-checking
methods to test conditions leading to a given state in a model, imposing restrictions on sequences
of events along the path.

Moreover, the method based on FO-LTL and described in Chapter 3 has been used in cell
signaling to elucidate the complex dynamics of GPCR signaling in [Heitzler et al., 2012]. How-
ever, the specifications defined in this study were mostly based on curve-fitting, a technique
that requires precise quantitative and temporal data. In that case, some response curves in
a model of GPCR signaling were available, and the failure to fit them was the key to revisit
the structure of GPCR signaling interactions, and propose a different mechanism that has been
verified experimentally. As another example, a temporal logic specification of timing constraints
in a model of a genetic switch was successfully used in [Rizk et al., 2009] to compute global
sensitivity indices and improve the design of a synthetic switch.

We investigate the definition of temporal logic specifications that are more complex than
curve-fitting or simple reachability. Our work highlights the ability of this formal framework
to specify a wide variety of dynamical behaviors, and to deal with imprecise data. For example,
as will be detailed in Chapter 3, FO-LTL allows us to combine qualitative properties of oscillations
and quantitative properties on the shapes of the traces such as distances between peaks or peak
amplitudes. This is useful to capture the periods on both experimental and simulated traces, even
when the traces are irregular and noisy.
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1. INTRODUCTION

Constraints for model synthesis: parameter inference
Calibrating dynamical models on experimental data is a central task in computational systems
biology. Beyond property verification, the logical paradigm exposed earlier allows to develop
methods of model synthesis as constraint solving problems. Given a regulatory network, the
goal is to infer a parameterization (logical or continuous rules) that satisfies a list of properties
specified as constraints.

When logical or numerical values for model parameters can be found to fit the data, the model
can be used to make predictions, whereas the absence of any good fit may suggest to revisit
the structure of the model and gain new insights in the biology of the system, see for instance
[Stoma et al., 2013, Heitzler et al., 2012]. The validation of the model is thus a phase of intelligent
assistance for the design of new experiments.

In particular, several optimization methods have been developed to infer kinetic parameters
for continuous models by fitting timed quantitative data such as time series. They are increasingly
used as technical innovations in experimental devices now produce precise temporal data with
single-molecule measurements and single-cell time series.

The difficulty for model calibration is to identify the most relevant characteristics from the
quantitative data and avoid over-fitting. Temporal logic provides a generic method to specify
dynamical behaviors wile combining expressiveness and flexibility.

Complexity
The general idea of model-checking a single finite trace has been well known for years, notably in
the framework of Runtime Verification [Markey and Schnoebelen, 2003]. It usually relies on the
classical bottom-up algorithm, which is bilinear [Roşu and Havelund, 2005]. This extends even to
quantitative model checking like the continuous interpretation of Signal Temporal Logic [Donzé
and Maler, 2010] since the combination of two booleans or two reals by min/max is cheap.
However, when using the full power of First-Order Linear Time Logic (FO-LTL) to compute
validity domains, the dependency of the complexity on the size of the trace is no longer linear but
exponential in the number of variables [Fages and Rizk, 2008], reflecting the computational cost
of combining complex domains. In this dissertation we address this issue with two approaches
to improve the performance of FO-LTL constraint solving, and with it of the corresponding
calibration methods: a trace simplification procedure prior to the constraint solving [Traynard
et al., 2014] and the definition of dedicated solvers for frequently used properties [Fages and
Traynard, 2014].

Modelling platforms
Two modelling softwares have been mainly used for the work presented in this thesis: GINsim
for logical modelling and Biocham for continuous modelling.

• GINsim - http://ginsim.org

The logical model presented in Chapter 2 has been built and partly analyzed with GINsim.
This software suite has been developed to facilitate the definition, the simulation, and the
dynamical analysis of logical models [Naldi et al., 2009, Chaouiya et al., 2012]. In particular,
this software supports STG construction for different updating assumptions. In addition, it
provides a function to compress state transition graphs by regrouping the states into compo-
nents leading to the same attractors or cyclic components, thereby easing the identification
of dynamical attractors (stable states, simple or complex cycles) along with their basins of
attractions [Bérenguier et al., 2013]. Finally, GINsim enables the definition and storage of
different initial states and perturbations (e.g. gain- or loss-of-function mutants).

• Biocham - http://lifeware.inria.fr/biocham The logical paradigm for systems biology is at
the heart of the development of the biochemical abstract machine (BIOCHAM) modeling
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platform [Fages, 2005, Calzone et al., 2006]. Over the last decade, this software environ-
ment has been developed to model cell biology molecular reaction systems, reason about
them at different levels of abstraction, and formalize biological behaviors in temporal logic
with numerical constraints. Biocham allows us to analyze dynamical properties, infer non-
measurable kinetic parameter values, and evaluate robustness.

Several methods for efficient solving of temporal specifications, in particular trace simplifi-
cation [Traynard et al., 2014] and dedicated solvers [Fages and Traynard, 2014], have been
developed as part of this work and implemented in Biocham.

The continuous model presented in Chapter 5 has been built using the BIOCHAM modeling
software for

1. importing and exporting models in SBML, and modeling the molecular interactions of
the coupling of the models,

2. specifying experimentally observed behaviors in quantitative temporal logic using
relations for periods and phases [Fages and Traynard, 2014, Traynard et al., 2014],

3. searching parameter values [Rizk et al., 2011] and measuring robustness and parame-
ter sensitivity indices [Rizk et al., 2009] with respect to the temporal logic specification
of the dynamical behavior,

4. making biological hypotheses on the coupling between the cell cycle and the circadian
clock.

1.4 Outline
• Chapter 2 provides a formal introduction to CTL and an illustration of its use for analyzing

the structural properties of a logical model of the cell cycle. An updating of its regulatory
network and logical rules is proposed based on this analysis.

• Chapter 3 introduces FO-LTL logic and recalls some results used in this thesis. Then com-
mon dynamical properties, in particular for oscillatory systems, are formalized as temporal
logic specifications and illustrated on a toy oscillator model.

• Chapter 4 extends FO-LTL-based tools with trace simplification and built-in functions, in
order to improve the solving efficiency of common oscillatory constraints. An illustration
on oscillatory data analysis is also provided.

• Chapter 5 puts these tools to full application to investigate coupling mechanisms between
the mammalian cell cycle and circadian clock. Temporal logic is used to specify period and
phase constraints extracted from experimental studies and synthesize satisfactory models.

• Chapter 6 concludes, discusses limits and envisions future directions.
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2. Temporal
constraints in the
logical framework

2.1 Cell cycle
The cell cycle involves a succession of phases governing genome replication (S phase) and cell
division (mitosis or M phase), separated by regulated irreversible transitions (checkpoints), as
schematized in Figure 2.1. Each phase is closely regulated, and the resulting cycle exhibits reg-
ular oscillations in some conditions, for example in developing tissues, where cells divide syn-
chronously with a fixed period. In other conditions, cells can exit the cycle and remain in a
quiescent state.

M 

G2 G1 

S 

G0 

Growth 

Interphase 

Preparation 
for DNA 

Synthesis 

DNA 
Replication 

Preparation 
for Mitosis 

Growth 

Figure 2.1: Schema of the phases composing the cell cycle.

Widely conserved among eukaryotes, the underlying core network has been modelled using
differential equations for several species (Yeast, Xenopus, mammals), leading to novel insights
into its organization and dynamical properties (see e.g. [Novák and Tyson, 2004, Csikász-Nagy
et al., 2006, Gérard and Goldbeter, 2009, Ferrell et al., 2011, Tyson and Novák, 2015] and references
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therein). However, extension and analysis of such differential models becomes really difficult
as the number of experimentally identified components and interactions increases. This lead
to the consideration of simpler, qualitative but nevertheless rigorous formal approaches, using
discrete formalisms (see e.g. [Li et al., 2004, Davidich and Bornholdt, 2008, Irons, 2009, Fauré et al.,
2009, Mombach et al., 2014]), that have proven to be able to correctly represent the succession of
phases and transitions in the cell cycle.

Notably, [Fauré et al., 2006] defined the first Boolean model for the core network driving the
mammalian cell cycle and demonstrated that the logical framework enables the reproduction of
important properties of the highly complex and coordinated system regulating the maintenance
and preservation of distinct phases in the cell cycle. This model accounts for the existence of
a quiescent stable state, as well as for an asymptotic behavior characterized by the periodic
activities of the four main cyclins, that drive the cell cycle through key transitions by enabling
the phosphorylation of a number of substrates by their catalytic partners, the cyclin-dependent
kinases (cdks). However, detailed conclusions on the order of activity switching (off or on)
and its match to the available data are restricted to the kinetic approximation induced by the
assumption that all possible changes in the component activities occur synchronously. Since
asynchronous transitions cause a combinatorial explosion, Fauré et al. propose a compromise
by defining priority classes for the transitions between states. This approach produces a reduced
non-deterministic transition graph and results in some unrealistic pathways. [Fauré et al., 2006]
further considered a list of documented perturbations to validate their model. The simulations
of several perturbations that did not match experimental observations already pointed toward
some limitations of the model.

Based on this previous work, we now focus on the fully asynchronous updating strategy,
which allows the consideration of alternative dynamics in the absence of kinetic data. The result-
ing complex dynamical trajectories can be analyzed with formal analysis tools. More precisely,
the existence of specific sequences of states or set of states in the asynchronous trajectories is
verified with model-checking techniques. These sequences formalize dynamical properties such
as irreversible transitions between phases of the cell cycle. The novel application of model-
checking techniques is combined with two validation methods applied in the previous study - the
type of asymptotic behavior and the impact of perturbations - to characterize the dynamics of the
logical model and its consistency with biological observations. Combining these methods thereby
achieves a better understanding of the dynamics of the model and highlights its limitations.

Then, the model is refined in a data-driven approach through a careful review of the litera-
ture to identify relevant novel information. It leads to the introduction of new interactions and
components. Although we only comment the dynamical properties directly affected by each
modification, we also check at each step that other properties in Table A.1 (effect of perturbations)
and Tables A.2 and A.3 (sequential aspects) are still satisfied.

The main features of the logical framework are summarized in Section 2.2. The use of model
checking is then described more precisely in Section 2.3. Section 2.4 details the composition of
the network driving the mammalian cell cycle, and the results of the analysis of Fauré’s model
are presented in Section 2.4. The rest of Section 2.4 is then devoted to assessing the improvement
brought by refining and extending the model. Finally, Section 2.5 explores a stochastic extension
of the model.

2.2 Logical modeling framework
Logical modeling aims at representing regulatory or signaling networks as molecular automata
with symbolic logic. Gene expression changes are encoded as transitions between logical states of
the automata. This formalism was first introduced by Mitoyosi Sugita [Sugita, 1963], and then de-
tailed with a synchronous updating by Stuart Kauffman [Kauffman, 1969] and an asynchronous
updating by René Thomas [Thomas, 1973].

A logical model is defined by a regulatory graph, where each node represents a regulatory
component, and is associated with a discrete variable abstracting its level of activity (0, 1, and
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Regulatory network 

Asynchronous STG:  
cyclic attractor 

Synchronous STG: 
cyclic attractor 

B B not A or not C 
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Figure 2.2: Top: a toy regulatory network with three nodes A, B and C and the corresponding
logical rule below each node. Green arrows depict positive interactions (activation) while red
arrows represent negative interactions (inhibition). Bottom: the corresponding state transition
graphs (STG) with asynchronous transitions (bottom left) or synchronous transitions (bottom
right).

further integers when justified). Each arc represents a regulatory interaction between the source
and target nodes, and is labelled by a threshold and a sign (positive or negative). The dynamical
behavior of each node is then defined by logical functions or rules, which associate a target value
for each combination of regulators. The dynamics of the system can be represented in terms of a
state transition graph (STG), where the nodes denote the states of the system (i.e. vectors giving
the levels of activity of all the variables), and the arcs represent state transitions (i.e. changes in
the value of one or several variables, according to the corresponding logical functions) (for more
details, see [Thomas and D’Ari, 1990, Thomas et al., 1995, Chaouiya et al., 2003].

When concurrent variable changes are enabled at a given state, the resulting state transitions
depend on the chosen updating assumption. With a fully synchronous strategy, all concurrent
variables are updated through a unique transition. This assumption leads to relatively simple
transition graphs and deterministic dynamics. However, this assumption notably causes spuri-
ous cyclic attractors. On the other hand, the asynchronous updating assumption considers the
updating of each variable separately. The resulting dynamics is more difficult to evaluate. For
instance, for the very simple toy model represented in Figure 2.2, synchronous transitions result
in a cyclic attractor with four states, while the asynchronous attractor involves twice more states
with multiple trajectories. Although methods have been developed to infer the asynchronous
attractors [Garg et al., 2008], refined analysis of the dynamics inside an attractor remain hard.
Nonetheless, the asynchronous updating strategy is seen as more realistic because it allows the
consideration of alternative dynamics in the absence of kinetic data.

In this chapter, we focus on the asynchronous updating strategy and we rely on model-
checking techniques to analyze the resulting complex transition graph.
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2.3. Model analysis

2.3 Model analysis
We use three types of properties to characterize the dynamics of a logical model and its consis-
tency with biological observations: attractors, sequences of states in the simulated trajectories,
and impacts of perturbations.

Attractors, perturbations, model checking
The attractors of a model, defined as the terminal strongly connected components of the STG, are
the final states of all possible trajectories and characterize the asymptotic behavior of the model.
An attractor composed of several states linked in cyclic trajectories is a complex attractor, while
an attractor composed of a single state is a stable state. The existence of a cyclic attractor is a
first requirement for the logical model to reproduce the oscillatory expressions of proteins in the
cell cycle, and its composition point out which components of the model take part in periodic
activities.

Moreover, reproducing the results of experimental perturbations is a method of choice to
validate a dynamical model. Comparing the asymptotic behavior of a model with or without
perturbation provides interesting insights into the structural properties of the system. If the
resulting attractors clearly contradict the expected behavior, it provides a rejection of the model.

Finally, the existence of specific sequences of states or set of states can be checked by model
checking among the possible trajectories simulated with a given updating strategy (from de-
terministic trajectories with the synchronous updating to branching trajectories with the asyn-
chronous updating). This technique is used originally in this study to look for sophisticated
sequences characterizing the transitions between cell cycle phases, rather than mere reachability
properties. We describe more precisely its use and application in the following paragraphs.

Model checking with CTL
Model checking allows the formal verification of specific dynamical properties and thereby the
validation or refutation of a model [Clarke et al., 1999]. It can also be used to formulate predictions
or hypotheses on the studied system.

As introduced in Chapter 1, behavioral properties are expressed in the logical framework in
Computation Tree Logic (CTL), described in more details in the next subsection.

CTL specifications are then evaluated on discrete models with a model-checker. In particular
we use NuSMV, a symbolic model-checker based on Binary Decision Diagrams that provides a
description language to specify generic finite state machines [Cimatti et al., 2002]. It has been
widely used to check properties on discrete regulatory networks.

Model checking with CTL has already been applied to address biological problems, although
usually focusing on simple properties. Symbolic model checking for systems biology using CTL
formulae as introduced by [Chabrier and Fages, 2003] to assess state reachability. Later, [Batt
et al., 2005] tested conditions leading to a given state, imposing restrictions on sequences of events
along paths. In [Batt et al., 2010], model checking was used to solve a parameter search problem
for piecewise-affine differential equation models of regulatory networks in order to reproduce
observed expression profiles.

Approaches using extensions of standard CTL have been explored, such as Action Restricted
CTL (ARCTL), to discriminate between variants of a logical model of T-helper cell differentiation,
or to investigate reachability properties between logical expression patterns as input conditions
representing T-helper cell types [Monteiro et al., 2014, Abou-Jaoudé et al., 2015]. Another ap-
proach implemented in ANTELOPE (Analysis of Networks through TEmporal-LOgic sPEcifica-
tions) [Arellano et al., 2011] supports Hybrid CTL, an extension of standard CTL with a special
binder temporal operator, capable of selecting partially characterized states.
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CTL
The Computation Tree Logic CTL [Clarke et al., 1999] is a branching-time logic that allows rea-
soning about an infinite tree of state transitions.

A CTL formula is built upon atomic propositions potentially combined with the usual opera-
tors from propositional logic, such as negation (¬), conjunction (∧), disjunction (∨), and implica-
tion (→).

In addition, it uses operators about branches (non-deterministic choices) and time (state tran-
sitions).

CTL temporal operators are:

• F (finally): F φ means that φ is eventually true (at some time point in the future).

• G (globally): G φ means that φ is always true (at all time points in the future).

• X (next): Xφ means that φ is true at the next transition.

• U (until): φ U ψ means that φ is true until ψ becomes true.

• W (weak until): φ W ψ means that φ is true until ψ becomes true, or φ is always true.

Two path quantifiers allow to handle non-determinism, and each temporal operator must be
paired with a path quantifier:

• A (for all): Aφ means that φ is true on all branches

• E (exists): Eφ means that it is true on at least one branch.

These operators enjoy some simple duality properties:

• ¬(EF(φ)) = AG(¬φ),

• ¬(EφUψ) = A(¬ψW¬φ),

• ¬(EφWψ) = A(¬ψU¬φ).

In the following we provide examples of statements containing CTL formulae that can be used
with the model checker NuSMV to assess the belonging of set of states to attractors or basins of
attractions. In the following statements, SPEC and INIT are the SMV statements defining, respec-
tively, a CTL specification to check and the initial states where the specification will be tested.
The terms Attractor, Attractors, PointInAttractor, initStates and BasinOfAttraction all represent user-
defined set of states or single states.

Attractors

• Existence of an attractor
INIT Attractor; SPEC AG Attractor; - equivalent to AX Attractor
If the answer to this specification is True, Attractor contains one or several attractors (stable
state or cycle).

• Finding all attractors
SPEC AG EF(Attractors ∧ AG Attractors);
If the answer to this specification is True, Attractors contains all attractors. Note that the
same formula with AG AF instead of AG EF would fail in the presence of transient cycles
in the transition graph, because infinite paths that never reach the attractors could exist
inside transient cycles.
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Basins of attraction

• Exact basin of attraction
SPEC (initStates→ AG EFPointInAttractor) ∧ (¬initStates→ AG¬ PointInAttractor);
If the answer to this specification is True, the attractor is the only one reachable from init-
States and is not reachable from any other state: initStates is the exact basin of attraction
of the attractor containing PointInAttractor. Otherwise, initStates is not the exact basin of
attraction of the attractor containing PointInAttractor: there is either a missing state or too
many states.

• Transient cycle in a basin of attraction
INIT BasinOfAttraction; SPEC AG EF Attractor ∧ ¬ AF Attractor;
If the answer to this specification is True, there is a transient cycle in the basin of attraction.

Sequences of states

So far most uses of model checking for logical modeling correspond to reachability properties
verifying the existence of a path between sets of states, with possible restrictions on the paths.
Here, we use the model-checker NuSMV to verify the existence or the absence of specific state
transition paths corresponding to sophisticated dynamical properties. We use the following
generic CTL temporal logical formula to verify the existence of a trajectory complying a sequence
of properties S1, S2, S3, ..., Sn−1, Sn, each denoting a set of states defined by constraints on some
of the model components:

¬E[(S1)U(S2 ∧ E[(S2)U(S3 ∧ ...E[(Sn−1)U(Sn)])])]

The negation is used here for two reasons. First, since a CTL temporal logic property φ holds if
all initial states satisfy φ, testing whether ¬φ holds verifies the absence of the specified sequence.
Second, a contradiction of ¬φ returns an example of transition path matching the prescribed
sequence.

Importantly, we do not expect all the sequential activities observed experimentally to be
satisfied by our model. Indeed in the logical framework, the asynchronous assumption relies
on a branching definition of time, potentially resulting in different dynamics compatible with
the same model. On the one hand, experimentally-observed sequences of states are expected
to exist in the asynchronous trajectories. Otherwise the model can be safely rejected. On the
other hand, safety properties (verifying that incorrect sequences do not exist) do not invalidate the
model if they are unsatisfied. Indeed, incorrect sequences of states that can be exhibited in the
asynchronous trajectories do not necessarily indicate a flaw of the model, but might rather point
to specific kinetic constraints, not taken into account by the asynchronous dynamics, that could
oppose these spurious sequential activities.

Nonetheless, satisfied safety properties represent interesting features of the model. Indeed, a
property satisfied in the asynchronous transition graph is intrinsically rooted in the structure of
the model, and as such could always be exhibited in some conditions. The cell cycle represents a
particularly interesting case, because the articulation of distinct phases is a highly complex and
coordinated process. It is regulated by protein synthesis, phosphorylation (through the activity
of cyclin-dependent kinases or CDKs) and protein degradation processes (involving ubiquitin
ligases). We expect that characteristic dynamical properties, such as checkpoints and irreversible
transitions, are robustly encoded in the structure of the corresponding regulatory network. Anal-
ysis of a logical model should reveal such properties, despite the absence of detailed kinetic
information.
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Figure 2.3: Schema displaying the sequential activities of the three main cyclins in the mammalian
cell cycle: cyclin E, cyclin A and cyclin B.

2.4 Application: studying the structural prop-
erties of the cell cycle

Logical modeling of the mammalian cell cycle
The present study is based on the first Boolean model of the mammalian cell cycle [Fauré et al.,
2006], which demonstrated that the logical framework enables the reproduction of important
properties of the cell cycle. In order to update and extend this model, we further rely on a recent
differential model emphasizing the role of Skp2 [Gérard and Goldbeter, 2009].

[Fauré et al., 2006] defined a Boolean model for the core network driving the entry of mam-
malian cells into cell cycle, based on the differential model proposed by [Novák and Tyson, 2004].
For proper logical rules, this model accounts for the existence of a quiescent stable state, as well
as for a cyclic attractor characterized by the periodic activities of the four main cyclins, which
drive the cell cycle through key transitions by enabling the phosphorylation of a number of
substrates by their catalytic partners, the cyclin-dependent kinases (cdks). Cyclin D (called CycD
and corresponding to an input in the model) is the main target of the growth factors that push
a cell out of its quiescent state to enter the cell cycle. Cyclin E (CycE) regulates the transition
between the G1 and S phases. Cyclin A (CycA) controls S phase and its progression into G2
phase. Finally, cyclin B (CycB) is in charge of the transition from G2 phase to the mitosis, and
thus triggers the division of the cell before its return to the quiescent state or to G1 phase. The
successive activities of these three cyclins in the cell cycle are schematized on Figure 2.3.

Fauré’s model further includes the three main inhibitors of the cell cycle: the retinoblastoma
protein Rb, the Cdk inhibitor p27/Kip1 (p27 in the sequel) and the proteasome complex repre-
sented by its two co-activators Cdh1 and Cdc20. However, this seminal model considered CycD
sufficient to completely inhibit p27 and Rb. Hence, these inhibitors were kept inactive along the
whole cyclic attractor, whereas, according to experimental data, these factors should be active in
G1 phase, and inactive in the rest of the cell cycle ([Rivard et al., 1996], Nelson et al. 1997).

Finally, Fauré’s model accounts for the role of the E2 ubiquitin conjugating enzyme UbcH10,
which participates in Cdh1 dependent degradation of cyclin A. This extension of the original
differential model explains how the auto-ubiquitination of UbcH10 likely prevents cyclin A from
degradation by the APC in G1 phase. The logical rules governing the dynamics of the model
species are listed in Table 2.2.

Reproducing the results of experimental perturbations is a method of choice to validate a dy-
namical model. Comparing the asymptotical behavior of a model with or without a perturbation
provides interesting insights into the properties of the system. [Fauré et al., 2006] considered a
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Node Level Initial rules
Rb 1 !CycB & !CycD & (p27 | (!p27 & !CycA & !CycE))
E2F 1 !Rb & !CycB & (p27 | (!p27 & !CycA))
CycE 1 E2F & !Rb
CycA 1 (E2F | CycA) & (!UbcH10 | !Cdh1) & !Rb & !Cdc20
CycB 1 !Cdh1 & !Cdc20
p27 1 !CycB & !CycD

& ((p27 & (!CycA | !CycE))| (!p27 & !CycA & !CycE))
Cdc20 1 CycB
Cdh1 1 (!CycB & (!CycA | p27)) | Cdc20
UbcH10 1 !Cdh1 | (Cdh1 & UbcH10 & (CycA | CycB | Cdc20))

Table 2.1: Logical rules governing transitions in the initial model of the mammalian cell
cycle [Fauré et al., 2006].

list of documented perturbations to validate their model. However, the simulations of several
perturbations did not match experimental observations. In particular, the effect of a loss-of-
function of cyclin E does not seem to be adequately predicted.
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Figure 2.4: Updated model of the mammalian cell cycle. Red arrows depict negative interactions
(inhibitions), green arrows are positive interactions (activations). Nodes are either Boolean
(ellipses) or multilevel (rectangle). Logical rules of yellow nodes have been modified compared
to the initial model, and thick arrows correspond to modified regulations. Dashed arrows
correspond to interactions that have been removed from the model.

Results
We have investigated the asynchronous dynamics of Fauré’s model using model checking and
perturbation analysis, and we systematically assessed the results to refine and extend this model
so that it better matches reported data. In this respect, we first carefully reviewed the literature to
identify relevant novel information.

The potential roles of different phosphorylation states of the protein Rb (Lundberg & Weinber,
1998) was considered through the use of a ternary node (i.e. taking the value 0, 1 and 2). We
further assessed an extension of the model considering the role of Skp2, which links three key
inhibitors of the cell cycle and constitutes an additional pathway by which Rb can arrest the
progression of the cell cycle [Binné et al., 2007, Liu et al., 2008]. The regulatory graph of the
updated model is depicted on Figure 2.4, while the corresponding logical rules are listed in
Table 2.2.

Updating of regulatory rules

The cdk inhibitor p27 plays a critical role in several phases of the cell cycle and in the regulation
of the quiescent state. It inhibits the activities of cyclin E/cdk2 and cyclin A/cdk2. This inhibitory
activity is modeled by opposite regulations on the targets of CycE and CycA. Moreover, p27 and
cyclin D also bind in a complex, but this complex retains the activity of cyclin D. Since the cyclins
are in competition for complexation with p27, the initial model considered a direct inhibition of
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Node Level Logical rule
Rb 1 (CycD & !CycE & !CycA & !CycB)

| (!CycD & p27 & CycE & CycA & CycB)
| (CycD & (CycE | CycA | CycB) & p27)

2 (!CycD & !CycE & ((!CycA & !CycB) | p27))
| (!CycD & p27 & CycE & (!CycA | !CycB))

E2F 1 (!CycA | p27) & !Rb
CycE 1 E2F & !Rb
CycA 1 (E2F & !Rb | CycA) & !Cdc20 & (!UbcH10 | !Cdh1)
CycB 1 (!UbcH10 | !Cdc20) & !Cdh1
p27 1 (!CycB & (!CycA | p27) & !CycE) | !Skp2
Cdc20 1 CycB
Cdh1 1 (!CycA | p27) & !CycB
UbcH10 1 !Cdh1 | (Cdh1 & UbcH10 & (CycA | Cdc20 | CycB))
Skp2 1 !Cdh1 | (!Rb & E2F)

Table 2.2: Logical rules governing transitions in the updated model of the mammalian cell cycle.

p27 by cyclin D to reflect the sequestration of the inhibitor by the cyclin D during the cell cycle.
This causes p27 to be completely inactive in presence of the input cyclin D, while it is released and
active in absence of the input (i.e. in the quiescent state). This approximation overlooks the role
of p27 in the transition from G1 to S. Indeed, the complete activation of cyclin E is a progressive
process, slowed down by both Rb and p27, which are both negative regulators of cyclin E: Rb
binds to the transcription factor E2F, thereby inhibiting its ability to activate the synthesis of cyclin
E, whereas p27 directly binds to cyclin E/Cdk2 and thereby blocks its activity. Rb and p27 are both
phosphorylated by cyclin E, inducing inactivity of Rb and proteasome-dependent degradation of
p27. These factors are thus involved in a positive circuit enabling the full activation of the kinase
and ultimately entry into S phase [Kotoshibai et al., 2005].

In order to account for this mechanism, we removed the inhibition of p27 by CycD. Although
it is clear that cyclin D plays a role in p27 phosphorylation, the observation that the activity of p27
varies in the cell cycle while the level of cyclin D stays consistently high suggests that this role
is weak relatively to those of cyclin A, cyclin E and cyclin B [Rivard et al., 1996]. Alternatively, a
ternary node could have been associated with p27 to distinguish two activation levels, in presence
versus absence of cyclin D. We have further modified the rule for p27 (see Table 1) to account for
the inhibitory effect of CycE [Montagnoli et al., 1999]. Simulation of the model with this new rule
results in a correct asynchronous attractor with varying p27 activity (in the presence of CycD).

In order to verify the correct role of p27 in the cycle, we check for the existence of the three
state transition sequences defined in Table 2.3 and formalized with CTL formulae. For example,
the sequence of states [001, 101, 100, 110, 010] taken by the vector (CycE, CycA, p27) is translated
into the CTL formula:
¬E[ (CycE=0 ∧ CycA=0 ∧ p27=1) U (CycE=1 ∧ CycA=0 ∧ p27=1
∧E[ (CycE=1 ∧ CycA=0 ∧ p27=1) U (CycE=1 ∧ CycA=0 ∧ p27=0
∧E[(CycE=1 ∧ CycA=0 ∧ p27=0) U (CycE=1 ∧ CycA=1 ∧ p27=0
∧E[(CycE=1 ∧ CycA=1 ∧ p27=0) U (CycE=0 ∧ CycA=1 ∧ p27=0)])])])]
This first sequence represents the expected sequence for the G1/S transition, while the other
two correspond to incorrect situations where p27 is either degraded before the activation of its
inhibitor CycE, or stays active after the activation of CycA. We further impose the constraint
CycB=0 & Cdh1=1, characterizing G0, at the initial states.

The requirement of cyclin E for cell cycle viability might depend on the cell context. Cyclin
E is known to participate in the phosphorylation of Rb together with cyclin D [Weinberg, 1995].
However, observations on cyclin E-deficient cells highlight a crucial role of cyclin E in some sit-
uations. [Geng et al., 2003] reported that cyclin E-deficient cells can maintain active proliferation
but are unable to reenter the cell cycle from the quiescent G0 state. [Ohtsubo et al., 1995] further
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Phenotype
The phosphorylation and subsequent degradation of p27 by
cyclin E is necessary to drive the feedforward loop that ensures
that cells advance to S-phase irreversibly.
CycE CycA p27 CycE CycA p27 CycE CycA p27

Sequence 0 0 1 0 0 1 0 0 1
1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 1 1
1 1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1 0

Expected result True False False
Updated model True False False

Table 2.3: Sequence properties: correct or alternative properties for the G1/S transition

report that inhibition of cyclin E blocks the entry in S phase in human cells and arrests the cell
cycle.

For CycE knock-out, the simulation of the original model did not result into cell cycle arrest.
In contrast, the simulation of our modified model results in an arrest of the cell cycle in phase S,
where CycA is inactivated by p27. This simulation emphasizes the role of the Rb-CycE-p27 circuit
in driving the cell cycle through the S phase.

A similar perturbation was introduced in a recent study where cancer cells are treated with
a specific cyclinE/cyclinA-cdk2 inhibitor, resulting in a cell cycle arrest with an increased ac-
cumulation of p27 and hypophosphorylation of Rb [Dai et al., 2013]. The simulation of a double
perturbation of CycE and CycA for the revised model is consistent with the reported results, while
the same perturbation in the initial model results in a cell cycle arrest but with phosphorylated
Rb (Rb=0) and no p27 accumulation (p27=0).

Careful reconsideration of each regulation rule further led us to remove the inhibition of E2F
by CycB. Although E2F has been shown to be inhibited by cyclin A through direct binding, this
is not the case for cyclin B [Krek, 1994], contradicting the inclusion of this interaction in previous
models [Novák and Tyson, 2004]. Interestingly, the delay between the degradation of cyclin B
after the mitosis and the activation of cyclin E during G1-phase was ensured by this regulation.
In the updated model, this dynamical property is no longer satisfied, due to the activation of
E2F before the degradation of cyclin B as seen in the example sequence provided by the model
checker (cf. sequence 16 in Table A.3). As this hypothetical mechanism reveals to be unsupported
by experiments, it leads us to question the existence of another mechanism or a kinetic cause.

