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Titre : Transport quantique dans une nanostructure corrélée, couplée à une cavité micro-ondes
Mots-clés : transport quantique, électrodynamique quantique des cavités, fermion de Majorana

Dans cette thèse, nous étudions d’un point de
vue théorique les propriétés physiques de nanos-
tructures couplées à des cavités micro-ondes.
L’électrodynamique quantique (QED) en cavité en
présence d’une boîte quantique s’est révélée être
une technique expérimentale puissante, permettant
d’étudier cette dernière par des mesures photoniques
en plus des mesures de transport électronique con-
ventionnelles. Dans cette thèse, nous proposons
d’utiliser le champ micro-ondes de la cavité afin
d’extraire des informations supplémentaires sur les
propriétés des conducteurs quantiques : le coeffi-
cient de transmission optique est directement lié
à la susceptibilité électronique de ces conducteurs
quantiques. Nous appliquons ce cadre général à dif-
férents systèmes mésoscopiques couplés à une cav-
ité supraconductrice micro-ondes comme une jonc-
tion tunnel, une boîte quantique couplée à des réser-
voirs, un fil topologique et un anneau supraconduc-
teur. La QED en cavité peut être utilisée pour son-

der, par l’intermédiaire de mesures photoniques, la
dépendance en fréquence de l’admittance du puits
quantique couplé à la cavité micro-ondes. En ce
qui concerne le fil topologique, nous avons mon-
tré que la cavité permet de caractériser la transi-
tion de phase topologique, l’émergence de fermions
de Majorana, ainsi que la parité de l’état fondamen-
tal. Pour l’anneau supraconducteur, nous étudions
par l’intermédiaire de la réponse optique de la cav-
ité l’effet Josephson et le passage à l’effet Joseph-
son fractionnaire, qui est associé à l’apparition de
fermions de Majorana dans le système. Le cadre
théorique proposé dans cette permet de sonder de
manière non-invasive un large éventail de nanostruc-
tures, des boîtes quantiques aux supraconducteurs
topologiques. En outre, il donne de nouvelles infor-
mations sur les propriétés de ces conducteurs quan-
tiques, informations non accessibles via des expéri-
ences de transport.

Title: Quantum Transport in a Correlated Nanostructure Coupled to a Microwave Cavity
Keywords: quantum transport, cavity QED, Majorana fermion

In this thesis, we study theoretically various physi-
cal properties of nanostructures that are coupled to
microwave cavities. Cavity quantum electrodynamics
(QED) with a quantum dot has been proven to be a
powerful experimental technique that allows to study
the latter by photonic measurements in addition to
electronic transport measurements. In this thesis, we
propose to use the cavity microwave field to extract
additional information on the properties of quantum
conductors: optical transmission coefficient gives di-
rect access to electronic susceptibilities of these quan-
tum conductors. We apply this general framework to
different mesoscopic systems coupled to a supercon-
ducting microwave cavity, such as a tunnel junction, a
quantum dot coupled to the leads, a topological wire
and a superconducting ring. Cavity QED can be used
to probe the finite frequency admittance of the quan-

tum dot coupled to the microwave cavity via pho-
tonic measurements. Concerning the topological wire,
we found that the cavity allows for determining the
topological phase transition, the emergence of Majo-
rana fermions, and also the parity of the ground state.
For the superconducting ring, we propose to study
the Josephson effect and the transition from the latter
to the fractional Josephson effect, which is associated
with the emergence of the Majorana fermions in the
system, via the optical response of the cavity. The pro-
posed framework allows to probe a broad range of
nanostructures, including quantum dots and topolog-
ical superconductors, in a non-invasive manner. Fur-
thermore, it gives new information on the properties
of these quantum conductors, which was not avail-
able in transport experiments.





C O N T E N T S

1 introduction 3

2 cavity quantum electrodynamics 7

2.1 From optical cavity to transmission line resonator 8

2.1.1 Single atom coupled to a single photon 8

2.1.2 Cavity QED with superconducting circuits 9

2.2 Coupling a quantum dot to a microwave cavity 14

2.3 Electron-photon coupling in cavity QED 17

2.4 Input-output theory for microwave cavities 20

2.5 Summary 26

3 majorana fermions 29

3.1 Conventional fermionic and Majorana operators 32

3.2 Prototype model for 1D p-wave superconductor: Kitaev model 34

3.3 Practical realization of Majorana fermions in 1D p-wave superconductors:

spin-orbit coupled nanowire 41

3.4 Experimental signatures of Majorana fermions: observation of zero-bias

peak 45

3.5 Fractional Josephson effect 47

3.5.1 Theoretical description of DC Josephson effect 47

3.5.2 Observation of 4π-periodic AC Josephson current 50

3.6 Discussion 52

4 out-of-equilibrium quantum dot coupled to a microwave cav-

ity 53

4.1 Model Hamiltonian 53

4.2 Electronic charge susceptibility 56

4.2.1 General relations obeyed by transport quantities 56

4.2.2 Calculation of the electronic susceptibility 58

v



vi contents

4.3 Tunnel junction 61

4.3.1 Cavity pull and dissipation 61

4.3.2 Gauge invariance 63

4.4 Quantum dot 64

4.4.1 The Quantum RC-circuit limit 65

4.4.2 The tunneling limit, εd/Γ → −∞ 67

4.4.3 The low-frequency limit 68

4.4.4 The general case 73

4.4.5 A quantum dot in the deep Kondo regime 75

4.5 Summary of the results 75

4.6 Conclusions 77

5 majorana fermions in topological superconductors coupled to

a microwave cavity 79

5.1 Model Hamiltonian 79

5.2 Topological phase transition detection 81

5.2.1 Kitaev chain model 81

5.2.2 Spin-orbit coupled nanowire model 83

5.3 Majorana fermions detection 86

5.4 Conclusions 94

6 detection of multiple majorana fermions coupled to a microwave

cavity 95

6.1 Model Hamiltonian 95

6.2 Phase diagram and energy spectrum 97

6.3 Electronic susceptibility 99

6.3.1 Topological phase transition detection 100

6.3.2 Frequency dependence of the cavity response 102

6.3.3 Parity dependence and oscillations of the susceptibility 103

6.4 Conclusions 104

7 josephson effect in topological superconducting rings coupled

to a microwave cavity 107



contents vii

7.1 The system and model Hamiltonian 107

7.2 Electronic susceptibility and cavity response 112

7.2.1 Theoretical approach to susceptibility 112

7.2.2 Flux dependence of the cavity response 115

7.2.3 Parity dependence 119

7.2.4 Frequency dependence 119

7.3 Conclusions 120

8 conclusions and perspectives 123

a appendix a 127

b appendix b 133

b.1 Scattering matrix approach for a non-interacting quantum conductor 133

b.2 Calculation of the quantum dot susceptibility 135

b.2.1 Expressions of the intermediate Fγγ
′

αβ functions 135

b.2.2 Expressions of the intermediate Kαβ functions 139

b.2.3 Calculation of the real part of the susceptibility 140

b.2.4 General expression for the quantum dot susceptibility 142

c appendix c 149

c.1 Derivation of the effective Kitaev Hamiltonian in the presence of the cavity

field 149

c.2 The susceptibility for the Kitaev model in case of periodic boundary condi-

tions 155

c.3 The susceptibility of the nanowire in case of periodic boundary condi-

tions 158

c.4 The correlation function for open boundary conditions 163

d appendix d 169

e synthèse en français 175

e.1 La théorie des entrées-sorties pour les cavités micro-ondes 177

e.2 Boîte quantique hors équilibre couplée à une cavité micro-ondes 180

e.3 Fermions de Majorana dans des supraconducteurs topologiques couplés à

une cavité micro-ondes 182



viii contents

e.4 Effet Josephson dans des anneaux topologiques supraconducteurs couplé à

une cavité micro-ondes 186

e.5 Conclusions et perspectives 189

bibliography 191



A C K N O W L E D G M E N T S

First of all, I would like to thank my thesis advisor Pascal Simon for his patience, scientific

and life advice, availability and his kind support during these three years. I would also like

to thank Mircea Trif and express him my special appreciation for his optimism, his striving

for scientific challenge, him answering all my questions and encouraging my work. My

acknowledgments for Christophe Mora for sharing with me his knowledge on quantum

conductors and related integrals. Furthermore, I would like to thank the members of

my jury: Ramón Aguado, Manuel Houzet, Hélène Bouchiat, Jérôme Cayssol and Karyn

Le Hur for taking time to read my manuscript, for their comments and questions and

for attending my defense as well as for the discussions that we had during the three

years of my PhD. My gratitude goes to all the permanent researchers from theory group

for sharing their knowledge of Physics and life with us during the seminars and coffee

breaks.

At the same time, I would like to thank my “PhD brother” Sébastien for always being

in the lab, for all his help with problems, be it physics-related or not, for helping me with

the "pot de thèse" and all the nice moments that we shared together. I wish him good

luck with his thesis defense and finding his way in life. Also, I would like to mention my

office mate Nicolas Macé who introduced us to the concept of using a ball as a chair and

initiated the creation of the “tea team”. Since we moved to the Parc Club, I’ve got lots

of new officemates: Manali, Vardan, Arnaud, Yunlong, Sergueï, Oscar, Fred, Helena and

Kang to whom I am very grateful for all the help that they have offered me over the years

and all the fun that we had together in and out our lab. I should also mention the former

PhD students of the theory group: Jean-René, Nicolas (Thiébaut), Clément, Raphaël, Judit

and Oliver who were very kind and helpful when I just joined the group. I would like to

acknowledge Marcello “the Intern” Andolina, Hridis, Ryosuke, Raphaëlle, Anil, Alesya,

Anaïs, Emilie, Stéphanie. Overall, I am very grateful to all the people with whom I worked

in the LPS.

1



2 contents

I am very grateful to my first scientific advisor Volodymyr Sugakov for his guidance

and patience at the very beginning of my scientific path. I would like to also acknowledge

Yaroslava. Finally, I would like to thank my family for their support and belief in me.



1
I N T R O D U C T I O N

Light-matter interaction is one of the fundamental physics phenomena that has seen a

major research interest recently. Discovery of the photoelectric effect by Einstein and the

breakthrough of quantum mechanics with its further rapid development considerably im-

proved our understanding of light-matter interaction. This interaction is the cornerstone

of the entire field of quantum electrodynamics (QED). At the most elementary level, the

interaction between light and matter takes place when a single photon interacts with a

single atom. Serge Haroche et.al. and David Wineland et.al. independently performed ex-

periments on atom-photon coupling in their strive to prove quantum decoherence. Both

of them were jointly awarded the Nobel Prize in Physics for "ground-breaking experimen-

tal methods that enable measuring and manipulation of individual quantum systems"

related to these experiments. Haroche et.al. studied properties of photons trapped in a

3D cavity by sending Rydberg atoms through the cavity [78]. On the other hand, David

Wineland et.al. used an opposite approach and studied trapped ions by sending photons

through the cavity [54]. However, the main idea of these experiments remains the same:

studying the interaction between a single atom, or an ion, and a photon. These experi-

ments allowed to confirm quantum decoherence effects and demonstrated a possibility

to create non-classical states of light. Also, Ref.[78] provides a first implementation of a

qubit — a two-level system can be used as a building block for a quantum computer —

that can be probed in atomic QED experiments. However, in these pioneering experiments,

the coupling constant between the atom and cavity photons is fixed by the dipole moment

of the atom, restricting the potential application area in quantum computing. Moreover,

Rydberg atoms in a 3D cavity are not scalable to many-qubit architecture required for

implementing quantum information protocols.

The idea of a tunable atom-cavity coupling constant as well as the need for implement-

ing scalable qubits led to the theoretical proposal of circuit cavity QED. A real atom was

3



4 introduction

substituted with an arificial one and a 3D cavity was replaced by a 1D transmission line

resonator to enable large coupling constant and ensure scalability. In [11], an artificial

atom, or a two-level system, was proposed to be implemented as a Cooper pair box. It

was achieved experimentally by the same authors in [101]. In circuit QED experiments,

qubit-cavity coupling constant depends on the parameters of the superconducting circuit

and the resonator, and the geometry of a 1D transmission line resonator allows for em-

bedding many qubits in the cavity. Having multiple qubits implies entanglement, which

is essential for implementing the quantum computing.

However, further progress in qubit implementation requires these qubits to be situated

far away from each other and being highly tunable. This can be achieved in mesoscopic

cavity QED [18] by using quantum dots as qubits. Quantum dots can be tuned by coupling

them to gate electrodes. The electrons in quantum dots are not paired, allowing access to

the electron spin. Also quantum dots can be tunnel coupled to leads and studied by

transport measurement in addition to photonic probe in a microwave cavity.

Another direction for application of mesoscopic cavity QED is to use it to probe proper-

ties of the nanostructures embedded in microwave resonator. One of the systems that has

been largely studied by transport measurements is a topological wire that can host Ma-

jorana fermions. Majorana fermions, which are particles that are their own antiparticles,

have been first predicted by Ettore Majorana in 1937 as a real solution to Dirac equation.

It was shown later that Majorana fermions can also appear in condensed matter physics,

for example, in superconductors [49]. Due to its degenerate ground state and protection

against local perturbation, Majorana fermions can be also used as qubits. In this thesis,

we demonstrate that the methods of cavity QED can be used to probe Majorana fermions

in topological superconductors coupled to a microwave cavity.

in this thesis

In this thesis, we apply the methods of cavity QED to study quantum conductors and

topological wires coupled to a microwave cavity. We start with a theoretical description

of the nanostructure-cavity coupling. Then we derive the cavity transmission in a weak
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electron-photon coupling limit and its relation to the electronic susceptibility of the quan-

tum conductor (see chapter 2). This susceptibility gives information about the nanostruc-

ture embedded in a microwave cavity. We apply cavity QED approach to study theoret-

ically four specific mesoscopic conductors: a tunnel junction, a quantum dot coupled to

the leads, a one-dimensional topological wire and a superconducting ring.

In chapter 4, we use the photonic response of the cavity to study a tunnel junction and

a quantum dot tunnel coupled to metallic leads. We consider both capacitive coupling of

the quantum dot to the cavity as well as coupling of the metallic leads to the cavity. We

demonstrate that these two types of couplings result in a totally different cavity response

and thus probe different observables associated with the quantum conductor. We find

some relations between optical observables, such as the cavity transmission, and trans-

port quantities, such as the differential conductance dI/dV . These relations are valid up

to high frequency and voltage (therefore in the out-of-equilibrium regime) for quantum

conductors far from resonance and hold only at low frequency and voltage for the quan-

tum dot near resonance. Beyond these regimes, measurements of the cavity photonic field

provide new information about the quantum conductor.

In chapter 5, we apply the cavity QED approach to find signatures of Majorana fermions

in topological wires. We consider a p-wave superconductor capacitively coupled to a mi-

crowave cavity. The phase shift and frequency broadening due to the presence of the

p-wave superconductor in the cavity are proportional to the electronic susceptibility of

the wire. Photonic observables can be used to obtain signatures of the Majorana fermions,

such as a topological phase transition and oscillations of the electronic susceptibility in the

topological phase. Moreover, cavity QED experiments should allow to probe the parity of

the Majorana state, which is not accessible in transport experiments.

In chapter 6, we study a topological wire that can host multiple Majorana fermions at

its ends by coupling it to a microwave cavity. This situation is possible when there is long-

range hopping in the wire. We demonstrate that the photonic field of the cavity allows to

probe the topological phase transition between phases with different number of Majorana

fermions as well as oscillations of the susceptibility. The period of the oscillations is dif-
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ferent when there are two or one Majorana fermion at each end of the chain, while these

oscillations are absent in the trivial phase.

In chapter 7, we apply methods of cavity QED to study the fractional Josephson effect

associated with Majorana fermions physics. We consider a superconducting ring with a

weak link threaded by a dc magnetic flux. An AC flux created by the microwave cavity

induces the coupling between the ring and the cavity photonic field. We propose to study

the Josephson effect and the transition from the latter to the fractional Josephson effect,

which is associated with the emergence of the Majorana fermions in the system, via the

response of the cavity. We take fully into account the interplay between the low-energy

Majorana modes and the gaped bulks states, which we demonstrate is crucial for visualiz-

ing the evolution of the Josephson effect during the transition from the topological to the

trivial phase.



2
C AV I T Y Q U A N T U M E L E C T R O D Y N A M I C S

In this chapter, we discuss the field of cavity quantum electrodynamics (QED). We start

with atomic cavity QED that studies properties of atoms or ions coupled to discrete modes

of the electromagnetic field [54, 78]. In [78] the interaction between a single photon and

a single atom was observed by measuring the latter as it has passed through a 3D op-

tical cavity. Also these experiments allowed to analyze decoherence effects as well as

to demonstrate the implementation of quantum gates required for quantum computa-

tion. But atomic cavity QED with real atoms is characterized by a constant atom-cavity

coupling and is not scalable to multiple qubits architecture. In order to overcome these

constraints, a real atom was substituted with an artificial atom and a 3D cavity was sub-

stituted with a 1D transmission line resonator, which led to the development of circuit

quantum electrodynamics [11, 101]. Circuit version of cavity quantum electrodynamics

ensures tuning the coupling between an artificial atom and a superconducting resonator

and implementing multiple qubits on a single chip, thus allowing for their entanglement

and future application in solid-state quantum computation [45]. Moreover, in mesoscopic

version of circuit QED connecting metallic leads to a mesoscopic conductor allows to

study the latter by transport measurement in addition to optical probe. The combination

of the different techniques allows to probe all properties of the mesoscopic system. Cou-

pling closed systems to superconducting stripline resonators was first performed in [80]

as a probe of the ac conductance related to the susceptibility. In section 2.4, we derive the

relation between the transmission of the superconducting resonator and charge suscepti-

bility of the electronic system embedded in the resonator.

7



8 cavity quantum electrodynamics

2.1 from optical cavity to transmission line resonator

2.1.1 Single atom coupled to a single photon

Interaction between light and matter at the level of coupling a single atom or ion to a

single photon has been first experimentally studied in [54, 78]. In the first set of exper-

iments[78], photons trapped in a cavity have been controled and measured by sending

prepared atoms through the cavity. While in the second set of experiments [54], electri-

cally charged atoms, or ions, have been measured and manipulated with light. These

experiments are studying the same quantum systems such as a single atom and a single

photon, but using opposite approaches. Coupling atoms with photons in a cavity allows

to study entanglement of the combined system, and thus to scrutinize decoherence effects.

Entanglement of qubits is also essential for implementation of quantum information pro-

tocols required for building a quantum computer in the future.

Atomic cavity quantum electrodynamics studies the properties of atoms coupled to the

quantized electromagnetic modes in a cavity. In [78], Rydberg atoms are sent through the

cavity in order to probe the properties of a photon trapped in this cavity. Rydberg atom is

an excited atom with one or more electrons that has a large electric dipole moment d (due

to the large separation between the electron and ion-core). That is why such atoms have

a large response to an electric field and consequently are suitable for studying light-atom

interaction. The cavity in these experiments is an open Fabry-Perot resonator, made of

two mirrors. The geometry of such resonator allows to apply an electric field along the

cavity axis.

A two-level atom could be used as a qubit with two states |0〉 and |1〉. It allows to per-

form logic operations required for implementing quantum information protocols. When

the state of the atom-cavity system changes from |0, e〉, in which the atom is in the excited

state and there is no photon in the cavity to |1,g〉, in which the atom is in the ground state

and there is one photon in the cavity, the phase of the atom changes. The photonic field

is coupled to Rydberg atom by dipole interaction. Measurement of the state of the atom

after it has passed through the cavity allows to obtain information about the properties of
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the photon trapped inside the cavity. Two-level systems, such as Rydberg atoms, coupled

to the photonic modes of the cavity can be described by Jaynes-Cummings Hamiltonian

H =  hωegσz +  hωc

(
a†a+ 1/2

)
+  hg

(
a†σ− + aσ+

)
, (2.1)

where ωeg is the transition frequency between the excited and ground state of the

atom, ωc is the cavity frequency, which in resonant cavity is tuned to be equal to ωeg, g

denotes the atom-photonic field coupling constant, σz,σ+ and σ− are the Pauli matrices of

the atomic pseudospin, a(a†) is the photon annihilation (creation) operator. The coupling

constant g = εrmsd/ h, where εrms is the root mean square (r.m.s.) vacuum field at the

cavity center and d is the dipole matrix element for the excited to ground state transition

in the atom. The dipole moment of the atom is fixed for a given atom, that is why the

atom-photon coupling cannot be tuned in cavity QED with nature-given atoms.

It was shown [78] that Rydberg atoms, coupled to a superconducting cavity containing

a few photons, could be used to test quantum decoherence and realize quantum logic

operations necessary for building a quantum computer.

Though Ref.[78] were the first experiments to demonstrate the atom-photon interaction

and implementation of qubits based on two-level atoms, further refinements of the setup

were required. In cavity QED with real atoms, the coupling between an atom and a photon

is fixed by the dipole moment of the atom, as well as the resonant cavity frequency is fixed

by the transition frequency between excited and ground states of the atom. Moreover,

nature-given atoms coupled to a 3D cavity are not scalable to many qubit setups required

for implementation of quantum computer.

2.1.2 Cavity QED with superconducting circuits

Realization of cavity QED that allows to overcome the fixed atom-photon coupling and

scalability issues using superconducting circuits has been proposed in [11]. In this theoret-

ical proposal, the cavity is implemented as a 1D transmission line resonator consisting of

a full-wave section of superconducting coplanar waveguide and an atom is implemented
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as a superconducting qubit, or more precisely a Cooper pair box. Scheme of the pro-

posed implementation of cavity QED based on transmission line resonator is presented

in Fig.2.1. Already at that time, lithographic technique allowed to create a Cooper pair

box coupled to a 1D transmission line resonator on a single solid-state chip. Cooper pair

box, which is a mesoscopic superconducting island which is coupled via two Josephson

tunnel junctions to a superconducting reservoir, plays a role of a qubit in this proposal. In

the proposed geometry, this qubit can be isolated from the electromagnetic environment

in controllable manner thus being suitable for solid-state quantum computing. Since in

this case the cavity is a 1D transmission line resonator, and not a 3D cavity as in [78], the

zeropoint energy εrms is distributed over a very small effective volume (< 10−5 cubic

wavelengths) leading to large rms voltage Vrms ≈
√

 hωc
cL

between the center conduc-

tor and the adjacent ground plane at the antinodal positions, where L is the length of

the resonator and c is the capacitance per unit length of the transmission line. Resonant

frequency of the transmission line resonator is determined by a fixed geometry thus al-

lowing to perform reproducable experiments. Also, the artificial atom could be controled

by external fields, for example, by threading a flux Φext in the loop formed by the pair

of junctions and changing the gate voltage Vg (see Fig.2.1). By tuning the capacitance and

the Josephson energy of the superconducting circuit, one can obtain an effective two-level

system, similar to Rydberg atom studied in [78]. Moreover, it was demonstrated that such

a two-level system could be described by the Jaynes-Cummings Hamiltonian [11] with

the atom-cavity coupling constant g =
eCg

 h (Cg +CJ)
Vrms, where Cg is the the capacitance

between the center conductor of the resonator and the Cooper pair box and CJ is capac-

itance of the Josephson junction. Considering the cavity resonance frequency ωc = 10

GHz leads to the coupling constant g ≈ 100 MHz, which is three orders of magnitude

larger than in atomic cavity QED experiments with Rydberg atoms. Moreover, the posi-

tion of the Cooper pair box in transmission line resonator is fixed thus ensuring that the

coupling constant g does not depend on position of the atom as in 3D cavities with Ryd-

berg atoms. Thus, cavity QED with superconducting circuits should allow to reach easily

the strong-coupling limit (the coupling between the qubit and the cavity is larger than

both the damping rates of the qubit and the cavity). As for the practical application, two
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or more qubits can be placed along the length of the transmission line resonator. In case

of two qubits, they can be separated by the length of the resonator ∝ 1cm and tuned by

capacitive coupling to the left and right center conductors of the transmission line. Thus,

a 1D transmission line resonator allows for entanglement of qubits, making it a suitable

platform for quantum computation.

Figure 2.1: Scheme and equivalent lumped circuit representation of implementation of cavity
QED using superconducting circuits. The 1D transmission line resonator consists of
a full-wave section of superconducting coplanar waveguide. A Cooper-pair box qubit
is placed between the superconducting lines and is capacitively coupled to the center
conductor at a maximum of the voltage standing wave, yielding a strong electric dipole
interaction between the qubit and a single photon in the cavity. The Cooper pair box
consists of two small Josephson junctions, configured in a loop to permit tuning of the
effective Josephson energy by an external flux Φext. Input and output signals are cou-
pled to the resonator, via the capacitive gaps in the center conductor, from transmission
lines which allow measurements of the amplitude and phase of the cavity transmission.
Reproduced from [11].

The theoretical proposal [11] of a 1D transmission line resonator with an artificial atom

has been experimentally implemented by the same authors in [101]. This work [101] also

demonstrates the first experimental observation of a strong coupling between a two-level

system and a single photon in a cavity. A two-level system in this experiment has been

implemented as a Cooper pair box as was suggested in [11], since its dipole moment is at

least one order of magnitude larger than in Rydberg atoms [78]. As for the transmission

line resonator that consists of a narrow center conductor and two nearby lateral ground
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planes (see Fig.2.3), it provides a large electric field between the center conductor and the

ground plane which is hundred times larger than in 3D microwave resonators. Combina-

tion of large dipole moment and the large vacuum field strength ensures the possibility

of entering a strong-coupling limit in superconducting circuit QED. The resonator is cou-

pled to the transmission lines (see Fig.2.3, b) thus allowing to probe the phase and the

amplitude of the microwave probe beam transmitted through the resonator. The transmis-

sion of the cavity is changed due to the presence of the Cooper pair box inside the cavity.

Thus, the properties of the qubit can be obtained by performing photonic measurements

of the cavity.

But superconducting stripline resonators were first coupled to isolated mesoscopic sys-

tems such as sets of isolated rings [80] as a probe to investigate the susceptibility of these

systems without any connection to an invasive probe. The magnetic susceptibility of the

rings χ(ω) is connected to ac conductance Y(ω) as χ(ω) ≈ iωY(ω). The measure of the

modification of the resonance frequency fn and the quality factor Qn due to the presence

of the rings in the superconducting resonator gives access to the complex ac conductance

of the rings [27, 28, 80]

δfn

fn
∝ = [Y(fn)] , δ

(
δQn

Q2n

)
∝ Re [Y(fn)] . (2.2)

Though this experiment [80] was performed in closed system and in the classical regime,

it was a first demonstration that properties of the electronic systems can be obtained by

non-invasive measurements by coupling them to superconducting resonators. Later on,

this technique was used to obtain the conductance of the non-connected Aharonov-Bohm

rings [28] and silver rings [27], as well as the susceptibility of the SNS junctions [26, 37].

We compare the electronic susceptibility of the ring obtained by the classical approach

and the quantum one in chapter 7.

Pioneering theoretical proposal of mesoscopic cavity QED with quantum dots instead

of superconducting qubits has been reported in [18]. This proposal is based on capac-

itive coupling between the electron charge of the quantum dot and a superconducting

transmission line resonator. Compared to cavity QED with superconducting qubits, cav-
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Figure 2.2: Integrated circuit for cavity QED. a) The superconducting niobium coplanar waveguide
resonator is fabricated on chip using optical lithography. The stripline resonator con-
sists of the center conductor and two lateral ground planes. The meandering resonator
is coupled by a capacitor at each end of the resonator (see b) to an input and output
feed line, fanning out to the edge of the chip and keeping the impedance constant. b)
The capacitive coupling to the input and output lines and hence the coupled quality
factor Q is controlled by adjusting the length and separation of the finger capacitors
formed in the center conductor. c) False color electron micrograph of a Cooper pair
box (blue) fabricated onto the silicon substrate (green) into the gap between the center
conductor (top) and the ground plane (bottom) of a resonator (beige). The Josephson
tunnel junctions are formed at the overlap between the long thin island parallel to the
center conductor and the fingers extending from the much larger reservoir coupled to
the ground plane. Reproduced from [101].

ity QED with quantum dots allows for strong coupling between distant quantum dots

and thus for implementing a scalable quantum computer. Also quantum dots are highly

tunable and give access to the electron spin. Since quantum dots can be tunnel coupled

to metallic leads, mesoscopic cavity QED allows to study the properties of the quantum

dots by electronic transport measurements in addition to photonic measurements.

Later on, it was demonstrated that for open mesoscopic conductors, such as quantum

dots, the transmission coefficient at energy near the cavity frequency is sensitive to the

charge susceptibility of the quantum dot circuit [24].
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2.2 coupling a quantum dot to a microwave cavity

Quantum dots are nanoscopic systems that emulate atoms by showing discrete energy

levels and atomiclike electronic filling shell structure. Thus, they could be measured by

optical means. But contrary to atoms, quantum dots can be coupled to metallic leads and

probed in electronic transport experiments similarly to large metallic conductors [18]. By

embedding quantum dots in superconducting transmission line resonators, it is possible

to study quantum dots by photonic measurements in addition to electronic transport.

Some recent experiments probed and manipulated a single or double quantum dot with

resonators [6, 13, 29, 31, 40, 41, 72, 90, 93, 95, 102]. Theoretical study of the quantum dots

coupled to transmission line resonators have been performed in [9, 18, 23, 24, 87], and we

discuss it in the next section.

One of the pioneering experiments, in which a quantum dot has been coupled to a

single mode of electromagnetic field in a superconducting resonator, has been reported

in [29]. In this experiment, a single wall carbon nanotube is embedded in the coplanar

waveguide resonator (see Fig.2.3) in order to implement a single quantum dot coupled to

a cavity situation. A new aspect of this experiment is that there are two wires, source and

drain, that go inside the cavity in order to drive a DC current through the quantum dot.

This allows to measure a differential conductance dI/dV of the quantum dot while chang-

ing the source-drain voltage Vsd, which is a quantity typically measured in transport

experiments. The quantum dot is also connected to gate electrodes that allows to change

the position of the energy level inside the quantum dot by varying the gate voltage Vg.

At the same time, a continuous microwave signal is transmitted through the cavity. The

signal is sent through one side of the cavity and measured at the other one, thus allowing

to measure the cavity transmission. The variation of the phase and the amplitude of the

microwave signal is due to the presence of the quantum dot circuit inside the cavity. The

differential conductance dI/dV of the quantum dot tunnel coupled to metallic leads as a

function of the source-drain Vsd and gate Vg that has been measured in [29] and is pre-

sented in Fig.2.4, a). Coulomb diamonds as well as the Kondo ridge at zero bias associated

with the Kondo effect have been observed. The variation of the phase δφ of the microwave
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signal transmitted through the cavity near the cavity resonance frequency f = 4.976 GHz

for the same parameters is presented in Fig.2.4, b). Comparing the differential conduc-

tance dI/dV and the phase shift δφ as a function of the source-drain bias Vsd over the

Kondo ridge (see Fig.2.4,c), we can see these two quantities look very similar. Thus, this

experiment demonstrated that photonic observable, such as the phase shift δφ, gives ac-

cess to the properties of the quantum dot obtained by measuring the transport quantity,

such as dI/dV . However, the explanation why the phase shift and the differential conduc-

tance have a similar behaviour as a function of voltage bias was not given. Also, in this

work [29] the value of the electron-photon coupling λ for carbon nanotube constant has

been measured and is equal to 140 MHz. We use this estimate for the coupling constant

when giving quantitative estimate of the phase shift in chapter 5.

(a)

(b)

Figure 2.3: (a) Scanning electron microscope (SEM) picture in false colors of the coplanar waveg-
uide resonator. Both the typical coupling capacitance geometry of one port of the res-
onator and the 3-terminals geometry are visible. (b) False colors SEM picture of a
single wall carbon nanotube dot inside an on-chip cavity embedded in a schematics of
the measurement setup. Reproduced from [29].

Mesoscopic cavity QED has been proven to be a powerful measurement technique that

allows to detect extremely small variations of the phase of the signal transmitted through
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Figure 2.4: (a) Color scale plot of the differential conductance in units of 2e2/h measured along
three charge states exhibiting the conventional transport spectroscopy. A Kondo ridge
is visible at zero bias. (b) Color scale plot of the phase of the microwave signal at
resonance frequency f = 4.976 GHz, measured simultaneously with the differential
conductance. (c) Differential conductance (black line) and phase of the transmitted
microwave signal (red line) at the resonance frequencyf = 4.976 GHz as a function of
source-drain bias Vsd over a Kondo ridge in between two Coulomb peaks. Reproduced
from [29].

the cavity (up to δφ ∝ 10−3) [29]. The recent progress in engineering superconducting

cavities makes it possible to implement on-chip mesoscopic circuits coupled to high fi-

nesse resonators [84]. Thus, properties of different mesoscopic systems can be studied

by coupling them to a cavity. Cavity QED with a quantum dot has been extended to ex-

perimental study of interaction between two distant quantum dots [30, 32], spin-photon

coupling [99] and Kondo physics [31]. On the theory side, mesoscopic QED has been used

to investigate tunnel junctions [36, 61] and quantum point contacts [62], as well as Majo-

rana fermions in topological superconductors (see chapter 3). Also nonlocal electronic

transport through two quantum dots coupled to a microwave cavity was studied in [10,

21, 51].
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2.3 electron-photon coupling in cavity qed

In this section, we discuss how to describe theoretically the coupling between the quantum

conductor (for example, a quantum dot tunnel coupled to metallic leads) and photonic

field inside the cavity. For simplicity, we consider a single mode of a microwave cavity

field, but this description can be generalized to multimode cavity by introducing a sum

over all cavity modes. The detailed derivation using photonic pseudopotential to account

for electric coupling between electrons in a nanostructure and cavity photons has been re-

cently done in [23]. Here we demonstrate how to obtain the capacitive coupling between

the quantum conductor and photonic field inside the cavity. In a continuum description,

we can describe the interaction between the electrons in the nanostructure and the electro-

magnetic field via the minimal coupling, i.e., p → p− eA in the electronic Hamiltonian,

where A is the electromagnetic field vector potential and p is the momentum of the elec-

trons.

