A. Fernández, M. X. Álvarez, and F. Bianconi, Texture Description Through Histograms of Equivalent Patterns, Journal of Mathematical Imaging and Vision, vol.178, issue.22, pp.76-102
DOI : 10.1007/s10851-012-0349-8

J. Gertjan, J. Burghouts, and . Geusebroek, Material-specific adaptation of color invariant features, Pattern Recognition Letters, vol.30, issue.21, pp.306-313, 2009.

A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, pp.264-323, 1999.
DOI : 10.1145/331499.331504

M. N. Do and M. Vetterli, Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. Image Processing, IEEE Transactions on, vol.11, issue.130, pp.146-158, 2002.

J. Sivic and Z. Andrew, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, pp.1470-1477, 2003.
DOI : 10.1109/ICCV.2003.1238663

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions, vol.128, issue.36 9, pp.610-621, 1973.

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

B. Julesz, Visual pattern discrimination Information Theory, IRE Transactions on, vol.8, issue.9, pp.84-92, 1962.

M. Varma and A. Zisserman, A statistical approach to material classification using image patch exemplars. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.12, issue.165, pp.312032-2047, 2009.

M. Varma and A. Zisserman, A Statistical Approach to Texture Classification from Single Images, International Journal of Computer Vision, vol.62, issue.1-2, pp.61-81, 2005.
DOI : 10.1007/s11263-005-4635-4

L. Liu, P. Fieguth, D. Clausi, and G. Kuang, Sorted random projections for robust rotation-invariant texture classification, Pattern Recognition, vol.45, issue.6, pp.2405-2418, 2012.
DOI : 10.1016/j.patcog.2011.10.027

W. Steven, D. Zucker, and . Terzopoulos, Finding structure in co-occurrence matrices for texture analysis, Computer Graphics and Image Processing, vol.12, issue.14, pp.286-308, 1980.

P. Chainais, Towards dictionary learning from images with non Gaussian noise, 2012 IEEE International Workshop on Machine Learning for Signal Processing, p.16, 2012.
DOI : 10.1109/MLSP.2012.6349731

URL : https://hal.archives-ouvertes.fr/hal-00749035

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li et al., Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images, IEEE Transactions on Image Processing, vol.21, issue.1, pp.130-144, 2012.
DOI : 10.1109/TIP.2011.2160072

V. Lepetit, P. Lagger, and P. Fua, Randomized Trees for Real-Time Keypoint Recognition, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), p.17, 2005.
DOI : 10.1109/CVPR.2005.288

J. A. Tropp and S. J. Wright, Computational Methods for Sparse Solution of Linear Inverse Problems, Procedings of IEEE, pp.948-958, 2010.
DOI : 10.1109/JPROC.2010.2044010

I. F. Gorodnitsky and B. D. Rao, A new iterative weighted noiserm minimization algorithm and its applications, Workshop on Statistical Signal and Array Processing, number 6 in 1, pp.412-415, 1992.

J. Xie, D. Zhang, and J. You, Texture classification via patch-based sparse texton learning, 2010 IEEE International Conference on Image Processing, pp.2737-2740, 2010.
DOI : 10.1109/ICIP.2010.5651387

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Discrminative learned dictionaries for local image analysis, Computer Vision and Pattern and Vision (CCVPV), IEEE Conference on, 2008.

G. Peyré, Sparse modelling of textures, Journal of Mathematical Analysis and Applications, vol.34, issue.1, pp.17-31, 2009.

K. Engan, S. O. Aase, and J. H. Husoy, Frame based signal compression using method of optimal directions (MOD), ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), pp.1-4, 1920.
DOI : 10.1109/ISCAS.1999.779928

M. Unser, Local linear transforms for texture measurements, Signal Processing, vol.11, issue.1, pp.61-79, 1986.
DOI : 10.1016/0165-1684(86)90095-2

M. R. Turner, Texture discrimination by gabor functions, Biological cybernetics, vol.55, issue.2-3, pp.71-82, 1986.

I. Fogel and D. Sagi, Gabor filters as texture discriminator, Biological Cybernetics, vol.61, issue.2, pp.103-113, 1989.
DOI : 10.1007/BF00204594

D. Dunn, W. Higgins, and J. Wakeley, Texture segmentation using 2-d gabor eleelement funcitions. Pattern Analysis and Machine Intelligence, IEEE Transactions, p.27, 1994.

