C. Vergez and X. Rodet, Comparison of real trumpet playing, latex model of lips and computer model, ICMC: International Computer Music Conference, pp.180-187, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01105512

J. Gilbert, S. Ponthus, and J. Petiot, Artificial buzzing lips and brass instruments: Experimental results, The Journal of the Acoustical Society of America, vol.104, issue.3, pp.1627-1632, 1998.
DOI : 10.1121/1.424375

J. Cullen, J. Gilbert, and D. M. Campbell, Brass instruments : linear stability analysis and experiments with an artificial mouth, Acta Acustica united with Acustica, vol.86, issue.3, pp.704-724, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00474993

J. Petiot, F. Teissier, J. Gilbert, and M. Campbell, Comparative analysis of brass wind instruments with an artificial mouth: First results, Acta Acustica united with Acustica, vol.89, issue.6, pp.974-979, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474987

J. Kergomard, Projet consonnes: Contrôle des sons naturels et synthétiques Agence Nationale de la Recherche (ANR-05, 2005.

B. Véricel, Commande et interfaçage d'un robot musicien, 2009.

N. Lopes, Cartographie de paramètres de jeu de trompettiste: mise en correspondance automatique du son produit avec les paramètres de contrôle d'une bouche artificielle asservie, 2011.

D. Ferrand, T. Hélie, C. Vergez, B. Véricel, and R. Caussé, Bouches artificielles asservies: ´ etude de nouveaux outils pour l'analyse du fonctionnement des instrumentsàinstruments`instrumentsà vent, Congrès Français d'Acoustique, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550907

T. Hélie, N. Lopes, and R. Caussé, Robotized artificial mouth for brass instruments: automated experiments and cartography of playing parameters, PE- VOC -Pan European Voice Conference, pp.77-78

V. Fréour, N. Lopes, T. Hélie, R. Caussé, and G. Scavone, Simulating different upstream coupling conditions on an artificial trombone player system using an active sound control approach, International Conference on Acoustics, p.5, 2013.
DOI : 10.1121/1.4805308

O. Lartillot and P. Toiviainen, A Matlab Toolbox for Musical Feature Extraction from Audio, the 10th International Conference on Digital Audio Effects (DAFx07), pp.237-244, 2007.

A. De-cheveigné and H. Kawahara, YIN, a fundamental frequency estimator for speech and music, The Journal of the Acoustical Society of America, vol.111, issue.4
DOI : 10.1121/1.1458024

G. Widholm, H. Pichler, and T. Ossmann, Bias: A computer-aided test system for brass wind instruments, Audio Engineering Society Convention, p.2834, 1989.

A. Chaigne and J. Kergomard, Acoustique Des Instruments De Musique (The Physics of Musical Instruments), 2008.

N. Fletcher and T. Rossing, The Physics of Musical Instruments, 1998.

S. Bilbao, Direct simulation for wind instrument synthesis, Conference on Digital Audio Effects, 2008.

A. Falaize-skrzek, Simulation of an analog circuit of a wah pedal : a port-Hamiltonian approach, 2013.

P. Chassaing, Mécanique des fluides : Eléments d'un premier parcours, 2000.

V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Modeling and Control of Complex Physical Systems : The Port-Hamiltonian Approach, 2009.
DOI : 10.1007/978-3-642-03196-0

D. H. Keefe, Physical Modeling of Wind Instruments, Computer Music Journal, vol.16, issue.4, pp.57-73, 1992.
DOI : 10.2307/3680469

A. Hirschberg, Musical aero-acoustics of the clarinet, Le Journal de Physique IV, vol.04, issue.C5, 1995.
DOI : 10.1051/jp4:19945120

URL : https://hal.archives-ouvertes.fr/jpa-00252796

M. V. Walstijn, Discrete-time modeling of brass and reed woodwind instruments with application to musical sound synthesis, 2002.

T. Hélie and N. Lopes, Modèle d'interaction jet/l` evre préservant le bilan de puissance pour les instruments de type cuivre, 2014.