The combined Hamiltonian that describes the electronic system and cavity photons can

be written as

Htot =

∫
d3rψ†(~r)h(~r)ψ(~r) +  hωca

†a with h(~r) =
1

2m

(
−i h∇~r + eÂ(~r)

)2
, (2.3)

where ψ(~r) is the field operator, a(a†) is photon annihilation (creation) operator and

h(~r) is a single-electron Hamiltonian that includes coupling to the electromagnetic field

with

Â(~r) = A(~r)i
(
a− a†

)
(2.4)

being a photonic vector potential.  hωca
†a describes a single-mode electromagnetic field

with frequency ωc. e > 0 is elementary charge.

The electron-photon coupling in Eq.2.3 contains creation or annihilation of one photon

as well as two photons transitions via Â2 term. In order to eliminate two-photon processes
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in Hamiltonian Eq.2.3, let us perform a unitary transformation. But let us first introduce

a photonic pseudopotential that account for possible spatial variations of A(~r)

V⊥(~r) = ωc

∫
C(~r,~r0)

A(~r ′)d~l, (2.5)

where C(~r,~r0) is a continuous functional path inside the circuit relating a reference

point ~r0 and any point ~r. After performing a unitary transformation

H̃tot = U
†HtotU with U = exp

[
e
(
a− a†

)
 hωc

∫
d3rV⊥(~r)ψ

†(~r)ψ(~r)

]
, (2.6)

the combined Hamiltonian of the electron-photon system Eq.2.3 becomes

H̃tot =

∫
d3rψ†(~r)h̃(~r)ψ(~r) +  hωca

†a+ V
(
a+ a†

)
+ V2/ hωc, (2.7)

where

V = −e

∫
d3rV⊥(~r)ψ

†(~r)ψ(~r) and h̃(~r) = −
 h2

2m
∆~r. (2.8)

Now the electron-photon coupling is included in H̃tot only by V
(
a+ a†

)
term, which

is a single-photon process. When the spacial dependence of the photonic vector potential

A(~r) ≡ A0 can be disregarded, the photonic vector potential V⊥(~r) = ωcA0~r with A0 =

E0/ωc.

In the following, we use the second-quantized formalism to describe an electronic sys-

tem coupled to photonic field in the cavity. As an example of the electronic system, let us

consider a quantum dot tunnel coupled to metallic leads. In the absence of the cavity, the

electronic Hamiltonian can be written as
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Hel =
∑
o,j

εojc
†
ojcoj +

∑
o,j6=o ′,j ′

(
toj,o ′j ′c

†
ojco ′j ′ + h.c.

)
, (2.9)

where coj(c
†
oj) is the electron annihilation (creation) operator with o = d, l1, l2 corre-

sponding to the quantum dot and metallic leads, respectively. j accounts for orbitals in

the dot or the leads. εoj is the energy of the quantum dot (o = d) or the leads (o = l1, l2)

that corresponds to wavefunction φoj(~r). In order to make the connection with Eq.2.7, let

us write the field operator as

ψ(~r) =
∑
o,j

φoj(~r)coj. (2.10)

In second-quantized description Eq.2.7 reads

H
QD
tot = Hel +  hωca

†a+ hint
(
a+ a†

)
, (2.11)

where the electron-photon Hamiltonian has the form

hint =
∑
o,j

αojc
†
ojcoj +

∑
o,j6=o ′,j ′

(
γoj,o ′j ′c

†
ojco ′j ′ + h.c.

)
(2.12)

where we have neglected the terms V2/ hωc. Using Eq.2.8 we can find the electron-

photon couplings αoj and γoj,o ′j ′ .

αoj = −e

∫
d3rV⊥(~r)

∣∣φoj(~r)∣∣2 (2.13)

acts as to shift the energy εoj. And
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γoj,o ′j ′ = −e

∫
d3rV⊥(~r)φ

∗
oj(~r)φo ′j ′(~r) with oj 6= o ′j ′ (2.14)

accounts for photon-induced tunneling coupling between the dot and the leads.

If photonic vector potential varies slowly inside the quantum conductor V⊥(~r) = const,

then γoj,o ′j ′ ≡ 0 since the wavefunctions with oj 6= o ′j ′ are orthogonal. And we are only

left with capacitive coupling between the quantum dot (and metallic leads) and the cavity

central conductor.

In most of the papers [24, 87], the coupling between the quantum dot circuit and the

cavity is described as the capacitive coupling between number of electrons in the dot and

the photonic field

Hel−ph = αd†d(a+ a†), (2.15)

where d(d†) is the electron annihilation (creation) in the quantum dot and α is the

electron-photon coupling constant. While the coupling between the metallic leads and

the cavity is disregarded. It could be done assuming that the leads-cavity coupling is

symmetric, in which case it just shifts the dot-cavity coupling constant. In chapter 4 of

this thesis, we consider fully the coupling between the metallic leads and a microwave

cavity.

The derivation for the electron-photon coupling for topological superconductor dis-

cussed in chapter 5 is presented in appendix C.1.

2.4 input-output theory for microwave cavities

In this section, we present details on the input-output theory [20] for the cavity in the

presence of the coupling to a quantum conductor (tunnel junction, quantum dot, topolog-

ical wire, etc.). We demonstrate that the transmission of the cavity depends on the charge

susceptibility of the electronic system. We concentrate on only single resonance of the cav-
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Ê(x) ∝ (a + a†)

Hel

bin

boutcout

cin

κ1κ2

Figure 2.5: Sketch of a cavity system. The input fields bin and cin are sent from the right and left
mirrors, respectively, towards the cavity, and an output fields bout and cout are col-
lected on the same sides. The cavity field, which is quantified by the bosonic operators
a and a†, interacts with the electronic system via capacitive coupling, affecting the cav-
ity. The coupling between the cavity field and the external modes is quantified by the
decay rate κ1(2) = 2πρ|f1(2)|2, with ρ the bath density of states and |f1(2)|

2 ≡ f1(2)f∗1(2)
being the average coupling between the cavity and the bath modes on the right (left).
In the first part, for simplicity, we assume that κ2 = 0, which corresponds to a one-side
cavity.

ity with frequency ωc and, for simplicity, we assume for the moment a single-sided cavity

(for more details see appendix A). The total Hamiltonian describing the system reads [20,

34, 36]

H = Hb +Hc−b +Hel +Hc +Hel−c︸ ︷︷ ︸
Hsys

. (2.16)

The bath Hamiltonian is

Hb =
∑
q

ωqb
†
qbq, (2.17)

where bq (b†q) are the annihilation (creation) operators for the bath modes with energy

ωq, with q labeling their quantum numbers. The cavity Hamiltonian is

Hc = ωca
†a, (2.18)
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where a (a†) is the annihilation (creation) operator for the cavity mode with energy ωc.

The cavity-bath Hamiltonian is [20]

Hc−b = −i
∑
q

(
fqa
†bq − f∗qb

†
qa
)

, (2.19)

where the complex coefficients fq are coupling parameters between the cavity and the

external bath. The electron-cavity Hamiltonian is

Hel−c = α(a+ a
†)n, (2.20)

where α is the coupling strength between the cavity field and the total number operator

in the system n ≡ ∑Nj=1 c†jcj, with cj (c†j ) being the annihilation (creation) operator for

the electrons (fermionic degrees of freedom) at site j in the electronic system. And Hel is

the electronic Hamiltonian only.

The idea of the input-output theory is to find the output photons (or field) in terms of

the input ones, as shown schematically in Fig. 2.5. Following Ref. [20], we obtain for the

cavity equation of motion for a one-side cavity (κ2 = 0 in Fig. 2.5):

ȧ = i [Hsys,a] −
κ

2
a−
√
κbin , (2.21)

for the input field, and

ȧ = i [Hsys,a] +
κ

2
a−
√
κbout , (2.22)

for the output field, where κ = 2πρ|f|2 is the cavity decay rate, with ρ the bath density of

states and f being the average coupling between the cavity and the bath modes. Subtract-

ing Eq. (A.22) from Eq. (A.19) we obtain that

bout(t) = bin(t) +
√
κa(t), (2.23)

a result which holds for any general cavity Hamiltonian.
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In the following, we establish the relationship between bout and bin in the presence of

the electronic system, as depicted in Fig. 2.5. For that, we first evaluate the commutator:

[Hsys,a] = −ωca−αn , (2.24)

where n is the time-dependent electronic particle number (see below). In order to utilize

this contribution to the equation of motion of the cavity field, we need to evaluate the

time-dependent particle number n(t), which itself depends on the coupling to the cavity.

We can represent nH(t) in the Heisenberg picture as follows:

nH(t) = U
†(t, t0)nI(t)U(t, t0), (2.25)

where

U(t, t0) = Tc exp
(
−i

∫t
t0

dt ′Hel−c(t
′)
)

(2.26)

is the evolution operator with Tc the time-ordering operator that puts operators with later

times to the left of the ones with earlier times. We can then write Eq.(2.25) in the following

way

nH(t) ≈ nI(t) + iα
∫t
t0

dt ′
[
(a+ a†)nI(t

′),nI(t)
]

, (2.27)

up to leading order in the coupling constant α. Thus, the time-evolution of the electronic

particle number contains, besides the electronic component, a contribution that arises

because of the coupling to the cavity. Introducing Eq. (2.27) into Eq. (2.24) and assuming

t0 → −∞ we obtain:

[Hsys,a] = −ωca−αnI(t)

− iα2
∫t
−∞ dt ′

[(
a(t)e−iωc(t

′−t) + a†(t)eiωc(t
′−t)

)
nI(t

′),nI(t)
]

, (2.28)
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where a(t) ≈ ae−iωct and a†(t) ≈ a†eiωct in zeroth order in α (because the expression

is already multiplied by α2 we can utilize the bare time dependence in this expression). In

the following, we switch to the Fourier space in order to solve the equation for a(t), and

take into account all contributions that affect its time-dependence, namely the external

modes too. We obtain:

− iωa(ω) = −iωca(ω) −
κ

2
a(ω) −

√
κbin(ω) − iαnI(ω)

+α2
∫∞
−∞ dteiωt

∫t
−∞ dt ′

[(
a(t)e−iωc(t

′−t) + a†(t)eiωc(t
′−t)

)
nI(t

′),nI(t)
]

. (2.29)

Before continuing with the derivation, let us describe each term in the above expression.

The first term describes the free cavity evolution, the second term the leaking into the

continuum of modes (the external bath) at rate κ/2, the third term is the input field

supplied from the right side, the fourth term correspond to another "input" contribution

to the cavity from the electronic system (a noise term), while the last term leads to both a

shift in the cavity frequency as well as to frequency broadening. We can now average over

the electronic system. Moreover, we can neglect the highly oscillating term a†(t) ∝ eiωct,
namely we perform the so called Rotating Wave Approximation (RWA). Under all these

assumptions, the last term in Eq. (2.29) becomes:

α2
∫∞
−∞ dteiωt

∫t
−∞ dt ′a(t)e−iωc(t

′−t)〈[nI(t ′),nI(t)]〉0

= −ia(ω)Π(ωc), (2.30)

where

Π(t− t ′) = −iθ(t− t ′)α2〈[nI(t),nI(t ′)]〉0 , (2.31)

is the retarded density-density electronic correlation function or electronic susceptibility,

and 〈. . .〉0 means the expectation value of the unperturbed electronic system. Note that
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for deriving the above expression, we assumed that the electronic system is in a stationary

state and thus time translational invariant.

We are now in position to find the cavity field a(t) and the output field bout(t) in terms

of the input field bin(t). Introducing Eq. (2.30) into Eq. (2.29) we obtain

a(ω) = −

√
κbin(ω) + iα〈nI(ω)〉0

−i(ω−ωc) + κ/2+ iΠ(ωc)
. (2.32)

We thus have two contributions to the cavity field: the external input and the input from

the electronic system. Our aim is to relate in fact the output and input fields, which can

be done easily via the expression in Eq. (2.23):

bout(ω) =

[−i(ω−ωc) − κ/2+ iΠ(ωc)]bin(ω) − i
√
κα〈nI(ω)〉0

−i(ω−ωc) + κ/2+ iΠ(ωc)
. (2.33)

In the limit of large number of photons in the input beam, we can neglect the contribution

from the electronic system so that we obtain:

bout(ω) ≈ −i(ω−ωc) − κ/2+ iΠ(ωc)

−i(ω−ωc) + κ/2+ iΠ(ωc)
bin(ω) . (2.34)

In experiments, one actually encounters a two-sided cavity (see Fig. 2.5 for the nomen-

clature), in which case the expression for the cavity equation of motion reads:

ȧ = i [Hsys,a] −
(κ1
2

+
κ2
2

)
a−
√
κ1bin −

√
κ2cin , (2.35)

so that for the output fields we get:

bout =
√
κ1a+ bin (2.36)

cout =
√
κ2a+ cin . (2.37)

By following the same reasoning as for the one-sided cavity and assuming the two mirrors

are the same κ1 = κ2 ≡ κ, we obtain:
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a(ω) = −

√
κ[bin(ω) + cin(ω)] + iα〈nI(ω)〉0

−i(ω−ωc) + κ+ iΠ(ωc)
. (2.38)

Assuming again that the input flux is much larger than the electronic contribution, we

can write:

cout(ω) = −τbin(ω) + (. . .)cin(ω) (2.39)

with

τ =
κ

−i(ω−ωc) + κ+ iΠ(ωc)
≡ Aeiφ (2.40)

being the transmission of the cavity, which is a complex number, and which depends on

the electronic susceptibility Π(ωc) at cavity frequency ωc.

The phase and amplitude response of the cavity close to resonance ω ≈ ωc are related

to the susceptibility Π(ωc) as follows:

δφ = Π ′(ωc)/κ, (2.41)

δA/Ain = Π ′′(ωc)/κ, (2.42)

where δφ = φout −φin, δA = Ain −Aout, and Π ′(ω) = Re[Π(ω)] (Π ′′(ω) = Im[Π(ω)])

is the real (imaginary) part of the susceptibility. The frequency shift δφ (or the modifi-

cation of the resonance frequency ωc) is proportional to the real part of the electronic

susceptibility Π ′(ωc) while the frequency broadening δA/Ain (or the modification of the

quality factor Q) is proportional to the imaginary part of the susceptibility Π ′′(ωc).

2.5 summary

In this chapter, we summarize theoretical and experimental studies of atoms (real or artifi-

cial) coupled to superconducting resonators. In subsection 2.1.1, we demonstrate that the
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properties of a single photon in a 3D resonator can be probed by atoms passing through

the cavity. Then we discuss how the fixed atom-cavity coupling and scalability problems

present in atomic cavity QED can be fixed by going from 3D cavity to 1D transmission

line resonator and from a real atom to an artificial one. The main advantages of circuit

QED:

1. The large dipole moment of the superconducting qubit and rms voltage of the res-

onator allow to reach easily the strong-coupling limit

2. Qubits can be separated by centimeter distances and entangling of qubits can be

realized to implement two-qubits gates.

The idea to study quantum conductors embedded in superconducting resonators by

coupling them to the wires and measuring differential conductance comes from meso-

scopic cavity QED. In section 2.2, we discuss experimental and theoretical study of quan-

tum dots with cavity QED. We provide the derivation of the electron-photon coupling

Hamiltonian for mesoscopic cavity QED in section 2.3. And in section 2.4, we derive the

optical transmission coefficient of the cavity

τ =
κ

−i(ω−ωc) + κ+ iΠ(ωc)
(2.43)

and demonstrate that if the frequency is close to the cavity resonance, the phase shift

and frequency broadening are related to the electronic susceptibility as

δφ = Π ′(ωc)/κ, (2.44)

δA/Ain = Π ′′(ωc)/κ. (2.45)

In this thesis, we apply methods from cavity QED to study different systems coupled

to superconducting microwave cavity, such as a tunnel junction, a quantum dot tunnel

coupled to metallic leads, a one-dimensional topological semiconducting wire and a su-

perconducting ring.





3
M A J O R A N A F E R M I O N S

Majorana fermion is a particle that is its own antiparticle. Majorana fermions have been

predicted by Ettore Majorana in 1937 [60]. Dirac equation

(iγµ∂µ −m)φ = 0, (3.1)

where φ is a four-component complex field, and γ matrices are required to obey the

rules of the Clifford algebra, describes charged particles with spin 1/2, such as electrons.

The idea of Ettore Majorana was to find an equation similar to Dirac equation that will

describe a particle with spin 1/2 that is its on antiparticle [104]. If a particle is associated

with a complex filed φ (see Eq.3.1), then the corresponding antiparticle will be associated

with the conjugated field φ∗. For example, the antiparticle of an electron with charge e is a

positron with charge −e that appears as a solution of conjugated Dirac equation. Particles

and their antiparticles have opposite charges, which means that the particle proposed by

Ettore Majorana should have zero charge. Also, if the particle is associated with the field

φM and its antiparticle is associated with the field φ∗M, the Majorana particle should be

associated with the real field φM ≡ φ∗M. Under this condition, Ettore Majorana found the

equation (later called Majorana equation)

(
iγ
µ
M∂µ −m

)
φM = 0, (3.2)

where γµM = −
(
γ
µ
M

)∗ are modified purely imaginary γ matrices that obey the rules of

the Clifford algebra. One of the possibles forms of γM matrices is

29
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γ0M =


0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0

 , (3.3)

γ1M =


0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

 , (3.4)

γ2M =


i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 −i

 , (3.5)

γ3M =


0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

 . (3.6)

Although Majorana fermions have been initially predicted as particles in high energy

physics (the only elementary particle that could be Majorana fermion is neutrino), they

could also emerge as quasiparticle excitations in condensed matter (solid-state) physics.
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The special property of being its own antiparticle could be conveniently written in the

second quantization formalism as

γj = γ
†
j , (3.7)

where γj is the Majorana operator. Conventional fermions are described by creation c†j
and annihilation cj operators. In order to build the Majorana operator γj, one should take

a linear combination of conventional fermionic operators c†j and cj, or electrons and holes

γj = uc
†
j + vcj. (3.8)

In superconductors, the particle-hole symmetry relates the creation operator γ†E at en-

ergy E to the annihilation operator γ−E at energy −E [7]. At zero energy E = 0, a double

degenerate level emerges in superconductors. This level has a special property

γ
†
E=0 = γE=0. (3.9)

The zero-energy state in superconductors is the Majorana fermion.

Majorana fermions could be also used to build a topological quantum computer since

they obey the non-abelian statistics in 2D [46]. In 3D, particles obey either the Fermi-Dirac

statics and are thus called fermions or the Bose-Einstein statistics and are subsequently

called bosons. Observing the behavior of multiparticle states during the exchange of par-

ticles allows to determine the statistics of the particles. For example, for a two-particle

state

|ψ1ψ2〉 = ±|ψ2ψ1〉, (3.10)
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where sign +(−) corresponds to particles being bosons (fermions). But in 2D sys-

tems, quasiparticles could obey statistics ranging continuously between Fermi–Dirac and

Bose–Einstein statistics

|ψ1ψ2〉 = eiθ|ψ2ψ1〉, (3.11)

where θ is an arbitrary real number. If θ = 0(π), we recover the Bose-Einstein (Fermi-

Dirac) statistics. Otherwise, particles obtain an arbitrary phase when they are interchanged.

Such particles are called anyons. When anyon 1 and anyon 2 are interchanged twice, their

wavefunction is not the same as the initial one, but rather ei2θ|ψ1ψ2〉. This means that the

exchange of particles changes the state of the system with the same particle configuration

(see Fig.3.1). The interchange of two Majorana operators is called braiding. And the result

of the braiding depends on the order in which it is performed (U12 6= U21).

γ1 γ2

Figure 3.1: Exchange of two Majorana fermions γ1 and γ2 counterclockwise.

Studying Majorana fermions in the context of condensed matter physics is in focus of

tremendous theoretical and experimental research activity. On one hand, this scrutiny is

driven by the fundamental interest in particles that are their own antiparticles. On the

other hand, such particles may have numerous applications in quantum computing.

3.1 conventional fermionic and majorana operators

In condensed matter physics, Majorana fermions emerge as zero-energy and charge-

neutral quasiparticles in superconductors.

Usual fermionic creation c†j and annihilation cj operators obey anticommutation rela-

tions
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{ci, c
†
j } = δi,j, {ci, cj} = 0. (3.12)

In order to create a neutral excitation, one needs to take a linear combination of fermionic

creation and annihilation operators c†j , cj. Let us define Majorana operators as

γA,j = −i
(
cj − c

†
j

)
, γB,j = cj + c

†
j . (3.13)

These Majorana operators still satisfy the anticomutation relations

{γα,j,γα ′,j ′} = 2δαα ′δjj ′ with α = A,B and j = 1, ...,N, (3.14)

but also have a special property

γα,j = γ
†
α,j. (3.15)

Eq.3.15 demonstrates that Majorana fermion γα,j is identical to its antiparticle γ†α,j.

In the following sections, we discuss several theoretical models of the systems that sup-

port Majorana fermions as well as the experimental implementation of these systems. In

section 3.2, we provide details on the Kitaev chain model as we use it in chapters 5,7. The

Kitaev model is the simplest model that takes into account both Majorana states and bulk

states of the superconductor. In section 3.3, we describe the spin-orbit coupled nanowire

model, a realistic model that describes emergence of the Majorana fermions and has been

already implemented experimentally. We use this model in chapter 5 to demonstrate that

our findings for Kitaev model remain valid for a more realistic system. In section 3.4, we

discuss first experimental signatures of Majorana fermions in condensed matter systems,

e.g. zero-bias peak. We continue by presenting the fractional Josephson effect and its con-

nection to the Majorana fermions physics in section 3.5 before a conclusive discussion in

section 3.6.
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3.2 prototype model for 1d p-wave superconductor : kitaev model

In this section, we introduce a toy model for a 1D topological superconductor that sup-

ports Majorana fermions, namely the Kitaev model for a spinless p-wave superconduc-

tor [49]. This model describes a chain of N sites with nearest-neighbor p-wave supercon-

ducting pairing. The Kitaev chain Hamiltonian reads

HK = −µ

N∑
j=1

c
†
jcj −

1

2

N−1∑
j=1

(
tc
†
jcj+1 +∆cjcj+1 + h.c.

)
, (3.16)

where µ is the chemical potential, t is the nearest-neighbor hopping amplitude and ∆

is the p-wave superconducting pairing potential.

t

µ

γA,1 γB, 1 γA,2 γB, 2 γB ,NγA,NγA,N −1γB ,N −1

ttt

µ µµ

Figure 3.2: Scheme of the Kitaev chain.

It is instructive to first study the bulk properties of the Kitaev chain by imposing peri-

odic boundary conditions on the system, cN+1 ≡ c1. For periodic boundary conditions,

we can use the Fourier description for the electronic operators:

cj =
1√
N

∑
k

cke
ikj . (3.17)
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where ck is the fermionic annihilation operator with momentum k = 2πn/N (assuming

the lattice spacing d ≡ 1 from now on), with n = 1, ...,N. By doing so, we can write the

Kitaev Hamiltonian Eq. 5.4 in momentum space

HK =
∑
k>0

HKBdG(k) , (3.18)

with

HkBdG(k) = ξk(c
†
kck − c−kc

†
−k) − i∆ sink(c−kck − c

†
kc
†
−k), (3.19)

is the Bogoliubov-de Gennes Hamiltonian and ξk = −t cosk−µ. We can simply diagonal-

ize the HK in the k-space and write:

HK =
∑
k>0

Ek

(
γ
†
kγk + γ

†
−kγ−k

)
, (3.20)

when expressed in terms of quasiparticle operators

ck = u∗kγk + vkγ
†
−k, (3.21)

c
†
−k = −v∗kγk + ukγ

†
−k . (3.22)

Here, the functions uk and vk are given by

|uk|
2 =

1

2

(
1+

ξk
Ek

)
, (3.23)

|vk|
2 =

1

2

(
1−

ξk
Ek

)
, (3.24)

and

Ek = ±
√

(−t cosk− µ)2 + (∆ sink)2 , (3.25)
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is the bulk energy spectrum for the Kitaev chain (see Fig.3.3).
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Figure 3.3: Bulk energy spectrum Ek of the Kitaev chain for parameters: t = ∆ = 1. a) The gap at
k = 0 is open at µ = −0.5 in the topological phase (|µ| < t), b) the gap at k = 0 closes at
µ = −1.0 at the topological phase transition (|µ| = t) , c) the gap at k = 0 opens again
at µ = −1.5 in the non-topological (trivial) phase (|µ| > t).

The topological phase transition happens when the gap closes, Ek = 0. From Eq.3.25

we notice that the gap closes at k = 0 for µ = −t and k = π for µ = t. Thus |µ| = t is the

topological phase transition point. In the following, we demonstrate that the Kitaev chain

is in the topological phase when |µ| < t, and in the non-topological phase when |µ| > t.

In the topological phase, the Majorana fermions emerge at both ends of the Kitaev chain

with open boundary conditions.

Let us determine a topological phase of the system by introducing an integer-valued

topological invariant — a winding number [68]. It is convenient to define the invariant in

the pseudospin basis ~h(k), so let us rewrite the BdG Hamiltonian Eq. C.30 and set ∆ = t

as

HkBdG (k) = ~h(k) · ~τ (3.26)

where ~τ =
(
τkx, τky, τkz

)
are Pauli matrices acting on the particle-hole basis

(
ck, c†−k

)
,

hy(k) = −t sin (k) and hz(k) = (−t cos (k) − µ). The pseudospin ~h(k) is defined in the

yz-plane.

Let us introduce a unit vector
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ĥ(k) =
~h(k)∣∣∣~h(k)∣∣∣ ≡ cos (θk) τky + sin (θk) τ

k
z , (3.27)

where
∣∣∣~h(k)∣∣∣ = √

h2y + h
2
z = Ek. The winding number is defined in terms of this unit

vector.

(a) (b)

-π
k

π -π
k

π

Figure 3.4: The pseudospin vector ĥ(k) for parameters: t = ∆ = 1. a) µ = −0.5; the pseudospin
winds once along the Brillouin zone, i.e. w = −1, b)µ = −1.5; the pseudospin does not
wind along the Brillouin zone, i.e. w = 0.

The states of the system with periodic boundary conditions form a ring T1 in the mo-

mentum space, while the unit vector ĥ(k) is defined on a unit circle S1 in the yz-plane.

Thus the angle θk is a mapping θk : S1 → T1. The winding number is the fundamental

group of this mapping

w =

∮
dθk
2π

, (3.28)

where θk = arctan
(
−

t sin(k)
t cos(k) + µ

)
(we perform the rotation so that the angle is de-

fined in the xy-plane) and the integral is taken over the first Brillouin zone. The winding

number shows how many times the unit vector ĥ(k) rotates in the yz-plane around the

Brillouin zone (see Fig.3.4). The absolute value of the winding number is equal to the

number of Majorana fermions at each end of the chain. The winding number can be

any integer and remains constant as long as the system is gaped. The winding number

changes only when the gap closes at the topological phase transition and is not defined

at the phase transition point since Ek = 0 when the gap closes.
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For the Kitaev model, the winding number w = 0 for t < |µ| implies the absence

of Majorana fermions in the chain (or that the system is in non-topological phase) and

w = −1 for t > |µ| imples the existence of one Majorana fermion at each of the chain (or

that the system is in the topological phase) [96].

Having determined the conditions for the topological phase transitions, we consider a

finite chain with Majorana fermions emerging at its ends [3, 49]. Each site of the chain

in the Kitaev model is described by a pair of creation c†j and annihilation cj fermionic

operators. Let us formally define the Majorana operators by decomposing cj, c
†
j operators

in the Kitaev Hamiltonian Eq.5.4 in terms of two Majorana operators

cj =
1

2

(
γB,j + iγA,j

)
, c

†
j =

1

2

(
γB,j − iγA,j

)
, (3.29)

where γA,j and γB,j are the Majorana operators that fulfill the relations

γα,j = γ
†
α,j, {γα,j,γα ′,j ′} = 2δαα ′δjj ′ , (3.30)

with α = A,B and j = 1, ...,N.

In terms of the Majorana operators γA,j and γB,j, the initial Hamiltonian of the Kitaev

chain Eq.5.4 becomes

HK = −
µ

2

N∑
j=1

(
iγB,jγA,j + 1

)
−
i

4

N−1∑
j=1

[
(∆+ t)γB,jγA,j+1 + (∆− t)γA,jγB,j+1

]
.

(3.31)

γA,1 γB, 1 γA,2 γB, 2 γB ,NγA,NγA,N −1γB ,N −1

Figure 3.5: Schematic illustration of the Hamiltonian in Eq.3.32. Majorana operators γA,j,γB,j from
the same site j are paired.
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γA,1 γB, 1 γA,2 γB, 2 γB ,NγA,NγA,N −1γB ,N −1

Figure 3.6: Schematic illustration of the Hamiltonian in Eq.3.33. Majorana operators γB,j,γA,j+1
from adjacent sites are paired. Majorana operators γA,1 and γB,N drop out of the
Hamiltonian.

Let us first consider two special cases.

1) Trivial case: |∆| = t = 0 and µ < 0. Then Eq.3.31 is simplified and it reads

HK = −
µ

2

N∑
j=1

(
iγB,jγA,j + 1

)
. (3.32)

In this case, the Hamiltonian HK contains pairing only between the Majorana operators

γA,j,γB,j from the same site j (see Fig.3.5). Therefore, all the Majorana operators are

always paired. For |∆| = t = 0 and µ < 0, the Kitaev chain is in the topologically trivial

(non-topological) phase.

2)Non-trivial case: |∆| = t > 0 and µ = 0. For this choice of parameters, the Hamiltonian

of the Kitaev chain Eq.3.31 reads

HK = −i
t

2

N−1∑
j=1

γB,jγA,j+1. (3.33)

In this case, only the Majorana operators γB,j,γA,j+1 with j = 1, ...,N− 1 from different

sites are paired, while the operators γA,1 and γB,N do not enter the Hamiltonian (see

Fig.3.6). Let us introduce a new fermionic operator that combines the Majorana operators

from different sites

fj =
1

2

(
γA,j+1 + iγB,j

)
. (3.34)
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The Kitaev Hamiltonian Eq.(3.33) can be written in terms of these new operators fj, f
†
j

as

HK = t

N−1∑
j=1

(
f
†
jfj −

1

2

)
. (3.35)

Let us also combine two Majorana operators γA,1 and γB,N that dropped out from

Eq.3.33 and introduce an ordinary fermionic operator

c̃M =
1

2
(γA,1 + iγB,N) , (3.36)

that is a sum of two operators localized at sites 1 and N, respectively, and thus is a

highly non-local object.

The finite size of the chain with open boundary conditions results in an overlap between

γA,1 and γB,N operators. This overlap can be described by an effective Hamiltonian [49]

HeffK = −i
t

2
γB,NγA,1, (3.37)

where t ∝ exp (−L/ξ) with L being the length of the chain and ξ being the coherence

length.

The Hamiltonian HeffK can be written in terms of the ordinary fermionic operators as

Heff = 2εM

(
c̃
†
Mc̃M −

1

2

)
, (3.38)

where εM is called the Majorana energy splitting and εM =
t

4
∝ exp (−L/ξ). Let us

introduce a number of particles operator

nM = c̃†Mc̃M. (3.39)
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Depending on the Majorana state being empty (nM = 0) or occupied (nM = 1), the

Majorana ground state is either even or odd with energy −εM or εM, respectively.

All the aforementioned analysis of the topological properties of the Kitaev chain re-

mains valid for arbitrary values of µ, ∆ and t. However, p-wave superconductors are very

rare in nature (the only known p-wave superconductor is Sr2RuO4 [47]). So how one can

realize a chain of spinless electrons in a laboratory?

The first theoretical proposal to effectively implement the Kitaev chain was to use an

edge of a 2D topological insulator proximitized to an s-wave superconductor [42, 43].

At the edge of the 2D topological insulator, electrons with spin up propagate clockwise

around the edge while electrons with spin down propagate counterclockwise, making

the system appear spinless. p-wave superconductivity is generated in the system when

interfacing the topological insulator with a s-wave superconductor.

3.3 practical realization of majorana fermions in 1d p-wave supercon-

ductors : spin-orbit coupled nanowire

In this section, we discuss in detail one of the theoretical proposals of experimental real-

ization of a 1D spinless p-wave superconductor: a spin-orbit coupled nanowire subject to

a magnetic field and in proximity to an s-wave superconductor. We use in chapter 5. This

theoretical model has been first proposed in [59, 71] based on earlier semiconductor-based

proposals [2, 86] and implemented experimentally in [64]. Three ingredients are combined

in this model to engineer p-wave superconductivity: a 1D wire with strong spin-orbit cou-

pling, a conventional s-wave superconductor, and a magnetic field. The scheme of the

setup is shown in Fig.3.7.

The Hamiltonian for the nanowire with spin-orbit coupling in the presence of the mag-

netic field and in proximity to an s-wave superconductor reads [71]

H =

∫
Ψ† (y)HΨ (y)dy, (3.40)
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z

yx

u

B

1D wire

s-wave SC

Figure 3.7: Scheme of the superconductor-semiconductor wire setup. 1D wire lies along the y axis,
spin-orbit interaction u is along z axis and a magnetic field B is along x axis.

