B. Santé, S. Neurosciences, and . Neurophychopharmacologie, BONNET-SAVE Manon. Implication des Ganglions de la Base dans un processus d'apprentissage : Mise en place d'un modèle chez l'urodèle, 2015.

. Atallah, Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems, Neurobiology of Learning and Memory, vol.82, issue.3, pp.253-267, 2004.
DOI : 10.1016/j.nlm.2004.06.004

. Bar-gad, . Bergman, I. Bar-gad, and H. Bergman, Stepping out of the box: information processing in the neural networks of the basal ganglia, Current Opinion in Neurobiology, vol.11, issue.6, pp.689-695, 2001.
DOI : 10.1016/S0959-4388(01)00270-7

. Bar-gad, Information processing, dimensionality reduction and reinforcement learning in the basal ganglia, Progress in Neurobiology, vol.71, issue.6, pp.439-73, 2003.
DOI : 10.1016/j.pneurobio.2003.12.001

. Barker, A unifying model of the role of the infralimbic cortex in extinction and habits, Learning & Memory, vol.21, issue.9, pp.441-448, 2014.
DOI : 10.1101/lm.035501.114

. Benabid and A. L. Benabid, Deep brain stimulation for Parkinson???s disease, Current Opinion in Neurobiology, vol.13, issue.6, pp.696-706, 2003.
DOI : 10.1016/j.conb.2003.11.001

. Berthet, Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian???Bayesian Go-NoGo connectivity, Frontiers in Behavioral Neuroscience, vol.6, issue.55, pp.10-3389, 2012.
DOI : 10.3389/fnbeh.2012.00065

. Berthet, Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity, Frontiers in Neural Circuits, vol.7, issue.8, pp.101-122, 2016.
DOI : 10.1038/nrn1919

. Bevan, Synaptic targets of physiologically, neurochemically and morphologically characterized neurons of the rate globus pallidus, Society of Neuroscience Abstract, p.196, 1997.

. Bloch, Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury, PLOS ONE, vol.86, issue.6, pp.11-0158396, 2016.
DOI : 10.1371/journal.pone.0158396.s001

. Boraud and T. Boraud, Matì erè a décision, pp.97-107, 2015.

. Boraud and T. Boraud, Matì erè a décision, CNRSÉditions CNRS´CNRSÉditions, pp.109-117, 2015.

. Breese, The neonate-6-hydroxydopamine-lesioned rat: a model for clinical neuroscience and neurobiological principles, Brain Research Reviews, vol.48, issue.1, pp.57-73, 2005.
DOI : 10.1016/j.brainresrev.2004.08.004

. Breton, A Multi-Agent Based Simulation of Sand Piles in a Static Equilibrium, Multi-agent-based simulation, pp.108-118, 2000.
DOI : 10.1007/3-540-44561-7_8

R. Brette, Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain, Frontiers in Systems Neuroscience, vol.25, issue.38, pp.1-14, 2015.
DOI : 10.1016/j.cub.2014.11.065

URL : https://hal.archives-ouvertes.fr/hal-01357976

. Brette, R. Gerstner-]-brette, and W. Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity, Journal of Neurophysiology, vol.94, issue.5, pp.3637-3642, 2005.
DOI : 10.1152/jn.00686.2005

. Brette, Simulation of networks of spiking neurons: A review of tools and strategies, Journal of Computational Neuroscience, vol.25, issue.54, pp.349-398, 2007.
DOI : 10.1007/s10827-007-0038-6

URL : https://hal.archives-ouvertes.fr/hal-00180662

. Brown, Organizing principles of cortical integration in the rat neostriatum: Corticostriate map of the body surface is an ordered lattice of curved laminae and radial points, The Journal of Comparative Neurology, vol.292, issue.4, pp.468-488, 1998.
DOI : 10.1002/(SICI)1096-9861(19980323)392:4<468::AID-CNE5>3.0.CO;2-Z

. Buelow, Feasibility of use of probabilistic reversal learning and serial reaction time tasks in clinical trials of Parkinson's disease, Parkinsonism & Related Disorders, vol.21, issue.8, pp.894-898, 2015.
DOI : 10.1016/j.parkreldis.2015.05.019

. Burguì-ere, Optoenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors, Science, issue.6137, pp.3701243-1246, 2013.