We further modified the regulatory rule defining an activation of Cdh1 by Cdc20. These
two substrate adaptor proteins of the anaphase-promoting complex (APC) are activated in turn
during the G2 and M phases to activate the degradation of mitotic cyclins A and B. Since Cdc20
participates in degrading CycA, which inhibits Cdh1 by phosphorylation, there is an indirect
activation of Cdc20 by Cdh1. As Cdh1 has a broader spectrum than Cdc20, it completes CycA
and CycB inactivation, and inactivates Cdc20 [Meyer and Rape, 2011]. We have thus verified that
the direct activation of Cdh1 by Cdc20 could be eliminated without impacting on relevant model
properties (cf. Tables 2.3 to 2.6 and A.1 to A.3).

Multiple forms and roles of Rb

The protein Rb is a major cell cycle inhibitor and tumor suppressor. It is regulated by numerous
stimuli that are channeled through Cdk regulation of Rb phosphorylation. The unphosphorylated
protein binds to the transcription factor E2F, thereby acting as a growth suppressor and prevent-
ing progression through the cell cycle. When phosphorylated, Rb releases E2F, which activates the
synthesis of CycE and CycA. Recent findings show that the phosphorylation of Rb is a progressive
process [Henley and Dick, 2012]. The phosphorylation of Rb begins in early G1-phase with cyclin
D/cdk4 or 6 [Narasimha et al., 2014]. This allows some E2Fs to be released and initiates the
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transcription and subsequent production of cyclin E. The cyclin E/cdk2 kinase activity is able to
hyper-phosphorylate Rb. As the majority of phosphorylation sites on Rb need to be modified
to abrogate E2F binding, it defines differential activities for the different phosphorylation levels
of Rb and a necessary role for cyclin E to drive the cell cycle into S-phase. Rb is maintained
hyper-phosphorylated by cyclin A/cdk2 and cyclin B/cdk1 in S, G2, and M phases.

Refining the description of Rb with a multivalued node was already suggested by [Fauré
et al., 2006]. We thus introduced a ternary node for Rb. The levels 0, 1 and 2 represent the hyper-
phosphorylated, partially-phosphorylated and unphosphorylated states respectively. The logical
rules for each level are defined in Table 2.2. The cyclins phosphorylate and inhibit Rb. In absence
of cyclins, Rb is unphosphorylated (level 2). CycD alone initiates the partial phosphorylation at
the beginning of the cell cycle, and thus leads Rb down to the level 1. It requires the assistance of
another cyclin to complete the phosphorylation, leading Rb down to the level 0 in absence of p27.
CycA and CycB have symmetrical roles and both of them keep Rb hyperphosphorylated during S,
G2 and M phases. p27 binds to the cyclin-cdk complexes and inhibits the kinase activities, playing
the role of an indirect activator of Rb. However, although it binds to CycD/Cdk4, the activity of
this complex is not impaired. We take into account the saturation of p27 by the different cyclins
through additive and saturation effects.

Interestingly, this model extension provides a mechanism explaining the sequential synthesis
of cyclin E and cyclin A. The synthesis of both cyclins is activated by E2F, but their expressions
peak in G1 phase and in S phase respectively [Lees et al., 1992, Wong et al., 2014]. We propose
to model this difference of activation by different effects of the phosphorylated states of Rb. The
complexation of Rb and E2F is modeled with a direct inhibition of E2F by Rb but also a negative
regulation of Rb on the E2F targets CycE and CycA (as in [Fauré et al., 2006]). Setting different
thresholds of activity for these interactions, namely threshold 2 for E2F and CycE, and threshold
1 for CycA, ensures that the synthesis of CycA can only be activated once Rb is hyperphosphory-
lated and E2F is completely released.

Phenotype
Cyclin A expression is delayed
relatively to E2F and cyclin E
CycE CycA CycE CycA

Sequence 0 0 0 0
1 0 0 1
1 1 1 1

Expected result True False
Initial model True True
Updated model True False

Table 2.4: Sequence properties: alternative dynamics for the sequential activation of CycE and
CycA.

The delayed synthesis of CycA relatively to the synthesis of CycE can be verified by model
checking. A sequence with the reverse order is checked in Table 2.4, and the result is compared
with the initial model. Initially both sequences of the table existed in the asynchronous STG,
showing the lack of preferential order of activation between CycE and CycA. After the modifi-
cation of the model described above, the incorrect sequence with CycA activated before CycE
no longer exists in the asynchronous STG. Hence, our model provides an explanation for the
observed sequential activation of cyclin E and cyclin A in the cell cycle, which relies on a robust
mechanism encoded in the logical structure of the model. This mechanism is based on the positive
loop that drives the complete phosphorylation of Rb and the progression into S phase.

Role of UbcH10 in mitosis

The anaphase-promoting complex (APC) coordinates mitosis and G1 by sequentially promot-
ing the degradation of key cell-cycle regulators. APC is represented in the model by the two
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Phenotype
UbcH10 is required for mitotic
cyclin destruction.
CycA CycB Cdc20 UbcH10

Sequence 1 0 0 0
1 1 0 0
1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 0

Expected result False
Initial model True
Updated model False

Table 2.5: Sequence property showing the role of UbcH10 in mitosis

co-activators Cdh1 and Cdc20. The degradation of several targets of either Cdh1 or Cdc20 is
assisted by the ubiquitin-conjugating enzyme 2C (UbcH10, also called UBE2C), a component of
the ubiquitin proteasome system.

While the initial model encoded the fact that UbcH10 is necessary for Cdh1-dependent degra-
dation of Cyclin A [Rape and Kirschner, 2004], UbcH10 might also be required for the destruction
of mitotic cyclins and other mitosis-related substrates, including cyclin B [Rape et al., 2006].
We encoded this putative mechanism by updating the logical rule associated with the node
CycB (cf. Table 2.2). Adding the intervention of UbcH10 for the degradation of CycB enables
a consistent simulation of UbcH10 KO. Indeed, using model checking, one can verify that there
is no asynchronous sequence going through G2 and M phase (driven by cyclin A and cyclin B) in
absence of UbcH10 (starting from initial states with Cdh1=1 and Rb=0, corresponding to S phase)
(Table 2.5).

UbcH10 is probably involved also in Cdh1-dependent degradation of CycB. In the absence of
definitive experimental data, we can test the impact of this mechanism on cell cycle dynamics
using model checking on model variants with alternative rules for CycB. As shown in Table 2.6,
for the second rule considered, CycB can be activated at the beginning of the cell cycle in presence
of Cdh1 because UbcH10 has been degraded at the end of the previous cycle.

Phenotype: CycB should not be able to increase during G1-phase
CycE CycB

Sequence 0 0
0 1

Expected result False
Rule for CycB: (!UbcH10 | !Cdc20) & !Cdh1 False
Rule for CycB: !UbcH10 | (!Cdc20 & !Cdh1) True

Table 2.6: Sequence properties for the irreversibility of mitosis and result for different rules for
CycB.

Role of Skp2

Within the logical framework, it is relatively easy to extend a model to consider novel regulatory
components and interactions. Here, we set to include an additional cell cycle inhibitory path-
way. Indeed, recent evidence point to the existence of an E2F-independent proliferative control
mechanism, which involves the F-box protein Skp2, a substrate recognition subunit of the SCP
ubiquitin ligase complex that targets p27 for degradation [Dick and Rubin, 2013]. Briefly, Skp2
promotes the degradation of phosphorylated p27, thus enabling its degradation induced by CycE
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Figure 2.5: Schema from [Ji and Zhu, 2005] showing the additional cell cycle arresting pathway
provided by the effect of Rb on Skp2.

and CycA. Rb binds to Cdh1 to participate in the ubiquitin-mediated degradation of Skp2 [Binné
et al., 2007, Liu et al., 2008]. This mechanism links the two cell cycle repressors Rb and p27, and
provides an additional mechanism by which Rb can arrest the cell cycle, as shown in Figure 2.5.

Consequently, we added a novel node representing Skp2 in the model, negatively regulated
by Cdh1 and by non-phosphorylated Rb. The observation that E2F directly activates transcription
of skp2 gene [Assoian and Yung, 2008] led us to include a positive regulation by E2F opposing
the inhibition by Rb. The performances of this revised model have been validated by checking
consistency between simulated perturbations and experimental data.

[Ji et al., 2004] described the partial penetrance Rb mutation RbR661W, which impedes E2F
repression, and effectively shuts down the Rb-E2F pathway. [Ji et al., 2004] further found that
RbR661W retains the ability to arrest the cell cycle at the G1/S transition, with a p27 accumula-
tion. They verified that Rb’s ability to interact with Skp2-p27 was preserved in this mutant. Using
the software GINsim, it is possible to model this subtle perturbation by specifically suppressing
the regulation of E2F, CycE and CycA by Rb.

The authors further performed kinetic studies and showed that the Rb-induced G1 cell cycle
arrest is initiated by the up-regulation of p27, which inhibits the kinase activity associated with
cyclins E and A before the decline of protein levels. The cell cycle is still arrested through
the (slower) repression of E2F target genes. Using the perturbation RbR661W, we could assess
the early effect of the induction of Rb (Table 2.7), leading to simulation results consistent with
published experimental results [Ji and Zhu, 2005]. In another experiment, the p27 antisense
treatment prevents G1 arrest by Rb, showing that p27 is required for Rb-mediated G1 arrest.
This can be modeled by considering another constraint (knock-down of p27) in the perturbation
simulation, leading to a result consistent with experimental data.

Moreover, Skp2 specific perturbations have been reported in the literature, which can also
be qualitatively reproduced with our model. In particular Skp2 KO has been shown to lead
to severe proliferation defects with accumulation of both cyclin E and p27 [Nakayama et al.,
2000, Kotoshiba et al., 2014]. Consistently, the simulation of this perturbation leads to a steady
state with CycE and p27 both active (level 1).

Furthermore, the accumulation of cyclin E in this mutant has been interpreted by the sup-
pression of cyclin E degradation. However, the negative regulation of cyclin E by Skp2 is not
represented in our model because CycE represents the complex cyclin E/Cdk2. Skp2 is known
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Experiment Phenotype Initial Updated
RbR661W Viable cell cycle in presence of growth

factors, cell cycle arrest in absence with p27
accumulation

No Ok

Rb induction (early
kinetics)

Cell cycle arrest with present CycE and CycA No Ok

p27 KO (early ki-
netics)

Cell cycle in absence of growth factors No Ok

Skp2 KO Cell cycle arrest or endoreplication with
accumulation of cyclin E and p27

- Ok

Skp2 KO p27 KO Cell cycle in presence of growth factors, cell
cycle arrest in absence

- Ok

Table 2.7: Selected perturbations characterizing the Rb-Skp2-p27 pathway.

to degrade free cyclin E, while cyclin E complexed with Cdk2 is protected from Skp2-dependent
degradation. This suggests an alternative mechanism by which CycE is accumulated in Skp2 mu-
tants, presumably involving p27 binding to CycE. This complexation could inhibit CycE activity
and arrest the cell cycle before the transition toward S phase. The rescue of Skp2 loss-of-function
by the deletion of p27 [Kotoshiba et al., 2014] is also correctly reproduced by the model.

Finally, we design a sequence example out of the set of possible asynchronous sequences
compatible with the experimentally observed sequence of variations of all the proteins encom-
passed by the model. Using model checking, we could verify that this sequence exists in the
asynchronous graph, showing that the asynchronous dynamics of the updated model is compat-
ible with experimental observations (Figure 2.6).

Rb E2F CycE CycA CycB Cdh1 Cdc20 UbcH10 p27 

G1 

S 

G2 

M 

M to 
G1 

Figure 2.6: Correct asynchronous sequence for a complete cell cycle. The rows denote successive
states along the cell cycle. Gray cells denote active nodes (level 1), while white cells represent
inactive nodes (level 0).

2.5 Stochastic simulations of the logical model
More quantitative characterizations of asymptotic behaviors can be provided by stochastic sim-
ulations using MaBoSS (http://maboss.curie.fr). It is a command-line tool simulating continu-
ous/discrete time Markov processes applied on Boolean models [Stoll et al., 2012]. Transitions
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are associated with rates and a Gillespie algorithm produces time trajectories. Time evolution
of probabilities are estimated. Global and semi-global characterizations of the whole system
dynamics are further provided.

Without kinetic information, equal transition rates can be used to estimate a simple stochastic
measure of trajectories in the asynchronous STG. Since MaBoSS is restricted to Boolean models,
the logical model of the cell cycle is derived into a Boolean model by splitting the ternary node Rb
into two Boolean nodes Rb1 and Rb2, associated with the first and second Rb thresholds, respec-
tively. A population of 500,000 stochastic trajectories is simulated with this model, with equal
transition rates. The mean level for each node over all trajectories is plotted in Figure 2.7, and
reflect the kinetics of the cell cycle progression driven by the input cyclin D. Transient oscillations
can be observed as the trajectories all start in G0 (with Rb1, Rb2, p27 and Cdh1 the only active
nodes) and progressively desynchronize.

It is particularly interesting to compare the trajectories obtained for wild type (WT) versus
perturbed conditions. The trajectories of five perturbations illustrate the role of Rb and of the
pathway Rb-Skp2-p27 in the model (Figure 2.7).

Two perturbations were considered for Rb: the full loss-of-function (Rb KO), and a partial
loss-of-function where Rb loses its ability to repress E2F but conserves its repressing activity on
Skp2 (Rb R661W). The resulting stochastic trajectories highlight the role of Rb in the sequential
activation of cyclin E and cyclin A, ensured by the repressing activity of the two underphospho-
rylated forms of Rb on E2F: in the WT case, the activation of cyclin A is clearly delayed relatively
to the activation of cyclin E. In contrast, in the absence of the repressing effect of Rb on E2F,
cyclin E and cyclin A are activated at the same time. The similarity between the trajectories of
Rb R661W and Rb KO suggests that the repression of Skp2 by Rb has no major impact in the cell
cycle. However, this interaction is necessary to ensure the quiescent state in the absence of cyclin
D.

Skp2 loss-of-function (Skp2 KO) arrests the cell cycle (Figure 2.7). The cell cycle arrest is
prompted by the stabilized p27, hence the restored oscillations in the double mutant Skp2 KO
p27 KO.
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Figure 2.7: Stochastic trajectories simulated with MaBoSS for each component of the model
of Figure 1.1, with equal transition rates for all transitions. From top right to bottom left:
simulations without perturbation (wild-type); with a perturbation corresponding to the partial
mutation RbR661W annihilating the repressing activity of Rb on E2F; Rb loss-of-function; ectopic
expression of Skp2; p27 loss-of-function; combination of Skp2 and p27 loss-of-functions.

2.6 Conclusions and prospects
Model refinement

We have refined a logical model of the mammalian cell cycle to include recent data pointing to
novel regulatory components and interactions. Each model update was evaluated using model
checking to assess the conservation of documented dynamical properties, for the wild type cycle
and for various genetic perturbations. Refining a model is an iterative process, and while we
have focused here on the satisfaction of novel dynamical properties, it is as important to check at
each step that all relevant properties satisfied by the original model are not altered. In appendix,
we provide a complete list of the perturbations (Table A.1) and dynamical properties (Tables A.2
and A.3) evaluated on the initial and final models, along with their assessment for both models.
As can be seen in these tables, the updated model complies with several additional properties,
thereby constituting a clear improvement over the original one.

Prospects

A careful model checking analysis of our current model already points to some limitations. In
particular, the order of activation or degradation of CycB relatively to the other cyclins is not
properly determined (see appendix). This raises the question of what refinement could ensure
the correct sequential order between cyclin B and the other cyclins. Relevant perturbation studies
could bring an insight into possible mechanisms. For examples, the use of stabilized cyclins in
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proliferating cells could help to conclude whether the degradation of cyclin E, cyclin A and cyclin
B are necessary for the progression into the next phase. Alternatively, more subtle kinetic aspects
might be responsible for the temporal regulation of cyclin B, which would then require the use of
more quantitative approaches.

Our current model takes into account the most notable components of the mammalian cell
cycle network. However, this model could be further updated in the light of novel experimental
data. For example, several proteins have been involved in the regulation of the G2 phase, such
as Aurora, Plk1, Emi1, but have not been yet included in our model because their role or reg-
ulation are still uncertain. These factors could be incorporated in the model once more precise
mechanistic information becomes available.

Our model could also be refined to fit data concerning specific cell types, or to study the
effect of multiple perturbations associated with cancer (e.g. [Grieco et al., 2013, Mombach et al.,
2014, Flobak et al., 2015]). It can be used as a starting point for subsequent studies, using the
model checking approach delineated here in order to increment and assess successive model
versions. In this respect, we provided our current model in two computer readable formats (an
archive that can be opened using GINsim, along with an SBML export) as supplementary material
(http://ginsim.org/node/189). These files include extensive annotations and links to external
databases, thereby documenting all components and interactions.

Finally, although the consideration of multivalued nodes is useful to represent multifunctional
proteins such as Rb, the analysis of logical models with multivalued nodes can be difficult and
is supported by a limited number of tools. To enable the import of our model in purely Boolean
modelling tools, we further provide a Boolean version of our multivalued model, where the node
Rb is split into two Boolean nodes Rb1 and Rb2. In particular, this Boolean model can be used
to perform stochastic simulations using the software MaBoSS (http://maboss.curie.fr), provided
that the user defines transition rates for component (up or down) updates. Such stochastic simula-
tions have the potential to provide more quantitative characterizations of asymptotic behaviors,
for wild type versus perturbed conditions, as seen in Section 2.5. While we have focused on
mean trajectories in the asynchronous attractor, further analysis could be done with the change
in probabilities of reaching this attractor in response to perturbations.
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3. Formalizing
complex behaviors with
temporal constraints

In this chapter we describe how temporal constraints can be used to specify dynamical behaviors
of continuous models, with a particular focus on oscillatory systems. After detailing the syntax
of linear time logic (LTL), its first-order extension (FO-LTL) handling continuous variables and
its use for continuous model checking and model analysis, we give examples of frequent dynam-
ical behaviors characterizing biological systems, in particular oscillatory behaviors. We show
how combining them allow to define precise specifications that can contain both qualitative and
quantitative constraints.

3.1 First Order Linear Time Logic for continu-
ous trajectories

Linear Time Logic (LTL) is adapted to analyze the behavior of deterministic automata formalized
as linear sequences of states.

LTL has initially been used in systems biology to check the satisfaction of Boolean properties
representing the behavior of biochemical reaction systems or gene regulatory networks. LTL
was successfully used to analyze deterministic boolean models, for example with a synchronous
updating, similarly to the way CTL is used to analyze asynchronous dynamics (see Chapter 2).
Generalizing these techniques to quantitative models has been done in two ways: either by
discretizing the different regimes of the dynamics in piece-wise linear or affine models [Batt et al.,
2005], or by relying on numerical simulations and taking a first-order version of temporal logic
(FO-LTL) with constraints on concentrations, as query language for numerical traces [Fages et al.,
2004, Calzone et al., 2006]. This last approach, implemented in Biocham, is adopted in this work.

Linear Time Logic
Infinite trace

Like in the logical framework, LTL formulae are interpreted on a Kripke structure, i.e. a transition
relation over a set of states such that each state has at least one successor. In this case each state
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has exactly one successor.
Finite traces are composed of a finite number of temporal points associated with values, either

obtained by biological experiments or by numerical integration. They can be directly translated to
sequences of states, noted (s0, ..., sn) with n ∈ N the number of states. Each state defines values for
all state variables, which are in this case the concentrations of all molecular species in the model.
Moreover, the first derivative dA

dt of each concentration A is computed as the slope between each
concentration point and the next one, and added to the state variables. Although in the temporal
logic framework treatment of time is implicit, and considered only through the order of states in
the sequence, in this case each state derived from a temporal point is also associated with a real
time value. Consequently, the time is also included in the state variables and denoted by Time,
allowing the introduction of precise time constraints in the properties that can be verified.

Finite traces are then complemented to infinite traces by adding a loop on the last state, (s0,
..., sn, sn, ...). The practical assumption behind this classical convention for interpreting temporal
logic on finite traces is that the time horizon considered is sufficiently long for evaluating the
formulae of interest and not interfering with the last state. The value of dA

dt in the last state
is defined as the 0 in order to maintain the coherence between the concentrations and their
derivatives.

Syntax

The syntax of LTL is similar to the syntax of CTL already detailed in Section 2.3, minus the
path quantifiers and with linear constraints over R as atomic constraints. Hence the grammar
of LTL(Rlin) formulae:
φ ::= c | ¬φ | φ⇒ ψ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φUφ | φWφ,
where c denotes linear constraints between state variables (molecular concentrations, their first
derivatives, or the state time variable), and real numbers. A > 1, dAdt = 0 and A ≤ B are examples
of such constraints, where A and B are concentrations of molecular species.

In this interpretation over finite traces, the formula Gφ is true in the last state if φ is true in the
last state. The dual properties seen in Section 2.3 without path quantifiers become:

• ¬Xφ = X¬φ,

• ¬Fφ = G¬φ,

• ¬Gφ = F¬φ,

• ¬(φ U ψ) = ¬ψ W ¬φ,

• ¬(φ W ψ) = ¬ψ U ¬φ.

For instance, the formula F(A ≥ 0.2) expresses that the concentration of molecule A gets
greater than 0.2 at some time point in the future (F), and F(A ≥ 0.2∧Time< 1) expresses that this
property should be satisfied before the variable Time reaches 1.

The syntax used in Biocham to write temporal logic formulae is shown in Table 3.1.

F, X, G, U, W temporal operators
& conjunction (∧)
| disjunction (∨)
! negation (¬)
[A] concentration of molecule A
d([A])/dt derivative of [A]
<,=< less than, less than or equal to
>,>= greater than, greater than or equal to
=> implication (φ => ψ is equivalent to ψ ∨ ¬φ)

Table 3.1: Syntax for temporal logic formulae in Biocham.
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Linear Time Logic with free variables
Although LTL formulae include quantitative information, the classic boolean evaluation of LTL
formulae by true/false is not adapted to many problems.

To address this issue, a first-order extension of LTL with real free variables, denoted FO-
LTL(Rlin), can be used to store quantitative results [Fages and Rizk, 2008]. The grammar of
LTL is extended with the quantifier operators ∃x φ | ∀x φ to project free variables. In Biocham,
the syntax for each operator is, respectively, Exists and Forall.

For instance in the previous example, if needed, the precise time values where the concentra-
tion of A gets greater than the threshold value can be expressed by introducing a free variable t
with an equality constraint to the real time variable, with the formula

F(A ≥ 0.2 ∧ t = Time).

Constraints between time variables can also relate the times of different events. For instance, the
formula

G(Time ≤ t1 ⇒ A < 1 ∧ Time ≥ t2 ⇒ A > 10) ∧ (t2 − t1 < 60)

expresses that the concentration A is always less than 1 up to some time t1, always greater than
10 after time t2, and the switching time between t1 and t2 is less than 60 units of time.

A local maximum for molecule concentration A can be defined with the formula

F(A ≤ x ∧ X(A = x ∧ X(A ≤ x)))

specifying the existence of three successive states, where the value of A in the second state
is greater than in the two other states. x is a free variable which takes this maximum value.
Alternatively, local maxima can also be defined using the derivatives with the following formula,
which specifies a change of the sign of the derivative of A, and extracts maxima values in the
variable x with x = A:

F(
dA

dt
≥ 0 ∧ X(

dA

dt
< 0 ∧ x = A)).

We will see in Section 3.2 how such formulae can be combined and extended to define complex
oscillation properties, with period and phase constraints defined as time separation constraints
between local extrema of one or several molecular species.

Validity Domains of Free Variables
The satisfaction of a FO-LTL formula containing free variables is given by the validity domains
of the variables.

Definition 3.1 Validity domain
The validity domain of an FO-LTL(Rlin) formula φ(y) involving a vector of q real free variables y, on a
finite trace T = (s0, ..., sn), is the set of values of y for which φ is true:

DT,φ = {y ∈ Rq|T |= φ(y)}

It is computed with the algorithm 1.
A linear temporal logic formula is false if DT,φ = ∅, valid if DT,φ = Rq , and satisfiable

otherwise, for some values given by DT,φ.
It has been shown in [Fages and Rizk, 2008] that the validity domain computed by the algo-

rithm is a finite union of orthotopes, with an orthotope being the cartesian product of v intervals
over R.

The recursive definition of validity domains (Definition 3.1) can be directly implemented to
compute the validity domains of the free variables in each point of the numerical trace, starting
from the last to the first. In this computation the LTL subformulae are considered in the bottom-
up order, i.e. first from the linear constraints at the leaves, up to the root of the syntactic tree.
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3.1. First Order Linear Time Logic for continuous trajectories

Algorithm 1 Validity domain
The validity domain of an FO-LTL(Rlin) formula φ(y) involving a vector of q real free variables
y, on a finite trace T = (s0, ..., sn), is computed by induction on T and the subformulae of φ(y)
by using the following equations:

• DT,φ = Ds0,φ,

• Dsi,c(x) = {v ∈ Rk | si |= c[v/x]} for a constraint c(x) depending on a k-variables vector
x evaluated with v,

• Dsi,φ∧ψ = Dsi,φ ∩ Dsi,ψ ,

• Dsi,φ∨ψ = Dsi,φ ∪ Dsi,ψ ,

• Dsi,¬φ = { Dsi,φ,

• Dsi,∃xφ = ΠxDsi,φ,

• Dsi,∀xφ = Dsi,¬∃x¬φ,

• Dsi,Xφ = Dsi+1,φ if i < n,

• Dsn,Xφ = Dsn,φ,

• Dsi,Fφ =
⋃n
j=iDsj ,φ,

• Dsi,Gφ =
⋂n
j=iDsj ,φ,

• Dsi,φUψ =
⋃n
j=i(Dsj ,ψ ∩

⋂j−1
k=i Dsk,φ),

• Dsi,φWψ = Dsi,φUψ
⋃
Dsi,Gφ.

where { is the set complement operator over domains, and Πx is the domain projection operator
out of x, restoring domain R for x.

For instance, to evaluate the formula F(A ≥ y1 ∧ F(A ≤ y2)) of Example 3.3, the validity
domains of y1, y2 for the subformulae A ≥ y1 and A ≤ y2 are first computed in each time point
of the trace, then the validity domains for F(A ≤ y2) in each time point from the last to the first,
and last for the complete formula by composing the results for the subformulae from the last time
point to the first.

Geometrical operations on linear constraints

Linear constraints over the reals have a simple geometrical interpretation: a conjunctive state
constraint represents a (possibly non-closed) convex polyhedron in the state variables’ space
while a disjunctive state constraint represents a (non convex) finite union of convex polyhedra.
Domain operations with linear constraints can thus be implemented quite straightforwardly with
a polyhedra manipulation library. The implementation in BIOCHAM [Calzone et al., 2006] uses
the Parma Polyhedra Libray (PPL) [Bagnara et al., 2008] that performs set operations for dealing
with finite unions of polyhedra [Rizk, 2011].

• The conjunction of linear constraints is represented by the intersection polyhedron of the
polyhedra associated with the constraints.

• The existential quantification of a variable is directly implemented by the projection opera-
tion of a polyhedron on the subspace of the space without that variable.

• A disjunction of polyhedra is represented by a finite set of polyhedra.

• The complementary of a polyhedron p is computed by the unions of the negated constraints
describing p.

• The universal quantification is implemented by double complementation of the existential
quantification.
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Crucial to the efficiency of the set-based implementation of disjunctive constraints is the elim-
ination of redundant constraints. The subsumption check between finite sets of linear state
constraints is co-NP hard, since checking whether one convex polyhedron is contained in a finite
union of convex polyhedra is co-NP complete [Srivastava, 1993]. On the other hand, the local
subsumption check, i.e. checking whether one convex polyhedron is contained in another one,
can be done by linear programming in polynomial time.

Example 3.2 Reachability
The following formula tests whether a concentration threshold is reached by a molecule.

• FO-LTL(Rlin) formula: φ1(v) = F(A ≥ v)

• Validity domain DT,φ1
= ]−∞,maxA]

In the formula φ1 in example 3.2, A denotes the concentration of a molecule, and v is a free
variable. The figure 3.1 schematizes the generic solving procedure described in Definition 3.1 for
φ1.

D φ = Ds0

φ =]-∞;maxA]

Dsi

A ≥ v = { v | A(tsi
) ≥ v } = ]-∞;A(tsi

)]

Dsi

φ = Dsi

A≥v ∪ Dsi+1

φ

Figure 3.1: Schema describing the computing of the validity domain for F(A ≥ v). On the top
panel, for each point si of the trace, the validity domain DA≥vsi corresponding to the satisfied
values of v for which the formula A ≥ v is satisfied in si is computed (intervals ]−∞, A(tsi)]
in orange). In the middle panel, for each point si starting from the last point of the trace, the
validity domain Dφ1

si for which φ1 is satisfied in si is obtained recursively with the union Dφ1
si =

DA≥vsi ∪ Dφ1
si+1

(intervals in green). On the bottom panel, the domain for the first point is finally
taken as the domain for the whole trace (interval in red): Dφ1 = Dφ1

s0 .

Example 3.3 Extrema
The following FO-LTL(Rlin) pattern expresses two global comparisons for the concentration of the

molecule on the whole trace. This extracts the greatest value reached by the concentration as the boundary
of the validity domain projected on the variable y1, and the smallest value reached as the boundary of the
validity domain projected on y2.

• FO-LTL(Rlin) formula: φ2(y1, y2) = F(A ≥ y1) ∧ F(A ≤ y2)

• Validity domain DT,φ2 = ]−∞,maxA]× [minA,+∞[
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3.1. First Order Linear Time Logic for continuous trajectories

On the numerical trace of Figure 3.2, the validity domain of φ2(y1, y2) is the domain y1 ≤
10 ∧ y2 ≥ 2.

DT,φ(y) 

y1 

y2 

10 

2 P2 

P1 

10 

2 

[A] 

Figure 3.2: Left: numerical trace for the evolution of the concentration of molecule A over time.
Right: validity domain ]−∞, 10]× [2,+∞[ for φ2 on the trace.

The two points P1 = (7, 3) and P2 = (7, 0) in this space correspond to the closed formulae
ψ1 = F(A ≥ 7 ∧ F(A ≤ 3)) and ψ2 = F(A ≥ 7 ∧ F(A ≤ 0)) respectively. In the first case, the
formula is true since the point is inside the validity domain, and the second formula is false since
the point is outside the validity domain.

Example 3.4 Sequence of comparisons
The more complex following FO-LTL(Rlin) pattern expresses a sequence of events: it is satisfied when

the concentration of the molecule is first above some value denoted by the free variable y1 and then below
some other denoted by the free variable y2.

• FO-LTL(Rlin) formula: φ2(y1, y2) = F(A ≥ y1 ∧ F(A ≤ y2))

• Validity domain DT,φ3
=
⋃n
i=0(]−∞, si]× ([max(si,minj≥isj),+∞[)

The corresponding validity domain is more complex than for φ2, and can be computed for-
mally according to the algorithm 1:

DT,φ3 = DT,F(A≥y1∧F(A≤y2))

=

n⋃
i=0

(Dsi,A≥y1 ∩ (

n⋃
j=i

Dsj ,A≤y2))

=

n⋃
i=0

(]−∞, si]× ([max(si,minj≥isj),+∞[)

We describe in the next subsection how the distance to the validity domain is used to define a
continuous satisfaction degree for FO-LTL(Rlin) formulae.

Continuous Satisfaction Degree in [0,1]
The true/false valuation of FO-LTL(Rlin) formulae makes it possible to scan the parameter space
and check for each parameter set whether the temporal specification is satisfied. However, such
generate-and-test methods have an exponential complexity in the number of parameters. They
are thus limited to two or three parameters and do not scale up.
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To provide a quantitative evaluation of an FO-LTL(Rlin) specification on a trace, a continuous
satisfaction degree is derived from distance between the the validity domain and an objective
value for one or several variables [Rizk et al., 2008]. This allows to score a simulation or experi-
mental trace with respect to an objective behavior.

Calculating a continuous satisfaction degree for an FO-LTL(Rlin) specification is particularly
useful for parameter inference, since comparing satisfaction degrees obtained with different pa-
rameter sets provides a direction to follow in the parameter space. A continuous satisfaction
degree able to measure progress towards satisfaction makes it possible to move from generate-
and-test procedures for parameter scanning, to powerful continuous optimization methods for
computing dozens of parameter values in one run, for instance by using evolutionary algorithms
with the satisfaction degree as fitness function.

