. Dans-ce-compte-rendu, on se place dans le contexte de l'estimation des effets principaux des paramètres d'un modèle. A cet effet, nous proposons d'étudier deux approches pour construire itérativement des plans répliqués à partir de séquences de Sobol

J. [. Abraham and . Hunt, Parameter Estimation Strategies for Large-Scale Urban Models, Transportation Research Record: Journal of the Transportation Research Board, vol.1722, issue.1, pp.9-16, 2000.
DOI : 10.3141/1722-02

K. [. Bose and . Bush, Orthogonal Arrays of Strength two and three, The Annals of Mathematical Statistics, vol.23, issue.4, pp.508-524, 1952.
DOI : 10.1214/aoms/1177729331

N. [. Box and . Draper, Empirical Model Building and Response Surfaces, 1987.

B. [. Bratley, H. Fox, and . Niederreiter, Implementation and tests of low-discrepancy sequences, ACM Transactions on Modeling and Computer Simulation, vol.2, issue.3, pp.195-213, 1992.
DOI : 10.1145/146382.146385

G. E. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters : An Introduction to Design, Data Analysis and Model Building, 1978.

]. K. Bus52 and . Bush, Orthogonal Arrays of index unity, Ann. Math. Statist, vol.23, issue.3, pp.426-434, 1952.

C. [. Ciuffo and . Azevedo, A Sensitivity-Analysis-Based Approach for the Calibration of Traffic Simulation Models, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.3, pp.1298-1309, 2014.
DOI : 10.1109/TITS.2014.2302674

]. Y. Can12 and . Caniou, Analyse de sensibilité globale pour les modèles imbriqués et multi-échelles, Laboratoire de Mécanique et Ingénieries (LaMI), 2012.

. I. Cfs-`-73cfs-`-cfs-`-73-]-r, C. M. Cukier, K. E. Fortuin, A. G. Shuler, J. H. Petschek et al., Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory, J. Chem. Phys, issue.8, p.593873, 1973.

]. G. Cha13 and . Chastaing, Indices de Sobol' généralisés pour variables dépendantes, 2013.

H. [. Cukier, K. E. Levine, and . Shuler, Nonlinear sensitivity analysis of multiparameter model systems, Journal of Computational Physics, vol.26, issue.1, pp.1-42, 1978.
DOI : 10.1016/0021-9991(78)90097-9

R. E. Caflisch, W. J. Morokoff, and A. B. Owen, Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension, The Journal of Computational Finance, vol.1, issue.1
DOI : 10.21314/JCF.1997.005

T. [. Cranley and . Patterson, Randomization of Number Theoretic Methods for Multiple Integration, SIAM Journal on Numerical Analysis, vol.13, issue.6, pp.904-914, 1976.
DOI : 10.1137/0713071

. I. Bibliographie-[-css75-]-r, J. H. Cukier, K. E. Schaibly, and . Shuler, Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations, J. Chem. Phys, vol.63, issue.3, p.1140, 1975.

P. [. Capelle, A. Sturm, and . Vidard, Formulating LUTI Calibration as an Optimisation Problem: Example of Tranus Shadow Price Estimation, Procedia Engineering, vol.115, pp.12-20, 2015.
DOI : 10.1016/j.proeng.2015.07.349

URL : https://hal.archives-ouvertes.fr/hal-01093248

W. Daamen, C. Buisson, and S. P. Hoogendoorn, Traffic Simulation and Data : Validation Methods and Applications, Verteilungsfunktionen. I. Mitt. Proc. Akad. Wet. Amsterdam, vol.38, pp.813-821, 1935.
DOI : 10.1201/b17440

M. [. Damblin, B. Couplet, and . Iooss, Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties, Journal of Simulation, vol.82, issue.2, pp.276-289, 2013.
DOI : 10.1016/j.cpc.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-00848240

]. L. Dev86 and . Devroye, Non-Uniform Random Variate Generation, 1986.

]. A. Dey12 and . Dey, On the construction of nested Orthogonal Arrays, Australas

. Dsa-`-12dsa-`-dsa-`-12-]-p, M. Dutta, E. Saujot, B. Arnaud, E. Lefevre et al., Uncertainty propagation and sensitivity analysis during calibration of TRANUS, an integrated land use and transport model, International Conference on Urban, Regional Planning and Transportation, 2012.