. Burlingame, Nonheuristic Computer Determination of Molecular Structure Based Upon Carbon-13 Nuclear Magnetic Resonance Data. Branched Alkanes, Proceedings of the National Academy of Sciences, vol.70, issue.12, pp.703419-3422, 1973.
DOI : 10.1073/pnas.70.12.3419

. Calabresi, Direct and indirect pathways of basal ganglia: a critical reappraisal, Nature Neuroscience, vol.86, issue.8, pp.171022-1030, 2014.
DOI : 10.1038/466449a

N. T. Carnevale and M. L. Hines, The NEURON Book, p.42, 2009.
DOI : 10.1017/CBO9780511541612

. Chersi, A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning, Neural Networks, vol.41, issue.50, pp.212-224, 2013.
DOI : 10.1016/j.neunet.2012.11.009

. Chiu, Neuropsychiatric Symptoms in Parkinson???s Disease Dementia Are More Similar to Alzheimer???s Disease than Dementia with Lewy Bodies: A Case-Control Study, PLOS ONE, vol.55, issue.4, pp.1-10, 2016.
DOI : 10.1371/journal.pone.0153989.t003

. Chou, Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex, Frontiers in Neurorobotics, vol.14, issue.10, pp.1-18, 2015.
DOI : 10.1177/1073858408317066

. Coetzee, Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson???s disease etiology, Scientific Reports, vol.518, issue.1, pp.30509-30522, 2016.
DOI : 10.1038/nature14248

. Cohen, Neuropsychiatric disorders of childhood: Tourette's syndrome as a model, Acta Paediatrica, vol.1, issue.1, pp.86106-111, 1997.
DOI : 10.1111/j.1651-2227.1997.tb18357.x

M. X. Cohen and M. J. Frank, Neurocomputational models of basal ganglia function in learning, memory and choice, Behavioural Brain Research, vol.199, issue.1, pp.141-156, 2009.
DOI : 10.1016/j.bbr.2008.09.029

. Cools, Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging, The Journal of Neuroscience, issue.11, pp.224563-4567, 2002.

. Cools, Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration, Journal of Neuroscience, vol.29, issue.5, pp.1538-1543, 2009.
DOI : 10.1523/JNEUROSCI.4467-08.2009

W. Cowan, R. H. Cowan, and C. J. Wilson, Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex, Journal of Neurophysiology, vol.71, issue.1, pp.17-32, 1994.

G. De-la-tourette-de-la-tourette, La maladie des tics convulsifs, La Semaine Médicale, vol.19, pp.153-156, 1899.

M. R. Delong, Primate models of movement disorders of basal ganglia origin, Trends in Neurosciences, vol.13, issue.7, pp.281-285, 1990.
DOI : 10.1016/0166-2236(90)90110-V

. Delvolvé, Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl, Journal of Neurophysiology, vol.78, issue.2, pp.638-650, 1997.

. Dombrovski, Corticostriatothalamic reward prediction error signals and executive control in late-life depression, Psychological Medicine, vol.62, issue.07, pp.451413-1424, 2015.
DOI : 10.1126/science.275.5306.1593

A. Douglas, H. Douglas, and K. Adler, Spatial orientation by salamanders using plane-polarized light, Science, vol.181, issue.92, pp.285-287, 1973.

K. Doya, What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?, Neural Networks, vol.12, issue.7-8, pp.961-974, 1999.
DOI : 10.1016/S0893-6080(99)00046-5

K. Doya, Complementary roles of basal ganglia and cerebellum in learning and motor control, Current Opinion in Neurobiology, vol.10, issue.6, pp.732-739, 2000.
DOI : 10.1016/S0959-4388(00)00153-7

K. Doya, Modulators of decision making, Nature Neuroscience, vol.55, issue.4, pp.410-416, 2008.
DOI : 10.1038/nn2077

V. Dunovan, K. Dunovan, and T. Verstynen, Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning, Frontiers in Neuroscience, vol.26, issue.236, pp.1-15, 2016.
DOI : 10.1093/cercor/bhu308

. Eppler, PyNEST: A convenient interface to the NEST simulator, Frontiers in Neuroinformatics, vol.2, issue.12, pp.1-12, 2009.
DOI : 10.3389/neuro.11.012.2008

B. Ermentrout, Simulating, analyzing, and animating dynamical systems : a guide to XPPAUT for researchers and students. Siam, p.42, 2002.
DOI : 10.1137/1.9780898718195

E. Felleman, D. J. Felleman, and D. C. Essen, Distributed Hierarchical Processing in the Primate Cerebral Cortex, Cerebral Cortex, vol.1, issue.1, pp.1-47, 1991.
DOI : 10.1093/cercor/1.1.1

R. Fitzhugh, Mathematical models of threshold phenomena in the nerve membrane. The bulletin of mathematical biophysics, pp.257-278, 1955.

. Flaherty, A. W. Flaherty, and A. M. Graybiel, Corticostriatal transformations in the primate somatosensory system. projections from physiologically mapped body-part representations, Journal of Neurophysiology, vol.66, issue.4, pp.1249-1263, 1991.

