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Titre : Méthodes de génération automatique de code appliquées à l’algèbre linéaire
numérique dans le calcul haute performance
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linéaire, GPU

Résumé : Les architectures parallèles sont aujourd’hui présentes dans tous les systèmes
informatiques, allant des smartphones aux supercalculateurs en passant par les ordinateurs de
bureau. Programmer efficacement ces architectures en fonction des applications requiert un ef-
fort pluridisciplinaire portant sur les langages dédies (Domain Specific Languages - DSL), les
techniques de génération de code et d’optimisation, et les algorithmes numériques propres aux
applications.

Dans cette thèse, nous présentons une méthode de programmation haut niveau prenant
en compte les caractéristiques des architectures hétérogènes et les propriétés existantes des
matrices pour produire un solveur générique d’algèbre linéaire dense. Notre modèle de pro-
grammation supporte les transferts explicites et implicites entre un processeur (CPU) et un
processeur graphique qui peut être généraliste (GPU) ou intégré (IGP). Dans la mesure où les
GPU sont devenus un outil important pour le calcul haute performance, il est essentiel d’inté-
grer leur usage dans les plateformes de calcul. Une architecture récente telle que l’IGP requiert
des connaissances supplémentaires pour pouvoir être programmée efficacement. Notre métho-
dologie a pour but de simplifier le développement sur ces architectures parallèles en utilisant
des outils de programmation haut niveau. À titre d’exemple, nous avons développé un solveur
de moindres carrés en précision mixte basé sur les équations semi-normales qui n’existait pas
dans les bibliothèques actuelles.

Nous avons par la suite étendu nos travaux à un modèle de programmation multi-étape
("multi-stage") pour résoudre les problèmes d’interopérabilité entre les modèles de program-
mation CPU et GPU. Nous utilisons cette technique pour générer automatiquement du code
pour accélérateur à partir d’un code effectuant des opérations point par point ou utilisant des
squelettes algorithmiques. L’approche multi-étape nous assure que le typage du code généré est
valide. Nous avons ensuite montré que notre méthode est applicable à d’autres architectures et
algorithmes. Les routines développées ont été intégrées dans une bibliothèque de calcul appelée
NT2.

Enfin, nous montrons comment la programmation haut niveau peut être appliquée à des
calculs groupés et des contractions de tenseurs. Tout d’abord, nous expliquons comment conce-
voir un modèle de container en utilisant des techniques de programmation basées sur le C++
moderne (C++-14). Ensuite, nous avons implémenté un produit de matrices optimisé pour des
matrices de petites tailles en utilisant des instructions SIMD.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

1



Hello World

Title : Automatic code generation methods applied to numerical linear algebra in
high performance computing

Keywords : Generic programming, DSELs, Generative programming, C++, linear algebra,
GPU

Abstract : Parallelism in today’s computer architectures is ubiquitous whether it be in su-
percomputers, workstations or on portable devices such as smartphones. Exploiting efficiently
these systems for a specific application requires a multidisciplinary effort that concerns Domain
Specific Languages (DSL), code generation and optimization techniques and application-specific
numerical algorithms.

In this PhD thesis, we present a method of high level programming that takes into account
the features of heterogeneous architectures and the properties of matrices to build a generic
dense linear algebra solver. Our programming model supports both implicit or explicit data
transfers to and from General-Purpose Graphics Processing Units (GPGPU) and Integrated
Graphic Processors (IGPs). As GPUs have become an asset in high performance computing, in-
corporating their use in general solvers is an important issue. Recent architectures such as IGPs
also require further knowledge to program them efficiently. Our method aims at simplifying the
development on parallel architectures through the use of high level programming techniques.
As an example, we developed a least-squares solver based on semi-normal equations in mixed
precision that cannot be found in current libraries. This solver achieves similar performance as
other mixed-precision algorithms.

We extend our approach to a new multistage programming model that alleviates the in-
teroperability problems between the CPU and GPU programming models. Our multistage ap-
proach is used to automatically generate GPU code for CPU-based element-wise expressions
and parallel skeletons while allowing for type-safe program generation. We illustrate that this
work can be applied to recent architectures and algorithms. The resulting code has been incor-
porated into a C++ library called NT2.

Finally, we investigate how to apply high level programming techniques to batched computa-
tions and tensor contractions. We start by explaining how to design a simple data container using
modern C++-14 programming techniques. Then, we study the issues around batched computa-
tions, memory locality and code vectorization to implement a highly optimized matrix-matrix
product for small sizes using SIMD instructions. By combining a high level programming ap-
proach and advanced parallel programming techniques, we show that we can outperform state
of the art numerical libraries.
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Introduction

In recent years, architectures and programming languages have gone through major
changes and diversification. The constant need for more computational power and
more generic software has been the driving force behind these changes. Solving lin-
ear systems of equations Ax = b is part of many computational applications leading
to a vast amount of research. The development of dense linear algebra has gone in
hand with the evolution of computer languages and architectures. The High Perfor-
mance Computing landscape has gone through many changes with the development
of multicore processors and accelerators. One can safely predict that this trend will
continue as current architectures are at a crossroad with the limits being reached
for the lithography process. At the same time, computer languages have started to
diversify with a focus on high level language concepts and functional programming
paradigms. Recent languages such as Scala, Dotty, Rust or modern C++ are prime
examples of this new direction. Such languages are also starting to become standard
in High Performance Computing (HPC) to develop scalable and robust softwares.
In this PhD thesis, we present a method of high level programming that takes into
account the features of heterogeneous architectures and algorithmic properties to
build numerical libraries.

The issues we consider throughout our work are related to software design and
optimization for heterogeneous architectures. Software has historically being de-
signed around solving problems for specific architectures, which limits portability
and reuse. We propose an approach to develop generic interfaces that support archi-
tectural extensions. As the programming model can vary tremendously depending
on the hardware, being able to give specifications when necessary and properly cat-
egorize hardware for code reuse is essential. This requires high level programming
techniques that cannot be found in every language. The concept called Domain
Specific Embedded Languages (DSEL) relies on a generic programming language
that is flexible and expressive enough to enable the development of a sub-language
with a definite syntax. This technique is known to be used in the languages men-
tioned above. In our work, we employ such programming techniques to design an
architecture aware solver for dense linear systems. The resulting codes have been
incorporated into a C++ library called NT2 1. We also consider the issues around
batched computations and tensor contractions. This work is done outside of the NT2
library. A detailed explanation on how to develop a simple high level memory con-
tainer without relying on current software is given. We then develop an optimized
matrix-matrix product for small sizes using a tuning approach. In our benchmarks,
computations on the GPU are run using the IEEE 754 compliant mode [138] for
arithmetic operations and with CUDA ECC activated.

1NT2 is available at http://github.com/jfalcou/nt2
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This manuscript is organized as follows:

In Chapter 1, we present the background for our work. First, we consider the
evolution of some numerical libraries and describe how architectures and program-
ming languages have influenced them. Secondly, we discuss the main algorithms
to solve dense linear systems and how to use them in the most popular HPC li-
braries. Then, we give a general description of current architectures and the main
programming tools and techniques available. This includes low-level architectural
tools that require expertise to properly program the hardware and high-level pro-
gramming techniques to make abstraction of such problems. Then, we present the
programming language and library we use throughout most our work.

In Chapter 2, we present our method to design a high level programming frame-
work to generate dense linear algebra software . We start by giving a software
context as there are several approaches to such a problem. Then, we present the
code generation techniques that we for our CPU/GPU programming model. This
model will then enable the development of a dense linear solver that can support
hybrid architectures. We illustrate our approach with a least squares solver based
on semi-normal equations for CPU, GPU and Integrated Graphic Processors (IGP)
that cannot be found in state of the art libraries.

In Chapter 3, we extend the work described in Chapter 2 by proposing a multi-
stage programming approach. We give a detailed background on related work and
libraries available in C++ to solve the code portability and support problems. Then,
we explain the process behind our multi-stage approach in C++ and how we have
implemented it into the NT2 library. We test our approach with experiments on
the Black & Scholes algorithm for GPU and IGPs and by applying our multi-stage
approach to the work described in Chapter 2.

In Chapter 4, we investigate how to apply high level programming techniques to
batched computations and tensor contractions. We start by explaining how to de-
sign a simple data container using modern C++14 programming techniques. Then,
we study the issues around batched computations, memory locality and code vec-
torization to implement a highly optimized matrix-matrix product for small sizes
using SIMD instructions. By combining a high level programming approach and
advanced parallel programming techniques, we show that we can outperform state
of the art numerical libraries.

The main contributions of this PhD thesis can be summarized as follows:

– We propose an architecture aware binding between NT 2 and LAPACK/-
MAGMA based on type tags to dispatch between the different architectures
and runtime back-ends in an extensible way.

– We provide an implementation of linsolve (in reference to the Matlab routine)
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that takes into account both hardware and algorithmic features to select and
generate at compile time the proper LAPACK/MAGMA routine from the
high-level C++ code, mapping over 160 kernels.

– We present a multi-stage approach to alleviate the host/device programming
model with a cost model for offloading code. This provides adaptable strategy
to generate CUDA kernel directly from a single C++ source file containing
NT2 statements.

– Our method takes advantage of modern C++ design for hybrid computations
and interface development without relying on current software.

– We describe a strategy using performance analysis based on hardware features
and counters to implement efficient algorithms on specific architecture. This
work is based on the implementation of a small batched matrix-matrix product
that can perform better than state of the art libraries.
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Parallelism in todays computer architectures is ubiquitous whether it be in su-
percomputers or small portable devices such as smartphones or watches. While
computers hardware is evolving, computing power as expressed by Moore’s law is
still the incentive for all manufacturers. If frequency scaling has been a temporary
solution, power dissipation and the increasing complexity in CPU design has lead
manufacturers to develop more sophisticated architectures. These new architectures
that allow to increase the computational power vary from CPU multicores to GPUs,
or even integrated system-on-chip (SOC). Exploiting the full performance of such
systems for numerical problems has become very challenging.
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In order to take fully advantage of these new architectures, software libraries
are developed to give user access to efficient linear algebra computations. The first
major numerical libraries to appear include the Scientific Subroutine Package by
IBM [72] in 1968, the Basic Linear Algebra Subprograms (BLAS [41]) or the Linear
Algebra Package (LINPACK [42]) in 1979. Each of these packages were already imple-
mented using some form of modular programming for better flexibility. Since then,
architecture specific libraries for dense linear algebra have been developed such as
LAPACK [6] for cache-based CPUs, ScaLAPACK [21] for distributed architectures,
PLASMA [126] for multicores introducing tiled algorithms, data layouts and more
recently MAGMA [12, 127] for accelerator-based architectures with GPUs or Xeon
Phi.

These evolutions have gone in hand with programming techniques and languages.
As we go back, LINPACK was written in Fortran 66 and LAPACK in Fortran 77.
The more recent libraries were developed in C for PLASMA and C++ for MAGMA.
In each new library the level of abstraction has been raised by using generic pro-
gramming techniques. However, due to retro-compatibility concerns and the need
to maintain a similar interface for the routines, the use of high level programming
techniques is still very limited. Moreover, with the increasing parallelism and het-
erogeneity as well as the ever increasing data-communication cost, the algorithms
were completely modified and redesigned to take advantage of each new architecture.
The disparity between these libraries that target different architectures illustrates
one of the major issues in designing optimized linear algebra software.

Parallel architectures are essential for scientific applications due to the high com-
puting power they provide. Using efficiently these architectures is a difficult task
due to the diversity of the hardware and the large amount of software solutions.
Algorithms for CPU are still evolving to better adapt to architectures. For exam-
ples, the ReLAPACK [105] library has been developed using recursive programming
techniques and can outperform LAPACK. It is in this context that we place our
work. We focus on architecture aware software design for scientific computations.

In this chapter, we give an overview of the different architectures and program-
ming techniques that are the premises for our work. After explaining why high
level programming matters in Section 1.1, we present the algorithms and solvers for
dense numerical libraries in Section 1.2. We then detail in Section 1.3 the different
architectures and the impact they can have on the different algorithms. Following
this, we present the programming tools and techniques in Section 1.1 that are used
to develop high level libraries. Finally, we discuss in Section 1.5 about the language
and library we used for our work.

1.1 High level Programming for Scientific Computing

The evolution of semiconductor technology is dramatically transforming the balance
of future computer systems, producing changes at every level. From the point of
view of numerical libraries, and the myriad of applications that depend on them,
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architectures

having more computational power allows to work on bigger simulations. These
simulations can take up to months of continual computation depending on size of
the problem. For this reason, having robust frameworks has become essential.

Developing fast applications in a reasonable amount of time requires a multi-
disciplinary effort incorporating Domain Specific Languages, code generation and
optimization techniques, domain science and application-specific numerical algo-
rithms. As computational power and architectures are growing each year, it has
now become a major concern to properly design libraries. In 2008 the first Petaflop
machine entered the Top 500 while a research article was already explaining the
challenges for ExaScale computing [18] and the emerging architectures. Modularity
is now one of the main concern when writing software frameworks. Modern soft-
ware such as GEANT4, a simulation toolkit for simulating the passage of particles
through matter [4], or ROOT [23], for High Energy and Nuclear Physics, are devel-
oped using high level languages like C++ and can integrate other languages such
as Python or R.

Exploring the use of accelerators as a general purpose co-processor to increase
the computational power has been an active research field since the release of the
CUDA language in 2007. Dedicated libraries for such architectures have emerged
such as MAGMA, CUBLAS by NVIDIATM or ACML by AMDTM but these are
architecture specific. The MAGMA library exists in different versions depending
on the hardware vendor. For major frameworks such as GEANT4, we can find
research studies explaining how to implement algorithms for new architectures such
as Xeon Phi [115]. These changes require advanced methodologies to compile and
execute any scientific program. The article also shows that applications need to be
heavily tuned to increase performance. The scientific community has a wide range
of domains that require dedicated scientific applications to solve the programming
challenges. Having an adaptable library does not need to be reimplemented for each
new architecture is one of the main challenge of Scientific Computing.

1.2 Solving dense linear systems

Many scientific applications whether dense or sparse require at some point to
solve a linear system of equations Ax = b. Examples range from fields such as Fluid
Dynamics or Electromagnetism using Boundary Integral equations to tensor-based
simulations [80]. Due to this, linear algebra algorithms must be robust, accurate
and scalable to fulfill the needs of High Performance Computing.

This notion of numerical stability [69] plays a crucial role in designing algorithms
as the result obtained by a numerical algorithm does not correspond to the solution
of the problem in exact arithmetic. The different sources of errors may come from
the input data of the algorithm, which may be caused by prior computations or
measurement errors, which are themselves limited to the machine precision currently
under the IEEE 754 norm [77]. Also, errors may be caused by approximations made
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by the algorithm. Depending on the desired accuracy, several algorithms can be
chosen to solve a linear system.

We can find two major approaches to solve linear systems : direct or iterative
methods. A direct method uses a finite sequence of operations to provide an exact
solution x if there are no rounding errors. The common method used to solve such
systems is called Gaussian elimination. It consists in adding the coefficients of one
equation to the others in order to eliminate a variable and continue this process
until only one variable is left. Iterative methods start with an approximation of the
solution x0 and successively compute a sequence of approximations xi to improve
the solution. In our work we focus on direct methods which are generally used to
solve dense linear systems. Direct methods provide higher numerical precision and a
good granularity of computations making it easier to exploit the latent parallelism.
We note the main decompositions that exist [57] : LU, Cholesky, QR, SVD, LDLT.

LU: Decomposes a general matrix A as L×U where L is unit lower triangular and
an U is upper triangular (about 2× n3/3 flops).

Cholesky: A symmetric positive definite (SPD) matrix A is factored as A = LLT where
L is lower triangular (about n3/3 flops).

QR: An m-by-n matrix A is factored as A = QR with Q an m-by-m orthogonal
matrix and R an m-by-n upper triangular matrix (2n2(m− n/3) flops).

SVD: Decomposition of an m-by-n matrix A as A = UΣV T , U an m-by-m orthog-
onal matrix, Σ an m-by-n diagonal matrix (where the diagonal contains the
singular values of A) and V an n-by-n orthogonal matrix V (the cost is about
mn2 flops to compute Σ).

LDLT : factorization (using symmetric pivoting) is PAP T = LDLT where P is a
permutation matrix, A is a symmetric indefinite square matrix, L is unit
lower triangular and D is block-diagonal, with blocks of size 1 × 1 or 2 × 2

(about n3/3 flops).

1.2.1 LU factorization

The LU factorization [57, p.111] is a modified Gaussian elimination without pivoting
that decomposes a nonsingular matrix A into a lower triangular matrix, and an
upper triangular matrix U. The number of floating point operations of the LU
decomposition for a square matrix n is about 2n3/3. For dense matrices, the LU
factorization is usually performed in place. This means that the output factors L
and U overwrite the matrix A during the factorization.
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Algorithm 1 LU factorization in place, no pivoting
Input: A is n× n matrix
1: for k = 1 : n− 1 do
2: for i = k + 1 : n do
3: A(i, k) = A(i, k)/A(k, k)

4: end for
5: for i = k + 1 : n do
6: for j = k + 1 : n do
7: A(i, j) = A(i, j)−A(i, k) ∗A(k, j)

8: end for
9: end for

10: end for

The LU factorization is generally implemented using pivoting strategies because
there are several important issues that can appear without pivoting. For example,
if a zero is found on the diagonal of the matrix, a division by zero will occur leading
to a numerical error. Also, if there are elements of small magnitude on the diagonal,
the factors will end up growing too much also leading to erroneous results. We
note PA = LU , with P a permutation matrix, when using partial pivoting in
LU factorization. The stability of Gaussian elimination can be measured with the
growth factor [69]. The growth factor measures the ratio between the entries of the
matrix after the elimination steps and the original entries. The growth factor of a
square matrix A under Gaussian elimination is defined as:

gn(A) =
maxi,j,k |a(k)ij |
maxi,j |ai,j |

,

where a(k)ij is the element of index (i, j) after the step number k of the elimina-
tion [78]. The most common pivoting strategy used is called partial pivoting. It
consists in permuting the rows but not the columns to ensure that the pivot is the
largest entry in its column. For a step j of the Gaussian elimination, partial pivot-
ing permutes the rows such that |aj,j | > |ai,j | for all i > j . This guarantees that
||L||∞ 6 1. Its growth factor upper bound is 2n−1 which can be reached for certain
problems [53].
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Algorithm 2 LU factorization in place, partial pivoting
Input: A is a n× n matrix
1: for k = 1 : n do
2: index← k

3: for i = k + 1 : n do
4: if |A(i, k)| > |A(index, k)| then
5: index = i

6: end if
7: end for
8: swap rows k and index
9: for i = k + 1 : n do

10: A(i, k)← A(i, k)/A(k, k)

11: end for
12: for i = k + 1 : n do
13: for j = k + 1 : n do
14: A(i, j) = A(i, j)−A(i, k) ∗A(k, j)

15: end for
16: end for
17: end for

The drawback of pivoting comes from the communication cost due to the com-
parisons performed to find the pivot and to the resulting swap of rows. For a square
matrix, the partial pivoting requires O(n2) comparisons. Other well know pivoting
strategies are total pivoting (O(n3) comparisons) and rook pivoting (O(1.5n3/4 logn)

comparisons).
The LU factorization is a classical technique that is used with different imple-

mentations in high performance linear algebra libraries. We can find applications
with different pivoting strategies, precision, with iterative refinement or even in
mixed precision. For this reason, we have used the LU factorization and its various
forms as an important part of our generic solver for dense linear systems that we
are going to detail in Chapter 2.

1.2.2 QR factorization

The QR factorization [57, p.246] decomposes a matrix A into the product of an
upper triangular matrix R and an orthogonal matrix Q. This is the main method
used to solve the least square problem which consists in finding a minimal solution
to a system Ax = b. This means solving ||Ax−b||p , A being an m by n matrix, for a
defined p. There are multiple methods to compute the QR factorization of a matrix.
Here we will focus on factorization with the Householder transforms which can be
found in numerical libraries. We will described in Chapter 2 how we implemented a
versions of mixed-precision semi-normal equations based on this QR factorization.

During the QR factorization, applying the Householder transformations on the
matrix A will remove every entry below the diagonal. By repeating this process n
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times, we obtain the upper triangular matrix R such that :

HnHn−1...H1A = R.

We note the form of an orthogonal matrix computed durign the factorization as :

H = I − 2
||u||2uu

T .

If we set Q = H1...Hn, we can then obtain A = QR which means we have
QTA = R. Algorithm 3 illustrates the QR factorization as described by Golub
using the house function [57, p.237].

Algorithm 3 HouseHolder QR in place, no pivoting
Input: A is a m× n matrix
1: for k = 1 : n do
2: [v, β] = house(A(j : m, j))

3: vj = [0...0, 0, 1, vjj+1....v
j
m]T

4: βj = 2
1+||A(j+1:m,j||2)

5: A(j : m, j : n) = (I − βvvT )A(j : m, j : n)

6: if j < m then
7: A(j + 1 : m, j) = v(2 : m− j + 1)

8: end if
9: end for

We note that this method is known to be numerically stable [139].

1.2.3 Solvers in LAPACK and MAGMA

Solvers for linear systems can be found in LAPACK and MAGMA constitute the
building blocks to write a generic library for dense linear algebra. The routines
given in these libraries can be distinguished by the static properties of the matrix.
These properties correspond to the structure of a dense matrix which are for instance
general, band, symmetric, positive definite or tridiagonal. Other structures can be
considered but they may require new implementations to be written. The more
common class of linear systems correspond to general dense matrices. This study
focuses on dense matrices which already cover a wide range of applications.

What we describe below is the guideline of the main algorithms that are imple-
mented. This however does not represent the implementation since it will depend
of the structure of the matrix and also the target architecture. LAPACK being
for CPU, the implementation is more straightforward and matches the algorithms
while MAGMA will tend to be more specific. Indeed, since MAGMA is designed
for GPU, it is important that the transitions between CPU and GPU is smooth to
ensure minimal communication cost.
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1.2.3.1 General solvers

The solver used in LAPACK/MAGMA for general linear systems (xgesv, the letter
x indicating the precision, either real (s), double-real (d), complex (c) or double-
complex (z) ; ge standing for general) is based on the LU decomposition with
partial row pivoting. This technique, called Gaussian elimination with partial
pivoting is implemented in most numerical libraries including LAPACK andMAGMA
and is used in the LINPACK benchmark for the TOP500 list.

To solve the linear system Ax = b, we compute a factorization PA = LU with P
permutation matrix, L lower triangular and U upper triangular. Then the solution
x is computed by solving successively the triangular systems Ly = Pb followed by
Ux = y.