J. S. De and . Bonnet, Multiresolution sampling processing for analysis and synthesis of texture images, Proceedings of the 24th annual conference on Computer graphics and interactive techniques, SIG- GRAPH '97, pp.361-368, 1997.

J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients, International Journal of Computer Vision, vol.40, issue.1, pp.49-70, 2000.
DOI : 10.1023/A:1026553619983

G. Tzagkarakis, B. Beferull-lozano, and P. Tsakalides, Rotation-Invariant Texture Retrieval via Signature Alignment Based on Steerable Sub-Gaussian Modeling, IEEE Transactions on Image Processing, vol.17, issue.7, pp.1212-1225, 2008.
DOI : 10.1109/TIP.2008.924390

S. G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE transactions on pattern analysis and machine intelligence, vol.11, issue.27, pp.674-693, 1989.
DOI : 10.1515/9781400827268.494

M. Unser and M. Eden, Multiresolution feature extraction and selection for texture segmentation . Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.11, issue.7, pp.717-728, 1928.

H. David, . Hubel, N. Torsten, and . Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, The Journal of physiology, vol.160, issue.1, pp.106-134, 1962.

G. John and . Daugman, Two-dimensional spectral analysis of cortical receptive field profiles, Vision Research, vol.20, issue.10, pp.847-856, 1980.

B. Julesz and J. R. Bergen, : Textons, The Fundamental Elements in Preattentive Vision and Perception of Textures, Bell System Technical Journal, vol.62, issue.6, pp.621619-1645, 1983.
DOI : 10.1002/j.1538-7305.1983.tb03502.x

J. Beck, A. Sutter, and R. Ivry, Spatial frequency channels and perceptual grouping in texture segregation, Computer Vision, Graphics, and Image Processing, vol.37, issue.2, pp.299-325, 1987.
DOI : 10.1016/S0734-189X(87)80006-3

O. Faugeras, Texture analysis and classification using a human visual model, Proc. 3rd International Conference on Pattern Recognition, pp.549-552, 1978.

G. H. Granlund, Description of texture using the generalogeneral approach, Proceddings of the 5th International Conference on Pattern Recognition, pp.776-779, 1980.

D. Wermser and C. E. Liedtke, Texture analysis using a model of the visual system, Proceedings of 6th International Conference on Pattern Recognition, pp.1070-1080, 1982.

S. Watanabe, Karhunen-loève expansion and factor analysis, Trans. 4th Prague Conf. in Information Theory, p.29, 1965.

M. Unser, On the approximation of the discrete Karhunen-Loeve transform for stationary processes, Signal Processing, vol.7, issue.3, pp.231-249, 1929.
DOI : 10.1016/0165-1684(84)90002-1

S. Choy and C. Tong, Supervised Texture Classification Using Characteristic Generalized Gaussian Density, Journal of Mathematical Imaging and Vision, vol.2, issue.4, pp.35-47, 2007.
DOI : 10.1007/s10851-007-0023-8

Y. Stitou, N. Lasmar, and Y. Berthoumieu, Copulas based multivariate gamma modeling for texture classification, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1045-1048, 2009.
DOI : 10.1109/ICASSP.2009.4959766

URL : https://hal.archives-ouvertes.fr/hal-00399615

S. K. Choy and C. S. Tong, Statistical Wavelet Subband Characterization Based on Generalized Gamma Density and Its Application in Texture Retrieval, IEEE Transactions on Image Processing, vol.19, issue.2, pp.281-289, 2010.
DOI : 10.1109/TIP.2009.2033400

M. S. Allili, N. Bouguila, and D. Ziou, Finite Generalized Gaussian Mixture Modeling and Applications to Image and Video Foreground Segmentation, Fourth Canadian Conference on Computer and Robot Vision (CRV '07), pp.183-190, 2007.
DOI : 10.1109/CRV.2007.33

N. Lasmar, Modélisation stochastique pour l'analyse d'images texturées : Approches Bayésiennes pour la caractérisation dans le domaine des transformées, pp.33-38, 1931.