M. J. Frank, Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism, Journal of Cognitive Neuroscience, vol.16, issue.1, pp.51-72, 2005.
DOI : 10.1016/S0028-3932(02)00068-4

. Frank, Interactions between frontal cortex and basal ganglia in working memory: A computational model, Cognitive, Affective, & Behavioral Neuroscience, vol.1, issue.2, pp.137-160, 2001.
DOI : 10.3758/CABN.1.2.137

. Freake, M. J. Phillips-]-freake, and J. B. Phillips, Light-Dependent Shift in Bullfrog Tadpole Magnetic Compass Orientation: Evidence for a Common Magnetoreception Mechanism in Anuran and Urodele Amphibians, Ethology, vol.204, issue.3, pp.241-254, 2005.
DOI : 10.1007/s00114-003-0500-x

. Féger, Troubles psychiatriques et ganglions de la base??: une validation exp??rimentale, Annales Pharmaceutiques Fran??aises, vol.67, issue.5, pp.320-334, 2009.
DOI : 10.1016/j.pharma.2009.06.003

. Galvan, Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state, Frontiers in Neuroanatomy, vol.26, issue.5, pp.1-21, 2015.
DOI : 10.1111/j.1460-9568.2007.05754.x

. Garenne, Basal Ganglia Preferentially Encode Context Dependent Choice in a Two-Armed Bandit Task, Frontiers in Systems Neuroscience, pp.23-113, 2011.
DOI : 10.3389/fnsys.2011.00023

URL : https://hal.archives-ouvertes.fr/hal-01155573

C. R. Gerfen, The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia nigra in the rat, The Journal of Comparative Neurology, vol.139, issue.4, pp.454-476, 1985.
DOI : 10.1002/cne.902360404

P. Giraudoux, pgirmess : Data analysis in ecology, 2016.

B. Goodman, D. F. Goodman, and R. Brette, The brian simulator, Frontiers in Neuroscience, vol.3, issue.2, pp.1-6, 2009.

P. Goodman, J. Goodman, and M. G. Packard, The Memory System Engaged During Acquisition Determines the Effectiveness of Different Extinction Protocols, Frontiers in Behavioral Neuroscience, vol.118, issue.314, pp.1-13, 2016.
DOI : 10.1016/j.beproc.2015.06.004

. Grassia, Tunable neuromimetic integrated system for emulating cortical neuron models, Frontiers in Neuroscience, vol.5, pp.134-65, 2011.
DOI : 10.3389/fnins.2011.00134

URL : https://hal.archives-ouvertes.fr/hal-00684091

. Grillner, Independent circuits in the basal ganglia for the evaluation and selection of actions, Proc. Natl. Acad. Sci. USA, pp.110-3687, 2013.

P. M. Groves, A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement, Brain Research Reviews, vol.5, issue.2, pp.109-132, 1983.
DOI : 10.1016/0165-0173(83)90011-5

. Gurney, A computational model of action selection in the basal ganglia. I. A new functional anatomy, Biological Cybernetics, vol.84, issue.6, pp.401-410, 2001.
DOI : 10.1007/PL00007984

. Gurney, A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour, Biological Cybernetics, vol.84, issue.6, pp.411-423, 2001.
DOI : 10.1007/PL00007985

. Guthrie, Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study, Journal of Neurophysiology, vol.109, issue.12, pp.1522-1598, 2013.
DOI : 10.1152/jn.00026.2013

URL : https://hal.archives-ouvertes.fr/hal-00828004

S. N. Haber and R. Calzavara, The cortico-basal ganglia integrative network: The role of the thalamus, Brain Research Bulletin, vol.78, issue.2-3, pp.69-74, 2009.
DOI : 10.1016/j.brainresbull.2008.09.013

H. S. Hamker, Computational models of basal-ganglia pathway functions : Focus on functional neuroanatomy, Frontiers in Systems Neuroscience, vol.7, issue.7 8, 2013.

. Hazrati, The thalamic reticular nucleus does not send commissural projection to the contralateral parafascicular nucleus in the rat, Brain Research, vol.679, issue.1, pp.123-134, 1995.
DOI : 10.1016/0006-8993(95)00223-D

S. Houzel, The human brain in numbers : a linearly scaled-up primate brain, Frontiers in Human Neuroscience, vol.3, issue.31 8, pp.1-11, 2009.

W. Hill, R. S. Hill, and C. A. Walsh, Molecular insights into human brain evolution, Nature, vol.165, issue.7055, pp.64-67, 2005.
DOI : 10.1007/BF00315920

. Hines, NEURON and Python, Frontiers in Neuroinformatics, vol.3, issue.1, pp.1-12, 2009.
DOI : 10.3389/neuro.11.001.2009

URL : https://hal.archives-ouvertes.fr/hal-00586782

. Hines, Fully implicit parallel simulation of single neurons, Journal of Computational Neuroscience, vol.93, issue.2, pp.439-448, 2008.
DOI : 10.1007/s10827-008-0087-5

H. Hodgkin, A. L. Hodgkin, and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

C. Houghton, Supervised Learning with Complex Spikes and Spike-Timing-Dependent Plasticity, PLoS ONE, vol.43, issue.6, pp.99635-99663, 2014.
DOI : 10.1371/journal.pone.0099635.g010

. Houk, Neostriatal Circuitry as a Scalar Memory : Modeling and Ensemble Neuron Recording, pp.315-336, 1994.

