A. Adam, E. Rivlin, and I. Shimshoni, Robust Fragments-based Tracking using the Integral Histogram, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), p.17, 2006.
DOI : 10.1109/CVPR.2006.256

B. Alexe, T. Deselaers, and V. Ferrari, Measuring the Objectness of Image Windows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.11, pp.2189-2202, 2012.
DOI : 10.1109/TPAMI.2012.28

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, pp.174-188, 2002.
DOI : 10.1109/78.978374

S. Avidan, Support vector tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.8, pp.1064-1072, 2004.
DOI : 10.1109/TPAMI.2004.53

S. Avidan, Ensemble Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.2, pp.261-271, 2007.
DOI : 10.1109/TPAMI.2007.35

B. Babenko, M. Yang, and S. Belongie, Robust Object Tracking with Online Multiple Instance Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.8, pp.1619-1632, 2011.
DOI : 10.1109/TPAMI.2010.226

V. Badrinarayanan, P. Pérez, F. L. Clerc, and L. Oisel, Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues, 2007 IEEE 11th International Conference on Computer Vision, p.50, 2007.
DOI : 10.1109/ICCV.2007.4408955

Q. Bai, Z. Wu, S. Sclaroff, M. Betke, and C. Monnier, Randomized Ensemble Tracking, 2013 IEEE International Conference on Computer Vision, p.10, 2013.
DOI : 10.1109/ICCV.2013.255

C. Bailer, A. Pagani, and D. Stricker, A Superior Tracking Approach: Building a Strong Tracker through Fusion, ECCV
DOI : 10.1007/978-3-319-10584-0_12

S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, vol.56, issue.3, pp.221-255, 2004.
DOI : 10.1023/B:VISI.0000011205.11775.fd

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, Curriculum learning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, p.32, 2009.
DOI : 10.1145/1553374.1553380

M. J. Black and A. D. Jepson, EigenTracking: Robust matching and tracking of articulated objects using a view-based representation, International Journal of Computer Vision, vol.26, issue.1, pp.63-84, 1998.
DOI : 10.1007/BFb0015548

A. Blum and T. Mitchell, Combining labeled and unlabeled data with co-training, Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, p.13, 1998.
DOI : 10.1145/279943.279962

V. N. Boddeti, T. Kanade, and B. Kumar, Correlation Filters for Object Alignment, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.297

D. S. Bolme, B. Draper, and J. R. Beveridge, Average of Synthetic Exact Filters, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206701

D. S. Bolme, Y. M. Lui, B. Draper, and J. R. Beveridge, Simple real-time human detection using a single correlation filter, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, 2009.
DOI : 10.1109/PETS-WINTER.2009.5399555

D. S. Bolme, J. R. Beveridge, B. Draper, and Y. M. Lui, Visual object tracking using adaptive correlation filters, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539960

J. Bouguet, Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm, Microprocessor research labs, p.17, 2001.

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1124-1137, 2004.
DOI : 10.1109/TPAMI.2004.60

Y. Y. Boykov and M. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, p.78, 2001.
DOI : 10.1109/ICCV.2001.937505

T. Brox and J. Malik, Object Segmentation by Long Term Analysis of Point Trajectories, ECCV, p.78, 2010.
DOI : 10.1007/978-3-642-15555-0_21

T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.3, pp.500-513, 2011.
DOI : 10.1109/TPAMI.2010.143

K. Cannons, A review of visual tracking, Dept. Comput. Sci. Eng, p.10, 2008.

J. Carreira and C. Sminchisescu, Constrained parametric min-cuts for automatic object segmentation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.50, 2010.
DOI : 10.1109/CVPR.2010.5540063

L. Cehovin, M. Kristan, and A. Leonardis, Is my new tracker really better than yours? In WACV, pp.2014-2053

L. Cehovin, A. Leonardis, and M. Kristan, Visual object tracking performance measures revisited. arXiv preprint

Z. Chen, Z. Hong, and D. Tao, An experimental survey on correlation filter-based tracking. arXiv preprint, 2015.

M. Cho, J. Sun, O. Duchenne, and J. Ponce, Finding Matches in a Haystack: A Max-Pooling Strategy for Graph Matching in the Presence of Outliers, 2014 IEEE Conference on Computer Vision and Pattern Recognition, p.95, 2014.
DOI : 10.1109/CVPR.2014.268