This is the strategy implemented in BIOCHAM [Calzone et al., 2006] for parameter search,
where the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen and Ostermeier,
2001] is updated with the satisfaction degree of the temporal specification as fitness function [Rizk
et al., 2011]. Its iterative procedure is schematized in Figure 3.3. It is used in the application part
of this dissertation (Chapter 5).

Figure 3.3: Illustration of an optimization run with covariance matrix adaptation on a simple
two-dimensional problem. The spherical optimization landscape is depicted with solid lines of
equal fitness function values. The darker the background color, the greater the fitness value on
this point. At each iteration, a new population of parameter sets (dots) is generated and its
distribution (dotted line) is updated. On this simple problem, the population (dots) is larger
than necessary and concentrates over the global optimum within a few generations. Figure from
http://en.wikipedia.org/wiki/CMA-ES

The continuous satisfaction degree can be used for parameter analysis: the evolution of the
satisfaction degree is used to visualize how the satisfaction of a property evolves when some
parameter values change. However, the effect of two parameters at most can be assessed with
this method, since such representations are limited to one-dimensional response curves or two-
dimensional landscapes (examples can bee seen in Section 3.3).
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Definition 3.5 Let π be a numerical trace.

• The violation degree of a formula φ with free variables x with respect to objective values v is the
euclidean distance between the point of coordinates v and the validity domain (Dπ,ψ) if it is not
empty:

vd(φ,v) = d(v, Dπ,ψ)

If Dπ,ψ is empty, and vd(φ,v) = +∞.

• The satisfaction degree of φ w.r.t. v is

sd(φ,v) =
1

1 + vd(φ,v)

• The robustness degree is the violation degree of the negation of φ, i.e. the distance to the complement
of the validity domain:

rb(φ,v) = vd(¬φ,x)

Example 3.6 Going back to example 3.3, we have

vd(ψ1) = 0, sd(ψ1) = 1, ro(ψ1) = 1,

and
vd(ψ2) = 2, sd(ψ2) = 1/3, ro(ψ2) = 0.

The absolute values of the satisfaction degree are not meaningful but the relative values make it possible to
compare different parameter sets, and improve them in the most promising direction.

The robustness degree is defined here as the distance between the objective and the com-
plement of the validity domain. Indeed, this distance indicates a degree of robustness of the
temporal properties under the assumption that if the validity domain boundaries are far from
the objective, the validity domain obtained after slightly changing some parameters are close to
the first one, and are thus likely to satisfy the specification. However, in non-linear systems this
assumption may be violated, and the robustness of the system must be more accurately estimated
by sampling the parameter space around the parameter set [Rizk et al., 2009].

3.2 Formalizing common properties for oscilla-
tory systems with temporal logic

Analyzing models of biochemical reaction systems that exhibit complex dynamics require to
formalize sophisticated behaviors. We investigate here the expressivity of temporal logic to
formalize various behaviors for such dynamics.

This is particularly useful in the case of oscillating systems. Different properties character-
ize an oscillator: the amplitude, the period, the phase relationships if several components are
involved, the regularity and shape of the oscillations.

Specifying such properties with temporal logic allows much more flexibility than simple curve
fitting or specific evaluation methods such as period estimation. Indeed, it is possible to eval-
uate only the quantitatively known properties, while overlooking the unknown aspects of the
oscillations and instead relying on the more general qualitative description of the existence of
oscillations. Moreover, several properties of interest can be easily combined in a longer formula
and evaluated together. For instance, a trace can be evaluated with respect to expected periods
and phase relationships, while keeping the amplitude free of constraint.

Furthermore, accounting for imprecise quantitative information is also possible. Boundaries
can be set to constraint the amplitude only inside an estimated interval.

Here we present a selection of common properties characterizing an oscillatory system, such
as pseudo-period, pseudo-phase, and measures of the regularity of the oscillations. Validity
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domains of each FO-LTL formula are then computed with the generic algorithm 1. In the next
chapter, dedicated solvers for the same common properties will be implemented for a more
efficient evaluation.

Example 3.7 Existence of a local maximum at a time t
The formula φ4(t) specifies that at some point in the trace the derivative of a concentration A should

have a positive or null value, followed by a negative value at the next point. The time value of this next
point is stored in the variable t. Hence, φ4(t′) is satisfied when there exists a local maximum at the time
point t′.

• FO-LTL(Rlin) formula:
φ4(t) = F(dAdt ≥ 0 ∧ X(dAdt < 0 ∧ Time = t))

• Validity domain D = {Ti}: the set of local maxima times of the trace.

Note that if the formula is used with dA
dt ≤ 0 instead of dAdt < 0, the last point of the trace will

appear in the result as a spurious peak because it satisfies dA
dt = 0.

This simple temporal logic pattern capturing the peaks of a trace is the basic brick with which
more complex formulae are built to characterize oscillations in a trace.

The validity domain of φ4(t) is the set of all local maxima in the trace. It is possible to deduce
the maximum and the minimum of these values with the following operations:

maxxDφ(x) = Dφ(x)∧∀x′,(¬φ(x′)∨x′≥x) = Dφ(x)∧¬∃x′|(φ(x′)∧x′>x) (3.1)
minxDφ(x) = Dφ(x)∧∀x′,(¬φ(x′)∨x′≤x) = Dφ(x)∧¬∃x′|(φ(x′)∧x′<x) (3.2)

The schema in Figure 3.4 represents such a projection of a validity domain composed of
disjointed single values in order to obtain the highest value.

An example of FO-LTL(Rlin) formula adopting this pattern in given in Example 3.8.

Example 3.8 Smallest local maximum at a time t
φ5(t) captures the smallest local maximum time in the trace.

• FO-LTL(Rlin) formula:
φ5(t) = F(dAdt ≥ 0 ∧ X(dAdt < 0 ∧ Time = t))

∧¬∃t′|(F(dAdt ≥ 0 ∧ X(dAdt < 0 ∧ Time = t′)) ∧ t′ < t)

• Validity domain D = {mini(Ti)}.

biocham: validity_domain(F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t))
& !(Exists([t2],F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t2))&t2<t))
).
t = 5.29325
Time elapsed : 156 ms

Listing 3.1: Evaluation of φ5 on the oscillatory trace in Figure 3.6 with Biocham

φ4 can be extended with the operator U (until) to capture whole intervals between the single
points where the sign of the derivative changes. In Example 3.9, it is used to measure what we
call the left amplitude of a peak, defined as the difference between the value at the local maximum
and the value at the previous local minimum, as shown in Figure 3.5. Left amplitudes can be used
as a relevant measure to assess the variation in peak shapes. Obviously, its counterpart the right
amplitude could be used similarly, or more complex measures such as the maximum, minimum
or mean value of the left and right amplitudes could be defined if needed with more complex
FO-LTL formulae.

Example 3.9 Left peak amplitude
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𝑥
𝜑 𝑥 ˄ (¬∃𝑥′|𝑥′ > 𝑥 ˄ 𝜑 𝑥′ )

𝑥1

𝑥

𝑥’

¬∃𝑥′|𝑥′ > 𝑥 ˄ 𝜑 𝑥′

∃𝑥′|𝑥′ > 𝑥 ˄ 𝜑 𝑥′

𝑥′ > 𝑥 ˄ 𝜑 𝑥′

𝑥2

𝑥3

𝑥

𝑥

D

D

D
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Figure 3.4: Schema describing the projection of a validity domain composed of distinct single
values in order to obtain the highest value. Say that in this case, the validity domain of φ is a set
of values {xi}. The conjunction φ(x′) ∧ x′ > x turns each value into a open half-line in the space
(x, x′) (in red). Then the operator ∃ projects the domain on the x dimension. The result is the
interval ]−∞,maxi(xi)[ (in green). The negation takes the complementary interval (in yellow),
then the conjunction with φ(x) intersects this interval with the set {xi} and restores the single
value domain {maxi(xi)} (in black).

Figure 3.5: Left amplitudes of peaks in a trace: difference between the value at the local
maximum and the value at the previous local minimum.
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• FO-LTL(Rlin) formula:
φ6(a) = ∃(m1)|(F(dAdt < 0 ∧ X(dAdt ≥ 0 ∧A = m1

∧(dAdt ≥ 0)U(dAdt < 0 ∧A = m1 + a))))

• Validity domain D = {ai}: the set of left amplitudes of local maxima for the trace of A, defined as the
difference between the local maximum value and the preceding local minimum value.

The validity domain of φ6(a) is the set of left amplitudes of all peaks in the trace. As explained
before, the maximum of these values can be found with the operator ∃(a). The formula φ7(a) in
Example 3.10 uses a similar approach to capture the greatest left amplitude of all peaks in the
trace, as the upper bound of the validity domain.

Example 3.10 Greatest left peak amplitude

• FO-LTL(Rlin) formula:
φ7 =∃(m1)|(F(

dA

dt
< 0 ∧ X(

dA

dt
≥ 0 ∧A = m1

∧ (
dA

dt
≥ 0)U(

dA

dt
< 0 ∧A−m1 ≥ a)))))

• Validity domain D = ]−∞, aj ], where aj = maxiai.

Similarly to Example 3.8, if a single-value domain is needed rather than a half-line (for example
to compare the greatest left peak amplitude to a higher value), a variant of φ7 which repeats the
same sub-formula with an equality constraint on a can be used.

Among the features of an oscillator, the period of the oscillations is one of the most important.
In a finite trace, measuring the time distances between successive peaks gives a first approxima-
tion of the period. The formula φ8(d) in Example 3.11 extends the formula φ6(t) to capture the
times of two successive local maxima t1 and t2 and extract the difference d between the two times.

Example 3.11 Distance between successive peaks

• FO-LTL(Rlin) formula:

φ8(d) =∃(t1, t2)|(t2− t1 = d

∧ F((
dA

dt
> 0) ∧ X((

dA

dt
≤ 0) ∧ (Time = t1)

∧ ((
dA

dt
≤ 0)U((

dA

dt
> 0) ∧ ((

dA

dt
> 0)U((

dA

dt
≤ 0) ∧ (Time = t2))))))))

• Validity domain D = {di = Ti+1 − Ti, i ∈ [|1;n− 1|]}

For instance, computing the validity domain corresponding to the formula φ8(d) on the oscil-
latory trace in Figure 3.6 (time horizon of 180h) with Biocham is shown in Listing 3.2. Biocham
prints the resulting validity domain, which is a disjunction of orthotropes, with one orthotrope
per line.

biocham: validity_domain(
Exists([t1,t2],t2-t1=d
& F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t1
& (d([X])/dt<0) U (d([X])/dt>=0
& (d([X])/dt>=0) U (d([X])/dt<0 & Time=t2
)))))).
d = 30.0234
| bb
d = 24.7015
|
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Figure 3.6: Simulated traces of a toy oscillator model described in Section 4.2 and detailed in
Appendix A.3. The trace obtained with a Rosenbrock’s implicit simulation method in Biocham is
discrete but plotted as a continuous line because of the high number of points.

d = 24.4486
|
d = 23.9441
|
d = 23.9091
|
d = 23.9032
Time elapsed : 192 ms

Listing 3.2: Evaluation of φ8 on the oscillatory trace in Figure 3.6 with Biocham.

Oscillations can exhibit irregularities during a transitory time at the beginning of the simulation,
in particular when initial concentrations are not calibrated on the oscillatory regime, as in the
case shown in Figure 3.6. As a consequence, φ8(d) captures unwanted values corresponding to
the first peak-to-peak intervals (d = 30.0234).

This can be corrected by specifying a lower bound for the time t1 of the first peak. In List-
ing 3.3, the validity domain is restricted to peak-to-peak intervals measured after a time of 80h,
and is more relevant for the pseudo-period:

biocham: validity_domain(Exists([t1,t2],t2-t1=d
& F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t1 & t1>80
& (d([X])/dt<0) U (d([X])/dt>=0
& (d([X])/dt>=0) U (d([X])/dt<0 & Time=t2
)))))).
d = 23.9441
|
d = 23.9091
|
d = 23.9032
Time elapsed : 200 ms

Listing 3.3: Evaluation of a variant of φ8 specifying peak-to-peak intervals after 80h on the
oscillatory trace in Figure 3.6 with Biocham.

It is also possible to extract specifically the last peak-to-peak interval, which is useful if the
transitory duration is long or unknown (e.g. when the model is repeatedly simulated in a calibra-
tion procedure).
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To this end, the operator ∃ can be used in a variant of φ4(t) to capture the maximal peak time:

¬∃(t)|(F((
dA

dt
≥ 0) ∧ X(

dA

dt
< 0 ∧ Time = t)) ∧ t > tmax)

This temporal logic pattern is used on the last line of the example 3.12. The penultimate line
of φ9(period) turns the validity domain of the variable tmax from the interval [maxi(Ti),+∞, [ to
the single value maxi(Ti), which is the time of the last peak of the trace. This time is then used to
extract the last two peak-to-peak intervals p1 and p2. The mean of their values is returned with
the variable period (cf Example 3.12) and gives a more precise value of the pseudo-period.

Example 3.12 Mean of the last two peak-to-peak intervals

• FO-LTL(Rlin) formula:

φ9(period) =∃(p1, p2, t1, t2, tmax)|(
p1 = t2− t1 ∧ p2 = tmax− t2 ∧ 2 ∗ period = p1 + p2

∧ F((
dA

dt
≥ 0) ∧X(

dA

dt
< 0 ∧ Time = t1

∧ (
dA

dt
< 0)U(

dA

dt
≥ 0 ∧ (

dA

dt
≥ 0)U(

dA

dt
< 0 ∧ Time = t2

∧ (
dA

dt
< 0)U(

dA

dt
≥ 0 ∧ (

dA

dt
≥ 0)U(

dA

dt
< 0 ∧ Time = tmax))))))

¬∃(t)|(F((
dA

dt
> 0) ∧ X(

dA

dt
≤ 0 ∧ Time = t)) ∧ t > tmax)

• Validity domain D = Tn+Tn−1

2 where Tn = maxi(Ti).

Computing the validity domain corresponding to the formula φ9(period) on the trace in Fig-
ure 3.6 gives the following result:

biocham: validity_domain(Exists([p1,p2,t1,t2,tmax],
p1 = t2-t1 & p2 = tmax - t2 & 2*period=p1+p2
& F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t1
& (d([X])/dt<0) U (d([X])/dt>=0
& (d([X])/dt>=0) U (d([X])/dt<0 & Time=t2
& (d([X])/dt<0) U (d([X])/dt>=0
& (d([X])/dt>=0) U (d([X])/dt<0 & Time=tmax))))))
& !(Exists([t],F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t)) & t>tmax)))).
period = 23.9042
Time elapsed : 1424 ms

Listing 3.4: Computing the mean of the last two peak-to-peak intervals on the oscillatory trace in
Figure 3.6 with Biocham.

The formula φ10(d) detailed in Example 3.13 can be used to determine the phase-shift between
two oscillating molecules. This variant of the formula φ8(d) captures a peak of a concentration A
followed by a peak of concentration B. It takes advantage of the fact that False U ψ is true if ψ is
true. In that case, the next peak of B is captured whether dB

dt ≥ 0 or dB
dt < 0 when A reaches its

peak.

Example 3.13 Phase shift between two molecules

• FO-LTL(Rlin) formula:

φ10(d) =∃(t1, t2)|(t2− t1 = d)

∧ F((
dA

dt
≥ 0) ∧ X((

dA

dt
< 0) ∧ Time = t1

∧ ((
dB

dt
< 0)U((

dB

dt
≥ 0) ∧ ((

dB

dt
≥ 0)U((

dB

dt
< 0) ∧ (Time = t2))))))))
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3.2. Formalizing common properties for oscillatory systems with temporal logic

• Validity domain D = {di,j} with di,j = TAj − TBi, i ∈ [|1;n|] , j ∈ [|i;n|] where {TAi} is the set of
local maxima times for the trace of A and {TBi} is the set of local maxima times for the trace of B.

Because they only depend on the existence of at least three peaks in the trace, formulae such as
φ8 to φ10, specifying pseudo-periods and pseudo-phases are flexible, and can be evaluated even
for irregular or damped oscillations.

The regularity of oscillations need to be assessed with other means: additional specifications
can be used to measure dissimilarities between peaks, such as differences between peak ampli-
tudes or peak-to-peak intervals. Such measures can then be constrained with thresholds to filter
out irregular oscillations.

For instance, the formula φ11(diff) in Example 3.14 measures the maximal difference between
two peak-to-peak intervals in the trace, and the formula φ12(diff) in Example 3.15 measures the
maximal difference between two peak amplitudes.

Example 3.14 Maximal difference between peak-to-peak intervals
First let us define a subformula φ′(diff) extracting in diff the difference between two successive peak-

to-peak intervals:

φ′(diff) = ∃(t1, t2, t3, t4, p1, p2)|(t3 ≥ t2 ∧ t2− t1 = p1 ∧ t4− t3 = p2

∧ (p2− p1 = diff|p1− p2 = diff) ∧ diff ≥ 0

∧ F(
dA

dt
≥ 0 ∧ X(

dA

dt
< 0 ∧ Time = t1

∧ (
dA

dt
< 0)U(

dA

dt
≥ 0 ∧ (

dA

dt
≥ 0)U(

dA

dt
< 0 ∧ Time = t2))))

∧ F(
dA

dt
≥ 0 ∧ X(

dA

dt
< 0 ∧ Time = t3

∧ (
dA

dt
< 0)U(

dA

dt
≥ 0 ∧ (

dA

dt
≥ 0)U(

dA

dt
< 0 ∧ Time = t4)))))

• FO-LTL(Rlin) formula: φ11(diff) = φ′(diff) ∧ ¬∃diff2|(diff2 > diff ∧ φ′(diff2))

• Validity domain D = maxi,j |(Tj+1 − Tj)− (Ti+1 − Ti)|

Example 3.15 Maximum difference between peak amplitudes
Similarly to the previous example, we define a subformula psi′(diff) extracting in diff the difference

between two left amplitudes of peaks in the trace:

ψ′(diff) = ∃(t, v1, v2, v3, v4, a1, a2)|(v2− v1 = a1 ∧ v4− v3 = a2

∧ (a2− a1 = diff|a1− a2 = diff) ∧ diff > 0

∧ F((
dA

dt
< 0) ∧ X(

dA

dt
≥ 0 ∧A = v1 ∧ Time = t

∧ (
dA

dt
≥ 0)U(

dA

dt
< 0 ∧A = v2)))

∧ F((
dA

dt
< 0) ∧ X(

dA

dt
≥ 0 ∧A = v3 ∧ Time > t

∧ (
dA

dt
≥ 0)U(

dA

dt
< 0 ∧A = v4))))

• FO-LTL(Rlin) formula: φ12(diff) = ψ′(diff) ∧ ¬∃diff2|(diff2 > diff ∧ ψ′(diff2))

• Validity domain D =
[
max(i,j)∈[|1,n|]2 |ai − aj |,+∞

[
where {ai} is the set of left amplitudes of the

local maxima for the trace of A, defined as the difference between the local maximum value and the
preceding local minimum value.

Below, a variant of φ12(diff) that considers only peaks after 80h and sets a maximal value of
0.02 for the difference in peak amplitudes is applied to the trace in Figure 3.6.
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3. FORMALIZING COMPLEX BEHAVIORS WITH TEMPORAL CONSTRAINTS

biocham: validity_domain(diff<0.02
& Exists([t,m1,m2,a1,a2],(a2-a1=diff | a1-a2=diff) & diff>0
& F((d([X])/dt=<0) & X(d([X])/dt>0 & [X]=m1 & Time=t
& (d([X])/dt>0) U (d([X])/dt=<0 & [X]=m1+a1 & Time>80
& F((d([X])/dt=<0) & X(d([X])/dt>0 & [X]=m2 & Time>t
& (d([X])/dt>0) U (d([X])/dt=<0 & [X]=m2+a2)))))))
& !(Exists([t,m1,m2,a1,a2,diff2], diff2>diff
& (a2-a1=diff2 | a1-a2=diff2) & diff2>0
& F((d([X])/dt=<0) & X(d([X])/dt>0 & [X]=m1 & Time=t
& (d([X])/dt>0) U (d([X])/dt=<0 & [X]=m1+a1 & Time>80
& F((d([X])/dt=<0) & X(d([X])/dt>0 & [X]=m2 & Time>t
& (d([X])/dt>0) U (d([X])/dt=<0 & [X]=m2+a2))))))))).

diff = 0.0122592
Time elapsed : 1260 ms

Listing 3.5: Computing the maximum difference between peak amplitudes after 80h on the
oscillatory trace in Figure 3.6 with Biocham.

3.3 Illustration: parameter analysis of a toy os-
cillator model

We illustrate the use of complex linear temporal logic formulae on a parameter analysis of a toy
oscillator model reproducing the dynamics of a self-inhibited gene. This model is a simple multi-
component differential oscillator described in [Novák and Tyson, 2008] and schematized in Fig-
ure 3.7. Based on a delayed negative-feedback loop, it is composed of only three molecular species
represented with three ODEs with nine kinetic parameters. The molecules X, Y_cyto and Y_nucl
represent the gene mRNA, protein in the cytoplasm and protein in the nucleus, respectively.
Y_nucl downregulates the expression of X (allosteric binding with Michaelis-Menten kinetics).
X activates Y_cyto and Y_cyto is translocated into Y_nucl. All these reactions, along with the
degradations, follow mass-action kinetics, except the degradation of Y_cyto which follows a Hill
function. The transport of the protein from the cytoplasm to the nucleus provides the necessary
delay enabling the rise of oscillations. The ODEs and parameter values of this model are given in
Appendix A.3.

We aim at investigating the effect of the parameter kdx, the kinetic rate for the degradation of
the mRNA X, on the dynamics of the model.

As shown on Figure 3.8, increasing the value of the parameter kdx from the initial value 0.05
first decreases the period of the oscillations while decreasing the amplitude (kdx = 0.2), then
dampen the oscillations (kdx = 0.25, kdx = 0.4), and finally destabilizes the oscillations which
disappear for kdx = 0.5.

We use four temporal logic formulae to compute validity domains corresponding to relevant
measures characteristic of the oscillations of the molecule X:

• The amplitude of the oscillations of X, computed with φ3(ampl). The result is a single value
for the variable ampl.

• All peak-to-peak intervals in the trace of X, computed with φ8(dist). The result is a set of
values for the variable dist.

• A better estimation for the period as the mean between the last two peak-to-peak intervals.
It is computed with φ9(period) and stored in the variable period.

• As a measure of the regularity of the oscillations, the greatest difference between two peak
amplitudes, computed with the formula φ12(diffampl) and stored in the variable diffampl.
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3.3. Illustration: parameter analysis of a toy oscillator model

k2*[Y_cyto]/(Km+[Y_cyto]) for Y_cyto => _. 

ksy*[X] for _ =[X]=> Y_cyto. 

kc*[Y_cyto] for Y_cyto => Y_nucl. 

kn*[Y_nucl] for Y_nucl => Y_cyto. 

kd*[Y_nucl] for Y_nucl => _. 

k1*Kd^p/(Kd^p+[Y_nucl]^p) for _ => X. 

kdx*[X] for X => _. 

Figure 3.7: Schema of the toy oscillator model taken from [Novák and Tyson, 2008]. Green arrows
denote positive interactions, red arrows represent negative interactions. All regulatory rules are
displayed close to the corresponding reactions, written in Biocham syntax: in black is the kinetic
rate and in blue the corresponding reaction. The corresponding ODEs and parameter values are
detailed in Appendix A.3.

We implemented a tool in Biocham that computes in parallel the validity domains of one or
several temporal logic specifications for a set of values for a given parameter (see the command
domains_parameter in Biocham’s reference manual [Fages et al., 2014]). We use it to compute
the validity domains of φ3(ampl), φ8(dist), φ9(period) and φ12(diffampl) for 100 simulations with a
time horizon of 200h, for values of kdx taken evenly in the interval [0, 0.5]. The result is a response
curve for each characteristic measure, shown in Figure 3.9.

The response curves show that increasing the value of the parameter kdx in the interval [0.05, 0.3]
decreases the period of the oscillator and decreases its amplitude. The variation intervals between
values of dist for the simulations where kdx > 0.3, as well as the increasing value of diffampl
indicate the destabilization of the oscillations.

How best to evaluate these traces, in order to score their satisfaction to the objective: regular
24h-periodic oscillations?

In order to address this question, we compare four FO-LTL formulae ψ1, ψ2, ψ3 and ψ4, ob-
tained by combinations of the previously-defined temporal logic patterns and detailed below
with objective values. Each formula computes an approximation of the period on the trace, that
we call pseudo-period, with potential additional measures characterizing the regularity of the
oscillations.

The evaluated violation degrees of these formulae on the traces in Figure 3.8 with respect to the
objective values are summarized in Table 3.2. Moreover, we use the satisfaction degree of these
formulae to visualize the joint effect of kdx and another important parameter for the dynamics of
X: its synthesis kinetic rate k1, as shown in Figure 3.10.

• ψ1(period) = φ8(period)
Objective: 24

ψ1 merely finds all the values of the peak-to-peak intervals in the trace. The violation degree
of this formula is the smallest distance between the objective value (24h) and each peak-to-peak
interval in the trace. One can notice in Table 3.2 that the violation degrees of the three first traces
(kdx = 0.05, kdx = 0.2, kdx=0.25) correctly reflect the decreasing period and the decreasing
satisfaction of the 24h-objective. However, this formula is clearly simplistic as it estimates the last
three traces to be closer to satisfaction, without taking notice of their damped oscillations.
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Figure 3.8: Traces of the toy oscillator model defined in Appendix A.3, simulated with Biocham
for different values for the parameter kdx (from top left to bottom right: 0.05,0.2,0.25,0.3,0.4 and
0.5). Each simulation starts from null initial values.

The first panel (top left) in Figure 3.10 represents the landscape of satisfaction degrees com-
puted with ψ1. Several domains of satisfaction, where the satisfaction degree is close to 1, appear
in yellow on the landscape. Some of them correspond to incorrect measurement of the pseudo-
period. For instance, the simulation with k1 = 1.1 and kdx = 0.1 is plotted in Figure 3.11.

The validity domain of ψ1(period), as well as its satisfaction degree, both computed with
Biocham (Listing 3.6), reveal that the objective 24 is close to satisfaction because the first peak-to-
peak interval, quite different from the other intervals in the trace, is close to 24h. The same reason
causes the small violation degree (0.72) in Table 3.2 for kdx = 0.4.

biocham: validity_domain(Exists([tmax1,tmax2],(tmax2-tmax1=period)&F((d([X])/
dt>=0)&X((d([X])/dt<0)&(Time=tmax1)&((d([X])/dt<0) U ((d([X])/dt>=0)&((d([X
])/dt>=0) U ((d([X])/dt<0)&(Time=tmax2))))))))).

period = 24.0879
|
period = 19.0456
|
period = 18.662
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3.3. Illustration: parameter analysis of a toy oscillator model
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Figure 3.9: Values of the validity domains for the variables ampl, diffampl, dist and period
computed in 100 simulations with varying values of the parameter kdx.
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Figure 3.10: Landscapes displaying the satisfaction degree for the formulae ψ1 (top left), ψ2

(top right), ψ3 (bottom left) and ψ4 (bottom right), evaluated on 100x100 simulations of the toy
oscillator model with varying values of the parameters k1 and kdx and a 200h-time horizon.
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3. FORMALIZING COMPLEX BEHAVIORS WITH TEMPORAL CONSTRAINTS

kdx 0.05 0.2 0.25 0.3 0.4 0.5
ψ1 0.056 9.59 11.21 6.56 0.72 9.47
ψ2 0.096 10.99 11.66 9.52 8.48 9.47
ψ3 0.096 10.99 Inf Inf Inf Inf
ψ4 2.00 2.28 4.06 8.97 15.67 159.83

Table 3.2: Violation degree for the formulae ψ1, ψ2, ψ3 and ψ4 on simulated traces of the toy
oscillator model with different values for the parameter kdx.
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Figure 3.11: Simulation of the toy oscillator model with k1 = 1.1 and kdx = 0.1.

|
period = 18.6566
|
...
|
period = 18.7143
Time elapsed : 544 ms

biocham: satisfaction_degree(Exists([tmax1,tmax2],(tmax2-tmax1=period)&F((d([X
])/dt>=0)&X((d([X])/dt<0)&(Time=tmax1)&((d([X])/dt<0) U ((d([X])/dt>=0)&((d
([X])/dt>=0) U ((d([X])/dt<0)&(Time=tmax2)))))))),[period],[24],200).

Simulation time: 0.66s
Violation degree 0.0878529
Satisfaction degree 0.919242
Time elapsed 1.13 s

Listing 3.6: Validity domain and satisfaction degree for ψ1 computed with Biocham on the toy
oscillator model defined in Appendix A.3 simulated with k1 = 1.1 and kdx = 0.1.

The rest of the landscape is divided in purple and black regions. The region in purple cor-
respond to low satisfaction degrees: for these parameter values the simulation traces exhibit
oscillations but their period is different from 24h. In the region in black, corresponding to small
values of k1 and high values of kdx, the satisfaction degree is null. It indicates that simulated
traces contain less than three peaks, such that oscillations can not be detected.

• ψ2(period) = φ9(period)
Objective: 24
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3.3. Illustration: parameter analysis of a toy oscillator model

ψ2 uses the mean between the last two peak-to-peak intervals to estimate the period. Hence,
any incorrect value due to the transitory irregularities after the initial values are avoided. For this
reason, the violation degree in Table 3.2 for kdx = 0.4 is greater than for ψ1. In the same manner,
the spurious satisfaction region on the landscape for ψ1 landscape in Figure 3.10 is filtered out for
ψ2. For instance, the satisfaction degree for the trace in Figure 3.11 becomes 0.15 for ψ2.

Although the landscape is more precise with ψ2, some simulations remain incorrectly scored.
For example, the evaluated satisfaction degree for the simulation with k1 = 0.52 and kdx = 0.46
is 0.97. The corresponding trace is plotted in Figure 3.12. The trace appears to contain only
two peaks at most, however more peaks are detectable with very small amplitudes, as seen in
Listing 3.7. In this listing the validity domains of three variables are computed: dist takes the
values of peak-to-peak intervals (encoded by φ8), period is the mean of the last two intervals
(encoded by φ9), and ampl extracts the left amplitudes of all peaks(encoded by φ6). In particular
the value of period is the result of ψ2 and is close to 24h, hence the high satisfaction degree.
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Figure 3.12: Simulation of the toy oscillator model with k1 = 0.52 and kdx = 0.46.

biocham: validity_domain(Exists([tmax1,tmax2],(tmax2-tmax1=dist)&F((d([X])/dt
>=0)&X((d([X])/dt<0)&(Time=tmax1)&((d([X])/dt<0) U ((d([X])/dt>=0)&((d([X])
/dt>=0) U ((d([X])/dt<0)&(Time=tmax2))))))))).

dist = 27.4605
|
dist = 20.5953
|
dist = 20.5953
|
dist = 22.9764
|
dist = 21.7027
Time elapsed : 40 ms

biocham: validity_domain(Exists([tmax],Exists([p1,p2,t1,t2],p1 = t2-t1 & p2 =
tmax - t2 & 2*period=p1+p2& F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t1 & (d
([X])/dt<0) U (d([X])/dt>=0 & (d([X])/dt>=0) U (d([X])/dt<0 & Time=t2 & (d
([X])/dt<0) U (d([X])/dt>=0 & (d([X])/dt>=0) U (d([X])/dt<0 & Time=tmax))))
))) & !(Exists([t],F((d([X])/dt>=0) & X(d([X])/dt<0 & Time=t)) & t>tmax))))
.

period = 24.0279
Time elapsed : 188 ms

biocham: validity_domain(Exists([m1],F(d([X])/dt< 0 & X( d([X])/dt >= 0 & [X]=
m1 & (d([X])/dt >= 0) U (d([X])/dt < 0 & [X]=m1+ampl))))).
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ampl = 1.04361e-14
|
...
|
ampl = 2.50334e-06
|
ampl = 0.000137424
|
ampl = 0.00846336
|
ampl = 1.13563
Time elapsed : 28 ms

Listing 3.7: Validity domains of several temporal logic patterns computed with Biocham on the
toy oscillator model defined in Appendix A.3 simulated with k1 = 0.52 and kdx = 0.46

• ψ3(period) = ∃(maxpeak,maxdiff, diffd)|
φ9(period) ∧ φ7(maxpeak, 40) ∧ φ11(maxdiff, 40) ∧ φ12(diffd, 40)
∧4 ∗ diffd < period
∧5 ∗maxdiff < maxpeak
∧maxpeak > 0.05

Objective: 24

The formula ψ3 combines the formula φ9, which estimates the period with the variable period,
with a variant of the formulae φ7 which stores in the variable maxpeak the greatest left amplitude
of the peaks occurring after the first 40h in the trace, and variants of the formulae φ11 and φ12
which compute in the variables maxdiff and diffd the greatest difference between, respectively, the
peak amplitudes and the peak-to-peak intervals in the variable, for peaks occurring after the first
40h.