J. Rabin, G. Peyré, J. Delon, and M. Bernot, Wasserstein Barycenter and Its Application to Texture Mixing, Scale Space and Variational Methods in Computer Vision (SSMV), International Conference on, p.32, 2011.
DOI : 10.1007/978-3-642-24785-9_37

M. N. Do and M. Vetterli, Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden markov models. Multimedia, IEEE Transactions on, vol.4, issue.33, pp.517-527, 2002.

G. Verdoolaege, S. De-backer, and P. Scheunders, Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models, 2008 15th IEEE International Conference on Image Processing, pp.169-172, 2008.
DOI : 10.1109/ICIP.2008.4711718

G. Verdoolaege, Y. Rosseel, M. Lambrechts, and P. Scheunders, Wavelet-based colour texture retrieval using the kullback-leibler divergence between bivariate generalized Gaussian models, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.265-268, 0130.
DOI : 10.1109/ICIP.2009.5413405

L. Bombrun, Y. Berthoumieu, N. Lasmar, and G. Verdoolaege, Multivariate texture retrieval using the geodesic distance between elliptically distributed random variables, 2011 18th IEEE International Conference on Image Processing, pp.3637-3640, 2011.
DOI : 10.1109/ICIP.2011.6116506

URL : https://hal.archives-ouvertes.fr/hal-00661686

R. Kwitt, P. Meerwald, and A. Uhl, Efficient Texture Image Retrieval Using Copulas in a Bayesian Framework, IEEE Transactions on Image Processing, vol.20, issue.7, pp.2063-2077, 2011.
DOI : 10.1109/TIP.2011.2108663

N. Lasmar and Y. Berthoumieu, Multivariate statistical modeling for texture analysis using wavelet transforms, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.790-793, 2010.
DOI : 10.1109/ICASSP.2010.5494963

URL : https://hal.archives-ouvertes.fr/hal-00727113

L. Bombrun, N. Lasmar, Y. Berthoumieu, and G. Verdoolaege, Multivariate texture retrieval using the SIRV representation and the geodesic distance, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.865-868, 2011.
DOI : 10.1109/ICASSP.2011.5946541

URL : https://hal.archives-ouvertes.fr/hal-00661682

M. Allili, Wavelet Modeling Using Finite Mixtures of Generalized Gaussian Distributions: Application to Texture Discrimination and Retrieval, IEEE Transactions on Image Processing, vol.21, issue.4, pp.1452-1464, 2012.
DOI : 10.1109/TIP.2011.2170701

M. K. Varanasi, Parameter estimation of the generalized gaussian noise model, p.37, 1986.

S. D. Silvey, Statistical inference, Monographs on Applied Probability and Statistics, p.37, 1975.

S. M. Zabin and H. V. Poor, Parameter estimation for middleton class a interference channels, IEEE Trans. Commun, vol.10, 1989.

M. K. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, The Journal of the Acoustical Society of America, vol.86, issue.4, pp.1404-1415, 1989.
DOI : 10.1121/1.398700

O. Schwander, J. Aurelien, F. Schutz, Y. Nielsen, and . Berthoumieu, k-mle for mixtures of generalized gaussians, Pattern Recognition (ICPR), 2012 21st International Conference on, pp.2825-2828

A. Schutz, Y. Berthoumieu, F. Turcu, C. Nafornita, and A. Isar, Barycentric distribution estimation for texture clustering based on information-geometry tools, 2012 10th International Symposium on Electronics and Telecommunications, pp.343-346
DOI : 10.1109/ISETC.2012.6408132