Algorithm 4 Solving Ax = b with LU factorization
1: Compute the factorization PA = LU with P permutation matrix, L lower

triangular and U upper triangular.
2: Solve Ly = Pb.
3: Solve Ux = y.
4: Solution is x.

In the case of rectangular matrices, the routine xgelsy uses the QR decompo-
sition of the matrix (possibly with column pivoting) to solve the linear least square
problem [20] :

min
x∈Rn

‖Ax− b‖2

Algorithm 5 Solving Ax = b with QR factorization
1: Compute the factorization A = QR with Q orthogonal matrix and R upper

triangular matrix.
2: Form d = QT b.
3: Solve Rx = d by backward substitution.
4: Solution is x.

The interest of these factorizations is that we can reuse the obtained factors for
other computations which can also be very expensive such as computing the con-
dition number [69], or performing iterative refinement [38]. In the case of a square
matrix, we will identify three types of solvers that are available in LAPACK and will
mention others that can added. In the case of a rectangular matrix we can identify
a unique solver, which is the routine xgelsy.

The first one is the routine xgesv to compute a solution using the LU factoriza-
tion. This can be seen as the standard case when there is no particular information
about the system. Other cases include iterative refinement and mixed precision.
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1.2.3.2 Iterative refinement

The second one is the routine xgesvx using iterative refinement which enables it to
improve the accuracy of the computed solution. Iterative refinement is a method
that produces a correction to the computed solution by iterating on it. Each mth

iteration in this process consists of computing the residual rm = b − Axm, solving
the new system Adm = rm, and adding the correction xm+1 = xm + dm.

Algorithm 6 One iteration of iterative refinement
1: Compute the residual r = b−Ax.
2: Solve the new system Ad = r.
3: Add the correction x = x+ d.

This method is computationally more expensive but can provide better solution
for ill-conditioned systems.

1.2.3.3 Mixed precision algorithm

The third method is the solver dsgesv that uses mixed precision iterative refine-
ment [10]. This method takes advantage of the fact that computing in single preci-
sion is in general much faster than computing in double precision. The factorization
(most expensive part of the computation) is computed in single precision (εs) (if
the matrix is not ill-conditioned) and the solution is refined in double precision (εd)

using the classical iterative refinement method.

Algorithm 7 Mixed precision, iterative refinement
1: Compute PA = LU (εs)

2: Solve Ly = Pb (εs)

3: Solve Ux0 = y (εs)

do k = 1,2,...
4: rk = b−Axk−1 (εd)

5: Solve Ly = Prk (εs)

6: Solve Uzk = y (εs)

7: xk = xk−1 + zk (εd)

check convergence

These methods can be found in current open source libraries. There are also
other interesting methods that can provide satisfactory performance. An exam-
ple is a method that accelerates linear system solutions using randomization tech-
niques [14], in which the system is modified by a multiplicative preconditioning
based on Random Butterfly Transformations [104] that removes the need for pivot-
ing (which is an expensive process). Another method is based on communication-
avoiding algorithms that minimize the cost of pivoting [11, 63].
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1.3 Architectures : Design and evolution

1.3.1 SIMD extensions

Single instruction multiple data (SIMD) architectures correspond to processing units
that can perform an operation on multiple data simultaneously (see Figure 1.1).
SIMD extensions are designed to help processors exploit the latent data parallelism
available in many applications at a smaller cost than duplicating Arithmetic Logic
Units (ALU).

Multiple constructors have implemented vector extensions. SIMD extensions
started mostly with Sun Microsystems Visual Instruction Set (VIS) for the SPARC
V9 [79] and Hewlett-Packard Multimedias Acceleration eXtensions (MAX) for the
PARISC instruction set [84]. This lead other constructors to develop their own
SIMD extension set.

Figure 1.1: SIMD concept

MotorolaTM worked with AppleTM and IBMTM on the PowerPC architecture to
develop the Altivec extensions [40] set. ARMTM introduced its first SIMD instruction
set on ARMv6 which operated on 32-bit general purpose registers. Later on, ARM
developed the Neon extension set for ARMV7-A with 64 bytes registers. Then,
ARM extended Neon to 128 bits and added double precision computation. IntelTM

introduced its SIMD extensions called streaming multimedia extensions (SSE) with
the P5-based Pentium x86 processors. This first extension called MMX [106] used
floating point registers instead of having specific vector registers which disabled
scalar computations. Later on, they developed their first processors with dedicated
vector registers (Pentium III) with 64 bytes registers. Since then, manufacturers
have continued to increase the size of dedicated SIMD registers which now go up to
512 bytes vectors for Intel Xeon Phi coprocessors [26] (which corresponds to a line
of L1 cache).

Exploiting the parallelism offered by these extensions is critical for high perfor-
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mance computing as it can theoretically increased performance up to 8 times with
512 bytes registers for double precision operations. Using SIMD extensions can also
increase the bandwidth. Linear algebra can benefit greatly from SIMD extensions
as BLAS operations which are fundamental for most algorithm are vector based.

1.3.2 Multicore systems

The processor manufacturers faced a technology limitation to their traditional ap-
proach of boosting clock speeds and increasing throughput due to power dissipa-
tion problems. This lead to the development of multicore architectures and hyper-
threading as a solution which is a turning point in terms of software development.
While constructors could increase the frequency in processors freely, the performance
of a program would naturally increase which each new generation of processor. This
went on until the end of the Intel Pentium 4 processors in 2006 with frequencies
around 3.6 GHz. By then multicores were already available on the market but were
not yet generalized. The common concept behind a multicore processor is to let
each core have an L1 independent cache and put a shared L2 cache on the die which
is the interface to the main memory. Figure 1.2 show a multicore systems with two
levels of cache. Modern CPUs generally have two levels of cache in each core and
a shared L3 cache. Having multiple CPU cores on the same die allows for a highly
efficient cache coherent system at a much higher clock rate than if the signal had to
travel off chip.

Back side bus

CPU Core
L1 cache

CPU Core
L1 cache

Bus interface
L2 cache

Front side bus

Figure 1.2: Multicore concept

Most devices ranging from desktop computers and supercomputers to smart-
phones are based on a multicore design (see Figure 1.2). The number of cores
can vary greatly depending on the solution going up to 22 cores on recent server
based Intel Xeon processors family. Other parallelization techniques based on si-
multaneous multithreading (SMT) to improve the efficiency of superscalar CPUs
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can be found. As an example, Hyper threading (HT) consists in sharing resources
by having two logical core for one single physical core. Another solution is the Non
Uniform Memory Access (NUMA) architecture. Such systems are generally built
around having multiple processors with each processor having its own memory bank
(see Figure 1.3). Each processor is able to access the memory bank of the others
but latencies will vary depending on the locality of each processor. To support this
system, the operating system provides a virtual memory address space for all the
processors in the NUMA node.
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Figure 1.3: NUMA concept

1.3.3 Graphics Processing Units (GPU)

Applications are becoming more demanding in workload and complexity as archi-
tectures become more powerful. CPUs have shown their limits in terms of compu-
tational power as they tend to be more general. This technology gap has led to
the development of new architectures that are more specialized and can therefore
provide more computational power for specific applications. GPUs are an example
of a new type of architecture that has been emerging during the last decade.

A GPU is a specialized hardware to accelerate image display and processing. The
first programming language for such architectures was released in 2007 by NVIDIA.
The Compute Unified Device Architecture (CUDA) is a platform designed to work
with scientific programming languages such as C, C++ and Fortran. CUDA has a
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Figure 1.4: GPU Kepler based architecture

dedicated compiler called NVIDIA CUDA Compiler (NVCC) that supports C and
a subset of C++. As of the November 2015 TOP 500 ranking, 75 machines are
leveraging NVIDIA GPUs while only 55 were doing so in the June ranking. GPUs
are now on the front scene of HPC as they are becoming increasingly important to
improve the peak performance of systems. The other main vendor of GPU is AMD
with its Accelerated Processing Platform (AMD APP).

GPUs architectures are very different from multicore CPUs and provide more
computational power and better energy efficiency. The number of processing units
available in a GPU is much higher than in a CPU (see Figure 1.4). A Tesla K40 has
2880 processor cores available but each runs at a lower frequency (745 GHz). Each
of the cores can be seen as simple ALU that can only be used for computations.
Cores are grouped together in what is called streaming multiprocessor (SM) with
192 CUDA cores for Kepler cards. Each SM has registers, an shared L1 cache and
has a shared L2 cache between each SM with a maximum of 15 SM for Kepler cards.
Similarly to CPUs, the number of cache levels on the GPU has grown to mitigate
the high latency from the GPUs main memory.

Contrary to the CPU where data goes through each cache level for Intel pro-
cessors, the data on the GPU does not necessarily stay at each cache level. Some
data management therefore needs to be done to optimize data movement. The GPU
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Figure 1.5: Work flow for a GPU

has a thread scheduler and control units in each SM(see Figure 1.4). The execution
model of the GPU is based on deploying a large number of threads (in the order
of millions) as they have no creation cost compared to a CPU. The scheduler will
then distribute the threads minimizing the number of stall cycles. This creates a
high parallel programming model where a high number of compute units will work
in parallel. Communications with the CPU use the PCI express bus. The speed
of the PCI bus can vary depending on the technology, with a maximum of 6 GB/s
for PCI express gen 2 (16x) and 12 GB/s for PCI express gen 3. Depending on the
application, the PCI express bus can be a bottleneck for memory-bound problems
due to data transfers ( see Figure 1.6). With each new architecture generation,
GPU architectures often go through many changes but manage to maintain the
same programming model.

1.3.4 Accelerated Processing Units

GPUs and accelerator based hardware are a major component of todays systems.
However, using accelerators to their full potential can be impossible due to the
limitations of the PCI express bus. Furthermore, GPUs are not stand alone proces-
sors and requires a CPU to function. This has lead to the development of System
On Chip (SOC) hardware where a CPU and a GPU are combined on a single die.
NVIDIA and AMD were the first manufacturers to develop this type of hardware
with the NVIDIA Tegra brand in 2008 and AMDs Accelerated Processing Unit
(APU) in 2011. Later on, Intel released its Integrated Graphic Processors for the
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Intel core processors (Figure 1.8). As there is no official term for such hardware, we
will refer to them as Integrated Graphic Processors (IGP). IGPs do not require a
PCI Express bus as the CPU and GPU are on the same die (see Figure 1.6).
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Figure 1.6: IGP architecture

As both hardware have a direct access to the main memory, the GPU has a
higher memory bandwidth. The first implementations of IGPs by AMD did not
have a unified memory system between the GPU and CPU. This meant that they
could not access the same address space limiting the interactions between each
processor. With it’s second generation of IGP called Kaveri which was released in
2014, AMD implemented a zero-copy model where CPU and GPU can access the
memory with the same address space. This means pointers can be freely passed
between CPU and GPU, thus preventing actual deep copies. NVIDIA also released
an IGP with zero-copy through the Tegra K1 and later on the X1. AMD IGPs are
coupled with AMD CPUs while NVIDIA uses ARMs CPUs. It is important to note
that current IGP have very poor support for double precision computations.

1.4 Programming tools and techniques

Section 1.3 described the current architectures without giving too much details about
their programming models or the tools available for such platforms. In the next
section, we are going to describe some of these tools and techniques often used to
develop code for parallel architectures. Each tool will be described by its support
for different architecture and expressiveness while techniques will explain how to
build a tool for more expressiveness and architectural support.
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Figure 1.7: Work flow for a zero copy IGP

1.4.1 Low-level programming tools

1.4.1.1 SIMD support

In section 1.3.1, we introduced the concept of SIMD extensions. Exploiting SIMD
units in todays code is essential to reach the peak performance of a modern CPU.
The most common method to exploit these extensions is by using the function
intrinsics available. These functions are available in C but have been ported to other
languages even web oriented ones such as JavaScript. The low level intrinsics in C
are still used in every day programming and tend to be quite verbose. Depending
on the size of the SIMD registers or the architecture, the intrinsics are also not
the same. This causes some API problems and render complex the generalization
of SIMD extensions. In Listing 1.1 we can see an example of the intrinsic for the
multiplication of two 256 bits vectors.
__m256 a , b , c ;
c = _mm_mul_ps(b , c ) ;

Listing 1.1: Intel AVX2 single precision multiplication

The verbosity of SIMD instructions has been diminished in recent years and
computational intrinsics such as addition, multiplication, etc.. can be replaced by
its operator as seen in Listing 1.2.
__m256 a , b , c ;
c = b ∗ c ;

Listing 1.2: Intel AVX2 single precision multiplication no intrinsic

On ARM NEON, the SIMD maximum size is 128 bit. It is therefore not possible
to do the same operation as above but we can do a similar one with 128 registers. It
is also possible to simply call the operator instead of the full intrinsic (Listing 1.3).
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Figure 1.8: Intel’s 3rd generation IGP architecture

f l oat32x4_t a , b , c ;
c = b ∗ c ;

Listing 1.3: ARM NEON single precision multiplication

In these examples we do not show the load and store operations needed to fill
SIMD registers. For Intel processors, data also needed to be aligned on older pro-
cessors to properly use SIMD extensions. On modern processors, unaligned load
and store are quite sufficient to reach good performance most of the time as long as
data doesn’t cross cache lines. With the introduction of ARM supercomputer based
system, recent studies [111] have shown how to improve energy efficient and design
of HPC systems on low-power cores. Studying how these ARM based system can
perform is therefore of interest.

Compilers for low level languages such as C, C++ can generate SIMD code
through their auto-vectorization techniques. The programmer can write a simple
code that will be translated to SIMD code during the compilation phase. GCC [100]
is an example of a compiler using a vectorizer. It is also possible to use Just In Time
(JIT) compilation to vectorize code with tools such as VaporSIMD [99] or use library
based solutions such as Boost.SIMD [49] or VC [83]. The common problem with
generating SIMD comes from how patterns are recognized. It is not always obvious
how to vectorize a problem especially if data is not contiguous. Compiler can provide
directives such as #pragma simd for ICC or #pragma GCC ivdep for GCC. These
directives usually tells the compiler that their is no loop-carried dependencies which
prevents consecutive execution of a loop with SIMD. Complex operations such as
shuffle or intra-registers are hard for compiler to generate as they tend to be very
specific. Some compilers also use SIMD extensions in their implementation of the
standard library such as GCC.
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1.4.1.2 Multicore support

As we have seen in section 1.3.2 modern CPUs contain multiple cores on the same
die. Most programming languages do no support multicore programming by default
meaning the programmer must do the effort. We can still cite a language such as
Chapel by CRAY which is available on Github. Chapel [25] is designed around multi-
threaded execution via high-level abstractions for data parallelism, task parallelism,
concurrency and nested parallelism (see example in Listing 1.4).

use Cyc l i cD i s t ; // use the Cyc l i c d i s t r i b u t i o n l i b r a r y
c on f i g const n = 100000; // ove r r i d e d e f au l t us ing . / a . out −−n=<val>

f o r a l l i in { 1 . . n} dmapped Cyc l i c ( s t a r t I dx =1) do
wr i t e l n ( " He l lo from i t e r a t i o n " , i , " o f " , n , " running on node " , here . id ) ;

Listing 1.4: Chapel Hello World

The main tools for parallel programming on multicore systems are Pthreads,
OpenMP, TBB and MPI.

Shared memory multi-threading (pthreads) is an implementation of the
POSIX 1003.1c Standard. It is based on a model where threads are spawned on the
fly while each thread is given a task at its creation. The threads can then commu-
nicate through shared memory variables. The Pthread standard provides functions
for thread synchronization - barriers, semaphores, and critical regions in its API.
Pthread does not have a specific programming model and allows for task or data
parallelism but requires a complex semantic and is error prone. It is a low-level
explicit model where the programmer has to allocate threads, synchronize them,
and then recompose them. Higher level implementation of Pthread can be found in
programming language such as the C++11 std :: thread.

OpenMP is a high level parallel programming model. It uses pragmas to add
parallelism on a sequential implementation of an application. This requires the code
section to be run in parallel to be dependency free between iterations. OpenMP also
allows for task based parallelism to express dependencies. It uses a runtime library
for thread management and scheduling techniques. The standard is constantly evolv-
ing and since OpenMP 4.0 supports extensions for accelerators based architectures.

Intel Thread Building Blocks (TBB) [108] is a C++ template library for
data parallelism. It is based on the concept of tasks instead of threads which are
higher level entities. TBB uses parallel skeletons constructs as building blocks. We
note for example parallelfor, parallelreduce, parallelscan and parallelsort. The
task based abstraction is an efficient high level model and provide simple abstrac-
tions with the help of lambda expressions since C++11.

Message passing (MPI) is a popular programming model originally designed
for distributed computing. It provides a low-level explicit model where each core of a
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processor can be addressed independently having its own memory pool. MPI is more
of a task-based parallelism model but also supports data parallelism by deploying
similar MPI processes on multiple data. Recent MPI standard have added special
communicators for shared memory programming.

1.4.1.3 Accelerator support

In section 1.3.3 we have explained how the GPU programming model is based on
offloading data and using data parallelism. The standard programming tools used
to program accelerators are CUDA and OpenCL.

CUDA is the programming language for NVIDIA graphic cards. It works for
GPU as well as NVIDIA IGPs without having to change the device code. As ex-
plained before, the NVCC compiler supports a subset of the C++ language. To
execute code on a GPU, the programming model includes a host code for the CPU
and a device code which will be executed on the GPU. CUDA is an expressive lan-
guage and simplifies the use of accelerators following the C++ standard evolutions.
Unfortunately, it is not cross platform which can be a heavy restriction for portable
code.

OpenCL is the portable solution for programming accelerators. It can work
with CPUS and GPUs indistinctly but a single code cannot be highly efficient on
both a CPU and a GPU. Similarly to CUDA, an OpenCL program has two parts.
A kernel which will be executed on one or more OpenCL devices (similar syntax
to CUDA ) , and a host program which is executed on the host. The Host code
for OpenCL is very verbose as it is designed to work for every platform and several
libraries try to alleviate this complexity. One of the main problem with OpenCL
is that it is mostly C compliant and is therefore hard to mesh with high level
programming without having to redesign around OpenCL.

1.4.2 Domain Specific Languages

By definition, a Domain-Specific Language (DSL) is a computer language designed
to fit a specific application domain. This is contrary to a general-purpose language,
which is widely applicable across multiple domains and thereof lacks features for a
specialized domain. These languages focus on simplifying specific tasks for devel-
opers by removing the complexity of a programming language. Adding this layer
of abstraction helps developers to focus on the specificities of the domain described
by the language, reducing the gap between domain experts and simple developers.
DSL also have the effect of increasing the maintainability and ease the validation of
codes.

There are a multitude of DSLs available ranging from domain such as editing
documents to expressing physical problems. Tex, a markup language, is an example
of a widely used DSL for document editing created by Donald Knuth in 1977. Tex
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offers control over document formating with commands to help properly structure a
text without having to focus too much on it. Other examples of well know DSLs are
the Structured Query Language (SQL) to exploit databases or Hyper Text Markup
Language (HTML) to create web pages.

In numerical computing, MATLABTM [65], a multi-paradigm numerical envi-
ronment, is the most popular DSL. The original purpose of MATLAB what to ease
the use of the advanced LINPACK library without having to know any FORTRAN.
MATLAB is mainly focused on matrix manipulations by exploiting optimized li-
braries such as LAPACK for CPU while providing utility tools for function plotting
and data management. It is also interfacing with other languages such as C, C++,
Java, FORTRAN or Python.

DSLs are usually part of a developing environment as they cannot be used as
stand alone. To implement a DSL, one needs to write a compiler/interpreter for its
language as it is not part of a general purpose computing language. This is a heavy
cost as developing a DSL require more than just writing a language and can often
suffer from performance issues due to the lack of optimizations. Another approach
that we use in our work is based on Domain Specific Embedded Languages (DSEL)
that we describe next.

1.4.3 Domain Specific Embedded Languages

Domain Specific Embedded Languages (DSELs) are a subclass of DSL that rely on
an existing general-purpose language to host it. DSELs then reuse the host language
syntax and tool ecosystem to be compiled or interpreted. This means inheriting
from the languages constructs (structure, conditions, functions, etc) while adding
primitives that allow programmer to have access to a higher level of abstraction.
Differences and advantages of DSELs over DSL are discussed by Abrahams [3, p.226]

There are several forms of DSEL available in different languages. Javascript is
in a sense an embedded language in an HTML page, while HTML is a DSL. In
scientific computing, DSEL rely on a generic language that is flexible and expressive
enough to enable the development of a subset language with a definite syntax. This
technique is know to be used in languages such as Lisp, Haskell, SmallTalk, C++,
Scala and more. It is not always possible to reproduce a specific syntax in a general
purpose language and sometimes a symbol needs to be replaced. For example, in
C++ it is not possible to reuse the colon operator (:) as defined in MATLAB. This is
one of the main shortcomings of a DSEL with the fact that it must be implemented
inside a library and cannot be added to a language. Designing a DSEL is however
often easier as they reuse existing compiler and rely on domain dependent analysis
to generate efficient code.

We will describe how we can design a DSEL in C++ using meta-programming
techniques in Chapter 2. Our work will focus on building a generic solver for dense
linear algebra with multi-architectural support.
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1.4.4 Multi-stage programming

Multi-stage programming (MSP) is another approach than DSL and DSEL to in-
crease the expressiveness of a programming language. MSP is defined as a meta-
programming technique which consists in writing a program that will be able to
generate new code. This means the state of the program will be modified during
the compilation phase by the code meta-programmed.

MSP is usually applied by adding specific language extensions to trigger a new
compilation phase. As an example, MetaOcaml [125] is a multi-stage language
based on Ocaml [86] with three basic constructs for runtime code optimization. It
adds type code values and constructs to build them called quoting and splicing.
The generated code with MSP can then be stored in a file or compiled and linked
directly to a Ocaml program enabling run-time code optimization.

More recent adoptions of MSP for parallel computing include techniques like
Lightweight modular staging (LMS) [112] in Scala. Instead of using quasi-quotation
LMS is based on types and uses an environment for MSP. Similarly to DSEL, using
MSP with a host language requires this language to be flexible enough to adapt
to MSP. Other approaches include Language Virtualization [24] (base on LMS) or
Terra [39] using language extensions for HPC in Lua.

We will describe our work on MSP in Chapter 3 based on the C++ language
and the CMake tool for the multi-level code generation.