These additional variables are not associated with objective values. Instead fixed constraints
are defined for these variables with comparison terms. For instance, the maximum difference
between two peak-to-peak intervals (diffd) have to remain lower than a quarter of the pseudo-
period (period). It any of these terms fails to be satisfied, the violation degree becomes +∞. This
way, irregular oscillations (for examples for kdx > 0.2 in Table 3.2) are assigned a null satisfaction
degree and are filtered out. It is easily visible on the corresponding landscape in Figure 3.10
(bottom left): some areas in the landscape become black, indicating irregular oscillations.

• ψ4(dist, diff1, diff2, ampl) = ∃(maxpeak, maxdiff, diffd, period)|
φ9(period) ∧ φ7(maxpeak, 40) ∧ φ11(maxdiff, 40) ∧ φ12(diffd, 40)
∧dist = (24− period)/10
∧4 ∗ diffd− period < diff1
∧10 ∗maxdiff−maxpeak < diff2
∧20 ∗ (0.1−maxpeak) < ampl

Objectives: 0, 0, 0, 0

The formula ψ4(dist, diff1, diff2, ampl) is a variant of ψ3(period) where, instead of setting fixed
constraints for diffd, maxpeak and maxdiff, additional variables are defined to measure quantitative
errors associated with these variables. These errors, stored in diff1, diff2 and ampl, are null if the
constraints on diffd, maxpeak and maxdiff are satisfied, and positive otherwise. The coefficients
defining diff1, diff2 and ampl are chosen in order to keep error values comparable.

Similarly, the variable period is replaced by dist, which measures a smaller error on the period
than the distance between period and the objective of 24h. The violation degree is the euclidean
distance between the evaluated errors, a single point domain in a four-dimensional space, and
the null error point (0, 0, 0, 0). The satisfaction degrees displayed on the landscape in Figure 3.10
result in a greater contrast and allow to distinguish several domains.
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The region at the bottom, in shades of yellow to pink, characterize regular oscillations. The
color gradient indicates a period increasingly far from the objective 24h when the value of kdx
increases. The region above, in purple, characterizes irregular oscillations that are assigned a
positive but smaller satisfaction degree.

While ψ3, by filtering out irregular oscillations, provides a more precise visualization of reg-
ular oscillation domains in the parameter space, ψ4 ensures a continuous and gradual violation
degree which is a more adequate for parameter calibration. Indeed, as one can see in Table 3.2,
regular oscillations with the wrong period have a better score than damped oscillations (see
kdx = 0.2 with contrast with kdx = 0.25), and damped oscillations have a better score than
simulations without oscillations (see kdx = 0.25 compared to kdx = 0.5). This score gradient is
useful to guide the parameter search toward the regions of regular oscillations.

3.4 Conclusion
Temporal logic provides a powerful language for describing the important properties of the
dynamical behavior of a biological systems. While curve fitting methods assume a precise speci-
fication of the dynamics given by a complete curve, it is possible with temporal logic formulae to
specify imprecise behaviors in a semi-qualitative semi-quantitative fashion.

The full first-order setting presented in this chapter makes it possible to extract interesting
information from numerical traces, e.g. on periods and phases of irregular oscillations, through
the computation of validity domains for the free variables of the formulae. In addition, these
validity domains can be used to define a continuous satisfaction degree in the interval [0, 1] for
temporal logic formulae, a score which can support parameter analysis of which can be combined
with powerful continuous optimization algorithms to search parameter values in high dimension.

In the next chapter we present dedicated solvers which speed-up the computation of validity
domains of the formula patterns presented here.
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4. Efficient solving
of FO-LTL(Rlin)
constraints

In the previous chapter, we have shown how First-Order Linear Time Logic (FO-LTL) can be used
for verifying complex dynamical properties on one or several simulated or experimental traces.
This chapter tackles the efficient use of temporal logic specifications.

Two aspects have to be addressed. First, FO-LTL formulae describing complex behaviors
are very long and writing them is error-prone. Moreover, the computation cost of solving such
verification problem has to be as small as possible, since each verification possibly has to be
evaluated hundreds or thousands of times in a calibration procedure.

Therefore we explore ways of improving the syntax and the solving efficiency of temporal
logic specifications.

4.1 Solving complexity
Constraints used in FO-LTL(Rlin) formulae are often bound constraints, i.e. constraints of the
form x ≤ c or x ≥ c where x is a variable and c a constant. They define Cartesian products
of intervals, which are a particular kind of polyhedra named boxes. In that case, the validity
domains are finite union domains of boxes, since they are obtained by intersection, union, com-
plementation and projection of boxes.

However, it is worth noticing that even in the case of bound constraints, the validity domain
of a temporal formula can contain an exponential number of polyhedra [Fages and Rizk, 2008].
Let us define the size of a finite union of boxes D, as the greatest integer k such that D =

⋃k
i=1Ri,

where the Ri’s are boxes.

Proposition 4.1 [Fages and Rizk, 2008] On a trace of length n, the validity domain of a FO-LTL(Rlin)
formula of size f containing v variables and only bound constraints, is a union of boxes of size less than
(nf)2v .

Proof 4.2 Let us consider the number of possible bounds appearing in the validity domainDφ of a formula
φ for a given variable x.

Let us first consider the case where φ is a bound constraint x ≤ c or c ≤ x. Such a constraint is
evaluated on each time point of the trace, by creating at most n different bounds for x. Hence the maximum
number of bounds for variable x is n times the number of occurrences of x in φ which is less or equal to
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n × f . Note that this maximum number of bounds is reached for the formula F ([A] = u ∨ [A] + 1 =
u ∨ · · · ∨ [A] + f = u) for instance.

Now, the validity domains for the logical connectives, quantifiers and temporal operators are defined by
union, intersection, projection and complementation operations, which do not create new bound values for
the variables.

As a box is a Cartesian product of intervals, it is defined by two bounds for each variable. With less
than n × f bounds per variable, one can thus form at most (nf)2v boxes. Therefore, the solution domain
computed by the algorithm is a union of boxes of size less than (nf)2v .

As for the tightness of these bounds, note that the following formula

F ([A1] = X1 ∨ [A1] + 1 = X1 ∨ ... ∨ [A1] + f = X1) ∧ ...

∧ F ([Av] = Xv ∨ [Av] + 1 = Xv ∨ ... ∨ [Av] + f = Xv)

has a solution domain of size (nf)v on a trace of n values for the [Ai]’s such that the values [Ai]+k
are all different for 1 ≤ i ≤ v and 0 ≤ k ≤ f .

In practice, the systematic use of the projection operation on the subdomain computed for
a subformula, in order to remove unnecessary variables for the rest of the formula dimensions,
ensures that the number of variables remains as low as possible. However, when formulae require
many variables to transcribe complex behaviors, the exponential cost of evaluating the validity
domains induces long or even intractable times.

4.2 Dedicated solvers for complex specifications
Defining and implementing specific functions to replace common complex patterns is useful for
achieving two goals:

• provide user-friendly macros to define a dynamical behavior for biologists who are not
familiar with temporal logic,

• assign to each pattern a more efficient solver than the generic solver, in order to speed up
the computation of validity domains and parameter search.

Temporal Operator Patterns
The first goal has been discussed in [Monteiro et al., 2008], who provide a list of proposed tem-
poral operator macros defined for operators that apply to one or several temporal logic formulae,
which we recall in Table 4.1.

This first step is however limited to simple temporal specifications.
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Behavior Formula Macro
Occurence of φ F(φ) Occurs(φ)
Exclusion G(¬φ) Excludes(φ)
Invariance G(φ) Invariates(φ)
Sequence: φ occurs before ψ F(φ ∧ F(ψ)) WeakSequence(φ,ψ)
Sequence: φ immediately before
ψ

F(φ ∧ X(ψ)) ExactSequence(φ,ψ)
Sequence: φ always occurs until
ψ

G(φU(ψ)) Sequence(φ,ψ)

Consequence: if φ then later ψ G(φ⇒ F(ψ)) Consequence(φ,ψ)
Implication: φ implies ψ at the
same time

G(φ⇒ ψ) Implication(φ,ψ)

Table 4.1: A list of macros proposed in [Monteiro et al., 2008] to replace some common operators
for temporal logic formulae

Temporal Logic Patterns
In the rest of this section, we generalize this approach to propose a list of relations (or predicates),
which specify some important behavior constraints by defining temporal logic relations between
a set of species of the model and a set of variables. To address the solving complexity issue, each
relation, defined as a user-friendly macro which can be used instead of an FO-LTL formula or
subformula, is associated with a dedicated solver implemented in Biocham.

We also relate each predicate to the equivalent FO-LTL formula, some of which have already
been introduced in Chapter 3. This allows us to compare the solving time with dedicated solvers
and with the generic solver. We first begin by commenting a few examples of relations and
comparing how the dedicated solver operate compared with the generic solver. We also show
how the defined relations can be combined inside an FO-LTL formula with the usual logical
operators to specify more complex behaviors.

Finally, we summarize in Table 4.2 to Table 4.5 the full list of specific temporal logic rela-
tions, implemented in Biocham as macros and associated with dedicated solvers, and provide the
equivalent FO-LTL(Rlin).

Defining validity domains with single values
A great advantage of temporal logic is its generic nature, that allows to express and evaluate any
dynamical property with a unique tool. By defining specific predicated associated with dedicated
solvers, we choose to sacrifice generality in an attempt to improve evaluation performance. The
choice of each predicate becomes a trade-off between specificity and generality: the evaluation
will be all the more efficient as it is specific, but at the same time it will only be usable in
specific cases. On the other hand, allowing the combination of semi-specific predicates widens
the expressivity and the number of cases where they can be useful.

This trade-off between generality and specificity in the choice of implementation can be il-
lustrated by going back to the reachability constraint φ1 = F(A ≥ v) defined in Example 3.2
in Chapter 3, whose validity domain is D = ]−∞,maxA]. Replacing this pattern with a specific
predicate could be done by defining:

• A macro reached(A,v)

• A validity domain: D = ]−∞,maxA] directly computed from the trace with a specific solver.

• The violation degree vd = max(0, v ∗−maxA) and robustness ro = max(0,maxA−v∗) could
also be directly computed from the trace with specific predicates, given the objective value
v∗. This would be more efficient than computing first the validity domain and then its
distance to the objective in the cases when the validity domain is not needed as well.
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Such a specific implementation reduces the capacity for combinations of validity domains,
and thereby the use of each defined relation. It would therefore require a long list of relations to
cover most frequent specifications. For example, the dual function to reached(A,v), satisfied when
the threshold is not reached, could be useful: unreached(A,v) with the complementary Validity
domain D = [maxA,+∞[.

Instead, we choose a more generic implementation, that computes validity domains directly
from the trace but still relies on computing a distance to obtain the violation and satisfaction
degrees, but returns results that can be easily combined. For reachability specifications, we define
the following relation max(molecule,value):

• Macro: max(A,v).

• Equivalent FO-LTL(Rlin) formula: G(A ≤ v) ∧ F(A = v).

• Dedicated validity domain: D = {maxA}, computed directly on the trace with algorithm 2
where Asi the value of A at the state si in the trace (s0, ..., sn) and maxA is the maximum
value of A on the trace.

Algorithm 2 Dedicated solver for max(A,v)
v ← As0
for i ∈ [1, n] do

if Asi > v then
v ← Asi

end if
end for

The reachability property can then be deduced with the following formula that combines the
predicate max(molecule,value) with an additional variable:

φ13 = ∃m|(max(A,m) ∧m ≥ v)

And the unreachability property uses the same function:

φ14 = ∃m|(max(A,m) ∧m ≤ v)

In Listing 4.1, the validity domain of the relation max(molecule,value) is computed on the
trace of the molecule X in the toy oscillator model introduced in Chapter 3 simulated with a
time horizon of 400h. In Listing 4.2, the relation max(molecule,value) is combined to specify a
reachability property, and the satisfaction degree is computed for two objective values: 3 and 10.
In the first case, the satisfaction degree is equal to 1 because the property is satisfied.

biocham: validity_domain(max([X],[v])).
v = 3.26102
Time elapsed : 4 ms

Listing 4.1: Evaluating with Biocham the validity domain of the relation max, computed with a
dedicated solver, on the model defined in Appendix A.3 simulated with a 400h time horizon

biocham: satisfaction_degree(Exists([m],max([X],[m]) & m >= v),[v],[3],400).
Simulation time: 0.52s
Violation degree 0
Satisfaction degree 1
Time elapsed 0.56 s
biocham: satisfaction_degree(Exists([m],max([X],[m]) & m >= v),[v],[10],400).
Simulation time: 0.52s
Violation degree 6.73898
Satisfaction degree 0.129216
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Time elapsed 0.56 s

Listing 4.2: Evaluating with Biocham the satisfaction degrees of a reachability property with
objective 3 or 10, computed with a dedicated solver for the relation max, on the model defined in
Appendix A.3 simulated with a 400h time horizon.

Example 4.3 Normalization of violation degree Combining specific functions with additional vari-
ables is useful not only to change the shape of the validity domain, but also to normalize the violation
degree of the formula with respect to the objective value. For example, the violation degree of φ14, evaluated
on the trace of A, which reaches its maximum maxA, with respect to the objective value of 10, is: vd =
10 −maxA. In comparison, the violation degree of the following formula will be in the interval [0, 1], as
shown in Listing 4.3, and easily comparable to other violation degrees:

∃(m)|(max(A,m) ∧m/10− 1 ≥ v)

Different normalizations can be chosen for specifications grouped in a combination to put more weight
on some properties compared to the others.

biocham: satisfaction_degree(Exists([m],max([X],[m])&(m-10>=val*10))
,[val],[0],400).

Simulation time: 0.52s
Violation 0.673898
Satisfaction degree 0.597408
Time elapsed 0.56 s

Listing 4.3: Normalize reachability with objective 10

The pattern amplitude(molecule,value) specifies the amplitude of the concentration of a molecule.
It is equivalent to the formula φ3 in Chapter 3.

• Macro: amplitude(A,a).

• Equivalent FO-LTL(Rlin) formula: ∃(v)|(G(A ≥ v ∧A ≤ v + a).
∧F(A = v) ∧ F(A = v + a))

• Dedicated validity domain: D = {amplA}, computed with algorithm 3,
where amplA = maxA−minA, with minA the minimum value of A on the trace.

Algorithm 3 Dedicated solver for amplitude(A,a)
.
max← As0
min← As0
for i ∈ [1, n] do

if Asi > max then
max← Asi

end if
if Asi < min then
min← Asi

end if
end for
a← max−min

The equivalent FO-LTL(Rlin) formula needs two variables to define the amplitude: the am-
plitude a and the minimal value of the molecule v. Therefore the validity domain computed with
the generic solver has two dimensions, and finding the possible values for the amplitude requires
a projection on the variable a, as shown on the figure 4.1. The dedicated solver directly computes
the one-dimension validity domain in one run.
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amplA 

v 

a 

minA maxA 

maxA 
amplA 

minA 

Generic solver Dedicated solver 

Figure 4.1: Comparing the validity domain solving procedures for amplitude(A,a). On the left, the
generic solver computes a combination of two-dimensional subdomains: the subdomain in blue
for the subformula G(A ≥ v∧A ≤ v+a), and the lines in black for the subformulae F(A = v) and
F(A = v+a), corresponding to the values of A in the trace. The single point (minA, amplA) at the
intersection, in red, is projected on the one-dimensional a-axis with the operator ∃. On the right,
the specific solver associated with the function amplitude(A,a) computes directly the amplitude on
the trace.

Variants of a relation
Some functions corresponding to dynamical behaviors are defined with several versions corre-
sponding to different amount of information related to the specification. For example, rather
than only specifying constraints on the maximum value of a trace, it can sometimes be useful to
constrain as well the time point where this maximum is reached. We therefore define a variant
of the function max previously introduced, that returns a two-dimensional validity domains
containing the time of the maximum as well as its value:

• Macro: max(A,v,t)

• Equivalent FO-LTL(Rlin) formula: G(A ≤ v) ∧ F(A = v ∧ Time = t)

• Dedicated validity domain: D = {(maxA, TmaxA)}

As another example, the relation distanceSuccPeaks(molecule,variables) returns the set of succes-
sive peak-to-peak intervals to estimate the pseudo-period of oscillating trace, and supports two
different callings. With three variables, it returns each interval value along with the correspond-
ing peak times. The algorithm corresponding to the dedicated solver is detailed in Algorithm 4,
and an example of application with Biocham is provided in Listing 4.4. However, since peak times
are usually not needed, calling the same relation with one variable executes the same algorithm
but returns only the interval values, which prevents the user from projecting the validity domain
to reduce its dimension.

• Macro: distanceSuccPeaks(A,d,t1,t2)

• Equivalent FO-LTL(Rlin) formula: t2− t1 = d

∧F((dAdt ≥ 0) ∧ X((dAdt < 0) ∧ (Time = t1)

∧((dAdt < 0)U((dAdt ≥ 0)∧
((dAdt ≥ 0)U((dAdt < 0) ∧ (Time = t2)))))))

• Dedicated validity domain: D = {(Ti+1−Ti, Ti+1, Ti), i ∈ [|1;n− 1|]}, where {Ti}n is the set
of local maxima times of the trace .
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Algorithm 4 Dedicated solver for distanceSuccPeaks(A,d,t1,t2)
D ← ∅
t← 0
for i ∈ [1, n] do

if dAsi

dt > 0 ∧ dAsi+1

dt ≤ 0 then
if t 6= 0 then
D ← D ∪ (Timesi − Timet, t, T imesi)

end if
t← Timesi

end if
end for

biocham: validity_domain(distanceSuccPeaks([X],[dist,t1,t2])).
t2 = 35.3191, t1 = 5.29792, dist = 30.0212
|
t2 = 60.0201, t1 = 35.3191, dist = 24.701
|
...
|
t2 = 371.486, t1 = 347.54, dist = 23.9457
|
t2 = 395.393, t1 = 371.486, dist = 23.9069
Time elapsed : 32 ms

Listing 4.4: Computing successive peak-to-peak intervals on the 400h-horizon simulation of the
model in Appendix A.3 with the dedicated solver in Biocham.

• Macro: distanceSuccPeaks(A,d)
• Equivalent FO-LTL(Rlin) formula: ∃(t1, t2)|(t2− t1 = d)

∧F((dAdt ≥ 0) ∧ X((dAdt < 0) ∧ (Time = t1)

∧((dAdt < 0)U((dAdt ≥ 0)∧
((dAdt ≥ 0)U((dAdt < 0) ∧ (Time = t2))))))))

• Dedicated validity domain: D = {Ti+1 − Ti, i ∈ [|1;n− 1|]}, where {Ti}n is the set of local
maxima times of the trace .

Combining relations
To compute the validity domain of a formula, the generic solver executes the procedure described
in Algorithm 1 in a bottom-up manner: it first computes the validity domain of each subformula
on each point of the trace, and deduces the whole validity domain on each point of the trace
by combining these subdomains. In contrast, dedicated solvers analyze the trace with specific
functions and compute directly the validity domain on the whole trace only. This main difference
makes dedicated solvers more efficient but prevents the combination of built-in functions with
temporal operators.

We first provide examples of efficient combinations without temporal operators. Then we
show how the implementation of dedicated solvers can be adapted to the combination with
temporal operators, by computing intermediary results for each point of the trace when it is
necessary.

Combination without temporal operators

As already shown in Example 4.3, the defined macros associated with dedicated solvers can easily
be combined with the logical operators ∧, ∨, ∃ and ∀ since they return validity domains that
support the same geometrical operations as validity domains computed with the generic solver.
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In particular, the operations of projection used to compute the maximum or minimum value
of a set of values returned as a validity domain can be applied as described in Example 3.8. For
instance, in Listing 4.5, distanceSuccPeaks is combined with the macro peak, introduced below and
solved with Algorithm 5, to extract the validity domain containing the concentration values of
the two successive peaks corresponding to the longest peak-to-peak interval in the trace.

• Macro: peak(A,t,v)

• Equivalent FO-LTL(Rlin) formula: F(dAdt > 0 ∧ X(dAdt ≤ 0 ∧ Time = t ∧A = v))

• Dedicated validity domain: D =
⋃

({(t′,m′)}, dAdt (t′-dt) > 0 ∧ dA
dt (t′) ≤ 0 ∧A(t′) = m′)

Algorithm 5 Dedicated solver for peak(A,t,v)
D ← ∅
for i ∈ [1, n] do

if dAsi

dt > 0 ∧ dAsi+1

dt ≤ 0 then
D ← D ∪ (Timesi , Asi)

end if
end for

biocham: validity_domain((Exists([t1,t2],
distanceSuccPeaks([X],[dist,t1,t2])
& !Exists([dist2],distanceSuccPeaks([X],[dist2]) & dist2>=dist)
& peak([X],[t1,v1]) & peak([X],[t2,v2]))).

v2 = 2.46786, v1 = 3.26102, dist = 30.0212
Time elapsed : 2364 ms

Listing 4.5: Computing the values of the successive peaks corresponding to the longest interval
in the trace from Figure 3.6 by combining relations the dedicated solvers in Biocham.

Evaluating the corresponding FO-LTL formula with the generic solver takes 3900ms. This
shows that dedicated solvers can bring a significant time gain to compute simple validity do-
mains, but when combining simple validity domains is necessary to obtain a more complex
solution, the largest part of the solving time, which is attributed to the combinations of subdo-
mains with geometrical operations, remains unchanged. In particular, the completion operation
triggered by ¬∃ operators is the most costly.

This limitation illustrates the trade-off between generality and specificity that we have tried to
find, by defining relatively simple dedicated solvers that can be combined together. Indeed only
a fully dedicated evaluation method can be really efficient for complex specifications, but would
suffer for reusability purpose from its high specifity.

Nonetheless, we can note that the semi-generic method proposed already brings a significant
gain, and provides a formula which is much simpler to use than the full FO-LTL formula.

Combination with temporal operator

Combining a temporal logic function with temporal operators (F, G, X, U and W) can sometimes
be useful. For instance, to extract all peak-to-peaks intervals from an oscillating trace, while
avoiding potential transitory irregularities due to the initial values, say before 70h in the trace,
one could use the following formula:

φ15(dist) = F (Time > 70 ∧ distanceSuccPeaks(X,dist))

In that case, the dedicated solver associated with distanceSuccPeaks has to compute the validity
domain on the first time point higher than 70 in a trace. Therefore in the implementation in
Biocham, each dedicated solver is computed on each point of the trace if it is used in combination
with a temporal operator, and only on the whole trace otherwise. Algorithm 6, rather than
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Algorithm 4, is then used to evaluate φ15. This amounts to executing Algorithm 4 for each point
on the trace in conjunction with Time>70, and the temporal operator F then computes the union
of all the computed validity domains.

Algorithm 6 Dedicated solver for φ15
D ← ∅
for i ∈ [n, 1] do

if Timesi > 70 then
Di1 ← Ω

else
Di1 ← ∅

end if
Di2 ← ∅
t← 0
for j ∈ [i, n] do

if
dAsj

dt > 0 ∧ dAsj+1

dt ≤ 0 then
if t 6= 0 then
Di2 ← Di2 ∪ (Timesj − Timet, t, T imesj )

end if
t← Timesj

end if
end for
D ← D ∪ (Di1 ∩Di2)

end for

The computation time to evaluate φ15 with Algorithm 4 on the toy oscillator model defined in
Appendix A.3, for a 400h-time horizon is 564 ms, while the computing time to evaluate distance-
SuccPeaks([X],[dist]) with Algorithm 6 on the same trace is only 12ms. The difference shows the
high cost of combining a relation associated with a dedicated solver with temporal operators. It
is even faster to use the generic solver alone, albeit in the same magnitude order: it takes 524ms
to evaluate the FO-LTL(Rlin) formula equivalent to φ15(dist).

Since discarding the first part of the trace is a frequent need when analyzing models with
uncertain initial values, an optional third argument has been implemented for dedicated solvers,
specifying that the dedicated solver should be computed only once, at the first point in the trace
after the value given in argument.

An equivalent formula for φ15(dist) is therefore distanceSuccPeaks([A],[dist],70), which is com-
puted on the same trace in 12ms with Algorithm 7.

Algorithm 7 Dedicated solver for distanceSuccPeaks([A],[dist],70)
D ← ∅
t← 0
i← mini(Timesi > 70)
for j ∈ [i, n] do

if
dAsj

dt > 0 ∧ dAsj+1

dt ≤ 0 then
if t 6= 0 then
D ← D ∪ (Timesj − Timet, t, T imesj )

end if
t← Timesj

end if
end for
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Relations without dedicated solver
In come cases, it is not possible to define a more efficient dedicated solver.

The pattern Macro: increasingSwitch(A,t,v1,v2) defines a concentration switch: it specifies that
concentration of the molecule A should increase from smaller than v1 to greater than v2 during a
time interval of length t.

• increasingSwitch(A,t,v1,v2)

• Equivalent FO-LTL(Rlin) formula: ∃(t1, t2)|G((Time ≤ t1⇒ A < v1) ∧ (Time ≥ t2⇒ A <
v2) ∧ v2 > v1 ∧ t2− t1 = t).

• Dedicated validity domain: D = {({t} × [A(t),+∞[ × ]−∞, A(t+ d)] , A(t + d) > A(t)},
computed with the generic solver.

The validity domain of this pattern is a set of polyhedrons delineating the possible concen-
tration values taken by the molecule and the time duration between the two values. Computing
this validity domain requires to compute each possible combination of values that the variables
(t,v1,v2) can take, which is exactly what the generic solver does. In that case, the function
increasingSwitch is a simple macro for the equivalent FO-LTL formula.

Replacing formulae for the analysis of the toy oscillator model
In Section 3.3, we used complex FO-LTL(Rlin) formulae to analyze how the dynamical behavior
of a toy oscillator model evolves when one or two of its parameters change.

We give here the equivalent formulae using specific relations. The full list of relations is
defined with the equivalent FO-LTL(Rlin formulae in Tables 4.2 to 4.5.

• The macro peakAmplitude(a) corresponds to φ6(a)

• The macro distanceSuccPeaks(d) corresponds to φ8(d)

• The macro period(p1, p2, t1, t2, tmax) corresponds to φ9(p1, p2, t1, t2, tmax)

• The macro distanceSuccPeaks(d) applied to two molecules corresponds to φ10(d)

• The macro maxDiffDistancePeaks(diff) corresponds to φ11(diff)

• The macro maxDiffAmplPeaks(diff) corresponds to φ12(diff)

• The macro periodErrors(dist,diff1,diff2,ampl) corresponds to ψ4(dist, diff1, diff2, ampl)

In particular, we define the function periodErrors for the complete characterization of a trace
oscillations performed with ψ4, in order to avoid the computing cost resulting from multiple
combinations.

Listings 4.6 and 4.7 compare the solving time for ψ4 on the 200h-trace of the molecule X from
the toy oscillator model with the default value kdx = 0.05, with the dedicated solver associated
with the function periodErrors or with an equivalent combination of other built-in functions.

biocham: validity_domain(
Exists([period],
periodErrors([X],[period,errordiffdist,errordiffampl,errorampl],40)
& 10*errordist=(24-period))).

10*errordist = 0.0961439, errorampl = 0, errordiffampl = 0, errordiffdist = 0
Time elapsed : 56 ms

Listing 4.6: Evaluating in Biocham the relation periodErrors on the 200h-trace of the molecule X
from the toy oscillator model defined in Appendix A.3, with the dedicated solver.
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biocham: validity_domain(
Exists([period,maxdiffampl,maxdiffdist,maxampl],period([X],[period])
& maxDiffAmplPeaks([X],[maxdiffampl],40)
& maxDiffDistancePeaks([X],[maxdiffdist],40)
& peakAmplitude([X],[maxampl]) & !(Exists([ampl2],peakAmplitude([X],[ampl2])

& ampl2>maxampl))
& errordiffdist > 4*maxdiffdist-period
& errordiffampl > 10*maxdiffampl-maxampl
& errorampl > 20*(0.1-maxampl)
& 10*errordist=(24-period))).

10*errordist = 0.0961439, errorampl > -31.334, 4*errordiffampl > -4.45487, 9*
errordiffdist > -218.862

Time elapsed : 472 ms

Listing 4.7: Evaluating in Biocham a combination of relations equivalent to the relation
periodErrors, on the 200h-trace of the molecule X from the toy oscillator model defined in
Appendix A.3.

Furthermore, the response curves displayed in Figure 3.9 can finally be computed with the
relatively simple command shown in Listing 4.8.

biocham: domains_parameter(kdx,[(0,0.5)],100,
{amplitude([X],[ampl],40),
maxDiffAmplPeaks([X],[diffampl],40),
distanceSuccPeaks([X],[dist],40),
period([X],[period])}
,[ampl,diffampl,dist,period],200,data_rc_kdx).

Listing 4.8: Command generating data for response curves.

This command performs 100 simulations with different values for the kinetic parameter kdx,
taken uniformly in the interval [0, 0.5], and stores the values of the validity domains of the vari-
ables ampl, diffampl, dist and period in the file data_rc_kdx.csv.

Computing gain

The next section explores a second approach for efficient solving of complex temporal specifica-
tions, and provides in Table 4.6 an illustration of the time gain obtained with dedicated solvers,
as well as with this second approach. The figures in this table come from the evaluation of
ten temporal logic patterns, including the list above, on the trace of the toy oscillator model
introduced in Chapter 3, simulated for a 200h or 400h-time horizon.

