. Avant, Quand il passe sous la vague, le traceur commencè a s'´ etirer, prenant une forme elliptique, la figure(5.6(e)) représente l'´ evolution temporelle du demi-grand axe et du demi-petit axe de cette ellipse ; on constante que le rapport entre le grand axe et le petit axe augmente dans unepremì ere phase puis commencè a diminuer, ` A la sortie de la vague, il a une forme elliptique, qu'il conservera dans la suite de l'´ ecoulement, La Figure (5.6(f)) représente l'´ evolution temporelle de l'angle ? entre le grand axe et l'axe Ox

M. Le-champ and M. Pour-calculer-le-champ, on prend un maillage cartésien régulier sur D avec 40 000 noeuds (200 fois 200) et on calcule la valeur de M-FTLE pour chaque noeud du maillage La Figure (5.7) présente deux exemples de champs M-FTLE obtenus pour deux temps d'intégration T = 0.5s et T = 1s. On observe que dans le champ de M- FTLE donne des valeurs maximales le long de la surface libre. On observe aussi que les valeurs de M-FTLE sont constantes sur le côté de la vague et augmentent quand les points s'approchent de la vague

L. Champs-de and M. Les-lignes-de-courant-ainsi-que-le, critère Q sont présentés sur la figure(5.12) pour di?érents instants au passage du front Avant l'arrivée du mascaret, on voit que les valeurs du critère Q sont presqué egalesàegales`egalesà zéro, sauf des valeursàvaleurs`valeursà proximité de la surface libre sur la figure A l'arrivée du mascaret, en haut de canal, une zone de Q négative indique qu'une zone de cisaillement a lieù a la rencontre entre l'´ ecoulement principal et le ressaut se propageant en sens inverse sur les figures, les lignes de courant matérialisent des tourbillons au fond de canal, p.1212

L. Figure, 13) représente quelques exemples de champ M-FTLE obtenus pour di?érents instants au passage du front et pour le temps d'intégration T = 2 s

L. Lignes-de-courant-ainsi-que-le-critère and Q. Sont-présentés-sur-la-figure, 23) pour di?érents instants au passage du front Avant l'arrivée du mascaret, on voit que les valeurs du critère Q sont presqué egalesàegales`egalesà zéro, sauf des valeursàvaleursà proximité de la surface libre sur la figure (5.12(a)). A l'arrivée du mascaret, en haut(zone de mélange) du canal et au fond du canal (dans la couche limite) les lignes de courant matérialisent des tourbillons sur les figures(f)) o` u les régions positives de Q mettent en exergue une zone o` u le taux de rotation est supérieur au taux de déformation et traduit la présence d'un tourbillon. La figure(5.24) présente quelques exemples de champs M-FTLE avec la méthode des moments d'ordre 2, pp.12-12

|. La-figure, 24(a)) présente le champ de M-FTLE avant l'arrivée du mascaret. ? On voit que les M-FTLE sont maximales près de la surface libre

@. Au, On remarque que les valeurs de M-FTLE sont faibles parce que l'´ ecoulement initial est uniforme. Si on prend un domaine de forme circulaire contenant le traceur de centre x 0 (150, 200) et de rayon r 0 = 1, on remarque lesélémentsleséléments suivants : ? La trajectoire s'incurve vers le haut

?. L-'´-evolution-du-moment and P. Xy, est divisé en deux phases Unepremì ere phase de diminution qui représente une rotation dans le sens horaire du traceur de particules. Une seconde phase d'augmentation avec un dépassement de valeur initiale, ce qui exprime une rotation dans le sens trigonométrique, mais l'angle de rotation est très petit (Figure 5, p.25

?. Sur and L. Figure, 25(e)) on observe que lesévolutionslesévolutions du demi-petit axe et du demi-grand axe de l'ellipse. On note que la déformation du domaine circulaire contenant le traceur est presque négligeable lors du transport (voir figure, p.25