H =

(
p2

2m
− µ

)
τz + upσzτz +Bσx +∆τx, (3.41)

where Ψ =
(
ψ
†
↑,ψ
†
↓,ψ↓,−ψ↑

)
, ψ↑,(↓) (y) annihilates spin-up (spin-down) electrons at

position y. The Pauli matrices σi, τi, i = x,y, z act in spin and particle-hole space, re-

spectively. µ is the chemical potential, u is the Rashba spin-orbit interaction that aligns

the spins in the z-direction, B is the magnetic field and ∆ is the s-wave pairing potential

induced by proximity. We chose the wire to lie along the y axis, the spin-orbit interaction

to be along the z axis, and the magnetic field to be along the x axis (see Fig.3.7). The

directions of the fields could be chosen arbitrary provided that the spin-orbit field and

the magnetic field are orthogonal.

The bulk energy spectrum for the spin-orbit coupled nanowire reads

E2± = B2 +∆2 +

(
p2

2m
− µ

)2
+ (up)2

± 2

√
B2∆2 +B2

(
p2

2m
− µ

)2
+ (up)2

(
p2

2m
− µ

)2
. (3.42)
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Let us discuss the energy spectrum of spin-orbit coupled nanowire and how it can

emulate a spinless p-wave superconductor. In the absence of the magnetic field B = 0 and

induced superconductivity ∆ = 0, the energy spectrum consists of two shifted parabolas

that cross at the momentum p = 0. Due to the spin-orbit coupling, these two parabolas

have opposite spins. When the magnetic field is applied, the crossing at p = 0 is lifted

and the gap at p = 0 opens. If we tune the chemical potential µ so that it lies inside the

field-induced gap, the wire appears spinless. The superconducting pairing ∆ opens gaps

at the Fermi momentum p = ±pF = ±√2mµ and ensures that they always remain finite.

For large magnetic field B� ∆ we can project away the upper energy band and the wire

becomes effectively a spinless p-wave superconductor.
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Figure 3.8: Bulk energy spectrum E±(p) of the spin-orbit coupled nanowire for parameters µ = 0

and ∆ = 0.25. The momentum (energy) scale is set by mu
(
mu2

2

)
. The blue line

corresponds to the upper energy branch E+ and the red line corresponds to the lower
energy brunch E−. a) The gap at p = 0 is open for B = 0.5 in the topological phase,
B >

√
∆2 + µ2, b) the gap at p = 0 closes at B = 0.25 at the topological phase transition

point, B =
√
∆2 + µ2.

The bulk energy spectrum E± has two gaps:

1) the gap at p = 0, which could be created by the magnetic field and is given by

E0 = E(p = 0) =
∣∣∣B−

√
∆2 + µ2

∣∣∣ ; (3.43)

2) the gap at p = ±pF, which is created by the strong-spin orbit interaction and is

always finite due to the induced superconductivity. The gap is given by
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E1 = E(p = ±pF) = ξp=±pF ± upF. (3.44)

The quantum phase transition occurs when the gap at p = 0 closes, E0 = 0, and B2 =

∆2 + µ2 (see Fig.3.8). When B2 > ∆2 + µ2, E0 is dominated by the magnetic field B,

the wire is in the topological phase with Majorana fermions at the ends of the wire.

When B2 < ∆2 + µ2, E0 is dominated by the pairing potential ∆, the wire is in the non-

topological phase.

Now we demonstrate that in the limit of strong spin–orbit coupling, the nanowire

model Eq.3.41 reduces at low energies to a spinless p-wave-superconductor.

Let us diagonalize the Hamiltonian for the spin-orbit coupled nanowire H = H0 +∆τx

in the absence of the induced pairing ∆ and then treat the latter perturbatively [34, 73]

H0 =

(
p2

2m
− µ

)
τz + upσzτz +Bσx. (3.45)

In order to do so, we perform the unitary transformation

H̃0 = UH0U
† with U = exp (iασyτz/2) . (3.46)

If we choose α so that

tan (α) =
B

up
, (3.47)

H̃0 takes the form

H̃0 =
[ p2
2m

− µ+
√
u2p2 +B2σz

]
τz. (3.48)

Now let us reintroduce the pairing term ∆τx and apply the transformation U to it.
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Then H̃NW reads

H̃NW =
[ p2
2m

− µ+
√
u2p2 +B2σz

]
τz +

∆up√
u2p2 +B2

τx

−
∆B√

u2p2 +B2
σyτy. (3.49)

Neglecting the last term in Eq.C.50 for B� ∆,µ the effective Hamiltonian reads

H̃eff =
[ p2
2m

− µ+
√
u2p2 +B2σz

]
τz +

∆up√
u2p2 +B2

τx. (3.50)

The low-energy subspace at p = ±pF is formed by the bands with σz = −1. The

projection of H̃eff C.51 to the lower bands yields

H̃eff =
[ p2
2m

− µ−
√
u2p2 +B2

]
τz +

∆up√
u2p2 +B2

τx. (3.51)

The large spin-orbit coupling εSO � ∆ guarantees that we can neglect the coupling to

high-energy degrees of freedom near ±pF. Linearizing the Hamiltonian H̃eff 3.51 around

the Fermi momenta and using |up| ≡ εSO � B the effective Hamiltonian takes the form

H̃eff = u (|p|− pF) τz + sign (p)∆τx. (3.52)

This Hamiltonian describes a spinless p-wave superconductor with superconducting

pairing ∆p ∝ ∆p similar to the Kitaev model described in the previous section.

3.4 experimental signatures of majorana fermions : observation of zero-

bias peak

There are several experimental manifestations associated with the presence of Majorana

fermions, such as the zero-bias peak in the topological region [19, 25, 33, 64], the depen-
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dence of the Majorana energy splitting on the Zeeman splitting, or the size of the system

[1], enhanced conductance at zero energy in chain of magnetic atoms [66], ac fractional

Josephson effect [81, 103]. Let us discuss several of them in more detail.

First experimental observation of signatures of the Majorana fermions has been re-

ported in [64]. They studied a nanowire by electrical measurements and observed a peak

at zero bias, which is consistent with the presence of zero-energy (midgap) bound states

at the ends of the wire.

The experimental setup consists of InSb nanowire connected to one normal and one

superconducting electrode in the presence of magnetic field. This physical system has all

three components required for the emergence of Majorana fermions [59, 71]: a nanowire

with strong spin-orbit interaction, proximity-induced superconductivity and magnetic

field. However, the two latter quantities should be related as Ez >
√
µ2 +∆2. In order

to satisfy this relation, one needs to create Zeeman energy Ez = gµBB/2 (µB is the Bohr

magneton) large enough to exceed the induced superconducting gap ∆ ≈ 250µeV. Choos-

ing bulk InSb with g ≈ 50, one can enter a topological regime at µ = 0 (Ez > ∆) given

the magnetic filed B ≈ 0.15T. At the same time, InSb nanowires have a strong spin-orbit

interaction α = 0.2 eV·Å.

The differential conductance dI/dV at voltage V for different values of magnetic field

was measured in [64]. The peak at V = 0 appears for magnetic field B ≈ 100 mT. This

peak remains stuck to zero over a substantial range of magnetic fields (up to B ≈ 400

mT). The zero-bias peak signals a presence of midgap states in the wire and could be

interpreted as a transport signature of Majorana fermions. Thus, this experiment provides

first evidence for the presence of the Majorana fermions in nanowires with proximity-

induced superconductivity.

Recently, observation of exponential suppression of energy splitting with increasing

wire length in InAs nanowire segment with epitaxial aluminium, which forms a proximity-

induced superconducting Coulomb island, has been reported in [1]. For short devices of

a few hundred nanometres, they found that energy of the sub-gap state oscillate as a

function of magnetic field, as is expected for the Majorana fermions.
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(a) (b)

Figure 3.9: a) Experimental setup. Scanning electron microscope image of the device with normal
(N) and superconducting (S) contacts. The S contact only covers the right part of InSb
nanowire. The underlying gates, numbered 1 to 4, are covered with a dielectric. An
external magnetic field B is aligned parallel to the wire in order not to destroy super-
conductivity. The Rashba spin-orbit interaction is perpendicular to the nanowire and to
magnetic field as required. Parameters of the wire: α = 0.2 eV·Å, ∆ ≈ 250µeV. b) dI/dV
as a function of V for different values of magnetic field B: from 0 to 490 mT from in 10
mT steps. Green arrows indicate the induced gap peaks. Reproduced from [64].

3.5 fractional josephson effect

3.5.1 Theoretical description of DC Josephson effect

The Josephson effect describes the appearance of a supercurrent in a weak link between

two superconductors. For usual s-wave superconductors, the supercurrent appears due to

the tunneling of the Cooper pairs with charge 2e across a weak link. In this section, we dis-

cuss DC Josephson effect, when there is no voltage applied to the junction and the phases

of the superconductor are created by magnetic flux. The Josephson current depends on

the phase difference of the superconductors and is given by IJ ∝ sin (φR −φL), where φL
(φR) is a phase of the left (right) superconductor. In case of topological superconductors

(see Fig.3.10) the supercurrent appears due to fusing the Majorana fermions across a weak

link. The current is carried by charge e quasiparticles instead of the Cooper pairs and is
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given by IJ ∝ sin
(
φR −φL

2

)
. This effect that arises because of the degeneracy of the zero

energy Majorana modes is called the fractional Josephson effect.

The fractional Josephson effect is one of the hallmarks of the Majorana fermions [43,

49, 50, 59, 74]. It corresponds to 4π periodicity of the supercurrent in the superconductor

phase difference across a weak link, as opposed to 2π periodicity for the usual Josephson

effect in conventional s-wave superconductors.

Topo SC Topo SCγL γR

φL φR

Figure 3.10: Scheme of a Josephson junction consisting of two topological wires (black lines) con-
nected via a topologically trivial weak link (dashed line). p-wave superconductivity
is created by a proximity to s-wave superconductors (blue rectangles). A weak link
could be created by an insulating barrier (grey rectangle). The left (right) s-wave su-
perconductor has a phase φL (φR). The presence of the Majorana fermions γL and γR
(brown circles) give rise to the 4π-periodic Josephson current across a weak link.

Let us consider a simplest setup required to observe the fractional Josephson effect:

the superconductor-insulator-superconductor junction (see Fig.3.10). We assume that the

topological superconductors are long enough, so that only a finite overlap between two

Majorana fermions γL and γR at both sides of a weak link could be taken into account.

Let us define a usual fermionic operator that consists of two Majorana operators

c̃M =
1

2
(γL + iγR) (3.53)

and a number of particles operator

nM = c̃†Mc̃M. (3.54)

In the topological phase, the Josephson current is mainly transmitted by the Majorana

states. Effective low-energy Hamiltonian for a setup shown in Fig. 3.10 reads
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Heff =
Γ

2
cos
(
∆φ

2

)
iγLγR = Γ cos

(
∆φ

2

)(
nM −

1

2

)
, (3.55)

where ∆φ = φR − φL. Note that [Heff,nM] = 0, so that the number of Majorana

fermions is conserved.

The Majorana energy splitting is given by

E = ±Γ cos
(
∆φ

2

)
, (3.56)

where − sign corresponds to even parity (nM = 0) and + corresponds to odd parity

(nM = 1). The energy spectrum is presented in Fig.3.11.

The Josephson current could be defined as [59] IJ = −
∂〈Heff〉
∂∆φ

and is equal to

IJ = ±
Γ

2
sin
(
∆φ

2

)
. (3.57)

For even parity, the Josephson current carried by the Majoranas is IJ ∝ sin
(
∆φ

2

)
. For

odd parity, it is IJ ∝ − sin
(
∆φ

2

)
. Since the parity of the Majorana state is a conserved

quantity, the Josephson current is 4π-periodic in the phase difference. And also the sign

of the Josephson current could allow to distinguish the parity of the Majorana state.

The simplest way to reveal the fractional Josephson effect is to measure directly the

current through the junction. But if the measurement is performed on time scale which is

long compared to relaxation/switching time of the Majorana fermions, then the ground

state energy becomes εM ∝ −

∣∣∣∣cos
(
∆φ

2

)∣∣∣∣. In this case the Josephson current is IJ ∝∣∣∣∣sin
(
∆φ

2

)∣∣∣∣ and is 2π-periodic. However, if there is a voltage difference across the junction
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Figure 3.11: Energy spectrum E as a function of the phase difference across the junction ∆φ. Energy
comes back to its initial value at 4π.

it gives rise to AC Josephson current. And in this case 4π Josephson current has been

observed [81, 103].

3.5.2 Observation of 4π-periodic AC Josephson current

In this section, we discuss other experimental manifestation of Majorana fermions, namely

the fractional Josephson effect. In [81], the first observation of the fractional AC Josephson

effect in a hybrid superconductor-semiconductor nanowire junction has been reported.

When the junction is irradiated with a frequencyω0 in the absence of an external magnetic

field, quantized voltage steps (Shapiro steps) with a height  hω0/2e are observed, as is

expected for conventional superconductor junctions, where the supercurrent is carried by

charge 2e Cooper pairs. At high magnetic fields the height of the first Shapiro step is

doubled to  hω0/e, suggesting that the supercurrent is carried by charge e quasiparticles.

This experimental result is a signature of the Majorana fermions.

In [81], the experimental device consists of Nb/InSb/Nb Josephson junctions. Super-

conductivity in InSb is induced by the proximity effect from a Nb film placed on top of

the InSb nanowire. The supercurrent is flowing only in the nanowire. This experimental

realization is based on the theoretical proposal [59].
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(a) (b)

Figure 3.12: a) Experimental setup. AFM image of a Josephson junction. The light areas are Nb.
A light brown halo around Nb is a thin 2–3 nm Nb layer which defines the width of
the semiconductor wire. Green arrow indicated the direction of the spin–orbit field
BSO. b) I− V characteristic of a Nb/InSb/Nb Josephson junction in the presence of
magnetic field B ‖ I measured with voltage Vrf between 3 and 6 mV with 0.6 mV
steps. For B < 2 T, Shapiro steps with a height ∆V =  hω0/2e = 6µV are clearly
observed. For B > 2 T the plateau at 6µV disappears, as emphasized by dashed ovals,
and the first step is observed at  hω0/e = 12µV. This doubling of the first Shapiro step
is a signature of the presence of the Majorana fermions in the system. Reproduced
from [81].

In the presence of microwave excitation with frequency ω0, phase locking between

the rf field and the Josephson supercurrent gives rise to constant-voltage Shapiro steps

in the I− V characteristics at Vn = n
 hω0
q

, where q is the charge of quasiparticles and

n = 0,±1,±2, ... numbers of the Shapiro steps. At zero magnetic field B = 0 and ω0 = 3

GHz the Shapiro steps with ∆V = 6µV were observed (up to n = 10). This value of ∆V

is consistent with the Cooper pair (with charge 2e) tunneling. When a low magnetic field

B ‖ I, B < 2 T is applied, first three Shapiro steps at V = 6, 12 and 18µ V are clearly

visible [81]. The first step with n = 1 at 6µV disappears above B ≈ 2 T. This observation

could be explained if the current is carried by the charge e quasiparticles, e.g. the Majorana

fermions. Thus, the doubling of the Shapiro step is a signature of the topological quantum

phase transition and presence of the Majorana fermions.

Another experimental observation of the doubling of the Shapiro step has been reported

in [103]. In this paper, they study a Josephson junction based on HgTe, a 3D topological

insulator and observe a missing n = 1 Shapiro step in I − V characteristic. This could
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be explained by the presence of a 4π-periodic supercurrent, e.g. the fractional Josephson

effect.

3.6 discussion

The experiments Refs. [64, 81, 103] are in qualitative agreement with theoretical propos-

als for the emergence of Majorana fermions, yet not fully consistent with the predicted

values of the conductance, the required values of the magnetic field for topological phase

transition and the absence of all odd Shapiro steps. Therefore, zero-bias peaks obtained

in transport experiments can be caused by other physical processes, such as disorder [5,

57], weak antilocalization [75] or Kondo effect [52].

Cavity QED, discussed in chapter 2, offers an alternative approach to probe the signa-

tures of Majorana fermions in topological wires by using the photonic field in the cavity.

Several theoretical works study the interplay of the Majorana fermions physics and mi-

crowaves in a superconducting cavity QED setup [22, 65, 69, 70, 88, 89, 96, 105]. In contrast

to the conventional electronic methods, this approach is unique in that it can be totally

non-invasive, i.e. it does not alter the electronic system, a crucial feature in view of using

these excitations for quantum computing. However, most studies concentrate on effec-

tive models that consider only the Majorana fermions interacting with the cavity field,

which cannot account for the evolution of the Majorana fermions through the topological

transition from a topological to a trivial superconductor. More specifically, the Majorana

fermions emerge as edge modes in a topological superconductor: below the phase transi-

tion, the system is topological and shows edge modes, while above the phase transition,

the system is trivial and has no edge modes. Majorana fermions are thus closely related

to the bulk physics. We consider the whole system in chapter 5.



4
O U T- O F - E Q U I L I B R I U M Q U A N T U M D O T C O U P L E D T O A

M I C R O WAV E C AV I T Y

In this chapter, we apply the cavity QED approach described in chapter 2 to study two

mesoscopic conductors: a tunnel junction and a quantum dot tunnel coupled to metallic

leads. We demonstrate that the measurement of the optical transmission coefficient which

is related to the charge susceptibility can be used to extract information on the transport

properties of the quantum dot. We show that the asymmetry of the capacitive couplings

between the electronic reservoirs and the cavity plays a crucial role in relating optical

observables to transport ones. In particular, we found that when the quantum dot is

far from resonance, the charge susceptibility is directly proportional to the admittance.

However, when the quantum dot is near a resonance, such a relation generally holds

only for the symmetric couplings between the leads and the cavity, at low frequency

and for equal tunnel coupling or low voltage. Beyond this low-energy near equilibrium

regime, the charge susceptibility offers new insights on the quantum conductors since the

optical observables are not directly connected to transport quantities. For symmetric lead

capacitive couplings, we show that the optical measurements can be used to reveal the

Korringa-Shiba relation, connecting the reactive to the dissipative part of the susceptibility,

at low frequency and low bias.

4.1 model hamiltonian

Our system, depicted in Fig. 4.1, consists of a quantum dot that is tunnel coupled to

metallic leads. Both the quantum dot and the leads are capacitively coupled to a (super-

conducting) microwave cavity. We assume that the wavelength of the electromagnetic field

(∼mm) is much larger than the mesoscopic system (∼µm), and thus the coupling is con-

53
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λ

Figure 4.1: Sketch of the system. The quantum dot with discrete energy levels (in black) is coupled
to the source and drain electrodes (blue), which have a voltage bias eV . Differential
conductance of the system may be found by transport measurements. The entire setup
is coupled to the microwave cavity (depicted as light between two mirrors; mirrors
in gray). The photons are coupled to the left lead with coupling strength βL, to the
right lead with βR and to the dot with λ. The electromagnetic field inside the cavity is
probed by sending input field with amplitude Ain and phase φin and measuring the
output field with Aout and φout. The difference between the outgoing and ingoing
fields gives direct access to the charge susceptibility of the electronic system (see text).

stant over its length. The cavity supports many (in principle, infinitely many) modes, all
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of which should couple to the system. However, only cavity modes resonant with some

electronic modes are relevant, the others giving negligible effect. From here on, we assume

that only one mode, e.g. the lowest, couples to the system. Nevertheless, our analysis can

be straightforwardly extended to a multimode cavity. We analyze the optical transmission

and its relation to various observables of the mesoscopic system. We consider both the

equilibrium and out-of-equilibrium situations where the voltage bias is large.

The Hamiltonian of the combined system reads:

Hsys = Hel +Hel−c +Hph , (4.1)

Hel = εdd
†d+

∑
kα

(
tαc
†
kαd+ h.c.

)
+
∑
kα

εkαc
†
kαckα , (4.2)

Hel−c = λ(a+ a
†)d†d+ (a+ a†)

∑
kα

βαc
†
kαckα , (4.3)

and Hph = ωca
†a. In these equations, ckα (c†kα) is the annihilation (creation) operator of

an electron in the left (right) lead α = L(R) with momentum k; d (d†) is the annihilation

(creation) operator of an electron in the quantum dot; a (a†) is the annihilation (creation)

operator of the photon field. We denote the energy level of the quantum dot as εd, the

tunneling amplitude between the quantum dot and the lead α as tα, and the cavity mode

frequency as ωc. Finally, λ and βα are the electron-photon coupling constants to the

quantum dot, and the lead α = L,R, respectively. Note that we include the capacitive

coupling between the quantum dot and the cavity as well as between the cavity and

the electronic reservoirs. We have neglected direct photon-induced tunneling terms in

the Hamiltonian which are subleading compared to capacitive couplings terms [23]. A

general expression for the coupling constants λ and βα is given in Ref. [23], involving an

integral over the spatial variation of the vector potential in the corresponding part of the

conductor, lead or quantum dot. The result depends on the geometry of the device and

there is no general argument to favor λ over βα (or the opposite) in the general case.
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4.2 electronic charge susceptibility

4.2.1 General relations obeyed by transport quantities

According to Eq. 2.40, the weak coupling between the cavity and the electronic system re-

sults in the modification of the transmission coefficient τ in the linear response regime [36]

(see chapter 2 for a derivation of τ). In the time domain, the correlation function Π(ω)

reads

Π(t− t ′) =− iθ(t− t ′)〈
[
(λnd +βLnL +βRnR) (t) ,

(λnd +βLnL +βRnR)
(
t ′
) ]
〉, (4.4)

which corresponds to the total charge susceptibility of the electronic system capacitively

coupled to the cavity, where nd = d†d is the number operator for electrons in the dot and

nα =
∑
k c
†
kαckα is the number operator of electrons in the lead α.

Using the fact that total charge is conserved, nd + nL + nR = N, with N proportional

to the total charge operator commuting with Hsys, the susceptibility in Eq.4.4 can be

rewritten as

Π
(
t− t ′

)
= (βL − λ)

2ΠLL
(
t− t ′

)
+ (βR − λ)

2ΠRR
(
t− t ′

)
+ (βL − λ) (βR − λ)

[
ΠLR

(
t− t ′

)
+ΠRL

(
t− t ′

)]
, (4.5)

where we introduced

Παβ
(
t− t ′

)
= −iθ(t− t ′)〈

[
nα (t) ,nβ

(
t ′
)]
〉. (4.6)

Using the equation of motion techniques, we can write

i∂tΠαβ
(
t− t ′

)
= δ(t− t ′)〈

[
nα (t) ,nβ

(
t ′
)]
〉

+ θ(t− t ′)〈
[
Iα (t) ,nβ

(
t ′
)]
〉/e, (4.7)



4.2 electronic charge susceptibility 57

where

Iα = e
dnα (t)

dt
(4.8)

is the current operator. Let us introduce the correlation function

Yαβ(t, t ′) = −iθ(t− t ′)〈[Iα(t),nβ(t ′)]〉, (4.9)

which may be interpreted as an admittance or as a generalized non-equilibrium differen-

tial conductance (see e.g. [83] with an opposite sign in the definition). Note that Y depends

on the voltage bias V although it is not immediately visible from Eq.4.9. Using Eq.4.7 and

Eq.4.9 we find the following relations between the susceptibility and the generalized dif-

ferential conductance in Fourier space :

Παα(ω) =
i

eω
Yαα(ω), (4.10)

ΠLR(ω) +ΠRL(ω) =
i

eω
[YLR(ω) + YRL(ω)] . (4.11)

From Eq.4.10 and Eq.4.11, we can relate Π(ω) defined in Eq.4.4 to a linear combination

of the admittances. Such linear combination may be simplified in some limiting case as

follows. For example, let us assume that there is no charge fluctuation in the quantum dot

so that nd(t) ≈ const in the cavity frequency range of interest. In this limit,

Π(ω) ≈ i

eω
(βL −βR)

2Y(ω), (4.12)

where Y = YLL = YRR = −YLR = −YRL. Π(ω) is non-zero only for asymmetric couplings

to the leads, βL 6= βR. The prediction of Eq. 4.12 is quite intuitive: the cavity electric field

shakes the electrons in the reservoirs asymmetrically and therefore probes the admittance

of the whole system. Eq. 4.12 also implies that the imaginary part of Π(ω) measured

via the cavity resonance broadening is proportional to the real part of the admittance,

which, at low frequency, reduces to the differential conductance. Thus the charge freez-
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ing limit nd(t) ≈ const is a particular case where the optical transmission coefficient

directly measures the non-equilibrium admittance of the system. Charge freezing can be

obtained by replacing the quantum dot by an insulating barrier, by tuning the dot level

far off-resonance, or by considering an interacting quantum dot in the Kondo regime as

in Ref. [29]. We discuss this situation at the end of section 4.4.

Introducing the non-symmetrized noise at finite frequency at

Cαβ(ω) =

∫∞
−∞ dt exp(iωt)〈Iα(t)Iβ(0)〉, (4.13)

the admittance Yαα(ω) can be related to the current-current correlator [83] through

Cαα(ω) −Cαα(−ω) = −2ωeY ′αα(ω). (4.14)

The first term on the left hand side of Eq. 4.14 corresponds to the emission noise and

the second term corresponds to the absorption noise. Hence Eq. 4.14 directly relates the

increase in the cavity resonance broadening to the balance between the emission and

absorption noise resulting from photon exchange between the quantum conductor and

the cavity [61].

4.2.2 Calculation of the electronic susceptibility

In order to calculate the components of the total charge susceptibility introduced in Eq. 4.6,

we use the scattering formalism that is well suited for such non-interacting problems. In

this formalism, the current operator Iα(t) [12, 82] can be written as

Iα(t) =
e

2π

∫∞
−∞ dE

∫∞
−∞ dE ′ exp

(
i(E− E ′)t

)
×
∑
γγ ′

Aγγ ′(α,E,E ′)a†γ(E)aγ ′(E
′), (4.15)
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where

Aγγ ′(α,E,E ′) = δαγ ′δαγ − S∗αγ(E)Sαγ ′(E
′). (4.16)

In Eq. 4.16, Sαγ(E) are the elements of the scattering matrix characterizing the system

(tunnel junction, quantum dot, etc.). The current operator Iα is expressed in terms of

annihilation (creation) aα(E) (a†α(E)) operators of the electrons in the reservoir connected

to terminal α. These operators are normalized so that

〈a†α(E)aα ′(E ′)〉 = δαα ′δ(E− E ′)fα(E), (4.17)

where fα(E) = [exp(E− µα)/kBT + 1]−1 denotes the Fermi function in the lead α and µα
is its chemical potential.

The Fourier transform of Iα(t) reads:

Iα(ω) = e

∫∞
−∞ dE

∑
γγ ′

Aγγ ′(α,E,E+ω)a†γ(E)aγ ′(E+ω). (4.18)

Using

nα(t) =
i

2πe

∫∞
−∞ dω exp(−iωt)

Iα(ω)

ω
(4.19)

and Eq. 4.18, we can express the number operator as

nα(t) =
i

2π

∫∞
−∞ dω exp(−iωt)

1

ω
(4.20)

×
∫∞
−∞ dE

∑
γγ ′

Aγγ ′(α,E,E+ω)a†γ(E)aγ ′(E+ω).
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Performing manipulations detailed in the appendix B.1, we can rewrite Παβ as

Παβ(ω) =

(
1

2π

)2 ∫∞
−∞
∫∞
−∞ dω2dE2

{
1

ω22

1

ω+ω2 + iη

×
∑
γ1,γ ′1

F
αβ
γ1γ

′
1
(E2,ω2)

[
fγ1(E2 +ω2) − fγ ′1(E2)

]}
, (4.21)

where we introduced a new function

F
αβ
γγ ′ = Aγγ ′(α,E+ω,E)Aγ ′γ(β,E,E+ω). (4.22)

At zero temperature (T = 0), this expression can be simplified further. Introducing the

integrals

Kαβ(ω2) =

∫eV/2−ω2
eV/2

dE2F
αβ
LL (E2,ω2)

+

∫−eV/2−ω2
−eV/2

dE2F
αβ
RR (E2,ω2)

+

∫eV/2−ω2
−eV/2

dE2F
αβ
LR (E2,ω2)

+

∫−eV/2−ω2
eV/2

dE2F
αβ
RL (E2,ω2), (4.23)

the real and imaginary part of the susceptibility can be written as

Π ′αβ(ω) =

(
1

2π

)2
P

∫∞
−∞ dω2

1

ω22

1

ω+ω2
Kαβ(ω2), (4.24)

Π ′′αβ(ω) = −
π

(2πω)2
Kαβ(−ω). (4.25)

In order to compute the susceptibility Παβ for a non-interacting scatterer in question,

we first need to compute the functions Fαβγγ ′ in Eq. 4.22, and then the functions Kαβ in
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Eq. (4.23). In the next section, we present these computations for a simpler system – the

tunnel junction, – and we analyze a more complex quantum dot system in section .

4.3 tunnel junction

4.3.1 Cavity pull and dissipation

The Hamiltonian that combines the resonating cavity with the tunnel junction has the

form of Eq. 4.1 with

Hel =
∑
kα

εkαc
†
kαckα +

∑
kq

(
tc
†
kRcqL + h.c.

)
(4.26)

and

Hel−c = (a+ a†)
∑
kα

βαc
†
kαckα , (4.27)

characterized by the capacitive coupling βL (βR) of the left (right) lead to the cavity. The

tunneling amplitude t being independent of energy is equivalent to instantaneous electron

scattering. As a result, no charge can accumulate in the junction, the total charge in the

leads N = nR + nL is constant, and the current is conserved IR = −IL. The different

charge susceptibilities are related to each other

ΠLL(ω) = ΠRR(ω) = −ΠLR(ω) = −ΠRL(ω) (4.28)

so that the total electronic susceptibility in Eq. 2.40 reads

Π(ω) =
∑
α,γ

βαβγΠαγ(ω) = (βL −βR)
2ΠLL(ω), (4.29)

as in Eq. 4.12. The dependence on the coupling difference βL −βR may be also viewed as

a consequence of gauge invariance as discussed in section. 4.3.2.
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Using the scattering formalism of section 4.2, we can compute the electronic suscepti-

bility for the tunnel junction. The scattering matrix is energy independent and takes the

form

S =

ir t

t ir

 , (4.30)

where unitarity implies r2 + t2 = 1 (we choose real parameters for simplicity). The func-

tions introduced in Eq. 4.22 are then expressed as FαβLL = FαβRR = εαβT
2 and FαβLR = FαβRL =

εαβT(1− T), where T = t2 is the tunnel junction transmission, εαβ = 1 if α = β and −1

otherwise. Inserting these expressions in Eq. 4.23, we obtain

Kαβ(ω2) = −2Tω2 εαβ. (4.31)

Even at this level one may observe that the photonic transmission is not affected by the

bias voltage V . This is due to the linearity in the I-V characteristic of the tunnel junction.

Integrating Eq. 4.24

P

∫∞
−∞

dω2
ω2(ω+ω2)

= 0, (4.32)

we find that the real part of the susceptibility becomes zero, Π ′αβ = 0, hence the absence

of the cavity pull. This result is in agreement with Ref. [61] where a different gauge was

used, corresponding to the Eq. 4.35 derived in the next subsection. Therefore, any shift in

the cavity resonant frequency is due to either a weak energy dependence in the electronic

transmission or to higher order effects (backaction) in the electron-photon coupling. The

imaginary part is obtained from Eq. 4.25 and reads Π ′′αβ(ω) = − (T/2πω) εαβ recovering

the current conservation in Eq. 4.28. Finally, the total susceptibility of the tunnel junction

Π(ω) = −i(βL −βR)
2 T

2πω
(4.33)

corresponds to a purely dissipative effect of the electrons on the photonic transmission.

This expression can be also obtained by computing the admittance Y(ω) and using Eq. 4.12.
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For the tunnel junction, the admittance Y(ω) does not depend on neither the frequency ω

nor the voltage V . It is equal to the linear conductance G = ∂I
∂V .

4.3.2 Gauge invariance

Different choices of gauge are possible to describe the same system. They are related to

each other via unitary transformations. In order to relate to the previous work, we discuss

below two other gauges.

The first unitary transformation is given by the displacement operatorU1 = e(βR/ωc)n(a
†−a),

shifting the photon field a→ a−(βR/ωc)n. The operator U1 does not affect the dynamics

of electrons since the total number of electrons n = nR +nL commutes with the Hamilto-

nian, hence U1HelU
†
1 = Hel. The operator U1 substracts βR from the capacitive couplings

thereby canceling the coupling to the right lead. More specifically, the transformed Hamil-

tonian is given by

U1(Hph +Hel−c)U
†
1 = ωca

†a+ (a+ a†)(βL −βR)nL

−
βRβL
ωc

n2 −
βR(βL −βR)

ωc
n(nL −nR). (4.34)

The first two terms describe the single mode resonator and its coupling to the left lead.

The second term particularly emphasizes the sensitivity of the photon transmission to

the capacitive inhomogeneity βL −βR. Since n commutes with the total Hamiltonian, the

third term is a constant and the last term describes an additional small bias voltage. The

result of Eq. 4.33 may be obtained from Eq. 4.34 straightforwardly.

The second unitary transformation removes the linear coupling between the cavity and

the electrons, i.e. Eq. 4.27, by dressing the tunneling amplitude between the two leads.
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This transformation with the unitary operator U2 = eA(a†−a), with ωcA = βLnL +βRnR,

transforms the Hamiltonian into

H ′ = U2HU
†
2 =
∑
kq

(
te(βR−βL)(a

†−a)/ωcc
†
kRcqL + h.c.

)
+
∑
kα

εkαc
†
kαckα +ωca

†a−
A2

ωc
. (4.35)

The last term in this expression A2/ωc describes capacitive electron-electron interaction

across the tunnel junction and is usually neglected.

We remark that the different gauges correspond to shifted positions of the resonator

vacuum. A vacuum in one gauge is different from the vacuum in another gauge.