68



4.2. Dedicated solvers for complex specifications

Macro and behaviour Equivalent LTL(Rlin) formula

min(A,v):
Minimal value
D = {minA}

G(A ≥ v) ∧ F(A = v)

min(A,v,t):
Minimal value and time for the max
D = {(minA, TminA)}

G(A ≥ v) ∧ F(A = v ∧ Time = t)

max(A,v):
Maximal value
D = {maxA}

G(A ≤ v) ∧ F(A = v)

max(A,v,t):
Maximal value and time for the max
D = {(maxA, TmaxA)}

G(A ≤ v) ∧ F(A = v ∧ Time = t)

amplitude(A,a):
Amplitude
D = {amplA}

∃(v1, v2)|(G(A ≥ v1∧ ≤ v2)
∧F(A = v1) ∧ F(A = v2) ∧ a = v2− v1)

peak(A,t):
there exists a local maximum at a precise time
point
D =

⋃
({t′}dAdt (t′ − dt) > 0 ∧ dA

dt (t′) ≤ 0)

F(dAdt ≥ 0 ∧ X(dAdt < 0 ∧ Time = t))

peak(A,t,v):
there exists a local maximum at the time point
t with a value v
D =

⋃
((t′, v′)}/dAdt (t′-dt) ≥ 0 ∧ dA

dt (t′) < 0) ∧
A(t′) = v′)

F(dAdt ≥ 0 ∧ X(dAdt < 0 ∧ Time = t ∧A = v))

peak(A,t,v,a):
there exists a local maximum at the time point
t with a value v and an amplitude a
D =

⋃
((t′, v′)}/dAdt (t′-dt) ≥ 0 ∧ dA

dt (t′) < 0) ∧
A(t′) = v′)

∃([min])|
F((dAdt < 0) ∧ X(dAdt ≥ 0 ∧A = min

∧X((dAdt ≥ 0)U(dAdt < 0∧ Time = time∧A = v))))∧
v −min = a

IncrInterv(A,t1,t2):
Interval of increase
D = {(t1, t2) ∈ ]−∞;T1[ × ]T2; +∞[ /∀t ∈
[T1, T2] , dAdt (t) > 0}

F(d([A])/dt ≤ 0 ∧ X(d([A])/dt ≤ 0 ∧ Time = t1 ∧
(d([A])/dt ≤ 0)U(d([A])/dt ≤ 0 ∧ Time = t2))

IncreasingSwitch(A,t,v1,v2):
Concentration switch
D = {({t}×[A(t); +∞[×]−∞, A(t+ d)] /A(t+
d) > A(t)} computed with the generic solver

∃(t1, t2)|G((Time ≤ t1 ⇒ A < v1) ∧ (Time ≥ t2 ⇒
A < v2) ∧ v2 > v1 ∧ t2 − t1 = t)

Table 4.2: Specific relations defined with dedicated solvers, and equivalent FO-LTL(Rlin)
formulae
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Macro and behaviour Equivalent FO-LTL(Rlin) formula

DistancePeaks(A,d):
There should be two peaks of A distant by d
D = {di,j = Tj − Ti, i ∈ [|1;n|] , j ∈ [|i;n|]} where
{Ti} is the set of local maxima times of the trace

∃(t1, t2)|F(dAdt ≥ 0

∧X(dAdt < 0 ∧ Time = t1
∧X(F(dAdt ≥ 0

∧X(dAdt < 0 ∧ Time =t 2
∧(t2 > t1) ∧ (t2 − t1 = d))))))

DistancePeaks(A,B,d):
There should be a peak of A and a peak of B
distant by d
D = {TAj−TBi}with i ∈ [|1;n|] , j ∈ [|i;n|] where
{TAi} is the set of local maxima times for the
trace of A and {TBi} is the set of local maxima
times for the trace of B

∃(t1, t2)|F(dAdt ≥ 0

∧X(dAdt < 0 ∧ Time = t1))

∧F(dBdt ≥ 0

∧X(dBdt < 0 ∧ Time = t2
∧(t2− t1 = d)))

DistanceSuccPeaks(A,d):
There should be two successive peaks of A
distant by d
D = {Ti+1 − Ti, i ∈ [|1;n− 1|]} where {Ti} is the
set of local maxima times of the trace

∃(t1, t2)|(t2 − t1 = d)
∧F((dAdt ≥ 0) ∧ X((dAdt < 0) ∧ (Time = t1)

∧((dAdt < 0)U((dAdt ≥ 0)∧
((dAdt ≥ 0)U((dAdt < 0) ∧ (Time = t2))))))))

DistanceSuccPeaks(A,d,t1,t2):
There should be two successive peaks of A at
times t1 and t2 distant by d
D = {(Ti, Ti+1, Ti+1 − Ti), i ∈ [|1;n− 1|]} where
{Ti}n is the set of local maxima times of the trace

∃(t1, t2)|(t2 − t1 = d)
∧F((dAdt ≥ 0) ∧ X((dAdt < 0) ∧ (Time = t1)

∧((dAdt < 0)U((dAdt ≥ 0)∧
((dAdt ≥ 0)U((dAdt < 0) ∧ (Time =t 2))))))))

DistanceSuccPeaks(A,B,d):
There should be two successive peaks of A and
B distant by d
D = {TBj − TAi}|i ∈ [|1;n|] , j ∈ [|1;m|] , j =
minTBk>TAi

{k} where {TAi}n is the set of local
maxima times for the trace of A and {TBi}m is
the set of local maxima times for the trace of B

∃(t1, t2)|(t2 − t1 = d)
∧F((dAdt ≥ 0) ∧ X((dAdt < 0) ∧ (Time = t1)

∧((dBdt < 0)U((dBdt ≥ 0)∧
((dBdt ≥ 0)U((dBdt < 0) ∧ (Time = t2))))))))

DetailedSuccPeaks(A,t1,t2,m1,m2,dp,da1,da2):
There are two successive peaks at time t1 and t2
with levels m1 and m2, where dp is t2− t1, da1 is
|m1 −m2| and da2 is min(m1,m2)−min[t1,t2]M

∃([min, tmin,minpeak],
(m2 −m1 = da1|m1 −m2 = da1) ∧ da1 > 0
∧dp = p2 − p1 ∧minpeak ≤ m1 ∧minpeak ≤ m2

∧da2 = minpeak −min
∧(da2 = m1 −min|da2 = m2 −min)
∧F((dAdt ≥ 0) ∧ X(dAdt < 0 ∧A = m1 ∧ Time = p1
∧(dAdt ≤ 0)U(dAdt > 0 ∧A = min ∧ Time = tmin

∧(dAdt > 0)U(dAdt ≤ 0 ∧A = m2 ∧ Time = p2)))))

peakAmplitude(A,ampl):
There should be a peak of amplitude ampl
D = {ai}: the set of amplitudes of the local
maxima for the trace of A, defined as the
difference between the local maximum value
and the preceding local minimum value

∃(m1)|F(dAdt < 0 ∧ X(dAdt ≥ 0 ∧A = m1

∧(dAdt ≥ 0)U(dAdt < 0 ∧A = m1 + ampl)))

Table 4.3: Specific relations defined with dedicated solvers, and equivalent FO-LTL(Rlin)
formulae
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Macro and behaviour Equivalent FO-LTL(Rlin) formula

MaxDiffDistancePeaks(A,d):
The variation of successive peak-to-peak
distances for A should be smaller than d
D =

[
max(i)∈[|1,n|]|Ti+2 − 2 ∗ Ti+1 + Ti|,+∞

[
where {Ti} is the set of local maxima times of
the trace

∃(t1, t2, d1, d2)|(t2 > t1∧(d2−d1 = maxdiffdist|d1−
d2 = maxdiffdist) ∧maxdiffdist ≥ 0
∧F(dXdt ≥ 0 ∧ X(dXdt < 0 ∧ Time = t1

∧(dXdt < 0)U(dXdt ≥ 0

∧(dXdt ≥ 0)U(dXdt < 0 ∧ Time = t1 + d1))))

∧F(dXdt ≥ 0 ∧ X(dXdt < 0 ∧ Time = t2
∧(dXdt < 0)U(dXdt ≥ 0

∧(dXdt ≥ 0)U(dXdt < 0 ∧ Time = t2 + d2)))))
∧!(∃(t1, t2, d1, d2, d3)|(d3 > maxdiffdist
∧t2 > t1 ∧ (d2− d1 = d3|d1 − d2 = d3) ∧ d3 ≥ 0
∧F(dXdt ≥ 0 ∧ X(dXdt < 0 ∧ Time = t1
∧(dXdt < 0)U(dXdt ≥ 0

∧(dXdt ≥ 0)U(dXdt < 0 ∧ Time = t1 + d1))))

∧F(dXdt ≥ 0 ∧ X(dXdt < 0 ∧ Time = t2

∧(dXdt < 0)U(dXdt ≥ 0

∧(dXdt ≥ 0)U(dXdt < 0 ∧ Time = t2 + d2))))))

maxDiffAmplPeaks(A,d):
The variation of peaks amplitudes for A
should be smaller than d
D =

[
max(i,j)∈[|1,n|]2 |ai − aj |,+∞

[
where

{ai} is the set of amplitudes of the local
maxima for the trace of A, defined as the
difference between the local maximum value
and the preceding local minimum value

∃(t,m1,m2, a1, a2)|
((a2 − a1 = maxdiffampl ∨ a1 − a2 =
maxdiffampl) ∧maxdiffampl > 0
∧F((dXdt < 0) ∧ X(dXdt ≥ 0 ∧X = m1 ∧ Time = t

∧(dXdt ≥ 0)U(dXdt < 0 ∧X = m1 + a1
∧F((dXdt ≥ 0) ∧ X(dXdt ≥ 0 ∧X = m2 ∧ Time > t

∧(dXdt ≥ 0)U(dXdt < 0 ∧X = m2 + a2)))))))
∧!(∃(t,m1,m2, a1, a2, diff2)|
(diff2 > maxdiffampl
∧(a2 − a1 = diff2|a1 − a2 = diff2) ∧ diff2 > 0
∧F((dXdt < 0) ∧ X(dXdt ≥ 0 ∧X = m1 ∧ Time = t

∧(dXdt ≥ 0)U(dXdt < 0 ∧X = m1 + a1
∧F((dXdt < 0) ∧ X(dXdt ≥ 0 ∧X = m2 ∧ Time > t

∧(dXdt ≥ 0)U(dXdt < 0 ∧X = m2 + a2))))))))

maxDiffAmplSuccPeaks(A,d):
The variation of peaks amplitudes for A
should be smaller than d
D =

[
max(i)∈[|1,n|]2 |ai − ai+1|,+∞

[
where

{ai} is the set of amplitudes of the local
maxima for the trace of A, defined as the
difference between the local maximum value
and the preceding local minimum value

∃([max1,min1,max2,min2, ampl1, ampl2],
max1 −min1 = ampl1 ∧max2 −min2 = ampl2 ∧
(ampl2− ampl1 = d|ampl1− ampl2 = d)∧ diff > 0
∧F ((dAdt < 0) ∧X(dAdt ≥ 0 ∧A = min1

∧(dAdt ≥ 0)U(dAdt < 0 ∧A = max1 ∧ Time > 10

∧(dAdt < 0)U(dAdt ≥ 0 ∧A = min2

∧(dAdt ≥ 0)U(dAdt < 0 ∧A = max2)))))))
∧¬∃([d2], d2 > d∧
∃([max1,min1,max2,min2, ampl1, ampl2],
max1 −min1 = ampl1 ∧max2 −min2 = ampl2 ∧
(ampl2− ampl1 = d2|ampl1− ampl2 = d2)∧ d2 > 0
∧F ((dAdt < 0) ∧X(dAdt ≥ 0 ∧A = min1

∧(dAdt ≥ 0)U(dAdt < 0 ∧A = max1 ∧ Time > 10

∧(dAdt < 0)U(dAdt ≥ 0 ∧A = min2

∧(dAdt ≥ 0)U(dAdt < 0 ∧A = max2)))))))

Table 4.4: Specific relations defined with dedicated solvers, and equivalent FO-LTL(Rlin)
formulae
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Macro and behaviour Equivalent FO-LTL(Rlin) formula

period(A,p):
Mean of the last two peak-to-peak
intervals

∃(p1, p2, t1, t2, tmax)|(
p1 = t2− t1 ∧ p2 = tmax− t2 ∧ 2 ∗ period = p1 + p2
∧F((dAdt ≥ 0) ∧X(dAdt < 0 ∧ Time = t1

∧(dAdt < 0)U(dAdt ≥ 0

∧(dAdt ≥ 0)U(dAdt < 0 ∧ Time = t2

∧(dAdt < 0)U(dAdt ≥ 0

∧(dAdt ≥ 0)U(dAdt < 0 ∧ Time = tmax))))))

¬∃(t)|(F((dAdt > 0) ∧ X(dAdt ≤ 0 ∧ Time = t)) ∧ t > tmax)

period(A,p,d1,d2):
Mean of the last two peak-to-peak
intervals, maximal difference between
two successive peak-to-peak intervals,
maximal difference between two suc-
cessive amplitudes

period(A,p)
∧maxDiffDistancePeaks(A,d1)
∧MaxDiffAmplPeaks(A,d1)

phase(A,B,p):
Mean of the last two peak-to-peak
intervals between A and B

∃(p1, p2, t1, t2, tmax1, tmax2)|
(p1 = t2− t1 ∧ p2 = tmax2− tmax1 ∧ 2 ∗ phase = p1 + p2
∧F((dAdt > 0) ∧ X(dAdt ≤ 0 ∧ Time = t1

∧(dBdt ≤ 0)U(dBdt > 0

∧(dBdt > 0)U(dBdt ≤ 0 ∧ Time = t2

∧(dAdt ≤ 0)U(dAdt > 0

∧(dAdt > 0)U(dAdt ≤ 0 ∧ Time = tmax1

∧(dBdt ≤ 0)U(dBdt > 0

∧(dBdt > 0)U(dBdt ≤ 0 ∧ Time = tmax2))))))))

∧∀(t)|F((dBdt > 0) ∧ X(dBdt ≤ 0 ∧ Time = t)) ∧ t ≤ tmax2)

∧∃(t)|F((dBdt > 0) ∧ X(dBdt ≤ 0 ∧ Time = t)) ∧ t = tmax2)))

Table 4.5: Specific relations defined with dedicated solvers, and equivalent FO-LTL(Rlin)
formulae
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4.3 Trace simplification preserving temporal spec-
ifications

As explained in the introduction of this chapter, the usual computation of the validity domains
involves computing domains for each subformula on each point of the trace si. When dealing
with temporal data coming from numerical integration, especially of stiff systems, n can be very
high, which induces a high computational cost, O(nk), where k is the number of variables.

An efficient solution to this issue involves simplifying the numerical trace without changing
the generic domain solving algorithm. In particular for analyzing oscillating traces, one can take
advantage of the fact that most oscillations properties such as pseudo-period and pseudo-phase
rely only on local extrema values in the trace, while all other points can be neglected.

In this section we provide a series of trace simplifications which are correct to perform for
some common temporal logic formulae. We give general soundness theorems that indicate some
general conditions on the syntax of the formulae under which it is correct to keep only the time
points corresponding to the local extrema of the molecules in the trace, or the crossing points
between molecular concentrations, and apply this approach to period and phase constraints on
the toy oscillator model introduced in Chapter 3.

Speed-ups by several orders of magnitude are obtained by trace simplification, even when
produced by smart numerical integration methods (e.g. Rosenbrock’s implicit method), making
trace simplification comparable with specific solvers. Trace simplification can also be used in
combination with specific solvers, resulting in even more efficient model checking.

Trace Simplifications

Let us first define more precisely the formal framework for defining trace simplifications.

Definition 4.4 (Trace simplification) Let T be a finite trace (s0, . . . , sn) and φ an FO-LTL(Rlin) for-
mula with constraints over the states of T .

T ′ is a simplification of T for φ at i, written T ′ �iφ T if:

• T ′ = (sj0 , . . . , sjk) for J = {j0, . . . , jk} a subset of the indices {0, . . . , n} such that j0 < ... < jk,
i.e., T ′ is a subtrace of T ;

• DTsi,φ = DT ′sji ,φ, where ji is the smallest index in J such that ji ≥ i, i.e. the validity domains on T
at i and T ′ at ji are equal.

T ′ is a simplification of T for φ, written T ′ �φ T when it is a simplification of T at s0, i.e., DT,φ = DT ′,φ.
T ′ is a strict simplification of T for φ, written T ′ ≺ T if J ( {0, . . . , n}.
T ′ is an optimal simplification of T for φ if its cardinal is minimal in the set of the simplifications of

T for φ.

Property-driven reduction of the system under analysis is a technique that has been addressed
many times in the history of computer science. In the framework of abstract interpretation
[Cousot and Cousot, 1977], not only the states but also the transitions can be abstracted in a new
system for simplifying the analysis of some given properties. The definition above can be seen as
a particular instance of this framework where a subset of states on the trace is preserved without
abstraction, and the transitions are abstracted accordingly to this subset. This abstraction reflects
our motivation of computing exact validity domains for formula variables (no state domain
abstraction) more efficiently (transition abstraction).
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Examples
Most of the equations forDTsi,φ in Definition 3.1 are local, in the sense that they only need informa-
tion about the state at si. One obvious case of simplification is when the unions or intersections
involved in the domains for F, G and U can be computed on a strict subset of the points, some-
times even a singleton.

Since it will come up often in the following examples, let us define a simple subtrace contain-
ing all the local extrema and the initial point of the trace.

Definition 4.5 (Extrema Subtrace) Let T = (s0, . . . , sn) be a trace, T ex is the subtrace of T defined as
follows:

T ex = {si ∈ T | (dx/dt)i−1 > 0 ∧ (dx/dt)i ≤ 0}
∪ {si ∈ T | (dx/dt)i−1 < 0 ∧ (dx/dt)i ≥ 0} ∪ {s0}

We shall write T e =
⋃
x T

e
x

T e is shown in Figure 4.2 for two molecules.

Figure 4.2: Trace simplification by discarding the temporal points that are not local extrema for
at least one molecule

In the following examples, we present some of the FO-LTL(Rlin) formulae given in Chapter 3.
For each of these, we compute the corresponding validity domain and examine possible trace
simplifications.

Minimal Amplitude

Formula: φ = ∃v | F(A < v) ∧ F(A > v + a)

Validity Domain Let sminA and smaxA be the points of the trace where A is respectively mini-
mum and maximum.

DT,φ = Πa(DTs0,F(A<v) ∩ D
T
s0,F(A>v+a))

= Πa((

n⋃
i=0

DTsi,A<v) ∩ (

n⋃
i=0

DTsj ,A>v+a)) (*)

= Πa(DTsminA,A<v ∩ D
T
smaxA,A>v+a) (*)

Trace Simplification From the computation of the domain (equations marked with a (∗)), one
can see that both unions are actually equal to a single domain, only dependent on the maximal or
minimal value reached by A, and not on the other points of T . Therefore knowing the values of
sminA, smaxA leads to an optimal trace simplification TJ where J = {sminA, smaxA}.

Note that because of the semantic link between A and dA
dt , T eA contains sminA and smaxA

and therefore will result in the same unions in the computation of the domain, hence T eA is a
simplification of T for φ.
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Threshold

Formula: φ = F(Time > 20 ∧A < v)

Validity Domain Let T be a trace (s0, . . . , sn) and T>20 its subtrace on the points J = {0 ≤ i ≤
n | Timesi > 20}. As before, we chose some sminA>20

, a point where A is minimum on T>20.

DT,φ = DTs0,F(Time>20∧A<v)

=

n⋃
i=0

DTsi,Time>20∧A<v

=

n⋃
i=0

(DTsi,Time>20 ∩ DTsi,A<v)

=
⋃
i∈J
DTsi,A<v (*)

= DTsminA>20
,A<v (*)

Trace Simplification As shown by the marked equations, the single point {sminA>20
} is enough

to compute the big union of the domain, it defines an optimal trace simplification of T for φ.
Notice that T eA is not a simplification unless it does contain a local minimum such that Time >

20: if that is not the case, e.g. always increasing trace, sminA>20
will be the first state after Time =

20, which is not a local extremum.

Crossing

Formula: φ = F(A > B ∧ X(A ≤ B ∧ Time = t))

Validity Domain DT,φ =

n⋃
i=0

(DTsi,Asi
>Bsi

∩ (DTsi+1,Asi
≤Bsi

∩ DTsi+1,Time=t))

=
⋃

i∈{0,...,n}]|Asi
>Bsi

∧Asi+1
≤Bsi+1

{Timesi+1}

The computation above simply discards from the union the trace points where the intersection is
empty because one of the two first members is empty.

Trace Simplification Once again, for any trace T = (s0, . . . , sn), the validity domain is a big
union that can be restricted to the points of J = {i, i+1 ∈ {0, . . . , n}] | Asi > Bsi∧Asi+1 ≤ Bsi+1},
which defines a simplification TJ of T for φ. As in Example 4.3, T eA is not a simplification of T for
φ since it obviously misses the points at which Time has to be computed.

Peak

Formula: φ = F(dAdt > 0 ∧ X(dAdt ≤ 0 ∧ Time = t))

Validity Domain The reasoning is the same as for Example 4.3.

75



4. EFFICIENT SOLVING OF FO-LTL(RLIN) CONSTRAINTS

DT,φ = DTs0,φ =

n⋃
i=0

(DT
si,

dA
dt >0

∩ (DT
si+1,

dA
dt ≤0

∩ DTsi+1,Time=t))

=
⋃

i∈{0,...,n}]|( dA
dt )si>0∧( dA

dt )si+1
≤0

DTsi+1,Time=t

=
⋃

i∈{0,...,n}]|( dA
dt )si>0∧( dA

dt )si+1
≤0

{Timesi+1
}

Trace Simplification As above, for any trace T = (s0, . . . , sn), J = {i, i+1 ∈ {0, . . . , n}] | dAdt si >
0 ∧ dA

dt si+1
≤ 0} defines a simplification TJ of T for φ.

Note that T eA is also a simplification of T for φ since it contains all i + 1 at which Asi is used
and a predecessor with the right sign of the derivative, either s0 or a local minimum preceding
the peak. Note also that |T eA| ≤ |TJ |+ 2 since there can be one local minimum more than there are
peaks, plus the origin s0. Tj and T eA are shown in Figure 4.3.

TJ TeA

Figure 4.3: Trace simplifications Tj (left) and T eA (right).

Period

Formula: φ =∃(t1, t2) | p = t2 − t1 ∧ t1 < t2

∧ F(
dA

dt
> 0 ∧ X(

dA

dt
≤ 0 ∧ Time = t1))

∧ F(
dA

dt
> 0 ∧ X(

dA

dt
≤ 0 ∧ Time = t2))

∧ ¬∃t3 | t1 < t3 < t2 ∧ F(
dA

dt
> 0 ∧ X(

dA

dt
≤ 0 ∧ Time = t3))

φ encodes the fact that t1 and t2 are peaks, with no peak in between.

Trace Simplification One can notice that the domain is formed by the same kind of union as in
Example 4.3, repeated three times, and under top-level projections/intersections/complementa-
tions. Now, remark that a simplification for the formula of Example 4.3 will, by definition, allow
to compute correctly the domains for all three Fformulae, and therefore is a simplification for the
compound φ. This is a special case of Theorem 4.6 detailed in the next section.

It follows that TJ of Example 4.3 and T eA are simplifications of T for φ.
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Equivalent Formula:

φ = ∃(t1, t2) | p = t2 − t1 ∧ F(
dA

dt
> 0 ∧ X(

dA

dt
≤ 0 ∧ Time = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ Time = t2)))))

Validity Domain Note first that the validity domain of the subformula ψ = dA
dt > 0 ∧ ((dAdt >

0)U(dAdt ≤ 0 ∧ Time = t2)) is computed at each time point si like this:

DTsi,ψ = DT
si,

dA
dt >0

∩
n⋃
j=i

(DT
sj ,

dA
dt ≤0∧Time=t2

∩ (

j−1⋂
k=i

(DT
sk,

dA
dt >0

))

Since DT
si,

dA
dt >0

is either empty or equal to the whole space when dA
dt si

is respectively negative or

strictly positive, it holds that DT
si,ψ

is empty if dAdt si ≤ 0, otherwise:

DTsi,ψ =

n⋃
j=i

(DT
sj ,

dA
dt ≤0∧Time=t2

∩ (

j−1⋂
k=i

(DT
sk,

dA
dt >0

))

=

n⋃
j=i

(DT
sj ,

dA
dt ≤0

∩ DTsj ,T ime=t2 ∩ (

j−1⋂
k=i

(DT
sk,

dA
dt >0

))

=
⋃

j∈{i,...,n}|( dA
dt )sj≤0∧∀k∈{i,...,j−1},(

dA
dt )sk>0

DTsj ,Time=t2

=
⋃

j∈{i,...,n}|( dA
dt )sj≤0∧∀k∈{i,...,j−1},(

dA
dt )sk>0

{Timesj}

This union is in fact restricted to the first point sj after siwhere dA
dt is no longer strictly positive.

With the same reasoning, the validity domain for the whole formula becomes:

DT,φ =

n⋃
(i,j)∈P

{Timesj+1
− Timest+1

}

where P is the set of pairs of successive peaks:

P = {(i, j) |(dA
dt

)si > 0 ∧ (
dA

dt
)si+1

≤ 0 ∧ (
dA

dt
)sj > 0 ∧ (

dA

dt
)sj+1

≤ 0

∧ ¬∃i < k < j | (dA
dt

)sk > 0 ∧ (
dA

dt
)sk+1

≤ 0}

T eA is a simplification of T for φ since it contains all the peaks of the trace.

General Simplification Results
Example 4.3 shows that if one can simplify subformulae, one might obtain a simplification for the
whole formula. Indeed, with some hypotheses, the patterns described in the previous section can
actually be composed.

The first theorem simply notices that if the highest-level temporal subformulae have a simpli-
fication, it also holds for the compound formula.
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Theorem 4.6 Let T be a trace containing a state si, φ and ψ two formulae and T ′ such that T ′ �iφ T and
T ′ �iψ T . Then T ′ �iµ T for µ equal to

φ ∧ ψ or φ ∨ ψ or ¬φ or ∃xφ or ∀xφ

Proof 4.7 We have DTsi,φ = DT ′sji ,φ and the same for ψ, therefore DTsi,φ∧ψ = DTsi,φ ∩ D
T
si,ψ

= DT ′sji ,φ ∩
DT ′sji ,ψ = DT ′sji ,φ∧ψ and the same for the other operators.

Note that it is not true that if T ′ is a simplification for φ and T ′′ a simplification for ψ, then
the union of the points in T ′ and T ′′ defines a simplification for φ ∨ ψ: indeed, adding points
to a simplification can invalidate it, for instance if the formula contains X. Now, remark that if a
subtrace contains extreme domains, it is a simplification for Fand G:

Theorem 4.8 Let T = (s0, . . . , sn) be a trace, φ a formula and T ′ = TJ a substrace of T such that:
∀j ∈ J, T ′ �jφ T and ∀0 ≤ i ≤ n, ∃j ∈ J, DTsi,φ ⊂ D

T ′

sj ,φ
(resp. DTsi,φ ⊃ D

T ′

sj ,φ
) then: T ′ �Fφ

T (resp. T ′ �Gφ T )

Proof 4.9 We have, ∀0 ≤ i ≤ n, DTsi,φ ⊂ D
T ′

sj ,φ
it follows that

⋃n
i=0DTsi,φ ⊂

⋃
j∈J DT

′

sj ,φ
. The other

inclusion is immediate since J is a subset of the indices {0, . . . , n} and we have simplification for φ at those
indices. The result for Gis obtained similarly.

Dφ= { s < max[A] }Dφ = { s < max[A] }

φ = F( [A] > s )

Figure 4.4: Illustration of Theorem 4.8 for the FO-LTL formula φ = F([A] > s).

Consider now the case of formulae without free variables, their domain is either empty or full,
which can be taken advantage of:

Corollary 4.10 Let T = (s0, . . . , sn) be a trace, φ a formula, c a constraint without free variables and
Jc be the subset of indices defined by Jc = {0 ≤ i ≤ n | si |= c}. If ∀i ∈ Jc, TJc �iφ T then
TJc �F(c∧φ) T and TJc �G(¬c∨φ) T

Proof 4.11 Let us prove the result for F, then Thm. 4.6 can give it for G. We will simply apply the above
theorem to c ∧ φ. The first hypothesis of Thm. 4.8 is satisfied by TJc since TJc �iφ T ⇒ TJc �ic∧φ T . For
the second hypothesis, it is enough to notice that if i 6∈ Jc then DTsi,c∧φ = DTsi,c ∩ D

T
si,φ

= ∅.

Note that in general it is not easy to simplify the validity domain computing procedure for a
pattern F(φ ∧ ψ). On the contrary DT,F(φ∨ψ) = DT,F(φ)∨F(ψ), which can benefit from Theorem 4.6.

In many cases it is worth noticing that T eA satisfies the hypothesis of Thm. 4.8 for any formula
F(dAdt > 0 ∧ X(dAdt ≤ 0 ∧ c)).

Proposition 4.12 Let φ = F(dAdt > 0 ∧ X(dAdt ≤ 0 ∧ c)) be a formula, T eA �φ T
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4.3. Trace simplification preserving temporal specifications

Proof 4.13 We will apply Thm. 4.8. First note that for any extremum j in T eA we have T eA �
j
φ T . Indeed,

s0 is in T eA but will not be used to compute Dc, on the other hand it ensures that even the first extremum
does have a predecessor of the correct sign for the derivative. Now, notice that DTsi,φ will be empty at
each point not a predecessor of a state of T eA. At those points the domain on T is the same as that at the
preceding extremum (or s0 for the first) on T eA. This enforces the inclusion needed for the second hypothesis
of Thm. 4.8.

Taken together, these results prove all the simplifications of the previous examples except
the second formula of Example 4.3, which is a deeply nested formula with U that relies on the
semantics of the Time variable. In this example it is easier to prove the simplification for the first
formula, which is equivalent since it returns the same validity domain.

With the same reasoning, it is possible to prove that simplifying a trace with the extrema sub-
trace does not change the values of validity domains for all the temporal specifications patterns
defined in Tables 4.2 to 4.5, except some that do not characterize the shape of the oscillations:
incrInterv and IncreasingSwitch.

If the optional transitory time argument is used, the pattern amplitude([A],[a],T) additionally
fails to support this trace simplification, since the first point considered in the trace, ie. the first
point after time T, can also appear in the result but would not be selected in the simplified trace.

Evaluation of trace simplification
The trace simplification that keeps only local extrema has been implemented in Biocham under
the command set_simplification_trace(extrema). After this command has been set and
at the first call of a validity domain solving on a trace, the optimal extrema trace simplification
is computed: only local extrema of the molecules that appear in the temporal logic formula are
kept in the simplified trace, along with the first and last points of the initial trace. If another
temporal logic specification is called later on the same simulation, the trace simplification is not
recomputed unnecessarily: it is updated only in the case where another molecule is involved in
the specification.

Table 4.6 illustrates the time gain in solving temporal specifications with trace simplification.
Ten temporal logic patterns were evaluated on the trace of the toy oscillator model introduced in
Chapter 3, simulated for a 200h or 400h-time horizon. Each specification corresponds to a specific
function described in Tables 4.2 to 4.5.

The trace simplification keeps only the local extrema of the molecules involved in the formula:
only X for all cases except for computing phase([X,Y_cyto]) on the last row of the table.

18 points are selected out of 342 for a 200h time horizon when X is the only molecule involved
in the speficiation. This simplification takes less than 1ms. For a 400h time horizon, the trace is
simplified from 672 points to 35 points in about 4ms. When the two molecules X and Y_cyto are
necessary to evaluate the specification (last row), 34 points out of 342 are kept for a 200h time
horizon, and 68 out of 672 for a 400h time horizon. The simplification always takes less than 8ms.

It is clear from the times in the Table that both trace simplification and dedicated solvers pro-
vide a significant gain of time, sometimes with several orders of magnitude. For example, for the
relation amplitude([X],[a]) the generic solver is particularly inefficient and both trace simplification
and dedicated solvers result in a correct evaluation in a time more than 103-fold shorter than
the generic solver. The relation periodErrors([X],[p,e1,e2,e3]), which requires the evaluation of four
variables, each corresponding to complex behaviors, is so long to evaluate with the generic solver
that the computing time on the 400h-trace (672 points) could not be identified with Biocham
before the program was automatically killed. In this case, although simplifying the trace reduces
significantly the computation cost, only the dedicated solver brings a really efficient evaluation.

With this improvement, it is now possible to apply temporal logic constraints in methods
that require numerous simulations and evaluations, such as parameter optimization. Continuous
models can thus be calibrated to satisfy flexible constraints on dynamical behaviors.
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Table 4.6: Computing time (in ms) for the validity domain of different formula patterns.
Comparison between the trace simulated for 200h and 400h, before (Bef.) and after (Aft.)
simplification, with generic or specific solver. The missing time for Amplitude is due to the fact
that trace simplification is not supported by the FO-LTL(Rlin) formula equivalent to the relation
Amplitude(Mol,a,Time). The missing time for PeriodErrors is due to a too long evaluation: the
program is killed before the result can be returned.

200h 400h
Formula Solver Bef. Aft. Bef. Aft.

Max([X],[m]) generic 6212 8 44207 24
specific 4 0 8 0

Amplitude([X],[a]) generic 24029 16 176143 56
specific 4 0 4 0

Amplitude([X],[a],30) generic 23789 16 177127 -
specific 4 4 4 0

DistancePeaks([X],[d]) generic 392 20 4368 228
specific 8 4 40 28

DistanceSuccPeaks([X],[d]) generic 188 12 460 24
specific 8 0 12 0

DistanceSuccPeaks([X],[d],50) generic 200 8 488 28
specific 4 0 12 0

Period([X],[p]) generic 916 48 2628 140
specific 4 0 12 0

MaxDiffAmplPeaks([X],[d]) generic 3016 152 41994 2208
specific 12 0 40 0

PeakAmplitude([X],[a]) generic 116 4 212 12
specific 20 0 36 0

PeriodErrors([X],[p,e1,e2,e3]) generic 30149 1584 - 33854
specific 12 4 40 4

Phase([X,Y_cyto],[p]) generic 1048 96 2552 248
specific 8 0 20 0

Moreover, we have performed this comparison with trajectories simulated with Rosenbrock’s
implicit method for numerical integration, which results in relatively sparse simulation traces.
In some cases, for example when continuous models are extended with discrete events, stiffer
integration methods can be needed and produce traces with many more points. The improvement
brought by trace simplification in that case is even more significant.

4.4 Trace simplification for selecting main peaks
We have seen so far that temporal logic patterns provide an elegant way to extract meaningful in-
formation from numerical traces, obtained from simulations or experiments. However, temporal
specifications used to capture oscillatory characteristics such as period and phase depend heavily
on local peaks and troughs. It allows the drastic trace simplification defined in Section 4.3, but on
the other hand it makes them very vulnerable to irrelevant peaks that might appear in the trace
and distort the result.

