Explicit computation of the Abel-Jacobi map and its inverse

Hugo Labrande 1, 2
2 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Résumé : L'application d'Abel-Jacobi fait le lien entre la forme de Weierstrass d'une courbe elliptique définie sur C et le tore complexe qui lui est associé. Il est possible de la calculer en un nombre d'opérations quasi-linéaire en la précision voulue, c'est à dire en temps O(M(P) log P). Son inverse est donné par la fonction p de Weierstrass, qui s'exprime en fonction de thêta, une fonction importante en théorie des nombres. L'algorithme naturel d'évaluation de thêta nécessite O(M(P) sqrt(P)) opérations, mais certaines valeurs (les thêta-constantes) peuvent être calculées en O(M(P) log P) opérations en exploitant les liens avec la moyenne arithmético-géométrique (AGM). Dans ce manuscrit, nous généralisons cet algorithme afin de calculer thêta en O(M(P) log P). Nous exhibons une fonction F qui a des propriétés similaires à l'AGM. D'une façon similaire à l'algorithme pour les thêta-constantes, nous pouvons alors utiliser la méthode de Newton pour calculer la valeur de thêta. Nous avons implanté cet algorithme, qui est plus rapide que la méthode naïve pour des précisions supérieures à 300 000 chiffres décimaux. Nous montrons comment généraliser cet algorithme en genre supérieur, et en particulier comment généraliser la fonction F. En genre 2, nous sommes parvenus à prouver que la même méthode mène à un algorithme qui évalue thêta en O(M(P) log P) opérations ; la même complexité s'applique aussi à l'application d'Abel-Jacobi. Cet algorithme est plus rapide que la méthode naïve pour des précisions plus faibles qu'en genre 1, de l'ordre de 3 000 chiffres décimaux. Nous esquissons également des pistes pour obtenir la même complexité en genre quelconque. Enfin, nous exhibons un nouvel algorithme permettant de calculer une isogénie de courbes elliptiques de noyau donné. Cet algorithme utilise l'application d'Abel-Jacobi, car il est facile d'évaluer l'isogénie sur le tore ; il est sans doute possible de le généraliser au genre supérieur.
Type de document :
Thèse
Cryptography and Security [cs.CR]. Université de Lorraine; University of Calgary, 2016. English


https://tel.archives-ouvertes.fr/tel-01403849
Contributeur : Hugo Labrande <>
Soumis le : lundi 28 novembre 2016 - 00:45:32
Dernière modification le : jeudi 1 décembre 2016 - 01:05:42

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

  • HAL Id : tel-01403849, version 1

Collections

Citation

Hugo Labrande. Explicit computation of the Abel-Jacobi map and its inverse. Cryptography and Security [cs.CR]. Université de Lorraine; University of Calgary, 2016. English. <tel-01403849>

Partager

Métriques

Consultations de
la notice

132

Téléchargements du document

116