J. Kergomard and A. Chaigne, Acoustique Des Instruments De Musique (The Physics of Musical Instruments), 2008.

T. Rossing and N. Fletcher, The Physics of Musical Instruments, 1998.

C. Vergez and X. Rodet, Air flow related improvements for basic physical models of brass instruments, ICMC: International Computer Music Conference, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01105530

M. Deverge, X. Pelorson, C. Vilain, P. Lagrée, F. Chentouf et al., Influence of collision on the flow through in-vitro rigid models of the vocal folds, The Journal of the Acoustical Society of America, vol.114, issue.6, 2003.
DOI : 10.1121/1.1625933

URL : https://hal.archives-ouvertes.fr/hal-00363836

S. Bilbao, Direct simulation for wind instrument synthesis, Conference on Digital Audio Effects, 2008.

A. Van and . Schaft, Port-hamiltonian systems: an introductory survey, Proceedings of the International Congress of Mathematicians, pp.1339-1365, 2006.

S. Stramigioli, H. Bruyninckx, V. Duindam, and A. Macchelli, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach, 2009.

A. Falaize-skrzek, Simulation of an analog circuit of a wah pedal: a port-hamiltonian approach, Audio Engineering Society, Convention Paper, 2013.

L. Ryhming, Dynamique des fluides: un cours de base du deuxi?me cycle universitaire, Presses Polytechniques Romandes, 2004.

A. Hirschberg, Musical aero-acoustics of the clarinet, Journal de physique, 1995.
DOI : 10.1051/jp4:19945120

URL : https://hal.archives-ouvertes.fr/jpa-00252796

N. Lopes, Control of an artificial mouth playing a trombone and analysis of sound descriptors on experimental data, Stockholm Music Acoustics Conference, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01245388

A. Accurate, . For, . Passive, . Simulation, . Port-hamiltonian et al., Bilbao Numerical Sound Synthesis, Version du 5 juillet 2016, 2009.

O. Julius, Smith Physical Audio Signal Processing. online book, 2010 edition C. E. Vilain Physical Audio Signal Processing: for Virtual Musical Instruments and Digital Audio Effects

A. Iserles and A. , Zanna Preserving algebraic invariants with RungeKutta methods, Journal of computational and applied mathematics, 2000.
DOI : 10.1016/s0377-0427(00)00459-3

URL : http://doi.org/10.1016/s0377-0427(00)00459-3

D. Buono and C. , Mastroserio Explicit methods based on a class of four stage fourth order RungeKutta methods for preserving quadratic laws, Journal of computational and applied mathematics, 2002.

L. Yalin and S. Gren-smer, Kurtulan Discrete-time modeling of Hamiltonian systems, Turkish Journal of Electrical Engineering and Computer Sciences, 2015.

N. Falaize, T. Lopes, D. Elie, and B. Matignon, Maschke Energy-balanced models for acoustic and audio systems: a port-hamiltonian approach, Unfold Mechanics for Sounds and Music

A. Van-der-schaft and D. , Jeltsema Port-Hamiltonian Systems Theory: An Introductory Overview Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach, 2009.

M. Newton and A. Torin, Collisions in Drum Membranes : a preliminary study on a simplified system, International Symposium on Musical Acoustics, pp.401-406, 2014.

D. Jeltsema, A. Van, and . Schaft, Port-Hamiltonian Systems Theory : An Introductory Overview, 2014.

S. Adachi and M. Sato, Time-domain simulation of sound production in the brass instrument, 1995.

S. Adachi and M. Sato, Trumpet sound simulation using a two???dimensional lip vibration model, The Journal of the Acoustical Society of America, vol.99, issue.2, pp.1200-1209, 1996.
DOI : 10.1121/1.414601

A. Ameida, The clarinet : How blowing pressure, lip force, lip position and reed "hardness" affect pitch, sound level, and spectrum, JASA), 2013.

M. Anguelova, Nonlinear observability and identifiability : general theory and a case study of a kinetic model, Mém.de mast. Chalmers university of technology et Göteborg university, 2004.

S. Aoues, Schémas d'intégration dédiés à l'étude, l'analye et la synthèse dans le formalisme Hamiltonien à port, Thèse de doct. INSA de Lyon, 2014.

S. Aoues, D. Eberard, and W. Marquis-favre, Discrete IDA-PBC design for 2D port-Hamiltonian systems, IFAC Proceedings Volumes, vol.46, issue.23
DOI : 10.3182/20130904-3-FR-2041.00088

URL : https://hal.archives-ouvertes.fr/hal-00999667

L. Arcese, Modélisation et commande de microrobots magnétiquement guidés dans le système cardiovasculaire, Thèse de doct, 2011.