4.4 quantum dot

Let us determine the charge susceptibility probed by the microwave cavity of the QD

tunnel coupled to metallic leads and capacitively coupled to the microwave cavity. The

scattering matrix for the single-level quantum dot reads

S(E) = −1+ ig(E)

 ΓL
√
ΓLΓR

√
ΓLΓR ΓR

 , (4.36)

where

g(E) =
1

E− εd + iΓ/2
, (4.37)

and Γ = ΓL + ΓR is the width of the level. Using this expression for the S-matrix we can

compute the functions Aγγ ′(α,E,E ′) defined in Eq. 4.16, then the sixteen functions Fαβγγ ′
introduced in Eq. 4.22, and finally the functions Kαβ(ω) defined in Eq. 4.23. Being lengthy

and not essential for further discussion, the intermediate expressions for the functions

F
αβ
γγ ′ and Kαβ(ω) are given in Appendix []. The functions Kαβ directly provide Π ′′αβ

through Eq. 4.25. However, in order to obtain Π ′αβ, we need to perform a final tedious
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integration over energy in Eq. 4.24, the details of which are given in the Appendix B.2.

The final expressions for the real and imaginary parts of the total susceptibility are given

in Eq. B.48 and Eq. B.49, respectively, of the Appendix B.2. However, such expressions

are intricate and difficult to interpret directly. Therefore, we consider some limiting cases

where simple expressions and conclusions can be obtained before addressing the general

case.

4.4.1 The Quantum RC-circuit limit

For the two following limits (or sets of parameters) our system reduces to the so-called

quantum RC circuit, which has been largely studied theoretically[15, 23, 39, 53, 63, 67] as

well as implemented and verified experimentally [14, 38, 44].

Case ΓR = 0

This case corresponds to a quantum dot connected to a single reservoir by a junction. The

quantum RC circuit is particularly interesting in the small frequency limit when some

universal behavior is expected [63, 67] and was observed [14].

When ω is smaller than all other energy scales at play, we can further simplify the

expression of the susceptibility Π(ω) to obtain

Π ′(ω) = −
2ΓL(βL − λ)

2

π
(
Γ2L + 4ε2d

) +O(ω2) , (4.38)

for the real part, and

Π ′′(ω) = −
4Γ2Lω(βL − λ)

2

π
(
Γ2L + 4ε2d

)2 +O(ω3) , (4.39)

for the imaginary part. Note that these expressions correspond exactly to ∆ωa0 and ∆Λ0
in Ref. [23] with Γ = ΓL/2 [up to a minus sign which can be traced back to our different

definition of Π(t) in Eq. 4.4].
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The real and imaginary contributions, Π ′ and Π ′′, respectively, are not independent and

fulfill at the lowest order in ω the following relation

Π ′′(ω) = −πω
[
Π ′(0)

]2
/(λ−βL)

2. (4.40)

Up to the electron-photon couplings, this is nothing but the Korringa-Shiba relation con-

necting the dissipative part of the susceptibility to its reactive part. Note that we defined

the correlation function Π(t) in Eq. 4.4 with a different sign compared to, e.g., Ref. [63],

and thus introduced the opposite sign in the Korringa-Shiba relation. Note that the use

of a microwave cavity for verifying the Korringa-Shiba relation has first been proposed in

Ref. [23].

Case βL = βR

For equal capacitive coupling to the leads (βL = βR), the cavity electric field effectively

couples to a single larger lead as well as to the quantum dot. We thus expect to observe

the same physics as in the previous case. Again, we assume ω to be smaller than the other

energy scales in the system.

In this low-frequency limit, the real part of the total susceptibility Π reads

Π ′(ω) =−
2 (λ−βL)

2

π

[
ΓL

(eV − 2εd)
2 + Γ2

+
ΓR

(eV + 2εd)
2 + Γ2

]
+O(ω2) , (4.41)
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while the imaginary part reads

Π ′′(ω) =−
4Γω (λ−βL)

2

π

 ΓL(
(eV − 2εd)

2 + Γ2
)2

+
ΓR(

(eV + 2εd)
2 + Γ2

)2
+O(ω3). (4.42)

For zero bias voltage eV = 0, one recovers the Korringa-Shiba relation Eq. 4.40. Indeed,

the two leads combine and the quantum dot effectively couples to a single lead.

In the latter case (βL = βR), given that eV = 0, as well as in the former case (ΓR =

0, eV = 0), the cavity measures only local charge fluctuations on the dot – leading to the

dissipation channel fulfilling the Korringa-Shiba relation, – but it is not sensitive to the

charge transfer across the quantum dot.

4.4.2 The tunneling limit, εd/Γ → −∞
The transmission coefficient for the quantum dot, Td, in the tunneling limit (εd → −∞)

reads

Td =
ΓLΓR

ε2d
. (4.43)

Using this equation, we can immediately evaluate the real and imaginary parts of Π:

Π ′(ω) =−
Td
2π

[
(βL − λ)

2

ΓR
+

(βR − λ)
2

ΓL
+

(βL − λ)(βR − λ)

(
1

ΓL
+
1

ΓR

)
Td

]
, (4.44)

Π ′′(ω) = −
Td
2πω

(βL −βR)
2. (4.45)
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The imaginary part of the susceptibility of the QD, related to δA/A, Eq. 4.45, is equal

to the susceptibility of the tunnel junction in Eq. 4.33. The real part of the susceptibility of

the QD, related to the phase shift δφ, is not zero as opposed to the tunnel junction result.

The non-zero phase shift for the QD is explained by the existence of a localized level

inside the barrier which is coupled virtually to the continuum of levels in the leads by the

cavity field. On the other hand, such level is absent in a pure tunnel junction resulting in

the zero real part of the susceptibility.

4.4.3 The low-frequency limit

Let us explore in detail the low-frequency regime when the cavity frequency is typically

smaller than the electronic quantum dot resonance width, ω� Γ . This regime is studied

experimentally in [29].

In this limit, one can take a series in ω/Γ of both the real and imaginary parts of the

charge susceptibility:

Π ′αβ(ω) = Π ′αβ(0) +O(ω
2), (4.46)

Π ′′αβ(ω) =
1

πω
Λ

(−1)
αβ +ωΛ

(1)
αβ +O(ω3). (4.47)

We obtain the following expressions for the lowest order terms.

Π ′LL,RR(0) = −
2ΓL,R

[
(eV ∓ 2εd)2 ± (Γ2L − Γ2R)

]
π
[
(eV ∓ 2εd)2 + Γ2

]2 , (4.48)

Π ′LR(0) +Π
′
RL(0) = −

4ΓΓLΓR
π
× 1(

(eV − 2εd)
2 + Γ2

)2 +
1(

(eV + 2εd)
2 + Γ2

)2
 . (4.49)

And similarly
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Λ
(−1)
LL,RR = −

2ΓLΓR[
(eV ∓ 2εd)2 + Γ2

] , (4.50)

Λ
(−1)
LR +Λ

(−1)
RL = 2ΓLΓR×

×
[

1

(eV − 2εd)
2 + Γ2

+
1

(eV + 2εd)
2 + Γ2

]
. (4.51)

The expressions for Λ(1)
αβ read:

Λ
(1)
LL,RR =−

4ΓL,R

3π
[
(eV ∓ 2εd)2 + Γ2

]3×
[
(3ΓL,R − 2ΓR,L)Γ

2 + 3(Γ + ΓR,L)(eV ∓ 2εd)2
]

, (4.52)

and

Λ
(1)
LR +Λ

(1)
RL =−

4ΓLΓR
3π

 5Γ2 − 3(eV − 2εd)
2[

(eV − 2εd)
2 + Γ2

]3
+
5Γ2 − 3(eV + 2εd)

2[
(eV + 2εd)

2 + Γ2
]3
 . (4.53)
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Analyzing these equations, one may observe that both the real and imaginary parts

of the susceptibility Παβ(ω) have peaks at εd = ±eV/2. Noticing that Λ(−1)
LL +Λ

(−1)
RR +

Λ
(−1)
LR +Λ

(−1)
RL = 0, we can further simplify the expression for Π ′′(ω) as

Π ′′(ω) =
(βL −βR)

πω

[
(βL − λ)Λ

(−1)
LL − (βR − λ)Λ

(−1)
RR

]
+ω

[
(βL − λ)

2Λ
(1)
LL + (βR − λ)

2Λ
(1)
RR

+ (βL − λ)(βR − λ)(Λ
(1)
LR +Λ

(1)
RL )

]
. (4.54)

Let us discuss both βL = βR and βL 6= βR cases.

Case βL = βR

For βL = βR, we find again the effective quantum RC circuit case discussed above. In

particular, it implies that at V = 0,

δφ(V = 0) ≈ −
2Γ(βL − λ)

2

πκ
(
Γ2 + 4ε2d

) , (4.55)

which corresponds to a Lorenztian shape as a function of the dot gate voltage ∝ εd.

In order to analyze the general non-equilibrium V 6= 0 case, we plot in Fig. 4.2 both

Π̃ ′ = Π ′/(βL − λ)2 and Π̃ ′′ = Π ′′/(βL − λ)2 as functions of εd and eV . Both the real and

imaginary parts of Π have peaks around eV = 0. For eV larger than Γ , the peaks split,

and resonances are found for eV/2 = ±εd. For βL = βR, the Korringa-Shiba relations

are satisfied at low energy for V = 0. This implies that Π ′′ ∝ (Π ′)2 and therefore the

resonances in Π ′′ are more narrow at eV = 0 than the resonances of Π ′.

Let us compare these results to the non-equilibrium differential conductance G(V) =

dI/dV across the quantum dot that reads

G(V) =
e2

2π

(
2ΓLΓR

(eV − 2εd)2 + Γ2
+

2ΓLΓR
(eV + 2εd)2 + Γ2

)
. (4.56)
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Figure 4.2: Π̃ ′(ω) ≡ Π ′(ω)/ (βL − λ)
2 (left) and Π̃ ′′(ω) ≡ Π ′′/(βL − λ)2 (right) as a function of eV

and εd for βL = βR, ΓL = ΓR = 0.5 and ω = 0.1. All energies are expressed in terms of
Γ = ΓL + ΓR.

The differential conductance has a Lorentzian shape double peaked at eV/2 = ±εd. Notic-

ing that, for ΓL = ΓR, the expression of Π ′(ω,V) given in Eq. 4.41 is directly proportional

to G(V). We thus expect that

δφ(V) = −
4(βL − λ)

2

κe2Γ
G(V), (4.57)

for ΓL = ΓR = Γ/2.

Therefore, for both symmetric tunneling amplitudes and lead capacitive couplings,

Eq. 4.57 directly relates the optical phase shift to the non-equilibrium conductance.

For small deviations from the equalities ΓL = ΓR and βL = βR, we expect the relation

Eq. 4.57 to hold approximately. For strong asymmetric tunneling, even though the expres-

sions for Π ′ and G(V) are no longer proportional within each other, these two quantities

still have a similar shape characterized by Lorentzian peaks around eV/2 = ±εd.

Such quantitative comparison cannot be made between Π ′′ (and therefore δA/A) and

G(V) for βL = βR because the term proportional to 1/ω in the series for Π ′′(ω) is exactly

zero. However, small deviations of the stringent condition βL = βR may allow comparing

these quantities as we show next.
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Case βL 6= βR

In the more general case βL 6= βR, the expression for Π ′′ simplifies for eV = 0 as

Π ′′(ω,V = 0) ≈ −
(βL −βR)

2

2πω

4ΓLΓR

4ε2d + Γ
2
= −

(βL −βR)
2

2πω
Td. (4.58)

In this limit, Π ′′(ω) has the same structure as for the tunnel junction [see Eq. 4.33]. Hence

the frequency broadening

δA

A
(V = 0) ≈ −

(βL −βR)
2

2πωκ
Td. (4.59)

Therefore, the frequency broadening follows the conductance as a function of the dot

gate voltage. The 1/ω term in the frequency series for Π ′′ dominates even for a very

small asymmetry of the capacitive couplings. Note that, for βL ≈ βR, the phase shift is

still given approximately by Eq. 4.55 and still has a Lorentzian shape. These equilibrium

results (derived for V = 0) agree with experimental results obtained in Ref. [29], where

the cavity frequency is the smallest energy scale, and a small asymmetry between the

capacitive couplings is present.

In order to explore how the susceptibility depends on the bias and dot gate voltage, we

introduce γ = (βL − λ) / (βR − λ) such that

Π(ω)

(βL − λ) (βR − λ)
=γΠLL(ω) +

ΠRR(ω)

γ
+ΠLR(ω) +ΠRL(ω).

We remind that for |γ− 1| � 1, and ΓL ∼ ΓR, the out-of-equilibrium relation in Eq. 4.57

holds. However, no such relation is present between δA/A and G(V) at finite bias.

We plotted both the real and imaginary parts of Π/(βL − λ)(βR − λ) in Fig. 4.3. While

Π ′ has the same structure as in Fig. 4.2, we find that Π ′′ has a more complicated non-

monotonic behavior. This is due to the competition between the Π ′′LL + Π
′′
RR and Π ′′LR +

Π ′′RL terms having opposite signs, which explains, for example, the saddle point in the

vicinity of the point εd = eV = 0. Therefore, in this limit of large asymmetric capacitive
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Figure 4.3: Π̃ ′(ω) ≡ Π ′(ω)/γ (βR − λ)2 (left) and Π̃ ′′(ω) ≡ Π ′′/γ(βR − λ)2 (right) as a function of
eV and εd for ΓL = ΓR = 0.5, γ = 0.5, and ω = 0.1. All energies are expressed in terms
of Γ = ΓL + ΓR.

coupling, it is no longer possible to relate Π ′′ ∝ δA/A to the differential conductance,

even qualitatively.

4.4.4 The general case

Contrary to the previous section where we explored the low frequency regime with cavity

frequency being the smallest scale, we now explore the general case with ω ∼ Γ making it

impossible to expand Π in frequency series.

Case βL = βR

Analyzing the plots of the real and imaginary parts of Π in Fig. 4.4, we observe that Π ′ has

now four peaks in the εd, eV plane. Compared to the low frequency case, the two lines of

resonance at eV = ±2εd are now split into resonances at positions eV = ±2(εd ±ω). For

such large frequency, the cavity acts like a classical AC voltage. Therefore, it modulates

the chemical potential of both leads, which corresponds to the photon assisted tunneling
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regime. The imaginary part of Π in Fig. 4.4 resembles the one we obtained in the low

frequency regime in Fig. 4.2.
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Figure 4.4: Same as Fig. 4.2 for ω = 0.8.

Comparing the resonance lines in both Π ′ and Π ′′, we conclude that the Korringa-Shiba

relation is violated in this large frequency regime, as expected.

Case βL 6= βR

Analyzing plots of the real and imaginary part of Π for an asymmetry parameter γ = 0.5

in Fig. 4.5, we observe that Π is no longer invariant when V → −V or εd → −εd. Let

us first focus on the dissipative part Π ′. In the small γ limit, we expect Π/(βL − λ)(βR −

λ) to be dominated by ΠRR. Since the susceptibility is mainly determined by the right

reservoir in this limit, we expect the resonance condition −eV/2 = εd that occurred at

small frequency to become −eV/2 = εd ±ω at larger frequency. However, the condition

eV/2 = εd remains unaltered since the charge susceptibility is almost blind to the left

reservoir. Already for γ = 0.5, we can see the aforemetioned features in Fig. 4.5 both for

Π ′ and Π ′′.
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Figure 4.5: Same as Fig. 4.3 with ω = 0.8.

4.4.5 A quantum dot in the deep Kondo regime

As mentioned in section 4.2, when the quantum conductor is far from any resonance,

the susceptibility and the admittance are related by Eq. 4.12. This relation holds for a

non-equilibrium case and does incorporate the bias V . Since ω is usually fixed by the cav-

ity frequency ωc, Π ′′(V) is proportional to the non-equilibrium differential conductance

Y ′(V) which is characterized by a Kondo peak around zero bias. Therefore, we expect the

dissipative part of the transmission phase shift to be sensitive to this zero bias anomaly.

However, in the experimental data of Ref. [29], the phase shift δφ(V) ∝ Π ′(V) was sur-

prisingly shown to exhibit a behavior similar to the differential conductance.

4.5 summary of the results

We studied a hybrid system consisting of either a tunnel junction or a quantum dot cou-

pled to metallic leads while the whole system itself is coupled to a single mode of a

microwave cavity field. We took into account the capacitive coupling between the cavity

and the whole electronic system, including the leads. Even for non-interacting conductors,

many energy scales characterize the system, for example the cavity frequency, the voltage
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bias, the position and width of a resonance and finally the asymmetry of the capacitive

couplings.

1. For a tunnel junction with asymmetric capacitive coupling βL 6= βR, the imaginary

part of the electronic susceptibility Π(ω) is proportional to the admittance Y(ω)

which is equal to the linear conductance dI/dV . Similarly, for a quantum dot far

from resonance, therefore characterized by the absence of charge fluctuations, we

found that the electronic susceptibility is directly proportional to the quantum dot

admittance for all frequency and voltage. The proportionality constant is related to

the asymmetry between the lead and cavity capacitive couplings.

2. The case of symmetric capacitive couplings to the leads, βL = βR, can be absorbed

into a redefinition of the capacitive coupling to the quantum dot.

3. At zero voltage and small frequency, we recover the Korringa-Shiba relation that

relates the real and imaginary part of the electronic susceptibility, similarly to the

case of a quantum dot connected to a single reservoir (the so-called quantum RC-

circuit).

4. In the case of symmetric tunneling amplitudes, ΓL = ΓR, we found that the optical

phase shift is directly proportional to the differential conductance of the quantum

dot for arbitrary bias. This strongly symmetric case thus provides a weakly invasive

measurement of the non-equilibrium differential conductance, extracted from the

cavity field response. Nevertheless, the lead capacitive couplings have no reason to

be equal in general since they depend on the particular geometry of the conductor.

They are also hardly tunable.

5. Finally, at zero voltage, we find that the imaginary part of the electronic susceptibil-

ity is proportional to the equilibrium zero-frequency admittance.

6. Beyond the above mentioned limits however, the charge susceptibility and the ad-

mittance are generally not in correspondance.
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4.6 conclusions

In this chapter, we studied an electronic system consisting of either a tunnel junction or a

quantum dot with metallic leads capacitively coupled to a single mode of electromagnetic

resonator. We considered and detailed different cases and our results are summarized in

section 4.5. We demonstrated that the asymmetry of the capacitive couplings between the

electronic reservoirs and the cavity plays actually a crucial role by rendering the cavity

electric field sensitive to charge transfers between two different leads. We found that the

cavity field can be used to probe the low finite frequency admittance Yαβ (where α,β

are lead indices) of the electronic system. Beyond the low frequency regime, the charge

susceptibility and therefore the optical transmission in general offers new insights on

the quantum conductor. Since the optical observables are not in direct correspondence

with standard transport quantities, they can be used as a non-invasive probe to better

characterize the quantum conductor.





5
M A J O R A N A F E R M I O N S I N T O P O L O G I C A L S U P E R C O N D U C T O R S

C O U P L E D T O A M I C R O WAV E C AV I T Y

In this chapter, we apply the methods of cavity QED to study Majorana fermions in topo-

logical superconductors. While most of the experimental efforts are targeted at probing

these quasiparticles using electronic transport measurements, we propose instead to de-

tect the Majorana fermions by probing the light exiting from the cavity. As shown in

the chapter , optical transmission coefficient that is measured in the cavity QED exper-

iments is related to the electronic susceptibility of the topological superconductor. We

analyze two superconducting systems: the prototypical Kitaev chain, and a topological

semiconducting wire. For both systems, we show that the electronic susceptibility allows

us to determine the topological phase transition point, the emergence of the Majorana

fermions, and the parity of their ground state.

5.1 model hamiltonian

We study a topological superconductor capacitively coupled to a microwave cavity. The

sketch of the system is presented in Fig. 7.1.

In the following, we consider various models of topological superconductors coupled

to a superconducting microwave cavity, such as the Kitaev model [49], and the spin-orbit

coupled nanowire subject to a magnetic field and in the proximity of an s-wave supercon-

ductor [59, 71].

The general Hamiltonian for the one-dimensional systems we consider here is of the

form:

Hsys = Hel +Hel−ph +Hph , (5.1)

79
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Ain eiφin
Aout eiφout

Ê(x)

Figure 5.1: A sketch of the system: a one dimensional system (red rectangle) is placed at the maxi-
mum of the electrical field (green straight arrows) inside a superconducting microwave
cavity (blue). The electromagnetic field inside the cavity is probed by sending input
fields of amplitude and phase Ain and φin, respectively, and measuring the field at
the end with Aout and φout. The difference between the two gives a direct access to
the electronic correlation function in the wire (see text). The presence of Majorana end
modes in the finite wire (black curves) is also signaled in the cavity response.

where Hel is the electronic Hamiltonian that describes p-wave superconductor, Hel−ph
is electron-photon coupling Hamiltonian that describes capacitive coupling of the p-wave

superconductor to the cavity, and Hph is the free photon field Hamiltonian. While the elec-

tronic term is model specific, and it will be discussed below, the electron-photon coupling

Hamiltonian reads:

Hel−ph = α

N∑
i=1

n̂i (a+ a
†), (5.2)

where a†(a) is the photon creation (annihilation) operator, respectively. α is the electron-

photon coupling constant that couples to the charge density n̂. This merely acts as to shift

the chemical potential. We have a considered a global capacitive coupling between the

electronic nanosystem and the cavity electric field. Such a coupling can be justified by

a full microscopic approach (see Appendix C.1 for details and also [23] that provides a

microscopic description of the electric coupling between electrons in a nanocircuit and

cavity photons).
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The charge susceptibility of the electronic system (which can be here a 1D p−wave

superconductor or a topological 1D wire) reads

Π(t− t ′) = −iα2θ(t− t ′)〈[n̂I(t), n̂I(t ′)]〉 , (5.3)

where n̂I(t) = U†(t)n̂U(t), with n̂ being the total number of electrons operator and

U(t) = exp (−iHelt) the evolution operator for the electronic system. We assume zero

temperature limit (T = 0) so that the average 〈. . .〉 is taken over the superconducting

ground state. Note that Π(ω) =
∫∞
−∞ dt exp (iωt)Π(t) and that Π(ω) ≡ 0 in the absence of

superconductivity (∆ = 0), i.e. there are no effects from such a coupling for a wire in the

normal state. We detail below the models for both topological 1D systems we consider in

this chapter.

5.2 topological phase transition detection

Next we show that the topological phase transition can be inferred from the cavity re-

sponse from the transmission τ(ω) via the susceptibility Π(ω). This function can be calcu-

lated straightforwardly in the case of a closed ring, i.e. for periodic boundary conditions

(PBCs), so that cN+1 ≡ c1 for the Kitaev chain (cN+1σ ≡ c1σ for the SO nanowire).

5.2.1 Kitaev chain model

The simplest model of a p-wave superconductor that hosts Majorana fermions is the Ki-

taev chain model [49], which we have discussed in chapter 3. Therefore, we first consider

for the electronic part in Eq. (5.1), the Kitaev Hamiltonian HKel. As a reminder, it is ex-

pressed as

HKel =−µ

N∑
j=1

c
†
jcj −

1

2

N−1∑
j=1

(t c†jcj+1+∆cjcj+1+ h.c.) , (5.4)
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where t is the hopping parameter, ∆ is the p-wave superconducting pairing potential, µ is

the chemical potential, and N is the total number of sites. Also, c†j(cj) is the creation (an-

nihilation) electronic operator at the site j. Note that the electronic operators are spinless,

and the electronic density is given by n̂ =
∑N
j=1 c

†
jcj.

In the present setup, which is based on a microwave superconducting stripline cavity,

the s-wave superconductor that induces superconducting correlations in the wire could be

a part of the underlaying cavity. For example, the nanowire could be tunnel-coupled to the

central (super-)conductor showed in Fig. 7.1. The fact that microwave photons effectively

couple only to electrons of the Kitaev chain is accounted for in Appendix C.1.

For PBCs, we can utilize the Fourier description for the electronic operators: cj =

1/
√
N
∑
k e
ikjck, with k = 2πn/N (assuming the lattice spacing d ≡ 1 thereon), with

n = 1 . . .N. For more details see Appendix C.2. By doing so, we can readily write down

the electronic Hamiltonian HKel =
∑
kH

K
BdG(k), with

HKBdG(k) = (−t cosk− µ) τkz −∆ sink τky , (5.5)

where ~τk = (τkx, τky, τkz) are Pauli matrices that act in the Nambu (particle-hole) space, i.e.

on the vectors ~ck = (ck, c†−k). The coupling to the cavity, on the other hand, simply reads

Hel−c = α
∑
k

τkz(a
† + a) , (5.6)

so that the susceptibility in the time domain can be written as:

Π(t) = −iα2
∑
k

〈0|[τkz(t), τkz(0)]|0〉 , (5.7)

with τkz(t) = eiH
K
BdG(k)tτkze

−iHKBdG(k)t. Utilizing this description, after some lengthy but

straightforward calculations, we obtain for the susceptibility (in the ω space):

Π(ω) = −α2
∑

k>0;p=±

(∆ sink)2

E2k

p

ω+ 2pEk + iη
, (5.8)
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where Ek =
√

(−t cosk− µ)2 + (∆ sink)2 is the Bogoliubov spectrum of the 1D p-wave

superconductor [from diagonalizing the BdG Hamiltonian in Eq. (5.5)] [49] and η is a

small positive number that accounts for causality. For t = ∆, the imaginary part Π ′′(ω)

acquires a simple analytical form, and it is given by

Π ′′(ω) =
α2tN
2µω

√√√√
1−

[
(ω/2)2 − t2 − µ2

]2
4t2µ2

, (5.9)

for |t + µ| < ω/2 < |t − µ| and is zero otherwise. The topological phase transition takes

place at |µ| = t, with the system being in the topological (trivial) phase for |µ| < t (|µ| > t).

In Fig. 5.2, we plot Π ′′(ω) (main plot) and Π ′(ω) (inset) as a function of the chemical

potential µ for various values of the cavity frequency ω. We see that this function shows a

large peak at the transition point (|µ| = t), which becomes narrower and more pronounced

for smaller ω (compared to the gap ∆). Physically, this is due to the fact that the electronic

levels close to the zero energy have larger curvatures, i.e. they are more susceptible close

to the phase transition point. The real part also serves for detecting the phase transition,

although not as directly as the imaginary part, as shown in Fig. 5.2, where the phase

transitions are inferred from the kinks in this function. We have checked that the same

peak structure holds for the cases when ∆ 6= t, too, the only modification being a shift in

the scale for ω, which should be of the order of ω ∼ ∆.

5.2.2 Spin-orbit coupled nanowire model

A realistic system that can emulate, in some limits, the Kitaev chain consists of a nanowire

with a spin-orbit interaction, subjected to an external magnetic field, and coupled by

proximity effect to an s-wave superconductor [59, 71]. The entire system is then assumed

to be capacitively coupled to the microwave cavity. The tight-binding Hamiltonian HWel
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Figure 5.2: The imaginary part of the electronic susceptibility [Π ′′(ω)] as a function of µ for the Ki-
taev model. The topological phase transition takes place at µ = −1, where this function
reaches its maximum, indicating the transition point. Inset: The real part of the elec-
tronic susceptibility [Π ′(ω)], which also shows features (kinks) around the topological
phase transition point. The full, dashed, dot-dashed curves correspond to the ω = 0.2,
0.3, and 0.4, respectively. We assumed t = ∆ = 1, N = 50 and all energies are expressed
in terms of t.

for the nanowire with spin-orbit (SO) interaction in the presence of the magnetic field

reads [79, 94]

HWel = −t
N−1∑
j=1

c
†
j+1αδαβcjβ − µ

N∑
j=1

c
†
jαδαβcjβ

+∆

N∑
j=1

c
†
j↑c
†
j↓ − iγ

N−1∑
j=1

c
†
j+1ασ

y
αβcjβ

− VZ

N∑
j=1

c
†
jασ

x
αβcjβ + h.c. , (5.10)

where t and µ are the hopping amplitude and the chemical potential, respectively, γ is the

spin-flip hopping amplitude (or the spin-orbit coupling), ∆ is the s-wave pairing potential

induced by proximity, VZ is the Zeeman splitting energy (VZ = −gµBB/2, with g and
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B being the g-factor and external magnetic fields, respectively). Also, cjσ (c†jσ) are the

annihilation (creation) operators for electrons at site j and spin σ =↑, ↓, and σi, with

i = x,y, z are the Pauli matrices that act in the spin space. This model accounts thus for

spinful electrons. Note that we assumed the spin-orbit field and the magnetic field to be

orthogonal. The coupling to the cavity is again capacitive, and the density reads in this

case n̂i =
∑
σ c
†
iσciσ.

The case of a realistic SO coupled nanowire is more complicated that the Kitaev model

showed above, and so is the evaluation of susceptibility. This is so because the SO cou-

pled wire has four bands (because of the spin), instead of two, and a more complicated

spectrum. Nevertheless, writing the electronic operators in the Fourier space as cjσ =

1/
√
N
∑
k e
ikjckσ, we can write again the electronic Hamiltonian as HWel =

∑
kH

W
BdG(k),

with

HWBdG = [(−t cosk− µ) + γ sinkσz]τkz + VZσx +∆τ
k
x , (5.11)

and the coupling to the cavity the same as in Eq. (5.6). However, the expression for Π(t)

becomes rather cumbersome for the general case and to get some analytical insights we

need to resort to approximations. For that, the Hamiltonian can be put in a different form

by the use of a unitary transformation (see Appendix C.3):

HWBdG(k) =

[
−t cosk− µ+

√
(γ sink)2 + V2Z σz

]
τkz

+
∆γ sink√

(γ sink)2 + V2Z
τkx −

∆VZ√
(γ sink)2 + V2Z

σyτ
k
y , (5.12)

while the Hel−ph stays unchanged. Progress can be made if we assume the limit of large

magnetic field, VZ � ∆,µ, in which case we can neglect the last term in the above Hamil-

tonian. By doing so, we recover two copies of the Kitaev chain, for σz =↑, ↓. The suscepti-

bility becomes:

Π(ω) = −α2
∑

k>0;p,σ=±

(∆eff sink)2

E2kσ

p

ω+ 2pEkσ + iη
, (5.13)
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where Ekσ are given by the Kitaev spectrum with:

µeff
kσ = µ−

√
(γ sink)2 + V2Z σz , (5.14)

∆eff =
∆γ√

(γ sink)2 + V2Z
. (5.15)

All the results from the previous section apply to this case but with the k-dependent

parameters showed above. The system is in the topological nontrivial (trivial) regime

for VZ >
√
µ2 +∆2 (VZ <

√
µ2 +∆2). In Fig. 5.3 we plot the imaginary part of the

susceptibility as a function of the Zeeman splitting VZ for two different values of the

cavity frequency ωc. We see a similar behavior as in the case of the Kitaev chain: a peak

emerges in Π ′′(ω) at the topological phase transition point, which becomes narrower as

ω becomes smaller. However, an extra peak emerges at a larger VZ, and it is due to the

resonance condition with the gaps around the k ∼ kF (external gaps in the SO coupled

nanowire spectrum).

5.3 majorana fermions detection

In this section, we consider a finite 1D topological system coupled to the cavity (there-

fore with open boundary conditions, or OBCs), so that there are two Majorana fermions

emerging in the topological region, each localized at one of the two ends of the chain.

Taken together, they give rise to a zero-energy fermionic state in the infinite wire limit,

which can be either empty or occupied, thus labeling the parity of a 1D p-wave super-

conductor [4]. The Majorana wavefunctions decay exponentially in the wire on the scale

of the superconducting correlation length ξ, and for a finite wire it can lead to a finite

energy splitting εM ∝ exp (−L/ξ) of the initially zero energy fermionic state [49]. In the

following, we show that both the presence of the Majorana fermions and the parity of the

Majorana fermionic state can be inferred from the susceptibility Π(ω).

In the finite chain case, we can no longer obtain exact results for the electronic sus-

ceptibility Π(ω), and therefore we proceed to calculate this quantity numerically (see
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Figure 5.3: The imaginary part of the electronic susceptibility [Π ′′(ω)] as a function of the Zeeman
splitting VZ for a SO coupled nanowire in case of PBCs for parameters L = 2µm,
t = 0.5 · 10−2 eV, α = 0.4 meV, µ = −10−2 eV, ∆ = 0.25 meV, N = 80, and ω = 0.1 meV
(ω = 0.2 meV in the Inset). The topological transition takes place for VZ ≈ 0.25 meV,
for which the susceptibility reaches its maximum. The emergence of a second peak is
due to the resonance condition around the external gaps (k ∼ kF).

Appendix C.4). We treat the two models, the Kitaev chain and the SO coupled wire, on

equal footing, showing that they give similar results.

For starters, the electronic Hamiltonian can be cast in the following form:

Hel =
1

2
~c†M~c , (5.16)

with

~c = ({c1s} . . . {cNs}{c
†
1s} . . . {c

†
Ns}) , (5.17)
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where s counts internal degrees of freedom, such as spin, band index, etc. For the Kitaev

chain s = 1 (and thus we can disregard it), while for the SO coupled nanowire s =↑, ↓.
Here, M is a 2Ns× 2Ns matrix [49], and we can write M = PWPT , with

W2p−s,2k−s = (−1)s+1δp,kεk; s = 0, 1. (5.18)

P is a unitary matrix (PPT = PTP = 1) whose columns are the eigenvectors ofM [49]. Also,

εp, with p = 1, . . . , sN are the eigenenergies of the electronic Hamiltonian, including the

Majoranas (if present). Thus, the electronic Hamiltonian can be rewritten as

Hel = (1/2)
~̃
C
†
W

~̃
C,

and ~̃
C = P†~C, where

~̃
C = ({c̃1s} . . . {c̃Ns}{c̃

†
1s} . . . {c̃

†
Ns}) , (5.19)

with c̃†p (c̃p) are the creation (annihilation) operators for the Bogoliubov quasiparticles in

the finite wire, with p = 1 . . .N labeling the energy levels. Finally, we can write

Hel =
∑
p,s

εps

(
c̃†psc̃ps −

1

2

)
, (5.20)

and also define the spinorial wavefunction for the state of energy ±εps at position j as
~ψps(j) = (ujps, v

j
ps)

T , where ujps(v
j
ps) = P2j−1,p(P2j,p) are the electron (hole) components

of the wavefunction at position j in the wire.