URL : https://hal.archives-ouvertes.fr/hal-01053675

D. M. Chu and A. W. Smeulders, Thirteen Hard Cases in Visual Tracking, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, p.35, 2010.
DOI : 10.1109/AVSS.2010.85

B. Coifman, D. Beymer, P. Mclauchlan, and J. Malik, A real-time computer vision system for vehicle tracking and traffic surveillance, Transportation Research Part C: Emerging Technologies, vol.6, issue.4, pp.271-288, 1998.
DOI : 10.1016/S0968-090X(98)00019-9

R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins et al., A system for video surveillance and monitoring, 2000.

R. T. Collins, Y. Liu, and M. Leordeanu, Online selection of discriminative tracking features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.10, pp.1631-1643, 2005.
DOI : 10.1109/TPAMI.2005.205

D. Comaniciu, V. Ramesh, and P. Meer, Real-time tracking of non-rigid objects using mean shift, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.5-17, 2000.
DOI : 10.1109/CVPR.2000.854761

D. Comaniciu, V. Ramesh, and P. Meer, Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.5, pp.564-577, 2003.
DOI : 10.1109/TPAMI.2003.1195991

E. V. Cuevas, D. Zaldivar, and R. Rojas, Kalman filter for vision tracking, p.18, 2005.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.50-75
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

M. Danelljan, G. Häger, F. Khan, and M. Felsberg, Accurate Scale Estimation for Robust Visual Tracking, Proceedings of the British Machine Vision Conference 2014, pp.57-58
DOI : 10.5244/C.28.65

M. Danelljan, F. S. Khan, M. Felsberg, and J. Van-de-weijer, Adaptive Color Attributes for Real-Time Visual Tracking, 2014 IEEE Conference on Computer Vision and Pattern Recognition
DOI : 10.1109/CVPR.2014.143

M. Danelljan, G. Hager, F. Shahbaz-khan, and M. Felsberg, Learning Spatially Regularized Correlation Filters for Visual Tracking, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.490

K. G. Derpanis, Characterizing image motion, Dept. Comput. Sci, issue.5, 2006.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-pérez, Solving the multiple instance problem with axis-parallel rectangles, Artificial Intelligence, vol.89, issue.1-2, pp.31-71, 1997.
DOI : 10.1016/S0004-3702(96)00034-3

T. B. Dinh, N. Vo, and G. Medioni, Context tracker: Exploring supporters and distracters in unconstrained environments, CVPR 2011, pp.22-23, 2011.
DOI : 10.1109/CVPR.2011.5995733

P. Dollár and C. L. Zitnick, Structured Forests for Fast Edge Detection, 2013 IEEE International Conference on Computer Vision, pp.6-53, 2013.
DOI : 10.1109/ICCV.2013.231

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan et al., Long-term recurrent convolutional networks for visual recognition and description, CVPR, p.97, 2015.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas et al., FlowNet: Learning Optical Flow with Convolutional Networks, 2015 IEEE International Conference on Computer Vision (ICCV), p.97, 2015.
DOI : 10.1109/ICCV.2015.316

W. Du and J. Piater, A Probabilistic Approach to Integrating Multiple Cues in Visual Tracking, ECCV, pp.24-50, 2008.
DOI : 10.1007/978-3-540-88688-4_17

S. Duffner and C. Garcia, PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects, 2013 IEEE International Conference on Computer Vision, pp.2013-2029
DOI : 10.1109/ICCV.2013.308

URL : https://hal.archives-ouvertes.fr/hal-00976387

A. Elgammal, R. Duraiswami, and L. S. Davis, Probabilistic tracking in joint feature-spatial spaces, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., p.17, 2003.
DOI : 10.1109/CVPR.2003.1211432

M. Everingham, J. Sivic, and A. Zisserman, Taking the bite out of automated naming of characters in TV video, Image and Vision Computing, vol.27, issue.5, pp.545-559, 2009.
DOI : 10.1016/j.imavis.2008.04.018

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, pp.303-338, 2010.
DOI : 10.1007/s11263-009-0275-4

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, LIBLINEAR: A library for large linear classification, The Journal of Machine Learning Research, vol.9, issue.56, pp.1871-1874, 2008.