@. Au, on note une augmentation de valeurs de M-FTLE parce que, les trajectoire sont plus courtes par rapport aux trajectoires qui se trouvent au centre de l'´ ecoulement : on constateçaconstate¸constateça sur la Figure (5.26) o` u on considère des positons initiales du domaine, pp.36-38

M. Adaptatif, exposants de Lyapunov conna??tconna??t des variations très violentes Un maillage régulier ne nous permet pas d'avoir des résultats précisprécisà moins d'appliquer la précision nécessairè a la capture des crêtescrêtesà tout le domaine, provoquant une explosion du temps de calcul. C'est l` a que l'adaptation de maillage entre en jeu. L'idée est de concentrer le nombre de mailles l` a o` u c'est réellement nécessaire, leprobì eme mérite notre attention et notre temps de calcul. il serait très intéressant de calculer le champ de M-FTLE sur un maillage adaptatif

/. Transport, Nous avons commencécommencéà aborder ce sujetàsujetà la fin du chapitre trois, mais sans le développer par la suite. Mais il serait très intéressant de calculer le champ de M-FTLE

´. Ecoulement-compressible, ´ etude desécoulementsdesécoulements compressibles mais cela nécessite de nouvellé equations de transport pour calculer le champ de M-FTLE

P. Miron, Adaptation anisotrope sur des structures lagrangiennes cohérentes en mécanique des fluides, Mémoire de ma??trisèma??trisè es Sciences Appliquées de l' ´ Ecole Polytechnique de Montréal, 2012.

D. V. Anosov and V. I. Arnold, Dynamical system I, ordinary Di?erential Equation and Smooth Dynamical systems. Encyclopedia of mathematical sciences, 1983.

S. C. Shadden, F. Lekien, and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in twodimensional aperiodic flows, Physica D : Nonlinear Phenomena, vol.212, pp.3-4271, 2005.

P. Miller, C. Jones, A. Rogerson, and L. Pratt, Quantifying transport in numerically generated velocity fields, Physica D: Nonlinear Phenomena, vol.110, issue.1-2, pp.105-122, 1997.
DOI : 10.1016/S0167-2789(97)00115-2

F. Lekien, S. C. Shadden, and J. Marsden, Lagrangian coherent structures in ndimensional systems, Journal of Mathematical Physics, vol.48, 2007.

F. Lekien, C. Coulliette, A. Mariano, E. Ryan, L. Shay et al., The correlation between surface drifters and coherent structures based on highfrequency radar data in monterey bay. Deep-Sea Research Part Ii-Topical Studies in Oceanography, pp.3-5, 2009.

G. Haller, Lagrangian coherent structures from approximate velocity data, Physics of Fluids, vol.14, issue.6, pp.1851-1861, 2002.
DOI : 10.1063/1.1477449

G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence, Physics of Fluids, vol.13, issue.11, pp.3368-3385, 2001.
DOI : 10.1063/1.1403336

G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.10, issue.1, pp.99-108, 2000.
DOI : 10.1063/1.166479

G. Haller and A. Poje, Finite time transport in aperiodic flows, Physica D: Nonlinear Phenomena, vol.119, issue.3-4, pp.352-380, 1998.
DOI : 10.1016/S0167-2789(98)00091-8

J. Kasten, C. Petz, I. Hotz, B. Noack, and H. Hege, Localized finite-time Lyapunov exponent for unsteady flow analysis, Vision Modeling and Visualization, pp.265-274, 2009.

M. Dellnitz and O. Junge, On the Approximation of Complicated Dynamical Behavior, SIAM Journal on Numerical Analysis, vol.36, issue.2, pp.491-515, 1998.
DOI : 10.1137/S0036142996313002

A. Lasota and M. Macke, Fractals and noise. Stochastic aspects of dynamics, 1994.
DOI : 10.1007/978-1-4612-4286-4

M. A. Green, C. W. Rowley, and G. Haller, Detection of Lagrangian coherent structures in three-dimensional turbulence, Journal of Fluid Mechanics, vol.572, pp.111-12010, 2007.
DOI : 10.1017/S0022112006003648

S. Kent, Lagrangian Coherent Structures : Generalizing Stable and Unstable Manifolds to Non-Autonomous Dynamical Systems. Spring, 2008.