]. B. Efr81 and . Efron, Nonparametric standard errors and confidence intervals

R. [. Efron and . Tibshirani, An introduction to the bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

]. H. Fau82 and . Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith, vol.41, issue.4, pp.337-352, 1982.

]. R. Fis26 and . Fisher, The arrangement of field experiments, J. Ministry Agric, vol.33, pp.503-513, 1926.

[. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Experiments, 2006.
DOI : 10.1201/9781420034899

]. J. Fra08 and . Franco, Planification d'expériences numériques en phase exploratoire pour la simulation des phénomènes complexes, 2008.

J. Franco, O. Vasseur, B. Corre, and M. Sergent, Minimum Spanning Tree: A new approach to assess the quality of the design of computer experiments, Chemometrics and Intelligent Laboratory Systems, vol.97, issue.2, pp.164-169, 2009.
DOI : 10.1016/j.chemolab.2009.03.011

URL : https://hal.archives-ouvertes.fr/hal-00409737

E. [. Gilquin, T. Arnaud, C. Capelle, and . Prieur, Sensitivity analysis and optimisation of a Land Use and Transport Integrated model. preprint available at https, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291774

E. [. Gilquin, H. Arnaud, C. Monod, and . Prieur, Recursive estimation procedure of Sobol' indices based on replicated designs. preprint available at https, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291769

L. Gilquin, E. Arnaud, and C. Prieur, Replication procedure for grouped Sobol' indices estimation in dependent uncertainty spaces, Information and Inference, vol.4, issue.4, pp.354-379, 2015.
DOI : 10.1093/imaiai/iav010

URL : https://hal.archives-ouvertes.fr/hal-01045034

Q. Ge, B. Ciuffo, and M. Menendez, An Exploratory Study of Two Efficient Approaches for the Sensitivity Analysis of Computationally Expensive Traffic Simulation Models, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.3, pp.1288-1297, 2014.
DOI : 10.1109/TITS.2014.2311161

F. Gamboa, A. Janon, T. Klein, and A. Lagnoux, Sensitivity analysis for multidimensional and functional outputs, Electronic Journal of Statistics, vol.8, issue.1, pp.575-603, 2014.
DOI : 10.1214/14-EJS895

URL : https://hal.archives-ouvertes.fr/hal-00881112

M. [. Ge and . Menendez, An Efficient Sensitivity Analysis Approach for Computationally Expensive Microscopic Traffic Simulation Models, International Journal of Transportation, vol.2, issue.2, pp.49-64, 2014.
DOI : 10.14257/ijt.2014.2.2.04

L. [. Gilquin and . Rugama, Reliable error estimation for Sobol' indices. draft version available at https, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358067

. Gra-`-16gra-`-gra-`-16-]-l, . Gilquin, . A. Ll, E. Jiménez-rugama, F. J. Arnaud et al., Iterative construction of replicated designs based on Sobol' sequences. preprint available at https, 2016.

P. [. Ghanem and . Spanos, Stochastic Finite Elements : A Spectral Approach, 2003.
DOI : 10.1007/978-1-4612-3094-6

F. [. Hong and . Hickernell, Algorithm 823, ACM Transactions on Mathematical Software, vol.29, issue.2, pp.95-109, 2003.
DOI : 10.1145/779359.779360

R. [. Hora and . Iman, A comparison of maximum/bounding and Bayesian/Monte Carlo for fault tree uncertainty analysis, pp.85-2839, 1986.

]. F. Hic98a and . Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp, vol.67, issue.221, pp.299-322, 1998.

]. F. Hic98b and . Hickernell, Lattice rules : How well do they measure up ?, Random and Quasi-Random Point Sets, pp.109-166, 1998.

]. E. Bibliographie-[-hla61 and . Hlawka, Funktionen von beschränkter variatiou in der theorie der gleichverteilung, pp.325-333, 1961.

]. W. Hoe48 and . Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Stat, vol.19, issue.3, pp.293-325, 1948.