. Houk, A model of how the basal ganglia generate and use neural signals that predict reinforcement, Models of Information Processing in the Basal Ganglia, pp.249-270, 1995.

W. Hu, S. Hu, and G. Wang, Mitochondrial dysfunction in Parkinson???s disease, Translational Neurodegeneration, vol.60, issue.1, pp.1-8, 2016.
DOI : 10.1186/s40035-016-0060-6

. Humphries, A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia, Journal of Neuroscience, vol.26, issue.50, pp.12921-12942, 2006.
DOI : 10.1523/JNEUROSCI.3486-06.2006

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, issue.3, pp.90-95, 2007.
DOI : 10.1109/MCSE.2007.55

E. M. Izhikevich, NEURAL EXCITABILITY, SPIKING AND BURSTING, International Journal of Bifurcation and Chaos, vol.10, issue.06, pp.1171-1266, 2000.
DOI : 10.1142/S0218127400000840

E. M. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1569-1572, 2003.
DOI : 10.1109/TNN.2003.820440

. Jacobs, Ruling out and ruling in neural codes, Proceedings of the National Academy of Sciences, vol.106, issue.14, pp.1065936-5941, 2009.
DOI : 10.1073/pnas.0900573106

. Jaeger, Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum, Journal of Neurophysiology, vol.72, issue.5, pp.2555-2558, 1994.

. Jain, Artificial neural networks: a tutorial, Computer, vol.29, issue.3, pp.31-44, 1996.
DOI : 10.1109/2.485891

J. T. Moyer, J. T. Wolf, B. L. Moyer, L. H. Halterman, and J. A. Wolf, Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network, Frontiers in Computational Neuroscience, vol.7, issue.6, pp.1-13, 2014.
DOI : 10.1038/nrn1919

. Jones, Scipy : Open source scientific tools for python, pp.86-57, 2001.

. Kawato, . Gomi, M. Kawato, and H. Gomi, A computational model of four regions of the cerebellum based on feedback-error learning, Biological Cybernetics, vol.410, issue.2, pp.95-103, 1992.
DOI : 10.1007/BF00201431

W. Kerr, J. N. Kerr, and J. R. Wickens, Dopamine d-1/d-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro, Journal of Neurophysiology, vol.85, issue.63, pp.117-124, 2001.

K. Kita, H. Kita, and S. T. Kita, The morphology of globus pallidus projection neurons in the rat: an intracellular staining study, Brain Research, vol.636, issue.2, pp.308-319, 1994.
DOI : 10.1016/0006-8993(94)91030-8

. Koos, Comaparison of ipscs evoked by spiny and fast-spiking neurons in the neostriatum, Journal of Neuroscience, issue.36, pp.247916-7922, 2004.

. Koós, . Tepper, T. Koós, and J. M. Tepper, Inhibitory control of neostriatal projection neurons by gabaergic interneurons, Nature neuroscience, vol.2, issue.5, pp.467-472, 1999.

. Kotter, . Wickens, R. Kotter, and J. R. Wickens, Striatal mechanisms in Parkinson???s disease: new insights from computer modeling, Artificial Intelligence in Medicine, vol.13, issue.1-2, pp.37-55, 1998.
DOI : 10.1016/S0933-3657(98)00003-7

. Lambot, Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors, The Journal of Neuroscience, vol.36, issue.18, pp.364976-4992, 2016.
DOI : 10.1523/JNEUROSCI.2717-15.2016

M. Lapicque, Recherches sur l'excitabilitéexcitabilité´excitabilitéélectrique de différents muscles de vertébrés et d'invertébrés. Laroche-Delattre, p.37, 1905.