A. Basudhar and S. Missoum, Adaptive explicit decision functions for probabilistic design and optimization using support vector machines, Computers & Structures, vol.86, issue.19-20, 2008.
DOI : 10.1016/j.compstruc.2008.02.008

S. Bilbao, Direct simulation for wind instrument synthesis, Conference on Digital Audio Effects, pp.145-152, 2008.

S. Bilbao, Modelling of brass instrument valves, International Conference on Digital Audio Effects Conference, 2011.

S. Bilbao, Numerical Sound Synthesis : Finite Difference Schemes and Simulation in Musical Acoustics, 2009.
DOI : 10.1002/9780470749012

S. Bilbao and J. Chick, Finite difference time domain simulation for the brass instrument bore, The Journal of the Acoustical Society of America, vol.134, issue.5, 2013.
DOI : 10.1121/1.4822479

S. Bilbao, A. Torin, and V. Chatziioannou, Numerical Modeling of Collisions in Musical Instruments, Acta Acustica united with Acustica, vol.101, issue.1, pp.155-173, 2015.
DOI : 10.3813/AAA.918813

W. Borutzky, Bond graph methodology, 2010.
DOI : 10.1007/978-1-84882-882-7

W. Borutzky, Bond graph modelling of engineering systems : Theory, applications and software support, 2011.
DOI : 10.1007/978-1-4419-9368-7

S. Bromage, Visualisation of the Lip Motion of Brass Instrument Players, and Investigations of an Artificial Mouth as a Tool for Comparative Stidies of instruments

L. Brugnano, F. Iavernaro, and D. Trigiante, Energy and quadratic invariantpreserving integrators based upon Gauss collocation formulae, In : SIAM Journal of Numerical Analysis, vol.506, pp.2897-2916, 2012.

N. , D. Buono, and C. Mastroserio, Explicit methods based on a class of four stage fourth order RungeKutta methods for preserving quadratic laws, Journal of computational and applied mathematics, 2002.

N. Calchand, Modeling and Control of Magnetic Shape Memory Alloys using PortHamiltonian Framework, Thèse de doct, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01141978

M. Calvo, On the Preservation of Invariants by Explicit Runge--Kutta Methods, SIAM Journal on Scientific Computing, vol.28, issue.3, pp.868-885, 2006.
DOI : 10.1137/04061979X

M. Campbell and C. Greated, The musicians's guide to acoustics, 1987.

J. Chabassier and M. Durufle, Energy based simulation of a Timoshenko beam in non-forced rotation. Application to the flexible piano hammer shank, pp.24-00929938, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00918635

A. Chaigne and J. Kergomard, Acoustique des instruments de musique, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00455011

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.1-2727, 2011.
DOI : 10.1145/1961189.1961199

P. Chassaing, Mécanique des fluides : Eléments d'un premier parcours. 2 e éd, 2000.

V. Chatziioannou and W. Kausel, Modelling the wall vibrations of brass wind instrument, COMSOL Conference, 2011.

V. Chatziioannou and V. W. Maarten, Energy conserving schemes for the simulation of musical instrument contact dynamics, Journal of Sound and Vibration, vol.339, 2015.
DOI : 10.1016/j.jsv.2014.11.017

V. Chatziioannou and M. Van-walstijn, An energy conserving finite difference scheme for simulation of collisions, Stockholm Music Acoustics Conference, Sound and Music Computing Conference, 2013.

D. C. Copley and W. J. Strong, A stroboscopic study of lip vibrations in a trombone, The Journal of the Acoustical Society of America, vol.99, issue.2, pp.1219-1226, 1996.
DOI : 10.1121/1.414603

M. A. Crisfield and J. Shi, A co-rotational element/time-integration strategy for non-linear dynamics, International Journal for Numerical Methods in Engineering, vol.1, issue.11, pp.1897-1913, 1994.
DOI : 10.1002/nme.1620371108

J. Cullen, J. Gilbert, and D. M. Campbell, Brass instruments : linear stability analysis and experiments with an artificial mouth, p.86, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00474993