In particular, such sensitivity to noise in the trace is often a problem when treating experimen-
tal traces, where noise is much heavier than in simulation trajectories.

When performing experimental traces processing, an obvious solution is brought by data
preprocessing to fit oscillating patterns such as sinusoid to the experimental trace. However,
this preprocessing relies on assumptions on the expected shape of the processed trace.

In the case of simulation traces, the best solution is usually to merely neglect "small" peaks
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4.4. Trace simplification for selecting main peaks

which are irrelevant. We therefore define a new trace simplification Tm as a subtrace of the
extrema trace Te defined in Definition 4.5, that selects the main peaks of the trace, based on their
amplitudes as described in the following selection procedure and illustrated in Figure 4.5:

• In the list of peaks in the trace, compare each pair of successive peaks.

• The "right amplitude" AmplR of the first peak is computed as the difference between the
value of the peak and the value of the first following point where the trace increases again.

• The "left amplitude" AmplL of the second peak is also computed as the difference between
the value of the peak and the value of the next point where the trace increases again.

• If one of the values is smaller than the other one multiplied by a coefficient C, the corre-
sponding peak is discarded. Thus, if AmplR < C ∗ AmplL, the first peak is discarded. If
C ∗ AmplR > AmplL, the second peak is discarded. The conserved trough is point where
the trace reaches its minimum between the two. If none of these conditions is True, both
peaks are kept.

AmplR 

AmplL 

1 2 3 

Comparing peaks 1 and 2: discard peak 2 

AmplR 
1 3 

AmplL 

Comparing peaks 1 and 3: keep both 

Figure 4.5: Selecting the main peaks in a trace with three peaks, with a coefficient C = 2: the first
two peaks are first compared, and the second one is discarded. The first peak is then compared
to the third and both are conserved in the simplified trace.

Thus this trace simplification keeps only the local minima and maxima corresponding to the
main peaks and troughs in the trace.

This trace simplification is implemented in Biocham with the following command that allows
the user to set the desired coefficient:

set_simplification_trace(mainpeaks,Coefficient).
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Figure 4.6: Example of a simulated trace from a model of coupling between the cell cycle and
the circadian clock defined in Section 5. Peaks captured for two molecules (red and blue) with
temporal logic specifications are marked with vertical dashed lines. On the left panel, no trace
simplification is applied. On the right panel, the trace is simplified to select the main peaks with
a coefficient C = 2.

Application to data analysis
We show here how the trace simplification selecting the main peaks in a trace can be useful for the
analysis of experimental time series. Specifically, we aim at analyzing single-cell fluorescent data,
produced by the lab of Franck Delaunay in Nice and used in [Feillet et al., 2014], that we obtained
through a collaboration. The set of data is composed of 627 single-cell time series recording three
fluorescent markers in NIH3T3 mouse fibroblasts during 72h. An example of time series can be
seen in Figure 4.7 (dashed colored curves). The marker in red characterizes the G1 phase of the
cell cycle, the one in green indicates the S/G2/M phases of the cell cycle, and the blue marker
reflects the circadian clock rhythm.

The multiple-molecule trace is imported in Biocham after a basic curve smoothing (black
dashed curves in Figure 4.7), and the following command is used to extract all peaks of the trace.

biocham: validity_domain(peak([marker1],[peak1,])).
biocham: validity_domain(peak([marker2],[peak2,])).
biocham: validity_domain(peak([marker3],[peak3,])).

The extracted peaks are indicated in Figure 4.7 (top panel) with dashed vertical lines. On this
noisy data, spurious local maxima appear even after the curve smoothing and would result in
incorrect estimations of important data characteristics such as the periods or phase relationships.

In Figure 4.8, peaks are selected with the same command preceded by the following setting:
set_simplification_trace(mainpeaks,2).
All spurious peaks are filtered out, and most of the important peaks are still selected.

The following command is then used to extract peak-to-peak intervals as estimations of the
period of each marker, on all time series of the data set:

biocham: set_simplification_trace(mainpeaks,2).
biocham: validity_domain(Exists([t1,t2,amp1,amp2],
distanceSuccPeaks([marker1],[period1,t1,t2])
& peakAmplitude([marker1],[t1,ampl1]) & peakAmplitude([marker1],[t2,ampl2])
& ampl1>1 & ampl2>1)).
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Figure 4.7: Example of an experimental trace from fluorescent cell-tracking for three markers
(red, blue, green). Each trace is first preprocessed with a basic curve smoothing (black dashed
lines). Extracted peak times are marked with vertical dashed lines.
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Figure 4.8: On this trace from Figure 4.7, peaks selected with the trace simplification procedure
with a coefficient C = 2 are marked with vertical dashed lines.
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An additional constraint in this formula ensures that peaks have an amplitude higher than 1,
in order to avoid selecting peaks in some experimental traces where the overall amplitude is too
low because there was no significant signal.

The distributions of peak-to-peak intervals measured on the whole data set are displayed in
Figure 4.9. Although still slightly noisy, all three distributions exhibit a clear peak close to 20h,
hence providing a reasonable estimation of the period for the rhythms of the cell cycle and the
circadian clock in the cells.

Periods for S/G2/M Periods for RevErb-α Periods for G1 

Figure 4.9: Distribution of periods captured from 627 experimental traces with temporal logic
specifications after a trace simplification keeping only the main peaks with a coefficient C = 2.

4.5 Conclusion
Two approaches have been explored in this chapter to improve the performance in evaluating
dynamical properties, with a focus on oscillatory properties: first-order patterns of formulae de-
fined as relations associated with efficient dedicated constraint solvers, and a trace simplification
procedure that abstracts the underlying data while preserving the results of analysis.

Both strategies attempt to find a compromise between generality and specificity in order to
improve performance while being useful in as many situations as possible. In this perspective, the
rich list of defined relations and affiliated dedicated solvers, and the possibility to combine them,
allow to express diverse and complex dynamical properties regarding oscillatory behaviors.

Moreover, we have given some general conditions on the syntax of the formulae under which
it is correct to keep in the trace only the time points corresponding to the local extrema of the
molecules, or the crossing points between molecular concentrations. Although a tool allowing to
automatically detect the compliance of a formula to these conditions would be useful and is still
lacking, the trace simplification keeping local extrema in the trace is at least supported by all the

84



4.5. Conclusion

relations defined in Tables 4.2 to 4.5, except incrInterv, IncreasingSwitch, and amplitude when this
last one is used with a third argument.

Both approaches facilitate the use of temporal logic by modelers, and its implementation in
computational systems biology tools. The evaluation of complex dynamical behaviors on long
traces is sped up by several orders of magnitude. With this improvement, it is now possible to
apply temporal logic constraints in methods that require numerous simulations and evaluations,
such as parameter optimization.
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5. Application to the
coupling between the
cell cycle and the
circadian clock

5.1 Introduction

Oscillatory systems in systems biology
The interest for oscillatory systems and the underlying circuits is of a prime position in systems
biology. Indeed oscillations are a striking emerging property of biochemical networks, which
also benefits from dedicated methods in the dynamical systems field. Depending on different
conditions, such as binding affinity, degradation speed and temporal delays, the behavior of a
certain network may differ, displaying oscillations or not, exhibiting different phase-times and
complex behaviors such as harmonic behavior.

In contrast with physics, the notion of oscillation in biology is usually understood informally
and in a wider scope. In wet experiments, oscillatory behaviors can be found with decreasing or
increasing amplitude, and oscillations can be partly hidden in noisy time series. The calibration
of oscillatory models on experimental data needs to focus on the most relevant properties, such
as period and phase constraints, with flexibility on the value precision and other properties such
as amplitude.

Robustness and flexibility
Different conditions and a diverse amount of interconnected processes have to be taken into
account in order to explain properties of oscillatory systems. This makes computational and
mathematical methods and analyses complex.

A number of general rules that enable and further facilitate oscillations in a mathematical
model have been revealed by theoretical analysis [Novák and Tyson, 2008]. A negative feedback
is the first requirement, in order to link the end of a cycle to its starting point, and the negative-
feedback signal must be sufficiently delayed in time to avoid a steady state. This delay may be
present in different forms. Most frequently, combinations of activating and inhibiting processes
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apply a delay, and longer negative feedback loops are indeed more prone to oscillations than
shorter ones. An additional feedback loop is another mechanism that can delay the negative-
feedback signal. Not only does it facilitate the generation of oscillations, it can also bring ro-
bustness to the system[Gérard et al., 2012]. Another requirement for oscillations is a sufficient
nonlinearity in the kinetic rate laws of the reaction mechanism. Indeed, nonlinear kinetics desta-
bilize the steady state and in particular switch-like, ultrasensitive response functions within the
negative feedback loop promote oscillations. Finally, the opposing reactions involved in the cycle
must also occur on appropriate timescales.

The cell cycle and the circadian clock are two major cellular rhythms. The complexity of both
systems and the number of regulators linking them to other physiological processes are such that
there still remain many details to discover or refine. Nonetheless, the main interaction loops
governing each rhythm have long been the subject of various fruitful modeling studies.

Circadian clock
Most organisms have developed an internal clock with a near 24-hour periodicity, allowing them
to optimally tune metabolic, physiological, and behavioral functions such as the sleep-wake-
phases succession, body temperature, blood pressure, hormone levels, to the needs they have at
specific times during the day. Such circadian (from circa diem: "approximately one day") rhythms
are defined by their persistence in the absence of any environmental cue (and are therefore self-
sustained), their temperature-independence and their close approximation to the period of the
earth’s rotation [Pittendrigh, 1960]. Circadian clocks are found across all three kingdoms of life
and are thought to have evolved multiple times during evolution [Dunlap et al., 1999]. A driving
force for their apparition could be to segregate incompatible processes to different times of the
day. For example, in the Cyanobacterium Oscillatoria, nitrogen fixation and photosynthesis,
which are incompatible processes, are temporally separated by the circadian clock allowing both
processes to occur in the same cell [Stal and Krumbein, 1987].

In mammals, the circadian clock relies on autonomous oscillators active in most cells of the or-
ganisms. A central clock in the suprachiasmatic nucleus (SCN) is sensitive to light and entrained
by the day-night alternation. It synchronizes molecular clocks in peripheral tissues by hormonal
signals (see Figure 5.1).

It has been shown that in absence of synchronization by a central clock, autonomous circa-
dian oscillators are maintained in peripheral tissues with the same period, although they are
progressively desynchronized [Yoo et al., 2004]. This has been confirmed in cultured cells from
the standard mouse embryonic fibroblast cell line NIH3T3, first in [Nagoshi et al., 2004] and then
in [Bieler et al., 2014] and [Feillet et al., 2014]. In each of those studies, confluent fibroblasts have
a circadian clock period close to 24h regardless of the medium concentration.

The circadian oscillator is composed of several intertwined post-transcription feedback loops,
with time delays characterized by intermediary reactions such as phosphorylations and complex
formations, and their kinetic parameters.
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Figure 5.1: Schema of the central circadian clock in the SCN, and peripheral clocks, from
[Bollinger and Schibler, 2014].

Previous view of the coupling between the cell cycle and the
circadian clock
Integration of multiple molecular processes is fundamental to the living cell, and biochemical
networks are commonly coupled with other molecular processes or external stimuli. It is not
surprising that the cell cycle and the circadian clock, which are both periodic processes with a 24h
period under some conditions, are coupled together. The "flight-from-light" hypothesis explains
the temporal regulation of cellular divisions as a mechanism to avoid UV exposure during the
process of DNA replication, when cells are most sensitive to UV.

Moreover, uncontrolled cell proliferation is one of the key features leading to cancer. Seminal
works in chronobiology have revealed that disruption of the circadian timing system in mice,
either by surgical, genetic, or environmental manipulation, increased tumor development. In
humans, shift work is a risk factor for cancer. The toxicity and efficacy of many chemotherapeutic
agents has been shown to depend on the time of administration [Lévi and Schibler, 2007]. This
has triggered the design of chemo- and radiotherapeutical protocols, referred to as chronother-
apy, that take into account the presence of the circadian system and deliberately make use of
chronotoxic effects of radiation and pharmaceutica [Levi et al., 2007].

Experimental results have shown a regulation of the cell division cycle by the circadian clock [Mat-
suo et al., 2003, Barnes et al., 2003, Ünsal-Kaçmaz et al., 2005, Hong et al., 2014], with possible
applications to cancer chronotherapies [Ballesta et al., 2011, De Maria et al., 2011]. Molecular
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links between these two cycles have been exhibited to explain this regulation. In particular the
regulation of Wee1, an inhibitor of the G2/M transition, by the clock genes has been proposed to
explain the circadian gating of mitosis during the liver regeneration process [Matsuo et al., 2003]
and the 48h period doubling phenomena of the cell cycle [Nagoshi et al., 2004]. Other similar
molecular links going in the same direction, through p21 [Gréchez-Cassiau et al., 2008] and Chk1
and Chk2 [Ünsal-Kaçmaz et al., 2005, Gery et al., 2006], have been shown in different cells in
the literature. A few models have also been developed to further investigate those hypotheses,
by coupling a model of the cell cycle with a model of the circadian clock through those direct
molecular links, and analyzing the conditions of entrainment in period [Calzone and Soliman,
2006, Gérard and Goldbeter, 2012].

Recent paradoxal experimental observations
However, in mouse embryonic fibroblasts NIH3T3, several studies using large-scale time-lapse
microscopy to monitor circadian gene expression and cell division events in real time and in
individual cells during several days have unveiled unexpected behaviours, hinting that the re-
lationship might be more complex. [Nagoshi et al., 2004] have first shown that circadian gene
expression in fibroblasts continues during mitosis, but with a consistent pattern in circadian
period variation relatively to the circadian phase at division, leading them to hypothesize that
mitosis elicits phase shifts in circadian cycles.

A more recent study of [Bieler et al., 2014] reporting similar experiments on dividing fi-
broblasts found the two oscillators synchronized in 1:1 mode-locking leading the authors to
hypothesize a predominant influence of the cell cycle on the circadian clock in NIH3T3 cells. This
is in agreement with another detailed experimental study of [Feillet et al., 2014], which found
several different synchronization states in NIH3T3 fibroblasts in different conditions of culture.
In particular, it was observed in [Feillet et al., 2014] that enriching the milieu with Foetal Bovine
Serum (FBS) not only accelerates the cell division cycle but also the circadian clock. For cells
cultured in 10% FBS, both distributions of the cell cycle length and the circadian clock are centered
around 22h. For cells cultured in 15 % FBS, both the cell cycle and the circadian clock accelerate,
with period distributions centred around 19h. However, when cells reach confluence and stop
dividing, the circadian clock slows down and the period distribution is then centred around 24h.
None of the currently available models coupling the cell cycle and the circadian clock can explain
these observations since they are based on an unidirectional influence of the circadian clock on
the cell cycle [Gérard and Goldbeter, 2012, Calzone and Soliman, 2006].

In this chapter, in order to explain these observations, we study the reverse influence of the
cell cycle on the circadian clock, using computational modeling tools. We develop a mathematical
model of the influence of the cell cycle on the circadian clock through the regulation of clock
genes triggered by mitosis, and investigate the conditions in which the cycles are entrained in
period and phase as observed in [Feillet et al., 2014]. For this, we use the circadian clock model
of [Relógio et al., 2011], which has been carefully fitted to phase data on suprachiasmatic cells,
and a simple model of the cell cycle defined in [Calzone and Soliman, 2006] which focuses on the
mitosis phase.

5.2 Experimental data and their formal specifi-
cation in temporal logic

Experimental observations and measurements
In this section we describe the single cell experiments and analyses performed in [Feillet et al.,
2014] and the conclusions drawn by the authors. The reported experiments have been done using
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time lapse videomicroscopy and cell tracking using various fluorescent reporters for the cell cycle
and the circadian clock observed during 72 hours in proliferating NIH3T3 mouse fibroblasts.

The NIH3T3 embryonic mouse fibroblasts were modified to include three fluorescent markers
of the circadian clock and the cell cycle: the RevErb-α::Venus clock gene reporter for measuring
the expression of the circadian protein RevErb-α, and the Fluorescence Ubiquitination Cell Cycle
Indicators (FUCCI), Cdt1 and Geminin, two cell cycle proteins which accumulate during the G1
and S/G2/M phases respectively, for measuring the cell cycle phases.

The cells were left to proliferate in regular medium supplemented with different concentra-
tions of FBS (10% and 15%). Long-term recording was performed in constant conditions with one
image taken every 15 minutes during 72 hours. The lengths of the cell cycles were measured as
the time interval between two consecutive cell divisions.

The expression traces of RevErb-α proteins were detrended and smoothed. Spectrum resam-
pling was used to estimate the clock period. Cells with less than two RevErb-α peaks within
their lifetime, a period length outside the interval between 5 hours and 50 hours or a relative
absolute error (RAE) bigger than 0.25 (showing a confidence interval wider than twice the esti-
mated period) were classified as non-rhythmic and discarded, assuming that they do not have
a functioning clock. Finally, the delay between mitosis and the next clock marker peak was
measured. It revealed that RevErb-α peaked slightly more than 5 h after cell division in all
conditions, consistently with [Bieler et al., 2014], and as also reported in [Feillet et al., 2015].

Medium Clock period Division period Delay
FBS 10% 21.9h ± 1.1h 21.3h ± 1.3h 8.6h
FBS 15% 19.4h ± 0.5h 18.6h ± 0.6h 7.1h

Table 5.1: Estimated periods of the circadian molecular clock and the cell division cycle measured
in fibroblast cells without treatment by Dexamethasone, for two concentrations of FBS [Feillet
et al., 2014]. The time delay is between the cell division time and the next peak of RevErb-α.

The quantitative data on the periods of the cell cycle and the circadian clock and the phase
between them are summarised in Table 5.1 [Feillet et al., 2014]. Surprisingly, increasing FBS from
10% to 15%, not only decreases the mean period of the cell cycle from 21.9h to 19.4h, but also
the clock period from 21.3h to 18.6h, i.e. to essentially the same period. This shows that both
oscillators remain unexpectedly in 1:1 mode locking. While the speedup of the cell cycle can be
directly attributed to the growth factors in increasing concentration of FBS, it can not account
for the speedup of the clock the same way, since confluent cells keep a 24-hours period for the
circadian clock independently of the FBS concentration.

Experimental observations after treatment by dexamethasone
Furthermore, a series of experiments were done with a pulse of dexamethasone (Dex) before
recording. This glucocorticoid agonist is known to exert a resetting/synchronizing effect on the
circadian molecular clocks in cultured cells through the induction of Per1. In that case, cells were
incubated for 2 hours in the same medium supplemented with Dex, just before returning to a
Dex-free medium for the recording.

In that case, the results are more complex. As summarized in Table 5.2, which contains values
from [Feillet et al., 2014], the cells in 10% FBS show an increased clock period and a low cell cycle
period, with an overall ratio of 5:4. In 20% FBS the cell lineages are dominated by two groups.
The first group shows close periods, i.e. a 1:1 mode-locking similarly to the experiments without
dexamethasone. The second group shows a high clock period and a fast cell cycle, with an overall
ratio close to 3:2 between the clock and cell cycle, explaining the three-peaks distribution of the
circadian phase at division, as already observed ten years before by [Nagoshi et al., 2004]. It
has to be noted that the 20% FBS dexamethasone-synchronized experiment was repeated with
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Medium Clock period Division period Delay
FBS 10% 24.2h ± 0.5h 20.1h ± 0.94h 10.7h
FBS 20% 21.25h ±0.36h 19.5h ±0.42h 8.3h

29h±1.05h 16.05h±0.48h 6h/12h/22h

Table 5.2: Estimated periods of the circadian molecular clock and the cell division cycle measured
in fibroblast cells after treatment by Dexamethasone, for two concentrations of FBS [Feillet et al.,
2014]. The time delay is between the cell division and the next peak of RevErb-α. The experiment
done with 20% FBS have been clustered by the authors in two groups with different periods.

similar results available in the Supplementary Information of [Feillet et al., 2014], although the
distribution of the period ratios for the second group is wider in the interval [1.2, 2].

In [Feillet et al., 2014], the authors suggest that these observations might be interpreted by
the existence of distinct oscillatory stable states coexisting in the cell populations, in particular
with 5:4 and 1:1 phase-locking modes for the condition 10% FBS, and 3:2 and 1:1 phase-locking
modes for the condition 20% FBS, and that the dexamethasone could knock the state out of the
1:1 mode toward other attractors. A mechanistic explanation remains to be found to support this
interpretation.

Formal specification of oscillation properties in quantitative tem-
poral logic
Based on the experimental data from [Feillet et al., 2014] that we have presented, and before
detailing the mathematical models used to simulate the system, we formalize here, with temporal
logic specifications, the oscillatory properties that simulations will have to satisfy.

Setting versatile constraints on the amplitudes and regularity of the simulated peaks will
allow filter out modeling choices that result in incorrect simulations, keeping only simulated
traces with sustained oscillations even with small irregularities, as it is the case for example in
Fig. 5.12.

More precisely, we use the temporal logic formula patterns described in Chapter 4.2 to specify
the constraints about the successive peaks of concentrations between either the same molecular
species (period constraints) or different molecular species (phase constraints).

For instance, the following command computes the validity domain for a formula pattern
used to extract the period of MPF (a component of the cell cycle, see the detailed model in
Section 5.3) and RevErb-α for the circadian clock (again, see Section 5.3) in a trace, and their
relative phase:

biocham: validity_domain(
Exists([e1,e2,e3],
periodErrors([RevErb_nucl],[periodselect,e1,e2,e3],100)
& e1<2 & e2<2 & e3<2))
& period([MPF],[periodMPF])
& phase([MPF,RevErb_nucl],[phase])).

The result for the simulation trace obtained with the kinetic parameter kdie=0.25 and displayed
in Fig. 5.10 is

periodselect = 17.7763, periodMPF = 18.066, phase = 2.09856

The period constraint on the oscillations of RevErb-α is expressed by the temporal logic function
periodErrors, whose validity domain provides the mean of the last two RevErb-α peak-to-peak
intervals in the variable periodselect, along with several variables characterizing irregularity fea-
tures of the trace, after a transient time of 100h to avoid irregularities caused by the initial state:
e1 for the irregularities in distances between peaks (it denotes the maximum difference between
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two intervals), e2 for the irregularities in the amplitudes of the peaks (it quantifies the differences
between the amplitudes of the peaks), and e3 being a non-null error if the concentration amplitude
is too small (below 0.1). Setting thresholds on these variables ensures that irregular traces are
filtered out. The operator Exists projects the resulting validity domain on the single dimension for
periodselect. Since the trace of MPF shows sustained and regular oscillations in all simulations, the
simple function period is used to extract the mean of the last two peak-to-peak intervals. Moreover,
the function phase captures the mean of the last two time intervals between MPF and RevErb-α
peaks.

On the other hand, it is worth remarking that for the purpose of exploring the parameter
search, irregular traces should not be filtered out in order to orient the search algorithm in a
promising direction, when oscillations begins to appear for instance. This can be specified in
temporal logic with the following constraint:

biocham: add_search_condition(
periodErrors([RevErb_nucl],[period,e1,e2,e3],100) &
Exists([phase],
phase([MPF,RevErb_nucl],[phase])
& phase>minphase & phase<maxphase)

,[period,e1,e2,e3,minphase,maxphase],[21.3,0,0,0,3,5.5],
300,[(kdie,kdie21)]).

For each set of parameter values tested during the calibration procedure, this command computes
the euclidian distance between the values found for [period,e1,e2,e3,minphase,maxphase] and the
objectives [21.3,0,0,0,3,5.5], in the condition kdie=kdie21 and a simulation time of 300h. This
distance is used as a score for the satisfaction of the temporal logic formula on the trace. The
additional variables minphase and maxphase allow to score the distance from the phase to the ob-
jective interval [3,5.5], enabling some flexibility in the searched value for the phase. For instance,
the best set of parameters found as a solution after the calibration procedure detailed in 5.4 has
the score 0.54 for this specification.

The temporal logic language allows us to combine the variables, for example with the dif-
ference between the periods of the cell cycle and the circadian clock, which can then be used to
score the entrainment in period of the circadian clock by the cell cycle. This is illustrated by the
following command:

biocham: satisfaction_degree(
Exists([p1,p2],Exists([e1,e2,e3],
periodErrors([RevErb_nucl],[p1,e1,e2,e3],100)
& e1<3 & e2<3 & e3<3)
& period([MPF],[p2]) & diff=p2-p1),
[diff],[0],300).

This specification will be used to compute the satisfaction degrees displayed in Fig. 5.9 in Sec-
tion5.4. Each value scores the difference between the two periods with a value between 0 (infinite
difference) to 1 (null difference, perfect entrainment).

5.3 Cell Cycle and Circadian Clock Models

Model of the cell cycle
As already explain in Chapter 2, the cell cycle of mammalian cells is composed of five phases: the
quiescent phase G0 where cells can stay without dividing, the growing phase G1 for entering the
cell cycle, the DNA replication phase S, the gap phase G2, and the chromosome segregation and
mitosis phase M phase. Each phase is characterized by a particular protein of the cyclin family,
which forms a complex with a cyclin-dependent-kinase (cdk) and determines the activity of the
phase.
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Mouse embryonic fibroblast cells considered in this chapter are quickly dividing cells. How-
ever, these cells also reach confluence and the G0 quiescent phase when they have no more space
to divide.

For our purpose of investigating the hypothesis of a regulation of clock genes triggered by
mitosis, it is sufficient to use a cell cycle model focusing on the mitotic phase. [Qu et al., 2003]
have proposed a simple generic mathematical model of a cell cycle signaling network in higher
eukaryote in which the cycle is divided in two different phases, and that could be used to simulate
both the G1/S and G2/M transitions. This model inspired a model defined in [Calzone and
Soliman, 2006], describing the G1/S/G2 phase and the M phase, and that we will reuse for this
work. Of course, more detailed models distinguishing the four phases of the cell cycle exist,
e.g. [Gérard and Goldbeter, 2012], making possible to represent various regulations of the cell
cycle by the circadian clock genes, for instance through p21 and c-Myc on G1, and Wee1 on the
G2/M transition. However, since the consequences of these regulations have not been observed
in the experimental data considered in this chapter, those extra details are irrelevant and we
concentrate on the reverse effect of the cell cycle on the circadian clock by the regulation of clock
genes triggered by mitosis, for which the simpler two-phase model of [Calzone and Soliman,
2006] adapted from [Qu et al., 2003] is sufficient.

In this model, the M phase is triggered by the complex Cdk1/Cyclin-B. This complex appears
in two forms, an active form called MPF (M-phase Promoting Factor) and a phosphorylated,
inactive form called preMPF. MPF is phosphorylated and inactivated by the kinase Wee1, and
dephosphorylated and activated by the phosphatase Cdc25. Both the kinase and phosphatase
activities are themselves inactivated and activated by MPF, respectively.

MPF preMPF 

Cdc25P Cdc25 

Wee1 Wee1P 
IE 

APCi APC 

Figure 5.2: Schema of the cell cycle model of [Calzone and Soliman, 2006]. Solid arrows represent
biochemical reactions while dashed arrows denote enzyme catalysis. Red arrows denote an
inhibition through activation of the degradation.

In this model, we assessed the effect of the different reaction rate constants on the period of
the cell cycle by sensitivity analysis. We found that two parameters are able to change widely the
range of the cell cycle period without changing significantly the strength of the coupling: kdie,
the degradation rate constant of the intermediary enzyme involved in the negative feedback loop
between MPF and the proteasome APC, particularly important in G1/S, and kampf, the activation
rate constant of MPF by Cdc25p, which plays a role in G2/M. In the supplementary material
of [Feillet et al., 2014], both the phases G1 and S/G2/M seem to be shortened in enriched FBS.
Therefore we arbitrarily choose to modulate the cell cycle period by varying kdie. Similar results
are obtained with kampf.

A simple parameter search gives the following values for kdie: 0.147 for a cell division period
of 21.3 hours (corresponding to 10% FBS), 0.23 for a period of 18.6 hours (15% FBS).
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Figure 5.3: Left: Simulation of the cell division cycle model of [Calzone and Soliman, 2006] Right:
Period of the cell division cycle (measured as the distance between successive peaks of MPF) as a
function of the parameter kdie.

Model of the circadian clock
The core network driving the mammalian circadian clock

Two major transcription factors, Clock and Bmal1 heterodimerize and activate the transcription
of the period (Per1 and Per2), cryptochrome (Cry1 and Cry2), RevErb-α and Ror clock genes. The
newly form Per and Cry proteins associate and inhibit their own expression and that of the
RevErb-α and Ror proteins through direct inhibition of the Clock/Bmal1 transcriptional activ-
ity. Furthermore, the antagonistic RevErb-α and Ror transcription factors regulate the rhythmic
transcription of Bmal1 and Clock. These interlocked negative feedback loops generate robust 24h
self-sustained oscillations, which in turn control the expression of a large set of downstream clock-
controlled genes.

Models of the circadian clock

The circadian clock has usually been modeled with ODEs [Leloup and Goldbeter, 2003, Relógio
et al., 2011], or in a few cases using explicit time delays with delayed differential equations (DDEs)
[Korenčič et al., 2014]. Finally, a few simple discrete models have been published with qualitative
predictions [Comet et al., 2012].

So far, focus is set on the modelling of the core-clock in an attempt to elucidate its character-
istic properties, such as self-sustained oscillations, circadian period, robustness, synchronization
among cells, temperature-compensation and entrainment to external inputs. Other models focus
on investigating alterations in clock properties upon perturbations of model parameters, allowing
the simulation of pathological situations where the clock is known to be deregulated [Relógio
et al., 2014]. More comprehensive models have also been used to simulate the circadian network
at a systems level, by including clock-controlled genes (CCGs) [Korenčič et al., 2014]. Indeed, a
large fraction of genes from a variety of pathways is subject to circadian regulation, usually in a
tissue-specific manner.

In this dissertation we use the circadian clock model of [Relógio et al., 2011] which has been
fitted on mouse suprachiasmatic cells with precise data on the amplitude and phases of the
different components. This model, schematized in Figure 5.4, is composed of 20 species, 71
parameters, and all the feedback loops described above.
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Figure 5.4: Schema of a model of the mammalian circadian clock from [Relógio et al., 2011].
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Figure 5.5: Simulation of the Circadian Clock model of [Relógio et al., 2011].
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5.4 Coupled Model

Hypothesis of a Selective Regulation of Clock Gene Transcription
triggered by Mitosis
In this section, we investigate the hypothesis that a differential inhibition/activation of the clock
genes could explain the observations made and reproduce consistent values for the period of the
circadian clock, and the delay between the divisions and RevErb-α peaks for the different values
of FBS.

To assess this hypothesis, we model the inhibition or activation of clock genes transcription
triggered by mitosis with five multiplicative coefficients I_i (i ∈ {1, ..., 5}), associated with the
synthesis rate parameters of the model for each of the five clock genes. Each coefficient takes the
value 1, except during a window starting at mitosis where its value is changed with an event,
triggered by the decrease of MPF. Another event is triggered at the end of the inhibition window
to reset the coefficient. During this window, whose length is defined by the parameter duration,
the coefficient for circadian core gene i takes the value of the dimensionless parameter coefsynthi,
that defines the inhibition/activation strength of this clock gene. This value is included in the
real interval [0, 3], where 0 denotes a full inhibition (i.e., strong coupling), 1 marks no effect of the
mitosis on the synthesis (no coupling), and more than 1 induces some activation (coupling again).
The value of duration is also considered in the real interval [0, 3] hours.

Our coupled model of the cell cycle and the circadian clock thus uses six parameters: the reg-
ulation strengths of the clock genes (coefsynthi, i ∈ {1, ..., 5}), and the duration of the regulation.
The implementation of the coupling in Biocham is shown in Listing 5.1.

parameter(duration,2).
parameter(endMitosis,0).

% For each clock gene i:
parameter(I_i,1).
parameter(coefsynth_i,0).

add_event([MPF]<0.5,endMitosis,Time+duration).
add_event([MPF]<0.5, I_i, coefsynth_i).

add_event(Time>=endMitosis, I_i, 1).

Listing 5.1: Implementation of the regulation of the circadian clock by the cell cycle in Biocham.

It is worth noting that this way of coupling the models enforces the fact that for quiescent
cells, whatever the FBS concentration, the transcription rate will be unaffected by mitosis, and
therefore the clock will keep a period of 24h as observed in the experiments.

Note also that since the only coupling is via a periodic activation/inhibition, and since the
phases between the peak of MPF and that of RevErb-α are fixed in the experimental data, looking
for a similar effect, triggered by another cell-cycle event but constrained to the same time window
with a delay mechanism, would in principle lead towards similar results.