L. Fei-fei, R. Fergus, and P. Perona, One-shot learning of object categories, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.4, pp.594-611, 2006.
DOI : 10.1109/TPAMI.2006.79

M. Felsberg, A. Berg, G. Hager, J. Ahlberg, M. Kristan et al., The thermal infrared visual object tracking vot- tir2015 challenge results, ICCV Workshop on Visual Object Tracking Challenge, pp.36-42, 2015.

P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, pp.1627-1645, 2010.
DOI : 10.1109/TPAMI.2009.167

K. Fukunaga and L. D. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Transactions on Information Theory, vol.21, issue.1, pp.32-40, 1975.
DOI : 10.1109/TIT.1975.1055330

J. Gao, H. Ling, W. Hu, and J. Xing, Transfer Learning Based Visual Tracking with Gaussian Processes Regression, ECCV, p.10, 2014.
DOI : 10.1007/978-3-319-10578-9_13

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1997.
DOI : 10.1109/CVPR.2014.81

URL : http://arxiv.org/abs/1311.2524

M. Godec, P. M. Roth, and H. Bischof, Hough-based tracking of non-rigid objects, ICCV, pp.46-72, 2011.

H. Grabner, M. Grabner, and H. Bischof, Real-Time Tracking via On-line Boosting, Procedings of the British Machine Vision Conference 2006, pp.12-14, 2006.
DOI : 10.5244/C.20.6

H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-Line Boosting for Robust Tracking, ECCV, pp.46-72, 2008.
DOI : 10.1007/978-3-540-88682-2_19

H. Grabner, J. Matas, L. Van-gool, and P. Cattin, Tracking the invisible: Learning where the object might be, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.22, 2010.
DOI : 10.1109/CVPR.2010.5539819

S. Grossberg, Competitive Learning: From Interactive Activation to Adaptive Resonance, Cognitive Science, vol.1, issue.1, pp.23-63, 1987.
DOI : 10.1111/j.1551-6708.1987.tb00862.x

P. L. Hammer, Some network flow problems solved with pseudo-boolean programming, Operations Research, vol.13, issue.3, pp.388-399, 1965.

B. Han, Y. Zhu, D. Comaniciu, and L. Davis, Kernel-based bayesian filtering for object tracking, CVPR, p.18, 2005.

B. Han, S. Joo, and L. S. Davis, Probabilistic Fusion Tracking Using Mixture Kernel-Based Bayesian Filtering, 2007 IEEE 11th International Conference on Computer Vision, 1926.
DOI : 10.1109/ICCV.2007.4408938

S. Hare, A. Saffari, and P. H. Torr, Struck: Structured output tracking with kernels, ICCV, pp.61-71, 2011.

I. Haritaoglu, D. Harwood, and L. S. Davis, W/sup 4/: real-time surveillance of people and their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, pp.809-830, 2000.
DOI : 10.1109/34.868683

R. Hartley and A. Zisserman, Multiple view geometry in computer vision, pp.77-80, 2004.
DOI : 10.1017/CBO9780511811685

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, Exploiting the Circulant Structure of Tracking-by-Detection with Kernels, ECCV, pp.20-22, 2012.
DOI : 10.1007/978-3-642-33765-9_50

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, High-Speed Tracking with Kernelized Correlation Filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.3, pp.583-596, 2015.
DOI : 10.1109/TPAMI.2014.2345390

D. Hoiem, A. A. Efros, and M. Hebert, Putting Objects in Perspective, International Journal of Computer Vision, vol.57, issue.2, pp.3-15, 2008.
DOI : 10.1007/s11263-008-0137-5

S. Hong, T. You, S. Kwak, and B. Han, Online tracking by learning discriminative saliency map with convolutional neural network, ICML, 2015a. 28 and 29

Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov et al., MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.34
DOI : 10.1109/CVPR.2015.7298675

J. Hosang, R. Benenson, P. Dollár, and B. Schiele, What Makes for Effective Detection Proposals?, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.4, pp.814-830, 2016.
DOI : 10.1109/TPAMI.2015.2465908