M. Dahlby, B. Owren, and T. Yaguchi, Preserving multiple first integrals by discrete gradients, Journal of Physics A: Mathematical and Theoretical, vol.44, issue.30, 2011.
DOI : 10.1088/1751-8113/44/30/305205

J. Dalmont, C. J. Nerderveen, and N. Joly, RADIATION IMPEDANCE OF TUBES WITH DIFFERENT FLANGES: NUMERICAL AND EXPERIMENTAL INVESTIGATIONS, Journal of Sound and Vibration, vol.244, issue.3, pp.505-534, 2001.
DOI : 10.1006/jsvi.2000.3487

L. Delebecque, Étude de la passivité dans les pavillons acoustiques pour la simulation stable en guides d'ondes " . Mém, 2011.

L. Delebecque, Modélisation physique de la production de séquences voyelleplosive-voyelle " . In : Congrès français d'acoustique, 2014.

J. P. Demailly, Analyse numérique et équations différentielles, EDP Sciences, 2006.

J. Doc, C. Vergez, and S. Missoum, A Minimal Model of a Single-Reed Instrument Producing Quasi-Periodic Sounds, Acta Acustica united with Acustica, vol.100, issue.3, 2014.
DOI : 10.3813/AAA.918734

URL : https://hal.archives-ouvertes.fr/hal-01087013

V. Duindam, Modeling and control of complex physical systems : The port Hamiltonian approach, 2009.
DOI : 10.1007/978-3-642-03196-0

S. J. Elliott and J. M. Bowsher, Regeneration in brass wind instruments, Journal of Sound and Vibration, vol.83, issue.2, pp.181-217, 1982.
DOI : 10.1016/S0022-460X(82)80086-2

P. Eveno, L'impédance d'entrée pour l'aide à la facture des instruments de musique à vent : mesures, modèles et lien avec les fréquences de jeu, Thèse de doct, 2012.

H. and W. Eves, Elementary Matrix Theory. 1 re éd. page 46, 1966.

A. Falaize, Energy-balanced models for acoustic and audio systems : a porthamiltonian approach " . In : Unfold Mechanics for Sounds and Music, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01156711

A. Falaize-skrzek, Simulation of an analog circuit of a wah pedal : a port- Hamiltonian approach " . In : Audio Engineering Society Convention 135, 2013.

N. H. Fletcher, Autonomous vibration of simple pressure???controlled valves in gas flows, The Journal of the Acoustical Society of America, vol.93, issue.4, 1993.
DOI : 10.1121/1.406857

N. H. Fletcher, Excitation mechanisms in woodwind and brass instruments, Acustica, 1979.

N. H. Fletcher, The nonlinear physics of musical instruments, Reports on Progress in Physics, vol.62, issue.5, 1999.
DOI : 10.1088/0034-4885/62/5/202

N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, 1991.

N. Fletcher and T. Rossing, The Physics of Musical Instruments, 1998.

V. Fréour, Caractérisation mécanique des lèvres d'une bouche artificielle pour instruments à vent " . Mém.de mast, 2006.

V. Fréour, Acoustic and Respiratory Pressure Control in Brass Instrument Performance, Thèse de doct

V. Fréour, In-Vitro and Numerical Investigations of the Influence of a Vocal-Tract Resonance on Lip Auto-Oscillations in Trombone Performance, Acta Acustica united with Acustica, vol.101, issue.2, 2015.
DOI : 10.3813/AAA.918824

J. Gilbert and J. F. Petiot, Brass instruments, some theoretical and experimental results, In : ISMA. Edinburgh, UK, pp.391-400, 1997.

J. Gilbert and J. F. Petiot, Non-linéarité dans les instruments à vent de type cuivre : résultats expérimentaux In : Actes du 4ième Congrès Français d'Acoustique, pp.641-644, 1997.

J. Gilbert, S. Ponthus, and J. F. Petiot, Artificial buzzing lips and brass instruments: Experimental results, The Journal of the Acoustical Society of America, vol.104, issue.3, pp.1627-1632, 1998.
DOI : 10.1121/1.424375

J. Gilbert, L. M. Ruiz, and S. Gougeon, Influence de la température sur la justesse d'un instrument à vent, Congrès français d'acoustique, 2006.