1.5 Considered language and library

1.5.1 C++ language and programming techniques

Generic programming is a paradigm that aims at achieving reusable, adaptable
libraries. Pioneered by Alexander Stepanov and David Musser, Generic Program-
ming obtained its first major success when the Standard Template Library became
part of the C++ Standard. The process followed in generic programming is to first
find the similarities among different implementations of a same algorithm in the
form of concepts [61] , and then provide an abstraction that can match all of these
implementations. Concepts are a subtle mix of constraints and axioms used to
represent the problem. The constraints define the statically evaluable predicates
on the properties and syntax of the system, while axioms state the semantic in-
formations about the types requirements, providing a better understanding of the
problem. This process, called lifting, is then repeated until the generic algorithm
has reached a suitable level of abstraction, where it provides maximal re-usability
without sacrificing performance:

• Step 1 : Find similarities among different implementations

• Step 2 : Provide an abstraction that can match all of those implementations

• Step 3 : Iterate until a satisfactory level is reached
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Generic Programming and Concepts provide support for Concept Checking,
which allows for a limited support of parametrized types constraints [118], sim-
plifying error checking at compile-time. In C++, concepts are being studied to be
integrated in the standard as extension to the template system. They have been
published as an ISO Technical Specification ISO/IEC TS 19217:2015.

Generative Programming is about bringing the benefits of automation to
software development. Following this paradigm, any complex software system can
be broken down to a list of interchangeable components which tasks are clearly
identified and a series of generator that combine components by following rules set
by an a priori domain specific analysis. The application of generative programming
to parallel programming and hardware synthesis can be seen as a way to leverage
the classical limitations of classic, library based tools by encapsulating expertise at
the source code level and not only at the binary level. One of the most classical
techniques for generative programming is Template Meta-programming.

Template Meta-programming is a meta-programming technique in which
templates are used by a compiler to generate temporary source code, which is merged
with the rest of the source code and then finally compiled. The output of these
templates includes compile-time constants, data structures, and complete functions.
The use of templates can be thought of as compile-time execution. This technique
is used by a number of languages, the most well-known being C++ [3], D [22],
Haskell [116] and OCaml [124].

1.5.2 The NT2 library

NT2 [48] is a numerical computing C++ library implementing a subset of the Mat-
lab language as a DSEL . The work that we described in Chapter 2 and 3 are
extensions for this library. NT2 simplifies the development of data-parallel applica-
tions on a large selection of architectures currently including multi-core systems[128]
with SIMD extensions. Simply put, a Matlab program can be converted to NT2 by
copying the original code into a C++ file and performing minor cosmetic changes
(defining variables, calling functions in place of certain operators). NT2 also takes
great care to provide numerical precision as close to Matlab as possible, ensuring
that results between a Matlab and an NT2 code are sensibly equal.

Internally, NT2 is designed to leverage the well known Expression Templates [132]
C++ idiom to build at compile time a flexible representation of the abstract syn-
tax tree of any C++ expression containing at least one NT2 component. This
compile-time tree is then transformed in actual code to be executed on a paral-
lel system. Contrary to other libraries based on the same technique, NT2 relies
on Boost.Proto , an external Expression Templates system to handle the cre-
ation and transformation of Abstract Syntax Trees (AST) [98]. Boost.Proto al-
lows us to replace the direct walk-through of the compile-time AST done in most
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C++ DSELs by the execution of a mixed compile-time/runtime algorithm over the
predefined AST structure generated by Boost.Proto (fig. 1.9).

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
    ,expr<matrix&>
    ,expr<plus
         , expr<cos
               ,expr<matrix&>
               > 
         , expr<multiplies
               ,expr<matrix&> 
               ,expr<matrix&>
               >
         >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
  for(int i=0;i<w;++i)
  {
    x(j,i) = cos(a(j,i)) 
           + (  b(j,i) 
              * a(j,i)
           );
  }
}

Arbitrary Transforms applied
on the meta-AST

Figure 1.9: Expression Templates in NT2

Finally, the other main difference between NT2 and similar tools is the fact that
architectural specificities of the generated code are handled by an execution model
based on Algorithmic Skeletons[27]. Those skeletons simplify the extension of
NT2 for various hardware by separating the concerns of optimizing the AST code for
different type of architecture. The main element of NT2 is the table class. table
is a template class that can be parametrized by its element type and an optional list
of settings. Instances of table behave like Matlab array and supports the same
operators and functions. NT2 covers a very large subset of Matlab functional-
ity, from standard arithmetic, exponential, hyperbolic and trigonometric functions,
bitwise and boolean operations, IEEE related functions and of course linear algebra.

// Matlab : A = 1 : 1000 ;
tab le<double> A = _(1 . , 1 0 0 0 . ) ;

// Matlab : B = A + randn ( s i z e (A1) ) ;
tab le<double> B = A + randn ( s i z e (A1) ) ;

// Matlab : r = sq r t (sum( (A( : )−B( : ) ) .^2) /numel (A) ) ;
double r = sq r t (sum( sqr (A(_)−B(_) ) ) / numel (A) ) ;

Listing 1.5: NT2 RMSD Computation
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Listing 1.5 showcases some NT2 basic features including the mapping of the
colon function (:) to the _ object, various functions, a random number generator
and some utility functions like numel or size.

In Chapter 2, we will explain how to build a hybrid programming model and
how we have integrated ours inside NT2 . In Chapter 3, we will tackle the problem
of MSP and explain how we can integrate it inside a C++ library using expression
templates and the CMake tool.

1.6 Conclusion

In this chapter, we have presented the linear algebra algorithms we will work with
and their various versions in state of the art high performance dense linear algebra
libraries. Then we have described the architectures and their different evolutions
that have gone in hand with the development of new libraries to support these
architectures.

We have also given a general description of the various programming tools avail-
able for these architectures. This is done as a reminder of how complex the archi-
tectural landscape and the various tools available is. We have then mentioned high
level programming techniques to develop more generic and flexible software that
can be adaptable to new architectures. Finally, we have described some of the C++
techniques we rely on and the library in which some of our code is implemented.

From what we have seen, it is clear that the diversity of architectures, which
we have not all described, combined with the amount of libraries and programming
languages available make for a very large landscape. In this manuscript, we will
explain in detail techniques that can alleviate such problems. These techniques are
implemented using the C++ language but are not exclusive to this language. As of
now, C++ is a widespread high-level language in HPC. It is unclear which language
will take this role in the future, but we can say that the programming techniques
employed will have a place in it. It is in this context that we present our work.

In the next chapter, we will present one of our contribution in the form of a
multi-architectural generic solver for dense linear algebra that is expendable to new
architectures. We will show how to design simple GPU containers and a consistent
memory model that will also be used in Chapter 3.
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The increasing complexity of new parallel architectures has widened the gap
between adaptability and efficiency of the codes. As high performance numerical
libraries tend to focus more on performance, we wish to address this issue using a
C++ library called NT2 . By analyzing the properties of the linear algebra domain
that can be extracted from numerical libraries and combining them with architec-
tural features, we developed a generic approach to solve dense linear systems on
various architectures including CPU and GPU.

The work presented in this chapter was accepted and presented at Ispa 2015 [93].
The contributions of this chapter are :

• The definition of a generic hybrid programming model that can be used as a
stand-alone

• An architecture aware binding between NT2 and LAPACK/MAGMA based
on type tags to dispatch between the different architectures and runtime back-
ends in an extensible way.
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• An implementation of linsolve (in reference to the MATLAB routine) that
takes into account both hardware and algorithmic features to select and gen-
erate at compile time the proper LAPACK/MAGMA routine from the high-
level C++ code, mapping over 160 kernels. Note that the support of different
factorizations (QR, Cholesky, LU, SVD) is also provided in NT2 to facilitate
the development of new solver.

• An application based on a linear least squares solver (using mixed precision)
that uses of the already available routines for several architectures in NT2 .
This application can therefore be written with a single interface and auto-
matically generated for CPU or GPU while showing a level of expressiveness
similar to MATLAB.

This chapter is organized as follows: in Section 2.1 we give the software context
and related work on high level libraries. Then, in Section 2.2, we describe various
programming techniques that combine algorithmic and architectural features in li-
braries. The methods that we used in NT 2 are then introduced. They enable us to
achieve re-use and adaptability of library codes while preserving performance. After
that, we explain in Section 2.3 the concept behind our GPU container and how it
should interact with the CPU. In Section 2.4.3, we detail our methods to develop
efficient dense linear algebra software. We present in Section ??, as an example of
an application, the code generation of a mixed-precision linear least squares solver.
We give performance comparisons on CPU and GPU using respectively to the QR
routines from LAPACK and MAGMA. To our knowledge such a solver does not ex-
ist in public domain libraries LAPACK, PLASMA [126] and MAGMA. Concluding
remarks are given in Section 2.5.

2.1 Related Work

A major concern when developing dense linear algebra software is to propose a
user-friendly Application Programming Interface (API) that provides similar perfor-
mance as BLAS-like optimized routines. Moreover, with the increasing parallelism
and heterogeneity as well as the ever increasing data-communication costs, numerical
libraries often require to be modified or redesigned in order to take advantage of new
features in parallel architectures. In our study we consider the dense linear algebra
libraries LAPACK (serial library for CPU processors) and MAGMA (for Graph-
ics Processing Units). The disparity between these libraries that target different
architectures illustrate one of the issues in designing optimized linear algebra soft-
ware. While being able to maintain a similar interface for the routines, the code and
structure of all algorithms ported from LAPACK to MAGMA has to be rewritten to
match the architectural features and the programming language of the accelerators.
Furthermore, these libraries are mostly implemented using low-level languages like
C or FORTRAN and thus cannot provide a high-level interface that would be closer
to the specification language of the numerical linear algebra practitioner without
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losing performance. This issue is represented by the abstraction/efficiency trade-
off problem where raising the abstraction level with object-oriented and generic
programming techniques is obtained at the cost of performance (see Figure 2.1).
However, performance inhibits the flexibility and adaptability of libraries.
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Figure 2.1: Abstraction/Efficiency trade-off for languages

Some solutions have been proposed in recent years but they tend to solve par-
tially the abstraction/efficiency trade-off problem. The method followed by the For-
mal Linear Algebra Methods Environment (FLAME) with the Libflame library [131]
is a good example. It offers a framework to develop dense linear solvers using al-
gorithmic skeletons and an API which is more user-friendly than LAPACK, giving
satisfactory performance results.

Another method is the one used by code generation projects like Spiral [110]
for signal processing or other linear algebra libraries such as Design by transforma-
tion [90], Build to Order [119], or Hydra [87] that develop code generation through
the use of a Domain Specific Language (or DSL) to express data dependencies. A
more closely related work is a linear algebra compiler [51]. It is based on the Mathe-
matica language and optimizes the algorithms by reusing variables and mapping to
BLAS function calls using problem specific knowledge [50]. By definition, a DSL is
a computer language specialized for a particular application domain. This implies
that the use of a DSL requires a preprocessor and a custom compiler or interpreter.
Furthermore, only the DSL compiler is aware of the underlying compiler existence
limiting the integration of the DSL with other components such as an Integrated
development environment (IDE) [54]. Since writing a compiler is very complex and
time-consuming while often not being re-usable, we do not wish to do such a task.

A more generic approach is the one followed in recent years by C++ libraries
built around expression templates or other generative programming [35] principles
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to design a Domain Specific Embedded Language. DSEL are languages implemented
inside another host language. Designing a DSEL is easier than a DSL as it reuses
existing compilers and relies on domain dependent analysis to generate efficient code
(see Section 1.4.3). Problems such as copy elision and return value optimization that
are implemented by compilers are often not exploited by complex DSLs like MAT-
LAB which incurs copy penalties and slows down algorithms. Examples of such
libraries are Armadillo [28] and MTL [58]. Armadillo provides good performance
with BLAS and LAPACK bindings and an API close to MATLAB for simplicity.
However it does not provide a generic solver like the MATLAB routine linsolve that
can analyze the matrix type and choose the correct routine to call from the LAPACK
library. It also does not support GPU computations which are becoming mandatory
for medium to large dense linear algebra problems. In a similar way, while MTL can
topple the performance of vendor-tuned codes, it does neither linsolves-like imple-
mentation nor GPU support. Other examples of such libraries include Eigen [64],
Flens [85], Ublas [134] and Blaze [73].

Our objective in this chapter is to provide a solution to the problems of porta-
bility and adaptability on new computer architectures. To this end, we propose a
hybrid solver for CPU and GPU architectures with a single interface to solve dense
linear systems. Our solution is designed on top of NT 2, an open-source scientific
library written in C++ available at www.github.com/NumScale/nt2. NT2 provides
a MATLAB-inspired API and its implementation is based on a meta-programming
technique known as “expression templates” [132].

2.2 Generative programming for designing numerical li-
braries

2.2.1 Optimization approaches based on a configuration space

As stated in Section 2.1, developing complex linear algebra software is a non trivial
task due to the large amount of both algorithmic and architectural requirements.
These combined factors create a configuration space containing the various config-
urations available for a given system. Choosing the correct combination of factors
from a configuration space will then ensure optimal performance.

Compiler techniques based on iterative compilation [130], where several opti-
mizations from a configuration space are tested and the best one is selected, is a
classical technique to improve performance.

An example of these methods can be found in the ATLAS [137] library which is
based on using optimized binaries. Each function’s binary is generated during the
installation phase with the iterative compilation technique. The generation process
is accelerated by a hierarchical tuning system. In this system, the lower level func-
tions are subject to a large selection process ensuring their optimal performance.

www.github.com/NumScale/nt2
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High-level functions like BLAS 3 routines can then exploit feedback from the previ-
ous steps of the configuration process.

A second method is based on a performance analysis at runtime. For instance, a
system like StarPU [7] uses a monitored runtime system in which the performance
of each function on a given hardware configuration is monitored in real-time. This
monitoring allows StarPU to select the most optimized version of the algorithm by
changing its parameters (tiling size, number of iterations,. . . ) or the targeted archi-
tecture (CPU, GPU, hybrid).

Both methods described above are valid approaches in the field of high perfor-
mance computing. However, in our case, we aim at providing a library level system
for such exploration [133] that will complement the compilers work. One way to do
this is to use generative programming.

2.2.2 Generative programming in software development

Generative programming (see Section 1.5.1) consists of bringing the benefits of au-
tomation to software development. Following this paradigm, a model can be drawn
to implement the different components [31] of a system. It is then possible to build a
generator that will combine these components based on a generative domain model.
This generator (or configuration knowledge) will ensure the transition from a con-
figuration space with domain-specific concepts and features to a solution space that
encapsulates expertise at the source-code level. The code generation process will
be hidden from the end-user by various meta-programming techniques which turn
the user interface into a simple and clean API, where few to none details about the
algorithms and structures are visible.

Template meta-programming is a classical generative programming technique in
which templates are used by a compiler to generate temporary source code. It is
then merged with the rest of the source code and finally compiled. The output
of these templates includes compile-time constants, data structures, and functions.
The use of templates can be thought of as a compile-time execution that enables us
to implement domain-specific optimizations.

2.2.3 Domain engineering methods for active libraries

We call active libraries [30] a technique which combines a set of generative program-
ming and meta-programming methods to solve the abstraction/efficiency trade-off
problem mentioned in Section 2.1. The main idea is to perform high-level optimiza-
tion based on a semantic analysis of the code before any real compilation process.
Such informations and transformations are then carried on by a meta-language that
allows the developer to embed meta-informations in the source code itself, helping
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compilers to generate a better code by using these semantic informations. Active
libraries are often implemented as DSEL.

Czarnecki proposed a methodol called Domain Engineering Method for Reusable
Algorithmic Libraries [33] (or DEMRAL depicted in the blocks 1-3 of Figure 2.2)
based on the techniques described previously. DEMRAL is a DSEL-based method
where domain specific descriptors are used to represent the various states of the sys-
tem (represented as Block 1 in Figure 2.2). The various combinations of descriptors
represent all the possible configurations in the system. In NT 2, these parameters
are available at the API level for the user [52]. Once these configurations have been
implemented, it is possible to program the parametric components that they rep-
resent (see Block 2 in Figure 2.2). In NT 2, these would correspond to the various
skeletons available and various kernels for the CPU. The final step is to build a gen-
erator that will take the various descriptors as parameters, choose the corresponding
component and generate the concrete application at compile-time based on this (see
Block 3 in Figure 2.2). In NT 2, this corresponds to the solver we have implemented
which will be described later on.

Figure 2.2: Overview of the NT2 skeleton based generation process

DEMRAL can be seen as a specialization of a paradigm like object-oriented
programming, aspect programming or model driven engineering [114]. While we
can find a large number of algorithms (N) and implementations for distinct data
structures (P ), the problem is that combining them can result in a large num-
ber of code to write (N ∗ P ). Using DEMRAL, only N generic algorithms and P
data structure descriptions are needed since the generator will choose the correct
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domain-specific implementation from the configuration space with the help of the
configuration knowledge.

The DEMRAL method provides a high re-usability, allowing components to
be customized while retaining the efficiency of statically configured code [96]. We
extend it by adding an architectural layer in the design with a "Domain specific
architecture description" (block 4 of Figure 2.2) and a specialized generator for
GPUs ( block 5 of Figure 2.2) based on this description [47]. In NT2 , this would
represent an extension to the API with a GPU tag and the addition of GPU based
skeletons and kernels based on the MAGMA library. This enables us to have a
separate specific generator for accelerators that will create a generic component
with the appropriate marker that can then be combined with the already existing
ones.

2.3 Building a CPU/GPU programming model

2.3.1 GPU container concept

Integrating GPU support in a library that only supports CPUs requires to decide
at which level and how this integration should take place. In this work we will
focus on CUDA integration to exploit the MAGMA library. This can simplify our
task if we focus on calling existing functions that have already been compiled by
NVCC. To details this, a major problem with the CUDA environment is the need
of a special compiler for GPU code. This means a library compiled with a standard
C++ compiler will not be able to seamlessly support CUDA code as it will require
a new compilation step. It is also not possible to compile modern C++ code with
NVCC as the compiler does not support properly the standard. In the situation
where we have access to a binary, it is possible to directly call the function from a
code compiled in C++.

Our approach will then focus on creating a minimalist GPU vector that will
encapsulate the pointer and basic functionalities. This will enable us to have a
recognizable structure for GPU data while having no need to pass through NVCC.
The Thrust library [17] uses an opposite model where it allows random data access
on a GPU vector but requires the code the be in .cu file and compiled with NVCC.
In our implementation, we declare an element access operator [ ] for conformity
reasons but it is not usable (will make a static assert).

2.3.2 Integration in NT2

If the single system computation model of NT2 is rather classic, we needed a way
to handle accelerators in a generic and extensible way. The first step is to provide
a simple way to locate tables (see Section 1.5.2) on either the host system or on
a device. This is simply done by using a couple of settings in the definition of
NT2 table instances. In the Section 2.3.1 we described a low level vector. Tables
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are high level entities that include a container with settings on the locality (which
we added), allocator type and many more. Listing 2.1 shows the nt2::host_ and
device_ settings that are used to specify if a table contains data stored on the host
memory or device memory. The device flag will make it so the table uses our GPU
vector as a back-end with its restrictions.

// Generates a host t ab l e by d e f au l t
tab le<double> A( o f_s i z e (1 e3 , 1 e3 ) ) ;

// Generates a host t ab l e e x p l i c i t l y
tab le<double , host_> A2( o f_s i z e (1 e3 , 1 e3 ) ) ;

// Generates a dev i c e t ab l e
tab le<double , device_> D( o f_s i z e (1 e3 , 1 e3 ) ) ;

// Generates a host pineed tab l e with CUDA
table<double , pinned_> D2( o f_s i z e (1 e3 , 1 e3 ) ) ;

Listing 2.1: NT2 host and device specifications

Note that a special function on_device can be used to specify on which device
the memory must be allocated in the case where multiple devices are available.

Semantic of operations between host and device tables is quite straightforward
as they will be carried on the proper memory segment of each table. When mixing
tables of different location, memory transfers are implicitly performed. This means
that assigning a host table to a device table is equivalent to performing a CUDA
memory transfer. This can be used for example to simplify interaction with existing
GPU kernels as shown in listing 2.2. As streams are not assigned to tables, this
transfer will be synchronous. A copy function is also available to perform asyn-
chronous memory transfers when a non-default stream is given.

// X i s a 1e3 x 1e3 matrix f u l l o f 1 .
tab le<double> X = ones (1 e3 , 1 e3 ) ;

// Trans fe r to dev i c e
tab le<double , device_> Y = X;

// cuBLAS d i r e c t c a l l
cub lasDsca l ( Y. s i z e ( ) , 5 . , Y. data ( ) , 1 . ) ;

// Trans fe r back to host
X = Y;

Listing 2.2: NT2 interaction with cuBLAS

This semantic of transfer by assignment is a classical way of performing such
operation transparently. It as been used by tools like Thrust or VexCL [37] and have
been proved to be easy enough for the user while allowing for fine grain performance
tuning.

The current GPU programming model often requires to use pinned memory
on the CPU for optimal transfer time and computation overlap. For this reason,
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we have added a CUDA pinned allocator that will use the CUDA CPU allocation
function instead of a standard CPU alloc (Listing 2.3).

// X i s a 1e3 x 1e3 matrix f u l l o f 1 a l l o c a t e d in CUDA pinned memory .
tab le<double , pinned_> X = ones (1 e3 , 1 e3 ) ;

// Faster t r a n s f e r to the dev i c e
tab le<double , device_> Y = X;

// cuBLAS d i r e c t c a l l
cub lasDsca l ( Y. s i z e ( ) , 5 . , Y. data ( ) , 1 . ) ;

// Faster Trans fe r back to host
X = Y;

Listing 2.3: NT2 cuda CPU allocator

To enable support for IGP, we have also extended this model with new func-
tionalities. As there is no simple way as of now to detect if the system is an IGP or
not, we have added a compile flag (NT2_CUDA_INTEGRATED=ON/OFF, OFF
is by default). This will activate specific parts to the CUDA integrated part such
as flags definitions ( Listing 2.4) using the const object setup idiom 1. In case the
pinned allocator is used for the CPU, it will automatically call the cudaHostAlloc
function with the correct flag cudaHostAllocMapped.

#i f de f ined (NT2_CUDA_INTEGRATED)
s t r u c t integrated_cuda_sett ings
{

integrated_cuda_sett ings ( ) { cudaSetDeviceFlags ( cudaDeviceMapHost ) ; }
} ;

s t a t i c const integrated_cuda_sett ings proper_set t ings= {} ;
#end i f

Listing 2.4: Initialize CUDA for IGP

As on IGP we do not want to do transfers between CPU and GPU using the
cudaMemCpy function, we have to provide functions that can satisfy these condi-
tions. We have designed two functions called to_host and to_device that provide
these functionalities.