M. Branicki and S. Wiggins, Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents, Nonlinear Processes in Geophysics, vol.17, issue.1, pp.1-36
DOI : 10.5194/npg-17-1-2010

G. A. Voth, G. Haller, and J. P. Gollub, Experimental Measurements of Stretching Fields in Fluid Mixing, Physical Review Letters, vol.88, issue.25, pp.1-36, 2002.
DOI : 10.1103/PhysRevLett.88.254501

T. Y. Koh and B. Legras, Hyperbolic lines and the stratospheric polar vortex, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.12, issue.2, pp.382-394, 2002.
DOI : 10.1063/1.1480442

M. Mathur, G. Haller, T. Peacock, J. Ruppert-felsot, and H. Swinney, Uncovering the Lagrangian Skeleton of Turbulence, Physical Review Letters, vol.98, issue.14, p.144502, 2007.
DOI : 10.1103/PhysRevLett.98.144502

J. Barrow-green, Poincarè and the Three-Body Problem, History of Mathematics, vol.11, 1997.

A. Chenciner, De la Mécanique Célesta la théorie des Systèmes Dynamiques, aller et retour, ´ Epistémologie des systèmes dynamiques, 1999.

B. Hasselblatt, Introduction aux systèmes dynamiques et applicationsàapplicationsà un modèle cosmologique, Ency. Math. App, vol.54, 1995.

T. Sari, Inroduction aux systèmes dynamiques et applicationsàapplicationsà un modèle cosmologique, Géométries et Dynamiques, K. Sadallah et A. Zeghib (editeurs), Hermann Travaux en Cours, pp.259-274, 2008.

F. Ovidio, V. Fernández, E. Hernández-garcía, and C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res

A. J. Mariano, A. Gri?a, T. M. Ozgökmen, and E. Zambianchi, Lagrangian Analysis and Predictability of Coastal and Ocean Dynamics 2000, Journal of Atmospheric and Oceanic Technology, vol.19, issue.7, pp.1114-1126, 2002.
DOI : 10.1175/1520-0426(2002)019<1114:LAAPOC>2.0.CO;2

G. Bo?etta, G. Lacorata, G. Redaelli, and A. Vulpiani, Detecting barriers to transport : a review of di?erent techniques, pp.58-70, 2001.

F. Sadlo and R. Peikert, Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction, IEEE Transactions on Visualization and Computer Graphics, vol.13, issue.6, pp.1456-1463, 2007.
DOI : 10.1109/TVCG.2007.70554

D. Karrasch and G. Haller, Do Finite-Size Lyapunov Exponents detect coherent structures?, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.23, issue.4, 2013.
DOI : 10.1063/1.4837075

URL : http://arxiv.org/abs/1307.7888

E. Aurell, G. Bo?etta, A. Crisanti, G. Paladin, and A. Vulpiani, Predictability in the large: an extension of the concept of Lyapunov exponent, Journal of Physics A: Mathematical and General, vol.30, issue.1, 1997.
DOI : 10.1088/0305-4470/30/1/003

F. Ovidio, J. Isern-fontanet, C. Lopez, E. Hernàndez-garcia, and E. Ladona, Comparison between Eulerian diagnostics and Finite-Size Lyapunov Exponents computed from altimetry in the Algerian basin. Deep-Sea Research I, pp.15-31, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00759988

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, 1994.
DOI : 10.1007/978-1-4612-4286-4

M. Dellnitz and O. Junge, On the Approximation of Complicated Dynamical Behavior, SIAM Journal on Numerical Analysis, vol.36, issue.2, pp.491-515, 1998.
DOI : 10.1137/S0036142996313002

G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds ??? Connecting probabilistic and geometric descriptions of coherent structures in flows, Physica D: Nonlinear Phenomena, vol.238, issue.16, pp.1839-1863, 2009.
DOI : 10.1016/j.physd.2009.03.002