G. Golo, Hamiltonian discretization of boundary control systems, Automatica, vol.40, issue.5, pp.757-771, 2004.
DOI : 10.1016/j.automatica.2003.12.017

O. Gonzalez, Time integration and discrete Hamiltonian systems, Journal of Nonlinear Science, vol.115, issue.5, pp.449-467, 1996.
DOI : 10.1007/BF02440162

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for nonlineair Hamiltonian systems with symmetry, Computer Methods in Applied Mechanics and Enginneering, 1996.

Y. , L. Gorrec, and D. Matignon, Diffusive systems coupled to an oscillator : a Hamiltonian formulation In : 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, 2012.

Y. , L. Gorrec, H. Zwart, and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators, In : SIAM Journal on control and optimization, vol.425, pp.1864-1892, 2005.

Y. and L. Gorrec, Systèmes hamiltoniens à port de dimension infinie : réduction et propriétés spectrales, In : Journal Européen des systèmes automatisés, vol.45, pp.7-10, 2011.

E. Hairer, Symmetric projection methods for differential equations on manifolds, pp.726-734, 2000.

S. Haykin, Adaptive filter theory, 2013.

T. Hélie, Modélisation physique d'instrument de musique et de la voix : Systèmes dynamiques, problèmes directs et inverses, 2013.

T. Hélie, Mono-dimensional models of the acoustic propagation in axisymmetric waveguides, 2003.

T. Hélie, A. Falaize, and N. Lopes, Systèmes Hamiltoniens à Ports avec approche par composants pour la simulation à passivité garantie de problèmes conservatifs et dissipatifs, 12e Colloque National en Calcul des Structures. 2015. Version du 5 juillet 2016, pp.15-249

T. Hélie and D. Matignon, Diffusive representations for analyzing and simulating flared acoustic pipes with visco-thermal losses, In : Mathematical Models and Methods in Applied Sciences, 2006.

T. Hélie and X. Rodet, Radiation of a pulsating portion of a sphere : Application to horn radiation, In : Acta Acustica united with Acustica, vol.89, pp.565-577, 2003.

T. Hélie, One-Dimensional Acoustic Models of Horns and Comparison with Measurements, Acta Acustica united with Acustica, vol.99, issue.6, 2013.
DOI : 10.3813/AAA.918675

H. Helmhotz and E. A. John, On the sensation of tone as a physiological basis for the theory of music, p.1895

M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, The Astronomical Journal, vol.69, 1964.
DOI : 10.1086/109234

T. Hezard, Analysis-synthesis of vocal sounds based on a voice production model driven by glottal area, Proceedings of the Acoustics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811298

A. Hirschberg-de, G. Weinreich, A. Hirschberg, and J. Kergomard, Aero-acoustics of wind instruments. Sous la dir, pp.291-369, 1995.

A. Hirschberg, Musical aero-acoustics of the clarinet, Le Journal de Physique IV, vol.04, issue.C5, 1995.
DOI : 10.1051/jp4:19945120

URL : https://hal.archives-ouvertes.fr/jpa-00252796

A. Hirschberg, J. Gilbert, and R. Msallam, Shock waves in trombones, The Journal of the Acoustical Society of America, vol.99, issue.3, 1995.
DOI : 10.1121/1.414698

URL : https://hal.archives-ouvertes.fr/hal-01105563

P. Holland, Hamiltonian theory of wave and particle in quantum mechanics I : Liouville's theorem and the interpretation of the de Broglie-Bohm theory, In : Italian physical society, 2001.

A. Iserles and A. Zanna, Preserving algebraic invariants with RungeKutta methods, Journal of computational and applied mathematics, 2000.

S. Karkar, Méthodes numériques pour les systèmes dynamiques non linéaires Application aux instruments de musique auto-oscillants, Thèse de doct, 2012.

D. H. Keefe, Physical Modeling of Wind Instruments, Computer Music Journal, vol.16, issue.4, pp.57-73, 1992.
DOI : 10.2307/3680469

H. K. Khalil, Nonlinear Systems, 2001.

A. Lazarus, O. Thomas, and J. Deü, Finite element reduced ordre models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS " . In : Finite elements in analysis and design, 2012.