// X i s a 1e3 x 1e3 matrix f u l l o f 1 a l l o c a t e d in CUDA pinned memory .
tab le<double , pinned_> X = ones (1 e3 , 1 e3 ) ;

// Wil l c r e a t e a view o f X on IGPs
auto Y = to_device (X) ;

// cuBLAS d i r e c t c a l l
cub lasDsca l ( Y. s i z e ( ) , 5 . , Y. data ( ) , 1 . ) ;

// Wil l not do the t r a n s f e r on IGPs
to_host (Y,X) ;

Listing 2.5: NT2 IGP functions

1This technique will be superseded in 2017 with the adoption of inline variables
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The function to_device will verify if the data of X is pinned and if the flag
NT2_CUDA_INTEGRATED is activated (Listing 2.5). If that is the case, the
function will return a view of the entry table using its semantic information. If
one of these conditions are not met, the type returned will be a table on the GPU
and data from X will automatically be transfered. The to_host function will also
check if the architecture is an IGP and if the output table is allocated as pinned. If
these conditions are met, it will apply no modifications to Y. Otherwise, data will
be transfered from Y on the GPU to X on the CPU. It is important to note that
for IGP the function to_host holds a double purpose. Due to the IGP model, it
is possible to run computations from the same memory space on GPU and CPU
simultaneously. This means that if the user is not careful enough he can compute
on the same data concurrently removing consistency between results. The function
to_host will therefore apply a synchronization to make sure the computation is
finished. Another solution is to use the CUDA_LAUNCH_BLOCKING=ON flag.

2.4 Application to linear algebra solvers

In this section, we describe our approach to automatically generate linear algebra
solvers on parallel architectures. Our solution stems from the programming tech-
niques combined with a proper configuration space and smart containers for data
management on GPU.

2.4.1 Linear system solvers

The first step to build linsolve is to identify the key properties of the configuration
space and the proper way to represent them. Once this analysis is done, we can
refine these properties into high-level abstractions that will parameterize linsolve.
These abstractions will then be used to define the configuration knowledge neces-
sary to ensure the transition to the solution space. These properties represent the
informations necessary to dispatch on the various solvers that we can find in the nu-
merical libraries LAPACK and MAGMA. Concerning dense linear systems, we can
identify three main properties that need to be taken into account: matrix structure,
condition number, and targeted architecture.

A matrix structure can be divided into subcategories that can be identified stat-
ically (data type, storage scheme, matrix type and storage format). The data type
and storage scheme parameters are already identified through the problem domain,
respectively being scalar entries (real, double or single/double complex) and a dense
matrix. The storage format is defined by NT 2 and shares a common interface with
FORTRAN77 (column-major arrays). The matrix types correspond to the differ-
ent ones available in the numerical libraries LAPACK and MAGMA (e.g., general,
symmetric, hermitian...).



40 Chapter 2. High-level programming for dense linear algebra

The second domain corresponds to the conditioning of the system. In current
numerical libraries, the linear solvers are usually based on LU or QR factorizations
in fixed precision, or mixed-precision algorithms with iterative refinement. It is not
possible to identify statically if a system is ill-conditioned since it requires expensive
computations which are not manageable at compile-time. Furthermore, it would be
too costly to estimate the condition number at runtime for mixed-precision routines
since it requires the factored form of the matrix (the LAPACK function gecon esti-
mates the reciprocal condition number but requires the LU form bringing the cost
to θ(n3) for an n ∗ n matrix). However, since current dense linear algebra libraries
propose mixed precision routines, it needs to be part of the configuration space.

The last key domain of our solver is the dispatch between different architectures.
As explained in Section 2.1, the architectural features of a GPU result in a very
different language compared to a CPU. The solution we used to solve this abstraction
problem is to provide through the use of a DSEL (Section 2.2.2) a common syntax
between CPU and GPU routines. Using architecture aware binding, we can then
freely decide whether to call LAPACK or MAGMA routines by dispatching on the
different back-ends in an extensible way. It is now possible to define a grammar
that encapsulates these ideas into a configuration space (see Section 2.2.1). These
parameters are not mutually exclusive and can be extended/combined.

Table 2.1: Configuration space parameter levels

0-Matrix type general | band | diagonal | symmetric | positive definite
1-Data type float | double | single/double complex
2-Precision fixed | mixed-precision
3-Conditioning no information | ill-conditioned
4-Storage scheme general | packed
5-Architecture CPU | GPU

Most of the parameters we can access are defined by the user and therefore
configurable at the API level. In MATLAB, the linsolve routine does not take into
account the data type, and the matrix type needs to be defined in a parameter struc-
ture containing the different matrix properties recognized (lower/upper triangular,
upper Hessenberg, symmetric, positive definite, rectangular). While creating a ma-
trix in NT 2, the user has the possibility to define the matrix and data type which
are optimized as meta-data properties of the matrix, using the following instruction:

nt2::table<double,nt2::symmetric_> a;

When calling linsolve, he will then have the possibility to give additional information
on the conditioning of the matrix either as a parameter of the system:

x = nt2::linsolve(a,b,nt2::ill_conditioned_);

or of the matrix:

x = nt2::linsolve(nt2::ill_conditioned_(a),b);
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It is also possible to ask for complementary information as output like the re-
ciprocal condition number returned by LAPACK :

nt2::tie(x,r) = nt2::linsolve(a,b);

Once this is done, linsolve will be able to parse the configuration space by reading
out the nested domain-specific features while assigning default values to the unspec-
ified ones.

Figure 3.2 shows the various steps to perform a call to linsolve with a symmetric
matrix (here of size 5000) in NT 2 linked with the MAGMA library. The user starts
by defining the entry and output matrices with the correct description as seen in
Part 7 of Figure 3.2. When the code is analyzed by the C++ compiler, the call
corresponding to Part 1 of Figure 3.2 will end up triggering the generation phase.
The routine in Part 6 is generated using a combination of the parameters mentioned
in Parts 2 to 5. This routine can be a LAPACK/MAGMA kernel (if available, which
is the case of Figure 3.2) or a kernel directly implemented in NT 2. After the C++
compilation phase, we obtain a code similar to the one given in Part 8.

1. x = linsolve(a,b)

2. Parameters

3. Shape

4. Architecture

5. Type

6. Magma_dsysv(...)

none

symmetric

GPU

double

7. user code :
table<double,symmetric_ > a;
table<double> b,x;
a = rand(5000,as_<double>());
b = rand(5000,1,as_<double>());
a = mtimes(a,trans(a));

x = linsolve(a,b);

8. equivalent generated code :
table<double,symmetric_ > a;
table<double> b,x;
a = rand(5000,as_<double>());
b = rand(5000,1,as_<double>());
magma_dgemm(...)

magma_dsysv(...);

Figure 2.3: Example of a generation process for a symmetric system
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2.4.2 Memory management for hybrid computation

When using GPU-based systems, we need to ensure data consistency between the
different physical memories. In this section, we discuss how these techniques are
used jointly with linsolve. We can discern the two most common approaches to
CPU and GPU containers. The first one is to statically define the locality of the
container which is done in the Thrust library, while the second uses a dynamic
approach like in SkePU [46].

The memory management mechanism in a dynamic approach allows to change
the locality of a container and reallocate the data. The container then needs to
manage the memory and ensure consistency between data and locality. In this
situation, it is not possible to statically define the locality of a container. Therefore,
our approach consists of adding an architectural tag similarly to the matrix type tag
on our container (default locality is CPU). The purpose of this method is to enable
the user to write programs using GPU functions in a transparent way.

It is then possible to ensure the transitions from CPU to GPU memory by using
explicitly the tag. This does not prevent the decision-making process of the solver
when no locality tag is given by the user. The solver can generate a GPU code
performing data transfers from CPU to GPU as well as the reverse. The generation
process will choose the architecture based on a combination of factors, mainly the
matrix size and the algorithm. The GPU tag can also hold complementary infor-
mations passed as template parameters of the tag.

The definition of container locality being static, it is easier to define a data
efficient memory management unit. Let’s use the following scenario as an example :

x = nt2::linsolve(a,b);

From here, we can apply different strategies depending on the locality of x, a and
b. In a situation where all three containers are on GPU (respectively CPU) memory
there will be no locality problem as various data are located on the same device.
However, the scenario where x is on the GPU (respectively CPU) while a and b

are on the CPU (resp. GPU) will generate a conflict. The rules to solve locality
conflicts are static and do not depend on the runtime. Therefore, the priority will
be given to the locality of the result x to ensure consistency between the data and
container locality.

Experiments were carried out on a system using 2 sockets of Intel Xeon E5645
2.40GHz and a Tesla C2075. We consider single precision random square matrices of
size 2000, 10000 and 20000 and we solve a system of linear equations Ax = b using
the LU factorization. The light grey bars in Figure 2.4 correspond to the following
call made in NT 2 through linsolve that can run either on CPU or GPU.

x = nt2::linsolve(a,b);
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Figure 2.4: Performance comparison between LAPACK/MAGMA routines and gen-
erated codes via NT2 for general dense linear system solution

The dark grey bars correspond to C++ calls to either the LAPACK function
sgesv or the MAGMA function magma_sgesv. These results show that automat-
ically generated routines do not exhibit any overhead compared to direct calls to
LAPACK or MAGMA. Note that the performance of all others generated routines
does not incur any overhead as well.

2.4.3 Application: example of a least squares solver

In this section we illustrate how the generative programming method described in
Section 2.2 can be used to generate automatically new implementations of algorithms
and achieve satisfactory performance.

We consider the overdetermined full rank linear least squares (LLS) problem
minx∈Rn ‖Ax− b‖2, with A ∈ Rm×n,m ≥ n and b ∈ Rm.

The most classical methods for solving linear least squares problems are based
on the QR factorization or the normal equations. The latter method is twice cheaper
(mn2 vs 2mn2 operations) but the error is then proportional to cond(A)2 [20, p.
49]). However if A can be saved, we can also use the semi-normal equations (SNE)
method where we solve the system

RTRx = AT b,

where R is the triangular factor from the QR factorization of A (this is a straight-
forward reformulation of the normal equations). It is shown in [19] that, similarly to
the normal equations method, the forward error bound involves a factor cond(A)2,
even if we use a R-factor that is of better quality than the Cholesky factor because it
has been computed via a backward stable algorithm. However, as explained in [20,
p. 126 and p. 250], the accuracy of the SNE method can be improved by using the
corrected semi-normal equations method (CSNE) that consists in adding one step
of fixed precision iterative refinement to the SNE as follows:

1. Let x̃ solve RTRx = AT b
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2. Compute r̃ = b−Ax̃

3. Solve Aw = r

4. Corrected solution y = x̃+ w

It is shown in [69, p. 392] that, if cond(A)2u ≤ 1 (u being the unit roundoff), then
the forward error bound for the CSNE method is similar to that of a backward
stable method (and even smaller when r = Ax− b is small). In that case, the CSNE
method is more satisfactory than the SNE method but this is not true for all A. In
the following we propose to use the CSNE method to solve LLS in mixed precision.

The efficiency of mixed precision algorithms has been proved on linear systems
based on the LU factorization with results that can reach up to 90% [10] of float-
ing point computational rate in the lowest precision on current architectures. The
method to solve mixed precision CSNE (or MCSNE) consists of first performing the
factorization in single precision (εs) (if the matrix is not ill-conditioned) with the
computational cost of θ(mn2) and then refine the solution in double precision (εd)

where operations cost θ(n2). Iterative refinement [38] is a method that produces a
correction to the computed solution by iterating on it. Each kth iteration in this
process consists of computing the residual rk = b− Axk−1, solving the new system
Adk = rk, and adding the correction xk+1 = xk + dk. Mixed precision iterative re-
finement will work as long as the condition number of the least squares problem [13]
is smaller than the inverse of the lower precision used (i.e. here 108).

Algorithm 8 Mixed-Precision CSNE
Compute A = QR (εs)

Solve RTx = AT b (εs)

Solve Rx0 = x (εs)

do k = 1,2,...
rk = b−Axk−1 (εd)

Solve RTx = rk (εs)

Solve Rdk = x (εs)

xk = xk−1 + dk (εd)

check convergence

The first step of Algorithm 8 in NT2 is implemented in Listing 2.6 with triu(qr) ,
while the second and third steps are performed by the following calls to mtimes and
linsolve. Note that the code is similar in terms of syntax and number of instructions
to what would be written in MATLAB.
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tab le<double> mcsne ( tab le<double> const& A, tab le<double> const& B)
{

double anrm = lange (A, ’ I ’ ) ;
double c t e = anrm∗Eps<double >()∗nt2 : : s q r t ( width ( a ) ) ;

tab le<f l o a t > SA = cast<f l o a t >(A) ;

tab le<f l o a t , upper_triangular_> SR = t r i u ( qr (SA) ) ;
tab le<f l o a t > SX = mtimes ( t rans (SA) , cast<f l o a t >(B) ) ) ;

SX = l i n s o l v e ( t rans (SR) ,SX) ;
SX = l i n s o l v e (SR ,SX) ;

tab le<double> X = cast<double >(SX) ;
tab le<double> E = B − mtimes (A,X) ;

std : : s i z e_t i = 0 ;

do
{

SX = cast<f l o a t >(mtimes ( t rans (A) , cast<f l o a t >(E) ) ) ;
SX = l i n s o l v e ( t rans (SR) ,SX) ;
SX = l i n s o l v e (SR ,SX) ;

E = cast<double >(SX)

double RNRM = maximum( abs (E(_) ) ) ;

X += E;
double XNRM = maximum( abs (X(_) ) ) ;

E = B − mtimes (A,X) ;
++i ;

} whi l e ( not (RNRM < XNRM∗ c t e ) && ( i<max_iter ) ) ;

r e turn X;
}

Listing 2.6: NT 2 implementation for MCSNE

Once the solver for MCSNE is implemented using NT2 , it becomes possible to
add it to linsolve as a dispatch case of mixed precision solver for overdetermined
linear systems. This would result in the following call :

x = nt2::linsolve(a,b,nt2::mixed_precision_);

Here in Listing 2.7 we show the corresponding code without using linsolve
and implementing directly with MAGMA. It produces the same result as our code
described in Listing 2.6 but is much more verbose and dependent on MAGMA
functions. We still use our simple cuda_buffer to allocate simply data on the GPU
and for automatic deallocation.
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i n t lda ,m, na , nhrs , ldb // standard lapack d e f i n i t i o n s
i n t nb = magma_get_dgeqrf_nb(m) ;
i n t lwkopt = (2∗ std : : min (m, na )+ ( ( na+31) /32) ∗32) ∗nb ;

nt2 : : c on ta ine r : : tab le<double> x( nt2 : : o f_s i z e ( ldb , nhrs ) ) ;
nt2 : : c on ta ine r : : tab le<f l o a t > tau ( nt2 : : o f_s i z e ( std : : min (m, na ) ,1 ) ) ;
nt2 : : memory : : cuda_buffer<double> dA(m∗na , a ) ;
nt2 : : memory : : cuda_buffer<double> dB( ldb ∗nhrs , b ) ;
nt2 : : memory : : cuda_buffer<double> dX( ldb ∗nhrs ) ;
nt2 : : memory : : cuda_buffer<double> dE( ldb ∗nhrs ) ;
nt2 : : memory : : cuda_buffer<double> temp( ldb ∗nhrs ) ;
nt2 : : memory : : cuda_buffer<f l o a t > dSR(m∗na ) ;
nt2 : : memory : : cuda_buffer<f l o a t > dSX( ldb ∗nhrs ) ;
nt2 : : memory : : cuda_buffer<f l o a t > dT( lwkopt∗nhrs ) ;

double eps = boost : : simd : : Eps<double >() ;
double anrm = magmablas_dlange (MagmaInfNorm , m, na , dA. data ( ) , m, dE . data ( )

) ;
double c t e = anrm∗ eps ∗nt2 : : s q r t ( type_t ( na ) ) ;
double xnrm , rnrm ;

magmablas_dlag2s (m, na ,dA. data ( ) ,m, dSR . data ( ) ,m, &i n f o ) ;
magmablas_dlag2s ( ldb , nhrs , dB . data ( ) , ldb , dSX . data ( ) , ldb ,& i n f o ) ;
magmablas_sgemv( MagmaTrans , m, na , one , dSR . data ( ) , m, dSX . data ( ) , one , 0 ,

dSX . data ( ) , one ) ;
magma_sgeqrf2_gpu ( m, na , dSR . data ( ) , m, tau . data ( ) , &i n f o ) ;
magmablas_strsm (MagmaLeft ,MagmaUpper , MagmaTrans , MagmaNonUnit , na , nhrs , ( f l o a t )

one , dSR . data ( ) ,m,dSX . data ( ) , na ) ;
magmablas_strsm (MagmaLeft ,MagmaUpper , MagmaNoTrans , MagmaNonUnit , na , nhrs , (

f l o a t ) one , dSR . data ( ) ,m,dSX . data ( ) , na ) ;
magmablas_slag2d ( ldb , nhrs , dSX . data ( ) , ldb ,dX. data ( ) , ldb ,& i n f o ) ;
magmablas_dlacpy (MagmaFull , ldb , nhrs , dB . data ( ) , ldb , dE . data ( ) , ldb ) ;
magmablas_dgemv( MagmaNoTrans , lda , na , negone , dA. data ( ) , lda , dX. data ( ) ,

one , one , dE . data ( ) , one ) ;

f o r ( s i ze_t i = 1 ; i <=10;++i ) {
magmablas_dgemv( MagmaTrans , lda , na , one , dA. data ( ) , lda , dE . data ( ) , one ,

0 , temp . data ( ) , one ) ;
magmablas_dlag2s ( ldb , nhrs , temp . data ( ) , ldb , dSX . data ( ) , ldb ,& i n f o ) ;
magmablas_strsm (MagmaLeft ,MagmaUpper , MagmaTrans , MagmaNonUnit , na , nhrs , (

f l o a t ) one , dSR . data ( ) ,m,dSX . data ( ) , na ) ;
magmablas_strsm (MagmaLeft ,MagmaUpper , MagmaNoTrans , MagmaNonUnit , na , nhrs , (

f l o a t ) one , dSR . data ( ) ,m,dSX . data ( ) , na ) ;
magmablas_slag2d (na , nhrs , dSX . data ( ) , ldb , dE . data ( ) , ldb ,& i n f o ) ;
nt2 : : memory : : copy (dE , x ) ;
rnrm = nt2 : : maximum( nt2 : : abs ( x (_) ) ) ;
magmablas_dgeadd (na , nhrs , one , dE . data ( ) , ldb ,dX. data ( ) , ldb ) ;
nt2 : : memory : : copy (dX, x ) ;
xnrm = nt2 : : maximum( nt2 : : abs ( x (_) ) ) ;
magmablas_dlacpy (MagmaFull , ldb , nhrs , dB . data ( ) , ldb , dE . data ( ) , ldb ) ;
magmablas_dgemv( MagmaNoTrans , lda , na , negone , dA. data ( ) , lda , dX. data ( ) ,

one , one , dE . data ( ) , one ) ;
i f ( rnrm < xnrm∗ c t e ) { break ; }

}
nt2 : : memory : : copy (dX, x ) ;
r e turn x (_(1 , na ) ) ;

Listing 2.7: Implementation of MCSNE with MAGMA

Benchmarks were carried out using 2 sockets of Intel Xeon E5645 2.40GHz (peak
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Gflop/s is 230) and a Tesla C2075 (peak Gflop/s is 1030.4). We used Intel MKL [74]
version 10.2.3, MAGMA 1.9 with CUDA 7.0 [101] and gcc 4.8 [59]. We compare
ourselves with Eigen 3.2.5 and Armadillo 5.200.2. As a reminder, computations on
the GPU are run using the IEEE 754 compliant mode for arithmetic operations and
with CUDA ECC activated. The random test problems were generated using the
method described in [103]. Performance results include data transfers between CPU
and GPU and data.
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Figure 2.5: Performance results of generated code on CPU

In Figure 2.5 we compare the performance of CSNE_mixed_prec on the CPU
with the LAPACK routine xgels that solves the LLS problem with a QR factor-
ization without column pivoting. The results show that performance of MCSNE is
only 10% less than that of sgels. Note that this represents around 75% of the peak
performance of a matrix-matrix multiply in single precision (routine SGEMM). We
use random matrices and the iterative refinement converged in less than 4 iterations.

If we compare our results with Armadillo, we can see that the implementation of
MCSNE with Armadillo (Listing 2.8) is slower than dgels. While the performance
of dgels in Armadillo is the same as in NT 2, it is much harder to obtain high
performance when not relying entirely on the BLAS. For examples, the extraction
of the Q,R matrices are very expensive and the cast is not vectorized.However,
as Armadillo aims toward a good balance between speed and ease of use, this is
justified. The interface is intuitive and the documentation is well structured which
makes writing code quite appreciable.
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mat A = randu<mat>(h ,w) ;
vec B = randu<vec>(h) ;
double n = 0 , n1 = 0 ;

fmat Q,R; Q. s e t_s i z e (h ,w) ; R. s e t_s i z e (h ,w) ; Q. z e r o s ( ) ; R. z e r o s ( ) ;

fmat a = conv_to<fmat >: : from (A) ;

qr_econ (Q,R, a ) ;

f v e c b = conv_to<fvec >: : from (B) ;

f v e c sx = trans ( a ) ∗b ;

sx = so l v e ( t rans ( tr imatu (R) ) , sx ) ;

sx = so l v e ( tr imatu (R) , sx ) ;

vec X = conv_to<vec >: : from ( sx ) ;

vec e = B − A∗X ;

f o r ( std : : s i z e_t i =1 ; i <5 ; ++i )
{

sx = conv_to<fvec >: : from ( t rans (A) ∗e ) ;

sx = so l v e ( t rans ( tr imatu (R) ) , sx ) ;

sx = so l v e ( tr imatu (R) , sx ) ;

e = conv_to<vec >: : from ( sx ) ;

X = X + e ;

e = B − A∗X;
}

Listing 2.8: CPU Implementation of MCSNE with Armadillo

Eigen (Listing 2.9) on the other side manages to reach better performance but is
still slower than NT2 . This is due to better memory management in NT2 and some
optimization functionalities that are not present in Eigen. The Eigen is however
harder to use to implement a version of MCSNE and also less readable. Some of the
code for MCSNE had to be hand-written as Eigen could not properly extract the
upper triangular matrix R. Having an implementation where the solver is a member
function of the matrix/solver makes the code look less readable and lose some of its
generality and flexibility.

On the GPU, the performance of MCSNE in NT2 is depicted in Figure 2.6. It
also approaches 90% of the performance of magma_sgels on GPU (QR_single_prec)
while being near twice faster than the routine in double precision.