. Le, Building high-level features using large scale unsupervised learning, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.8595-8598, 2013.
DOI : 10.1109/ICASSP.2013.6639343

. Leblois, Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia, Journal of Neuroscience, vol.26, issue.13, pp.3567-3583, 2006.
DOI : 10.1523/JNEUROSCI.5050-05.2006

URL : https://hal.archives-ouvertes.fr/hal-00094738

. Leblois, Temporal and spatial alterations in GPi neuronal encoding might contribute to slow down movement in Parkinsonian monkeys, European Journal of Neuroscience, vol.17, issue.4, pp.1460-9568, 2006.
DOI : 10.1111/j.1460-9568.2006.04984.x

. Lecun, Deep learning, Nature, vol.9, issue.7553, pp.521436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

. Lee, Neural Basis of Reinforcement Learning and Decision Making, Annual Review of Neuroscience, vol.35, issue.1, pp.287-308, 2012.
DOI : 10.1146/annurev-neuro-062111-150512

. Lindskog, Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation, PLoS Computational Biology, vol.92, issue.9, pp.119-59, 2006.
DOI : 10.1371/journal.pcbi.0020119.sg003

URL : http://doi.org/10.1371/journal.pcbi.0020119

. Lingawi, . Balleine, N. W. Lingawi, and B. W. Balleine, Amygdala Central Nucleus Interacts with Dorsolateral Striatum to Regulate the Acquisition of Habits, Journal of Neuroscience, vol.32, issue.3, pp.1073-1081, 2012.
DOI : 10.1523/JNEUROSCI.4806-11.2012

J. Liénard, Models of the Basal Ganglia : Study of the Functional Anatomy and Pathophysiology using Multiobjective Evolutionary Algorithms, p.44, 2013.

. Mahdi, Modeling the Afferent Dynamics of the Baroreflex Control System, PLoS Computational Biology, vol.12, issue.12, pp.1003384-1003422, 2013.
DOI : 10.1371/journal.pcbi.1003384.t006

. Mandali, A spiking Basal Ganglia model of synchrony, exploration and decision making, Frontiers in Neuroscience, vol.49, issue.88, p.86, 2015.
DOI : 10.1016/j.neuropharm.2005.03.018

D. Marr, A theory of cerebellar cortex, The Journal of Physiology, vol.202, issue.2, pp.437-470, 1969.
DOI : 10.1113/jphysiol.1969.sp008820

. Marín, Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens, The Journal of Comparative Neurology, vol.380, issue.1, pp.16-49, 1997.
DOI : 10.1002/(SICI)1096-9861(19970331)380:1<23::AID-CNE3>3.3.CO;2-#

. Marín, Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens, The Journal of Comparative Neurology, vol.380, issue.1, pp.23-50, 1997.
DOI : 10.1002/(SICI)1096-9861(19970331)380:1<23::AID-CNE3>3.3.CO;2-#

. Masson, A computational model of motor neuron degeneration, Neuron, vol.83, issue.4, pp.975-988, 2014.

P. Mcculloch, W. S. Mcculloch, and W. Pitts, A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, pp.115-133, 1943.

. Medina, A mechanism for savings in the cerebellum, The Journal of Neuroscience, vol.21, issue.11, pp.4081-4089, 2001.

. Migliore, Parallel network simulations with NEURON, Journal of Computational Neuroscience, vol.93, issue.1, pp.119-129, 2006.
DOI : 10.1007/s10827-006-7949-5

J. W. Mink, THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS, Progress in Neurobiology, vol.50, issue.4, pp.381-425, 1996.
DOI : 10.1016/S0301-0082(96)00042-1

J. W. Mink, Deep brain stimulation for treating tourette syndrome ? TSA USA Newsletter, pp.5-7, 2004.

. Montague, A framework for mesencephalic dopamine systems based on predictive hebbian learning, The Journal of Neuroscience, vol.16, issue.5, pp.1936-1947, 1996.

. Morita, Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond, Behavioural Brain Research, vol.311, pp.110-121, 2016.
DOI : 10.1016/j.bbr.2016.05.017

L. Morris, C. Morris, and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, vol.35, issue.1, pp.193-232, 1981.
DOI : 10.1016/S0006-3495(81)84782-0

Z. Mutterer, J. Mutterer, and E. Zinck, Quick-and-clean article figures with FigureJ, Journal of Microscopy, vol.11, issue.1, pp.89-91, 2013.
DOI : 10.1111/jmi.12069

URL : https://hal.archives-ouvertes.fr/hal-01254263

. Nakano, A Kinetic Model of Dopamine- and Calcium-Dependent Striatal Synaptic Plasticity, PLoS Computational Biology, vol.351, issue.2009, pp.1000670-1000711, 2010.
DOI : 10.1371/journal.pcbi.1000670.s005

A. Nambu, Somatotopic Organization of the Primate Basal Ganglia, Frontiers in Neuroanatomy, vol.5, issue.12, pp.26-29, 2011.
DOI : 10.3389/fnana.2011.00026

. Namburi, A circuit mechanism for differentiating positive and negative associations, Nature, vol.2, issue.7549, pp.520675-678, 2015.
DOI : 10.1038/nature14366

. Neymotin, Emergence of Physiological Oscillation Frequencies in a Computer Model of Neocortex, Frontiers in Computational Neuroscience, vol.5, pp.19-63, 2011.
DOI : 10.3389/fncom.2011.00019