P. V. Hough, Method and means for recognizing complex patterns, pp.654-52, 1962.

Y. Hua, K. Alahari, and C. Schmid, Occlusion and Motion Reasoning for Long-Term Tracking, ECCV, pp.50-61, 2014.
DOI : 10.1007/978-3-319-10599-4_12

URL : https://hal.archives-ouvertes.fr/hal-01020149

Y. Hua, K. Alahari, and C. Schmid, Online Object Tracking with Proposal Selection, 2015 IEEE International Conference on Computer Vision (ICCV), pp.2015-2022
DOI : 10.1109/ICCV.2015.354

URL : https://hal.archives-ouvertes.fr/hal-01207196

M. Isard and A. Blake, Condensation ? Conditional density propagation for visual tracking, International Journal of Computer Vision, vol.29, issue.1, pp.5-28, 1998.
DOI : 10.1023/A:1008078328650

M. Isard and A. Blake, Icondensation: Unifying low-level and high-level tracking in a stochastic framework, ECCV, 1950.
DOI : 10.1007/BFb0055711

X. Jia, H. Lu, and M. Yang, Visual tracking via adaptive structural local sparse appearance model, CVPR, pp.2012-2060

Z. Kalal, K. Mikolajczyk, and J. Matas, Forward-Backward Error: Automatic Detection of Tracking Failures, 2010 20th International Conference on Pattern Recognition, p.17, 2010.
DOI : 10.1109/ICPR.2010.675

Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking-Learning-Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.7, pp.1409-1422, 2012.
DOI : 10.1109/TPAMI.2011.239

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.2, pp.147-159, 2004.
DOI : 10.1109/TPAMI.2004.1262177

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, F. Porikli et al., The Visual Object Tracking VOT2013 Challenge Results, 2013 IEEE International Conference on Computer Vision Workshops, p.36, 2013.
DOI : 10.1109/ICCVW.2013.20

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin et al., The Visual Object Tracking VOT2014 Challenge Results, ECCV Workshop on Visual Object Tracking Challenge, pp.45-47, 2014.
DOI : 10.1007/978-3-319-16181-5_14

URL : https://hal.archives-ouvertes.fr/hal-01301090

M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin et al., The visual object tracking VOT2015 challenge results, ICCV Workshop on Visual Object Tracking Challenge, pp.36-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01336773

M. Kristan, J. Matas, A. Leonardis, T. Vojí?, R. Pflugfelder et al., A Novel Performance Evaluation Methodology for Single-Target Trackers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.11, p.12, 2016.
DOI : 10.1109/TPAMI.2016.2516982

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, NIPS, 2012. 26 and 97

M. P. Kumar, B. Packer, and D. Koller, Self-paced learning for latent variable models, NIPS, p.32, 2010.

S. Kumar and M. Hebert, A hierarchical field framework for unified context-based classification, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 1921.
DOI : 10.1109/ICCV.2005.9

D. Lee, J. Sim, and C. Kim, Multihypothesis trajectory analysis for robust visual tracking, CVPR, 2015. 24 and 95

I. Leichter, M. Lindenbaum, and E. Rivlin, A General Framework for Combining Visual Trackers ??? The "Black Boxes" Approach, International Journal of Computer Vision, vol.67, issue.3, pp.343-363, 2006.
DOI : 10.1007/s11263-006-5568-2

C. Leistner, H. Grabner, and H. Bischof, Semi-supervised boosting using visual similarity learning, 2008 IEEE Conference on Computer Vision and Pattern Recognition, p.13, 2008.
DOI : 10.1109/CVPR.2008.4587629

J. Lewis, Fast normalized cross-correlation. Vision Interface, pp.120-123, 1995.

J. Lezama, K. Alahari, J. Sivic, and I. Laptev, Track to the future: Spatio-temporal video segmentation with long-range motion cues, CVPR 2011, p.76, 2011.
DOI : 10.1109/CVPR.2011.6044588

URL : https://hal.archives-ouvertes.fr/hal-00817961

A. Li, M. Lin, Y. Wu, M. Yang, and S. Yan, NUS-PRO: A New Visual Tracking Challenge, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.2, pp.335-349, 2015.
DOI : 10.1109/TPAMI.2015.2417577