The behavior of MCSNE when compared with QR solvers in double and single
precision is similar to what was observed in [8, p. 15] for the LU factorization.
Neither Armadillo nor Eigen offer proper support for GPU to allow us to write an
MCSNE version.
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MatrixXd A = MatrixXd : : Random(h ,w) ;
VectorXd B = VectorXd : : Random(h) ;
double n = 0 , n1 = 0 ;

MatrixXf a = A. cast<f l o a t >() ;

HouseholderQR<MatrixXf> qr ( a ) ;

MatrixXf r f = qr . matrixQR ( ) ;

VectorXf b = B. cast<f l o a t >() ;

VectorXf sx = a . t ranspose ( ) ∗b ;

s i ze_t c o l s = a . c o l s ( ) ;
s i z e_t rows = a . rows ( ) ;
MatrixXf s r ( co l s , c o l s ) ;
s i z e_t size_n = s i z e o f ( f l o a t ) ∗( c o l s ) ;

f o r ( s i ze_t i =0; i<c o l s ; i++)
{

std : : memcpy( s r . data ( )+i ∗ co l s , r f . data ( )+i ∗rows , s ize_n ) ;
}

sx = s r . t r iangularView<Eigen : : Upper>() . t ranspose ( ) . s o l v e ( sx ) ;

sx = s r . t r iangularView<Eigen : : Upper>() . s o l v e ( sx ) ;

VectorXd X = sx . cast<double >() ;

VectorXd e = B − A∗X ;

f o r ( std : : s i z e_t i =1 ; i <5 ; ++i )
{

sx = (A. t ranspose ( ) ∗e ) . cast<f l o a t >() ;

sx = s r . t r iangularView<Eigen : : Upper>() . t ranspose ( ) . s o l v e ( sx ) ;

sx = s r . t r iangularView<Eigen : : Upper>() . s o l v e ( sx ) ;

e = sx . cast<double >() ;
X = X + e ;
e = B − A∗X;

}

Listing 2.9: CPU Implementation of MCSNE with Eigen

In Section 1.3.4, we described the concept behind the IGP architecture and
current available architectures. We also note that current IGPs are not adapted
for double precision. In Listing 2.7, we can see that the DGEMM routine on the
NVIDIA Tegra X1 has very poor performance compared to the SGEMM. This is
due double precision computations being emulated on the GPU.

An algorithm using mixed-precision will therefore be performing much better
than in double precision since most computations are done in single precision. This
is confirmed in Figure 2.7. The implementation of MCSNE that achieves good
performance does not use directly MAGMA routines. The reason is that MAGMA
does not have proper support for IGP and most computational routines are hybrid.
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MAGMA routines end up doing memory transfers between the CPU and GPU
instead of using a zero-copy model. On IGPs, this is very costly, thus limiting the
performance of the mixed-precision MAGMA routine for QR to 1 Gflop/s. It is also
interesting to note that the MAGMA and CUBLAS implementations of SGEMM
do not perform the same, with one being more efficient than the other depending
on the size of the problem. This clearly shows that the size of the problem has an
impact on how the code should be written for current IGPs.

2.5 Conclusion

Combining the large number of algorithms available in numerical libraries and ar-
chitectural requirements in a generic solver for dense linear systems is a complex
task. We showed that generative programming is a valid software development ap-
proach for addressing these issues while maintaining a high level of performance.
Our contribution furthers the work in active libraries by providing a viable way to
make our software architecture-aware. Performance results illustrate that for both
existing routines like those in linsolve and new ones such as MCSNE, the delivered
performance is close to what state of the art libraries achieve.

The other interesting result is that software like NT2 can quickly prototype new
algorithms while providing support for various architectures. With NT2 , we reach
a good combination of high-level codes for linear algebra problems that gives good
speedups and offers the users enough expressiveness to describe the problem in the
most efficient way.

Future work includes support for more architectures like Intel Xeon Phi, with
work on new algorithms that provide good performances while not being available
in numerical libraries like randomized algorithms [9, 14] or communication-avoiding
algorithms [11] for dense linear systems. Moving to sparse problems is also a possibil-
ity where libraries like Cups [16] or VexCL provide an interesting approach. Raising
the level of expressiveness stays a major concern while trying to add content in
NT2 .

In the next chapter, we will explain how we have build a multi-stage program-
ming tool which is included in NT2 for GPU operations.
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Developing large applications in a simple, fast and efficient way has always been
an issue for software developers. As computing hardware complexity rose with the
advent of SIMD, multi-processor, multi-core systems and more recently accelerators
like GPUs [102] or Intel Xeon Phi [29], software design methods did not undergo
the same amount of changes. This complicates the exploitation of such hardware in
mainstream applications.

Designing DSL has been presented as a solution to these issues. As DSLs allow
solutions to be expressed in their programming idiom with a level of abstraction
equivalent to the problem domain, the maintainability and quality of code is in-
creased. One of the most popular examples is MATLAB which provides a large
selection of toolboxes that allow a direct expression of high-level algebraic and nu-
merical constructs in a easy-to-use imperative language. In this scope, Domain
Specific Embedded Languages (or DSELs ) [71, 129] are languages implemented
inside a general-purpose, host language [34]. without the requirement of a dedicated
compiler or interpreter as they are designed as a library-like component.

In Chapter 2, we presented a method to take advantage of heterogeneous archi-
tectures using DSEL and providing support current HPC libraries. The problem of
not being able to write simple CUDA kernels was however not addressed. Here, we
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wish to present an approach based on multi-stage programming that can circumvent
these problems.

NT2 – The Numerical Template Toolbox – is such a DSEL using C++ template
meta-programming to provide a Matlab -inspired API while supporting a large se-
lection of parallel architectures and keeping a high level of expressiveness. NT2 was
designed to support architectural features like SIMD extensions and multicore pro-
gramming. However, the support for accelerators like GPGPUs was limited as GPU
kernel compilers where unable to process NT2 C++ 11 based implementation of
C++ based DSEL . In chapter 2, we addressed the first part of the problem by
providing a method for GPU based computing for dense linear algebra kernels.

In this chapter, we present a new method and extension for NT2 that takes care
of such accelerators, especially CUDA based GPUs through multi-stage program-
ming [44] (or MSP ). MSP consists in doing multiple compilation phases allowing
for type-safe program generation. The work presented in this chapter was submitted
and accepted at ATMG 2016 [94]. Our contributions include:

• A multi-stage method to alleviate the host/device programming model with a
cost model for offloading code

• An adaptable strategy to generate CUDA kernel directly from a single C++ source
file containing NT2 statements

• The integration of this kernel generator with existing CUDA libraries like
cuBLAS or MAGMA.

The purpose of this system is to provide the user some leeway on how to dis-
tribute the data between the host and device through a simple mechanism. As
having a perfect cost model for load balancing is very complex to put in place and
costly, letting the user provide some insight on data locality is beneficial.

After reviewing the concurrent state of the art software libraries (Section 3.1),
we then describe the kernel generator process and how it can be integrated with
an existing library (Section 3.2). Finally, we present benchmarks assessing the
generated code quality (Section 3.4) and conclude on the future work regarding
NT2 and accelerators.

3.1 Related Work

Software libraries for GPU computing try to simplify the new programming paradigm
brought by many-core based systems. The general trend followed in recent years by
C++ libraries is to provide a high-level interface through template meta-programming
techniques. This goal is reached by providing device containers with architecture-
aware generic parallel algorithms and/or a code generation based process. We will
give a detailed explanation of both type of libraries that support OpenCL/CUDA
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or both.

Thrust [70] is a header only library providing a similar interface to the C++
Standard Template Library. Its high-level interface is based on meta-programming
and traits to provide efficient parallel skeletons that can run on either CPU or GPU.
Container locality is expressed through an explicit container declaration limiting the
abstraction but allowing for easier transfers between host and device. Locality for
functions is defined by default for device vectors and can be extended with tag dis-
patching. Overall, it is a well rounded utility library which can be combined with
CUDA Toolkit libraries such as CUBLAS, CUFFT and NPP. However it lacks of
code generation features and does not support OpenCL.

C++AMP [62] is a framework developed by Microsoft that includes a C++
library and an associated compiler. The C++ AMP programming model includes
multidimensional arrays, indexing, memory transfer, tiling, and a mathematical
function library. You can use C++ AMP language extensions to control how data
is moved from the CPU to the GPU and back. It relies on parallel skeletons such as
parallel_for to iterate on data. It does not provide any AST optimization or MSP
and is more of an API based approach like Thrust with OpenCL.

SyCLs [123] aim is to simplify programming manycore processors by offering a
modern C++ interface on top of OpenCL. SyCL is similar to C++AMP in the sense
that it provides single-source development and inlined kernels. That means kernel
code can be embedded within C++ code. They have added support for templates
in kernel code which is not possible with OpenCL. It does not provide a model using
the CUDA language.

VexCL [37] is an expression template library for OpenCL/CUDA. It provides a
high level generic interface that is suitable for both back-ends with static parameters
defined within a DSEL for linear algebra. The expression template mechanism allows
for code generation by lazy evaluation of vectors and elementary operations within
the AST. Similarly to Thrust, it provides STL-like functions on containers that
have a defined locality. It is also possible for the user to define custom functions on
device that will be dynamically generated for CUDA. However, the transform used
for the generation process requires a unique data locality limiting hybrid algorithms.

ViennaCL [113] is also an expression template library for OpenCL/CUDA.
This library strictly follows the uBLAS programming interface and STL like algo-
rithms for easier integration with other softwares. It has implementations for BLAS
kernels and high level solvers for sparse and dense computation that provide good
performance. Through the mechanism of expression templates it can evaluate ba-
sic linear algebra operations with operator overloading. ViennaCL focuses more on
OpenCL due to the necessity for separate compilation with CUDA limiting its sup-
port through the OpenCL language. It is however possible to generate CUDA code
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with ViennaCL at runtime.

Boost.Compute [89] is a header only C++ library based on the OpenCL stan-
dard. Similar to other libraries, it manages device memory through a designated
container. It provides an interesting concept of future for asynchronous copy on
the device allowing for more versatility. Boost.Compute also supports closures and
adaptable structures for device. Similarly to thrust, it is a well rounded library
based on OpenCL to simplify the coding process on accelerators. It however lacks
support for numerical analysis and cannot generate CUDA code.

Eigen [64] is a popular library to solve linear systems using expression tem-
plates. It should be able to support accelerator code with CUDA by writing Eigen
code in a .cu file. It however does not provide any high-level interface or special
containers for GPU computing. Since Eigen 3.3 it has a partial experimental CUDA
support for Eigen’s objects and algorithms within CUDA kernels. Eigen does not
support OpenCL.

Kokkos [45] is a C++ developed by Sandia that provides an API for hybrid
computations. It does not follow the guidelines of standard C++ libraries and uses
view based on a shared pointer. It uses parallel skeletons and lambda as their par-
allel model. The advantage of Kokkos is that their API is rather simple and can
be directly compiled with nvcc simplifying integration. It however does not provide
any AST and high level operations.

SciPAL [82] is an expression template library with a DSEL for dense and sparse
linear algebra. It focuses mainly on recognizing GEMM calls by parsing the AST
and regular operations on containers. Its code generation process for CUDA kernels
is done mostly by explicitly writing the code in callable objects. The code generation
process is then done at runtime for non-BLAS kernels. SciPAL does not support
OpenCL.

Feature Thrust VexCL ViennaCL Boost.C NT2 C++AMP Kokkos
Matlab API − − − − X − −
AST optimization − X X X X − −
Device Arrays X X X X X X X
CUDA code gen X X − − X − X
OpenCL code gen − X X X − X −
parallel skeletons X X − X X X X
CUBLAS support X − X − X − X
Static code gen − − − − X − −
dense LA solvers − − X − X − −
sparse LA solvers − − X − − − −

Figure 3.1: Feature set comparison between NT2 and similar libraries

In Figure 3.5, we compare features between NT2 and the previously described
libraries. We did not include SciPAL since the code is not available, and Eigen as
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it does not have any real support for code generation or a device API yet.
The purpose of the previously described libraries is usually to provide a wrapper

over the C++ language for GPGPU computing. For this reason, the DSELs based on
expression templates or Boost.Proto are usually lightweight and consist mostly of
overloading elementary operations for containers. The code generation phase then
ends up doing a dynamic compilation of the CUDA code/OpenCL kernel which adds
a significant overhead on small sized or low arithmetic intensity problems.

Furthermore, as mentioned previously, it is not possible to compile a NT2 source
code with NVCC even with the latest version (7.5). To address these issues, we
have added a two step compilation in NT2 using a serialization mechanism based on
Boost.Serialization. Before describing this process, we will first detail our concept
behind MSP.

3.2 Multi-stage programming in C++

As described in Section 3.1, code generation for accelerators in C++ is based on
Meta-programming techniques. This process is however limited by the fact that
C++ does not natively support language extensions for runtime code generation
and program execution [124]. Creating a multi-stage paradigm is therefore necessary
to remove the runtime cost of compiling CUDA code.

3.2.1 Designing a multi-stage software

We have described in Section 1.4.4 some of the core concepts behind MSP. MSP
has been used extensively in fields based on stochastic problems such as energy
planning [107] as it relies on two-stage problems. LMS described in Section 1.4.4
is conceptually similar to Meta-programming techniques in C++ applied to the
Domain Engineering Method for Reusable Algorithmic Libraries [32] which we de-
scribed in Section 2.2.3. Language visualization described also in Section 1.4.4 goes
further by combining DSEL techniques with multi-stage programming to cover mul-
tiple DSEL (Probabilities, machine learning, Scripting ...) and combine them with
heterogeneous hardware. We wish to stay within the same DSEL of linear algebra
but use multi-stage to remove compatibility problems with accelerator based sys-
tems due to compiler incompatibilities. In Chapter 2, we have shown that by relying
on compiled libraries such as MAGMA, we can ease the programming model by not
needing NVCC. This however limits code development inside a library as it is not
possible to directly write CUDA code in NT2 . What we want to provide is model
that supports using existing optimized libraries while being still able to extend them
for more flexibility.

MSP is an ideal solution to such as problem as it allows type-safe program gen-
eration and is expendable. We differentiate ourselves from other standard MSP



3.2. Multi-stage programming in C++ 57

approaches by wanting a second step compilation. Most MSP approaches add lan-
guage extensions to a program which is compiled before the actual program itself.
What we wish is a MSP layer that will safely generate accelerator code based on
our algorithm skeletons for CPU. We want to perform code generation by providing
CMake macro to generate all the required calls to our kernel generation system.
CMake is a cross-platform tool for managing the build process of software using a
compiler independent method. It has been widely adopted in recently year instead
of Makefiles as it provide more abstraction and interoperability. The CMake layer is
very lightweight and can be replaced by any generation tool or even simple scripts.

3.2.2 Multi-stage programming in C++

The way we use MSP is not based on language extensions but on a method we devel-
oped as explained in Section 3.2.1. It is possible to create a multi-stage compilation
of a program using this representation. In C++ , we base this process on doing
a compilation phase with an incomplete link to generate only an object file. This
is depicted in Phases 1-2 of Figure 3.2. Generating an executable program using a
compiler is a multi-stage process divided into two main components: compilation
and linking.

By definition, compilation refers to the processing of source code files to create
object files. This process does not create an executable file for the user. This object
file contains the compiled code in binary form of the symbols defined in the source
code.

Linking refers to the creation of an executable or a library from an object file
set. During the compilation, if the compiler cannot find the definition of a specific
function in a file, it will assume that this function is defined in another file. As long
as the source code is well-formed, the compiler will not complain. It is then to the
linker to replace the references to undefined symbols with the correct addresses. Re-
maining undefined symbol are left untouched if not found and the linking process
becomes incomplete. This will generate a new object file where remaining undefined
symbol are left untouched.

It is then possible to use a demangling tool like cppfilt or nm to decode the
C++ ABI names (steps 2-3 of Figure 3.2). Each demangled symbol will correspond
to the internal C++ representation with a complete prototype of the incomplete
function. By parsing this representation we can generate the CUDA/OpenCL kernel
code with a corresponding host code to complete the link phase. Figure 3.2 describes
this multi-stage process. To benefit from this paradigm, it is necessary to include
a two stage compilation that cannot be deployed in a header only library. To
implemented this process we use the CMake tool. It is also important to develop a
readable intermediate representation that can be easily parsed when demangled.
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1. source code 2. object file 7. executable

4. device kernel 3. symbol/code converter 6. object file

5. C++ host code

compile link
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Figure 3.2: Two phase compilation for device code generation

3.2.3 Multi-stage programming tool for NT2

A specific tool called symbol/code converter (Figure 3.2, Part 3) coupled with a se-
rialization process was developed as an add-on to NT2 to solve the issues described
previously. The serialization process to solve the readability of the abstract repre-
sentation is based on Boost.Serialization . This representation is similar to the
expression-template AST based on Boost.Proto that is parsed by the C++ com-
piler. This enables us to get the semantic information of the container described in
chapter 2 like its data locality, data type or matrix shape. It is however not possible
to have run-time informations like the container size.

The role of symbol/code converter is two-fold. First, it must parse the demangled
symbols obtained. This is done with Boost.Spirit [36], a C++ library to parse
expressions and generate outputs based on them. It is implemented as a DSEL using
Expression templates and Meta-programming techniques. With this library, we can
generate outputs corresponding to the semantic information of the containers and
operators. Secondly, it must generate the device and host code (Figure 3.2, Part
4-5) from the output generated by Boost.Spirit. In order to achieve this, we
must deserialize the abstract representation in which the semantic informations are
represented by a tag.

We will first describe the generation of the CUDA kernel. Each representation
obtained from the AST corresponds either to an elementary expression of containers
such as a = b+ c (or a = b+ c+ d . . . ), a sequence of operations if a fused operator
(tie) is called or to an algorithmic skeleton (reduce, scan...). The parsing is separated
between the left and right hand-side of the computation. The left hand-side will
check if the expression is a terminal or an AST and generate the left part of the
CUDA kernel expression. If it is a fused operator, it will generate a sequence of left
operators in the kernel. The right hand-side will parse the operator and generate
from the NT2 CUDA back-end the corresponding operation with its parameters.
Similarly, a fused operator will generate a sequence of right-hand side.

The generation of the host code consists in creating the source file corresponding
to the functions with missing symbols. This amounts to adding the includes for the
currents back-end, the CUDA kernel call and streaming data if necessary. As the
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device locality is available in the AST under the tag nt2 :: device_ (see Section 2.3),
we can stream the data to the GPU only if needed. Chaining non-fused operations
that are on the host will obviously trigger back and forth data transfers. The over-
head generated by such a process is diminished by the streaming and multi-stream
process enabled for each operation.

We just described the key concepts of the symbol/code converter tool imple-
mented in NT2 for multi-stage programming. In the next section we will give con-
crete examples of generated kernels from symbol/code converter in NT2 and how it
supports hybrid computation.

3.3 Software implementation for NT2

To describe the generation process, we first use the Triad kernel for element-wise
operations which consists in doing a fused multiply-add (or fma : a = b+ c ∗ d ).

The resulting code in NT2 is :

// Def ine host t ab l e
tab le<f l o a t > A,B,C,D;

// Triad ke rne l
A = B + C∗D;

Listing 3.1: NT2 Triad kernel

The code in Listing 3.1 corresponds to Part 1 of Figure 3.2. During the com-
pilation phase, the operation in Listing 3.1 is replaced with a call to the CUDA
transform skeleton. This skeleton will then call the device kernel that is not im-
plemented yet resulting in the incomplete link sequence(Part 1-2, Listing 3.1). The
equivalent code for transform is detailed in Listing 3.2. This transform will analyze
the informations on the input matrices and the architecture to decide if it should
proceed with the generation process.

tab le<f l o a t > A,B,C,D;

// Triad ke rne l r ep l a c e with trans form c a l l
t rans form (A, B + C∗D) ;

Listing 3.2: NT2 Triad transform

From there, once we compile our code and go through phase 2 of Figure 3.2 we
obtain the following mangled code for our transform as described in Listing 3.3.
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U _ZN3nt215external_kernelINS_3tag10transform_ENS1_5cuda_
IN5boost4simd3tag4avx_EEEE4callIKNS_9container4viewINS1_6
table_EfFNS_8settingsEvEEEKNSB_10expressionINS4_5proto7exp
rns_10basic_exprINS6_4fma_ENSJ_7argsns_5list3INSC_ISD_KfSF
EESQ_SQ_EELl3EEENS_6memory9containerISD_fFSE_NS_8of_si
ze_ILln1ELln1ELln1ELln1EEEEEEEEEEvRT_RT0_

Listing 3.3: NT2 CUDA Triad mangled

We can then demangle the symbols resulting in the code described in Listing 3.4.
This code corresponds to the Boost.Proto AST in NT2 (see Figure 3.3)that we
parse to generate the host and device code. The architectural tag of the machine is
depicted in purple in Listing 3.4 and the fma computation node in red.
void nt2 : : externa l_kerne l<nt2 : : tag : : transform_ , nt2 : : tag : : cuda_<boost : : simd : :

tag : : avx_>>:: c a l l <nt2 : : c on ta ine r : : tab le<f l o a t , nt2 : : s e t t i n g s ( ) >, nt2 : :
c on ta ine r : : expre s s ion<boost : : proto : : exprns_ : : basic_expr<boost : : simd : : tag
: : fma_ , boost : : proto : : argsns_ : : l i s t 3 <nt2 : : c on ta ine r : : view<nt2 : : tag : :
table_ , f l o a t const , nt2 : : s e t t i n g s ( ) >, nt2 : : c on ta ine r : : view<nt2 : : tag : :
table_ , f l o a t const , nt2 : : s e t t i n g s ( ) >, nt2 : : c on ta ine r : : view<nt2 : : tag : :
table_ , f l o a t const , nt2 : : s e t t i n g s ( )> >, 3 l >, nt2 : : memory : : conta iner<nt2
: : tag : : table_ , f l o a t , nt2 : : s e t t i n g s ( nt2 : : of_size_<−1l , −1l , −1l , −1l >)>

> const >(nt2 : : c on ta ine r : : tab le<f l o a t , nt2 : : s e t t i n g s ( )>&, nt2 : : c on ta ine r
: : expre s s ion<boost : : proto : : exprns_ : : basic_expr<boost : : simd : : tag : : fma_ ,
boost : : proto : : argsns_ : : l i s t 3 <nt2 : : c on ta ine r : : view<nt2 : : tag : : table_ , f l o a t
const , nt2 : : s e t t i n g s ( ) >, nt2 : : c on ta ine r : : view<nt2 : : tag : : table_ , f l o a t

const , nt2 : : s e t t i n g s ( ) >, nt2 : : c on ta ine r : : view<nt2 : : tag : : table_ , f l o a t
const , nt2 : : s e t t i n g s ( )> >, 3 l >, nt2 : : memory : : conta iner<nt2 : : tag : : table_ ,
f l o a t , nt2 : : s e t t i n g s ( nt2 : : of_size_<−1l , −1l , −1l , −1l >)> > const&)

Listing 3.4: NT2 CUDA Triad demangled

The function tag (nt2::tag::transform_) corresponds to each element-wise oper-
ations in NT2 . Any function can be constructed using external kernel if necessary.
As an example, algorithmic skeletons (scan, reduce, zip ...) will call external kernel
when the CUDA back-end is activated. Then, we can generate a thrust code in a .cu
file that will then be compiled with NVCC. Using this technique, we can overcome
a weakness of the thrust library while benefiting from its optimized routines.