Search of coupling parameters
We perform a parameter search procedure in order to find a set of values for the coupling pa-
rameters that reproduces the entrainment in period and phase observed in the data. Using the
specification detailed in the section 5.2, we define a multi-condition objective: in the conditions
kdie=0.1, kdie=0.147, kdie=0.18 and kdie=0.23, the period of the circadian clock must be equal to
the period of the cell cycle: respectively 24h, 21.3h, 20h and 18.6h. In each condition, the delay
between MPF and RevErb-α peaks must be between 6.5h and 8.6h. Several different results are
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found, depending on the starting point of the parameter search. Two distinct solutions are shown
in Table 5.3.

Parameters First set Second set
Synthesis coefficient for Per 0.66 2.40
Synthesis coefficient for Cry 2.30 0.67
Synthesis coefficient for RevErb-α 1.04 1.92
Synthesis coefficient for Ror 2.1 1.51
Synthesis coefficient for Bmal1 0 0.78
Duration 2.97h 2.81h

Table 5.3: Two sets of parameter values found by the calibration procedure. The first set was
found with null initial values for all synthesis coefficients, while the second was found with initial
values of 1.

If the parameter search starts from a full inhibition triggered by mitosis for all clock genes,
corresponding to initial values of 0 for all synthesis coefficients, the best result found after 260
iteration on a population of 95 sets of parameters gives the first set of parameters reported in
Table 5.3. Three restarts occur during the search because of slow convergence: initial values for
the search are generated again to move the search in another region of the parameter space.

This solution corresponds to a full inhibition found for the transcription of Bmal1 (null value
for the synthesis coefficient for Bmal1), and a smaller inhibition for the transcription of Per (value
0.66). The transcription of Cry and Ror are activated with a rough two-fold change (2.30 and 2.1),
while the transcription of RevErb-α is mostly unaffected (value 1.04, close to 1).

However, when the initial values are 1 for all synthesis coefficients, corresponding to no inhi-
bition during mitosis, the second set is the best result, found after 60 iterations on a population of
95 sets of parameters. The convergence of the violation degree of the temporal logic specification
taken as fitness cost during the optimization procedure is seen in Figure 5.6.

Figure 5.6: Fitness cost of the successive populations generated for each iteration of the
optimization procedure with CMA-ES, with log scale. The result of this parameter search is the
second set of parameter values in Table 5.3.

Here, the transcriptions of Bmal1 and Cry are weakly inhibited, while the transcription of the
other clock genes are activated.

The simulation of the model with any of these two sets of parameters shows a delay between
the starting time of the mitosis effect and the circadian clock consistent with the experimental
data (close to 7h for the first set, and between 7 and 8.5h for the second one).
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However, as we will see in the following of the analysis, the first solution yields more consis-
tent results for the time between mitosis and the next RevErb-α peak in cells where the cell cycle
is slow. Therefore we first focus on this solution in this section. The second solution found is
further discussed in section5.5.

Assessing the effect of the inhibition of each clock gene in the coupling

The parameter search returns a value for each coupling parameter, however it is important to
assess which of these values are necessary for the correct entrainment, and which values have no
impact on the coupling.

The response curves for the period of the circadian clock and the delay between mitosis and
the next RevErb-α peak for each calibration parameter, in the condition where the cell cycle has a
period of 21h, are useful to assess the role of each clock gene for the entrainment of the circadian
clock by the cell cycle. The results are shown in Fig. 5.7.
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Figure 5.7: Period of the circadian clock (red) and time delay between MPF and RevErb-α peaks
(blue) in the coupled model calibrated with the first set of parameters, and when the cell cycle has
a period of 21h. The peaks on the blue curves on the right panels characterize irregular oscillating
traces (due to a partial entrainment in period). Synthesis rates are normalized to exhibit the effect
of the applied coefficient (0: full inhibition, 1: no effect, 2: two-fold activation).

The sets of simulations reveal that the entrainment in period and phase of the circadian clock
depends only on the effect of the mitosis on Bmal1 and RevErb-α, and the duration of this effect.
Varying the synthesis coefficients during mitosis for Per, Cry or Ror has no significant effect on
the entrainment.

The inhibition of Bmal1 is crucial for the entrainment in period. More specifically, the clock
is entrained to the cell cycle period of 21h if the coefficient multiplied to the synthesis rate of
Bmal1 is at most 0.4, and the inhibition lasts at least 2h. Interestingly, the inhibition on RevErb-
α has no effect on the period of the circadian clock, although it has an effect on the circadian
phase at division. With a low or absent inhibition of RevErb-α (corresponding to a coefficient
higher than 0.8), the time delay between divisions and RevErb-α peaks is consistent with the data,
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with RevErb-α peaks occurring 7h after division. Adding an inhibition of RevErb-α triggered by
mitosis would conserve the entrainment of the circadian period, but the RevErb-α peaks occur
just after mitosis.

These new simulations point toward a new hypothesis of a selective inhibition of the circadian
clock gene Bmal1 triggered by mitosis. In the rest of the chapter, the coupling parameters are
simplified to consider a single inhibition of Bmal1 (corresponding to a coefficient equal to 0), and
no effect on the other clock genes.

Result for the selective inhibition of bmal1 during mitosis

kdie FBS Circadian clock Cell division Phases (h)
% period (h) period (h)

0.077 5? 26.09 26.10 23.2
0.147 10 21.28 21.28 6.8
0.229 15 17.99 18.60 6.3

Table 5.4: Periods and time delays measured in the coupled model with different values of kdie for
modeling the different culture conditions (the correspondence with 5% FBS is speculative since no
experiment was done in this condition). The delays are the time observed by simulation between
the peaks of concentration of MPF and RevErb-α.

Table 5.4 shows the periods of the circadian clock and the cell division cycle and the delay be-
tween the starting time of the inhibition of Bmal1, when the peak of MPF overtakes the threshold
0.5, and the following peak of RevErb-α in our model with different values of kdie corresponding
to the different culture conditions. In all cases, the cell division manages to entrain the circadian
clock (that has a free period around 24h) to its period, simply through this mechanism of selective
transcription inhibition, as depicted in Fig. 5.8. These simulation results reproduce quite well
the data of Table 5.1 when there is no treatment by Dex. Note that our model can also have a
cell division time higher than 24h, for instance with kdie = 0.077, which might correspond to a
concentration of FBS around 5%. In that case the model predicts that the cell cycle will still entrain
the circadian clock, lowering its period. Moreover, RevErb-α peaks are predicted to occur slightly
before cell divisions in this condition, with a delay of 23.2h between the inhibition of Bmal1 and
the following peak of RevErb-α.

As shown in the right panel of Fig. 5.3, it is possible to simulate the experimental milieu
enrichment with 10 or 15% FBS by varying the parameter kdie of the cell cycle model to obtain
correct values for the period of the cell division cycle.

The landscape in Fig. 5.9 is computed to assess the role of the inhibition or activation duration.
It shows the variation of the difference between the periods of RevErb-α for the circadian clock
and MPF for the cell cycle when the two parameters kdie and duration vary. The value of each
period is captured with a temporal logic specification as seen in the subsection 5.2. The result
for the inhibition of Bmal1 is shown in Fig. 5.9, and is very similar to the result in the case of an
activation of RevErb-α.

Three domains can be distinguished in this parameter space: in the domain in yellow, the
circadian clock is entrained to the same period as the cell cycle. This domain of entrainment is
wider for a long duration of inhibition. For a short duration, the circadian clock can only be
entrained by the cell cycle if the entraining period is close to 24h. In the purple domain at the
bottom (for a low value of duration), the difference between the two periods is high because the
clock is not entrained, hence it keeps its period constant and close to 24h. Finally, these two
domains are separated by a black domain where the clock oscillations are partially entrained and
become irregular.

One can notice that the longer the inhibition of Bmal1, the wider the range of values of kdie
over which the circadian clock can be entrained. In particular, the clock can be entrained by the
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Figure 5.8: Simulation of the model with the inhibition of the transcription of Bmal1 triggered by
mitosis, during 72h. Top: the cell cycle has a period of 21.3h. Middle: the cell cycle has a period
of 20.1h. Bottom: : the cell cycle has a period of 26h.

cell cycle when kdie = 0.23, corresponding to the smallest period (18h) reported in the data, if the
duration of the inhibition is at least 3h.

The entrainment both in period and phase with an inhibiting effect during 3h is visualized in
Fig. 5.10. It shows the response curve for the periods of the cell cycle and the circadian clock, and
the time delay between the peaks of MPF and RevErb-α in the simulations when the parameter
kdie varies.
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Figure 5.9: Absolute difference between the periods of the circadian clock and the cell cycle, as a
function of kdie for varying the cell cycle period, duration, the duration of the inhibition of Bmal1
transcription triggered by mitosis. The landscape is computed as the satisfaction degree of the
third formula detailed in 5.2. The color translates the distance from the value found for the period
difference diff to the objective 0. Full satisfaction in yellow indicates equal periods for MPF and
RevErb-α, while the other colours indicate the absolute difference. Black indicates an absence of
result for the specification, meaning that the regularity constraints set on the trace of RevErb-α
with the function periodErrors were not met.
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Figure 5.10: Entrainment in period and phase of the circadian clock when the period of the cell
cycle varies with the parameter kdie, with the inhibition of Bmal1 triggered by mitosis. The blue
curve depicts the time delay between peaks of MPF and RevErb-α in the simulations.
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5. APPLICATION TO THE COUPLING BETWEEN THE CELL CYCLE AND THE CIRCADIAN CLOCK

Predictions on the phases in the clock
Data on the phases between clock components in proliferating cells are sparse. The model allows
us to investigate whether the coupling from the cell cycle affects the phases between clock mR-
NAs and proteins. The following in-silico experiment is performed to this end: in the coupled
model with a fast cell cycle (21h), the strength of the inhibition of Bmal1 is changed in a set of sim-
ulations and the phases between clock components are captured in each simulation, normalised
by the clock period, as shown in Fig. 5.11.
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Figure 5.11: Circadian clock phases in the coupled model when the cell cycle has a period of 21h
and the synthesis rate of Bmal1 varies due to the inhibition. The synthesis rate is normalized to
exhibit the effect of the applied inhibition (0: full inhibition, 1: no inhibition.)

The simulations reveal that in the entrained condition (when the synthesis rate of Bmal1 is
inhibited with a coefficient smaller than 0.2), the phases between clock components are not deeply
impacted by the periodic inhibition on Bmal1 resulting from the coupling with the cell cycle,
compared to their values in the free clock (when the synthesis rate of Bmal1 is inhibited with a
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5.5. Alternative hypotheses

coefficient close to 1). However, the phase between Bmal1 and RevErb-α mRNAs shows a small
advance, that impacts similarly the phases between Bmal1 and RevErb-α in the cytoplasm and in
the nucleus. Notably, the other clock genes and proteins targeted by Bmal1 exhibit a phase delay
when the synthesis of Bmal1 is inhibited during mitosis.

Comparison to Experimental Data after Treatment by Dexam-
ethasone
In order to take into account the experiments with Dexamethasone, the model can be extended
with an event, lasting for two hours, and inducing Per mRNA while inhibiting the other clock
genes.

Fig. 5.12 shows that in our models, regardless of the milieu (i.e. of the value of kdie), the Dex
pulse results in a perturbation of the clock and then returns to the observed entrainment.
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Figure 5.12: Effect of a Dexamethasone pulse on the entrainment resulting from the periodic
inhibition of Bmal1 synthesis by the cell cycle. The pulse alters the clock before returning to
the previously observed entrainment regime. In the left panel the pulse is from time 190 to 192
while on the right it is from 200 to 202. The left panel’s peak-to-peak distance is in the [18.2, 21.2]
interval, while the right one remains in the [19.31, 20.7] interval. This might correspond to the
two groups observed in [Feillet et al., 2014]. The time to recover normal entrainment varies but is
often larger than 72h.

These simulations point us to the possibility that the noisy data reported in Table 5.1 after the
Dex pulse might simply be due to the various cellular states in which the pulse happened and
to the time necessary for the cells to recover their clock entrainment, rather than to two different
oscillatory attractors of the system.

A pulse at time 200h disrupted only slightly the circadian clock, which remained mostly in
mode-locking 1:1 with the cell cycle, whereas advancing that same pulse by 10h (corresponding
to giving the pulse to a cell in a different state) leads to a bigger disturbance, some peak-to-peak
distances close to 21h, others to 18h. Although this is transitory, this might correspond to the type
of data observed in the Group 2 of Table 5.1.

5.5 Alternative hypotheses

Selective activation of revErb-α
The second solution found by the calibration procedure in section 5.4 is discussed here. The
response curves for the period and phase are depicted in Fig. 5.13 and the corresponding values
are summarized in Table 5.5.
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Figure 5.13: Period of the circadian clock (red) and phase between the division and RevErb-α
(blue) in the coupled model calibrated with the second set of parameters, and when the cell cycle
has a period of 21h.

kdie FBS Circadian clock Cell division Phases (h)
% period (h) period (h)

0.077 5? 26.14 26.12 6.1
0.147 10 21.52 21.28 8.5
0.229 15 18.48 18.60 7.2

Table 5.5: Periods and time delays measured in the coupled model with different values of kdie for
modeling the different culture conditions (the correspondence with 5% FBS is speculative since no
experiment was done in this condition). The delays are the time observed by simulation between
the peaks of concentration of MPF and RevErb-α.

For this solution, similarly, the entrainment in period and phase of the circadian depends only
on the effect of the mitosis on Bmal1 and RevErb-α, and the duration of this effect. Varying the
synthesis coefficients during mitosis for Per, Cry or Ror has no significant effect on the entrain-
ment.

However in this case the entrainment in period depends on the effect on RevErb-α, which has
to be activated with a coefficient close to 2 in order for the circadian clock to be entrained at 21h
with a correct delay after division. Like in the previous case, an inhibition would also preserve the
entrainment in period, but the phase would become inconsistent with the data. One can notice
that an activation on Bmal1 would also increase the time delay of RevErb-α peaks after division.

This solution points toward the activation of RevErb-α as an alternative hypothesis to ex-
plain the experimentally observed entrainment of the circadian clock in period and phase. Since
RevErb-α is a repressor of Bmal1 and Bmal1 an activator of RevErb-α, these two hypothesis
correspond to two alternative mechanisms for a similar effect, and further experimental data
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would be needed to discriminate between them.
This hypothesis is modeled with a single activation of RevErb-α with a coefficient of 2 during

mitosis, and no effect of mitosis on the other clock genes. This activation of RevErb-α might be
caused by the transcription factor c-Myc, which displays bursts of transcriptional activity during
G1 phase (i.e., just after mitosis) and the S to G2/M transition of the cell cycle [Seth et al., 1993].
The c-Myc protein regulates its target genes through the same E-box DNA response element as
the Clock/Bmal1 heterodimer. It is therefore conceivable that during the G2/M phase of the cell
cycle RevErb-α is positively regulated by c-Myc leading to the transcriptional repression of Bmal1
as suggested by a recent study [Altman et al., 2015]. In this scenario the E-box regulated Per and
Cry genes are expected to be also upregulated by the higher transcriptional activity of c-Myc. This
is compatible with our simulations showing that the phase and period are resilient to variation of
the coefficient synthesis for Per and Cry.
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Figure 5.14: Simulation of the model with the activation of the transcription of RevErb-α triggered
by mitosis, during 72h. Top: the cell cycle has a period of 21.3h. Middle: the cell cycle has a period
of 20.1h. Bottom: the cell cycle has a period of 26h.

Like the inhibition of Bmal1 transcription, the activation of RevErb-α during 3h, triggered at
mitosis, is able to entrain the circadian clock in a wide range of period (18-28h). Resulting traces
are displayed in Fig. 5.14 for different cell cycle length conditions. However, the entrainment in
phase, i.e. the duration between mitosis and the following RevErb-α peak, differs between the
two couplings, as seen in Fig: 5.15. In both cases, when the cell cycle has a period smaller than
24h, the circadian clock marker RevErb-α peaks 6h to 8h after mitosis. When the cell cycle period
is greater than 24h, a notable difference can be seen for the predicted phase: with an activation of
RevErb-α, RevErb-α still peaks just after the mitosis. But with an inhibition of Bmal1, RevErb-α
peaks 18 to 24 fours after the mitosis. Although no experimental observations exist in a slowed
down cell cycle condition, it is noteworthy that [Nagoshi et al., 2004] and [Bieler et al., 2014]
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5. APPLICATION TO THE COUPLING BETWEEN THE CELL CYCLE AND THE CIRCADIAN CLOCK

report some cells dividing not long after the circadian peak where the circadian clock was found
to be slowed down. This is the reason why we favor the hypothesis of Bmal1 inhibition to that of
RevErb-α activation.
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Figure 5.15: Entrainment in period and phase of the circadian clock when the period of the cell
cycle varies with the parameter kdie, with the inhibition of Bmal1 (left) or the activation of RevErb-
α (right) triggered by mitosis. In the right panel, the circadian clock period is missing for low kdie
values because the oscillations are irregular. The blue curves depict the time delay between peaks
of MPF and RevErb-α in the simulations.

Uniform inhibition of transcription during mitosis
In eukaryotes, it has been shown that gene transcription can be significantly inhibited during
mitosis [Weisenberger and Scheer, 1995]. The impact of a global transcription inhibition of clock
genes during mitosis on the circadian oscillator has been studied by modelling in [Kang et al.,
2008]. In this study, the authors found that a periodic inhibition of transcription during one hour
was able to entrain a model of the mammalian circadian clock, but only when the inhibition
period was close to the intrinsic circadian model period, or close to its half or double value. In
these cases, a phase locking between the circadian clock and the periodic inhibition was observed,
albeit with one or two preferential circadian phases for the inhibition and values that varied
greatly with the inhibition period. The discrepancies with the recent data could come from the
short inhibition duration considered or from the arbitrarily parameterized model used for the
circadian clock, taken from [Leloup and Goldbeter, 2003].

We also investigated the uniform inhibition of all clock genes with Relogio’s model of the
circadian clock, and found that it was sufficient to reproduce the entrainment of the circadian
clock by the cell cycle in period, but not in phase.

The variation of the period of RevErb-α can be seen in Figure 5.16 when two parameters vary:
the x-axis parameter accelerates the cell cycle and the parameter on the y-axis is the coefficient
for the transcription inhibition during mitosis, corresponding to a weaker control of the circadian
clock by the cell cycle as the parameter value increases. Two domains can be distinguished in
this parameter space: in the domain on the top left (above the black line), the inhibition of the
transcription is weak and the cell cycle is slow. In this condition, the clock is not entrained but
rather keeps its period constant and close to 24h. On the contrary, in the domain on the bottom
right (below the black line), clock genes transcription is strongly inhibited and the cell cycle is
faster. In that case the clock is entrained to the same period as the cell cycle.

One can notice that, as with the previous coupling hypothesis, the model explains the acceler-
ation of the circadian clock by the cell cycle and predicts that, provided a strong enough coupling,
the circadian clock can also be slowed down by the cell cycle to periods higher than 24h.
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Figure 5.16: Periods of Rev-Erb-α as a function of a parameter that accelerates
the cell cycle, and a parameter involved in the coupling by transcription inhibi-
tion during mitosis. Landscape computed as the satisfaction degree of the formula
distanceSuccPeaks([RevErb_nucl],[period],transT), that defines the period of
RevErb-α after a transient time transT=80, and with an objective of 24h for the period. Full
satisfaction in yellow indicates a period of 24h for RevErb-α, while the other colors indicate the
absolute difference to 24h.

On the other hand, the delay between MPF and RevErb-α remained inconsistent with the
data, as depicted in Fig. 5.17: the mitosis triggered by MPF occurs just after the peaks of RevErb-
α, while the experimental studies consistently report peaks of RevErb-α 7h to 8h after divisions.

Figure 5.17: Entrainment to a period around 21.3h with kampf = 3.75, which corresponds to a
milieu enriched with 10% FBS. Red vertical lines mark some peak times of MPF to facilitate the
comparison with RevErb-α peaks.

In the circadian clock model of [Relógio et al., 2011], the phases of the different markers of
the circadian clock have been precisely fitted to observations made in mouse suprachiasmatic
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5. APPLICATION TO THE COUPLING BETWEEN THE CELL CYCLE AND THE CIRCADIAN CLOCK

nucleus neurons, however without data about cell divisions. On the other hand, RevErb-α is
the only marker on the circadian clock measured in the experiments, and no comparison is thus
possible with the other data [Feillet et al., 2014].

5.6 Bidirectional coupling
We can also integrate in our model the influence classically studied between the cell cycle and
the circadian clock: the control of the cell cycle by the circadian clock. Based on experimental
observations [Nagoshi et al., 2004] and mathematical modeling [Gérard and Goldbeter, 2012], it
has been hypothesized that this control implements a gating of the mitosis during preferential
circadian phases.

Although it appears from the experimental data that the preponderant coupling in the fibrob-
lasts is the control of the circadian clock by the cell cycle, investigated in the previous section, we
study here the effect of the additional control of the cell cycle by the circadian clock. It results in
a bidirectional coupling, represented on the schema in Figure 5.18.

Several links by which the circadian rhythm influences the cell cycle have been studied. For
example, the protein RevErb-α can inhibit the transcription of the Cdk inhibitor p21 [Gréchez-
Cassiau et al., 2008], or repress the gene c-myc that induces the expression of cyclin E [Perez-
Roger, 1997]. However the dominant influence seems to be the link established between the cell
and circadian cycles during the G2-M transition by the kinase Wee1: the wee1 gene promoter is
activated by the complex Clock/Bmal1 and inhibited by Cry [Matsuo et al., 2003].

In order to keep a simple model of the cell cycle and maintain reasonable simulation times,
we focus here on the latter mechanism, implemented through the following reaction in Biocham
(Listing 5.2), which defines a classic Hill function for the activation of the transcription of Wee1
mRNA, called mWee1, by the protein Bmal1 in the nucleus, called Bmal1_nucl in the model and
which stands for the complex Clock/Bmal1.

vsw*[Bmal1_nucl]^nmw/(Kaw^nmw+[Bmal1_nucl]^nmw)
for _=[Bmal1_nucl]=>mWee1.
parameter(vsw,0.15).
parameter(Kaw,1).
parameter(nmw,1).

Listing 5.2: mWee1 synthesis inhibition by Bmal1_nucl implemented in Biocham

The landscapes in Figure 5.19 display the satisfaction degree scoring how the period of MPF
from the cell cycle and RevErb-α from the circadian clock satisfy the objective of 24h. Increase of
kdie (x-axis), accelerates the cell cycle. The parameter vsw (y-axis) characterizes the strength of the
control that the circadian clock exerts on the cell cycle through the activation of Wee1.

First let us look at the bottom line of each landscape, corresponding to the particular condition
vsw = 0: there is no control of the cell cycle by the circadian clock. Hence, the color at the bottom
line of the top landscape indicates the free period of the cell cycle, and on the bottom landscape
it indicates the period of the circadian clock controlled by the cell cycle.

On this line two domains can be distinguished: a region for kdie < 0.05 which is different
for MPF and RevErb-α, and a region for kdie > 0.05 which is identical for both molecules, hence
reflecting the entrainment of the circadian clock period to the same value as the cell cycle, which
has already been studied in the previous section. In this condition, this period is equal to the
objective value of 24h for kdie = 0.1. It is higher than 24h for kdie ≤ 0.1 and smaller than 24h for
kdie ≥ 0.1. In contrast, for kdie ≤ 0.05, the 24h-period of the circadian clock is restored. In this
region, there is no entrainment of the circadian clock by the cell cycle.

The evolution of these two regions for positive values of vsw shows how the additional cou-
pling impacts the entrainment of the circadian clock by the cell cycle observed with the unidirec-
tional coupling, studied in the previous section. The period of entrainment of the circadian clock
is changed not only by the value of kdie, which modulates the free period of the cell cycle, but
also by the value of vsw, which is the strength of the coupling from the circadian clock to the cell
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Figure 5.18: Schema of the bidirectional coupling between the cell cycle and the circadian clock.
In red, the classic control of the cell cycle by the circadian clock. In orange, the reverse coupling
through the inhibition of bmal1 transcription during mitosis.
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Figure 5.19: Landscape showing the satisfaction degree for the period of MPF (cell cycle, top) and
RevErb-α (circadian clock, bottom).
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cycle. In the entrainment region the period of the cell cycle changes identically to the circadian
clock when the value of vsw changes. Therefore, there is a mutual entrainment of the cell cycle
and the circadian clock, and increasing the value of vsw has the effect of slowing down both
the cell cycle and the circadian clock. Two additional regions appear in black (null satisfaction
degree), corresponding to conditions in which the oscillations of the cell cycle or the circadian
clock are disrupted. The first one, close to the top and left borders of each panel, corresponds to
either a slow cell cycle or a strong inhibition of wee1 by Bmal1_nucl. In this region the circadian
clock keeps its free period and disrupts the cell cycle. Between this region and the domain of
mutual entrainment, another region stands out, where the cell cycle exhibits slow oscillations but
is unable to fully entrain the circadian clock, resulting in a disruption of clock oscillations.

The domain of non-entrainment is wider for high values of vsw: the conditions of entrainment
of the circadian clock are restricted to the conditions in which the free cell cycle is relatively fast.

5.7 Conclusion
By hypothesizing a selective inhibition of bmal1 or a selective activation of revErb-α triggered by
mitosis, we have been able to build a mechanistic dynamical model reproducing the somewhat
surprising data reported in [Bieler et al., 2014, Feillet et al., 2014] about the acceleration of the
circadian clock observed in dividing fibroblasts with high FBS concentrations. These observations
suggest that the primary coupling between the cell division cycle and the circadian clock results
from an influence of the cell cycle on the circadian clock, at least in fibroblasts.

While considering a uniform inhibition of the transcription during mitosis [Weisenberger and
Scheer, 1995] was shown to be sufficient to fit the period data in [Traynard et al., 2015a], the phase
data reported in [Feillet et al., 2014] seemed to be impossible to reproduce under that uniform
inhibition hypothesis. The use of temporal logic patterns and our dedicated solvers, for searching
transcription inhibition parameters satisfying the phase observations formalized in quantitative
temporal logic, led us to the hypothesis that either the transcription of bmal1 has to be strongly
inhibited, while no inhibition should affect the transcription of revErb-α, or that revErb-α has to
be strongly activated, but with different predictions concerning slow cell cycles under low levels
of FBS.

Our model also postulates a different interpretation of some of the results presented in [Feillet
et al., 2014] when cells are treated by a 2h pulse of Dexamethasone. Instead of different au-
tonomous cycling regimes, the model predicts temporary perturbations leading to shorter or
longer peak-to-peak distances, but returning to the previous entrainment regime after some time,
longer than the horizon used in the experiments.

Furthermore, in our coupled model, the phases between some of the clock gene products are
shifted when entrained by a fast cell cycle. We are able to quantify these phase shifts and we show
that they concern mainly RevErb-α, whose mRNA peaks are advanced by the periodic activation
during mitosis. Other clock mRNAs and proteins are slightly delayed compared to their activator
Bmal1. Hence, a prediction of the model is that, in quickly dividing cells, these protein peaks are
shifted with respect to quiescent cells where such a phenomenon should not be observed.

On the other hand, our model leaves completely open the molecular mechanisms responsible
for the hypothesized selective inhibition of bmal1 during mitosis, or activation of reverb-α, for
which several mechanisms can be imagined [Loyer et al., 2005].

A possibility is a strong effect of the changes in the metabolism of the cell during and after
mitosis on the circadian clock. Interplays between metabolism and the circadian clock, as well as
the cell cycle, as been put in evidence [Eckel-Mahan and Sassone-Corsi, 2009]. However, precise
relationships still remain to be identified. Further knowledge in this field will be necessary to
confirm or invalidate our hypothesis. It is probable that novel mechanisms that link the circadian
clock and the cell cycle through metabolism will be revealed.

Finally, we predict a mutual entrainment in period when considering a bidirectional coupling
between the cell cycle and the circadian clock, with a possible slowing down of both the cell cycle
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and the circadian clock, and a possible disruption of the cell cycle under a strong control by the
circadian clock.
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prospects

6.1 Summary
In this thesis, we have explored the use of temporal logic for model building in Systems Biology.
The logical paradigm of biological systems abstracted as state-transition sequences and biological
phenomenon formalized as logical constraints allows us to take advantage of analysis techniques
from computer science and to infer mechanisms for properties emerging from complex regulatory
networks. In this respect, oscillatory systems are particularly interesting study cases.

First, we have investigated the ability of Computation Tree Logic (CTL) to verify dynamical
properties in asynchronous state transition graphs derived from logical models. Logical modeling
provides a qualitative and potentially non-deterministic description of a biological system. This
characteristic is useful to account for a variety of dynamical properties, observed in different
conditions, together in a generic model. We developed an approach based on iterative property
verification to assist the building and updating of a logical model of the mammalian cell cycle.
In that case, model checking is efficiently used to analyze complex attractors and infer qualita-
tive properties of the system. We successfully completed the model with additional nodes and
interactions. We showed that, in addition to conserving previous perturbations properties, the
updated model accounts for new perturbations and dynamical properties. Notably, the model
can explain the sequential activity of cyclins in the G1/S transition.

Next, we have considered quantitative deterministic models. For such models, oscillatory
properties such as pseudo-periods and pseudo-phases are formalized as quantitative constraints
with First-Order Linear Time Logic (FO-LTL). A continuous model provides a precise descrip-
tion of the mechanisms governing a complex regulatory network, and a quantitative prediction
of its dynamics. However, the classical difficulties associated with this approach are brought
by numerous and often poorly characterized kinetic parameters. We address this challenge by
implementing two complementary strategies to obtain efficient solving of dynamical constraints:
the design of useful temporal logic formula patterns associated with dedicated constraint solvers,
and some trace simplification rules to safely reduce the size of the traces to analyze.

We have applied these methods to a mammalian modular model coupling the circadian clock
to the cell cycle. We showed how temporal logic constraints allow to calibrate high-dimensional
models to quantitative single-cell data. We investigated several coupling hypotheses that repro-
duced the acceleration of the circadian clock observed in fast dividing cells, and discriminated
them regarding their ability to reproduce the phase relationships between the cell cycle and the
circadian clock. We selected an inhibition of the clock gene bmal1 triggered by mitosis as the
best hypotheses among those tested. We then used the model to predict the slowing down of
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the circadian clock, and a modification of the phases between clock components in dividing cells.
Adding the classic control of the cell cycle by the circadian clock, we further predict a reciprocal
entrainment of the cell cycle and the circadian clock in some conditions. These new behaviors
should be tested experimentally.

6.2 Contributions

Methodological contributions
The methodological contributions of this project include the formalization of all dynamical prop-
erties presented in this dissertation in temporal logic and the definition of trace simplifications
keeping only local extrema or main local extrema of a trace.

In particular, the formalization of dynamical properties specific to oscillating traces with FO-
LTL(Rlin) and the definition of dedicated solvers have been published in a book chapter [Fages
and Traynard, 2014]. Moreover, the definition of trace simplifications, with theorems stating
on which conditions validity domains are preserved after trace simplification (discussed in Sec-
tion 4.3) have been exposed in [Traynard et al., 2014].

A paper discussing the application of model checking to the analysis and updating of a logical
model of the mammalian cell cycle, described in Chapter 2, has been submitted for publica-
tion [Traynard et al., 2015b].

Biological contributions
The investigation of the hypotheses of the control of the circadian clock by the cell cycle through
the inhibition of transcription during mitosis, discussed in Chapter 5, has been published [Tray-
nard et al., 2015a]. An extended version of this paper exploring the hypotheses of selective
regulation of clock genes triggered by mitosis has been submitted.

Implementations
Contributions to the development of Biocham include the following points. All these additions
have been documented in Biocham’s user manual (cf. http://lifeware.inria.fr/biocham).

• We have completed the evaluation of FO-LTL formulae by Biocham with the generic algo-
rithm, with the implementation of the missing operators ∀ and ∃, as well as the completion
operation.

• We have implemented the relations combining temporal logic macros and dedicated solvers
defined in Section 4.2, with an optional argument that allows to neglect a user-specified time
duration at the beginning of the trace. Apart from ensuring fast evaluation of specifications,
this contribution also provides a user-friendly tool to exploit constraints applied on a model.
Indeed, given the high complexity of temporal logic syntax, a certain expertise is required
to use temporal logic formalism. In contrast, a rich list of built-in constraints can now be
easily called. Although this contribution is too recent to estimate its level of acceptance and
understanding by Biocham users, we believe that it should encourage users with little or no
formal background to use constraints-based tools for biological modeling and analysis with
Biocham.