F. Li, T. Kim, A. Humayun, D. Tsai, and J. Rehg, Video Segmentation by Tracking Many Figure-Ground Segments, 2013 IEEE International Conference on Computer Vision, pp.2013-95
DOI : 10.1109/ICCV.2013.273

H. Li, Y. Li, and F. Porikli, DeepTrack: Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, Proceedings of the British Machine Vision Conference 2014, p.97, 2014.
DOI : 10.5244/C.28.56

X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick et al., A survey of appearance models in visual object tracking, ACM Transactions on Intelligent Systems and Technology, vol.4, issue.4, p.58, 0210.
DOI : 10.1145/2508037.2508039

Y. Li and J. Zhu, A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration, ECCV Workshop on Visual Object Tracking Challenge, 2014.
DOI : 10.1007/978-3-319-16181-5_18

Y. Li, J. Zhu, and S. C. Hoi, Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1921.
DOI : 10.1109/CVPR.2015.7298632

T. Liu, G. Wang, and Q. Yang, Real-time part-based visual tracking via adaptive correlation filters, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
DOI : 10.1109/CVPR.2015.7299124

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, IJCAI, 1981.

W. Luo, J. Xing, X. Zhang, X. Zhao, and T. Kim, Multiple object tracking: A literature review

C. Ma, J. Huang, X. Yang, and M. Yang, Hierarchical Convolutional Features for Visual Tracking, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.352

C. Ma, X. Yang, C. Zhang, and M. Yang, Long-term correlation tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
DOI : 10.1109/CVPR.2015.7299177

A. Mahalanobis, B. Vijaya, D. Kumar, and . Casasent, Minimum average correlation energy filters, Applied Optics, vol.26, issue.17, pp.3633-3640, 1987.
DOI : 10.1364/AO.26.003633

A. Mahalanobis, B. Vijaya-kumar, S. Song, S. Sims, and J. Epperson, Unconstrained correlation filters, Applied Optics, vol.33, issue.17, pp.3751-3759, 1994.
DOI : 10.1364/AO.33.003751

T. Malisiewicz, A. Gupta, and A. A. Efros, Ensemble of exemplar-SVMs for object detection and beyond, 2011 International Conference on Computer Vision, p.81, 2011.
DOI : 10.1109/ICCV.2011.6126229

P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu, SemiBoost: Boosting for Semi-Supervised Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.11, pp.312000-2014, 2009.
DOI : 10.1109/TPAMI.2008.235

O. Masoud and N. P. Papanikolopoulos, A novel method for tracking and counting pedestrians in real-time using a single camera, IEEE Transactions on Vehicular Technology, vol.50, issue.5, pp.1267-1278, 2001.
DOI : 10.1109/25.950328

I. Matthews, T. Ishikawa, and S. Baker, The template update problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.6, pp.810-815, 2004.
DOI : 10.1109/TPAMI.2004.16

X. Mei and H. Ling, Robust visual tracking using 1 minimization, ICCV, p.72, 2009.

X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, Minimum error bounded efficient 1 tracker with occlusion detection, CVPR, pp.11-49, 2011.

D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert, Contextual classification with functional Max-Margin Markov Networks, 2009 IEEE Conference on Computer Vision and Pattern Recognition, p.22, 2009.
DOI : 10.1109/CVPR.2009.5206590

K. Murphy, A. Torralba, and W. Freeman, Using the forest to see the trees: A graphical model relating features, objects and scenes, NIPS, p.22, 2003.

H. Nam and B. Han, Learning Multi-domain Convolutional Neural Networks for Visual Tracking, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1997.
DOI : 10.1109/CVPR.2016.465

G. Nebehay and R. Pflugfelder, Consensus-based matching and tracking of keypoints for object tracking, IEEE Winter Conference on Applications of Computer Vision
DOI : 10.1109/WACV.2014.6836013

G. Nebehay and R. Pflugfelder, Clustering of static-adaptive correspondences for deformable object tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2015-95
DOI : 10.1109/CVPR.2015.7298895

P. Ochs, J. Malik, and T. Brox, Segmentation of Moving Objects by Long Term Video Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.6, pp.1187-1200, 2014.
DOI : 10.1109/TPAMI.2013.242

Y. Pang and H. Ling, Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms, 2013 IEEE International Conference on Computer Vision
DOI : 10.1109/ICCV.2013.346