=

A fma

B C D

Figure 3.3: Triad kernel transform AST

The generated code for the .cu file is described in Listing 3.5 for Kepler cards.
It corresponds to the AST representation with additional semantic information spe-
cific to the CUDA language. A function wrapper that calls the CUDA kernel
(fma4_wrapper) is used to separate the compilation of the .cu file with NVCC
from the corresponding C++ host code. The triad kernel directly calls the fma
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function from CUDA as the NT2 AST recognizes every occurrence of an fma and
replaces it by its function (Listing 3.4, see boost::simd::tag::fma_). This optimiza-
tion in itself is not essential since it can be done by NVCC but is still interesting
as it demonstrate the potential of code generation. As NT2 already optimizes the
AST by replacing patterns with corresponding functions, we can benefit from this
analysis. We can then call the corresponding CUDA function if available or our own
implementation for each pattern.
__global__ void fma4 ( f l o a t ∗ t0 , const f l o a t ∗ t1 , const f l o a t ∗ t2 , const f l o a t

∗ t3 )
{

i n t idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
t0 [ idx ] = fmaf ( t1 [ idx ] , t2 [ idx ] , t3 [ idx ] ) ;

}

void fma4_wrapper ( f l o a t ∗ t0 , const f l o a t ∗ t1 , const f l o a t ∗ t2 , const f l o a t ∗
t3 , dim3 Grid , dim3 Block , cudaStream_t & Str , i n t Shr )

{
t r i ad<<<Grid , Block , Shr , Str>>>(t0 , t1 , t2 , t3 ) ;

}

Listing 3.5: NT2 CUDA Triad kernel

The host code is partially described in Listing 3.6 and 3.7. Listing 3.6 corre-
sponds to the initialization of parameters and data before doing the actual compu-
tation on the device. The blockSize and stream number is determined during the
generation process depending on the number of parameters and architecture. The
blockSize is usually generated by measuring the bandwidth of transfers from host
to device in a range and choosing the most optimal one.
us ing boost : : proto : : chi ld_c ;
us ing boost : : proto : : va lue ;

std : : s i z e_t s i z e = numel ( boost : : proto : : child_c <0>(a1 ) ) ;
s td : : s i z e_t b l o ckS i z e = std : : min ( std : : s i z e_t (40000) , s i z e ) ;
s td : : s i z e_t nStreams = std : : min ( std : : s i z e_t (2 ) , s i z e / b l o ckS i z e ) ;
s td : : s i z e_t n = s i z e / b l o ckS i z e ;
s td : : s i z e_t l e f t o v e r = s i z e % b lo ckS i z e ;
dim3 blockDim = std : : min ( std : : s i z e_t (1024) , s i z e ) ;
dim3 dimGrid = b lo ckS i z e / s i ze_t (1024) ;
cudaStream_t stream [ nStreams ] ;

// A l l o ca t i ng memory on the dev i ce
va lue ( a0 ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e , t rue ) ;
va lue ( child_c <0>(a1 ) ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e ) ;
va lue ( child_c <1>(a1 ) ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e ) ;
va lue ( child_c <2>(a1 ) ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e ) ;

// checks redundancy between inputs and outputs
std : : unordered_set<const f l o a t ∗> addr ;
addr . i n s e r t ( child_c <0>(a0 ) . data ( ) ) ;

f o r ( std : : s i z e_t i =0; i < nStreams ; ++i )
{

cudaStreamCreate(&stream [ i ] ) ;
}

Listing 3.6: NT2 CUDA Triad Host Code initialization
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Using our tuning framework, we observed that to benefit best from the Kepler
GPU bandwidth a block size of 40000 is necessary for single precision values. Dou-
ble precision computations would lead to a lower block size generated. Similarly,
the blockDim used is the highest value available for the architecture as we gen-
erate element-wise operations. Depending on the number of parameters the size
may be lowered to limit the allocations. The allocation process includes pinned
memory and device memory allocation. If containers were defined on the GPU
with nt2 :: device_, they would not appear in the allocation phase. As we have
no information on the pointer for each container, we use an unordered set to limit
redundancy in memory transfers.

Listing 3.7 describes the computation phase. It relies on block streaming with
transfers to the GPU only if NT2 tables are on the host. This streaming process
is based on the overlap data transfers concept described by NVIDIA. It consists
in creating multiple streams (the number depends on the architecture and problem
intensity/size) and launching for each stream a transfer host to device, the CUDA
kernel and the transfers device to host for a block. As the host memory has already
been allocated, we must first transfer the data to pinned memory with cudaHostAl-
loc to benefit from GPU optimizations. Since the difference in bandwidth between
pinned and page-able memory only increases with new architectures, this optimiza-
tion can give a speedup even with a mono-stream program.

f o r ( std : : s i z e_t i = 0 ; i < n ; ++i )
{

std : : s i z e_t j = i % nStreams ;
va lue ( a0 ) . s p e c i f i c s ( ) . t rans fer_htd ( a0 , i , stream [ j ] , j ) ;
va lue ( child_c <0>(a1 ) ) . s p e c i f i c s ( ) . t rans fer_htd ( child_c <0>(a1 ) , i , stream [

j ] , j , addr ) ;
va lue ( child_c <1>(a1 ) ) . s p e c i f i c s ( ) . t rans fer_htd ( child_c <1>(a1 ) , i , stream [

j ] , j , addr ) ;
va lue ( child_c <2>(a1 ) ) . s p e c i f i c s ( ) . t rans fer_htd ( child_c <2>(a1 ) , i , stream [

j ] , j , addr ) ;

fma4_wrapper ( va lue ( a0 ) . s p e c i f i c s ( ) . data ( j ) , va lue ( child_c <0>(a1 ) ) .
s p e c i f i c s ( ) . data ( j ) , va lue (

child_c <1>(a1 ) ) . s p e c i f i c s ( ) . data ( j ) , va lue ( child_c <2>(a1 ) ) . s p e c i f i c s ( ) .
data ( j ) , dimGrid , blockDim , stream [ j ] ) ;

boost : : proto : : va lue ( a0 ) . s p e c i f i c s ( ) . t rans fer_dth ( a0 , i , stream [ j ] , j ) ;
}

i f ( l e f t o v e r =0)
{

. . .
}

Listing 3.7: NT2 CUDA Triad Host Code streaming

As stated in Section 2.3, computations on the device only occur if some condi-
tions are met. As of now, these conditions are limited to the problem size and data
locality but can be extended as the call to transform is automatic when NT2 has
defined that CUDA is available. Due to the hierarchical tag dispatching in NT2 ,
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a system with an Intel processor coupled with an NVIDIA card will have a tag
similar to the following : cuda_ < openmp_ < simd_extension >> . Therefore,
if conditions for dispatch on the GPU are not met we will call the next level of
transform ( i.e.openmp). This enables us to use both the CPU and GPU in paral-
lel depending on the problem which is a functionality rarely implemented in libraries.

To describe the generation process for algorithmic skeletons based on Thrust we
will use a reduction. The resulting code in NT2 is :
// Def ine host t ab l e
tab le<f l o a t , device_> A;

// Def ine the type o f r educt i on
functor<sum_> sum ;

// Reduction us ing the sum of e lements
auto r e s u l t = g l oba l (sum ,A) ;

Listing 3.8: NT2 Reduction kernel

Reductions are simpler to generate as they only require to call the correct un-
derlying parallel skeleton and take care of memory transfers. The evolution of GPU
architectures has an impact on the underlying implementation of the algorithm and
its performance. Therefore, we prefer to rely on Thrust which is a standard NVIDIA
library instead of implementing each parallel skeleton. It is simpler to use Thrust as
a back-end in our MSP process rather than implementing complex algorithms such
as fold,scan... and optimize them for each architecture. The demangled symbols
corresponding to Listing 3.8 can be seen in Listing 3.9.
U void nt2 : : externa l_kerne l<nt2 : : tag : : global_ , nt2 : : tag : : cuda_<boost : :

d i spatch : : tag : : cpu_> >:: c a l l <nt2 : : c on ta ine r : : tab le<short , nt2 : : device_ >,
boost : : simd : : tag : : plus_ , short >(nt2 : : c on ta ine r : : tab le<short , nt2 : : device_
>&, boost : : simd : : tag : : plus_&, shor t&)

Listing 3.9: NT2 CUDA Reduction demangled

The demangled code is similar to the one described previously in Listing 3.4.
The function tag is changed to nt2 :: tag :: global_ which corresponds to the
reduction skeleton. From there, it is easy to generate the corresponding host and
kernel code. The kernel code described in Listing 3.10 is a wrapper for the thrust
reduction function. There is no overhead compared to calling the function directly
with Thrust.
#inc lude <thrus t / reduce . h>
#inc lude <thrus t / f un c t i o n a l . h>
#inc lude <thrus t / device_ptr . h>

void thrust_reduce1de0a5eb ( shor t ∗ begin , shor t ∗ end , shor t & r e s u l t )
{

th rus t : : device_ptr<short> b_ptr = thrus t : : dev ice_pointer_cast ( begin ) ;
th rus t : : device_ptr<short> e_ptr = thrus t : : dev ice_pointer_cast ( end ) ;
r e s u l t = thrus t : : reduce ( b_ptr , e_ptr , r e s u l t , th rus t : : plus<short >() ) ;

}

Listing 3.10: NT2 Reduction kernel
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The host code described in Listing 3.11. It defines the thrust function wrapper
and calls it in the external kernel function.

#inc lude <nt2/sdk/ exte rna l_kerne l / exte rna l_kerne l . hpp>
#inc lude <nt2/sdk/cuda/cuda . hpp>
#inc lude <nt2/ core / conta ine r / tab l e / t ab l e . hpp>
#inc lude <nt2/ core / f unc t i on s / g l oba l . hpp>
#inc lude <cuda . h>

void thrust_reduce1de0a5eb ( shor t ∗ begin , shor t ∗ end , shor t & r e s u l t ) ;
namespace nt2 {

template<> template <>
void nt2 : : externa l_kerne l<nt2 : : tag : : global_ , nt2 : : tag : : cuda_<boost : : d i spatch

: : tag : : cpu_> >:: c a l l <nt2 : : c on ta ine r : : tab le<short , nt2 : : device_ >, boost : :
simd : : tag : : plus_ , short> ( nt2 : : c on ta ine r : : tab le<short , nt2 : : device_>& a0 ,
boost : : simd : : tag : : plus_&, shor t& a2 )

{
thrust_reduce1de0a5eb ( a0 . begin ( ) , a0 . end ( ) , a2 ) ;

}
}

Listing 3.11: NT2 Reduction kernel

This method can be extended simply as we have shown. Any functions imple-
menting external_kernel will end up triggering our MSP process. Each function
being differentiated by the function tag used. It is then possible to extend the sym-
bol/code converter to support this new function. Each function can be mixed with
one another and also used the MAGMA back-end we described in Section 2.4. List-
ing 3.12 is an example of a code doing a reduction and an elementwise operations
that will go through our MSP process.

// Def ine host t ab l e
tab le<f l o a t , device_> A,B;

// Def ine the type o f r educt ion
functor<sum_> sum ;

// Reduction us ing the sum of e lements
auto r e s u l t = g l oba l (sum ,A+B) ;

Listing 3.12: NT2 Reduction and Elementwise kernel

The demangled object will contain both missing symbol for global and transform.
The symbol/code converter will parse each symbol and generate the corresponding
code.

3.4 Experiments

In this section, we will show that our generation process produces satisfactory per-
formances in most situations. The benchmarks are realized with the following com-
ponents :

• CPU : 2 x 6 cores Intel Xeon E5-2620 15MB L3, AVX
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• GPU : Tesla K40m

– Pageable host to device (HTD) : 3 GB/s

– Pinned host to device : 9.8 GB/s

• Memory : 65 GB with a memcpy bandwidth of 5GB/s

• GCC 4.9, CUDA 7.5

3.4.1 Black & Scholes kernel

The Black & Scholes algorithm represents a mathematical model that gives a the-
oretical estimate of the price of European call and put options on a non-dividend-
paying stock. It is a bandwidth bound algorithm for GPU if we take into account
the memory transfers. Black & Scholes requires an important number of registers
and high latency operations such as log or exp. The Black & scholes algorithm is a
fusion of multiple transform skeletons requiring large entry sizes to obtain suitable
performance.

The code is given in Listing 3.13 using the loop-fused technique described previ-
ously with the operator tie. The nt2 :: device_ tag is specific for accelerator enabled
architectures. However, if we use the tag while no accelerator is available we will
fall back to the default architecture which is nt2 :: host_.

tab le<T> b l a ck s cho l e s ( tab le<T> const& S , tab le<T> const& X
, tab le<T> const& Ta , T const r
, T const v

)
{

auto s = extent (Ta) ;
tab le<T , device_ > d( s ) , d1 ( s ) , d2 ( s ) ;
tab le<T> r ;

t i e (d , d1 , d2 , r ) = t i e ( s q r t (Ta)
, l og (S/X)+(fma ( sqr ( v ) , 0 . 5 f , r ) ∗Ta) /(v∗d)
, fma(−v , d , d1 )
, S∗normcdf ( d1 )−X∗exp(−r ∗Ta) ∗normcdf ( d2 )
) ;

r e turn r ;
}

Listing 3.13: NT2 black and scholes

This additional semantic information on memory locality can help to avoid use-
less memory transfers while staying simple enough for the user.

This will result in the .cu file in Listing 3.14 generated for floating point values.
Since the AST does not contain the name of the parameters, the kernel generator
has to give a different name to each one. Even with duplicated parameters, the
memory transfers are only done once and a single pointer can be passed multiple
times. Memory allocation on device and data transfers between host and device
do pointer checking in the host code (see triad example) to insure no redundant
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work is done incurring also negligible overhead. The fnms function is due to an
NT2 AST transformation and corresponds to the fused negated multiply-subtract
of three values.

__global__ void bs ( f l o a t ∗ t0 , f l o a t ∗ t1 , f l o a t ∗ t2 , f l o a t ∗ t3 , const
f l o a t ∗ t4 , const f l o a t ∗ t5 , const f l o a t ∗ t6 , const f l o a t t7 , const f l o a t
∗ t8 , const f l o a t t9 , const f l o a t ∗ t10 , const f l o a t t11 , const f l o a t ∗
t12 , const f l o a t ∗ t13 , const f l o a t ∗ t14 , const f l o a t t15 , const f l o a t ∗
t16 , const f l o a t ∗ t17 , const f l o a t ∗ t18 , const f l o a t ∗ t19 )

{
i n t i = blockIdx . x∗blockDim . x+threadIdx . x ;
t0 [ i ] = s q r t f ( t4 [ i ] ) ;
t1 [ i ] = plus ( l o g f ( d i v i d e s ( t5 [ i ] , t6 [ i ] ) ) , d i v i d e s ( mu l t i p l i e s ( t7 , t8 [ i ] ) ,

mu l t i p l i e s ( t9 , t10 [ i ] ) ) ) ;
t2 [ i ] = fnms ( t11 , t12 [ i ] , t13 [ i ] ) ;
t3 [ i ] = fnms ( mu l t i p l i e s ( t14 [ i ] , expf ( mu l t i p l i e s ( t15 , t16 [ i ] ) ) ) , fas tnormcdf ( t17

[ i ] ) , mu l t i p l i e s ( t18 [ i ] , fa s tnormcdf ( t19 [ i ] ) ) ) ;
}

Listing 3.14: NT2 black and scholes fused CUDA kernel

The Black & Scholes algorithm involves high latency and high register count
operations. This will result in sub-optimal performance on SIMD for the CPU due
to spilled registers while a Kepler GPU will not have any such problem. As seen
in Figure 3.4, the execution time of the kernel on the GPU is negligible (2-3 ms)
compared to the overall time of the optimized version with SIMD and OPENMP in
NT2 .

8 million 16 million

Figure 3.4: Black and Scholes Performance Comparison (in ms)

This is due to the highly parallel nature of the GPU. As its computational
power is much higher, simple elementwise operations will naturally fit the program-
ming model while CPUs must be optimized. Most of the time is spent transferring
the data between host and device memory which can be avoided with the right
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semantic information available ( nt2 :: device_). In the scenario presented in List-
ing 3.13, which represents the worse case, we still have better performance than the
Boost.Compute version on which most C++ libraries are based as we use block
streaming with pinned memory reaching a near-optimal throughput (average of 9.7
GB/s) for device transfers. As the bandwidth of a memcpy on the CPU (5 GB/s)
is faster than page-able transfers (3GB/s) even without any overlap between trans-
fers and computation we still increase the performance. This optimization can be
disabled depending on the CUDA architecture. We have also compared with an
optimized CUDA implementation and the performance was identical. This shows
that our approach to generate element-wise operations does not incur any overhead
on the kernel computation time.

As computations on the GPU are often performed in great number, if the user
allocates the data on the GPU he will pay no extra transfer cost for the rest of the
computations and in this case the CUDA kernel is up to twelve times faster than the
hand-optimized version for CPU. Also, using the flag nt2 :: pinned_ if tables must
stay on CPU allows us to gain up to a x3 factor in transfers time. The optimized
Black & Scholes version we implemented in CUDA reached the same performance in
kernel and transfers time when using the same type of memory allocation for data.

Size CPU GPU speedup
8000000 120 8.2 14.6
16000000 245 16.1 15.2

Figure 3.5: Performance comparison on Tegra X1 with NT2 (time in ms)

On the Tegra X1, the GPU is much more efficient than the CPU. This is caused
by the large difference in performance between the Maxwell GPU and the 4-core
ARM CPU. The ARM cortex A57 has around 64 Gflops while the GPU achieves 500
Gflops. The code in Listing 3.15 corresponds to the one executed on the Tegra for
the GPU. As the no-copy model from NVIDIA for IGPs require data to be pinned,
we have to allocate CPU tables with the pinned_ flag.
tab le<T> b l a ck s cho l e s ( tab le<T, pinned_> const& S , tab le<T, pinned_> const& X

, tab le<T, pinned_> const& Ta , T const r
, T const v

)
{

auto s = extent (Ta) ;
tab le<T , device_ > d( s ) , d1 ( s ) , d2 ( s ) ;
tab le<T, pinned_> r ;

t i e (d , d1 , d2 , r ) = t i e ( s q r t (Ta)
, l og (S/X)+(fma ( sqr ( v ) , 0 . 5 f , r ) ∗Ta) /(v∗d)
, fma(−v , d , d1 )
, S∗normcdf ( d1 )−X∗exp(−r ∗Ta) ∗normcdf ( d2 )
) ;

r e turn r ;
}

Listing 3.15: NT2 Black and Scholes for Tegra
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The important performance difference between the K40m and the Tegra is due
to the on device bandwidth difference between the two cards. On our system, the
K40m has an on device bandwidth of 200 GB/s while the Tegra has around 30GB/s.

3.4.2 Linsolve kernel

Linsolve is the Matlab solver for linear systems. As NT2 has its own implemen-
tation of linsolve with a LAPACK/MAGMA back-end, we can combine it with the
code generation process. As an example, we consider the solution of a dense linear
system using the LU factorization and apply one step of iterative refinement:

1. Compute r = b−Ax̂.

2. Solve Ad = r.

3. Update y = x̂+ d.

The equivalent NT2 code is the following :

tab le<T, device_> A, b , x , e ;
tab le<T, s e t t i n g s ( device_ , upper_triangular_ )> u ;
tab le<T, s e t t i n g s ( device_ , lower_tr iangular_ )> l ;

t i e ( l , u ) = lu (A)
x = l i n s o l v e ( l , b ) ; // lower t r i a n gu l a r s o l v e
x = l i n s o l v e (u , x ) ; // upper t r i a n gu l a r s o l v e

// One−s tep re f inement
e = b − nt2 : : mtimes (A, x ) ;
e = nt2 : : l i n s o l v e ( l , e ) ;
e = nt2 : : l i n s o l v e (u , e ) ;

x = x + e ;

Listing 3.16: NT2 LU linear solve with iterative refinement

If executed on the CPU, the code in Listing 3.16 will call the LAPACK routines.
The semantic information upper_triangular_ allows linsolve to call the triangular
solver instead of doing the classic linear solve. If executed on the GPU, the same
optimizations will be applied and the iterative refinement process will trigger calls
to transform for both element-wise operations.

The performance results in Figure 3.6 attest that the performance obtained with
our model is relevant. The GPU version with MSP calls magma kernels using the
CUBLAS DGEMM routine without doing any transfer and reaches near peak per-
formance of a K40m GPU which corresponds to 1.40 Tflop/s. The version that
does not use MSP is slower as transfers are done during the iterative refinement
step. The CPU version quickly reaches the peak performance of both CPU which is
210 Gflop/s. As we can see, there is no performance loss while call the LAPACK/-
MAGMA back-ends and if device pointers are passed to our code generator, there
will be no memory transfers. Similar performance would also be reached using the
other factorizations available in NT2 .
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Figure 3.6: Performance comparison of NT2 linear solve (in Gflop/s)

3.5 Conclusion

The development of tools for simplifying accelerator programming has been an active
topic since accelerators have become a mainstream element of high-performance
computing systems. In this chapter, we proposed an extension of a high-level, data-
parallel scientific computing library to specifically handle GPU accelerators. Our
main objectives were to keep a similar level of expressiveness in the client code while
supporting different use cases of accelerator programming.

To reach this goal, we have implemented a multi-stage system in which the
initial C++ code is used to automatically generate the equivalent CUDA kernel
by reusing our internal representation of this code. This representation is based on
C++ Expression Templates and the Algorithmic Skeleton to identify and clas-
sify expressions based on the kind of loop nest that is required. Finally, we have
illustrated on a selection of examples that the performance obtained is close to the
hardware capability and exhibits benefits compared to other solutions.