. Nieuwenhuys, The central nervous system of vertebrates, p.92, 1998.
DOI : 10.1007/978-3-642-18262-4

. Obeso, Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease, Movement Disorders, vol.22, issue.1, pp.23-548, 2008.
DOI : 10.1002/mds.22062

D. E. Oorschot, Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods, The Journal of Comparative Neurology, vol.99, issue.4, pp.580-599, 1996.
DOI : 10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0

[. Reilly, F. Reilly, R. C. Frank, and M. , Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia, Neural Computation, vol.19, issue.2, pp.283-328, 2006.
DOI : 10.1002/syn.890200402

. Papachristou, Dissection of appetitive conditioning. does impulsivity play a role ? Appetite, pp.46-53, 2013.

. Parent, . Hazrati, A. Parent, and L. Hazrati, Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry, Brain Research Reviews, vol.20, issue.1, pp.128-154, 1995.
DOI : 10.1016/0165-0173(94)00008-D

. Parent, Organization of the basal ganglia: the importance of axonal collateralization, Trends in Neurosciences, vol.23, issue.87, pp.20-27, 2000.
DOI : 10.1016/S1471-1931(00)00022-7

. Parent, Two types of projection neurons in the internal pallidum of primates: Single-axon tracing and three-dimensional reconstruction, Journal of Comparative Neurology, vol.171, issue.2, pp.162-175, 2001.
DOI : 10.1002/cne.1340

. Parish, Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model, Development, vol.134, issue.15, pp.2881-2887, 2007.
DOI : 10.1242/dev.002329

. Parthasarathy, Distributed but convergent ordering of corticostriatal projections : analysis of the frontal eyêeyê O¨?O¨? Aeld and the supplementary eye field in the macaque monkey, Journal of Neuroscience, issue.11, pp.124468-4488, 1992.

. Pasquereau, Shaping of Motor Responses by Incentive Values through the Basal Ganglia, Journal of Neuroscience, vol.27, issue.5, pp.1176-83, 2007.
DOI : 10.1523/JNEUROSCI.3745-06.2007

I. P. Pavlov, Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex, Annals of neurosciences, vol.17, issue.3, pp.136-141, 1927.
DOI : 10.5214/ans.0972-7531.1017309

K. Pawlak, V. Pawlak, and J. N. Kerr, Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity, Journal of Neuroscience, vol.28, issue.10, pp.2435-2446, 2008.
DOI : 10.1523/JNEUROSCI.4402-07.2008

URL : http://hdl.handle.net/11858/00-001M-0000-0013-CA15-5

. Percheron, A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex, Journal of Comparative Neurology, vol.139, issue.2, pp.214-227, 1984.
DOI : 10.1002/cne.902270207

J. B. Phillips, Use of the earth's magnetic field by orienting cave salamanders (Eurycea lucifuga), Journal of Comparative Physiology ? A, vol.109, issue.9, pp.273-288, 1977.
DOI : 10.1007/BF00609616

. Piochon, Nonhebbian spike-timing-dependent plasticity in cerebellar circuits, Frontiers in Neural Circuits, vol.6, issue.124, pp.1-8, 2012.

. Piron, The globus pallidus pars interna in goal-oriented and routine behaviors : Resolving a long-standing paradox. Movements Disorders, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01317968

. Planert, Membrane Properties of Striatal Direct and Indirect Pathway Neurons in Mouse and Rat Slices and Their Modulation by Dopamine, PLoS ONE, vol.561, issue.3, pp.57054-57084, 2013.
DOI : 10.1371/journal.pone.0057054.t005

. Plantinga, Ultra-High Field MRI Post Mortem Structural Connectivity of the Human Subthalamic Nucleus, Substantia Nigra, and Globus Pallidus, Frontiers in Neuroanatomy, vol.31, issue.876, pp.1-10, 2016.
DOI : 10.1016/j.neuroimage.2006.01.015

T. Pohlert, The pairwise multiple comparison of mean ranks package (pmcmr). R package, p.57, 2014.

. Portelli, Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings, eNeuro, vol.3, issue.3, pp.134-85, 2016.
DOI : 10.1523/ENEURO.0134-15.2016

URL : https://hal.archives-ouvertes.fr/hal-01316105

L. Postuma, R. B. Postuma, and A. E. Lang, Hemiballism : revisiting a classic disorder, Lancet Neurol, vol.2, issue.11, pp.661-668, 2003.