• We have also implemented the trace simplifications, described in Sections 4.3 and 4.4, keep-
ing only local extrema or main local extrema of a trace.

• Furthermore, we have completed or adapted several functions already implemented in
Biocham: the parallel parameter search has been adapted to operate with a work queue
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to distribute jobs dynamically, and to include a timeout option. We have parallelized the
existing tool to compute landscapes for satisfaction degrees, and implemented a parallel
tool to compute validity domains for response curves.

"Many tools providing implementations of model checking are experimental and academic in
nature. This implies that users require certain expertise in under-lying techniques and formalisms
in order to use model checking. The development of more reliable and user-friendly tools, as well
as approaches that facilitate the creation of models, could "

Some contributions have also been implemented to easily manipulate logical models with
GINsim through several scripts in Python. One of them automatically defines a list of per-
turbations in a GINsim model, simulates all perturbations and extract all attractors. Another
script automatically verifies a list of dynamical properties, called with easy-to-use macros, on a
logical model, and print the result in a HTML report. However these contributions are not part
of GINsim and have not yet been documented or formalized.

6.3 Prospects
Logical model inference

CTL constraint solving is a formal method that allows us to verify exhaustively the satisfiability
of a dynamical property on a logical model. We have shown in Chapter 2 a novel approach for
applying this method to the analysis of cyclic attractors. We used this approach to assist the
updating of a logical model by identifying the consequences caused on the dynamical properties
of the model by each manual modification brought to the regulatory network or logical rules.

Recently, more powerful approaches have been explored to provide automatic model building
solutions and free modelers from manual modifications. Formal methods can be used to produce
a model from specifications, including perturbation experiments, based on satisfiability query
and solved with SAT and SMT solvers.

Such problems remain costly to solve and rely on sufficient topological information and con-
straints. Statistical analysis can reduce this cost. This strategy is for example employed by [Thobe
et al., 2014], who explore a statistical analysis of cross-talk model pools composed of boolean
networks.

The integration of novel experimental data with single-cell resolution and temporal scales is
particularly useful to solve synthesis problems. For instance, [Fisher et al., 2015] introduce an
algorithm to reconstruct a boolean network from its state space, and apply this strategy to infer
a boolean model from single-cell gene expression profiles, witout a-priori information about the
topology of the network.

Automatic property inference is also a problem of interest, addressed by the model checker
ANTELOPE [Arellano et al., 2011], which extends CTL with hybrid-logic operators to support
incompletely specified behavior.

Quantitative extension of qualitative modeling

Approaches to generate quantitative information about the dynamics in discrete state transition
graphs could be further explored. Continuous-time Markov chains are a useful extension of
logical models to analyze quantitatively nondeterministic dynamics. This is the approach used
by MaBoSS [Stoll et al., 2012], which provides stochastic trajectories and state probability distri-
butions. This formalism is used in Section2.5 to generate mean trajectories in the asynchronous
attractor.

MaBoSS could be further used to study the effect of coupling two oscillating systems such as
the cell cycle and the circadian clock with logical modeling, thereby potentially producing results
complementary to the continuous approach. Quantitative information such as probabilities of
different types of behaviors, or the probability of the time spent in the cycle would be useful,
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in particular to assess how they are affected by perturbations, similarly to a previous successful
analysis [Calzone et al., 2010].

Moreover, model-checking techniques exist to analyze such models. For example, [Fisher and
Piterman, 2014] extend CTL by replacing path quantification by probabilistic quantification. The
resulting continuous stochastic logic (CSL) can be used to express properties of continuous-time
Markov chains.

Formal verification for quantitative modeling

Our approach to handle continuous models by solving temporal constraints formalized as FO-
LTL(Rlin) formulae is able to infer parameter values to satisfy a set of properties with opti-
mization procedures, but it relies heavily on numerical simulations. Although the access to
high performance computing facilities allow extensive explorations of the parameter space, this
exploration is costly and far from exhaustive, and the risk of neglecting a relevant optimum
remains high. Moreover, failings to find a parameterization that satisfy some constraints suggest
flaws in the structure of the model but are not sufficient to formally reject it.

In this respect, symbolic methods for hybrid discrete-continuous models are promising re-
search axes to provide formal verification for quantitative modeling. SAT-modulo-theory (SMT)
approaches take advantage of the powerful classical Boolean satisfiability (SAT) solving, which is
able to verify Boolean properties exhaustively, and extends its expressiveness by generalizing the
constraints to complex predicates. For instance, [Eggers et al., 2008] propose an SMT approach to
interval-based numeric approximation of ODEs. This constraint solving of initial-value problems
is able to narrow candidate sets of reachable states from a set of initial values, and vice versa.
This SAT modulo ODEs strategy is extended to address more general specifications by [Gao
et al., 2013], who define a δ-complete decision procedures for SMT constraints over the reals: a
formula is δ-satisfiable if, under some δ-perturbations, a syntactic variant of the original formula
is satisfiable.

Cell cycle and circadian clock modeling

Considering the coupling between the cell cycle and the circadian clock in mouse fibroblasts, our
modeling approach leads us to propose a novel biological hypothesis: the inhibition of bmal1
triggered by mitosis, which awaits experimental validation. We also propose an alternative
hypothesis with the activation of rev-erbα. Although it is very well possible that the inhibiting
influence is not caused by a direct interaction, mathematical modeling at least strongly suggests
a mechanism of selective inhibition.

Further analyses of this coupling could study the impact on various characteristics of interest,
such as robustness measures for circadian oscillations and cell cycle progression, or sensitivity to
external stimuli. Validation of such findings would require specific experimental data.

Ultimately, assessing the role of the coupling between the cell cycle and the circadian clock
in cancer cells is particularly interesting for future applications. To this end, studies should
investigate how this coupling is affected in perturbed conditions. Although experimental studies
of circadian clock genes mutations have been performed in mice [Li et al., 2013], time and spatial
resolution of such data is still sparse.

The increasing study of model organisms, exhibiting conserved coupled cell cycle and circa-
dian clock machineries relatively to mammals, and providing easier genetic mutants, will con-
tribute to new perturbation data. In this respect, Neurospora crassa has recently been shown to
be a good model organism to investigate molecular mechanisms and emerging behavior of the
coupled networks driving the cell cycle and circadian rhythms [Zámborszky et al., 2014].
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A. Appendix

A.1 Perturbation properties and CTL formulae
for the logical model of the cell cycle

Experiment Phenotype Fauré et al. (2006) Updated model

p27 KO cycle in absence of growth factor Disagreement Disagreement
CycE E1 Viable; cycle in absence of growth factor; less

serum-dependent.
For CycD=0, cycle or steady
state. Questionable

Cycle for CycD=1, steady
state for CycD=0. Ques-
tionable

CycE KO Cell cycle arrest before S phase Disagreement OK
CycE KO CycA KO Cell cycle arrest before S phase Disagreement OK
p27 E1 Cell cycle arrest in presence of growth factors. OK OK
p27 and CycA E1 Cell cycle arrest in presence of growth factors. OK OK
p27 and CycE E1 Cell cycle arrest in presence of growth factors. OK OK
p27 and E2F E1 Cell cycle arrest in presence of growth factors. OK OK
Rb E2 G1 arrest + p27 accumulation OK OK
Cdh1 KO Viable cell cycle in presence or absence of

growth factors.
OK OK

UbcH10 KO Cell cycle arrested in M phase, destruction of
cyclin A and B inhibited.

Disagreement OK

E2F overexpression in Rb-
/- E2F E1 Rb KO

Viable cell cycle in presence or absence of
growth factors

OK OK

E2F overexpression in
Rb+/+

Targets of E2F are expressed even in absence
of growth factor but the cell cycle is arrested.

Cyclic attractor with
CycD=0 or CycD=1
Disagreement

OK

Loss of Rb Rb KO Viable cell cycle in presence or absence of
growth factors

OK OK

Rb induction (early kinet-
ics)

Cell cycle arrest Cyclic attractor with CycD=0
or CycD=1

Disagreement OK

RbR661W Cell cycle in presence of growth factors, cell
cycle arrest in absence Cyclic attractor with
CycD=0 or CycD=1

Disagreement OK

p27 KO (early kinetics) Viable cell cycle in presence or absence of
growth factors

OK OK

Skp2 KO Cell cycle arrest or endoreplication with
Cyclin E and p27 accumulation.

- OK

Skp2 KO p27 KO Cell cycle in presence of growth factors, cycle
arrest in absence

- OK

Skp2 overexpression and
Rb induction (early kinet-
ics)

Viable cell cycle in presence or absence of
growth factors.

- OK

Table A.1: Perturbation properties and simulation results for the initial model of the mammalian
cell cycle [Fauré et al., 2006] and the updated model.
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Phenotypes Sequences of events verified by model checking Fauré et
al. (2006)

Updated
model

Feedforward loop that
ensures that cells
advance to S-phase
irreversibly:
phosphorylation of Rb
by CycE to release E2F
and synthesize more
CycE, and
phosphorylation of
p27.

1. Correct sequence: CycE=0 & CycA=0 & p27=1 -> CycE=1 & CycA=0 & p27=1 ->
CycE=1 & CycA=0 & p27=0 -> CycE=1 & CycA=1 & p27=0 -> CycE=0 & CycA=1 &
p27=0

No OK

2. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 & Cdh1=1
for the updated model: CycE=0 & CycA=0 & p27=1 -> CycE=0 & CycA=0 & p27=0 ->
CycE=1 & CycA=0 & p27=0 -> CycE=1 & CycA=1 & p27=0 -> CycE=0 & CycA=1 &
p27=0

No OK

3. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 & Cdh1=1
for the updated model: CycE=0 & CycA=0 & p27=1 -> CycE=1 & CycA=0 & p27=1 ->
CycE=1 & CycA=1 & p27=1 -> CycE=1 & CycA=1 & p27=0 -> CycE=0 & CycA=1 &
p27=0

No OK

4. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 & Cdh1=1
for the updated model: CycE=0 & CycA=0 & p27=1 -> CycE=1 & CycA=0 & p27=1 ->
CycE=1 & CycA=0 & p27=1 -> CycE=1 & CycA=1 & p27=1 -> CycE=0 & CycA=1 &
p27=1

OK OK

As long as E2F is in-
activated, the cell re-
mains in the G1 phase.

5. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 & Cdh1=1
for the updated model: CycE=0 & CycA=0 & p27=1 & E2F=0 -> CycE=1 & CycA=0 &
p27=1& E2F=0 -> CycE=1 & CycA=0 & p27=0 & E2F=0 -> CycE=1 & CycA=1 & p27=0
& E2F=0 -> CycE=0 & CycA=1 & p27=0 & E2F=0

OK OK

Cyclin A expression is
delayed relative to E2F
and cyclin E.

6. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 & Cdh1=1
for the updated model: CycE=0 & CycA=0 & E2F=0 -> CycE=0 & CycA=0 & E2F=1 ->
CycE=1 & CycA=0 & E2F=1 -> CycE=1 & CycA=0 & E2F=0 -> CycE=1 & CycA=1 &
E2F=0 -> CycE=0 & CycA=1 & E2F=0

OK OK

Sequential activation
of CycE and CycA.

7. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 & Cdh1=1
for the updated model: CycE=0 & CycA=0 -> CycE=0 & CycA=1 -> CycE=1 & CycA=1

No OK

Degradation of B
cyclins by the APC/C
complex is required
for mitosis to take
place.

8. Correct sequence from Rb=0 & Cdh1=0 & p27=0 & Skp2=1 & CycE=0 (G2): CycA=1 &
CycB=0 & Cdc20=0 -> CycA=1 & CycB=1 & Cdc20=0 -> CycA=1 & CycB=1 & Cdc20=1
-> CycA=0 & CycB=1 & Cdc20=1 -> CycA=0 & CycB=0 & Cdc20=1 -> CycA=0 & CycB=0
& Cdc20=0

OK OK

9. Incorrect sequence from Rb=0 & Cdh1=0 & p27=0 & Skp2=1 & CycE=0 (G2): CycA=1
& CycB=0 & Cdc20=0 -> CycA=1 & CycB=1 & Cdc20=0 -> CycA=1 & CycB=1 & Cdc20=1
-> CycA=0 & CycB=1 & Cdc20=1 -> CycA=0 & CycB=1 & Cdc20=0 -> CycA=0 & CycB=0
& Cdc20=0
10. Incorrect sequence from Rb=0 & Cdh1=0 & p27=0 & Skp2=1 & CycE=0 (G2): CycA=1
& CycB=0 & Cdc20=0 -> CycA=1 & CycB=1 & Cdc20=0 ->CycA=0 & CycB=1 & Cdc20=0
->CycA=0 & CycB=0 & Cdc20=0

Table A.2: Sequence properties and simulation results for the initial model of the mammalian cell
cycle [Fauré et al., 2006] and the updated model.
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Phenotypes Sequences of events verified by model checking Fauré et
al. (2006)

Updated
model

Cdh1 is not required
for mitotic exit.

11. Correct sequence from Rb=0 & Cdh1=0 & p27=0 & Skp2=1 & CycE=0 (G2): CycA=1
& CycB=0 & Cdc20=0 & Cdh1=0 -> CycA=1 & CycB=1 & Cdc20=0 & Cdh1=0 -> CycA=1
& CycB=1 & Cdc20=1& Cdh1=0 -> CycA=0 & CycB=1 & Cdc20=1& Cdh1=0 -> CycA=0
& CycB=0 & Cdc20=1 & Cdh1=0 -> CycA=0 & CycB=0 & Cdc20=0 & Cdh1=0

OK OK

UBEC2 is required
for the destruction of
mitotic cyclins and
other mitosis-related
substrates.

12. Incorrect sequence from Rb=0 & Cdh1=0 & p27=0 & Skp2=1 & CycE=0 (G2) : CycA=1
& CycB=0 & Cdc20=0 & UbcH10=0 -> CycA=1 & CycB=1 & Cdc20=0 & UbcH10=0
-> CycA=1 & CycB=1 & Cdc20=1& UbcH10=0 -> CycA=0 & CycB=1 & Cdc20=1&
UbcH10=0 -> CycA=0 & CycB=0 & Cdc20=1 & UbcH10=0 -> CycA=0 & CycB=0 &
Cdc20=0 & UbcH10=0

No OK

Degradation of CycE
in S phase, activation
of CycB in G2 phase

13. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 &
Cdh1=1 for the updated model: CycE=0 & CycA=0 & CycB=0 -> CycE=1 & CycA=0
& CycB=0 -> CycE=1 & CycA=1 & CycB=0 -> CycE=1 & CycA=1 & CycB=1 -> CycE=0
& CycA=1 & CycB=1 -> CycE=0 & CycA=0 & CycB=1 -> CycE=0 & CycA=0 & CycB=0

No No

Synthesis of CycA in
in early S phase, acti-
vation of CycB in G2
phase.

14. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 &
Cdh1=1 for the updated model: CycE=0 & CycA=0 & CycB=0 -> CycE=1 & CycA=0
& CycB=0 -> CycE=1 & CycA=0 & CycB=1 -> CycE=1 & CycA=1 & CycB=1

OK OK

Degradation of CycA
in early mitosis, degra-
dation of CycB in late
mitosis

15. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 &
Cdh1=1 for the updated model: CycE=0 & CycA=0 & CycB=0 -> CycE=1 & CycA=0
& CycB=0 -> CycE=1 & CycA=1 & CycB=0 -> CycE=0 & CycA=1 & CycB=0 -> CycE=0
& CycA=1 & CycB=1 -> CycE=0 & CycA=1 & CycB=0 -> CycE=0 & CycA=0 & CycB=0

No No

Complete removal of
cyclin B1 is essential to
prevent the return of
the spindle checkpoint
following sister chro-
matid disjunction.

16. Incorrect sequence starting from CycB=0 & Cdh1=1 (G1) or Rb=1 & CycB=0 &
Cdh1=1 for the updated model: CycE=0 & CycA=0 & CycB=0 ->CycE=1 & CycA=0
& CycB=0 ->CycE=1 & CycA=1 & CycB=0 ->CycE=0 & CycA=1 & CycB=0 ->CycE=0 &
CycA=1 & CycB=1 ->CycE=0 & CycA=0 & CycB=1 ->CycE=1 & CycA=0 & CycB=1

OK No

Experimentally
observed expressions
of each component

17. Correct sequence defined in Table 9 OK for a
sequence
without
p27,
Rb and
Skp2

OK

Table A.3: Sequence properties and simulation results for the initial model of the mammalian cell
cycle [Fauré et al., 2006] and the updated model.
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A.2 Toy oscillator model
This toy model reproduces the dynamics of a self-inhibited gene. It is a simple multi-component
differential oscillator described in [Novák and Tyson, 2008] and schematized in Figure 3.7. Based
on a delayed negative-feedback loop, it is composed of only three molecular species represented
with three ODEs with nine kinetic parameters. The molecules X, Y_cyto and Y_nucl represent
the gene mRNA, protein in the cytoplasm and protein in the nucleus, respectively. Y_nucl down-
regulates the expression of X (allosteric binding with Michaelis-Menten kinetics). X activates
Y_cyto and Y_cyto is translocated into Y_nucl. All these reactions, along with the degradations,
follow mass-action kinetics, except the degradation of Y_cyto which follows a Hill function. The
transport of the protein from the cytoplasm to the nucleus provides the necessary delay enabling
the rise of oscillations. It is defined by the following set of ODEs:

d[X]

dt
=

a · k1 ·Kdp

Kdp + [Y _nucl]p
− a · kdx · [X]

d[Y _cyto]
dt

= a · ksy · [X] + a · kn · [Y _nucl]− a · kc · [Y _cyto]− a · k2 · [Y _cyto]
Km+ [Y _cyto]

d[Y _nucl]
dt

= a · kc · [Y _cyto]− a · kn+ a · kd · [Y _nucl]

The initial concentrations are not calibrated and therefore kept null for each compound. The
kinetic parameters values are listed in the following table:

Parameter Value
p 5
Km 0.2
Kd 1
k1 0.5
kdx 0.05
ksy 0.8
k2 1
kc 0.1
kn 0.05
kd 0.1
a 1.63

A.3 Models studied in Chapter 5
This appendix provides the Biocham files encoding the models used in Chapter 5: the cell cycle
model from [Calzone and Soliman, 2006], the circadian clock model from [Relógio et al., 2011],
and a model combining the two with an additional coupling.

Cell cycle model

% Cell cycle adapted from Qu et al, Biophysical journal , 2003
% Initial concentrations
present(preMPF,0.279939269).
present(MPF,0.747404087).
present(C25,0.629659946).
present(C25P,0.370340054).
present(Wee1,0.00223979517).
present(Wee1~{p},0.132059534).
present(APC,0.0303504407).
present(IE,0.41856651).
present(mWee1,0.141190132).
present(APCi,0.973282491).
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% Kinetic parameters
parameter(kd25,1).
parameter(kdmpfp,0.25).
parameter(kampf,2.2).
parameter(kaapc,1).
parameter(ksweemp,0.001).
parameter(kdweem,1).
parameter(Kweem,0.2).
parameter(kwpcn,5).
parameter(Vac,1).
parameter(Kac25,0.01).
parameter(Kic25,0.01).
parameter(kdmpf,2).
parameter(Vaw,1).
parameter(Vapc,0.1).
parameter(Kaw,0.005).
parameter(Kiw,0.005).
parameter(Vapw,0.1).
parameter(Kapc,0.01).
parameter(ks25,1).
%parameter(kswee,0.5).
parameter(kswee,1.5).
%parameter(kimpf,1.5).
parameter(kimpf,2.5).
parameter(Vic,0.2).
parameter(kiapc,0.5).
parameter(kdwee,1).
parameter(Viw,0.2).
parameter(ksmpf,0.35).
parameter(kdie,0.1).
parameter(ksiep,0).
parameter(ksie,0.3).
parameter(kaapcp,0).
% Reaction rules
% MPF− preMPF
ksmpf for _=>preMPF.
kdmpfp*[preMPF] for preMPF=>_.
kdmpfp*[MPF] for MPF=>_.
kdmpf*[APC]*[MPF] for MPF=[APC]=>_.
kdmpf*[APC]*[preMPF] for preMPF=[APC]=>_.
kampf*[C25P]*[preMPF] for preMPF=[C25P]=>MPF.
kimpf*[Wee1]*[MPF] for MPF=[Wee1]=>preMPF.
% Wee1
Viw*[Wee1~{p}]/(Kiw+[Wee1~{p}]) for Wee1~{p}=>Wee1.
(Vapw+Vaw*[MPF])*[Wee1]/(Kaw+[Wee1]) for Wee1=[MPF]=>Wee1~{p}.
ksweemp for _=> mWee1.
kdweem*[mWee1] for mWee1=>_.
kswee*[mWee1] for _=[mWee1]=>Wee1.
kdwee*[Wee1] for Wee1=>_.
kdwee*[Wee1~{p}] for Wee1~{p}=>_.
% Cdc25
Vic*[C25P]/(Kic25+[C25P]) for C25P=>C25.
(Vapc+Vac*[MPF])*[C25]/(Kac25+[C25]) for C25=[MPF]=>C25P.
ks25 for _=>C25.
kd25*[C25] for C25=>_.
kd25*[C25P] for C25P=>_.
% APC
ksiep for _=>IE.
ksie*[MPF] for _=[MPF]=>IE.
kdie*[IE] for IE=>_.
(kaapcp+kaapc*[IE])*[APCi]/(Kapc+[APCi]) for APCi=[IE]=>APC.
kiapc*[APC]/(Kapc+[APC]) for APC=>APCi.

Circadian clock model

% Parameters
parameter(dx1,0.08).
parameter(dx2,0.06).
parameter(dx3,0.09).
parameter(dx5,0.17).
parameter(dx6,0.12).
parameter(dx7,0.15).
parameter(dy1,0.3).
parameter(dy2,0.2).
parameter(dy3,2).
parameter(dy4,0.2).
parameter(dy5,1.6).
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parameter(dz1,0.23).
parameter(dz2,0.25).
parameter(dz3,0.6).
parameter(dz4,0.2).
parameter(dz5,0.2).
parameter(dz6,0.31).
parameter(dz7,0.3).
parameter(dz8,0.73).
parameter(kfx1,2.3).
parameter(kdx1,0.01).
parameter(kfz4,1).
parameter(kdz4,1).
parameter(kfz5,1).
parameter(kdz5,1).
parameter(kphz2,2).
parameter(kdphz3,0.05).
parameter(V1maxp,1).
parameter(V2maxp,2.92).
parameter(V3maxp,1.9).
parameter(V4maxp,10.9).
parameter(V5maxp,1).
macro(V1max,V1maxp).
macro(V2max,V2maxp).
macro(V3max,V3maxp).
macro(V4max,V4maxp).
macro(V5max,V5maxp).
parameter(kt1,3).
parameter(ki1,0.9).
parameter(kt2,2.4).
parameter(ki2,0.7).
parameter(ki21,5.2).
parameter(kt3,2.07).
parameter(ki3,3.3).
parameter(kt4,0.9).
parameter(ki4,0.4).
parameter(kt5,8.35).
parameter(ki5,1.94).
parameter(a,12).
parameter(d,12).
parameter(g,5).
parameter(h,5).
parameter(i,12).
parameter(kp1,0.4).
parameter(kp2,0.26).
parameter(kp3,0.37).
parameter(kp4,0.76).
parameter(kp5,1.21).
parameter(kiz4,0.2).
parameter(kiz5,0.1).
parameter(kiz6,0.5).
parameter(kiz7,0.1).
parameter(kiz8,0.1).
parameter(kex2,0.02).
parameter(kex3,0.02).
parameter(b,5).
parameter(c,7).
parameter(e,6).
parameter(f,4).
parameter(f1,1).
parameter(v,6).
parameter(w,2).
parameter(p,6).
parameter(q,3).
parameter(n,2).
parameter(m,5).
parameter(y10,0).
parameter(y20,0).
parameter(y30,0).
parameter(y40,0).
parameter(y50,0).
parameter(coefclock,1.05).
macro(PC,[Cry−Per~{p}::nucl]+[Cry−Per_nucl]).

% Initial concentrations
present(Bmal−Clock_nucl,2.10424393).
present(Cry−Per~{p}::nucl,1.33350922).
present(Cry−Per_nucl,0.416825761).
present(RevErb_nucl,2.34469812).
present(Ror_nucl,5.63477788).
present(mPER,0.487066085).
present(mCRY,3.55456577).
present(mREVERB,2.51320081).
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present(mROR,2.79852328).
present(mBMAL,1.14062417).
present(Cry_cyto,3.99608062).
present(Per_cyto,0.0704055565).
present(Per~{p}::cyto,0.103699981).
present(Cry−Per~{p}::cyto,0.336017237).
present(Cry−Per_cyto,0.238146903).
present(RevErb_cyto,1.06505599).
present(Ror_cyto,5.42605629).

% Reaction rules
MA(kiz5*coefclock) for Cry−Per_cyto => Cry−Per_nucl.
MA(kex3*coefclock) for Cry−Per_nucl => Cry−Per_cyto.
MA(dx3*coefclock) for Cry−Per_nucl => _.
MA(kiz4*coefclock) for Cry−Per~{p}::cyto => Cry−Per~{p}::nucl.
MA(kex2*coefclock) for Cry−Per~{p}::nucl => Cry−Per~{p}::cyto.
MA(dx2*coefclock) for Cry−Per~{p}::nucl => _.
MA(kfz5*coefclock) for Per_cyto + Cry_cyto => Cry−Per_cyto.
MA(kdz5*coefclock) for Cry−Per_cyto => Per_cyto+Cry_cyto.
MA(dz5*coefclock) for Cry−Per_cyto => _.
MA(kfz4*coefclock) for Per~{p}::cyto + Cry_cyto => Cry−Per~{p}::cyto.
MA(kdz4*coefclock) for Cry−Per~{p}::cyto => Per~{p}::cyto+Cry_cyto.
MA(dz4*coefclock) for Cry−Per~{p}::cyto => _.
MA(kphz2*coefclock) for Per_cyto => Per~{p}::cyto.
MA(kdphz3*coefclock) for Per~{p}::cyto => Per_cyto.
MA(dz3*coefclock) for Per~{p}::cyto => _.
MA(kp1*coefclock) for _=[mPER] => Per_cyto.
kp1*y10*coefclock for _ => Per_cyto.
MA(dz2*coefclock) for Per_cyto => _.
MA(kp2*coefclock) for _=[mCRY] => Cry_cyto.
kp2*y20*coefclock for _ => Cry_cyto.
MA(dz1*coefclock) for Cry_cyto => _.
% Activation of gene Cry : synthesis of mCry (mCRY)
V2max*(1+d*([Bmal−Clock_nucl]/kt2)^e)/((1+([RevErb_nucl]/ki21)^f1)*(1+([Bmal−Clock_nucl]/kt2)^e*(PC/ki2)^f+([Bmal−

Clock_nucl]/kt2)^e))
for RevErb_nucl + Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl => RevErb_nucl + Cry−Per_nucl + Cry−Per~{p}::nucl +

Bmal−Clock_nucl + mCRY.
MA(dy2) for mCRY => _.
% Activation of gene Per : synthesis of mPER (mPER)
coefclock*V1max*(1+a*([Bmal−Clock_nucl]/kt1)^b)/(1+([Bmal−Clock_nucl]/kt1)^b*(PC/ki1)^c+([Bmal−Clock_nucl]/kt1)^b)

for Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl => Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl + mPER.
MA(coefclock*dy1) for mPER => _.
MA(coefclock*kiz8) for Bmal_cyto => Bmal_nucl.
MA(coefclock*kdx1) for Bmal−Clock_nucl => Bmal_nucl.
MA(coefclock*kfx1) for Bmal_nucl => Bmal−Clock_nucl.
MA(coefclock*dx7) for Bmal_nucl => _.
MA(coefclock*kp5) for _=[mBMAL] => Bmal_cyto.
coefclock*kp5*y50 for _ => Bmal_cyto.
MA(coefclock*dz8) for Bmal_cyto => _.
% Activation of gene Bmal : synthesis of mBmal (mBMAL)
coefclock*V5max*(1+i*([Ror_nucl]/kt5)^n)/(1+([RevErb_nucl]/ki5)^m+([Ror_nucl]/kt5)^n)

for Ror_nucl + RevErb_nucl => Ror_nucl + RevErb_nucl + mBMAL.
MA(coefclock*dy5) for mBMAL => _.
MA(coefclock*kiz7) for Ror_cyto => Ror_nucl.
MA(coefclock*dx6) for Ror_nucl => _.
MA(coefclock*kiz6) for RevErb_cyto => RevErb_nucl.
MA(coefclock*dx5) for RevErb_nucl => _.
MA(coefclock*kp4) for _=[mROR] => Ror_cyto.
coefclock*kp4*y40 for _ => Ror_cyto.
MA(coefclock*dz7) for Ror_cyto => _.
MA(coefclock*kp3) for _=[mREVERB] => RevErb_cyto.
coefclock*kp3*y30 for _ => RevErb_cyto.
MA(coefclock*dz6) for RevErb_cyto => _.
% Activation of gene Ror : synthesis of mRor (mROR)
coefclock*V4max*(1+h*([Bmal−Clock_nucl]/kt4)^p)/(1+([Bmal−Clock_nucl]/kt4)^p*(PC/ki4)^q+([Bmal−Clock_nucl]/kt4)^p)

for Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl => Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl + mROR.
MA(coefclock*dy4) for mROR => _.
% Activation of gene Rev : synthesis of mRev (mREVERB)
coefclock*V3max*(1+g*([Bmal−Clock_nucl]/kt3)^v)/(1+([Bmal−Clock_nucl]/kt3)^v*(PC/ki3)^w+([Bmal−Clock_nucl]/kt3)^v)

for Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl => Cry−Per_nucl + Cry−Per~{p}::nucl + Bmal−Clock_nucl + mREVERB
.

MA(coefclock*dy3) for mREVERB => _.
% Degradation of BC_nucl (Bmal−Clock_nucl)
MA(coefclock*dx1) for Bmal−Clock_nucl => _.

Coupling the two models
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load_biocham(’../QuCellCycle.bc’).
add_biocham(’../RelogioClock.bc’).

%% Link circadian clock−> cell cycle
%parameter(ksweem,0.25).
%ksweem*max(0, ([Bmal−Clock_nucl]− 0.5)) for _=[Bmal−Clock_nucl]=>mWee1.
%parameter(vsw,2).
%parameter(vsw_0,0).
%parameter(Kaw2,1).
%parameter(nmw,1).

% Link cell clock−> circadian cycle
%parameter(nbis,4).
%parameter(J, 1).
%macro(I, J^nbis/(J^nbis+[APC]^nbis)).
parameter(I1,1).
parameter(I2,1).
parameter(I3,1).
parameter(I4,1).
parameter(I5,1).
parameter(coefsynth1,1). %mPER
parameter(coefsynth2,1). %mCRY
parameter(coefsynth3,1). %mREVERB
parameter(coefsynth4,1). %mROR
parameter(coefsynth5,0). %mBMAL
parameter(timeinhib,3).
parameter(endMitosis,0).
parameter(ti,1).
parameter(ti_0,0).
add_event([MPF]<0.5,endMitosis,Time+timeinhib).
add_event([MPF]<0.5, I1, coefsynth1).
add_event([MPF]<0.5, I2, coefsynth2).
add_event([MPF]<0.5, I3, coefsynth3).
add_event([MPF]<0.5, I4, coefsynth4).
add_event([MPF]<0.5, I5, coefsynth5).
add_event(Time>=endMitosis, I1, 1).
add_event(Time>=endMitosis, I2, 1).
add_event(Time>=endMitosis, I3, 1).
add_event(Time>=endMitosis, I4, 1).
add_event(Time>=endMitosis, I5, 1).
macro(V1max, (ti*I1 +1−ti) * V1maxp). % new parameter for mPER synthesis
macro(V2max, (ti*I2 +1−ti) * V2maxp). % new parameter for mCRY synthesis
macro(V3max, (ti*I3 +1−ti) * V3maxp). % new parameter for mREVERB synthesis
macro(V4max, (ti*I4 +1−ti) * V4maxp). % new parameter for mROR synthesis
macro(V5max, (ti*I5 +1−ti) * V5maxp). % new parameter for mBMAL synthesis
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