A. Schutz, L. Bombrun, and Y. Berthoumieu, Centroid-based texture classification using the SIRV representation, 2013 IEEE International Conference on Image Processing, pp.3810-3814, 2013.
DOI : 10.1109/ICIP.2013.6738785

URL : https://hal.archives-ouvertes.fr/hal-00865595

A. Schutz, L. Bombrun, and Y. Berthoumieu, K-centroids-based supervised classification of texture images: Handling the intra-class diversity, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1498-1502, 2013.
DOI : 10.1109/ICASSP.2013.6637901

URL : https://hal.archives-ouvertes.fr/hal-00841939

A. Schutz, L. Bombrun, Y. Berthoumieu, and M. Najim, Centroid-based texture classification using the generalized gamma distribution, Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pp.1-5
URL : https://hal.archives-ouvertes.fr/hal-00878744

A. Schutz, L. Bombrun, and Y. Berthoumieu, Classification d'images texturées basée sur k-barycentres : meilleure gestion de la diversité intra-classe, Groupe d'Etudes du Traitement du Signal et des Images (GRETSI), pp.1-4, 2013.

K. Song, Globally Convergent Algorithms for Estimating Generalized Gamma Distributions in Fast Signal and Image Processing, IEEE Transactions on Image Processing, vol.17, issue.8, pp.1233-1250, 2008.
DOI : 10.1109/TIP.2008.926148

K. Fang, S. Kots, and K. Ng, Symmetric Multivariate and Related Distributions, p.44, 1990.
DOI : 10.1007/978-1-4899-2937-2

S. Zozor and C. Vignat, Some Results on the Denoising Problem in the Elliptically Distributed Context, IEEE Transactions on Signal Processing, vol.58, issue.1, pp.134-150, 2010.
DOI : 10.1109/TSP.2009.2030840

URL : https://hal.archives-ouvertes.fr/hal-00448934

F. Chitour, Y. , and P. , Exact Maximum Likelihood Estimates for SIRV Covariance Matrix: Existence and Algorithm Analysis, IEEE Transactions on Signal Processing, vol.56, issue.10, pp.4563-4573, 2008.
DOI : 10.1109/TSP.2008.927464

URL : https://hal.archives-ouvertes.fr/hal-00353594

F. Gini and M. V. Greco, Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter, Signal Processing, vol.82, issue.12, pp.1847-1859, 2002.
DOI : 10.1016/S0165-1684(02)00315-8

F. Pascal, Y. Chitour, J. Ovarlez, P. Forster, and P. Larzabal, Covariance Structure Maximum-Likelihood Estimates in Compound Gaussian Noise: Existence and Algorithm Analysis, IEEE Transactions on Signal Processing, vol.56, issue.1, pp.34-48, 1945.
DOI : 10.1109/TSP.2007.901652

K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, p.45, 2006.
DOI : 10.1201/9781420011371

A. Schutz, L. Bombrun, and Y. Berthoumieu, K-Centroids-Based Supervised Classification of Texture Images Using the SIRV Modeling, Geometric Science of Information, pp.140-148, 2013.
DOI : 10.1007/978-3-642-40020-9_14

H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, pp.267-281, 1973.

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

G. E. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

J. Burbea and C. Rao, On the convexity of some divergence measures based on entropy functions. Information Theory, IEEE Transactions on, vol.28, issue.59, pp.489-495, 1982.

G. Verdoolaege and P. Scheunders, The Geometry of Multivariate Generalized Gaussian Models ? Part I : Metric and Geodesic Equations. The part 2 exist also, 1960.

M. M. Deza and E. Deza, Encyclopedia of Distances, p.60, 2009.

C. Rao, Diversity and dissimilarity coefficients: A unified approach, Theoretical Population Biology, vol.21, issue.1, pp.24-43, 1982.
DOI : 10.1016/0040-5809(82)90004-1

S. Amari and H. Nagaoka, Methods of information geometry, pp.61-137, 2007.

A. Schutz, L. Bombrun, and Y. Berthoumieu, Intrinsic prior for Bayesian classification of texture images, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4392-4396, 2014.
DOI : 10.1109/ICASSP.2014.6854425

URL : https://hal.archives-ouvertes.fr/hal-01007742

X. Pennec, Probabilities and statistics on riemannian manifolds : Basic tools for geometric measurements, Proc. of Nonlinear Signal and Image Processing, pp.194-198, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00615833

R. A. Johnson, Asymptotic expansions associated with posterior distributions. The Annals of Mathematical Statistics, pp.851-864, 1969.