D. W. Park, J. Kwon, and K. M. Lee, Robust visual tracking using autoregressive hidden Markov model, CVPR, p.50, 2012.

S. Paschalakis and M. Bober, Real-time face detection and tracking for mobile videoconferencing. Real-Time Imaging, pp.81-94, 2004.
DOI : 10.1016/j.rti.2004.02.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.7578

V. I. Pavlovic, R. Sharma, and T. S. Huang, Visual interpretation of hand gestures for human-computer interaction: a review, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.7, pp.677-695, 1997.
DOI : 10.1109/34.598226

P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, Color-Based Probabilistic Tracking, ECCV, p.10, 2002.
DOI : 10.1007/3-540-47969-4_44

P. Perez, J. Vermaak, and A. Blake, Data Fusion for Visual Tracking With Particles, Proceedings of the IEEE, pp.495-513, 1926.
DOI : 10.1109/JPROC.2003.823147

J. C. Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods Advances in Large Margin Classifiers, pp.61-74, 1999.

H. Possegger, T. Mauthner, and H. Bischof, In defense of color-based model-free tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2015-2025
DOI : 10.1109/CVPR.2015.7298823

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie, Objects in Context, 2007 IEEE 11th International Conference on Computer Vision, p.22, 2007.
DOI : 10.1109/ICCV.2007.4408986

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS, pp.2015-97
DOI : 10.1109/TPAMI.2016.2577031

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, Deep convolutional matching. arXiv preprint

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, EpicFlow: Edgepreserving interpolation of correspondences for optical flow, CVPR, pp.2015-95
URL : https://hal.archives-ouvertes.fr/hal-01142656

D. A. Ross, J. Lim, R. Lin, and M. Yang, Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, vol.61, issue.3, pp.125-141, 2008.
DOI : 10.1007/s11263-007-0075-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.4310

C. Rother, V. Kolmogorov, and A. Blake, "GrabCut", ACM Transactions on Graphics, vol.23, issue.3, pp.309-314, 2004.
DOI : 10.1145/1015706.1015720

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, pp.211-252, 2015.
DOI : 10.1007/s11263-015-0816-y

V. Salari and I. K. Sethi, Feature point correspondence in the presence of occlusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.1, pp.87-91, 1990.
DOI : 10.1109/34.41387

J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, PROST: Parallel robust online simple tracking, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540145

I. K. Sethi and R. Jain, Finding Trajectories of Feature Points in a Monocular Image Sequence, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.9, issue.1, pp.56-73, 1987.
DOI : 10.1109/TPAMI.1987.4767872

J. Shi and C. Tomasi, Good features to track, CVPR, p.17, 1994.

J. Shotton, J. Winn, C. Rother, and A. Criminisi, TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation, ECCV, p.22, 2006.
DOI : 10.1007/11744023_1

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, Communications of the ACM, vol.56, issue.1, pp.116-124, 2013.
DOI : 10.1145/2398356.2398381

G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, Part-based multiple-person tracking with partial occlusion handling, CVPR, p.10, 2012.

T. Sikora, The MPEG-4 video standard verification model, IEEE Transactions on Circuits and Systems for Video Technology, vol.7, issue.1, pp.19-31, 1997.
DOI : 10.1109/76.554415

K. Simonyan and A. Zisserman, Two-stream convolutional networks for action recognition in videos, NIPS, pp.2014-97

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition

K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps, ICLR Workshop, pp.2014-2043

A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan et al., Visual tracking: An experimental survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.12, pp.1442-1468, 2014.

J. Son, I. Jung, K. Park, and B. Han, Tracking-by-Segmentation with Online Gradient Boosting Decision Tree, 2015 IEEE International Conference on Computer Vision (ICCV), p.95, 2015.
DOI : 10.1109/ICCV.2015.350

S. Song and J. Xiao, Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines, 2013 IEEE International Conference on Computer Vision
DOI : 10.1109/ICCV.2013.36

Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, Contextualizing object detection and classification, CVPR 2011, p.22, 2011.
DOI : 10.1109/CVPR.2011.5995330

M. Spengler and B. Schiele, Towards robust multi-cue integration for visual tracking, Machine Vision and Applications, pp.50-58, 1926.