The electron-cavity coupling Hamiltonian can then be written in the new basis as fol-

lows:

Hel−ph =
∑
p,p ′

[
C
(1)
ps,p ′s ′ c̃

†
psc̃p ′s ′ − iC

(2)
ps,p ′s ′ c̃

†
psc̃
†
p ′s ′ + h.c.

]
× (a† + a) , (5.21)
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where C(1,2)
ps,p ′s ′ are coefficients that depend on the transformation from the electronic basis

~C to the Bogoliubov basis ~̃C and read [23, 96]:

C
(1,2)
ps,p ′s ′ = α

N∑
j=1

~ψ†ps(j)τz,y~ψp ′s ′(j) . (5.22)

Here the pseudo-spin ~τ = (τx, τy, τz) acts in the Nambu (or particle-hole) subspace. In

general, all C(1,2)
ps,p ′s ′ 6= 0 for p 6= p ′ and s 6= s ′, thus there are couplings between all the

levels (and bands) via the cavity field, and that includes transitions between the Majorana

and the bulk (or gaped) modes. This in turn affects the correlation function in Eq. (5.3),

which can be written as Π(ω) = ΠBB(ω) + ΠBM(ω) + ΠMM(ω), being the sum of the

terms that contain only bulk states (bulk-bulk, or BB), cross terms between Majorana and

the bulk (bulk-Majorana or BM), and Majorana contributions only (Majorana-Majorana or

MM), respectively. However, ΠMM(ω) ≡ 0 [22] due to the fact that the cavity cannot mix

different parities, and consequently the only contribution from the Majorana modes comes

through the cross terms ΠBM(ω). We have found that forN� 1, the ΠBB(ω) contribution

is given by the one obtained from the PBCs, i.e., ΠBB ∝ N, while ΠBM ∝ const, up to

exponentially small terms in L/ξ.

In the following, we analyze the cross-terms contribution ΠBM(ω). For εM � εp ±ω,

with p 6=M, we obtain:

ΠBM(ω) =
∑
p,s6=M

(
1

εps +ω+ iη
+

1

εps −ω− iη

)
×
[
|C

(1)
M,ps|

2(nM −nps) − |C
(2)
M,ps|

2(nM − 1+nps)
]

, (5.23)

where nps and nM are the occupations of the bulk and Majorana states, respectively.

Inspecting the above expression, we see that it is strongly dependent on the Majorana

state parity nM. Assuming that εps > 0 for p, s 6= M and nps = 0 for n 6= M in the

ground state, we obtain that Π+
BM ∝ |C

(1)
M,ps|

2 (Π−
BM ∝ |C

(2)
M,ps|

2) for nM = 1 (nM = 0). To
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Figure 5.4: Dependence of Π ′(ω,µ) on the chemical potential µ. The blue (dot-dashed), red (full),

and the black (dashed) lines correspond to the susceptibility for PBCs, OBCs for parity
nM = 0, and OBCs for parity nM = 1, respectively. Lower Inset: the relative strength
of the susceptibility ∆Π ′ = 2

∣∣(Π+
BM −Π−

BM)/(Π+
BM +Π−

BM)
∣∣ as a function of µ in

logarithmic scale, for ∆ = 0.1 (red-full), ∆ = 0.2 (green-dashed), and ∆ = 0.3 (blue-dot-
dashed). The size of ∆Π ′ is exponentially reduced as a function of ∆. We used N = 50,
ω = 0.2, ∆ = 0.1, t = 1, and all energies are expressed in terms of t.

get more physical insight into the resulting susceptibility, we write the coefficients C(1,2)
M,ps

in the following way:

C
(r)
M,ps =

∑
j

[(ujMδr,1 + v
j
Mδr,2)u

j
ps

− (ujMδr,2 + v
j
Mδr,1)v

j
ps] . (5.24)

Let us analyze the implication of the above result. When εM = 0, we also have ujM = vjM,

and thus C(1)
Mp = C

(2)
Mp, since electron and hole contributions are the same in the Majorana

state. However, for a finite energy splitting εM 6= 0, and thus we have that ujM 6= v
j
M,

which in turn results in C(1)
Mp 6= C

(2)
Mp. All these suggest that the susceptibility Π(ω), via

ΠBM(ω) should allow us to infer both the parity of the ground state and the zeros in the

Majorana energy εM, assuming their spatial overlap is large enough.



5.3 majorana fermions detection 91

0.0 0.2 0.4 0.6 0.8 1.0
-500

-400

-300

-200

-100

VHmeVL

P
’êb2
Hme

V
L

VZ [meV]

0.0
0.2

0.4
0.6

0.8
1.0

-
50
0-
40
0-
30
0-
20
0-
10
0 VHm

eV
L

P’êb2Hm
eVL 0.

0
0.
2

0.
4

0.
6

0.
8

1.
0

-
50
0-
40
0-
30
0-
20
0-
10
0

VHm
eV
L

P’êb2Hm
eVL

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-3

-2

-1

0

1

2

3

VHmeVL

e M
H10-

2 m
eV
L ✏

M
[1

0 �
2m

eV
]

Topo. transition

⇧
0 (
!
,V

Z
)/
↵

2

nM = 0

nM = 1

0.0 0.2 0.4 0.6 0.8 1.0
-500

-400

-300

-200

-100

VHmeVL

P
’êb2
Hme

V
L

VZ [meV]

0.0
0.2

0.4
0.6

0.8
1.0

-
50
0-
40
0-
30
0-
20
0-
10
0 VHm

eV
L

P’êb2Hm
eVL 0.

0
0.
2

0.
4

0.
6

0.
8

1.
0

-
50
0-
40
0-
30
0-
20
0-
10
0

VHm
eV
L

P’êb2Hm
eVL

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-3

-2

-1

0

1

2

3

VHmeVL

e M
H10-

2 m
eV
L ✏

M
[1

0 �
2m

eV
]

Topo. transition

⇧
0 (
!
,V

Z
)/
↵

2

nM = 0

nM = 1

0.0 0.2 0.4 0.6 0.8 1.0
-100

-80

-60

-40

-20

Vz@meVD

P
’Hw,V

zLêa
2

Figure 5.5: Dependence of Π ′(ω,VZ) on the Zeeman splitting VZ. Above the topological transi-
tion (indicated in the figure), the red (full) and black (dashed) curves correspond to
Π ′(ω,VZ) for parity nM = 0 and nM = 1, respectively. Π ′(ω,VZ) shows oscillations
as a function of VZ, that are different in amplitude for the two parities nM = 0, 1 (but
having the same period), crossing at points where εM = 0 (see Inset). Below the topo-
logical transition the susceptibility reproduces well the one for PBCs. The parameters
we took are [8]: L = 2µm, t = 0.5 · 10−2eV, α = 0.4meV, µ = −10−2eV, ∆ = 0.25meV,
ω = 0.02meV, and N = 80.

In the main plot in Fig. 5.4, we show the real part Π ′(ω) for the Kitaev chain as a

function of the chemical potential µ for the two parities nM = 0, 1 as well as the bulk value

for PBCs. First of all, the values for Π(ω) in case of periodic and open BCs are different

because of ΠBM(ω), as this contribution has a different dependence on µ and ∆ from the

bulk states. Second of all, the open BCs wire susceptibility shows oscillations as a function

of µ on top of the average value, of the form ± cos (kFL), with +(−) corresponding to

nM = 1 (nM = 0), i.e. they are opposite in sign for the two parities. Here kF is the

Fermi wavevector of the electronic system, and for the range of parameters considered

is kF ≈ 2µ [49]. This means that the cavity field can access the parity of the Majorana

fermions non-invasively and without locally accessing the wire. Moreover, the oscillations

disappear below the phase transition point |µ| = 1, the susceptibility Π ′(ω) acquires the

same value as for the PBCs wire which signals that the Majorana fermions exist only above



92 majorana fermions in topological superconductors coupled to a microwave cavity

the topological phase transition. In order to get a closer look at the oscillations of Π(ω,µ),

in the lower inset in Fig. 5.4 we show the real part of the relative difference between

the two parities, ∆Π(ω,µ) = 2
∣∣(Π+

BM −Π−
BM)/(Π+

BM +Π−
BM)

∣∣, for different values of ∆.

We see that the oscillations have the same periodicity as the Majorana energy splitting

εM ∼ exp (−L/ξ) cos (kFL). Notice that the oscillations of the Majorana splitting with the

magnetic field (chemical potential) has been studied in detail [77, 85] together with the

fact that the magnitude of the oscillations becomes exponentially suppressed in L/ξ [74,

106].

In the main figure in Fig. 5.5, we plot the real part of the susceptibility for a 1D topo-

logical wire as a function of the Zeeman splitting VZ for the two parities nM = 0, 1. The

susceptibility Π for that figure was computed using realistic parameters that might be ap-

propriate for an InSb wire such as in the experiments in Ref. [64]. We find similar features

as for the Kitaev toy model, namely oscillations as a function of the Zeeman splitting

above the topological transition. These oscillations around the ground state have opposite

sign and different amplitudes for each parity. Like for the Kitaev model, they have the

same periodicity as the Majorana energy εM (see the inset of Fig. 5.5) and cross at points

where εM = 0. Notice that if the parity is not conserved in the system (for example, due to

the quasi-particle poisoning), Π ′ will follow the ground state and exhibit therefore sharp

cusps as a function ∆Z at the crossing points where εM = 0 (see also Ref. [98] for similar

features in a topological Josephson junction). As for the Kitaev chain, we thus find that

the cavity phase shift is thus able to detect the Majorana fermions and the parity of the

ground state of a realistic topological wire.

The imaginary part of Π(ω) gives us also information on the presence of Majorana

fermions. In Fig. 5.6, we show the dependence of Π ′′(ω) on ω for the Kitaev chain, both

in the topological and non-topological regimes, for t = ∆. We see that the Majorana

fermions, through ΠBM(ω), give rise to an extra peak in the susceptibility at half the

effective superconducting gap ∆eff = ||µ|− t| in the topological regime, while such a peak

is absent for the same effective gap ∆eff, but in the non-topological case. For completeness,

we also show the result for PBCs, in which case there are no Majorana fermions.
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Figure 5.6: Dependence of Π ′′(ω) on the cavity frequency ω for N = 50. The full-red (dashed-

black) line corresponds to the susceptibility in the topological regime for µ = −0.2,
while the dot-dashed-blue (dotted-green) corresponds to the non-topological regime
with open (periodic) BCs with µ = −1.8, so that the effective gap is the same ∆eff =
||µ| − t| = 0.8 in both regions. Inset: a zoom in the region where the Majorana peak
emerges. For all the plots we used t = ∆ = 1, and all energies are expressed in terms of
t.

Finally, let us give some estimates for Π(ω), and in particular for ΠBM(ω) and the re-

sulting phase shift in the exiting photonic signal. We assume typical experimental values

for the cavity frequency, ωc ≈ 2× 10−5 eV, and with a quality factor Q ≈ 105, which re-

sults in photon escape rate κ = 2× 10−10 eV. For an estimate of the capacitive coupling α

we refer, for example, to the case of carbon nanotubes, which have been under experimen-

tal scrutiny in the context of cavity QED [23, 29]. There, it was found that α ≈ 5.6× 10−7

eV, and we believe similar values should be relevant for semiconductor nanowires too.

The phase shift of the radiation exiting the cavity satisfies δφ ∝ (α2/t κ) so that we obtain

δφ ≈ 0.3 which is a sizeable value.
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5.4 conclusions

In this chapter, we studied two paradigmatic examples of 1D topological superconducting

systems capacitively coupled to a microwave superconducting stripline cavity: the Kitaev

chain and a 1D nanowire with strong SO interaction in the presence of a magnetic field

and in proximity of a superconductor. We analyzed the electronic charge susceptibility of

these systems that is revealed in the photonic transport through the microwave cavity via

its transmission τ(ω). We demonstrated that this electronic susceptibility can actually be

used to detect the topological phase transition, the occurrence of Majorana fermions and

the parity of the Majorana fermionic state in a non-invasive fashion. Such effects are due

to the interplay between the bulk and Majorana states, either via virtual or real transitions

taking place between the two, and which are mediated by the photonic field.



6
D E T E C T I O N O F M U LT I P L E M A J O R A N A F E R M I O N S C O U P L E D T O

A M I C R O WAV E C AV I T Y

In this chapter, we discuss the case of multiple Majorana fermions emerging at each

edge of the wire. This situation becomes possible if the system has not only the nearest-

neighbor hopping, but also the next-nearest-neighbor hopping. We discuss what possible

signatures of multiple Majorana fermions could be visible in cavity QED experiments. We

start with establishing the phase diagram of the extended Kitaev model. We discuss for

which set of parameters it is possible to obtain the oscillations of the Majorana energy

splitting. Then we demonstrate that the electronic susceptibility can be used to probe the

phase transitions from 0 to 1 to 2 Majorana fermions present in the system. Moreover, the

frequency response of the cavity is sensitive to the transitions between two lowest-energy

Majorana states. Also we show that there are oscillations of the electronic susceptibility

as a function of chemical potential similar to the ones of the Majorana energy splitting.

These oscillations have different periodicity depending whether there is one or two Majo-

rana fermions at each end of the chain.

6.1 model hamiltonian

Let us consider a model of the topological wire that allows for multiple Majorana fermions

emerging in the system. The Kitaev model with the next-nearest-neighbor hopping that

can show up to two Majorana fermions emerging at each end of the chain has been in-

troduced in [68]. Later the fractional Josephson effect with multiple Majorana fermions

has been studied [91] and it was shown that the experimentally accessible quantity differ-

ential conductance dI/dV should be doubled when there are two Majorana fermions at

95
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each end of the chain. However, the doubling of the differential conductance has not been

observed experimentally.

We consider the extended Kitaev chain model that includes also the hopping and su-

perconducting pairing between next-nearest-neighbors (see Fig.6.1).

γA,1 γB, 1 γA,2 γB, 2 γB ,NγA,NγA,3 γB ,3

t1

t2

Figure 6.1: Scheme of the extended Kitaev chain. t1 is the nearest-neighbor hopping amplitude
and t2 is the next-nearest-neighbor hopping amplitude.

The Hamiltonian of the Kitaev chain model with next-nearest-neighbor hopping and

superconductivity reads [68]

Hel = −2µ

N∑
j=1

c
†
jcj −

N−1∑
j=1

(
t1c
†
jcj+1 +∆1cjcj+1 + h.c.

)

−

N−1∑
j=2

(
t2c
†
j−1cj+1 +∆2cj−1cj+1 + h.c.

)
, (6.1)

where µ is the chemical potential, t1 is the nearest-neighbor hopping amplitude, ∆1 is the

nearest-neighbor superconducting pairing potential, t2 is the next-nearest-neighbor hop-

ping amplitude and ∆2 is the next-nearest-neighbor superconducting pairing potential.

N is the total number of sites. c†j(cj) are the electron at the site j creation (annihilation)

operators, respectively. When t2 = ∆2 = 0, this Hamiltonian in Eq.(6.1) corresponds to

the Kitaev model.

We consider capacitive coupling between the topological wire and the cavity,
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Hel−ph = α

N∑
j=1

c
†
jcj(a+ a

†), (6.2)

where α is the electron-photon coupling constant and a (a†) is the photon annihilation

(creation) operator. In the previous chapter, we found the relation between the suscepti-

bility of the Kitaev chain and the transmission coefficient of the cavity in the presence of

the topological wire. As shown in [34], the susceptibility for the topological wire coupled

to the cavity reads

Π(t) = −iθ(t)α2〈
[
c
†
j(t)cj(t), c

†
j(0)cj(0)

]
〉. (6.3)

Here we compute the electronic susceptibility of the Kitaev chain with the next-nearest-

neighbor hopping.

6.2 phase diagram and energy spectrum

Let us start our study of the extended Kitaev chain model by establishing a phase diagram

of the system. To do so, we close the wire into a ring by applying periodic boundary

conditions, cN+1 ≡ c1, and perform Fourier transformation. The electronic Hamiltonian

of the system in the k-space, H =
∑
k>0Hk(k), reads

Hk(k) = [−2µ− 2t1 cos(k) − 2t2 cos(2k)]τz + [−2∆1 sin(k) − 2∆2 sin(2k)]τy. (6.4)

In order to compute the winding number of the system, let us diagonalize the Hamil-

tonian Hk(k) by performing a unitary transformation H̃k(k) = U†Hk(k)U with U =

exp(−iθkτx/2).
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tan(θk) = −
∆1 sin(k) +∆2 sin(2k)
µ+ t1 cos(k) + t2 cos(2k)

. (6.5)

The bulk energy spectrum of the extended Kitaev model reads

Ek,± = ±2
√
(µ+ t1 cos(k) + t2 cos(2k))2 + (∆1 sin(k) +∆2 sin(2k))2. (6.6)

The condition for the topological phase transition is closing of the gap, Ek = 0. In

general case, when t1 6= ∆1 and t2 6= ∆2, the gap at k = 0 closes when t2 = −µ− t1 and

the gap at k = π closes when t2 = −µ+ t1, while the third condition can be found only

numerically.

Now let us calculate how many Majorana zero modes are in each phase. To do so, let

us compute the winding number [55, 68] P =
∫2π
0

dθk
2π

.

We compute numerically the winding number and find the phase diagram of the Kitaev

model with next-nearest-neighbor hopping and superconducting pairing. As can be seen

from the phase diagram Fig.6.2, when changing the chemical potential µ for a fixed values

of the next-nearest-neighbor hopping amplitude t2 and superconducting pairing ∆1 = ∆2,

the phase of the system can change from non-topological with 0 Majorana fermions at

each end of the chain to topological with 1 Majorana fermion at each end of the chain,

then again to topological, but with 2 Majorana fermions, and again to non-topological

with 0 Majorana fermions. The winding number that corresponds to this phase transition

(0→ 1→ 2→ 0) as a function of the chemical potential is presented in Fig.6.3.

Now that we have found the phase diagram of the wire that can support multiple

Majorana fermions, let us compute the energy spectrum for the chain with open boundary

conditions that can host Majorana fermions at its ends. When we tune the parameters of

the chain so that there is only one Majorana fermion at each end of the wire for −1 <

µ < −0.5 and two Majorana fermions for −0.5 < µ < 0, we can see that the period

of oscillations of the Majorana energy splitting changes over the phase transition (see

Fig.6.4).
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Figure 6.2: The phase diagram of the extended Kitaev model as a function of µ and t2 for param-
eters: t1 = 1, ∆1 = ∆2 = 0.2. Numbers 0, 1, 2 in the plot indicate the number of the
Majorana fermions at each end of the chain for particular values of (µ, t2).
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Figure 6.3: The winding number |w| of the extended Kitaev model as a function of chemical poten-
tial µ for parameters: t1 = 1, ∆1 = ∆2 = 0.2 and t2 = 1.5.

6.3 electronic susceptibility

In this section, we calculate the electronic susceptibility of the extended Kitaev model for

periodic and open boundary conditions for different chemical potential and frequency.
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Figure 6.4: Energy spectrum as a function of chemical potential µ in case of open boundary condi-
tions for parameters: N = 100, t1 = 1, t2 = 1.5,∆1 = ∆2 = 0.2. Red line corresponds to
the lowest-energy state, first Majorana fermion (M1) and blue line corresponds to the
second lowest-energy state, second Majorana fermion (M2). Phase transition point is
µ = −0.5.

6.3.1 Topological phase transition detection

As was demonstrated in chapter 3, the topological phase transition points can be inferred

from the response of the cavity when the topological wire is closed in a ring. Electronic

susceptibility for the extended Kitaev chain reads

Π(t) = −iθ(t)
∑
k,q>0

〈
[
τz(t), τz(0)

]
〉. (6.7)

After performing Fourier transformation and substituting sum with the integral (see

appendix D for more details on the derivation), the susceptibility of the closed chain

reads

Π(ω) =
N

2π

∫π
0

dk
4(∆1 sin(k) +∆2 sin(2k))2

E2k

(
1

ω− 2Ek + iη
−

1

ω+ 2Ek + iη

)
. (6.8)
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Figure 6.5: a) Imaginary part Π ′′(ω) as a function of µ in case of periodic boundary conditions
for parameters: N = 100, t1 = 1, t2 = 1.5, ∆1 = ∆2 = 0.2, ω = 0.15. Numbers
in the plot indicate the number of the Majorana fermions in the region between the
phase transitions obtained by computing the corresponding winding number. b) Bulk
energy spectrum Ek,± as a function of k in case of periodic boundary conditions for
parameters: t1 = 1, t2 = 1.5, ∆1 = ∆2 = 0.2. Red line corresponds to µ = −2.5
(gap closes at k = 0, which corresponds to the topological phase transition from 0
to 1 Majorana fermions), green line corresponds to µ = −0.5 (gap closes at k = π,
which corresponds to the topological phase transition from 1 to 2 Majorana fermions)
and blue line corresponds to µ ≈ 1.25 (which corresponds to the topological phase
transition from 2 to 0 Majorana fermions).

We can compute the imaginary part of the susceptibility Eq.6.8 analytically. We obtain

that Π ′′(ω) as a function of the chemical potential peaks at the values of the chemical

potential that correspond to the topological phase transition (see Fig.6.5, a)). Moreover,

depending on how the number of the Majorana fermions changes over the phase transi-

tion the structure of the peak changes. The susceptibility has a minimum at µ = −2.5 (see

Fig.6.5, a)) that in the energy spectrum corresponds to the gap closing at k = 0 (see Fig.6.5,

b)). This value of the chemical potential corresponds to the topological phase transition

from 0 to 1Majorana fermion (see Fig.6.3). Then the maximum of Π ′′(µ) at µ = −0.5 corre-

sponds to the energy gap closing at k = π. µ = −0.5 corresponds to the topological phase

transition from 1 to 2Majorana fermions. And finally the double peak in the susceptibility

at µ ≈ 1.25 corresponds to the topological phase transition from 2 to 0 Majorana fermions.
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6.3.2 Frequency dependence of the cavity response

Now let us calculate the susceptibility of the Kitaev chain with the next-nearest-neighbors

hopping in case of open boundary conditions. Since this model can show up to 2Majorana

fermions at each end of the chain, there are four different combinations of the Majorana

parity:

1. nM1
= 0,nM2

= 0

2. nM1
= 1,nM2

= 1

3. nM1
= 0,nM2

= 1

4. nM1
= 1,nM2

= 0,

where M1 corresponds to the lowest-energy state, or first Majorana fermion, and M2

corresponds to the second-lowest-energy state, or second Majorana fermion. If there are

two Majorana fermions, the susceptibility of the wire can be decomposed as:

Π(ω) = ΠBB(ω) +ΠBM1
(ω) +ΠBM2

(ω) +ΠM1M2
(ω) +ΠM1M1

(ω) +ΠM2M2
(ω),

(6.9)

where ΠBB corresponds to the transitions between different bulk levels, ΠBM1
(ω)

(ΠBM2
(ω)) comes from the transition between bulk and M1 (M2) Majorana levels while

ΠM1M1
(ω) = ΠM2M2

(ω) ≡ 0 and corresponds to the transitions between the same Majo-

rana levels.

Electronic susceptibility of the chain for nM1
= nM2

= 0 presented in Fig.6.6 shows

the non-monotonic behavior as a function of frequency ω. Real part has a kink around

ωp = εM1
+ εM2

, while imaginary part has a peak around the same value of frequency.

This peak (kink) at ωp comes from the low-energy response of the cavity, which is well

separated from the higher-energy response when the frequency ω is in resonance with

the effective p-wave gap. The Majorana part of the susceptibility is nonzero only when
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there are two Majorana fermions at each end of the chain [34]. In spectroscopic response

of the cavity there are four different peaks at ω = ±εM1
± εM2

depending on the parity

of the Majorana states.
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Figure 6.6: Electronic susceptibility as a function of frequency ω in case of open boundary con-
ditions for parameters: N = 100, t1 = 1, t2 = 1.5, ∆1 = ∆2 = 0.2, η = 0.001 and
µ = −0.1. First bulk energy level is at εB1 = 0.17. a) Real part of the susceptibility
Π ′(ω) has a kink at ω = εM1 + εM2 = 0.008 (nM1

= nM2
= 0). b) Imaginary part of

the susceptibility Π ′′(ω) has a peak at ω = εM1 + εM2 = 0.008 (nM1
= nM2

= 0).

6.3.3 Parity dependence and oscillations of the susceptibility

In this subsection, we discuss the dependence of the electronic susceptibility on chemical

potential for different parities of the Majorana states. The real part of the susceptibility

Π ′(µ) is presented in the main plot in Fig.6.7. For −1 < µ < −0.5 there is one Majorana

fermion at each end of the chain and we get oscillations of Π ′(µ) with the period equal

to that for the Kitaev chain [34] (see the inset in Fig.6.7). Black and red lines correspond

to different parities of the Majorana state, nM1
= 0 and nM1

= 1, respectively. When we

cross the phase transition at µ = −0.5, there are two Majorana fermions at each end of

the chain and four different possibilities for the Majorana parity. Real part of the suscep-

tibility shows oscillation as a function of chemical potential. The period of the oscillation

is different compared to −1 < µ < −0.5 region, but it is consistent with the Majorana

energy splitting. Thus, the period of the oscillations in two different phases with one and

two Majorana fermions is different and is the same as for the Majorana energy splitting.
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Figure 6.7: Real part of the total susceptibility Π ′(ω) as a function of chemical potential µ in case
of open boundary conditions for parameters: N = 100, t1 = 1, t2 = 1.5, ∆1 = ∆2 =
0.2, η = 0.01 and ω = 0.05. Black line corresponds to nM1

= 0,nM2
= 0, red line

corresponds to nM1
= 1,nM2

= 0, blue line corresponds to nM1
= 0,nM2

= 1 and
green line corresponds to nM1

= 1,nM2
= 1. Topological phase transition point is at

µ = −0.5. For µ < −0.5 there is one Majorana fermion at each end of the chain, while
for µ > −0.5 there are two Majorana fermions at each end of the chain.

The change of the oscillations period should allow to distinguish between the number of

the Majorana fermions.

6.4 conclusions

In this chapter, we studied the Kitaev model with the next-nearest-neighbor interaction

that can show 0, 1 or 2 Majorana fermions emerging at each end of the finite chain. We

found the phase diagram for the system for the regime when there are oscillations of

the Majorana energy splitting (t1 6= ∆1). We demonstrated that the imaginary part of the

electronic susceptibility for periodic boundary conditions is sensitive to the topological

phase transitions, and the peak in Π ′′(µ) have different shape depending on the type of

the phase transition (0→ 1 or 0→ 2). We also found that the real part of the susceptibility

for finite chain follows the structure of the Majorana energy splitting and shows the
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change of the period of the oscillations depending weather there is one or two Majorana

fermions at each end of the chain. As for the spectroscopic features, the susceptibility can

show four peaks at ω = ±εM1
± εM2

depending on the parity of the Majorana state. As

an outlook, it would be interesting to apply the same approach to study the emergence of

fractional fermions in the Su-Schrieffer-Heeger (SSH) model [100] and the transition from

the latter to Majorana fermions.
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R I N G S C O U P L E D T O A M I C R O WAV E C AV I T Y

In this chapter, we study a one dimensional p-wave superconducting mesoscopic ring in-

terrupted by a weak link and coupled inductively to a microwave cavity. We establish an

input-output description for the cavity field in the presence of the ring, and identify the

electronic contributions to the cavity response and their dependence on various param-

eters, such as the magnetic flux, chemical potential, and cavity frequency. We show that

the cavity response is 4π periodic as a function of the magnetic flux in the topological

region, stemming from the so called fractional Josephson current carried by the Majorana

fermions, while it is 2π periodic in the non-topological phase, consistent with the normal

Josephson effect. We find a strong dependence of the signal on the cavity frequency, as

well as on the parity of the ground state. Our model takes into account fully the interplay

between the low-energy Majorana modes and the gaped bulks states, which we show is

crucial for visualizing the evolution of the Josephson effect during the transition from the

topological to the trivial phase.

7.1 the system and model hamiltonian

In Fig. 7.1, we present a sketch of the system under consideration: a topological supercon-

ducting ring which contains a weak link at some position coupled to a superconducting

microwave cavity [35]. The ring is subject to both a DC magnetic flux, and an ac (quan-

tum) flux from the cavity, which gives rise to a coupling between the two systems, the ring

(electrons) and cavity (photons). We consider the Kitaev model Hamiltonian as describing

the electronic p-wave superconductor. Such a model could be implemented experimen-

tally utilizing a semiconducting nanowire with spin-orbit coupling in the proximity of
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B̂cav
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Figure 7.1: Top: A sketch of the combined topological superconductor fluxed-biased by the cavity.
This is probed in the input-output method, and the output signal b̂out is to be com-
pared with the input one b̂in. Bottom: a) A zoom into the topological superconductor
in the shape of a ring. The magnetic field of the cavity B̂cav pierces the ring and gives
rise to a fluctuating magnetic flux. A perpendicular, external magnetic field Bext is also
applied, so that the total flux felt by the electrons in the ring is Φtot = Φext + Φ̂cav.
The ring is interrupted by a weak link, that pertains to the hopping strength t ′ � t (t
is the hopping strength within the ring, see the text). In the topological region, there
are Majorana fermions on the left (γL) and on the right (γR) of the superconductor,
and a Josephson current IJ is flowing within the ring. b) A possible implementation of
the geometry in a) based on a spin-orbit nanowire flux-biased in a SQUID geometry.
Depicted in light red is a conventional superconducting loop that is interrupted so that
there is the Josephson current flowing only through the wire.
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s-wave superconductor and subject to a magnetic field [1, 59, 64, 71]. A flux bias within

a nanowire hosting Majorana fermions can be implemented by attaching a SQUID to

the wire, in the same spirit as in [76], as depicted in Fig. 7.1 b). We assume the ring is

interrupted at some point by a weak link that emulates the Josephson effect in a SIS junc-

tion. The external magnetic flux allows for a continuous phase change across the weak

link, which controls the Josephson current. On the other hand, the fluctuating cavity flux

couples to the flux-biased system and monitors its dynamics.

The general form of the combined Hamiltonian reads:

Hsys = Hel +Hph +HT , (7.1)

Hel = −

N−1∑
j=1

(teiΦjj+1c†jcj+1 +∆e
iφjj+1cjcj+1 + h.c.) − µ

N∑
j=1

c
†
jcj , (7.2)

HT = −t ′eiΦN1c†Nc1 + h.c. , (7.3)

where Hel is the Hamiltonian of the p-wave superconductor (Kitaev model), HT is the

tunneling Hamiltonian between the ends in the presence of the magnetic flux, and Hph =

ωca
†a is the Hamiltonian of a single mode cavity, where ωc is the cavity frequency and

a†(a) is the photon creation (annihilation) operators, respectively. Also, t is the hopping

parameter, ∆ is the p-wave superconducting pairing potential, µ is the chemical potential,

and N is the total number of sites. c†j(cj) is the electron creation (annihilation) operators,

respectively, at the site j. Moreover, Φjj+1 and φjj+1 are the phases on the tunneling

matrix elements t and the superconducting pairing ∆ at positions j caused by the external

fluxes. They read:

Φjj+1 =
e
 h

∫ j+1
j

dxA(x) ≡ 2πΦtot
NΦ0

, (7.4)

φjj+1 =
4πΦtotj

NΦ0
. (7.5)

The form of the second term (the phase on the pairing ∆) can be found from utilizing

the following assumption: the p-wave pairing in the Kitaev chain is assumed to be in-

duced by an s-wave superconductor underneath the wire that is interrupted at the link.
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In such a case, we can consider that the instantaneous supercurrent flowing through the

superconductor vanishes, namely:

Js =
2e

m
|ψ|2( h∇φ− 2eA) ≡ 0 , (7.6)

where m, |ψ|2, and φ are the electronic mass, the density of superconducting electrons in

the s-wave superconductor, and its phase, respectively. The latter is directly imprinted into

the wire by means of proximity effect. We can easily solve this differential equation, which

then gives the phase on the p-wave superconductor [74] φ(j) ≡ φjj+1 = 4πΦtotj/NΦ0.

We note that the system is in topological (non-topological) phase when |µ| < 2t (|µ| >

2t), and it supports Majorana zero energy end modes (no Majorana end modes).
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Figure 7.2: The spectrum of the ring as a function of the flux Φ in the non-topological (left) and
topological (right) regions, respectively. In red are depicted the Majorana energy levels
that show oscillations with a period Φ0.

The magnetic flux contains both the DC flux Φdc, as well as a time-dependent com-

ponent Φ̂ac(t), or Φ = Φdc + Φ̂ac(t). We assume that the AC flux is due to the cavity

photons, and it is given by Φ̂ac = iλ(a− a†), with λ being the coupling constant between

the ring and the cavity. Following Ref. [26], we could find that λ2 = M2/L, where M

is the coupling inductance between the ring and the resonator and L is the geometrical

inductance of the resonator. The spectrum of the ring as a function of the external flux is

shown in Fig. 7.2, both in the trivial (left) and topological regimes (right).
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We can rewrite the full Hamiltonian in a simpler form by performing a unitary trans-

formation U = exp [−2πi
∑N
j=1(j− 1/2)njΦdc/NΦ0] so that the entire dependence on the

DC flux Φdc is transferred to the weak link tunneling Hamiltonian HT , or:

HT → U†HTU = −t ′ei2πΦdc/Φ0ei2πΦ̂cav/NΦ0c†Nc1 + h.c. (7.7)

We mention that such a transformation can only gauge away the DC flux (i.e. transfer it

entirely to t ′), while the ac (or cavity component) cannot be gauged away in a simple way

because such a transformation would not commute with the photonic Hamiltonian Hph.