Work is still on-going on this system, including support for more specific func-
tions on the latest GPUs. Implementing a more thorough cost model to ensure
better scheduling of computation between CPU and GPU is also being studied.
The natural evolution of this work is to extend our approach to the Intel Xeon Phi
coprocessor, the runtime-based CUDA compiler recently released, or OpenCL de-
vices. An interesting track of research can be derived from the support of OpenCL
by targeting OpenCL enabled FPGAs, as we could bridge the gap between high-
level C++ and hardware design.
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In recent years, tensors have started to take an important place in HPC applica-
tions. This is due to tensors’ frequent use in physics and engineering, where tensors
provide a mathematical tool for brief and comprehensive formulations and solutions
of problems in areas such as elasticity, fluid mechanics, multi-physics, quantum
chemistry, general relativity, and many others [81]. Tensors are multi-dimensional
arrays that can be used to describe physical properties featuring multilinear re-
lations. Well known mathematical objects like scalars, vectors, and matrices can
be generalized to tensors that are of order zero, one, and two, respectively. Also,
tensor transformations like flattening of a tensor to matrices or reshaping of matri-
ces into tensors, can be used to link tensor computations to the developments in
high-performance numerical linear algebra. Therefore, similar to many applications,
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tensor computations can also significantly benefit from representing their computa-
tions in terms of BLAS, as well as from other dense LA algorithms and techniques
for multicore and GPU architectures.

This work is the result of a collaboration with Azzam Haidar, Stanimire Tomov,
Ahmad Abdelfattah and Jack Dongarra from the Innovative Computing Laboratory
in Tennessee. Parts of the work presented in this chapter have been accepted at ICCS
2016 [2] and Europar 2016 [92]. As this project is meant to be part of the MAGMA
library, we decided not to use NT2 to limit external dependencies. However, the
techniques presented here stems from the same principles and have been integrated
in NT2 . The contributions of this chapter are the following :

• A method to take advantage of modern C++ design for hybrid computations
and interface development

• A strategy using performance analysis based on hardware features and coun-
ters to implement efficient algorithms no specific architecture

• An implementation of a small batched matrix-matrix product that can perform
better than state of the art libraries

We start by giving in Section 4.1 a small overview of some Tensor libraries for
numerical algebra. Then, in Section 4.2 we explain the challenges we face while
developing a tensor interface and how to exploit modern C++ (post C++11). The
next Section 4.4 explains how we can optimize batched computations for small
matrix-matrix products which are often found in tensor computations. We finish
this chapter by giving concluding remarks in Section 4.5.

4.1 Tensors in numerical libraries

The use of tensors in physics and engineering applications has motivated an ex-
tensive research in both algorithms for tensor algebra and computational aspects
for tensor-based simulations. See the survey [81], and the references cited there,
for an overview of the linear algebra aspects of tensors research, including higher-
order tensor decompositions, their applications, and available software. A general
overview with current and future direction in tensor research is presented in the
Future directions in tensor-based computation and modeling workshop report [1].

There has been an important number of software packages developed for tensors.
Some are designed to be used through numerical computing mathematical environ-
ments like the Tensor Toolbox1 for Matlab, GRTensor II2 for Maple, or Ricci3 for
Mathematica. These packages tend to focus on providing proper tensor computa-
tions and do not provide highly optimized operations or target accelerators. Others

1http://www.sandia.gov/∼tgkolda/TensorToolbox/
2http://grtensor.phy.queensu.ca/
3http://www.math.washington.edu/∼lee/Ricci/
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such as Tensor Transpositions Compiler [121] (TTC), an open-source parallel com-
piler for multidimensional tensor transpositions, focus on specific optimizations to
generate efficient code. Tensor packages for specific applications such as quantum
chemical computations [136] present ongoing work on using accelerators to accel-
erate tensor contractions on GPUs. The approach uses code generation techniques
and is incorporated in the NW Chem computational chemistry suite. More recent
work [97] also uses code generation techniques and autotuning (with a system called
Baracuda, based on CUDA-CHiLL and a high-level module Optimizing Compiler
with Tensor OPeration Intelligence (OCTOPI)) to report significant acceleration
compared to NW Chem on particular tensor contractions.

While we use code generation and auto-tuning, our approach also relies on con-
text knowledge, and in particular that tensor reshaping techniques can often trans-
form tensor contractions from many applications into many GEMMs, right from
machine learning. This transformation can not easily be detect automatically, and
moreover, even if the transformation is somehow indicated, it is well known that
general GEMM optimizations using only compiler techniques can not match in per-
formance best-tailored solutions.

For distributed memory system that are CPU only, [120] executes contractions
via GEMM on a properly ordered and structured tensor. As in the other approaches
in quantum chemistry, large tensor contractions are targeted. In contrast, we target
many but small contractions, that are often very small size (see next section), re-
sulting in large-scale computations. Tensor reshuffle operations are done to cast the
contractions to GEMMs, when possible, and a batched approach with custom-built
BLAS kernels is used to efficiently execute them. Additional closely related efforts
include [91, 117] and [122].

4.2 Applications and challenges

The evolution and diversification of computer hardwares and programming lan-
guages is transforming the balance of computer systems. This evolution is produc-
ing changes at every level from programming efficiently the hardware to developing
high level programming tools. From the point of view of numerical libraries, and
the important number of applications that depend on them, three challenges stand
out:

• the need to exploit unprecedented amounts of parallelism;

• the need to maximize the use of data locality and vectorized operations; and

• the need to cope with component heterogeneity.

Below, we highlight our main contributions related to the algorithm’s design and
optimization strategies aimed at addressing these challenges on multicore CPU and
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GPUs.

Exploit Parallelism and Vector Instructions:
Clock frequencies are expected to stay constant, or even decrease to conserve

power; consequently, as we already see, the primary method of increasing computa-
tional capability of a chip will be to dramatically increase the number of processing
units (cores), which in turn will require an increase of orders of magnitude in the
amount of concurrency that routines must be able to utilize as well as increasing the
computational capabilities of the floating point units by extending it to the classical
Streaming SIMD Extensions set (SSE-1, to SSE-4) in the earlier 2000, and recently
to Advanced Vector Extensions (AVX, AVX-2, AVX-512). We developed specific
optimization techniques that demonstrate how to use the many cores (currently
multi-socket 10 − 22 cores for the Haswell CPU or a K40 GPU using MAGMA to
get optimal performance. The techniques and kernels developed in this work are
generic and can be used elsewhere.

Hierarchical Communication Techniques that Maximizes the use of
Data Locality:

Recent reports (e.g., [56]) have made it clear that time per flop, memory band-
width, and communication latency are all improving, but at exponentially differ-
ent rates. So computation on very small matrices, that can be considered as
computation-bound on old processors, is, –today and in the future– communication-
bound and depends from the communication between levels of the memory hierarchy.
We demonstrate that, performance is indeed harder to get on new manycore archi-
tectures unless hierarchical communications and optimized memory management
are considered in the design. We show that, only after we developed multilevel
memory design, our implementations reach optimal performance.

Performance Analysis and Auto-tuning:
We demonstrate the theoretical maximal performance bounds that could be

reached for computation on very small matrices. We studied various instructions
and performance counters, as well as proposed a template design with different
tunable parameters in order to evaluate the effectiveness of our implementation and
optimize it to reach the theoretical limit.

4.3 Container concept

The design of our code is done using new features of C++ for better re-usability
and adaptability of the code. By using advanced template techniques we can create
high-level interfaces without adding any cost even for small matrix-matrix products.
To do so, we have designed a batched structure which will contain a C++ vector for
the data and static dimensions. By using the C++ constexpr keyword and integral
constants we can make a generic batched code that will dispatch at compile time
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the correct version depending on the size of matrices. We use this environment for
each code sequence we generate.

To develop high-quality HPC software for tensor contractions, we impose the
following three main requirements on our interface design:

Convenience of use: Interfaces of HPC libraries are extremely important for the
libraries’ adoption by the community. Interfaces must provide convenience
and practicality of use, including ease of interoperability between libraries.
Ideally, a tensor data type standard must be defined. The standard for a
dense matrix is a pointer, sizes, leading dimension, and assumption for column-
major data layout, e.g., as in BLAS and LAPACK. For tensors, motivated by
reviewing interfaces in available libraries and the success of BLAS, we propose
to represent a tensor by its dimensions and a data layout abstraction. The
abstraction is to provide a choice of predefined layouts, and ways to switch
it, or to easily add user-specified layouts, without changing the underlying
algorithms. In general, a specific layout provides the formula of mapping the
multi-dimensional tensor to the memory, e.g., a second order tensor can be
stored as a column-major matrix A with leading dimension lda, in which case
the abstraction maps Ai,j to A[i+ j ∗ lda].

Readability: Numerical software must be understandable, which is needed for ease
of maintenance, as well as code optimizations, and testing. While we can
easily implement any interface, e.g., even expressing the interface and tensor
APIs in a DSEL if needed (plus code generation techniques to translate the
DSEL to a standard language; such as the Einstein notation used in tensor
computations), we determined that it is better to provide implementations
relying on a standard language and the code generation features provided
within the language. The C++14 standard for example is expressive enough
to allow us to implement readable and easy to use interfaces.

Performance: While we expect to obtain high performance mostly through al-
gorithmic design and auto-tuning (see Section 4.4), we do not want to com-
promise on optimization opportunities like removing parameters checking and
loop unrolling to eliminate jumps and loop count decrements. These opti-
mizations are essential especially for the small computations that we target.
Therefore, in our design we consider the use of compiler features related to
code generation (e.g., templates, etc.), as further discussed below.

4.3.1 C++11/14 features

The development of programming languages and their use has dramatically changed
in recent years leading to continuous evolution. C++ is an example of such a pro-
gramming language. The standardization committee has decided to make a new
standard every 3 years, with the next release being the C++17 standard. Compat-
ibility with the C language has also starting to break with the introduction of the
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auto keyword. The cause of these changes is the need for higher level language that
provide better idioms for generic and generative programming. Here we will discuss
new features of the C++11/14 standard that we use to develop a high level tensor
interface.

The first feature of the C+11 language that we will discuss is auto [76]. Consider
the following declaration in Listing 4.1 :
// x i s the type o f 7 : i n t
auto x = 7 ;

Listing 4.1: C++ auto

Here x will have the type int because it is the type of its initializer. In general,
we can write
// x i s the type o f exp r e s s i on
auto x = expr e s s i on ;

Listing 4.2: C++ generic auto

and x will be of the type from the value expression in Listing 4.2. For any
variable, auto specifies that the type of the variable that is being declared will be
automatically deduced from its initializer. This allows to write high level complex
code without having the burden of complex types that can appear. We can apply
the auto keyword on several features of the C++ language. As an example, in
Listing 4.3 we can iterate with a range for statement on a vector of a generic type
without defining the type of the value x.
template<typename T>
void f ( vector<T>& v)
{

f o r ( auto& x : v ) ++x ;
}

Listing 4.3: C++ generic for auto

Another important feature of the C++11 standard is the constexpr [43] key-
word. constexpr provides a mechanism that can guarantee that an initialization
is done at compile time. It also allows constant expressions involving user-defined
types.

In Listing 4.4, the fibonnaci function is guaranteed to be executed at compile
time if the value passed x is available at compile time.
constexpr long long f i b on a c c i ( const i n t x )
{

re turn x <= 1 ? 1 : f i b on a c c i ( x − 1) + f i b on a c c i ( x − 2) ;
}

Listing 4.4: C++ constexpr

An important addition to the C++ standard for extensible design is variadic
templates [60]. In computer programming, variadic templates are defined as
templates that take a variable number of arguments. Prior to C++11, templates
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could only take a fixed number of arguments which were specified at the declaration
of the template.
// The [ . . . ] d e f i n e s a va r i ad i c template
template<typename . . . Values> c l a s s tup l e ;

Listing 4.5: C++ Variadic template

Listing 4.5 is an example of a variadic template class that takes a variable num-
ber of arguments. Listing 4.6 allows for a more in-depths description of variadic
templates.

template<typename T>
T add (T v) {

re turn v ;
}

template<typename T, typename . . . Args>
T add (T f i r s t , Args . . . a rgs ) {

re turn f i r s t + add ( args . . . ) ;
}

Listing 4.6: C++ Variadic template add

The function add will accept any number of arguments and will compile as
long as the operator+ can be applied between the arguments. This is type-safe as
the verification is done at compile time. The resolution will be done using C++’s
template and overloading resolution rules. Putting the [...] before the parameter
name, typename... Args is called a template parameter pack. Using the [...]
after a definition Args... args is called function parameter pack. This is how
the function add is defined : the first argument is peeled off from the template
parameter pack into type T. With each subsequent call, the parameter pack gets
shorter by one parameter until the last occurrence with only one parameter in the
pack is attained.
// sum i s o f type i n t
auto sum = add (1 , 2 , 3 , 6 ) ;
// sum1 i s o f type s t r i n g
std : : s t r i n g x = " s t r i n g " , y = "add" , z = " func t i on " ;
auto sum1 = add (x , y , z ) ;

Listing 4.7: C++ Variadic template add call

Examples of how the function add can be called are shown in Listing 4.7.
// Apply a f onc t i on on a l i s t o f arguments
template<c l a s s F , c l a s s . . . Ts> F for_each_args (F f , Ts&&.. . a )
{

re turn ( void ) std : : i n i t i a l i z e r _ l i s t <int >{(( void ) std : : r e f ( f ) ( std : : forward<Ts
>(a ) ) ,0 ) . . . } , f ;

}

Listing 4.8: C++ Variadic template function apply

Varadic templates are a very powerful tool that has some very useful tricks. For
example, in Listing 4.8, we have defined a function that take another function and
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a list of arguments and applies the function on each argument.

Using constexpr and the features described previously also allow for integral
constants. Integral constants are part of the C++ standard and wrap a static
constant of a specific type in a class. We show in Listing 4.9 a possible definition
for them4.

template<c l a s s T, T v>
s t r u c t in t eg ra l_cons tant {

s t a t i c constexpr T value = v ;
typede f T value_type ;
typede f in t eg ra l_cons tant type ;
constexpr operator value_type ( ) const noexcept { re turn value ; }
constexpr value_type operator ( ) ( ) const noexcept { re turn value ; }

} ;

Listing 4.9: Possible integral constant definition

These types of expression can be used as non-type template arguments, array
sizes, and in other contexts that require constant expressions. They are often used
in conjunction with meta-programming techniques. The most common library pre-
C++11 that was based around integral constant is Boost.MPL5. Integral constants
can be declared in the following way : integral_constant < int, 25 > ic_25, with
ic_25 being the type for the value 25. We can the use integral constants in con-
junction with user literals. User literals allow integer, floating-point, character, and
string literals to produce objects of a wanted type by defining a suffix. Listing 4.10
is the code to declare a user defined integral constant literal that we can then pass
as function parameter. The keyword using is also a new feature of the C++11
standard that replaces typedef and allow for template parameters.

template<unsigned long N>
us ing int_ = std : : in tegra l_constant<unsigned long ,N>;

constexpr i n t to_int ( char c ) { re turn s ta t i c_cas t <int >(c ) − 48 ; }

template <std : : s i z e_t N, typename I>
constexpr long long parse ( const char (&ar r ) [N] , I const&, i n t )
{

long long number = 0 , base = 1 ;
f o r ( std : : s i z e_t i = 0 ; i < N; ++i ) {

number += to_int ( a r r [N − 1 − i ] ) ∗ base ;
base ∗= 10 ;
}

re turn number ;
}

template <char . . . c>
constexpr auto operator "" _c( )
{ re turn int_<parse<s i z e o f . . . ( c )>({c . . . } , int_<s i z e o f . . . ( c ) >{} ,1) >{}; }

Listing 4.10: C++ User defined literals

4http://en.cppreference.com/w/cpp/types/integral_constant
5http://www.boost.org/doc/libs/1_61_0/libs/mpl/doc/index.html
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User defined literals give us the means to simply dispatch on these values or use
them as static function parameters instead of using templates. This allows for a
more natural interface for the user and a simpler code generation process. Using
Listing 4.10, we can now just use 25_c to represent the value 25. It will be auto-
matically converted into an integral constant. Since C++11, operator"" is used for
user-defined literals allowing for specific implementations. The easiest way to parse
such a literal taking a variadic template char argument is by unpacking it, hence
the const char array as a parameter to the parse function.

The last important feature that we will talk about is lambda functions [75]. A
lambda expression is a mechanism for specifying a function object. The primary use
is to specify a simple action to be performed by some function. For example:

std : : vector<int> in , in1 , out ;
std : : t rans form ( in . begin ( ) , in . end ( ) , in1 . begin ( ) , out . begin ( )

, [ ] ( i n t a , i n t b)−>in t
{

re turn a + b ;
}) ;

Listing 4.11: C++ lambda using std transform

std :: transform will iterate on each value of in and in1 and apply the lambda
function passed on each element. The resulting operation will be written in the out
vector. The lambda starts with the [ ] identifier, called the capture specification. It
serves to specify how local variable are passed (by value : = , by reference : &).
Lambdas are similar to functors: the variables captured by reference are like private
pointers, and the ones captured by value are like private variables.

Lambdas are lightweight, nameless functions that can be defined where they are
used. Lambdas are now a part of the C++ standard template library and current
and future algorithms such as <thread> or <future>, allow you to specify func-
tion arguments as lambdas beside C-like functions and functors. Parallel skeletons
implemented in the C++ standard library and Thrust have added support lambda
functions. Modern C++ libraries also support lambdas as seen in Section 3.1. An
example for thrust is shown in Listing 4.12.

th rus t : : host_vector<int> in , in1 , out ;
th rus t : : t rans form ( in . begin ( ) , in . end ( ) , in1 . begin ( ) , out . end

, [ ] ( i n t a , i n t b)−>in t
{

re turn a + b ;
}) ;

Listing 4.12: C++ lambda using thrust transform

Since CUDA 7.5, NVIDIA has also added experimental support for device lambda
using the _device_ flag. A proposal to use ranges6 for the C++ standard library
instead of iterators is also in study.

6https://ericniebler.github.io/std/wg21/D4128.html
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4.3.2 Developing a tensor interface

To develop a high level tensor interface, we use the C++ features detailed previ-
ously while keeping in mind the challenges described in Section 4.2. Related to
performance, a lost optimization opportunity is if static checking and compile time
information is not provided as part of the scientific libraries used. As an example,
LAPACK routines start by checking entry parameters dynamically, which results
in extra time for small size computations. The type of algorithms that we intend
to use, also require specific tuning whether it be on CPU or GPU with MAGMA
batched [67] as performance will greatly vary depending on numerous parameters.

To avoid these performance drawbacks, and also benefit from optimization tech-
niques like compiler loop unrolling for static dimension problems, we use features of
the new C++14 standard. In particular, the constexpr specifier enables to evaluate
the value of a function or variable at compile time. We use this feature with integral
constants and template specialization to design our tensor dimensions layout:

// Template s p e c i a l i z a t i o n
constexpr auto layout = of_s ize <5,3>() ;
// Using I n t e g r a l constant
constexpr auto layout1 = o f_s i z e (5_c , 3_c) ;
// Using dynamic dimensions
constexpr auto layout2 = o f_s i z e (5 , 3 ) ;
// Using s t a t i c and dynamic dimensions
constexpr auto layout3 = o f_s i z e (5_c , 3 ) ;
// Access Dimensions at compi le time
constexpr auto dim1 = layout (1 ) ;
// Wil l not cause a compi le time e r r o r
s t a t i c_a s s e r t ( x4 (1 ) == 5 , " f i r s t dimension i s s t a t i c " ) ;

Listing 4.13: Dimensions for Tensors

As seen in Listing 4.13, we propose several ways to specify dimensions using the
function of_size which returns a layout containing the static or dynamic dimension.
Each operator inside the layout uses the constexpr keyword which enables us to
return sizes at compile time if possible. Using constexpr will give the compiler
more optimization opportunities such as loop unrolling.

The layout is class based on variadic templates to have a parameterizable
number of dimensions. At the initialization of the layout, parameters are automat-
ically unpacked, giving the value for the nth dimension if it is available at compile
time. Dynamically sized dimensions will get an initial value of -1 to say they have
not been initialized. To enable this optimization, the number of dimensions in a
layout is decided at compile time leaving only the size of each dimension to be
changeable. In Listing 4.14, we give an example of the definition for a simple layout
to better view the key concepts behind it.
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template<typename N0 , typename . . . N> s t r u c t layout
{

template<typename M0, typename . . . M> us ing reb ind = layout<M0,M. . . > ;

s t a t i c constexpr s i ze_t nbDims = s i z e o f . . . (N)+1;
i n t dim [ nbDims ] ;

constexpr layout ( ) : dim{ i s_stat i c_va lue<N0>: : va lue ? s tat i c_va lue<N0>: :
va lue : 0

, ( i s_stat i c_va lue<N>:: va lue ? s tat i c_va lue<N>:: va lue : −1) . . .
}

{}

constexpr layout (N0 n0 , N . . . n ) : dim{ n0 , n . . . } {}

constexpr std : : s i z e_t operator ( ) ( i n t n) const noexcept
{

re turn dim [ n−1] ;
}

} ;

Listing 4.14: Simple layout without strides

We can then freely extract the dimensions (Listing 4.13) and use them to specify
our CPU and GPU kernels at compile time. Our tensor model is based on our layout,
the data type of the tensor and its locality. The memory buffer is based on vector
from the Standard Template Library for CPU and Thrust for GPU. To generate a
tensor, we need to pass a data type and locality as template parameter and the size
to the constructor (Listing 4.15).

// Create a rank 2 tenso r o f s i z e 5 ,3 on GPU
constexpr tensor<f l o a t , gpu_> d_ts ( o f_s ize <5,3>() ) ;
// Create a rank 2 tenso r o f s i z e 5 ,3 on CPU
constexpr tensor<f l o a t > t s ( o f_s ize <5,3>() ) ;
// Use th rus t to f i l l d_ts with 9
thrus t : : f i l l ( d_ts . begin ( ) , d_ts . end ( ) , 9) ;
// Copy d_ts from GPU to t s on CPU
copy ( d_ts , t s ) ;

Listing 4.15: Create Tensor and copy

Transfers between CPU and GPU tensors can be expressed through the function
copy (Listing 4.15). This function will use the stream 0 by default but a stream can
be passed for asynchronous copy. Locality definitions are simple classes that contain
the semantic information necessary. For example, gpu_ will be a class definition
that will inherit from the locality class itself. It is then possible to iterate on each
parameter of the layout looking for a locality class. Meta-functions are available
in the C++ standard library (utility package) to do type checking. For example,
std :: is_base_of verifies if a class inherits from another one. If we cannot find a
corresponding locality in the class definition, we can then fall-back to the default
locality we have decided.