P. Tallapragada, S. Ross, and . Schmale, Lagrangian coherent structures are associated with fluctuations in airborne microbial populations, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.21, issue.3, p.33122, 2011.
DOI : 10.1063/1.3624930

P. Tallapragada and S. Ross, A geometric and probabilistic description of coherent sets, 2011.

P. Tallapragada and S. Ross, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Communications in Nonlinear Science and Numerical Simulation, vol.18, issue.5, pp.1106-1126, 2012.
DOI : 10.1016/j.cnsns.2012.09.017

P. Tallapragada and S. Rose, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Communications in Nonlinear Science and Numerical Simulation, vol.18, issue.5, 2012.
DOI : 10.1016/j.cnsns.2012.09.017

G. Froyland and . Statistically, Statistically optimal almost-invariant sets, Physica D: Nonlinear Phenomena, vol.200, issue.3-4, pp.205-224, 2005.
DOI : 10.1016/j.physd.2004.11.008

G. Froyland, S. Lloyd, and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems, Physica D: Nonlinear Phenomena, vol.239, issue.16, pp.1527-1568, 2010.
DOI : 10.1016/j.physd.2010.03.009

G. Froyland, N. Santitissadeekorn, and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.20, issue.4, p.43116, 2010.
DOI : 10.1063/1.3502450

G. Froyland, N. Santitissadeekorn, and A. Monahan, Optimally coherent sets in geophysical flows : a new approach to delimiting the stratospheric polar vortex, Phys. Rev. E, vol.82, p.56311, 2010.

G. Froyland and . Statistically, Statistically optimal almost-invariant sets, Physica D: Nonlinear Phenomena, vol.200, issue.3-4, pp.205-224, 2005.
DOI : 10.1016/j.physd.2004.11.008

J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, p.755, 1871.

J. Fenton, A ninth-order solution for the solitary wave, Journal of Fluid Mechanics, vol.26, issue.02, pp.257-271, 1972.
DOI : 10.1017/S002211207200014X

R. Grimshaw, The solitary wave in water of variable depth. Part 2, Journal of Fluid Mechanics, vol.67, issue.03, pp.611-622, 1971.
DOI : 10.1017/S0022112071000739

J. Lee, J. E. Skjelbreia, and F. Raichlen, and Measurements of velocities in solitary waves, J. of Waterway, Port, Coastal, and Ocean Eng, issue.108, pp.2-200, 1982.

J. Mccowan, On the solitary wave, Proceedings of the Edinburgh Mathematical Society, vol.9, issue.5, pp.45-58, 1891.
DOI : 10.1017/S0013091500030819

M. Tanaka, The stability of solitary waves, Physics of Fluids, vol.29, issue.3, pp.650-655, 1986.
DOI : 10.1063/1.865459

J. S. Russell, Report on Waves Report of the 14th meeting of the British Association forthe Advancement of Science, pp.311-390, 1844.

P. Bonneton, J. Van-de-loock, J. Parisot, N. Bonneton, A. Sottolichio et al., On the occurrence of tidal bores ? the garonne river case, Journal of Coastal Research, vol.64, pp.1-4, 2011.

H. Chanson, Current knowledge in tidal bores and their environmental, ecological and cultural impacts, Environmental Fluid Mechanics, vol.60, issue.4, pp.77-98, 2011.
DOI : 10.1007/s10652-009-9160-5

P. Lubin, S. Glockner, and H. Chanson, Numerical simulation of a weak breaking tidal bore, Mechanics Research Communications, vol.37, issue.1, pp.119-121, 2010.
DOI : 10.1016/j.mechrescom.2009.09.008

URL : https://hal.archives-ouvertes.fr/hal-00455192

D. Mouaze, H. Chanson, and B. Simon, Field measurements in the tidal bore of the sélune river in the bay of mont saint michel, Rap. tech, 2010.