However, we assume that Φ̂ac � Φ0, so that we can expand the exponentials in Φ̂ac up

to second order in this quantity. With these approximations, the final Hamiltonian can be

written as the sum of the electrons (in the presence of the DC flux), the photons, and their

mutual interaction:

Hsys ≈ Hel +HT +Hph − Φ̂acI+
1

2
(Φ̂ac)

2D , (7.8)

I =
2πi

NΦ0

N−1∑
j=1

[
tc
†
jcj+1 + 2j∆cjcj+1

+ t ′ei2πΦdc/Φ0c†Nc1 − h.c.
]

, (7.9)

D = −

(
2πi

NΦ0

)2 N−1∑
j=1

[
tc
†
jcj+1 + (2j)2∆cjcj+1

+ t ′ei2πΦdc/Φ0c†Nc1 + h.c.
]

. (7.10)

This is the Hamiltonian that we will be utilizing in the following to describe the response

of the cavity, up to second order in the electron-cavity coupling.

Such configuration (ring geometry) have been studied in the past in the context of

persistent currents in normal rings, and it was shown to be physically equivalent to a SNS

junction, where the low-energy system is described by the so called Andreev levels [17].

In both cases, the spectrum is quantized due to the finite size of the ring (N system), or

the finite size of the N part (SNS junction). We mention that for the SNS junction, if the

length of the normal part L� ξ (ξ is the coherence length), the spectrum shows a gap that
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is modulated by the external flux, and can even vanish. This gap, or mini gap, is usually

much smaller than the bulk superconducting gap, and these levels are responsible for all

the low-energy transport properties of the junction. The Andreev levels in the presence of

the flux give rise to Josephson current which, for the state n with energy εn reads:

in = −
∂εn

∂Φdc
. (7.11)

The Josephson current carried by these states is then given by IJ =
∑
n fnin, where fn are

the occupations (Fermi-Dirac) of the level n.

7.2 electronic susceptibility and cavity response

7.2.1 Theoretical approach to susceptibility

In this section, we discuss the cavity response in the presence of the p-wave superconduc-

tor, and the dependence on various electronic parameters, such as the chemical potential

and the applied magnetic flux Φdc.

There are two ways to approach the problem: utilizing a quantum description, namely

treating the photons as quantum objects, or assuming the ac component of the flux is

a classical oscillating quantity, of the form Φac = Φac(0) sin(ωt). We employ the first

method, but compare with the expected results utilizing a classical description. The reason

for doing so is that the first method is suited to also enter the quantum regime, where

the coupling between the photons and the electronic system is strong and one needs to

employ a polaritonic-like description. While such a case is left for a future study, we

believe that the formalism developed in this chapter will be of great usefulness.

In chapter 2, we derived explicitly the response of the cavity due to its coupling to an

electronic system. Here we give a brief summary of the derivation, and depict the results

for the particular type of couplings found here.

The second order contribution to the electron-photon coupling can be written as (a†)2+

a2 + 2nph + 1, with nph ≡ a†a, and we see that the third and fourth terms renormalize

the cavity frequency and the weak tunneling amplitude, respectively. The first two terms
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correspond to creation or annihilation of two photons, and we can disregard them in the

weak coupling limit. With this approximation, we can insert this expression into the equa-

tion of motion for the photonic operator, switch to the frequency domain, and solve these

equations iteratively up to second order in λ. By taking the average over the unperturbed

(or uncoupled to the cavity) electronic Hamiltonian, we obtain:

−iωa = −i(ωc + λ
2〈D〉)a− κ

2
a−
√
κbin

− iλ2Π(ωc)a+ λ〈I〉 , (7.12)

where Π(ω) =
∫
dt exp (iωt)Π(t) with

Π(t) = −iθ(t)〈[I(t), I(0)]〉 . (7.13)

Note that all the expectation values are taken over the electronic system in the absence of

the cavity. Let us discuss briefly the resulting equation of motion and further approxima-

tions. We assume the input field bin contains a large number of photons, and thus we can

neglect the last term that acts as an extra input source (and which is entirely due to the

current flowing through the weak link). The opposite limit, when the input field is only

due to vacuum fluctuations, can in principle lead to emission of photons due to current

fluctuations in the ring.

With this, we see that the coupling to the superconductor affects the cavity in two ways:

by changing its frequency, and by changing its quality factor (or the escape rate κ). More

precisely, we have:

δω = λ2 [〈D〉+ReΠ(ωc)] , (7.14)

κ ′ = κ− λ2ImΠ(ωc) . (7.15)

In Ref. [34, 36] we showed explicitly that the transmission τ of the cavity can be written

as follows:

τ ≡ bout
bin

=
κ

−i(ω−ωc) + κ+ iλ2Πtot(ωc)
, (7.16)
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where Πtot(ωc) = Π(ωc) + 〈D〉. It is instructive to rewrite the two terms in more explicit

forms:

〈D〉 =
∑
n

fn〈n|D|n〉 , (7.17)

Π(ω) =
∑
n 6=m

|〈n|I|m〉|2 fn − fm
−(εn − εm) +ω+ iη

, (7.18)

where fn is the occupation of the electronic energy state εn, and η is a small number

that account for the dissipation. We can rewrite Πtot(ω) in a more transparent form by

utilizing the following sum rule [37, 97]:

〈n|D|n〉+
∑
m 6=n

|〈n|I|m〉|2
εn − εm

=
1

2

∂2εn

∂Φ2
, (7.19)

so that we obtain

Πtot(ω) =
∂IJ
∂Φ

+
∑
n

∂fn

∂Φ

∂εn

∂Φ

−ω
∑
n 6=m

fn − fm
εn − εm

|〈n|I|m〉|2
(εn − εm) −ω− iη

, (7.20)

where IJ is the Josephson current flowing through the ring in the presence of a DC flux.

In this form, the expression for the susceptibility that is measured by the cavity (via its

transmission) has the same form as the one derived previously for normal [97] and for

superconducting rings [26, 37]. However, in those previous works they utilized a classical

description of the ac perturbation. Moreover, they assumed the electronic system is not

closed, but coupled to an external bath which leads to a finite width of the electronic
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levels. To make correspondence between their results and ours in such a case, we can

write:

Πtot(ω) =
∂IJ
∂Φ

+
ω

ω+ iγ

∑
n

∂fn

∂Φ

∂εn

∂Φ

−ω
∑
n 6=m

fn − fm
εn − εm

|〈n|I|m〉|2
(εn − εm) −ω− iγ

, (7.21)

where γ is the relaxation rate of the levels (assumed, for simplicity, to be the same for all

levels). We see that, in principle, there are three contributions to the cavity response: the

Josephson current or non-dissipative part, the diagonal part corresponding to the decay of

the levels, and finally the non-diagonal part stemming from the usual Kubo contribution.

In the following, we neglect the second term due to its smallness in the cavity frequency

range. The first term is independent on the frequency ω, and thus any dependence on

this parameter will be due to the last term.

For the classical derivation of the response we refer the reader to Refs. [37, 92, 97]. A

few comments are in order. In the case of a SNS junction, the entire contribution to the

cavity signal is coming from the sub gap Andreev states in the normal region, while any

bulk effects can be neglected since the bulk gap is much larger than the minigap. That

need not be the case for a p-wave superconductor, as this system can suffer a topological

transition and close its bulk gap, which in turn should affect strongly the cavity response

as a function of the magnetic flux. Thus, the energy levels in the expression for the sus-

ceptibility are the ones that correspond to the entire bulk spectrum, and not only the mini

gap states.

7.2.2 Flux dependence of the cavity response

In Fig. 7.3, we plot separately the different contributions to the susceptibility measured by

the cavity, as a function of the external flux: the Josephson current contribution (top), the

real (middle) and the imaginary (bottom) non-diagonal contributions both in the topo-

logical (left column) and the non-topological phases (right column). We see that in the
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Figure 7.3: Left column (right column), from top to bottom: Dependence of the Josephson, non-
diagonal real, non-diagonal imaginary susceptibilities respectively, in the topological
(non-topological) region on the magnetic flux Φ/Φ0 for fM = 0. The red, green, and
blue lines correspond to µ = −1.5 (µ = −2.5), µ = −1 (µ = −3), and µ = −0.5
(µ = −3.5), respectively. The phase transition point is at µ = −2. The parameters for
the plots are ∆ = 0.1, t ′ = 0.2, N = 50, and all energies are expressed in terms of t = 1.
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topological regime, all susceptibilities are Φ0 periodic, with large amplitudes variations.

The amplitude of the Φ0 oscillations, however, diminishes as the system approaches the

topological transition, and disappear after this transition, with only the Φ0/2 becoming

manifest. Such Φ0/2 oscillations pertain to the normal Josephson effect, and are much

smaller in amplitude, as can be seen from the top plot on the right column. We note

that such oscillations exist also for the non-diagonal terms, but they are too small to be

depicted (of the order 10−6).

Let us now discuss the various terms contributing to the total susceptibility, as well as

the effect of Majorana fermions on these quantities. As mentioned already, in the topo-

logical regime, there are Majorana fermions emerging at the edge of the ring, and which

are coupled via the weak link. In a low-energy description, these Majoranas are respon-

sible for the so called fractional Josephson effect, one of the hallmarks of the Majorana

fermions physics. However, the response of the cavity is sensitive not only to the presence

of Majoranas, but also to the interplay between these excitations and the bulk states of

the superconductor, in particular close to the topological phase transition. The first term

is insensitive to such transitions, as it is given by the derivative of the supercurrent with

respect to the applied flux. The second term instead contains the matrix elements between

the Majorana and the bulk states, it has both a real and imaginary parts, and depends on

the cavity frequency ωc. We can thus decompose it as follows:

Πtot(ω) = ΠBB(ω) +ΠBM(ω) +ΠMM(ω), (7.22)

where ΠBB is the part of the susceptibility that comes from the transitions between (dif-

ferent) bulk levels, ΠBM corresponds to the transitions between bulk and Majorana levels

while ΠMM corresponds to the transitions between Majorana levels and ΠMM(ω) ≡ 0

in the present setup. Note that in the non-topological regime ΠBM = 0, as there are no

Majorana states present.
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Figure 7.4: Dependence of the Josephson, non-diagonal real, and non-diagonal imaginary suscepti-
bilities, respectively, on the magnetic flux Φ and parity fM. The dashed-black (full-red)
curves correspond to parity fM = 0 (fM = 1). The oscillations of the susceptibilities
for the two parties are both shifted by Φ0, as well as asymmetric in amplitudes (once
superimposed). The parameters for the plots are µ = −0.5, ∆ = 0.1, t ′ = 0.2, N = 50,
and all energies are expressed in terms of t = 1.

To ascertain for the physical meaning to the oscillations of the susceptibility, it is in-

structive to cast this quantity in the following form:

Πtot(ω,φ) =
∞∑
j=0

aj cos (2πjΦ/Φ0 + δφj) , (7.23)

where aj are (complex) Fourier coefficients of the expansion, and δφj are phase shifts,

all these quantities being functions of the chemical potential µ and the gap ∆. In the

topological phase, the dominant terms are a0 and a1, namely those corresponding to

constant and Φ0 oscillations, respectively. In the topologically trivial regime instead, a1 =

0, and thus the usual Josephson effect dominates. Moreover, we find numerically that the

coefficients with j = 2p+ 1, p = 1, 2, . . . are zero above the topological transition (which

does not host any Majoranas), while below such coefficients are in principle non-zero. We

stress that the Josephson current has also a similar dependence on the applied flux: for a

p-wave superconductor, the current IJ(Φ) ∝ sin (4πΦ/Φ0) in the non-topological region

(normal Josephson effect), while this is IJ(Φ) ∝ sin (2πΦ/Φ0) in the topological region

(fractional Josephson effect).
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7.2.3 Parity dependence

In this section, we analyze the parity dependence of the electronic susceptibility, and

implicitly of the cavity response. In Fig. 7.4, we plot the various contributions to the

susceptibility in the topological regime for the two different parities of the ground state,

fM = 0, 1. By inspecting the plots, we can conclude that there are two main features

that separate the two parities: first, the oscillations (or maxima) of the susceptibilities are

shifted by Φ0, and second, there is a strong asymmetry between the curves for the two

parities, especially in the non-diagonal contribution. The shift by Φ0 can be explained

by means of the fractional Josephson effect, which is due to the presence of Majorana

bound states that give rise to coherent transfer of charge e or −e, depending on the parity,

between the two bound states. That in turn gives rise to dissipationless currents opposite

in sign for the two parities, and which coincide for Φ = (2n + 1)Φ0/4, as can be seen

also from the plots. The asymmetry of the Josephson contribution can be explained by

inspecting the expression for the supercurrent flow: IJ =
∑
n=bulk in + (−1)fMiM, i.e.

the bulk contribution is constant, as its parity is assumed unchanged, while the Majorana

contribution depends on the parity of the ground state fM = 0, 1. The non-diagonal

susceptibility shows a much stronger asymmetry, and it is due to an interplay between

the occupancy of the Majorana and the matrix elements of the current operator I between

the Majorana and the bulk states, or simply by ΠBM given by:

ΠBM(ω) = −ω
∑
n 6=M

fn − fM
εn − εM

|〈n|I|M〉|2
(εn − εM) −ω− iγ

, (7.24)

where M stands for the Majorana.

7.2.4 Frequency dependence

Finally, we discuss briefly the frequency dependence of the susceptibility (thus of the

cavity response) for different parity and flux realizations, respectively. We note that the

Josephson contribution is frequency independent, and the only dependence on ω arises
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Figure 7.5: Dependence of the real part of the non-diagonal susceptibility on the frequency ω for
two values of the external flux,Φ = 0 (left) andΦ = Φ0/2 (right), and for the two parity
states fM = 0 (dashed-black) and fM = 1 (full-red) lines, respectively. The parameters
for the plots are: µ = −0.5, ∆ = 0.1, t ′ = 0.5, N = 50, and all energies are expressed in
terms of t = 1.

from the non-diagonal susceptibility. In Fig. 7.5, we plot the real part of the non-diagonal

susceptibility as a function of the frequency in the topological regime, and for the two dif-

ferent parities. The non-monotonic behavior of the curves can be related to the resonance

condition when the frequency ω matches the effective p-wave gap and the sign of the

susceptibility changes. Interestingly, the dependence on ω is different for different pari-

ties fM = 0, 1 and for different values of the magnetic flux Φ. Such features can again be

traced back to the dependence of ΠBM on both the flux and the parity of the topological

superconductor. We note, however, that the curves become identical (not shown) at flux

values Φ = (2n + 1)Φ0/4, with n = 0, 1, . . . , at which instances the degeneracy of the

Majorana energy levels is restored.

7.3 conclusions

In this chapter, we studied theoretically a Kitaev ring interrupted by a weak link and

pierced by a magnetic flux, and coupled inductively to a microwave cavity. We estab-

lished an input-output description for the cavity transmission, and show that the cavity

response depends strongly on various electronic parameters, such as the chemical poten-

tial, the magnetic flux, and the parity of the superconducting ground state. We found a

4π (2π) variation of the cavity response with respect to the external magnetic flux in the

topological (trivial) phase, and related such dependence to the fractional (normal) Joseph-
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son effect. As opposed to previous works, our theory takes into account, on equal footing,

the low-energy Majorana modes, the gaped bulk states, and the interplay between these

states in the presence of the cavity. Such a description allows one to describe not only the

superconducting ring deep in the topological regime, but also the topological transition,

and the crossover from the fractional to the normal Josephson effect in the presence of a

magnetic flux.

While our theory treats the Kitaev toy model, we stress that it has been shown theoreti-

cally that such a model can be emulated by the spectrum of a spin-orbit semiconducting

ring subject to an external magnetic field and coupled by the proximity effect to an s-

wave superconductor. The main difference between such a model and the Kitaev chain is

the number of states, which is doubled, as one needs to account for the spin degree of

freedom. We believe, based on our previous findings in Ref. [34], that our main results

on the visualization of the transition from the fractional to the normal Josephson effect by

utilizing a microwave cavity are robust.





8
C O N C L U S I O N S A N D P E R S P E C T I V E S

In this thesis, we have studied how the measurement of the cavity microwave field can

be used to extract information on the properties of the nanostructures coupled to the cav-

ity. Current experiments allow to implement on-chip mesoscopic circuits coupled to high

finesse resonators and to measure extremely small variations of the amplitude of the mi-

crowave optical signal. Cavity QED is an experimental technique that allows to study and

manipulate atoms, superconducting qubits and quantum dots coupled to a microwave

cavity. Using input-output theory [20] in case of weak coupling between the electronic

system and the photonic field in the cavity, we have related the transmission coefficient of

the cavity to the electronic susceptibility of the nanostructure. The frequency shift is pro-

portional to the real part of the electronic susceptibility while the frequency broadening is

proportional to the imaginary part of the susceptibility. In this thesis, this general frame-

work is applied to four specific mesoscopic conductors: a tunnel junction, a quantum dot

coupled to the leads, a one-dimensional topological wire and a superconducting ring.

First, we studied a tunnel junction and a quantum dot tunnel coupled to metallic leads

embedded in a microwave cavity. For the tunnel junction, the imaginary part of the suscep-

tibility is directly proportional to the differential conductance dI/dV . We demonstrated

that for the quantum dot tunnel coupled to the metallic leads, the phase shift is pro-

portional to the imaginary part of the admittance far from quantum dot resonance. For

symmetric lead-cavity coupling, equal tunneling and low-frequency, the phase shift is

proportional to the real part of the admittance, or dI/dV . In the general case, there is no

direct relation between optical observables, such as phase shift and frequency broadening,

and transport quantities, such as differential conductance. Therefore, the transmission co-

efficient of the cavity gives access to finite frequency admittance of the quantum dot thus

providing new information about the quantum conductor coupled to the cavity.
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We have developed a formalism relating the electronic susceptibility to the optical trans-

mission of the cavity. In addition to the mesoscopic conductors studied here in detail, our

formalism is applicable to more complicated mesoscopic systems coupled to the cavity.

More specifically, further research should focus on a system with two out-of-equilibrium

quantum dots coupled to the same microwave cavity. In such system, the cavity can be

used to both induce and probe the correlated transport. Our formalism may allow to

detail theoretically the behavior of the two quantum dots system, which is a universal

gate ubiquitous for quantum computing. In a further perspective, our approach may shed

more light on general quantum dot architecture.

Moreover, we propose to use the methods of cavity QED to study topological supercon-

ductors that can host Majorana fermions. We considered different theoretical models of

topological superconductors with nearest-neighbor and next-nearest-neighbor hoppings

that give rise to one or two Majorana fermions at each end of the wire, respectively. Using

the photonic field of the cavity, within a single set of measurements, one can determine

the topological transition point and the emergence of the Majorana fermions. One can also

measure, in the same set, the parity of the ground state, the quantity of crucial interest for

quantum computing with Majorana fermions, which is impossible to probe electronically

since the transport inherently modifies the number of electrons in the system.

At the same time, cavity QED can be used to probe DC fractional Josephson effect. We

continued by studying a superconducting ring with a weak link coupled to a microwave

cavity. The ring is subject to both a DC magnetic flux, and an AC flux from the cavity,

which gives rise to a coupling between the ring and cavity. We demonstrated that the elec-

tronic susceptibility has different periodicity as a function of magnetic flux in topological

and non-topological regions. Different periodicity allows to probe the fractional Josephson

effect, which is associated with the emergence of the Majorana fermions in the system. As

opposed to previous works, our theory takes into account both the low-energy Majorana

modes and the bulk states, thus allowing to visualize the transition from the fractional to

the normal Josephson effect.

As we demonstrated, cavity QED methods can be used to extensively study 1D topolog-

ical structures. We propose to generalize these methodology to theoretically investigate
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2D systems, such as 2D superconductors or 2D topological insulators that have seen large

interest in recent experimental studies [103]. Furthermore, we suggest that a generaliza-

tion of the input-output theory for a 2D system may allow to characterize theoretically

the braiding of Majorana fermions.

In a broader perspective, we propose to manipulate electronic properties with light. The

strong coupling between the electronic system and the electric field in the cavity enables

such manipulation. Qubits — basic units for quantum computing — can be entangled,

controled and measured in the strong-coupling regime. An experimental implementation

of a superconducting qubit as a Cooper pair box has been already studied in the strong-

coupling regime [101]. A quantum dot can also serve as a physical implementation of the

qubit [58] as follows. The quantum dot with a single electron can be constructed by tuning

the gate voltage. And the spin of this electron can encode a qubit. Several experiments

have implemented the coupling between the spin qubit and photons inside a cavity [72,

99]. Cavity QED architecture allows to construct distant spin qubits that can be entangled

thus allowing to implement two-qubit quantum algorithms. In order to obtain information

about the spin dynamics and the parameters of the qubits, such as spin dephasing time,

we suggest to define the spin susceptibility for spin qubit systems in the strong-coupling

regime similarly to the electronic susceptibility.

Finally, cavity QED allows to study various mixed electron-photon states, including new

topological states created by the interaction between light and matter. For instance, the Flo-

quet topological insulator, which was constructed by applying a classical AC drive [56]

to create topological electronic band structure. Coupling a single photon to an exciton

leads to the emergence of a novel topological state, when a topological polariton (topo-

lariton) [48] is formed. The topolariton is a kind of polariton — a quasiparticle formed by

photons and electrical dipoles that emerge in the strong light-matter coupling regime [16].

It is characterized by the formation of chiral edge states in the excitation spectrum. Gen-

erally, we expect the methods of cavity QED to generalize for probing any polaritons. As

a direct extension of the current work, we plan to apply cavity QED to theoretically in-

vestigate “Majorana polaritons” which are highly entangled electron-photon degenerate

states that may appear under a strong coupling between a single photon and Majorana
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fermions in a topological wire [96]. This particular system gives us a pertinent example for

tackling the broader problem of theoretically describing the transition from the classical

regime to the quantum regime: we can study the creation of Majorana polariton by ap-

plying a classical AC field as well as by coupling it to a cavity. Extensively studying both

the classical and quantum description as well as the relation between them may help us

shed some extra light on the fundamental relation between classical physics and quantum

mechanics.



A
A P P E N D I X A

In this appendix, we provide more details on the input-output theory. We consider a one-

sided cavity (κ2 = 0 in Fig. 2.5) with a resonance frequency ωc [20]. The Hamiltonian that

describes the system reads

H = Hsys +Hbath +Hint, (A.1)

where the bath Hamiltonian is given by

Hbath =
∑
q

ωqb
†
qbq, (A.2)

and the coupling Hamiltonian (withing the rotating wave approximation) reads

Hint = −i
∑
q

[
fqa
†bq − f∗qb

†
qa
]

. (A.3)

The Heisenberg equation of motion (EOM) for the cavity mode is

ȧ = i [H,a] , (A.4)

where
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[Hint,a] = i
∑
q

fqbq. (A.5)

Introducing Eq.A.5 into Eq.A.4 we obtain

ȧ = i [Hsys,a] −
∑
q

fqbq. (A.6)

The EOM for the bath variables reads

ḃq = i [H,bq] = −iωqbq + f
∗
qa, (A.7)

which is the EOM of a harmonic oscillator driven by the motion of the cavity degrees of

freedom. For t0 < t being a time in the distant past, the solution of Eq.A.7 can be written

as

bq(t) = e
−iωq(t−t0)bq(t0) +

∫t
t0

dτe−iωq(t−τ)f∗qa(τ). (A.8)

Introducing Eq.(A.8) into the last term in Eq.(A.6), we obtain

∑
q

fqbq =
∑
q

fq

[
e−iωq(t−t0)bq(t0) +

∫t
t0

dτe−iωq(t−τ)f∗qa(τ)
]

=
∑
q

fqe−iωq(t− t0)bq(t0) +
∑
q

|fq|
2

∫t
t0

dτe−i(ωq−ωc)(t−τ)eiωc(τ−t)a(τ), (A.9)

where the last term in square brackets is a slowly varying function of τ.
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κ(ωc) = 2π
∑
q

|fq|
2 δ(ωc −ωq) (A.10)

so that

∫∞
−∞

dν

2π
κ(ωc + ν)e

−iν(t−τ) =
∑
q

|fq|
2 e−i(ωq−ωc)(t−τ). (A.11)

Performing the Markov approximation, Eq.(A.11) reads

∑
q

|fq|
2 e−i(ωq−ωc)(t−τ) = κδ(t− τ) (A.12)

and

∑
q

fqbq =
∑
q

fqe
−iωq(t−t0)bq(t0) + κ

∫t
t0

dτδ(t− τ)eiωc(τ−t)a(τ) (A.13)

Using

∫x0
−∞ dxδ(x− x0) =

1

2
(A.14)

we obtain

∑
q

fqbq =
∑
q

fqe
−iωq(t−t0)bq(t0) +

κ

2
a(t). (A.15)

The cavity EOM reads
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ȧ = i [Hsys,a] −
∑
q

fqe
−iωq(t−t0)bq(t0) −

κ

2
a, (A.16)

where the last term is a linear damping term for the cavity mode. Assuming f ≡
√
|fq|

2

being a constant and defining the density of states by ρ =
∑
q δ(ωc −ωq), the decay rate

becomes

κ = 2πf2ρ = 2πf2
∑
q

δ(ωc −ωq). (A.17)

We can now define the input mode

bin(t) =
1√
2πρ

∑
q

e−iωq(t−t0)bq(t0). (A.18)

Finally, the cavity EOM reads

ȧ = i [Hsys,a] −
κ

2
a−
√
κbin. (A.19)

Let us define the output mode bout(t) that is radiated into the bath. For t1 > t being

a time in the distant future after the input field bin(t) has interacted with the cavity, the

solution of Eq.(A.7) in terms of the final condition of the bath reads

bq(t) = e
−iωq(t−t1)bq(t1) −

∫t1
t

dτe−iωq(t−τ)f∗qa(τ). (A.20)

Defining the output mode as
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bout(t) =
1√
2πρ

∑
q

e−iωq(t−t1)bq(t1), (A.21)

we obtain

ȧ = i [Hsys,a] +
κ

2
a−
√
κbout. (A.22)

Subtracting Eq.(A.22) from Eq.(A.19) we obtain that

bout(t) = bin(t) +
√
κa(t), (A.23)

a result which holds for any general cavity Hamiltonian.





B
A P P E N D I X B

b.1 scattering matrix approach for a non-interacting quantum con-

ductor

In this section, we express the charge susceptibility of a non-interacting quantum conduc-

tor in terms of integral over the elements of its S matrix.

The electron number operator in terms of the current operator reads

nα(t) =
i

2π

∫∞
−∞ dω exp(−iωt)

1

ω

∫∞
−∞ dE∑

γγ ′
Aγγ ′(α,E,E+ω)a†γ(E)aγ ′(E+ω), (B.1)

where Aγγ ′ have been defined in Eq. (4.16). We can now calculate Παβ(ω) ≡ Fαβ(ω) +

Xαβ(ω) with

Fαβ(t) =− iθ(t)〈nα(t)nβ(0)〉, (B.2)

Xαβ(t) =iθ(t)〈nβ(0)nα(t)〉. (B.3)

Let us first start with Fαβ(ω) = −i
∫∞
0 dte

iωt〈nα(t)nβ(0)〉. Using Eq. (B.1) and applying

Wick’s theorem, we obtain
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Fαβ(ω) =

(
1

2π

)2 ∫∞
−∞
∫∞
−∞ dω2dE2

{
1

ω22

1

ω+ω2 + iη
×∑

γ1,γ ′1

Aγ1γ ′1(α,E2 +ω2,E2)Aγ ′1γ1(β,E2,E2 +ω2)×

× fγ1(E2 +ω2)
[
1− fγ ′1(E2)

]}
. (B.4)

In the same way we can calculate Xαβ(ω):

Xαβ(ω) = −

(
1

2π

)2 ∫∞
−∞
∫∞
−∞ dω2dE2

{
1

ω22

1

ω+ω2 + iη

×
∑
γ1,γ ′1

Aγ1γ ′1(α,E2 +ω2,E2)Aγ ′1γ1(β,E2,E2 +ω2)×

× fγ ′1(E2) [1− fγ1(E2 +ω2)]
}

. (B.5)

And finally Παβ(ω) reads

Παβ(ω) =

(
1

2π

)2 ∫∞
−∞
∫∞
−∞ dω2dE2

{
1

ω22

1

ω+ω2 + iη
×

∑
γ1,γ ′1

F
αβ
γ1γ

′
1
(E2,ω2)

[
fγ1(E2 +ω2) − fγ ′1(E2)

] . (B.6)

where we introduced

F
αβ
γγ ′ = Aγγ ′(α,E+ω,E)Aγ ′γ(β,E,E+ω). (B.7)

At zero temperature T = 0, we can further simplify Eq. (B.6) and using the identity

1

ω+ω2 + iη
= P

(
1

ω+ω2

)
− iπδ(ω+ω2) , (B.8)
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we obtain Eq. (4.25) and Eq. (4.24).

b.2 calculation of the quantum dot susceptibility

b.2.1 Expressions of the intermediate Fγγ
′

αβ functions

In order to calculate the charge susceptibility for the quantum dot, we need the sixteen

functions Fγγ
′

αβ which are given by

FLLLL(E,ω) = ALL(L,E+ω,E)ALL(L,E,E+ω)

= |g(E)g(E+ω)|2
(
Γ2LΓ

2
R +ω2Γ2L

)
, (B.9)

FRRLL (E,ω) = ALL(R,E+ω,E)ALL(R,E,E+ω)

= |g(E)g(E+ω)|2 Γ2LΓ
2
R, (B.10)

FLRLL(E,ω) = ALL(L,E+ω,E)ALL(R,E,E+ω)

= − |g(E)g(E+ω)|2
(
Γ2LΓ

2
R + iωΓ2LΓR

)
, (B.11)

FRLLL(E,ω) = ALL(R,E+ω,E)ALL(L,E,E+ω)

= − |g(E)g(E+ω)|2
(
Γ2LΓ

2
R − iωΓ2LΓR

)
, (B.12)
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FLLRR(E,ω) = ARR(L,E+ω,E)ARR(L,E,E+ω)

= |g(E)g(E+ω)|2 Γ2LΓ
2
R, (B.13)

FRRRR(E,ω) = ARR(R,E+ω,E)ARR(R,E,E+ω)

= |g(E)g(E+ω)|2
(
Γ2LΓ

2
R +ω2Γ2R

)
, (B.14)

FLRRR(E,ω) = ARR(L,E+ω,E)ARR(R,E,E+ω)

= − |g(E)g(E+ω)|2
(
Γ2LΓ

2
R − iωΓ2RΓL

)
, (B.15)

FRLRR(E,ω) = ARR(R,E+ω,E)ARR(L,E,E+ω)

= − |g(E)g(E+ω)|2
(
Γ2LΓ

2
R + iωΓ2RΓL

)
, (B.16)

FLLLR(E,ω) = ALR(L,E+ω,E)ARL(L,E,E+ω)

= − |g(E)g(E+ω)|2 Γ2LΓ
2
R + |g(E)|2 ΓLΓR, (B.17)

FRRLR(E,ω) = ALR(R,E+ω,E)ARL(R,E,E+ω)

= − |g(E)g(E+ω)|2 Γ2LΓ
2
R + |g(E+ω)|2 ΓLΓR, (B.18)
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FLRLR(E,ω) = ALR(L,E+ω,E)ARL(R,E,E+ω)

= |g(E)g(E+ω)|2 Γ2LΓ
2
R − g(E)g(E+ω)ΓLΓR

− iΓLΓR |g(E)g(E+ω)|2
(

ΓR
g∗(E+ω)

+
ΓL
g∗(E)

)
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
E2 + Eω− 2Eεd

− εdω+ ε2d + Γ
2/4− iΓLω/2+ iΓRω/2

)]
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
(E− εd)

× (E+ω− εd) + Γ
2/4− iΓLω/2+ iΓRω/2

)]
, (B.19)

FRLLR(E,ω) = ALR(R,E+ω,E)ARL(L,E,E+ω)

= |g(E)g(E+ω)|2 Γ2LΓ
2
R − g∗(E)g∗(E+ω)ΓLΓR

+ iΓLΓR |g(E)g(E+ω)|2
(

ΓR
g(E+ω)

+
ΓL
g(E)

)
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
E2 + Eω− 2Eεd

− εdω+ ε2d + Γ
2/4+ iΓLω/2− iΓRω/2

)]
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
(E− εd)

× (E+ω− εd) + Γ
2/4+ iΓLω/2− iΓRω/2

)]
, (B.20)

FLLRL(E,ω) = ARL(L,E+ω,E)ALR(L,E,E+ω)

= − |g(E)g(E+ω)|2 Γ2LΓ
2
R + |g(E+ω)|2 ΓLΓR, (B.21)
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FRRRL(E,ω) = ARL(R,E+ω,E)ALR(R,E,E+ω)

= − |g(E)g(E+ω)|2 Γ2LΓ
2
R + |g(E)|2 ΓLΓR, (B.22)

FLRRL(E,ω) = ARL(L,E+ω,E)ALR(R,E,E+ω)

= |g(E)g(E+ω)|2 Γ2LΓ
2
R − g∗(E)g∗(E+ω)ΓLΓR

+ iΓLΓR |g(E)g(E+ω)|2
(
ΓR
g(E)

+
ΓL

g(E+ω)

)
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
E2 + Eω− 2Eεd

− εdω+ ε2d + Γ
2/4− iΓLω/2+ iΓRω/2

)]
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
(E− εd)

× (E+ω− εd) + Γ
2/4− iΓLω/2+ iΓRω/2

)]
, (B.23)

FRLRL(E,ω) = ARL(R,E+ω,E)ALR(L,E,E+ω)

= |g(E)g(E+ω)|2 Γ2LΓ
2
R − g(E)g(E+ω)ΓLΓR

− iΓLΓR |g(E)g(E+ω)|2
(

ΓR
g∗(E)

+
ΓL

g∗(E+ω)

)
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
E2 + Eω− 2Eεd

− εdω+ ε2d + Γ
2/4+ iΓLω/2− iΓRω/2

)]
= |g(E)g(E+ω)|2

[
Γ2LΓ

2
R − ΓLΓR

(
(E− εd)

× (E+ω− εd) + Γ
2/4+ iΓLω/2− iΓRω/2

)]
. (B.24)
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b.2.2 Expressions of the intermediate Kαβ functions

Let us introduce the following dimensionless variables

a =
eV − 2εd

Γ
, b =

2εd + eV

Γ
, x =

2ω2
Γ

and y =
2ω

Γ
. (B.25)

The functions Kαβ take the following form:

KLL(x) = −
2ΓL

Γ
(
x2 + 4

)( (x2Γ + 4ΓR) [arctan (a+ x) − arctan (a− x)]

+ ΓLx
[
−2 log

(
1+ a2

)
+ log

[
1+ (a+ x)2

]
+ log

[
1+ (a− x)2

]])
, (B.26)

KRR(x) = −
2ΓR

Γ
(
x2 + 4

)( (x2Γ + 4ΓL) [arctan (b+ x) − arctan (b− x)]

+ ΓRx
[
−2 log

(
1+ b2

)
+ log

[
1+ (b+ x)2

]
+ log

[
1+ (b− x)2

]])
, (B.27)

KLR(x) = −
ΓLΓR

Γ
(
x2 + 4

)(− 2i(x− 2i) [arctan (a+ x) − arctan (a− x)]

+ 2i(x+ 2i) [arctan (b+ x) − arctan (b− x)]

+ (x− 2i)
[
−2 log

(
1+ a2

)
+ log

[
1+ (a+ x)2

]
+ log

[
1+ (a− x)2

]]
+ (x+ 2i)

[
−2 log

(
1+ b2

)
+ log

[
1+ (b+ x)2

]
+ log

[
1+ (b− x)2

]])
, (B.28)
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KRL(x) = −
ΓLΓR

Γ
(
x2 + 4

)(− 2i(x− 2i) [arctan (b+ x) − arctan (b− x)]

+ 2i(x+ 2i) [arctan (a+ x) − arctan (a− x)]

+ (x− 2i)
[
−2 log

(
1+ b2

)
+ log

[
1+ (b+ x)2

]
+ log

[
1+ (b− x)2

]]
+ (x+ 2i)

[
−2 log

(
1+ a2

)
+ log

[
1+ (a+ x)2

]
+ log

[
1+ (a− x)2

]])
, (B.29)

The functions Kαβ directly provide Π ′′αβ.

b.2.3 Calculation of the real part of the susceptibility

We give technical details on how to compute the real part of the charge susceptibility. Let

us compute one of the integrals

L(y) = 2iP

∫∞
−∞

dx

x2(x+ y)(x2 + 4)
f(x), (B.30)

where

f(x) = arctan(a+ x) − arctan(a− x). (B.31)

Using the decomposition

arctan(α+ x) =
1

2i
(log[1+ i(α+ x)] − log[1− i(α+ x)]) , (B.32)

the function f(x) can be given the following alternative form

f(x) =
1

2i

[
log
(
1+

ix

1+ ia

)
+ log

(
1+

ix

1− ia

)
− log

(
1−

ix

1+ ia

)
− log

(
1−

ix

1− ia

)]
. (B.33)
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Therefore, L(y) can be written as a sum over four integrals. Let us detail the calculation

of one of them. We consider the following principal part integral

L1(y) =P

∫∞
−∞

dx

x2(x+ y)(x+ 2i)(x− 2i)

× log
(
1+

ix

1+ ia

)
. (B.34)

L1(y) can be computed with standard complex plane integration techniques. The inte-

grand has five singularities in the complex plane: poles at z = 0, z = −y, z = −2i, z = 2i

and a branch point at z = i− a. A semi-circle is added around z = 0 and z = −y. The

contour is closed in the lower half-plane, avoiding both the pole at z = 2i and the branch

cut [Fig. B.1].