N. Lopes, Control of an Artificial Mouth Playing a Trombone and Analysis of Sound Descriptors on Experimental Data, Stockholm Music Acoustics Conference, pp.521-528, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01245388

N. Lopes, Energy Balanced Model of a Jet Interacting With a Brass Player's Lip, Acta Acustica united with Acustica, vol.102, issue.1, 2016.
DOI : 10.3813/AAA.918931

URL : https://hal.archives-ouvertes.fr/hal-01245426

N. Lopes, Modélisation, asservissement et commande d'une bouche artificielle robotisée pour le jeu des cuivres, Mém.de mast. ATIAM, 2012.

N. Lopes, Rapport de Projet de Fin d'Etude Cartographie de paramètres de jeu de trompettiste : mise en correspondance automatique du son produit avec les paramètres de contrôle d'une bouche artificielle asservie, Mém.de mast. Ecole Nationale, 2011.

N. Lopes, T. Hélie, and A. Falaize, Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems, 5th IFAC Workshop on Lagrangian and Hamiltonian methods for non linear control, 2015.
DOI : 10.1016/j.ifacol.2015.10.243

URL : https://hal.archives-ouvertes.fr/hal-01245422

N. J. Lous, A symmetrical two)mass vocal-fold model coupled to vocal tract and trachea, Acta Acustica, vol.84, pp.1135-1150, 1998.

R. Mahony, S. Stramigioli, and J. Trumpf, Vision based control of aerial robotic vehicles using the port Hamiltonian framework, IEEE Conference on Decision and Control and European Control Conference, 2011.
DOI : 10.1109/CDC.2011.6160558

B. Maschke, R. Ortega, A. Van, and . Schaft, Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation, IEEE Transactions on Automatic Control, vol.458, pp.1498-1502, 2000.

B. Maschke, A. Van, and . Schaft, System-theoretic properties of port-controlled Hamiltonian systems, Systems and Networks : Mathematical theory and applications 2, pp.349-352, 1994.

B. M. Maschke, A. Van, and . Schaft, Port-controlled Hamiltonian systems : Modelling origins and system-theoretic properties In : 2nd IFAC NOLCOS Bordeaux, pp.282-288, 1992.

D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proceedings, vol.5, 1998.
DOI : 10.1051/proc:1998004

A. Mayer, Riam (reed instrument artificial mouth) a computer controlled excitation device for reed instruments, Stockholm Music Acoustics Conference, 2003.

D. Mayer, Hamilton's Principle and electric circuit theory, Advances in electrical and electronic engineering, 2006.

R. I. Mclachlan, G. R. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.357, issue.1754, pp.1021-1045, 1999.
DOI : 10.1098/rsta.1999.0363

A. Meghnous, M. T. Pham, and X. Lin-shi, Averaged port-Hamiltonian modeling based observer for DC-DC power converters, IFAC Proceedings Volumes, vol.46, issue.2
DOI : 10.3182/20130204-3-FR-2033.00199

URL : https://hal.archives-ouvertes.fr/hal-00799336

R. Mignot, Réalisation en guides d'ondes numériques stables d'un modèle acoustique réaliste pour la simulation en temps-réel d'instruments à vent, Thèse de doct. Télécom ParisTech, 2009.

R. Mignot, T. Hélie, and D. Matignon, State-space representation for digital waveguide networks of lossy flared acoustic pipes, 12th International conference on Digital Audio Effects. 2009. Version du 5 juillet 2016, pp.15-251

S. Missoum and C. Dribusch, Reliability-Based Design Optimization of Nonlinear Aeroelasticity Problems, Journal of Aircraft, vol.47, issue.3, 2010.
DOI : 10.2514/1.46665

S. Missoum, C. Vergez, and J. Doc, Explicit mapping of acoustic regimes for wind instruments, Journal of Sound and Vibration, vol.333, issue.20, 2014.
DOI : 10.1016/j.jsv.2014.05.017

URL : https://hal.archives-ouvertes.fr/hal-00942597

G. Montseny, Diffusive representation of pseudo-differential time-operators, ESAIM: Proceedings, vol.5, 1998.
DOI : 10.1051/proc:1998005

H. Munthe-kaas, Rungekutta methods on Lie groups, p.BIT, 1998.

M. Neal, A study of the brass Instrument Lip Reed Machanism using Artificial Lips and Lattice Boltzmann Flow Simulations, Thèse de doct, 2002.

