Skip to Main content Skip to Navigation
Theses

Diverse modules and zero-knowledge

Résumé : Les smooth (ou universal) projective hash functions ont été introduites par Cramer et Shoup, à Eurocrypt'02, comme un outil pour construire des schémas de chiffrement efficaces et sûrs contre les attaques à chiffrés choisis. Depuis, elles ont trouvé de nombreuses applications, notamment pour la construction de schémas d'authentification par mot de passe, d'oblivious transfer, de signatures en blanc, et de preuves à divulgation nulle de connaissance. Elles peuvent êtres vues comme des preuves implicites d'appartenance à certains langages. Un problème important est de caractériser pour quels langages de telles fonctions existent.Dans cette thèse, nous avançons dans la résolution de ce problème en proposant la notion de diverse modules. Un diverse module est une représentation d'un langage, comme un sous-module d'un module plus grand, un module étant un espace vectoriel sur un anneau. À n'importe quel diverse module est associée une smooth projective hash function pour le même langage. Par ailleurs, presque toutes les smooth projective hash functions actuelles sont construites de cette manière.Mais les diverse modules sont aussi intéressants en eux-mêmes. Grâce à leur structure algébrique, nous montrons qu'ils peuvent facilement être combinés pour permettre de nouvelles applications, comme les preuves implicites à divulgation nulle de connaissance (une alternative légère aux preuves non-interactives à divulgation nulle de connaissance), ainsi que des preuves non-interactives à divulgation nulle de connaissance et one-time simulation-sound très efficaces pour les langages linéaires sur les groupes cycliques.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01399476
Contributor : Abes Star :  Contact
Submitted on : Monday, March 20, 2017 - 3:56:55 PM
Last modification on : Monday, June 8, 2020 - 10:37:21 AM
Document(s) archivé(s) le : Wednesday, June 21, 2017 - 1:46:38 PM

File

theseBENHAMOUDAGUICHOUXFabrice...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01399476, version 2

Collections

Citation

Fabrice Ben Hamouda--Guichoux. Diverse modules and zero-knowledge. Cryptography and Security [cs.CR]. PSL Research University, 2016. English. ⟨NNT : 2016PSLEE022⟩. ⟨tel-01399476v2⟩

Share

Metrics

Record views

465

Files downloads

354