P. Rakic-]-rakic, Specification of cerebral cortical areas, Science, vol.241, issue.4862, pp.170-176, 1988.
DOI : 10.1126/science.3291116

. Raymond, The Cerebellum: A Neuronal Learning Machine?, Science, vol.272, issue.5265, pp.2721126-1131, 1996.
DOI : 10.1126/science.272.5265.1126

. Redgrave, The basal ganglia: a vertebrate solution to the selection problem?, Neuroscience, vol.89, issue.4, pp.1009-1023, 1999.
DOI : 10.1016/S0306-4522(98)00319-4

. Reiner, Structural and functional evolution of the basal ganglia in vertebrates, Brain Research Reviews, vol.28, issue.3, pp.235-285, 1998.
DOI : 10.1016/S0165-0173(98)00016-2

. Retailleau, Why am I lost without dopamine? Effects of 6-OHDA lesion on the encoding of reward and decision process in CA3, Neurobiology of Disease, vol.59, pp.151-164, 2013.
DOI : 10.1016/j.nbd.2013.07.014

URL : https://hal.archives-ouvertes.fr/hal-01160385

F. Rivest, Modèle informatique du coapprentissage des ganglions de la base et du cortex : L'apprentissage par renforcement et le développement de représentations, p.31, 2009.

. Rodriguez-oroz, Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms, The Lancet Neurology, vol.8, issue.12, pp.1128-1139, 2009.
DOI : 10.1016/S1474-4422(09)70293-5

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-408, 1958.
DOI : 10.1037/h0042519

N. P. Rougier and J. Fix, Dana : Distributed numerical and adaptive modelling framework, Network : Computation in Neural Systems, vol.23, issue.4, pp.237-253, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00718780

. Ryczko, Flexibility of the axial central pattern generator network for locomotion in the salamander, Journal of Neurophysiology, vol.113, issue.6, pp.1921-1940, 2015.
DOI : 10.1152/jn.00894.2014

. Saal, Importance of spike timing in touch: an analogy with hearing?, Current Opinion in Neurobiology, vol.40, pp.142-149, 2015.
DOI : 10.1016/j.conb.2016.07.013

. Sandoz, Spontaneous Recovery After Extinction of the Conditioned Proboscis Extension Response in the Honeybee, Learning & Memory, vol.11, issue.5, pp.586-597, 2016.
DOI : 10.1101/lm.81504

URL : https://hal.archives-ouvertes.fr/hal-00321108

. Sandradiaz-pier, Automatic generation of connectivity for large-scale neuronal network models through structural plasticity, Frontiers in Neuroanatomy, issue.57, pp.101-116, 2016.

T. D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network, Neural Networks, vol.2, issue.6, pp.459-473, 1989.
DOI : 10.1016/0893-6080(89)90044-0

. Sarvestani, A computational model of visually guided locomotion in lamprey, Biological Cybernetics, vol.804, issue.2, pp.497-512, 2013.
DOI : 10.1007/s00422-012-0524-4

. Schlegel, Revue et nouvelles données sur la sensitivitésensitivité`sensitivitéà lalumì ere et orientation non-visuelle chez proteus anguinus, calotriton asper et desmognathus ochrophaeus (amphibiens urodèles hypogés), pp.1-31, 2006.

. Schroll, Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease, European Journal of Neuroscience, vol.40, issue.9, pp.411227-1244, 2015.
DOI : 10.1111/ejn.12868

. Schroll, Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops, Neural Networks, vol.26, pp.59-74, 2012.
DOI : 10.1016/j.neunet.2011.10.008

. Schroll, Dysfunctional and compensatory synaptic plasticity in Parkinson's disease, European Journal of Neuroscience, vol.199, issue.4, pp.688-702, 2014.
DOI : 10.1111/ejn.12434

. Schultz, A Neural Substrate of Prediction and Reward, Science, vol.275, issue.5306, pp.1593-1899, 1997.
DOI : 10.1126/science.275.5306.1593

E. D. Schutter, Computational modeling methods for neuroscientists, p.41, 2009.
DOI : 10.7551/mitpress/9780262013277.001.0001

G. M. Shepherd, The Microcircuit Concept Applied to Cortical Evolution: from Three-Layer to Six-Layer Cortex, Frontiers in Neuroanatomy, vol.5, issue.30, pp.1-15, 2011.
DOI : 10.3389/fnana.2011.00030

. Shohamy, Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal, Journal of Cognitive Neuroscience, vol.21, issue.9, pp.1821-1833, 2009.
DOI : 10.1016/0028-3932(73)90038-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.511.9496

E. H. Shortliffe, Computer-based medical consultations : MYCIN, p.33, 1976.

. Smith, Microcircuitry of the direct and indirect pathways of the basal ganglia, Neuroscience, vol.86, issue.7 8, pp.353-388, 1998.