M. J. Newton, M. Campbell, and J. Chick, Predicting the playing frequencies of brass instruments " . In : Forum Acusticum, 2014.

T. Nimura and Y. Watanabé, Effect of a Finite Circular Baffle Board on Acoustic Radiation, The Journal of the Acoustical Society of America, vol.25, issue.1, pp.76-80, 1953.
DOI : 10.1121/1.1907012

R. Ortega and E. Garcia-canseco, Interconnection and Damping Assignment Passivity-Based Control: A Survey, European Journal of Control, vol.10, issue.5, pp.432-450, 2004.
DOI : 10.3166/ejc.10.432-450

R. Ortega and M. Spong, Adaptive motion control of rigid robots : A tutorial, Automatica, vol.256, pp.877-888, 1989.

R. Ortega, Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems, IEEE Transactions on Automatic Control, vol.53, issue.11, pp.2527-2542, 2008.
DOI : 10.1109/TAC.2008.2006930

R. Ortega, Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, IEEE Transactions on Automatic Control, vol.47, issue.8, pp.1218-1233, 2002.
DOI : 10.1109/TAC.2002.800770

S. Papetti, F. Avanzini, and D. Rocchesso, Numerical Methods for a Nonlinear Impact Model : A Comparative Study With Closed-Form Corrections " . In : 5IEEE Transactions on audio, speech, and language processing, pp.2146-2158, 2011.

G. Parseihian, Caractérisation mécanique des lèvres de la bouche artificielle, Mém.de mast. ATIAM, 2007.

J. F. Petiot, Comparative Analysis of Brass Wind Instruments With an Artificial Mouth : First Results, Acta Acustica united with Acustica, vol.89, pp.975-979, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474987

F. Pfeifle and R. Bader, Real-time finite difference physical models of musical instruments on a field programmable gate array (FPGA), International Conference on Digital Audio Effects Conference, 2012.

J. D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases : a diffusion process, In : Journal of Acoustique, 1991.

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The computer journal, 1964.
DOI : 10.1093/comjnl/7.2.155

G. R. Quispel and D. I. Mclaren, A new class of energy-preserving numerical integration methods, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.4, p.41, 2008.
DOI : 10.1088/1751-8113/41/4/045206

H. Ramirez, B. Maschke, and D. Sbarbaro, Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach, European Journal of Control, vol.19, issue.6, pp.513-520, 2013.
DOI : 10.1016/j.ejcon.2013.09.009

URL : https://hal.archives-ouvertes.fr/hal-00909580

J. Saneyoshi, H. Teramura, and S. Yoshikawa, Feedback oscillations in reed woodwind and brass wind instruments, pp.194-210, 1987.

A. Van and . Schaft, Port-Hamiltonian systems : an introductory survey, International congress of mathematicians Madrid. T. 3, pp.1339-1364, 2006.

A. Van-der-schaft and B. Maschke, A Port-Hamiltonian Formulation of Open Chemical Reaction Networks Advances in the Theory of Control, Signals and Systems with Physical Modeling, pp.339-348, 2011.

A. Van-der-schaft and B. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, Journal of Geometry and Physics, vol.42, issue.1-2, pp.166-194, 2002.
DOI : 10.1016/S0393-0440(01)00083-3

A. Van-der-schaft and B. Maschke, Port-Hamiltonian Systems on Graphs, SIAM Journal on Control and Optimization, vol.51, issue.2, 2013.
DOI : 10.1137/110840091

M. Seslija, J. M. Scherpen, A. Van, and . Schaft, Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems, Automatica, vol.50, issue.2, pp.1208-3549, 2012.
DOI : 10.1016/j.automatica.2013.11.020

F. Silva, Emergence des auto-oscillations dans un instrument de musique à anche simple (Sound production in single reed woodwind instruments, Thèse de doct, 2009.

J. C. Simo and O. Gonzalez, Assessment of energy-momentum and symplectic schemes fo stiff dynamical systems, ASME Winter Annual Meeting, 1993.