D. V. Lindley, Approximate Bayesian methods, Trabajos de Estadistica Y de Investigacion Operativa, vol.1, issue.1, pp.223-245, 1980.
DOI : 10.1007/BF02888353

L. Tierney and J. B. Kadane, Accurate Approximations for Posterior Moments and Marginal Densities, Journal of the American Statistical Association, vol.31, issue.393, pp.82-86, 1986.
DOI : 10.1080/01621459.1974.10480130

Y. Miyata, Fully Exponential Laplace Approximations Using Asymptotic Modes, Journal of the American Statistical Association, vol.99, issue.468, pp.1037-1049, 2004.
DOI : 10.1198/016214504000001673

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Tierney, R. E. Kass, and J. B. Kadane, Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions, Journal of the American Statistical Association, vol.69, issue.407, pp.710-716, 1989.
DOI : 10.1080/01621459.1989.10478824

C. C. Heyde and I. M. Johnstone, On Asymptotic Posterior Normality for Stochastic Processes, Journal of the Royal Statistical Society. Series B (Methodological), vol.41, issue.2, pp.184-189, 1979.
DOI : 10.1007/978-1-4419-5823-5_45

S. Said, L. Bombrun, and Y. Berthoumieu, New Riemannian Priors on the Univariate Normal Model, Entropy, vol.16, issue.7, pp.4015-4031, 2014.
DOI : 10.3390/e16074015

URL : https://hal.archives-ouvertes.fr/hal-01084330

N. Mitianoudis and T. Stathaki, Overcomplete source separation using Laplacian mixture models, IEEE Signal Processing Letters, vol.12, issue.4, pp.277-280, 2005.
DOI : 10.1109/LSP.2005.843759

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, Clustering with Bregman Divergences, The Journal of Machine Learning Research, vol.6, issue.74, pp.1705-1749, 2005.
DOI : 10.1137/1.9781611972740.22

F. Nielsen, K-MLE: A fast algorithm for learning statistical mixture models, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.167, 2012.
DOI : 10.1109/ICASSP.2012.6288022

H. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics, vol.3, issue.5, p.82, 1977.
DOI : 10.1002/cpa.3160300502

G. A. Galperin, A concept of the mass center of a system of material points in the constant curvature spaces, Communications in Mathematical Physics, vol.65, issue.No. 5, pp.63-84, 1993.
DOI : 10.1007/BF02096832

A. Dario, B. Bini, and . Iannazzo, Computing the karcher mean of symmetric positive definite matrices, 16th {ILAS} Conference Proceedings, pp.1700-1710, 2010.

M. Moakher, On the Averaging of Symmetric Positive-Definite Tensors, Journal of Elasticity, vol.38, issue.1, pp.273-296, 2006.
DOI : 10.1007/s10659-005-9035-z

F. Barbaresco, New foundation of radar doppler signal processing based on advanced differential geometry of symmetric spaces : Doppler matrix cfar and radar application, International Radar Conference, p.82, 2009.

J. Lapuyade-lahorgue and F. Barbaresco, Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar, 2008 IEEE Radar Conference, pp.1-6, 1982.
DOI : 10.1109/RADAR.2008.4721049

P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly, A rigorous framework for diffusion tensor calculus, Magnetic Resonance in Medicine, vol.103, issue.1, pp.221-225, 2005.
DOI : 10.1002/mrm.20334

P. T. Fletcher and S. Joshi, Riemannian geometry for the statistical analysis of diffusion tensor data, <ce :title>Tensor Signal Processing<, pp.250-262, 2007.
DOI : 10.1016/j.sigpro.2005.12.018

X. Pennec, P. Fillard, and N. Ayache, A Riemannian Framework for Tensor Computing, International Journal of Computer Vision, vol.6, issue.2, pp.41-66, 2006.
DOI : 10.1007/s11263-005-3222-z

URL : https://hal.archives-ouvertes.fr/inria-00070743

Y. Rathi, O. Tannenbaum, and . Michailovich, Segmenting Images on the Tensor Manifold, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383010

F. Nielsen and R. Nock, Sided and symmetrized bregman centroids, IEEE Transactions on Information Theory, vol.55, issue.87, pp.2048-2059, 2009.