E. Wolanski, D. Williams, S. Spagnola, and H. Chanson, Undular tidal bore dynamics in the Daly Estuary, Northern Australia, Estuarine, Coastal and Shelf Science, vol.60, issue.4, pp.629-636, 2004.
DOI : 10.1016/j.ecss.2004.03.001

. Hill, On a Spherical Vortex, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.185, issue.0, pp.213-245
DOI : 10.1098/rsta.1894.0006

A. D. Taylor, Conformal map transformations for meteorological modelers, Computers & Geosciences, vol.23, issue.1, pp.63-75, 1997.
DOI : 10.1016/S0098-3004(96)00062-3

K. Ide, D. Small, and S. Wiggins, Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets, Nonlinear Processes in Geophysics, vol.9, issue.3/4, pp.237-263, 2002.
DOI : 10.5194/npg-9-237-2002

URL : https://hal.archives-ouvertes.fr/hal-00302110

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2003.

G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds ??? Connecting probabilistic and geometric descriptions of coherent structures in flows, Physica D: Nonlinear Phenomena, vol.238, issue.16, pp.1839-1863, 2009.
DOI : 10.1016/j.physd.2009.03.002

G. Froyland and . Statistically, Statistically optimal almost-invariant sets, Physica D: Nonlinear Phenomena, vol.200, issue.3-4, pp.205-224, 2005.
DOI : 10.1016/j.physd.2004.11.008

G. Froyland, S. Lloyd, and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems, Physica D: Nonlinear Phenomena, vol.239, issue.16, pp.1527-1568, 2010.
DOI : 10.1016/j.physd.2010.03.009

G. Froyland, N. Santitissadeekorn, and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.20, issue.4, p.43116, 2010.
DOI : 10.1063/1.3502450

G. Froyland, N. Santitissadeekorn, and A. Monahan, Optimally coherent sets in geophysical flows : a new approach to delimiting the stratospheric polar vortex, Phys. Rev. E, vol.82, p.56311, 2010.

G. Froyland and . Statistically, Statistically optimal almost-invariant sets, Physica D: Nonlinear Phenomena, vol.200, issue.3-4, pp.205-224, 2005.
DOI : 10.1016/j.physd.2004.11.008

B. Cabral and L. Leedom, Imaging vector field using line convolution, Proceedings de SIGGRAPH'93), pp.263-272, 1993.
DOI : 10.1145/166117.166151

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.1636

L. K. Forsell and S. D. Cohen, Using line integral convolution for flow visualization: curvilinear grids, variable-speed animation, and unsteady flows, IEEE Transactions on Visualization and Computer Graphics, vol.1, issue.2, pp.133-141, 1995.
DOI : 10.1109/2945.468406

H. W. Shen and D. L. Kao, UFLIC : a Line Integral Convolution Algorithm for Visualizing Unsteady Flows, Yagel et H. Hagen, Editeurs ( Proceedings de IEEE Visualization'97, pp.317-322, 1997.

B. Jobard, Visualisation de champs de vecteurs bidimensionnelsàbidimensionnelsà base de streamlines, Thèse de doctorat en informatique, 2000.

G. L. Brown and A. Roshko, On density effects and large structure in turbulent mixing layers, Journal of Fluid Mechanics, vol.87, issue.04, pp.775-816, 1974.
DOI : 10.1017/S002211207400190X

J. L. Lumley, Whither turbulence ? turbulence at the crossroads, Lecture Notes in Physics, vol.357, 1990.
DOI : 10.1007/3-540-52535-1

A. Hussain, Coherent structures???reality and myth, Physics of Fluids, vol.26, issue.10, pp.2816-2850, 1983.
DOI : 10.1063/1.864048

J. Hunt, A. Wray, and P. Moin, Eddies, Stream, and Convergence Zones in Turbulent Flows. Rapport Technique CTR-S88 :193, Center for Turbulence Research, 1988.