J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP Zeitschrift f???r angewandte Mathematik und Physik, vol.33, issue.3, pp.757-793, 1992.
DOI : 10.1007/BF00913408

D. Simon, Optimal state estimation : Kalman, H Infinity, and nonlinear approaches, 2006.
DOI : 10.1002/0470045345

J. Bensa, S. Bilbao, R. Kronland-martinet, and J. O. Smith, A power normalized nonlinear lossy piano hammer, Stockholm Music Acoustics Conference, pp.365-368, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00088910

J. O. Smith, Physical Audio Signal Processing, 2010.

O. Sprangers, G. A. Lopes, and R. Babuska, Reinforcement Learning for Port-Hamiltonian Systems, IEEE Transactions on Cybernetics, vol.45, issue.5, pp.1003-1013, 2014.
DOI : 10.1109/TCYB.2014.2343194

O. J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space, Transactions of the American Mathematical Society, vol.345, issue.2, pp.527-575, 1994.
DOI : 10.1090/S0002-9947-1994-1264153-X

S. D. Stevenson, Experimental Investigations of lip motion in brass instrument playing, Thèse de doct, 2009.

C. Touzé, M. Amabili, and O. Thomas, Reduced-order models for large-amplitude vibrations of shells including in-plane inertia, Computer methods in applied mechanics and engineering, 2008.
DOI : 10.1016/j.cma.2008.01.002

J. Trouvain and F. Brackhane, Wolfgang von Kempelen's speaking machine machine as an instrument for demonstration and research, International Congress of Phonetic Sciences, 2011.

T. Usciati, Analyseur de circuit électronique analogique audio, et génération temps réel " . Mém.de mast, 2012.

A. Venkatraman, A. Van, and . Schaft, Full-order observer design for a class of port-Hamiltonian systems, Automatica, vol.46, issue.3, pp.555-561, 2010.
DOI : 10.1016/j.automatica.2010.01.019

C. Vergez, Trompette et trompettiste : un système dynamique non linéaire analysé , modélisé et simulé dans un contexte musical, 2000.

C. Vergez and X. Rodet, Air flow related improvements for basic physical models of brass instruments, ICMC : International Computer Music Conference, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01105530

C. Vergez and X. Rodet, Comparison of real Trompet Playing, Latex Model of Lips and Computer Model, p.97, 1997.

C. Vergez and X. Rodet, Trumpet and Trumpet Player : Model and Simulation in a Musical Context " . In : International computer music conference, 2001.

B. Vericel, Commande et interfaçage d'un robot musicien, Mém.de mast. Ecole Nationale Supérieure de l'Electronique et de ses Applications, 2009.

C. E. Vilain, Contribution à la synthèse de parole par modèle physique. Application à l'étude des voix pathologiques, 2002.

C. E. Vilain, Influence of the collision on the flow through in-vitro rigid models of the vocal folds, The Journal of the Acoustical Society of America, vol.1146, pp.3354-3362, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00363836

C. E. Vilain, Physical Audio Signal Processing, Thèse de doct. Institut National Polytechnique de Grenoble, 2010.

J. A. Villegas, A port-Hamiltonian approach to distributed parameter systems, Thèse de doct, 2007.

E. Vos, Formation Control of Wheeled Robots in the Port-Hamiltonian Framework, IFAC Proceedings Volumes, vol.47, issue.3, 2014.
DOI : 10.3182/20140824-6-ZA-1003.00394

T. Voß and J. M. Scherpen, Structure preserving port-Hamiltonian discretization of a 1-D Inflatable space reflector, 2009.

M. V. Walstijn, Discrete-time modeling of brass and reed woodwind instruments with application to musical sound synthesis, 2002.

M. V. Walstijn, Wave-based Simulation of Wind Instrument Resonators, IEEE Signal Processing Magazine, vol.24, issue.2, 2007.
DOI : 10.1109/MSP.2007.323261

Y. Yalin, L. G. Smer, and S. Kurtulan, Discrete-time modeling of Hamiltonian systems, In : Turkish Journal of Electrical Engineering and Computer Sciences, 2015.

S. Yoshikawa and Y. Muto, Lip-wave generation on horn players and the estimation of lip-tissue elasticity, Acta Acustica united with Acustica, vol.89, pp.145-162, 2003.

W. E. Zorumski, Generalized radiation impedances and reflection coefficients of circular and annular ducts, The Journal of the Acoustical Society of America, vol.54, issue.6, pp.1667-1673, 1973.
DOI : 10.1121/1.1914466