F. Nielsen and V. Garcia, Statistical exponential families : A digest with flash cards, pp.1-27, 2009.

J. Nocedal and S. J. Wright, Numerical Optimization, p.89, 1999.
DOI : 10.1007/b98874

S. Amari and S. C. Douglas, Why natural gradient ? In Acoustics, Speech and Signal Processing, Proceedings of the 1998 IEEE International Conference on, pp.1213-1216, 1998.

T. J. Dekker, Finding a zero by means of successive linear interpolation, Constructive aspects of the fundamental theorem of algebra. Interscience, p.117, 1969.

R. P. Brent, An algorithm with guaranteed convergence for finding a zero of a function, The Computer Journal, vol.14, issue.4, pp.422-425, 1971.
DOI : 10.1093/comjnl/14.4.422

A. Ray and . Jarvis, A perspective on range finding techniques for computer vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.1, issue.2, pp.122-139, 1983.

Z. Stan and . Li, Markov random field modeling in computer vision, 1995.

A. David, J. Forsyth, and . Ponce, Computer vision : a modern approach, 2002.

C. Chen, L. Pau, and P. Wang, Handbook of pattern recognition and computer vision, World Scientific, p.128, 2010.

B. S. Manjunath and W. Y. Ma, Texture features for browsing and retrieval of image data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.18, issue.8, pp.837-842, 1996.

A. H. , S. Solberg, T. Taxt, and . Jain, A markov random field model for classification of multisource satellite imagery. Geoscience and Remote Sensing, IEEE Transactions on, vol.34, issue.1, pp.100-113, 1996.

I. Christodoulos, . Christodoulou, C. Silas, C. S. Michaelides, and . Pattichis, Multifeature texture analysis for the classification of clouds in satellite imagery. Geoscience and Remote Sensing, IEEE Transactions on, issue.11, pp.412662-2668, 2003.

C. Chen, S. John, . Daponte, D. Martin, and . Fox, Fractal feature analysis and classification in medical imaging, IEEE Transactions on Medical Imaging, vol.8, issue.2, pp.133-142, 1989.
DOI : 10.1109/42.24861

S. Anthony-yezzi-jr, A. Kichenassamy, P. Kumar, A. Olver, and . Tannenbaum, A geometric snake model for segmentation of medical imagery, Medical Imaging IEEE Transactions on, vol.16, issue.2, pp.199-209, 1997.

A. Y. Tsai-andy, W. Jr, C. Wells, D. Tempany, A. Tucker et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Transactions on Medical Imaging, vol.22, issue.2, pp.137-154, 2003.
DOI : 10.1109/TMI.2002.808355

P. Ramdohr, The ore minerals and their intergrowths. Pergamon press, p.128, 1980.

R. King, Linear stochastic models for mineral liberation, Powder Technology, vol.81, issue.3, pp.217-234, 1994.
DOI : 10.1016/0032-5910(94)02886-9

E. Donskoi, . Suthers, . Sb-fradd, . Young, . Campbell et al., Utilization of optical image analysis and automatic texture classification for iron ore particle characterisation, Minerals Engineering, vol.20, issue.5, pp.461-471, 2007.
DOI : 10.1016/j.mineng.2006.12.005

A. Suresh, . Usn-raju, . Rao, and . Kumar, An innovative technique of marble texture description based on grain components, International Journal of Computer Science and Network Security, vol.8, issue.2, pp.122-126, 2008.