J. Jeong and F. Hussain, On the identification of a vortex, Journal of Fluid Mechanics, vol.150, issue.-1, pp.69-94, 1995.
DOI : 10.1063/1.858826

R. C. Strawn, D. N. Kenwright, and J. Ahmad, Computer Visualization of Vortex Wake Systems, AIAA Journal, vol.37, issue.4, pp.511-512, 1999.
DOI : 10.2514/2.744

M. Michard, L. Grafiteaux, and N. Grosjean, Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows, Measurement Science and Technology, vol.12, pp.1422-1429, 2001.

M. Michard, . Th, and . Favelier, Développement d'un critère d'identification de structures tourbillonnaires adapté aux me sures de vitesse par PIV. 9-` eme Congrès Francophone de Vélocimétrie Laser, pp.14-17, 2004.

K. Ismail, Identification des structures et calcul des trajectoires dans desécoulements desécoulements turbulents, 2004.

M. S. Chong, A. E. Perry, and B. J. , A general classification of three???dimensional flow fields, Physics of Fluids A: Fluid Dynamics, vol.2, issue.5, pp.2-765, 1990.
DOI : 10.1063/1.857730

G. Haller, An objective definition of a vortex, Journal of Fluid Mechanics, vol.525, pp.1-26, 2005.
DOI : 10.1017/S0022112004002526

R. Cucitore, M. Quadrio, and A. Baron, On the effectiveness and limitations of local criteria for the identification of a vortex, European Journal of Mechanics - B/Fluids, vol.18, issue.2, pp.261-282, 1999.
DOI : 10.1016/S0997-7546(99)80026-0

. Vkoì-ar, Vortex identification : New requirements and limitations, Int. J. of Heat and Fluid Flow, vol.28, issue.4, pp.638-652, 2007.

F. Aloui, F. Réhimi, N. Ait-mouheb, S. B. Nasrallah, and L. Doubliez, ´ Etude expérimentale de la dynamique des structures tourbillonnaires cohérentes générées par un obstacle de forme cylindrique ou carrée centré entre deux plansparalì eles horizontaux, 10ème10ème Congrès Francophone de Techniques Laser, pp.19-22, 2006.

L. Graftieaux, M. Michard, and N. Grosjean, Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows, Measurement Science and Technology, vol.12, issue.9, pp.1422-1429, 2001.
DOI : 10.1088/0957-0233/12/9/307

P. Chakraborty, S. Balachandar, and R. Adrian, On the relationships between local vortex identification schemes, Journal of Fluid Mechanics, vol.535, pp.189-214, 2005.
DOI : 10.1017/S0022112005004726

A. Koched, M. Pavageau, and F. Aloui, Détection expérimentale de structures tourbillonnaires au sein d'un jet plan en impact. 19-` eme Congrès Français de Mécanique, pp.24-28, 2009.

Y. Hallez, Mélange gravitationnel de fluides en géométrie confinée, Thèse de doctorat de l'Institut National Polytechnique de Toulouse, Dynamique des Fluides, 2007.

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.22, issue.1, p.13128, 2012.
DOI : 10.1063/1.3690153

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.23, issue.2, p.23101, 2013.
DOI : 10.1063/1.4800210

M. Farazmand, D. Blazevski, and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps, Physica D: Nonlinear Phenomena, vol.278, issue.279, pp.278-27944, 2014.
DOI : 10.1016/j.physd.2014.03.008

M. Farazmand and G. Haller, The Maxey???Riley equation: Existence, uniqueness and regularity of solutions, Nonlinear Analysis: Real World Applications, vol.22, 2014.
DOI : 10.1016/j.nonrwa.2014.08.002

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence ? arXiv preprint, 2014.