L. [. Hickernell and . Rugama, Reliable adaptative cubature using digital sequences, pp.367-383, 2016.
DOI : 10.1007/978-3-319-33507-0_18

A. [. Homma, . S. Saltellihss99-]-a, N. J. Hedayat, J. Sloane, and . Stufken, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

B. [. He and . Tang, Strong orthogonal arrays and associated Latin hypercubes for computer experiments, Biometrika, vol.100, issue.1, pp.254-260, 2013.
DOI : 10.1093/biomet/ass065

B. [. He and . Tang, A characterization of strong orthogonal arrays of strength three, The Annals of Statistics, vol.42, issue.4, pp.1347-1360, 2014.
DOI : 10.1214/14-AOS1225

W. [. Iman and . Conover, A distribution-free approach to inducing rank correlation among input variables, Communications in Statistics - Simulation and Computation, vol.13, issue.4, pp.311-334, 1982.
DOI : 10.1080/00401706.1962.10490011

]. R. Ih90a, S. C. Iman, and . Hora, A robust measure of uncertainty importance for use in fault tree system analysis, Risk Anal, vol.10, issue.3, pp.401-406, 1990.

]. T. Ih90b, T. Ishigami, and . Homma, An importance quantification technique in uncertainty analysis for computer models, Uncertainty Modeling and Analysis Proceedings., First International Symposium on, pp.398-403, 1990.

]. A. Jan08 and . Janon, Analyse de sensibilité et réduction de dimension. Application à l'océanographie, Laboratoire Jean Kuntzmann, 2008.

F. [. Joe and . Kuo, Constructing Sobol Sequences with Better Two-Dimensional Projections, SIAM Journal on Scientific Computing, vol.30, issue.5, pp.2635-2654, 2008.
DOI : 10.1137/070709359

]. A. Jkl-`-14jkl-`-jkl-`-14, T. Janon, A. Klein, M. Lagnoux, C. Nodet et al., Asymptotic normality and efficiency of two Sobol' index estimators, ESAIM Probab. Stat, vol.18, pp.342-364, 2014.

C. [. Jacques, N. Lavergne, and . Devictor, Sensitivity analysis in presence of model uncertainty and correlated inputs, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.10-111126, 2006.
DOI : 10.1016/j.ress.2005.11.047

URL : https://hal.archives-ouvertes.fr/hal-00194061

M. E. Johnson, L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, vol.26, issue.2, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-B

M. [. Jones, W. J. Schonlau, and . Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

]. K. Kis42 and . Kishen, On Latin and hyper-Graeco-Latin cubes and Hypercubes, Current Science, vol.11, issue.3, pp.98-99, 1942.

A. [. Kendall and . Stuart, The Advanced Theory of Statistics, 1967.

]. C. Lem09 and . Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, 2009.

]. W. Leo41 and . Leontief, The Structure of the American Economy, 1919.

M. Lamboni, H. Monod, and D. Makowski, Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliability Engineering & System Safety, vol.96, issue.4, pp.450-459, 2011.
DOI : 10.1016/j.ress.2010.12.002

URL : https://hal.archives-ouvertes.fr/hal-00999840

]. W. Loh96 and . Loh, On Latin hypercube sampling, The Annals of Statistics, vol.24, issue.5, pp.2058-2080, 1996.
DOI : 10.1214/aos/1069362310

]. W. Loh08 and . Loh, A multivariate central limit theorem for randomized orthogonal array sampling designs in computer experiments, The Annals of Statistics, vol.36, issue.4, pp.1983-2023, 2008.
DOI : 10.1214/07-AOS530

H. [. Li and . Rabitz, General formulation of HDMR component functions with independent and correlated variables, Journal of Mathematical Chemistry, vol.73, issue.4, pp.99-130, 2011.
DOI : 10.1007/s10910-011-9898-0

A. [. Leontief and . Strout, Multi-Regional Input-Output Analysis. Structural Interdependence and Economic Development, 1963.

]. J. Mat98 and . Matou?ek, On the L2-discrepancy for anchored boxes, J. Complexity, vol.14, issue.4, pp.527-556, 1998.

]. J. Mat99 and . Matou?ek, Geometric Discrepancy, 1999.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

R. [. Morokoff and . Caflisch, Quasi-Random Sequences and Their Discrepancies, SIAM Journal on Scientific Computing, vol.15, issue.6, pp.1251-1279, 1994.
DOI : 10.1137/0915077

]. D. Mcf73 and . Mcfadden, Conditional logit analysis of qualitative choice behaviour. Frontiers in Econometrics, pp.105-142, 1973.