We have designed two models for batched computing (Listing 4.16). The first
one is based on allocating a single memory block for all tensors to improve data
locality while the other is a group of same size tensors.
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// Create a batch that w i l l conta in 15 t en s o r s o f s i z e 5 ,3 ,6
constexpr auto batch<f l o a t , gpu_> b = make_batch ( o f_s i z e (5_c , 3_c , 6_c) , 15) ;
// Access ing a tenso r from the batch r e tu rn s a view on i t
constexpr auto view_b = b (0) ;
// Create a grouping o f t en s o r s o f same s i z e t en s o r s
constexpr auto group<f l o a t , gpu_> g ( o f_s i z e (5_c , 3_c) ) ;
// Add a tenso r to the group
constexpr auto tensor<f l o a t , gpu_> d_ts ( o f_s i z e (5_c , 3_c) ) ;
g . push_back ( d_ts ) ;

Listing 4.16: Batched tensors

Once we have defined these functions we can call the kernel to compute a batched
DGEMM on tensors of dimension 2.

constexpr auto batch<f l o a t , gpu_> b = make_batch ( o f_s i z e (5_c , 3_c) , 15) ;
constexpr auto batch<f l o a t , gpu_> b1 = make_batch ( o f_s i z e (5_c , 3_c) , 15) ;
// Product o f two tenso r batched o f dimension 2 f o r matrix product us ing C++

operator
constexpr auto c = b ∗ b1 ;
// Product us ing the batch dgemm func t i on that can be s p e c i a l i z e d depending

on parameters
constexpr auto c = batch_gemm(b , b1 ) ;

Listing 4.17: Tensor Operations

The DGEMM batched function can be dispatched depending on the locality,
calling either our implementation for small matrix product with static sizes on CPU
or the MAGMA/CUBLAS implementation if the tensor is defined on the GPU.

4.4 Optimizing small matrix-matrix products

4.4.1 Performance measures

To evaluate the efficiency of our algorithms we derive theoretical bounds for the max-
imum achievable performance Pmax = F/Tmin, where F is the number of operations
needed by the computation and Tmin is the fastest time to solution. For simplicity,
consider C = αAB+βC on square matrices of size n. We have F ≈ 2n3 and Tmin =

minT (TRead(A,B,C) +TCompute(C) +TWrite(C)). Note that we have to read/write 4n2

elements, or 32n2 Bytes for double precision (DP) calculations. Thus, if the maxi-
mum achievable bandwidth is B (in Bytes/second), and we assume TCompute(C) → 0

for very small computation, then Tmin = TRead(A,B,C) + TWrite(C) = 4n2/B in DP.
Note that this time is theoretically achievable if the computation totally overlaps
the data transfer and does not disrupt the maximum rate B of read/write to the
GPU memory. Thus,

Pmax =
2n3B

32n2
=
nB

16
in DP.

The achievable bandwidth can be obtained by benchmarks. For our measures, we
used the STREAM benchmark [95] and the Intel memory latency checker 3.0 tool for
CPU with gcc 5.2, and the NVIDIA’s bandwidthTest for GPU. Our tests show that
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the practical CPU bandwidth we are able to achieve using different benchmarks is
about 44 GB/s per socket. On the K40 GPU with ECC on the peak is 180 GB/s, so
in that case Pmax is 2.75 n GFlop/s per socket for the CPU and 11.25 n GFlop/s for
the K40 GPU. Thus, when n = 16 for example, we expect a theoretical maximum
performance of 180 GFlop/s in DP on the K40 GPU.

The implementation of a matrix-matrix products kernel for very small matrices
for CPUs requires specific design and optimizations. As we can store three double
precision matrices of size up to 32× 32 in the L1 cache of an Intel Xeon E5-2650 v3
processor, one can expect that any implementation will not suffer from data cache
misses. This can be seen on Figure 4.6 where the performance of an ijk implemen-
tation, which is not cache-aware and cannot be vectorized, is pretty close to the ikj
one. For smaller sizes, the ijk implementation is even more efficient than the ikj
one, as it optimizes the number of stores (Figure 4.2). To obtain a near optimal
performance, we conduct an extensive study over the performance counters using
the PAPI [135] tools. Our analysis concludes that in order to achieve an efficient
execution for such computation, we need to maximize the occupancy and minimize
the data traffic while respecting the underlying hierarchical memory design while
maximizing the use of SIMD registers. Unfortunately, today’s compilers cannot in-
troduce highly sophisticated cache/register/SIMD based loop transformations and,
consequently, this kind of optimization effort should be studied and implemented by
the developer [88]. This includes techniques like reordering the data so that it can be
easily vectorized, reducing the number of instructions so that the processor spends
less time in decoding them, prefetching the data that will be reused in registers, and
using an optimal blocking strategy.

4.4.2 Data Access Optimizations and Loop Transformation Tech-
niques

In our design, we propose to order the iterations of the nested loops in such a
way that we increase locality and expose more parallelism for vectorization. We
can then use AVX2 SIMD instructions to optimize to the fullest our code. The
matrix-matrix product is an example of perfectly nested loops which means that all
the assignment statements are in the innermost loop. Hence, loop unrolling, loop
peeling, and loop interchange can be useful techniques for such algorithm [5, 15].
These transformations improve the locality and help to reduce the stride of an
array based computation. In our approach, we propose to unroll the two inner-
most loops so that the accesses to matrix B are independent from the loop order,
which also allows us to reorder the computations for continuous access and improved
vectorization. This technique enables us to prefetch and hold some of the data of B
into the SIMD registers. Here, we manage to take advantage from the knowledge of
the algorithm, and based on the principle of locality of references [68], to optimize
both the temporal and spatial data locality.
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Figure 4.2: # of store instructions

4.4.3 Register Data Reuse and Locality

Similarly to the blocking strategies for better cache reuse in numerically intensive
operations (e.g., large matrix-matrix products), we focus on register blocking to
increase the performance. Our study concludes that the register reuse ends up
being the key factor for performance. The idea is that when data is loaded into
SIMD register, it will be reused as much as possible before its replacement by new
data. The amount of data that can be kept into registers becomes an important
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tuning parameter. For example, an 8×8 matrix requires 16 256-bit AVX-2 registers
to be completely loaded. As the targeted hardware consists of only 16 256-bit AVX-
2 registers, one can expect that loading the whole B will not be optimal as we will
have to reload the vectors for A and C. However, if we load only 8 registers for B,
which is equal to 4 rows, we can compute a row of C at each iteration and reuse
these 8 registers for each iteration. We propose an auto-tuning process to check all
the possible scenarios and provide the best option. This reduces the number of load,
store, and total instructions from O(n2) to O(n), compared to a classical ijk or ikj
implementation as depicted in Figures 4.1, 4.2, and 4.3, respectively.
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Figure 4.3: Total CPU instruction count

4.4.4 Algorithmic Advancements

Algorithm 9 is an example of our method for a matrix-matrix product of 16 × 16

matrices. In this pseudo-code, we start by loading four 256-bit AVX-2 registers
with values of B which correspond to the first row. These registers are reused
throughout the algorithm. In the main loop (Lines 4-14), we start by computing
the first values of every multiplication (stored into a register named M=A×B) based
on the prefetched register in line 1.

Then, we iterate on the remaining rows (Lines 7-11) loading B, multiplying each
B by a value of A, and adding the result into M. Once the iteration over a row is
accomplished, the value of M is the final result of A×B and thus, we can load the
initial values of C, multiply by α and β, and store it back before moving toward the
next iteration such a way to minimize the load/store as shown in Figure 4.14.2.

Each C ends up being loaded/stored once. We apply this strategy to matrix
sizes ranging from 8 to 32 as for smaller sizes the whole matrix can fit in registers.
Different blocking strategies (square versus rectangular) have been studied through
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Algorithm 9 Generic matrix-matrix product applied to matrices of size 16× 16

1: Load B0, B1, B2, B3
2: Load α, β
3: S = 16
4: for i = 0, 1, ... , S-1 do
5: Load A[i*S]
6: Mi0 = A[i*S] * B0; ... Mi3 = A[i*S] *B3
7: for u = 1, 2, ... , S-1 do
8: Load A[i*S + u]
9: Load Bu0, Bu1, Bu2, Bu3

10: Mi0 += A[i*S+u] * Bu0; ... Mi3 += A[i*S+u] *Bui3
11: end for
12: Mi0 = α Mi0 + β (Load Ci0); ... Mi3 = α Mi3 + β (Load Ci3)
13: Store Mi0, Mi1, Mi2, Mi3
14: end for

our auto-tuning process in order to achieve the best performance. We generate each
matrix-matrix product function at compile time with C++ templates. The matrix
size is passed as a function parameter using C++ integral constants.

As explained in Section 1.4, using SIMD units is quite simple if the algorithm
has been well designed. As we have taken into consideration from the start of the
algorithmic design SIMD problems, we can see that Algorithm 9 is very similar to
the code in Listing 4.18. The main differences come from the syntactic sugar of the
Intel SIMD instruction set.
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The code written here can only be efficient using the constexpr keyword. In-
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deed, the compiler will only be able to unroll the loops properly at compile time if
the number of iterations in the loops are fixed.The inner loop can only be factorized
in such a way because we can trust the compiler. Most C++ compilers use the
polyhedral model to optimize loops [109] and compile time information is needed
for proper optimizations.

i n l i n e void batch_Mult ( const double ∗ A , const double ∗ B , double ∗ C ,
double alpha , double beta , std : : in tegra l_constant<unsigned long ,16>) {

constexpr i n t ind = 16 ∗ block_num ;
auto v_b = _mm256_loadu_pd( &B[0 ] ) ;
auto v_b_ = _mm256_loadu_pd( &B[4 ] ) ;
auto v_b__ = _mm256_loadu_pd( &B[8 ] ) ;
auto v_b___ = _mm256_loadu_pd( &B[ 1 2 ] ) ;

auto alpha_ = _mm256_set1_pd( alpha ) ;
auto beta_ = _mm256_set1_pd( beta ) ;

f o r ( i n t iA = 0 ; iA < 16 ; iA++){

auto tmp = _mm256_set1_pd( A[ iA∗ ind ] ) ;
auto v_c = tmp ∗ v_b ;
auto v_c1 = tmp ∗ v_b_;
auto v_c2 = tmp ∗ v_b__;
auto v_c3 = tmp ∗ v_b___;

f o r ( i n t d = 1 ; d < 16 ; ++d ) {
tmp = _mm256_set1_pd( A[ iA∗ ind +d ] ) ;
auto v_bt = _mm256_loadu_pd( &B[ d∗ ind ] ) ;
auto v_b_t = _mm256_loadu_pd( &B[ d∗ ind+ 4 ] ) ;
auto v_b__t = _mm256_loadu_pd( &B[ d∗ ind+ 8 ] ) ;
auto v_b___t = _mm256_loadu_pd( &B[ d∗ ind+ 12 ] ) ;
v_c += tmp ∗ v_bt ;
v_c1 += tmp ∗ v_b_t ;
v_c2 += tmp ∗ v_b__t ;
v_c3 += tmp ∗ v_b___t;

}

v_c = _mm256_loadu_pd(&C[ iA∗ ind ] ) ∗ beta_ + v_c ∗ alpha_ ;
v_c1 = _mm256_loadu_pd(&C[ iA∗ ind +4]) ∗ beta_ + v_c1 ∗ alpha_ ;
v_c2 = _mm256_loadu_pd(&C[ iA∗ ind +8]) ∗ beta_ + v_c2 ∗ alpha_ ;
v_c3 = _mm256_loadu_pd(&C[ iA∗ ind +12]) ∗ beta_ + v_c3 ∗ alpha_ ;

_mm256_storeu_pd( &C[ iA∗ ind ] , v_c ) ;
_mm256_storeu_pd( &C[ iA∗ ind+4] , v_c1 ) ;
_mm256_storeu_pd( &C[ iA∗ ind+8] , v_c2 ) ;
_mm256_storeu_pd( &C[ iA∗ ind +12] , v_c3 ) ;

}
}

Listing 4.18: Generated matrix-matrix product applied to matrices of size 16× 16

4.4.5 Effect of the Multi-threading

As described above, operating on matrices of very small sizes is memory-bound
computation and thus, increasing the number of CPU cores may not always increase
the performance since the performance will be limited by the bandwidth which can
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be saturated by a few cores. We performed a set of experiments towards clarifying
this behavior and illustrate our findings in Figure 4.4. As shown, the notion of
perfect speed-up does not exist for a memory-bound algorithm, and adding more
cores increases the performance slightly. We performed a bandwidth evaluation
when varying the number of cores to find that a single core can achieve about 18

GB/s while 6 and 8 cores (over the available 10 cores) can reach about 88% and
93% of the practical peak bandwidth, which is about 44 GB/s.
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Figure 4.5: Effect of the NUMA memory management

4.4.6 Effect of the NUMA-socket and Memory Location

We also studied NUMA-socket (non-uniform memory access) [66] when using two
Xeon sockets as seen in Figure 4.5. A standard memory allocation puts all of the
data in the memory slot associated to the first socket until it gets filled, then starts
filling the second socket. Since the problem size we are targeting is very small,
most of the data is allocated on one socket, and thus using extra 10 cores of the
second socket will not increase the performance. This is due to the fact that the
data required by the cores of the second socket goes through the memory bus of the
first socket, and thus is limited by the bandwidth of one socket (44 GB/s). There
are ways to overcome this issue.

By using NUMA with the interleave=all option, which spreads the allocation
over the two sockets by memory pages, we can improve the overall performance.
However, for very small sizes, we observe that such solution remains far from the
optimal bound since data is spread out over the memory of the two sockets without
any rules that cores from socket 0 should only access data on socket 0, and vice versa.
To further improve performance, we use a specific NUMA memory allocation, which
allows us to allocate half of the matrices on each socket. As shown in Figure 4.5,
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Figure 4.6: Experimental results of the matrix-matrix multiplication on CPU

this allows our implementation to scale over the two sockets and to reach close to
the peak bound.

4.4.7 Application to ARM processor

The ARM processor that we use for this benchmark is the CPU of the Tegra X1,
a 4-core Cortex A57. The problematics details earlier still apply to the Tegra but
on a different scale. Indeed, the ARM intrinsics only support 128-bit vectors which
severely limit the SIMD use for double precision computations. In Figure 4.7, we
compare the performance between our generated code, an ijk code, an ikj code
and OpenBLAS [140] using the latest version available from the develop branch on
Github (28/6/2016).

Results follow the same trend we saw on the Intel processors. On very small sizes,
ijk and ikj versions are quite efficient as the arithmetic intensity is very low, limiting
the usefulness of parallelism. With increased sizes, we start to see these version
stale and reach a limit set around 3.5 Gflops. The OpenBLAS version provides
good performance but is limited by its blocking model which is not adapted for very
small sizes.

4.4.8 Efficient wrapper for GPU batched GEMM

As we have seen in Section 4.3.2, our tensor class supports GPU data. In Figure 4.8,
we show the performance comparison between the MAGMA DGEMM batched rou-
tine, the read-only cache version (rocache) in black and the fully optimized version
in red, and CUBLAS using CUDA 7.5.
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The most important factors to optimize GPU performance is to maximize the
occupancy and the efficiency of global memory reads. The first one is the ratio
between the number of active warps per active cycles and the maximum number of
warps that can run on an SM. The second is defined as the ratio between the load
throughput requested by the kernel, and the actual required throughput needed to
fulfill the kernel load requests.
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Figure 4.8: GPU performance on K40

As MAGMA manages to reach better performance than CUBLAS, we use the
MAGMA routine for GPU batched.
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4.5 Conclusion

In this chapter, we provide a method to develop high level interface using mod-
ern programming techniques in C++. We also give a technique using architectural
tools and performance analysis to implement efficient algorithms for a specific ar-
chitecture. Furthermore, we show how to develop a flexible interface that can take
advantage of optimized libraries such as MAGMA or CUBLAS with minimal ef-
fort. This work can easily be extended because the interface is generic. The use
of variadic templates allow for simple extensions of the container as additional
parameters can be added and parsed without modifying current code.

Our work is motivated by a large number of applications, ranging from machine
learning to big data analytics, that require fast linear algebra on many independent
problems that are of size 32 and smaller. For these applications, the use of batched
GEMM for small matrices is essential to achieve performance.





Conclusion and Perspectives

Conclusion

Throughout this manuscript, we studied the challenges behind designing high-level
software and optimized codes for modern architectures. It is currently one of the
main challenge faced to develop high performance software. The new Top 5007

ranking of June 2016 has shown the appearance of the Chinese machine from the
National Supercomputing Center in Wuxi. This machine is now ranked first in the
Top 500 and has a new architecture and applications must be designed specifically
for it [55]8). The software stack for this machine includes compiler support for C,
C++ and Fortran. Currently, C++ is the most common high level language used
for high performance computing. While algorithms must be reimplemented for this
machine, a library can just be extended.

In the first part of this thesis, we presented a method of high level program-
ming that takes into account the features of heterogeneous architectures and the
properties of matrices to build a generic dense linear algebra solver. Our program-
ming model supports both implicit or explicit data transfers for GPUs and IGPs.
Combining the large number of algorithms available in numerical libraries and ar-
chitectural requirements in a generic solver for dense linear systems is a complex
task. We showed that using generative programming is a valid software development
approach for addressing these issues while maintaining a high level of performance.
We focused on supporting programming models for heterogeneous architectures and
we addressed this issue. The resulting software has been integrated into a C++
library called NT2 which is available on Github.

The second contribution of our thesis is to provide a multi-stage system that
can alleviate interoperability problems between the CPU and GPU programming
models. Our multistage approach is used to automatically generate GPU code for
CPU-based element-wise expressions and parallel skeletons while allowing for type-
safe program generation. This work has also been integrated into the NT2 library
and used conjointly with previous work. In this context, we provide an adaptable
strategy to generate CUDA kernels directly from a single C++ source file contain-
ing NT2 statements. We illustrated our approach on a selection of examples and
the performance obtained is close to the hardware capability and exhibits benefits
compared to other solutions. Finally, we showed that this approach can be extended
to new architectures or implemented using other programming languages.

7http://www.top500.org/
8http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
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Our last contribution is to apply high level programming techniques to batched
computations and tensor contractions using modern C++. Using the experience
we gained from our previous work, we were able to show that by combining a high
level programming approach and advanced parallel programming techniques, we can
outperform state of the art numerical libraries without relying on current libraries.
To do so, we studied the issues around batched computations, memory locality and
code vectorization to implement a highly optimized matrix-matrix product for small
sizes using SIMD instructions. To obtain a near optimal performance, we conducted
an extensive study over the performance counters using the PAPI tool and the Intel
memory checker V3.0 for memory bandwidth.

Perspectives

As future work, we are interested in developing support for the OpenCL 2.0 standard
in both our solver and multi-stage programming model. As CUDA is not generic
enough and works only for NVIDIA cards, it is a limiting factor to develop a multi-
platform library. An implementation of MSP in NT2 has been proposed for OpenCL
but it is still not complete. The recent Tegra X1 card also has limited support for
OpenCL which is a problem. As recent library have added a layer on top of OpenCL
for C++, it can become interesting to study and use such an approach.

We have also started looking at applying similar high level programming tech-
niques to sparse problems. In Chapter 4, we presented a first approach to tensors
and an application to batched GEMMs. It would be interesting to keep digging in
this direction and try to support more features and benchmark applications.

With the incoming new architectures such as the Xeon Phi Knight’s Landing
or the future NVIDIA GPUs with NVLINK and IBM processors, current software
will need to be extended. Indeed, these new architectures will bring changes in
the programming models and load-balancing strategies. Proving that a high level
generic approach can be a safe and efficient way to program these architectures will
be a challenge to face.
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Titre : Méthodes de génération automatique de code appliquées à l’algèbre
linéaire numérique dans le calcul haute performance

Mots clefs : programmation générique, programmation générative, C++, algèbre linéaire, GPU

Résumé : Les architectures parallèles sont au-
jourd’hui présentes dans tous les systèmes infor-
matiques, allant des smartphones aux supercalcula-
teurs en passant par les ordinateurs de bureau. Pro-
grammer efficacement ces architectures requiert un
effort pluridisciplinaire portant sur les langages dé-
diés (Domain Specific Languages - DSL), les tech-
niques de génération de code et d’optimisation, et
les algorithmes numériques propres aux applica-
tions. Dans cette thèse, nous présentons une mé-
thode de programmation haut niveau prenant en
compte les caractéristiques des architectures hété-
rogènes ainsi que les propriétés des matrices pour
produire un solveur générique d’algèbre linéaire
dense. Dans la mesure où les GPUs sont devenus un
outil important pour le calcul haute performance,
il est essentiel de les utiliser dans les plateformes de

calcul. Nous avons par la suite étendu nos travaux à
un modèle de programmation multi-étape ("multi-
stage") pour résoudre les problèmes d’interopéra-
bilité entre les modèles de programmation CPU et
GPU. Nous utilisons cette technique pour générer
automatiquement du code pour accélérateur à par-
tir d’un code effectuant des opérations point par
point ou utilisant des squelettes algorithmiques.
Enfin, nous montrons comment la programmation
haut niveau peut être appliquée à des calculs grou-
pés et des contractions de tenseurs. Tout d’abord,
nous expliquons comment concevoir un modèle de
conteneur en utilisant des techniques de program-
mation basées sur le C++ moderne (C++-14). En-
suite, nous avons implémenté un produit de ma-
trices optimisé pour des matrices de petites tailles
en utilisant des instructions SIMD.

Title : Automatic code generation methods applied to numerical linear algebra
in high performance computing

Keywords : Generic programming, Generative programming, C++, linear algebra, GPU

Abstract : Parallelism in today’s computer archi-
tectures is ubiquitous whether it be in supercom-
puters, workstations or on portable devices such
as smartphones. Exploiting efficiently these sys-
tems for a specific application requires a multidis-
ciplinary effort that concerns Domain Specific Lan-
guages (DSL), code generation and optimization
techniques as well as application-specific numeri-
cal algorithms. In this PhD thesis, we present a
method of high level programming that takes into
account the features of heterogeneous architectures
and the properties of matrices to build a generic
dense linear algebra solver. As GPUs have become
an asset in high performance computing, incorpo-
rating their use in general solvers is an important
issue. We extend our approach to a new multis-

tage programming model that alleviates the inter-
operability problems between the CPU and GPU
programming models. Our multistage approach is
used to automatically generate GPU code for CPU-
based element-wise expressions and parallel ske-
letons while allowing for type-safe program gene-
ration. Finally, we investigate how to apply high
level programming techniques to batched compu-
tations and tensor contractions. We first explain
how to design a simple data container using mo-
dern C++-14 programming techniques. Then, we
study the issues around batched computations, me-
mory locality and code vectorization to implement
a highly optimized matrix-matrix product for small
sizes using SIMD instructions.
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