. Smith, Y. Smith, and J. P. Bolam, Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat, Brain Research, vol.493, issue.1, pp.160-167, 1989.
DOI : 10.1016/0006-8993(89)91011-1

D. J. Stein, Obsessive-compulsive disorder. The Lancet, pp.397-405, 2002.

. Sukumar, Modeling the Contributions of Basal Ganglia and Hippocampus to Spatial Navigation Using Reinforcement Learning, PLoS ONE, vol.53, issue.10, pp.47467-55, 2012.
DOI : 10.1371/journal.pone.0047467.s001

. Suri, . Schultz, R. E. Suri, and W. Schultz, A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task, Neuroscience, vol.91, issue.3, pp.91871-890, 1999.
DOI : 10.1016/S0306-4522(98)00697-6

R. S. Sutton, Temporal credit assignment in reinforcement learning, p.29, 1984.

B. Sutton, R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, p.30, 1998.
DOI : 10.1109/TNN.1998.712192

. Takada, Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey, European Journal of Neuroscience, vol.10, issue.10, pp.141633-1650, 2001.
DOI : 10.1002/(SICI)1096-9861(19971208)389:1<34::AID-CNE3>3.0.CO;2-F

. Terman, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, Journal of Neurosience, issue.7, pp.222963-2976, 2002.

. Tunstall, Inhibitory interactions between spiny projection neurons in the rat striatum, Journal of Neurophysiology, vol.88, issue.3, pp.1263-1269, 2002.

. Umemura, Current Topics in Deep Brain Stimulation for Parkinson Disease, Neurologia medico-chirurgica, vol.56, issue.10, pp.1-13, 2016.
DOI : 10.2176/nmc.ra.2016-0021

A. A. Utter and M. A. Basso, The basal ganglia: An overview of circuits and function, Neuroscience & Biobehavioral Reviews, vol.32, issue.3, pp.333-342, 2008.
DOI : 10.1016/j.neubiorev.2006.11.003

C. Von-der-malsburg, Self-organization of orientation sensitive cells in the striate cortex, Kybernetik, vol.28, issue.2, pp.85-100, 1973.
DOI : 10.1007/BF00288907

. Wang, Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing, Nature Neuroscience, vol.22, issue.2, pp.224-231, 2011.
DOI : 10.1002/cne.901280104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767474

K. E. Webster, Cortico-striate interrelations in the albino rat, Journal of Anatomy, vol.95, pp.532-545, 1961.

. Wei, Role of the Indirect Pathway of the Basal Ganglia in Perceptual Decision Making, Journal of Neuroscience, vol.35, issue.9, pp.4052-4064, 2015.
DOI : 10.1523/JNEUROSCI.3611-14.2015

. Wendling, Computational models of epileptiform activity Functional and pathophysiological models of the basal ganglia, xix [Wichmann and DeLong, pp.233-251751, 1996.

J. Wickens, Basal ganglia: structure and computations, Network: Computation in Neural Systems, vol.8, issue.4, pp.77-109, 1997.
DOI : 10.1088/0954-898X_8_4_001

H. Wickham, ggplot2 : Elegant graphics for data analysis, p.57, 2009.

C. O. Wilke, cowplot : Streamlined plot theme and plot annotations for 'ggplot2'. R package version 0, 2016.

C. J. Wilson, Morphology and synaptic connections of crossed corticostriatal neurons in the rat, The Journal of Comparative Neurology, vol.139, issue.4, pp.567-580, 1987.
DOI : 10.1002/cne.902630408

C. J. Wilson, The contribution of cortical neurons to the firing pattern of striatal spiny neurons, Models of information processing in the basal ganglia, pp.141-171, 1995.

H. H. Yin and B. J. Knowlton, The role of the basal ganglia in habit formation, Nature Reviews Neuroscience, vol.9, issue.6, pp.464-476, 2006.
DOI : 10.1038/nrn1919

. Taylor, Spatial Orientation by Salamanders Using Plane-Polarized Light, Science, vol.181, issue.4096, pp.285-287, 2007.
DOI : 10.1126/science.181.4096.285

. Parish, Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model, Development, vol.134, issue.15, pp.2881-2887, 2007.
DOI : 10.1242/dev.002329

. Nieuwenhuys, The central nervous system of vertebrates SOURCES Video recordings are available by flashing the QR-code. Mail contact: charlotte.herice@u-bordeaux, fr FIGURE A.3 ? Poster présenté lors du Fifth International Symposium on Biology of Decision Making, 1998.

M. Guthrie, Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study, Journal of Neurophysiology, vol.109, issue.12, 2013.
DOI : 10.1152/jn.00026.2013

URL : https://hal.archives-ouvertes.fr/hal-00828004

B. Pasquereau, Shaping of Motor Responses by Incentive Values through the Basal Ganglia, Neuroscience FIGURE A.4 ? Poster présenté lors de Multi-disciplinary Conference on Reinforcement Learning and Decision Making -Edmonton, 2007.
DOI : 10.1523/JNEUROSCI.3745-06.2007