M. D. Mckay, Evaluating prediction uncertainty, 1995.
DOI : 10.2172/29432

O. [. Mara and . Joseph, Comparison of some efficient methods to evaluate the main effect of computer model factors, Journal of Statistical Computation and Simulation, vol.1, issue.2, pp.167-178, 2008.
DOI : 10.1016/S0378-7788(00)00127-4

URL : https://hal.archives-ouvertes.fr/hal-01093033

D. [. Myers and . Montgomery, Response Surface Methodology : Process and Product Optimization Using Designed Experiments, 1995.

M. D. Morris, L. M. Moore, and M. D. Mckay, Sampling plans based on balanced incomplete block designs for evaluating the importance of computer model inputs, Journal of Statistical Planning and Inference, vol.136, issue.9, pp.3203-3220, 2006.
DOI : 10.1016/j.jspi.2005.01.001

M. D. Morris, L. Moore, and M. D. Mckay, Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models, Technometrics, vol.50, issue.2, pp.205-215, 2008.
DOI : 10.1198/004017008000000208

H. Monod, C. Naud, and D. Makowski, Uncertainty and sensitivity analysis for crop models, pp.55-100, 2006.

]. M. Mor91 and . Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, vol.33, issue.2, pp.161-174, 1991.

K. [. Mcfadden and . Train, Mixed MNL models for discrete response, Journal of Applied Econometrics, vol.8, issue.5, pp.447-470, 2000.
DOI : 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1

J. Mockus, V. Tiesis, and A. Zilinskas, The application of bayesian methods for seeking the extremum, Towards Global Optimisation, pp.117-129, 1978.

]. H. Nie92a and . Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Mathematical Journal, vol.42, issue.1, pp.143-166, 1992.

]. H. Nie92b and . Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, pacbms-nsf regional conference series in applied math, 1992.

C. [. Niederreiter and . Xing, Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl, pp.241-273, 1996.
DOI : 10.1006/ffta.1996.0016

URL : http://doi.org/10.1006/ffta.1996.0016

]. A. Owe91 and . Owen, Lattice sampling revisited : Monte carlo variance of means over randomized orthogonal arrays, Ann. Statist, vol.22, issue.2, pp.930-945, 1991.

]. A. Owe92 and . Owen, Orthogonal Arrays for computer experiments, integration and visualization, Statist. Sinica, vol.2, issue.2, pp.439-452, 1992.

]. A. Owe94 and . Owen, Lattice sampling revisited : Monte Carlo variance of means over randomized orthogonal arrays, Ann. Statist, vol.22, issue.2, pp.930-945, 1994.

]. A. Owe95 and . Owen, Randomly permuted pt, m, sq-nets and pt, sq-sequences

]. A. Owe97a and . Owen, Monte Carlo variance of scrambled net quadrature, SIAM J. Numer. Annal, vol.34, issue.5, pp.1884-1910, 1997.

]. A. Owe97b and . Owen, Scrambled net variance for integrals of smooth functions, Ann. Statist, vol.25, issue.4, pp.1541-1562, 1997.

]. A. Owe98 and . Owen, Scrambling Sobol' and Niederreiter-Xing points, J. Complexity, vol.14, issue.4, pp.466-489, 1998.

]. A. Owe03 and . Owen, Variance and discrepancy with alternative scramblings

]. A. Owe12 and . Owen, Variance components and generalized Sobol' indices, 2012.

]. A. Owe13a and . Owen, Better estimation of small Sobol' sensitivity indices, ACM Trans. Model. Comput. Simul, vol.23, issue.211, 2013.

]. A. Owe13b and . Owen, Monte Carlo theory, methods and examples, 2013.

R. [. Pillards and . Cools, A theoretical view on transforming lowdiscrepancy sequences from a cube to a simplex, Monte Carlo Meth. and Appl, vol.10, pp.3-4511, 2004.

]. C. Pei78 and . Peirce, The doctrine of chances, Popular Science Monthly, vol.12, pp.604-615, 1878.

W. [. Pronzato and . Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, vol.44, issue.1, pp.681-701, 2012.
DOI : 10.1007/s11222-011-9242-3

URL : https://hal.archives-ouvertes.fr/hal-00685876

P. Z. Qian, M. Ai, and C. F. Wu, Construction of nested space-filling designs, The Annals of Statistics, vol.37, issue.6A, pp.3616-3643, 2009.
DOI : 10.1214/09-AOS690

]. P. Qia09 and . Qian, Nested Latin Hypercube designs, Biometrika, vol.96, issue.4, pp.957-970, 2009.