A. Hadjighasem, M. Farazmand, and G. Haller, Detecting invariant manifolds, attractors, and generalized KAM tori in aperiodically forced mechanical systems, Nonlinear Dynamics, vol.41, issue.34, pp.689-704, 2013.
DOI : 10.1007/s11071-013-0823-x

G. Haller, A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D: Nonlinear Phenomena, vol.240, issue.7, pp.574-598, 2011.
DOI : 10.1016/j.physd.2010.11.010

G. Haller and F. J. Beron-vera, Geodesic theory of transport barriers in two-dimensional flows, Physica D: Nonlinear Phenomena, vol.241, issue.20, pp.1680-1702, 2012.
DOI : 10.1016/j.physd.2012.06.012

G. Haller and F. J. Beron-vera, Coherent Lagrangian vortices: the black holes of turbulence, Journal of Fluid Mechanics, vol.52, issue.53, p.4, 2013.
DOI : 10.1029/2008GL033957

D. Blazevski and G. Haller, Hyperbolic and elliptic transport barriers in threedimensional unsteady flows. submitted, 2013.

T. Ma and E. M. Bollt, Di?erential geometry perspective of shape co-herence and curvature evolution by finite-time non-hyperbolic splitting. arXiv preprint arXiv :1311, 2013.

A. Lasota and M. C. Mackey, Chaos, fractals, and noise : stochastic aspects of dynamics, 1994.
DOI : 10.1007/978-1-4612-4286-4

G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Physica D: Nonlinear Phenomena, vol.250, pp.1-19, 2013.
DOI : 10.1016/j.physd.2013.01.013

T. Ma and E. M. Bollt, RELATIVELY COHERENT SETS AS A HIERARCHICAL PARTITION METHOD, International Journal of Bifurcation and Chaos, vol.23, issue.07, p.2013
DOI : 10.1142/S0218127413300267

M. Budisic, R. Mohr, and I. Mezic, Applied Koopmanism, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.22, issue.4, p.47510, 2012.
DOI : 10.1063/1.4772195

M. Budisic and I. Mezic, Geometry of the ergodic quotient reveals coherent structures in flows, Physica D: Nonlinear Phenomena, vol.241, issue.15, pp.1255-1269, 2012.
DOI : 10.1016/j.physd.2012.04.006

E. Aurell, G. Bo?etta, A. Crisanti, G. Paladin, and A. Vulpiani, Predictability in the large: an extension of the concept of Lyapunov exponent, Journal of Physics A: Mathematical and General, vol.30, issue.1, p.1, 1997.
DOI : 10.1088/0305-4470/30/1/003

G. Haller, Lagrangian coherent structures from approximate velocity data, Physics of Fluids, vol.14, issue.6, pp.1851-1861, 1994.
DOI : 10.1063/1.1477449

M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-felsot, and H. L. Swinney, Uncovering the Lagrangian Skeleton of Turbulence, Physical Review Letters, vol.98, issue.14, p.98144502, 2007.
DOI : 10.1103/PhysRevLett.98.144502

A. M. Mancho, S. Wiggins, J. Curbelo, and C. Mendoza, Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Communications in Nonlinear Science and Numerical Simulation, vol.18, issue.12, 2013.
DOI : 10.1016/j.cnsns.2013.05.002

I. I. Rypina, S. E. Scott, L. J. Pratt, M. G. Brown, and T. Tel, Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures, Nonlinear Processes in Geophysics, vol.18, issue.6, 2011.
DOI : 10.5194/npg-18-977-2011

V. Pérez-munuzuri and F. Huhn, Path-integrated Lagrangian measuresfrom the velocity gradient tensor, Nonlinear Processes in Geophysics, vol.20, issue.6, p.2013

I. Mezic, S. Loire, V. A. Fonoberov, and P. Hogan, A New Mixing Diagnostic and Gulf Oil Spill Movement, Science, vol.330, issue.6003, pp.486-489, 2010.
DOI : 10.1126/science.1194607

F. Lekien and S. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.20, issue.1, p.17505, 2010.
DOI : 10.1063/1.3278516.6

K. Onu, F. Huhn, and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures, Journal of Computational Science, vol.7, pp.26-36, 2015.
DOI : 10.1016/j.jocs.2014.12.002

D. Oettinger, D. Blazevski, and G. Haller, Global variational approach to elliptic transport barriers in three dimensions, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.26, issue.3, p.33114, 2016.
DOI : 10.1063/1.4944732