S. Prithvi, . Kandhal, B. John, A. Motter, and . Khatri, Evaluation of particle shape and texture : manufactured versus natural sands, p.128, 1991.

T. Mäenpää, M. Turtinen, and M. Pietikäinen, Real-time surface inspection by texture, Real-Time Imaging, vol.9, issue.5, pp.289-296, 2003.
DOI : 10.1016/S1077-2014(03)00041-X

X. Xie, A review of recent advances in surface defect detection using texture analysis techniques. Electronic Letters on Computer Vision and Image Analysis, pp.1-22, 2008.

A. K. Jain, R. P. Duin, and J. Mao, Statistical pattern recognition : a review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.1, pp.4-37, 2000.

R. M. Haralick, Statistical and structural approaches to texture, Proceedings of the IEEE, pp.786-804, 1979.
DOI : 10.1109/PROC.1979.11328

J. Hans and . Bremermann, Pattern recognition, functionals and entropy, Biomedical Engineering IEEE Transactions on BME, vol.15, issue.3, pp.201-207, 1968.

H. Raïffa, R. Schlaifer, R. M. Haralick, and G. L. Kelly, Applied statistical decision theory. M.I.T. Press Pattern recognition with measurement space and spatial clustering for multiple images, Proceedings of the IEEE, vol.57, issue.4, pp.654-665, 1968.

O. Richard, P. E. Duda, and . Hart, Pattern Classification and Scene Analysis, 1973.

J. T. Tou and R. C. Gonzalez, [136] MIT Vision and Modeling Group. Vision Texture, Pattern Recognition Principles. Coden : APMCC, pp.128-130, 1974.

J. Puzicha, T. Hofmann, and J. M. Buhmann, Non-parametric similarity measures for unsupervised texture segmentation and image retrieval, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.267-272, 1997.
DOI : 10.1109/CVPR.1997.609331

P. Brodatz, Textures : a photographic album for artists and designers, p.130, 1966.

J. Zhang, L. Wang, and L. Tong, Feature Reduction and Texture Classification in MRI-Texture Analysis of Multiple Sclerosis, 2007 IEEE/ICME International Conference on Complex Medical Engineering, pp.752-757, 0131.
DOI : 10.1109/ICCME.2007.4381839

G. Van-de-wouwer, P. Scheunders, and D. Van-dyck, Statistical texture characterization from discrete wavelet representations, IEEE Transactions on Image Processing, vol.8, issue.4, pp.592-598, 2002.
DOI : 10.1109/83.753747

T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.7, pp.971-987, 2002.

F. Roberti-de-siqueira, W. R. Schwartz, and H. Pedrini, Multi-scale gray level co-occurrence matrices for texture description, Neurocomputing, vol.120, issue.0, p.131, 2013.
DOI : 10.1016/j.neucom.2012.09.042

W. Weibull, A statistical distribution function of wide applicability, Journal of Applied Mechanics, vol.13, pp.293-297, 1951.

R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, p.133, 1978.

J. B. Tenenbaum, V. D. Silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

R. Chellappa and S. Chatterjee, Classification of textures using gaussian markov random fields. Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.33, issue.4, pp.959-963, 1985.

D. Gomez and J. Montero, Determining the accuracy in image supervised classification problems, Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011), pp.1-1342, 0141.
DOI : 10.2991/eusflat.2011.103

J. Cohen, A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, vol.20, issue.1, pp.37-46, 1960.
DOI : 10.1177/001316446002000104

J. Malik, S. Belongie, T. Leung, and J. Shi, Contour and Texture Analysis for Image Segmentation, International Journal of Computer Vision, p.156, 2001.
DOI : 10.1007/978-1-4615-4413-5_9

D. Fowlkes, C. Martin, X. Ren, and J. Malik, Detecting and localizing boundaries in natural images, p.156, 2002.

T. Chang and C. J. Kuo, Texture analysis and classification with tree-structured wavelet transform, IEEE Transactions on Image Processing, vol.2, issue.4, pp.429-441, 1993.
DOI : 10.1109/83.242353