Figure B.1: Complex plane z with poles of the integrand, Eq.(B.34).

Using Cauchy’s residue theorem, we obtain eventually:

−2πiRes[−2i] =
∫
C−

= L1(y) +

∫
C−y

+

∫
C0

+

∫
CR

(B.35)
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where

L1(y) = −πi
(
2Res[−2i] + Res[−y] + Res(2)[0]

)
, (B.36)

and

Res[−y] =
1

y2(y2 + 4)
log
(
1−

iy

1+ ia

)
, (B.37)

Res[−2i] =
1

16i(y− 2i)
log
(
1+

2

1+ ia

)
, (B.38)

Res(2)[0] =
i

4y(1+ ia)
. (B.39)

Above, Res[a] ≡ Res(f,a) = limx→a(z−a)f(z) and Res(2)[a] ≡ Res(2)(f,a) = limx→a d/dz[(z−

a)2f(z)] are the residues of the function f(z) at the pole a of the first and second order,

respectively. Summing everything, we finally obtain

L1(y) = −πi

[
1

8i(y− 2i)
log
(
1+

2

1+ ia

)

+
1

y2(y2 + 4)
log
(
1−

iy

1+ ia

)
+

i

4y(1+ ia)

]
. (B.40)

The other terms appearing in L(y) can be calculated using a similar approach.

b.2.4 General expression for the quantum dot susceptibility

Gathering all terms, the real and imaginary parts of the susceptibility read
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Π ′LL(ω)

= −
4Γ2L

πΓ3y
(
y2 + 4

) [arctan (a+ y) − arctan (a− y)]

+
ΓL

πΓ2
(
y2 + 4

) (1+ 4ΓR

y2Γ

)[
− 2 log

(
1+ a2

)
+ log

[
1+ (a+ y)2

]
+ log

[
1+ (a− y)2

] ]
, (B.41)

Π ′′LL(ω)

= −
2ΓL

πΓ2
(
y2 + 4

) (1+ 4ΓR

y2Γ

)
[arctan (a+ y) − arctan (a− y)]

−
2Γ2L

πΓ3y
(
y2 + 4

)[− 2 log
(
1+ a2

)
+ log

[
1+ (a+ y)2

]
+ log

[
1+ (a− y)2

] ]
, (B.42)

Π ′RR(ω)

= −
4Γ2R

πΓ3y
(
y2 + 4

) [arctan (b+ y) − arctan (b− y)]

+
ΓR

πΓ2
(
y2 + 4

) (1+ 4ΓL

y2Γ

)[
− 2 log

(
1+ b2

)
+ log

[
1+ (b+ y)2

]
+ log

[
1+ (b− y)2

] ]
, (B.43)
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Π ′′RR(ω)

= −
2ΓR

πΓ2
(
y2 + 4

) (1+ 4ΓL

y2Γ

)
[arctan (b+ y) − arctan (b− y)]

−
2Γ2R

πΓ3y
(
y2 + 4

)[− 2 log
(
1+ b2

)
+ log

[
1+ (b+ y)2

]
+ log

[
1+ (b− y)2

] ]
, (B.44)

Π ′LR(ω) +Π ′RL(ω)

= −
4ΓLΓR

πΓ3y
(
y2 + 4

) [arctan (a+ y) − arctan (a− y)]

−
4ΓLΓR

πΓ3y2
(
y2 + 4

)[− 2 log
(
1+ a2

)
+ log

[
1+ (a+ y)2

]
+ log

[
1+ (a− y)2

] ]
−

4ΓLΓR

πΓ3y
(
y2 + 4

) [arctan (b+ y) − arctan (b− y)]

−
4ΓLΓR

πΓ3y2
(
y2 + 4

)[− 2 log
(
1+ b2

)
+ log

[
1+ (b+ y)2

]
+ log

[
1+ (b− y)2

] ]
, (B.45)



B.2 calculation of the quantum dot susceptibility 145

Π ′′LR(ω) +Π ′′RL(ω)

=
8ΓLΓR

πΓ3y2
(
y2 + 4

) [arctan (a+ y) − arctan (a− y)]

−
2ΓLΓR

πΓ3y
(
y2 + 4

)[− 2 log
(
1+ a2

)
+ log

[
1+ (a+ y)2

]
+ log

[
1+ (a− y)2

] ]
+

8ΓLΓR

πΓ3y2
(
y2 + 4

) [arctan (b+ y) − arctan (b− y)]

−
2ΓLΓR

πΓ3y
(
y2 + 4

)[− 2 log
(
1+ b2

)
+ log

[
1+ (b+ y)2

]
+ log

[
1+ (b− y)2

] ]
. (B.46)

Using

Π(ω) = (βL − λ)
2ΠLL(ω) + (βR − λ)

2ΠRR(ω)

+ (βL − λ) (βR − λ) [ΠLR(ω) +ΠRL(ω)] , (B.47)

we obtain the final result for Π(ω):
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Π ′(ω) = −
4ΓL

πΓ3y
(
y2 + 4

) [arctan (a+ y) − arctan (a− y)]

×
(
(βL − λ)

2 ΓL + (βL − λ) (βR − λ) ΓR

)
+

ΓL

πΓ2
(
y2 + 4

)[− 2 log
(
1+ a2

)
+ log

[
1+ (a+ y)2

]
+ log

[
1+ (a− y)2

] ]
×
(
(βL − λ)

2

(
1+

4ΓR

y2Γ

)
− (βL − λ) (βR − λ)

4ΓR

y2Γ

)

−
4ΓR

πΓ3y
(
y2 + 4

) [arctan (b+ y) − arctan (b− y)]

×
(
(βL − λ)

2 ΓR + (βL − λ) (βR − λ) ΓL

)
+

ΓR

πΓ2
(
y2 + 4

)[− 2 log
(
1+ b2

)
+ log

[
1+ (b+ y)2

]
+ log

[
1+ (b− y)2

] ]
×
(
(βL − λ)

2

(
1+

4ΓL

y2Γ

)
− (βL − λ) (βR − λ)

4ΓL

y2Γ

)
. (B.48)
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and the imaginary part of the total charge susceptibility reads

Π ′′(ω) = −
2ΓL

πΓ2
(
y2 + 4

) [arctan (a+ y) − arctan (a− y)]

×
(
(βL − λ)

2

(
1+

4ΓR

y2Γ

)
− (βL − λ) (βR − λ)

4ΓR

y2Γ

)

−
2ΓL

πΓ3y
(
y2 + 4

)[− 2 log
(
1+ a2

)
+ log

[
1+ (a+ y)2

]
+ log

[
1+ (a− y)2

] ]
×
(
(βL − λ)

2 ΓL + (βL − λ) (βR − λ) ΓR

)
−

2ΓR

πΓ2
(
y2 + 4

) [arctan (b+ y) − arctan (b− y)]

×
(
(βL − λ)

2

(
1+

4ΓL

y2Γ

)
− (βL − λ) (βR − λ)

4ΓL

y2Γ

)

−
2ΓR

πΓ3y
(
y2 + 4

)[− 2 log
(
1+ b2

)
+ log

[
1+ (b+ y)2

]
+ log

[
1+ (b− y)2

] ]
(
(βL − λ)

2 ΓR + (βL − λ) (βR − λ) ΓL

)
. (B.49)





C
A P P E N D I X C

c.1 derivation of the effective kitaev hamiltonian in the presence of

the cavity field

In this section, we provide theoretical arguments for the wire Hamiltonian utilized in

Eq. (5.4), and the effective electron-cavity Hamiltonian used. In a continuum description,

the natural way to account for the interaction between the electrons and the electromag-

netic field is via the minimal coupling, i.e. p → p − (e/c)A in the electronic Hamiltonian,

with A being the electromagnetic field vector potential and p being the momentum of the

electrons in the material. In a tight-binding picture instead, one accounts for the coupling

between light and matter by performing the Peierls substitution to the hopping parame-

ters tii+1 between neighboring sites i and i+ 1, namely

tii+1 → tii+1e
i
∫i+1
i A(r)·dr , (C.1)

with A(r) being the electromagnetic field vector potential at position r, and the integra-

tion is performed between the sites i and i + 1. We will focus on the derivation of the

effective Kitaev model in the tight-binding picture, as the microscopic, continuum model

was described in great detail very recently in [23]. We thus refer the reader to that paper

for a detailed calculation of the cavity effects, as well as the derivation of the capacitive

coupling starting from the minimal coupling.

Here we give some details on the derivation of Eq. (5.4) starting from a non-superconducting

nanowire coupled to a bulk p-wave superconductor with such a coupling being assisted

by the cavity field. For simplicity, we assume the bulk to be not s, but p-wave paired, thus

the presence of spin-orbit coupling in the wire is not a necessary ingredient. However, the

149
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present calculations can be straightforwardly generalized to more realistic system, such

as nanowires with SOI. The total Hamiltonian of the system reads:

Hsys = Hb +Hw +HT +Hc , (C.2)

where

Hp = −µp
∑
j

c
†
j,pcj,p +

∑
j

(
tpc
†
j,pcj+1,p

+∆pc
†
j,pc
†
j+1,p + h.c.

)
(C.3)

with p = b(bulk),w(wire), and ∆w = 0 (no intrinsic superconductivity in the wire),

and ∆b ≡ ∆ the p-wave pairing in the bulk superconductor. Here, cj,p (c†j,p) and tp are

the electronic annihilation (creation) operator at position j and the hopping parameter in

system p = b,w, respectively. The tunneling Hamiltonian in the presence of the cavity

reads:

HT =
∑
j

(
tinte

−iφ̂jc
†
j,wcj,b + h.c.

)
, (C.4)

where φ̂j = Âjdj, with Âj = i(αj/ωc)(a
† − a), dj, αj, ωc, and a (a†), being the cavity

vector potential, the coupling strength, the cavity frequency, and the cavity photon annihi-

lation (creation) operators, respectively. Note that we assumed that the cavity field points

perpendicularly to the wire, and it has no component along it. If instead such components

would exists, we should have modified the wire Hamiltonian too in order to account for

the cavity induced phase factors. In the following, we will assume that αjdj ≡ αj = α,

namely it is constant along the entire wire. Finally, the Hamiltonian of the cavity reads:

Hc = ωca
†a , (C.5)
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with ωc being the (fundamental) frequency of the cavity. Before deriving an effective wire

Hamiltonian, it is instructive to switch to the Fourier space, for both the bulk and wire

Hamiltonians. We get:

Hb =
∑
k

ξk,bc
†
k,bck,b −

∑
k>0

i∆ sink
(
c−k,bck,b − c

†
k,bc

†
−k,b

)
, (C.6)

Hw =
∑
k

ξk,wc
†
k,wck,w , (C.7)

HT = tint
∑
k

(
eiφ̂c

†
k,wck,b + e

−iφ̂c
†
k,bck,w

)
, (C.8)

where ξk,p = tp cosk− µp, with µα the chemical potential in the p = w,b system.

Next we perform the so called Lang-Firsov transformation on the system Hamiltonian,

which means H̃sys = exp(S)Hsys exp(−S) with S chosen as follows:

S =
α

ωc
(a− a†)

∑
q

c†q,wcq,w. (C.9)

After some lengthy, but straightforward calculation we obtain the system Hamiltonian as

follows:

H̃sys = Hw +Hb +α
∑
q

c†q,wcq,w(a+ a
†)︸ ︷︷ ︸

Hc−w

+
α2

ωc

(∑
q

c†q,wcq,w︸ ︷︷ ︸
N̂2

)2
+ tint

∑
k

(c†q,wck,b + h.c.)︸ ︷︷ ︸
HT

+Hc , (C.10)

which implies we excluded the photonic field from the tunneling term at the expense of

adding photon-dependent chemical potential shift in the wire (third term) as well as an

interaction term (fourth term). Note that for tint = 0, the transformation does not affect

the spectrum, as it can be simply undone. However, as will see in the following, in the
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presence of the tunneling term the photonic field in the form of the capacitive coupling

can lead to real effects.

In the following, we aim at finding an effective Hamiltonian describing the wire only

by integrating the bulk superconductor degrees of freedom up to second order in the

tunneling tint. We choose to do so by employing the Schrieffer-Wolff transformation

formalism, which means, as before, that we unitary rotate the system Hamiltonian as

Heff
sys = e

SSW H̃syse
−SSW = Hw +Hb +Hw−c +HT +Hc

+ [SSW ,Hw +Hb +Hw−c +HT +Hc] + . . . , (C.11)

and choose

[SSW ,Hw +Hb] = −HT , (C.12)

or SSW = (Lw + Lb)
−1HT , with Lα being a superoperator whose action is defined as

LαA = [Hα,A], ∀A. This is equivalent to the following identity:

SSW = i lim
η→0

∫+∞
0

dte−ηtei(Hw+Hb)tHTe
−i(Hw+Hb)t. (C.13)

This term excludes the tunneling Hamiltonian HT in leading order (assuming there is no

diagonal contribution caused by such a term). Then, we neglect the contributions of the

higher order terms on the wire spectrum by averaging over the bulk ground state |0b〉 in

order to derive a purely (renormalized) wire Hamiltonian:

Heff
w ≈ 〈0b|Hb +Hw +Hc +Hw−c +

1

2
[SSW ,HT ]

+ [SSW ,Hw−c] + . . . |0b〉 , (C.14)
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In order to find SSW from Eq. (C.13) explicitly, let us perform Bogoliubov transformation

for the bulk p-wave superconductor defined as

ck,b = u∗kγk,b + vkγ
†
−k,b , (C.15)

c
†
−k,b = −v∗kγk,b + ukγ

†
−k,b , (C.16)

where k > 0 and

uk =
√
1/2 (1+ ξk/Ekb)

vk =
√
1/2 (1− ξk/Ekb)e

−iφb (C.17)

with φb the phase of the superconducting condensate (that we choose = 0 from now on)

and Ekb =
√
ξ2k +∆

2 sin2 k the spectrum. We can then express the bulk Hamiltonian in

terms of the γk and γ−k operators:

Hb =
∑
k>0

Ekb

(
γ
†
k,bγk,b + γ

†
−k,bγ−k,b

)
. (C.18)

Utilizing the fact that:

ck,w(t) = ck,w(0) exp(−iξk,wt) , (C.19)

and

γk,b(t) = γk,b(0) exp(−iEk,bt) , (C.20)

we can readily find the transformation matrix SSW as follows (assuming also that ξk,w �
Ek,b, since we are interested in the energies well inside the band gap of the bulk super-

conductor):

SSW =
∑
k

tint
Ekb

[ (
|uk|

2 − |vk|
2
)
(c†k,wck,b − c

†
k,bck,w)

− 2ukvk(c
†
k,wc

†
−k,b − c−k,bck,w)

]
. (C.21)
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Utilizing this expression for SSW , we can calculate the expectation values for the different

commutators in Eq. (C.14). We obtain:

Hind,w ≡
1

2
〈0b| [SSW ,HT + 2Hc−w] |0b〉 ≈ −

∑
k

t2int
Ekb

×
[ (

|uk|
2 − |vk|

2
)
c
†
k,wck,w − 2ukvkc

†
−k,wc

†
k,w + h.c.

]
, (C.22)

which can be interpreted as follows: the first term renormalizes the single particle spec-

trum in the wire, while the second term is responsible for the induced superconductivity

in the wire. The full wire Hamiltonian thus becomes:

Heff
w =

∑
k

(ξk,w + δξk,w︸ ︷︷ ︸
ξeff
k,w

)c†k,wck,w

+ 2
∑
k

(
∆indc

†
k,wc

†
−k,w + h.c

)
+α
∑
k

c
†
k,wck,w

(
a+ a†

)
+
α2

ωc
N̂2w (C.23)

with

δξk,w =
t2int
Ekb

(
|uk|

2 − |vk|
2
)
=
t2intξk,b

E2kb
, (C.24)

∆ind =
t2int
Ekb

ukvk =
t2int
2E2kb

∆ sink (C.25)

being the renormalization of the single-particle energies and the p-wave induced gap

(∝ sink). Note that the last term in Eq. (C.23) can be seen as a normalization of the

single-particle spectrum in the mean-field, and thus finally we recover the same wire

Hamiltonian defined in Eq. (5.4).
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c.2 the susceptibility for the kitaev model in case of periodic boundary

conditions

In this section, we give more details on the derivation of the susceptibility Π(ω) for the

case of a ring geometry for which we can apply PBCs. The Kitaev chain Hamiltonian in

real space was defined in Eq.(5.4) as:

Htot = Hel +Hel−c +Hph , (C.26)

Hel =−µ

N∑
i=1

c
†
ici −

1

2

N−1∑
i=1

(tc†ici+1+∆cici+1+ h.c.) ,

Hint = α

N∑
i=1

c
†
ici(a+ a

†) , (C.27)

and Hph = ωca
†a. In this case, we can switch to the Fourier space, which implies we can

write the fermionic operators as follows:

cj =
1√
N

∑
k

cke
ikj . (C.28)

where ck is the fermionic annihilation operator with momentum k = 2πn/N. We can then

rewrite the electronic Hamiltonian in momentum space

Hel =
∑
k>0

HKBdG(k) , (C.29)

with

HkBdG(k) = ξk(c
†
kck − c−kc

†
−k) − i∆ sink(c−kck − c

†
kc
†
−k), (C.30)
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is the Bogoliubov de Gennes Hamiltonian and ξk = −t cosk−µ. The interaction Hamilto-

nian between the electronic system and the cavity can as well be written in the k-space as

Hel−c =
∑
k>0

α(c†kck − c−kc
†
−k)(a+ a

†). (C.31)

One can simply diagonalize the Hel in the k-space and write:

Hel =
∑
k>0

Ek

(
γ
†
kγk + γ

†
−kγ−k

)
, (C.32)

with

Ek = ±
√
(−t cosk− µ)2 + (∆ sink)2 , (C.33)

being the eigenenergies, and we used

ck = u∗kγk + vkγ
†
−k, (C.34)

c
†
−k = −v∗kγk + ukγ

†
−k . (C.35)

Here, the functions uk and vk are given by

|uk|
2 =

1

2

(
1+

ξk
Ek

)
, (C.36)

|vk|
2 =

1

2

(
1−

ξk
Ek

)
. (C.37)
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We can now calculate the susceptibility Π(ω) defined in the previous section, which quan-

tifies the change in the photonic transmission τ due to the interaction with the electronic

system. In the Fourier space, we obtain:

Π(t) = −iθ(t)α2
∑
k,q>0

〈
[ (
c
†
kck − c−kc

†
−k

)
(t),(

c†qcq − c−qc
†
−q

)
(0)
]
〉. (C.38)

Using Eq. (C.34) and Eq. (C.35) with Eq. (C.36) and Eq. (C.37) we find:

Π(ω) = α2
∑
k>0

(∆ sink)2

E2k

(
1

ω− 2Ek + iη
−

1

ω+ 2Ek + iη

)
, (C.39)

with the small η > 0 assuring the convergence of the time-integrals. For large N � 1, we

can transform the sum into integral, and also write Π(ω) = Π ′(ω) + iΠ ′′(ω), with:

Π ′(ω) =
2Nα2

π
P

∫π
0

dk
(∆ sink)2

Ek

1

ω2 − 4E2k
, (C.40)

Π ′′(ω) =
Nα2

2

∫π
0

dk
(∆ sink)2

E2k
[δ(ω− 2Ek) − δ(ω+ 2Ek)] , (C.41)

where P . . . means the principal value of the function and we used the fact that:

1

x− a+ iε
= P

1

x− a
− iπδ(x− a) . (C.42)

We can perform the integral over k for the imaginary part Π ′′(ω) to obtain the expression

Eq.(5.9):

Π ′′(ω) =
α2tN
2µω

√√√√
1−

[
(ω/2)2 − t2 − µ2

]2
4t2µ2

, (C.43)

for |t + µ| < ω/2 < |t − µ|, and being zero otherwise. For the real part Π ′(ω) we found no

simple solution, and so we chose not to depict it. Note that the susceptibility Π(ω) ∝ N, i.

e. it scales linearly with the number of sites.
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c.3 the susceptibility of the nanowire in case of periodic boundary

conditions

The Hamiltonian for a nanowire in the presence of a Zeeman field B, Rashba spin-orbit

coupling u and induced superconductivity ∆ reads [73]

HNW =

(
p2

2m
− µ

)
τz + upσzτz +Bσx +∆τx. (C.44)

Let us diagonalize the Hamiltonian HNW = H0 + ∆τx in the absence of the induced

pairing ∆ and then treat the latter perturbatively

H0 =

(
p2

2m
− µ

)
τz + upσzτz +Bσx. (C.45)

In order to do so, let us perform the unitary transformation [73]

H̃0 = UH0U
†, (C.46)

where

U = exp (iασyτz/2) = cos (α/2) + iσyτz sin (α/2) . (C.47)

If we choose α so that

tan (α) =
B

up
, (C.48)

H̃0 takes the from

H̃0 =
[ p2
2m

− µ+
√
u2p2 +B2σz

]
τz. (C.49)
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Now let us reintroduce the pairing term ∆τx and apply the transformation U to it.

Then H̃NW reads

H̃NW =
[ p2
2m

− µ+
√
u2p2 +B2σz

]
τz +

∆up√
u2p2 +B2

τx

−
∆B√

u2p2 +B2
σyτy. (C.50)

Neglecting the last term in Eq.(C.50) the effective Hamiltonian reads

H̃eff =
[ p2
2m

− µ+
√
u2p2 +B2σz

]
τz +

∆up√
u2p2 +B2

τx. (C.51)

The bulk energy spectrum of H̃eff for σz = −1 is

εp,−1 = ±

√√√√( p2
2m

− µ−
√
u2p2 +B2

)2
+

∆2u2p2

u2p2 +B2
(C.52)

and for σz = +1 is

εp,+1 = ±

√√√√( p2
2m

− µ+
√
u2p2 +B2

)2
+

∆2u2p2

u2p2 +B2
. (C.53)

The electronic susceptibility is defined as

Π(t) = −iθ(t)〈[τz(t), τz(0)]〉. (C.54)

In order to diagonalize the Hamiltonian in Eq. (C.51), let us perform a transformation

Hd = U1H̃effU
†
1 = εpτz, (C.55)
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where

U1 = exp (iγτy/2) = cos (γ/2) + iτy sin (γ/2) . (C.56)

Then the electronic susceptibility reads

Π(t) = −iθ(t)〈
[

cos(γ)τz(0) − sin(γ)τx(t),

cos(γ)τz(0) − sin(γ)τx(0)
]
〉. (C.57)

τx(t) = e
iεpτztτx(0)e

−iεpτzt

= cos (2εpt) τx(0) − sin (2εpt) τy(0). (C.58)

Introducing Eq.(C.58) into Eq.(C.57), Π(t) reads

Π(t) = −2θ(t) sin2(γ) sin(2εpt). (C.59)

Performing the Fourier transform, Eq. (C.59) reads

Π(ω) = −2
∑
p

sin2(γ)
∫+∞
0

dteiωt−ηt sin(2εpt)

= −2
∑
p

sin2(γ)
2εp

4ε2p + (η− iω)2

=
∑
p

sin2(γ)
(

1

ω− 2εp + iη
−

1

ω+ 2εp + iη

)
. (C.60)

Sum can be transformed into integral as

∑
p

=
N

2π

∫
dp =

N

2π

∫
dερ(ε). (C.61)
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Then the imaginary part of the susceptibility Π(ω) = Π ′(ω) + iΠ ′′(ω), Eq. (C.60) reads

Π ′′(ω) = −
N

4

∫
dερ(ε) sin2(γ)(ε) [δ(ε−ω/2) − δ(ε+ω/2)] . (C.62)

The projection onto the lower band σz = −1

The low-energy subspace at p = ±pF is formed by the bands for which σz = −1. pF = 2mu

when µ = 0.

The effective Hamiltonian for εSO = mu2 >> B, µ = 0 linearized around ±pF reads

H̃eff = u(|p|− pF)τz + sign(p)∆τx. (C.63)

The bulk energy spectrum reads

εp = ±
√
∆2 + u2(|p|− pF)2. (C.64)

In this limit

sin2(γ)(ε) =
∆2

ε2
(C.65)

and the density of states reads

ρ(ε) =
ε

u
√
ε2 −∆2sign(p)

. (C.66)

Introducing Eq.(C.65) and Eq.(C.66) into Eq.(C.62) the imaginary part of the electronic

susceptibility reads

Π ′′(ω) = −
N∆2

ωu
√
ω2 − 4∆2

. (C.67)
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The projection onto σz = +1

In this case the effective Hamiltonian linearized around p = 0 reads

H̃eff =

(
p2

2m∗
− µ+B

)
τz +

∆up

B
τx, (C.68)

where an effective mass m∗ was introduced as

1

m∗
=
1

m
+
u2

B
. (C.69)

The bulk energy spectrum reads

εp = ±

√√√√(B− µ+
p2

2m∗

)2
+
∆2u2p2

B2

≈ ±
√
(B− µ)2 + cp2, (C.70)

where

c =
B− µ

m∗
+
∆2u2

B2
. (C.71)

The density of state reads

ρ(ε) =
ε√

c [ε2 − (B− µ)2]
. (C.72)

And

sin(γ)2(ε) =
∆2u2

[
ε2 − (B− µ)2

]
B2ε2c

. (C.73)
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Introducing Eq.(C.72) and Eq.(C.73) into Eq.(C.62) the imaginary part of the electronic

susceptibility reads

Π ′′(ω) = −
N∆2u2

√
ω2 − 4(B− µ)2

4ωB2c3/2
. (C.74)

c.4 the correlation function for open boundary conditions

In this part, we present details on the calculation of the susceptibility for a finite wire with

open boundary conditions. In this case, the excitation spectrum changes compared to the

previous case, as in the topological region the zero energy Majorana fermions emerge.

The susceptibility reads:

Π(ω) = −iα2
N∑
i,j=1

∫∞
0

dte−iωt〈|[n̂i(t), n̂j(0)]|〉 (C.75)

and which can be written as

Π(ω) = ΠBB(ω) +ΠBM(ω) , (C.76)

being the sum of a bulk susceptibility, that can be constructed from only the bulk (or

gaped) states, and cross terms that involve both bulk and Majorana states, respectively. We

use the discrete lattice model to numerically diagonalize the Hamiltonian for an electronic

system with N fermionic sites. This can be written in a compact form as follows:

Hel =
1

2
~c†M~c (C.77)

with

~c = (c1, c†1, c2, c†2, ..., cN, c†N)
T , (C.78)
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where M is a 2N× 2N matrix. Moreover, assuming all entries in the matrix are real, M is

also symmetric, we can write it as follows:

M = PWP†, (C.79)

where W is a diagonal matrix with eigenvalues on its diagonal and P is a unitary matrix

(PP† = P†P = I) whose columns are eigenvectors of M. The matrix W is ordered so that

W =



ε1 0 · · · 0 0

0 −ε1 · · · 0 0
...

...
. . .

...
...

0 0 · · · εN 0

0 0 · · · 0 −εN


, (C.80)

with ±εn being the eigenenergies of the BdG Hamiltonian and n = 1, . . . N. That pertains

to the following diagonal Hamiltonian:

H1D =

N∑
m=1

εm

(
c̃†mc̃m −

1

2

)
, (C.81)

where c̃m (c̃†m) are the annihilation (creation) operators for the Bogoliubov quasiparticles,

which are defined as follows:

~̃c = P†~c (C.82)

and

~̃c = (c̃1, c̃†1, c̃2, c̃†2, . . . , c̃N, c̃†N)
T . (C.83)

It is instructive to introduce the wavefunctions ~ψk (i) = (uk,i, vk,i)
T , where uk,i (vk,i) =

p2i−1,k (p2i,k), and which are describing the state k = 0, . . . , 2N at position i = 1, . . . ,N
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in the lattice and accounts for the electron (u) and hole (v) components, respectively. That

allows us to write:

ci =

N∑
k=1

[
u2k−1,ic̃k + u2k,ic̃

†
k

]
, (C.84)

c
†
i =

N∑
k=1

[
v2k−1,ic̃k + v2k,ic̃

†
k

]
. (C.85)

so that we can rewrite Eq. (C.75) in terms of uk,i and vk,i as follows:

Π(ω) =

N∑
i,j,k,m=1

(1−nk)(1−nm)v2k−1,iu2m−1,i

×
(
u2k,jv2m,j − v2k,ju2m,j

)
×
(

1

ω+ iη− ε2k−1 − ε2m−1
−

1

ω+ iη+ ε2k−1 + ε2m−1

)
+ (1−nk)nmv2k−1,iu2m,i

(
u2k,jv2m−1,j − v2k,ju2m−1,j

)
×
(

1

ω+ iη− ε2k−1 + ε2m−1
−

1

ω+ iη+ ε2k−1 − ε2m−1

)
+nk(1−nm)v2k,iu2m−1,i

(
u2k−1,jv2m,j − v2k−1,ju2m,j

)
×
(

1

ω+ iη+ ε2k−1 − ε2m−1
−

1

ω+ iη− ε2k−1 + ε2m−1

)
+nknmv2k,iu2m,i

(
u2k−1,jv2m−1,j − v2k−1,ju2m−1,j

)
×
(

1

ω+ iη+ ε2k−1 + ε2m−1
−

1

ω+ iη− ε2k−1 − ε2m−1

)
. (C.86)
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Next we extract from this expression only the ΠBM(ω) component. This reads:

ΠBM(ω) =

N∑
i,j=1

N−1∑
k=1

(
1

ω+ iη+ ε2k−1
+

1

−ω− iη+ ε2k−1

)

×
[
− (1−nk −nM)

[
v2k−1,iu2M−1,iu2k,jv2M,j

− v2k−1,iu2M−1,iv2k,ju2M,j + v2M−1,iu2k−1,iu2M,jv2k,j

− v2M−1,iu2k−1,iv2M,ju2k,j

]
− (nM −nk)

[
v2k−1,iu2M,iu2k,jv2M−1,j

− v2k−1,iu2M,iv2k,ju2M−1,j + v2M,iu2k−1,iu2M−1,jv2k,j

− v2M,iu2k−1,iv2M−1,ju2k,j

]]
, (C.87)

and, using that u2k−1,i = v2k,i, it can be simplified even further to give:

ΠBM(ω) =

N∑
i,j=1

N−1∑
k=1

(
1

ω+ iη+ ε2k−1
+

1

−ω− iη+ ε2k−1

)

×
[
− (nM − 1+nk)

[
− u2k,iv2M,iu2k,jv2M,j

+ u2k,iv2M,iv2k,ju2M,j − u2M,iv2k,iu2M,jv2k,j

+ u2M,iv2k,iv2M,ju2k,j

]
+ (nM −nk)

[
− u2k,iu2M,iu2k,ju2M,j

+ u2k,iu2M,iv2k,jv2M,j − v2M,iv2k,iv2M,jv2k,j

+ v2M,iv2k,iu2M,ju2k,j

]]
. (C.88)



C.4 the correlation function for open boundary conditions 167

Let us now introduce the coefficients C(s), s = 1, 2 defined in Eq.(5.24):

C(s) =

N∑
i=1

(u2M,iδs,1 + v2M,iδs,2)u2k,i

− (u2M,iδs,2 + v2M,iδs,1)v2k,i , (C.89)

which we can utilize to rewrite ΠBM(ω) as follows:

ΠBM(ω) =

N−1∑
k=1

(
1

ε2k +ω+ iη
+

1

ε2k −ω− iη

)

×
[
(nM −nk)

∣∣∣C(1)
∣∣∣2 − (nM − 1+nk)

∣∣∣C(2)
∣∣∣2 ] , (C.90)

and which correspond to the expression Eq. (5.23).