P. Z. Qian, B. Tang, and C. F. Wu, Nested space-filling designs for computer experiments with two levels of accuracy, Stat. Sinica, vol.19, pp.287-300, 2009.

]. C. Rao46 and . Rao, Hypercubes of strength "d" leading to confounded designs in factorial experiments, Bull. Calcutta Math. Soc, vol.38, issue.3, pp.67-78, 1946.

]. C. Rao47 and . Rao, Factorial experiments derivable from combinatorial arrangements of arrays, J. Royal Statist. Soc, vol.9, issue.1, pp.128-139, 1947.

O. Roustant, D. Ginsbourger, and Y. Deville, Dicekriging, Diceoptim : Two R packages for the analysis of computer experiments by Krigingbased metamodeling and optimization, J. Stat. Softw, issue.1, pp.51-2012
URL : https://hal.archives-ouvertes.fr/hal-00495766

. A. Ll, F. J. Rugama, and . Hickernell, Adaptive multidimensional integration based on rank-1 lattices, pp.407-422, 2016.

]. A. Sal02 and . Saltelli, Making best use of models evaluations to compute sensitivity indices, Comput. Phys. Commun, vol.145, issue.2, pp.280-297, 2002.

]. G. Sap75 and . Saporta, Dépendance et codages de deux variables aléatoires, pp.43-63, 1975.

]. S. Sat86 and . Sattolo, An algorithm to generate a random cyclic permutation, Information Processing Letters, vol.22, issue.6, pp.315-317, 1986.

K. [. Saltelli, E. M. Chan, . R. Scottsm95-]-d, J. L. Stinson, and . Massey, Sensitivity Analysis An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions, J. Cryptology, vol.8, issue.3, pp.167-173, 1995.

E. [. Myshetskaya, Monte Carlo estimators for small sensitivity indices, Monte Carlo Meth. and Appl, vol.13, pp.5-6455, 2008.

]. I. Sob93 and . Sobol, Sensitivity indices for nonlinear mathematical models, Mathematical Modeling and Computational Experiment, vol.1, pp.407-414, 1993.

]. M. Ste87 and . Stein, Large sample properties of simulations using Latin Hypercube sampling, Technometrics, vol.29, issue.2, pp.143-151, 1987.

]. B. Tan93 and . Tang, Orthogonal Array-based Latin Hypercubes, J. Amer. Statistic. Assoc, vol.88, issue.424, pp.1392-1397, 1993.

S. Tarantola, D. Gatelli, and T. A. Mara, Random balance designs for the estimation of first order global sensitivity indices, Reliability Engineering & System Safety, vol.91, issue.6, pp.717-727, 2006.
DOI : 10.1016/j.ress.2005.06.003

URL : https://hal.archives-ouvertes.fr/hal-01065897

]. E. Thi04 and . Thiémard, An algorithm to compute bounds for the star discrepancy

]. J. Tis12 and . Tissot, Sur la décomposition ANOVA et l'estimation des indices de Sobol'. Application à un modèle d'écosystème marin, Laboratoire Jean Kuntzmann, 2012.

]. C. Ton10 and . Tong, Self-validated variance-based methods for sensitivity analysis of model outputs, Reliab. Eng. Syst. Saf, vol.95, issue.3, pp.301-309, 2010.

C. [. Tissot and . Prieur, A randomized orthogonal array-based procedure for the estimation of first- and second-order Sobol' indices, Journal of Statistical Computation and Simulation, vol.3, issue.2, pp.1358-1381, 2015.
DOI : 10.1214/aos/1069362310

URL : https://hal.archives-ouvertes.fr/hal-00743964

K. [. Wang and . Fang, The effective dimension and quasi-Monte Carlo integration, Journal of Complexity, vol.19, issue.2, pp.101-124, 2003.
DOI : 10.1016/S0885-064X(03)00003-7

]. A. Wil81 and . Wilson, Optimization in Locational and Transport Analysis, 1981.

]. K. Ye98 and . Ye, Orthogonal column Latin Hypercubes and their application in computer experiments, J. Amer. Statistic. Assoc, vol.93, issue.444, pp.1430-1439, 1998.