D
A P P E N D I X D

In this appendix, we will derive the electronic susceptibility for the chain that can host

multiple Majorana fermions in case of periodic boundary conditions, cN+1 ≡ c1.

cj =
1√
N

∑
k

cke
ikj, (D.1)

c
†
j =

1√
N

∑
k

c
†
ke

−ikj. (D.2)

Then Eq.(6.1) in the k-space reads

H =
∑
k>0

Hk(k), (D.3)

where

Hk(k) =
(
c
†
k c−k

)−2µ− 2t1 cos(k) − 2t2 cos(2k) 2i∆1 sin(k) + 2i∆2 sin(2k)

−2i∆1 sin(k) − 2i∆2 sin(2k) 2µ+ 2t1 cos(k) + 2t2 cos(2k)

 ck

c
†
−k


(D.4)

τx = c−kck + c
†
kc
†
−k, (D.5)
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τy = −i(c†kc
†
−k + ckc−k), (D.6)

τz = c
†
kck − c−kc

†
−k. (D.7)

Hk(k) = [−2µ− 2t1 cos(k) − 2t2 cos(2k)]τz + [−2∆1 sin(k) − 2∆2 sin(2k)]τy. (D.8)

Let us diagonalize the Hamiltonian Hk(k) by performing a unitary transformation

H̃k(k) = U
†Hk(k)U = Ekτz (D.9)

with

U = exp(−iθkτx/2) = cos(θk/2) − iτx sin(θk/2). (D.10)

tan(θk) = −
∆1 sin(k) +∆2 sin(2k)
µ+ t1 cos(k) + t2 cos(2k)

. (D.11)

The winding number that measures the number of Majorana fermions reads

w =

∫2π
0

dθk
2π

. (D.12)

Energy is
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Ek,± = ±2
√
(µ+ t1 cos(k) + t2 cos(2k))2 + (∆1 sin(k) +∆2 sin(2k))2. (D.13)

The condition for the topological phase transition is closing of the gap, Ek = 0.

Ek(k = 0) = 2(t1 + t2 + µ) = 0⇒ t2 = −µ− t1, (D.14)

Ek(k = π) = 2(−t1 + t2 + µ) = 0⇒ t2 = −µ+ t1, (D.15)

Electronic susceptibility reads

Π(t) = −iθ(t)
∑
k,q>0

〈
[
c
†
k(t)ck(t) − c−k(t)c

†
−k(t), c

†
q(0)cq(0) − c−q(0)c

†
−q(0)

]
〉,

(D.16)

or

Π(t) = −iθ(t)
∑
k,q>0

〈
[
τz(t), τz(0)

]
〉. (D.17)

Applying unitary transformation Eq.(D.10) to τz, electronic susceptibility becomes

Π(t) = −iθ(t)〈
[
τz(t) cos(θk) + τy(t) sin(θk), τz(0) cos(θk) + τy(0) sin(θk)

]
〉. (D.18)

Using Eq.(D.9),
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τz(t) = τz(0), (D.19)

τy(t) = e
iEkτztτy(0)e

−iEkτzt = cos(2Ekt)τy(0) + sin(2Ekt)τx(0). (D.20)

Then assuming that 〈τz(0)〉 = −1, the electronic susceptibility reads

Π(t) = −2θ(t) sin2(θk) sin(2Ekt). (D.21)

Performing the Fourier transform, the susceptibility Π(ω) becomes

Π(ω) =
∑
k>0

sin2(θk)
(

1

ω− 2Ek + iη
−

1

ω+ 2Ek + iη

)
. (D.22)

Using Eq.(D.11),

sin2(θk) =
4(∆1 sin(k) +∆2 sin(2k))2

E2k
. (D.23)

Substituting sum with an integral

∑
k>0

⇒ N

2π

∫π
0

dk, (D.24)

electronic susceptibility reads
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Π(ω) =
N

2π

∫π
0

dk
4(∆1 sin(k) +∆2 sin(2k))2

E2k

(
1

ω− 2Ek + iη
−

1

ω+ 2Ek + iη

)
.

(D.25)





E
S Y N T H È S E E N F R A N Ç A I S

Dans cette thèse, nous avons étudié la façon dont la mesure du champ micro-ondes de

la cavité peut être utilisée pour extraire des informations sur les propriétés des nanos-

tructures couplées à la cavité. Les expériences actuelles permettent de mettre en œuvre

des circuits mésoscopiques sur puce couplés à un résonateur à haut facteur de qualité

et de mesurer de très petites variations de l’amplitude du signal optique micro-ondes.

L’électrodynamique quantique (QED) en cavité est une technique expérimentale qui per-

met d’étudier et de manipuler des atomes qubits supraconducteurs et des boîtes quan-

tiques couplées à une cavité micro-ondes. En utilisant la théorie des entrées-sorties dans

le cas d’un couplage faible entre le système électronique et le champ photonique dans

la cavité, nous avons relié le coefficient de transmission de la cavité à la susceptibilité

électronique de la nanostructure. Le décalage de fréquence est proportionnel à la par-

tie réelle de la susceptibilité électronique alors que l’élargissement de la fréquence est

proportionnel à la partie imaginaire de la susceptibilité. Dans cette thèse, cette approche

est appliquée à quatre conducteurs mésoscopiques spécifiques : une jonction tunnel, une

boîte quantique couplée aux fils, un fil topologique à une dimension et un anneau supra-

conducteur.

Tout d’abord, nous utilisons la réponse photonique de la cavité pour étudier une jonc-

tion tunnel et une boîte quantique couplée par effet tunnel à des fils métalliques. Nous

considérons à la fois le couplage capacitif de la boîte quantique à la cavité ainsi que le cou-

plage des fils à la cavité. Nous démontrons que ces deux types de couplages entraînent

une réponse de la cavité totalement différente et donc sondent différentes observables

associées au conducteur quantique. Nous trouvons des relations entre les observables

optiques, tels que la transmission de la cavité, et les quantités liées au transport, telles

que la conductance différentielle dI/dV . Ces relations sont valables jusqu’à des valeurs

élevées de la fréquence et de la tension pour les conducteurs quantiques loin de résonance
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(donc dans le régime hors équilibre). Et elles sont valables à basse fréquence et basse ten-

sion lorsque la boîte quantique est proche de la résonance. Au-delà de ces régimes, des

mesures du champ photonique de la cavité fournissent de nouvelles informations sur le

conducteur quantique.

De plus, nous appliquons l’approche de la QED en cavité pour trouver des traces

de fermions de Majorana dans les fils topologiques. Nous considérons un supracon-

ducteur en onde p couplé capacitivement à une cavité micro-ondes. Le déphasage et

l’élargissement en fréquence dû à la présence du supraconducteur en onde p dans la cav-

ité est proportionnel à la susceptibilité électronique du fil. Les observables photoniques

peuvent être utilisées pour obtenir des indices de la présence de fermions de Majorana,

comme une transition de phase topologique ou des oscillations de la susceptibilité élec-

tronique dans la phase topologique. En outre, des expériences de QED en cavité devraient

permettre de sonder la parité de l’état Majorana, qui n’est pas accessible dans les expéri-

ences de transport.

Ensuite, nous étudions un fil topologique qui peut accueillir plusieurs fermions de

Majorana à ses extrémités en le couplant à une cavité micro-ondes. Cette situation est

possible en présence des couplages à longue portée dans le fil. Nous démontrons que le

champ photonique de la cavité permet de sonder la transition de phase topologique entre

les phases avec un nombre différent de fermions de Majorana, ainsi que les oscillations

de la susceptibilité. La période des oscillations est différente lorsqu’il y a un ou deux

fermions de Majorana à chaque extrémité de la chaîne, alors que ces oscillations sont

absentes dans la phase triviale.

Enfin, nous appliquons les méthodes de la QED en cavité pour étudier l’effet Joseph-

son fractionnel associé à la physique des fermions de Majorana. Nous considérons un

anneau supraconducteur fermé par un couplage faible, traversé par un flux magnétique

constant. Un flux magnétique variable créé par la cavité micro-ondes induit le couplage

entre l’anneau et le champ photonique de la cavité. Nous étudions l’effet Josephson et la

transition vers l’effet Josephson fractionné, qui est associé à l’apparition de fermions de

Majorana dans le système, par l’intermédiaire de la réponse de la cavité. Nous prenons

pleinement en compte l’interaction entre les modes de Majorana de faible énergie et les
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états de volume gappés. Nous démontrons que ceci est crucial pour le suivi de l’évolution

de l’effet Josephson au cours de la transition de la phase topologique vers la phase triviale.

e.1 la théorie des entrées-sorties pour les cavités micro-ondes

Ê(x) ∝ (a + a†)

Hel

bin

boutcout

cin

κ1κ2

Figure E.1: Schéma d’un système de cavité. Les champs d’entrée bin et cin sont envoyés vers
la cavité depuis les miroirs gauche et droit respectivement, et les champs de sortie
bout and cout sont mesurés des mêmes côtés. Le champ de la cavité, quantifié par
les opérateurs bosoniques a et a†, interagit avec le système électronique à travers le
couplage capacitif affectant la cavité. Le couplage entre le champs de la cavité et les
modes externes est quantifié par le taux de décroissance κ1(2) = 2πρ|f1(2)|2 où ρ est la
densité des états dans le réservoir et |f1(2)|2 ≡ f1(2)f∗1(2) est le couplage moyen entre la
cavité et les modes de réservoir à droite (gauche). Afin de simplifier la première partie,
nous supposons que κ2 = 0, ce qui correspond à une cavité unilatérale.

Dans cette section, nous présentons des détails sur la théorie des entrées-sorties pour la

cavité en présence du couplage à un conducteur quantique (jonction tunnel, boîte quan-

tique, fil topologique, etc.) Cette approche nous permet de dériver la relation entre la

transmission du résonateur supraconducteur et la susceptibilité de charge du système

électronique imbriqué dans le résonateur. Nous nous concentrons sur la seule résonance

de la cavité avec la fréquence ωc [20]. L’Hamiltonien total qui décrit le système est [34,

36]

H = Hb +Hc−b +Hel +Hc +Hel−c︸ ︷︷ ︸
Hsys

. (E.1)
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L’Hamiltonien du réservoir :

Hb =
∑
q

ωqb
†
qbq, (E.2)

où bq (b†q) sont les opérateurs d’annihilation (création) pour le mode de réservoir ayant

énergie ωq, avec leurs numéros quantiques étiquetés q. L’Hamiltonien de la cavité est

Hc = ωca
†a, (E.3)

où a (a†) est l’opérateur d’annihilation (création) pour le mode de cavité ayant énergie

ωc. L’Hamiltonien cavité-réservoir est

Hc−b = −i
∑
q

(
fqa
†bq − f∗qb

†
qa
)

, (E.4)

où les coefficients complexes fq sont des paramètres de couplage entre la cavité et le

réservoir extérieur. L’Hamiltonien électron-cavité est

Hel−c = α(a+ a
†)n, (E.5)

où α est la puissance de couplage entre le champ de la cavité et l’opérateur de nombre

total dans le système n ≡∑Nj=1 c†jcj, avec cj (c†j ) étant l’opérateur d’annihilation (création)

pour les électrons (degrés de liberté fermioniques) sur le site j dans le système électron-

ique. Finalement, Hel est l’Hamiltonien uniquement électronique.

L’idée principale de la théorie des entrées-sortie est de trouver les photons (ou le champ)

de sortie en termes de ceux d’entrée, comme nous montrons schématiquement sur la

Fig. E.1. D’après Ref. [20], étant donné la cavité unilatérale (κ2 = 0 in Fig. E.1), nous

obtenons, dans l’équation de mouvement de cavité :

ȧ = i [Hsys,a] −
κ

2
a−
√
κbin , (E.6)



E.1 la théorie des entrées-sorties pour les cavités micro-ondes 179

pour le champ d’entrée, et

ȧ = i [Hsys,a] +
κ

2
a−
√
κbout , (E.7)

pour le champ de sortie, où κ = 2πρ|f|2 et le taux de décroissance de cavité dans lequel

ρ est la densité des états dans le réservoir et f est le couplage moyen entre la cavité et les

modes de réservoir.

En soustrayant Eq. E.7 de Eq. E.6, nous obtenons que

bout(t) = bin(t) +
√
κa(t). (E.8)

Ce résultat est valable pour tout Hamiltonien général de cavité. Afin de pouvoir dériver

le coefficient de transmission, nous établissons la relation entre bout et bin en présence

du système électronique. Premièrement, nous calculons le commutateur

[Hsys,a] = −ωca−αn , (E.9)

où n est l’opérateur de nombre des particules électroniques, dépendant du temps.

Dans la limite de couplage électron-photon faible, le coefficient de transmission est

τ =
κ

−i(ω−ωc) + κ+ iΠ(ωc)
≡ Aeiφ, (E.10)

où Π(ω) est la susceptibilité électronique pour la fréquence de cavitéωc, définie comme

Π(t− t ′) = −iθ(t− t ′)α2〈[nI(t),nI(t ′)]〉0. (E.11)

La phase et l’amplitude de réponse de la cavité proche de la résonance ω ≈ ωc sont

reliées à la susceptibilité Π(ωc) d’une manière suivante :
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δφ = Π ′(ωc)/κ, (E.12)

δA/Ain = Π ′′(ωc)/κ, (E.13)

où δφ = φout −φin, δA = Ain −Aout, et Π ′(ω) = Re[Π(ω)] (Π ′′(ω) = Im[Π(ω)]) est la

partie réelle (imaginaire) de la susceptibilité. Le décalage de fréquence est proportionnel

à la partie réelle de la susceptibilité électronique alors que l’élargissement de fréquence

est proportionnel à la partie imaginaire de la susceptibilité.

Dans ce que suit, nous allons calculer la susceptibilité électronique Π(ω) pour trois sys-

tème différents : une boîte quantique couplée par l’effet tunnel aux fils, un fil topologique

et un anneau supraconducteur.

e.2 boîte quantique hors équilibre couplée à une cavité micro-ondes

Dans cette section, nous utilisons l’approche de l’électrodynamique quantique en cavité

pour étudier une boîte quantique couplée par l’effet tunnel aux fils métalliques. Nous

considérons que la boîte quantique et les fils sont couplés capacitivement à une cavité

(supraconductrice) micro-ondes de sorte que l’Hamiltonien du couplage électron-photon

soit

Hel−c = λ(a+ a
†)d†d+ (a+ a†)

∑
kα

βαc
†
kαckα , (E.14)

où ckα (c†kα) est l’opérateur d’annihilation (création) d’un électron dans le fil gauche

(droit) α = L(R) avec la quantité de mouvement k; d (d†) est l’opérateur d’annihilation

(création) d’un électron dans la boîte quantique; a (a†) et l’opérateur d’annihilation (créa-

tion) du champ photonique. λ et βα sont respectivement les constantes de couplage

électron-photon avec la boîte quantique et le fil α = L,R. Notez que nous prenons en
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compte le couplage entre la boîte quantique et la cavité ainsi que celui entre la cavité et

les réservoirs électroniques.

La susceptibilité électronique de la boîte quantique hors équilibre est

Π(t− t ′) =− iθ(t− t ′)〈
[
(λnd +βLnL +βRnR) (t) ,

(λnd +βLnL +βRnR)
(
t ′
) ]
〉, (E.15)

où nd = d†d est l’opérateur de nombre pour les électrons en boîte et nα =
∑
k c
†
kαckα est

l’opérateur de nombre pour les électrons dans le fil α.

�0.6 �0.5 �0.4 �0.3 �0.2 �0.1 �0.100 �0.075 �0.050 �0.025 0

� d
[Γ

]

� d
[Γ

]

eV [Γ] eV [Γ]

Π̃��Π̃�

Figure E.2: Π̃ ′(ω) ≡ Π ′(ω)/ (βL − λ)
2 (à gauche) et Π̃ ′′(ω) ≡ Π ′′/(βL − λ)2 (à droite) en fonction

de eV et εd pour βL = βR, ΓL = ΓR = 0.5 et ω = 0.1. Toutes les énergie sont exprimées
en termes de Γ = ΓL + ΓR.

Sans fluctuation de charge dans la boîte quantique (nd(t) ≈ const) dans la gamme en

question des fréquences de la cavité,

Π(ω) ≈ i

eω
(βL −βR)

2Y(ω), (E.16)

où Y = YLL = YRR = −YLR = −YRL est la conductance différentielle généralisée hors

équilibre.

Dans le régime des basses fréquences où la fréquence de cavité est typiquement in-

férieure à la largeur de résonance de la boîte quantique, ω� Γ , étant donné les constants
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de couplage fil-cavité égales βL = βR et pour ΓL = ΓR, la partie réelle de la cavité ou le

décalage de fréquence δφ est directement proportionnel à la conductance différentielle

G(V) = dI/dV .

δφ(V) = −
4(βL − λ)

2

κe2Γ
G(V). (E.17)

Dans cette limite, la partie réelle et la partie imaginaire de Π ont des pics autour de

eV = 0 (cf. Fig.E.2). Pour eV supérieur à Γ , les pics se séparent, et on trouve les résonances

pour eV/2 = ±εd. Les relations Korringa-Shiba sont satisfaites à l’énergie faible pour

V = 0. Cela signifie que Π ′′ ∝ (Π ′)2 et donc les résonances en Π ′′ sont plus étroites qu’en

Π ′ si eV = 0.

Dans le cas plus général où βL 6= βR, l’élargissement de fréquence δA/A est proportion-

nel à la conductance différentielle G(V):

δA

A
≈ −

(βL −βR)
2

ωκe2
G(V). (E.18)

Néanmoins, au-delà des limites ci-dessus mentionnées, la susceptibilité de charge et la

conductance ne sont pas en correspondance et peuvent être utilisées comme une sonde

non-invasive pour mieux caractériser la boîte quantique.

e.3 fermions de majorana dans des supraconducteurs topologiques cou-

plés à une cavité micro-ondes

Dans cette section, nous calculons la susceptibilité électronique reliée au coefficient de

transmission optique pour le fil topologique et démontrons qu’elle permet de déterminer

le point de transition de phase, l’émergence des fermions de Majorana et la parité de leur

état fondamental.



E.3 fermions de majorana dans des supraconducteurs topologiques couplés à une cavité micro-ondes 183

0.0 0.2 0.4 0.6 0.8 1.0
-4

-3

-2

-1

0

VHmeVL

P
’’êb2
Hme

V
L

0.0 0.2 0.4 0.6 0.8 1.0

-80

-60

-40

-20

0

VHmeVL
P
’’êb2
Hme

V
L

⇧
00 (

V
Z
,!

)/
↵

2

VZ [meV]

0.0 0.2 0.4 0.6 0.8 1.0

-15

-10

-5

0

0.0 0.2 0.4 0.6 0.8 1.0
-0.8

-0.6

-0.4

-0.2

0.0

Vz@meVD

P
’’HV z

,w
Lêa2

0.0 0.2 0.4 0.6 0.8 1.0
-4

-3

-2

-1

0

VHmeVL

P
’’êb2
Hme

V
L

0.0 0.2 0.4 0.6 0.8 1.0

-80

-60

-40

-20

0

VHmeVL
P
’’êb2
Hme

V
L

⇧
00 (

V
Z
,!

)/
↵

2

VZ [meV]

0.0 0.2 0.4 0.6 0.8 1.0

-15

-10

-5

0

0.0 0.2 0.4 0.6 0.8 1.0
-0.8

-0.6

-0.4

-0.2

0.0

Vz@meVD

P
’’HV z

,w
Lêa2

Figure E.3: La partie imaginaire de la susceptibilité électronique [Π ′′(ω)] en tant qu’une fonction
de l’énergie Zeeman VZ pour un nanofil avec interaction spin-orbite dans le cas de
conditions périodique aux limites ayant les paramètres L = 2µm, t = 0.5 · 10−2 eV,
α = 0.4 meV, µ = −10−2 eV, ∆ = 0.25 meV, N = 80, et ω = 0.1 meV (ω = 0.2
meV dans l’encart). La transition topologique a lieu pour VZ ≈ 0.25 meV, pour lequel
la susceptibilité atteint son maximum. L’émergence d’un deuxième pic est due à la
condition de résonance autours de gaps extérieurs (k ∼ kF).

La susceptibilité électronique du fil topologique couplé capacitivement à une cavité

micro-ondes est

Π(t− t ′) = −iα2θ(t− t ′)〈[n̂I(t), n̂I(t ′)]〉 , (E.19)

où n̂ est l’opérateur de nombre total des électrons. Ici, nous prenons en compte unique-

ment le modèle couplé spin-orbite pour le fil topologique. Le système est dans le régime

topologique non-trivial (trivial) pour VZ >
√
µ2 +∆2 (VZ <

√
µ2 +∆2).

Sur la Fig. E.3, nous traçons la partie imaginaire de la susceptibilité dans le cas des

conditions périodiques aux limites en tant qu’une fonction de l’énergie Zeeman VZ pour

deux valeurs différentes de la fréquence de cavité ωc. Un pic de Π ′′(ω) apparaît dans le

point de transition de phase topologique et devient plus étroit avec la diminution de ω.

Cependant, un pic supplémentaire apparaît dans le cas d’une VZ plus grande, et il est du
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Figure E.4: Dépendance entre Π ′(ω,VZ) et l’énergie Zeeman VZ. Au dessus de la transition
topologique (indiqué sur l’image), les courbes rouge (continue) et noire (pointillée) cor-
respondent à Π ′(ω,VZ) pour respectivement la parité nM = 0 et nM = 1. Π ′(ω,VZ)
comprenne des oscillations en tant que function de VZ. Ces oscillations ont des ampli-
tudes différentes pour les parités nM = 0, 1 (mais les périodes égales) et se croise dans
le points où εM = 0 (voir l’encart). Au dessous de la transition topologique, la suscep-
tibilité reproduit celle des conditions périodiques aux limites. Nos paramètres sont [8]:
L = 2µm, t = 0.5 · 10−2eV, α = 0.4meV, µ = −10−2eV, ∆ = 0.25meV, ω = 0.02meV,
and N = 80.

à la condition de résonance avec les gaps autour de k ∼ kF (gaps extérieurs dans le spectre

de nanofil couplé spin-orbite).

Ensuite, nous étudions un système unidimensionnel topologique fini couplé à une cav-

ité (donc ayant des conditions ouvertes aux limites) de sorte que deux fermions de Ma-

jorana apparaissent dans la région topologique, chacun localisé dans l’une des deux ex-

trémités de la chaîne. Pris ensemble, ils engendrent un état fermionique à l’énergie zéro

dans la limite de fil infini. Cet état peut être vide ou occupé ainsi étiquetant la parité

d’un supraconducteur unidimensionnel en onde p [4]. Les fonctions d’onde de Majorana

diminuent exponentiellement dans le fil sur l’échelle de longueur de corrélation supra-

conductrice ξ, et, pour le fil fini, cela peut entraîner le fractionnement fini de l’énergie

εM ∝ exp (−L/ξ) de l’état fermionique à l’énergie initialement zéro.
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Pour un fil fini dans le régime topologique, la susceptibilité peut être écrite comme

Π(ω) = ΠBB(ω) + ΠBM(ω) + ΠMM(ω), étant la somme des termes qui contiennent

uniquement les états en masse (bulk-bulk, ou BB), termes de croisement entre Majorana

et les états en masse (bulk-Majorana, ou BM) et les contributions de Majorana unique-

ment (Majorana-Majorana, ou MM). Dans ce que suit, nous analysons la contribution des

termes de croisement ΠBM(ω). Pour εM � εp ±ω; étant donné p 6=M, nous obtenons :

ΠBM(ω) =
∑
p,s6=M

(
1

εps +ω+ iη
+

1

εps −ω− iη

)
×
[
|C

(1)
M,ps|

2(nM −nps) − |C
(2)
M,ps|

2(nM − 1+nps)
]

, (E.20)

où nps et nM sont les occupations des états en masse et états de Majorana. En exami-

nant l’expression précédente, nous remarquons qu’elle dépend fortement de la parité des

états de Majorana nM. En supposant que εps > 0 pour p, s 6= M et que nps = 0 pour

n 6= M dans l’état fondamental, nous obtenons que Π+
BM ∝ |C

(1)
M,ps|

2 (Π−
BM ∝ |C

(2)
M,ps|

2)

pour nM = 1 (nM = 0). Afin d’obtenir la compréhension physique haut niveau de la

susceptibilité résultante, nous écrivons le coefficients C(1,2)
M,ps d’une manière suivante :

C
(r)
M,ps =

∑
j

[(ujMδr,1 + v
j
Mδr,2)u

j
ps

− (ujMδr,2 + v
j
Mδr,1)v

j
ps] . (E.21)

Analysons l’implication de ce résultat. Quand εM = 0, nous avons également ujM = v
j
M,

et donc C(1)
Mp = C

(2)
Mp puisque les contributions des électrons et des trous sont les mêmes

dans l’état de Majorana. Néanmoins, εM 6= 0 pour le fractionnement fini de l’énergie, et

nous avons donc ujM 6= v
j
M, ce qui entraîne à son tour C(1)

Mp 6= C
(2)
Mp. Tous ces résultats

suggèrent que la susceptibilité Π(ω) devrait nous permettre de déduire, à travers ΠBM(ω),

à la fois la parité de l’état fondamental et les zéros dans l’énergie Majorana εM.

Sur l’image principal de la Fig. E.4, nous traçons la partie réelle de la susceptibilité pour

un fil unidimensionnel topologique en tant qu’une fonction de l’énergie Zeeman VZ pour

les deux parités nM = 0, 1. La susceptibilité Π pour cette figure était calculée en utilisant
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des paramètres réalistes qui pourraient être appropriés pour un fil InSb tel que utilisé

dans les expériences de Ref. [64].

Nous remarquons sur la Fig. E.4 l’existence des oscillations en fonction de l’énergie

Zeeman au-dessus de la transition topologique. Ces oscillations autour de l’état fonda-

mental ont des signes opposés et des amplitudes différentes pour chaque parité. Elles ont

également la même périodicité que l’énergie de Majorana εM (cf. l’encart sur la Fig. E.4)

et se croisent aux points où εM = 0. Ainsi nous trouvons que le décalage de phase de

cavité permet de détecter le fermions de Majorana et la parité de l’état fondamental d’un

fil topologique réaliste.

e.4 effet josephson dans des anneaux topologiques supraconducteurs

couplé à une cavité micro-ondes

Dans cette section, nous étudions un anneau unidimensionnel mésoscopique supracon-

ducteur en onde p interrompu par une région à l’interaction faible et couplé inductive-

ment à une cavité micro-ondes.

L’anneau est soumis à la fois à un flux magnétique de courant continu Φdc et à un

flux (quantique) de courant alternatif en provenance de la cavité Φ̂ac = iλ(a− a†), qui

entraîne le couplage de puissance λ entre les deux systèmes : l’anneau (électrons) et la

cavité (photons). La susceptibilité électronique de l’anneau supraconducteur comprenant

une région à l’interaction faible est

Πtot(ω) =
∂IJ
∂Φ

+
ω

ω+ iγ

∑
n

∂fn

∂Φ

∂εn

∂Φ

−ω
∑
n 6=m

fn − fm
εn − εm

|〈n|I|m〉|2
(εn − εm) −ω− iγ

, (E.22)

où γ est le taux de relaxation des niveaux (présumé identique pour tous les niveaux aux

fins de simplification). Nous observons qu’en principe il existe trois contributions à la

réponse de cavité : la partie du courant de Josephson (ou non-dissipative), la partie diag-
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Figure E.5: Colonne gauche (colonne droite), de haut en bas: dépendance entre la susceptibilité
de Josephson, les parties réelle et imaginaire de la susceptibilité non-diagonale et le
flux magnétique Φ/Φ0 pour fM = 0, dans la région topologique (non-topologique).
Les lignes rouge, verte et bleue correspondent respectivement à µ = −1.5 (µ = −2.5),
µ = −1 (µ = −3), et µ = −0.5 (µ = −3.5). Le point de transition de phase est µ = −2.
Les paramètres sont ∆ = 0.1, t ′ = 0.2, N = 50 et toutes les énergies sont exprimées en
termes de t = 1.
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onale (correspondant à la relaxation thermale de la population des niveaux) et finalement

la partie non-diagonale engendrée par la contribution de Kubo habituelle. Dans ce qui

suit, nous supposons que le deuxième terme disparaît. Le premier terme est indépendant

de la fréquence ω, et donc toute dépendance de ce paramètre sera due au troisième terme.

Sur la Fig. E.5, nous traçons séparément les différentes contributions à la susceptibil-

ité mesurée par la cavité en tant qu’une fonction des flux extérieurs: la contribution du

courant de Josephson (en haut), la partie réelle (au milieu) et imaginaire (en bas) non-

diagonale. La partie gauche de l’image correspond à la phase topologique alors que

la partie droite correspond à la phase non-topologique. Nous remarquons que, dans le

régime topologique, toutes les susceptibilités ont une périodicité Φ0 et des variations im-

portantes de l’amplitude. Cependant, l’amplitude des oscillations de Φ0 diminue tandis

que le système s’approche de la transition topologique et disparaît complètement après

cette transition, seule Φ0/2 devient visible. Telles oscillations de Φ0/2 sont liées à l’effet

Josephson normal. Elles ont une amplitude beaucoup moins considérable, comme visible

sur le graphique en haut de la colonne de droite. Nous remarquons que telles oscillations

existent aussi pour les termes non-diagonaux, mais qu’elles sont trop faibles (de l’ordre

de 10−6) pour être visible sur les images.

Discutons des différentes termes contribuant à la susceptibilité totale et de l’effet des

fermions de Majorana sur ces quantités. Dans le régime topologique, des fermions de

Majorana apparaissent sur le bord de l’anneau. Ils sont couplés à travers la région à

interaction faible. Dans la description à l’énergie faible, ces fermions de Majorana sont la

cause de l’effet fractionnel de Josephson, l’une de spécificités de la physique des fermions

de Majorana. Cependant la réponse de cavité est sensible non seulement à la présence

des fermions de Majorana, mais aussi à l’interaction entre ces excitations et les états en

masse du supraconducteur, notamment si le système est proche de la transition de phase.

Le premier terme est insensible aux telles transitions puisqu’il est donné par le dérivé du

supracourant par rapport au flux appliqué. Le deuxième terme contient des éléments de

matrice entre les fermions de Majorana et les états en masse. Il a à la fois la partie réelle

et imaginaire et dépend de la fréquence de cavité ωc.
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Nous avons trouvé une variation de Φ0 (Φ0/2) de la réponse de cavité par rapport au

flux magnétique extérieur dans la phase topologique (triviale) et l’avons reliée à l’effet frac-

tionnel (normal) de Josephson. Telle approche permet de décrire non seulement l’anneau

supraconducteur profondément dans le régime topologique, mais aussi la transition topologique

ainsi que la transition entre l’effet fractionnel et normal de Josephson en présence d’un

flux magnétique.

e.5 conclusions et perspectives

Le cadre théorique proposé dans cette thèse permet de sonder de manière non-intrusive

un large éventail de nanostructures, des boîtes quantiques aux supraconducteurs topologiques.

En outre, il donne de nouvelles informations sur les propriétés de ces conducteurs quan-

tiques, informations non accessibles via des expériences de transport.

Nous avons démontré que les méthodes de l’électrodynamique quantique en cavité

peuvent être utilisées pour étudier profondément les structures topologiques unidimen-

sionnelles. Nous proposons de généraliser cette méthodologie à l’étude théorique des sys-

tèmes bidimensionnels tels que supraconducteurs bidimensionnels ou isolateurs topologiques

bidimensionnel, tous les deux étant très prisés dans les études expérimentaux récents [103].

Dans la perspective plus large, nous proposons de manipuler le propriétés électronique

avec de la lumière, le couplage fort entre le système électronique et le champ électrique

en cavité permettant telle manipulation.
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