B. Stenger, T. Woodley, and R. Cipolla, Learning to track with multiple observers, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 1926.
DOI : 10.1109/CVPR.2009.5206634

N. Sundaram, T. Brox, and K. Keutzer, Dense point trajectories by gpuaccelerated large displacement optical flow, ECCV, pp.74-76, 2010.

J. S. Supancic, I. , and D. Ramanan, Self-Paced Learning for Long-Term Tracking, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.61-75, 2013.
DOI : 10.1109/CVPR.2013.308

J. Tai, S. Tseng, C. Lin, and K. Song, Real-time image tracking for automatic traffic monitoring and enforcement applications, Image and Vision Computing, vol.22, issue.6, pp.485-501, 2004.
DOI : 10.1016/j.imavis.2003.12.001

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, 2014 IEEE Conference on Computer Vision and Pattern Recognition
DOI : 10.1109/CVPR.2014.220

F. Tang, S. Brennan, Q. Zhao, and H. Tao, Co-tracking using semisupervised support vector machines, ICCV, pp.10-13, 2007.

M. Tao, J. Bai, P. Kohli, and S. Paris, SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm, Computer Graphics Forum, p.95, 2012.
DOI : 10.1111/j.1467-8659.2012.03013.x

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), vol.58, issue.1 11, pp.267-288, 1996.

C. Tomasi and T. Kanade, Detection and tracking of point features, pp.5-17, 1991.

A. Torralba, Contextual priming for object detection, International Journal of Computer Vision, vol.53, issue.2, pp.169-191, 2003.
DOI : 10.1023/A:1023052124951

D. Tsai, M. Flagg, A. Nakazawa, and J. M. Rehg, Motion Coherent Tracking Using Multi-label MRF Optimization, International Journal of Computer Vision, vol.27, issue.10, pp.190-202, 2012.
DOI : 10.1007/s11263-011-0512-5

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large margin methods for structured and interdependent output variables, In Journal of Machine Learning Research, vol.6, pp.1453-1484, 2005.

J. Van-de-weijer, C. Schmid, J. Verbeek, and D. Larlus, Learning Color Names for Real-World Applications, IEEE Transactions on Image Processing, vol.18, issue.7, pp.1512-1523, 1921.
DOI : 10.1109/TIP.2009.2019809

URL : https://hal.archives-ouvertes.fr/inria-00439284

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.10-95, 2001.
DOI : 10.1109/CVPR.2001.990517

T. Vojir, J. Noskova, and J. Matas, Robust scale-adaptive mean-shift for tracking, Pattern Recognition Letters, vol.49, pp.250-258, 2014.
DOI : 10.1016/j.patrec.2014.03.025

L. Wang, W. Ouyang, X. Wang, and H. Lu, Visual Tracking with Fully Convolutional Networks, 2015 IEEE International Conference on Computer Vision (ICCV), 1997.
DOI : 10.1109/ICCV.2015.357

N. Wang and D. Yeung, Learning a deep compact image representation for visual tracking, NIPS, p.27, 2013.

N. Wang and D. Yeung, Ensemble-based tracking: Aggregating crowdsourced structured time series data, ICML

N. Wang, S. Li, A. Gupta, and D. Yeung, Transferring rich feature hierarchies for robust visual tracking, 1928.

X. Wang, Intelligent multi-camera video surveillance: A review, Pattern Recognition Letters, vol.34, issue.1, pp.3-19, 2013.
DOI : 10.1016/j.patrec.2012.07.005

N. Wax, Signal???to???Noise Improvement and the Statistics of Track Populations, Journal of Applied Physics, vol.26, issue.5, pp.586-595, 1955.
DOI : 10.1063/1.1722046

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, Learning to detect Motion Boundaries, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2015-2021
DOI : 10.1109/CVPR.2015.7298873

URL : https://hal.archives-ouvertes.fr/hal-01142653

L. Wen, Z. Cai, Z. Lei, D. Yi, and S. Z. Li, Online Spatio-temporal Structural Context Learning for Visual Tracking, ECCV, pp.2012-2035
DOI : 10.1007/978-3-642-33765-9_51

L. Wen, D. Du, Z. Lei, S. Z. Li, and M. Yang, JOTS: Joint Online Tracking and Segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.95, 2015.
DOI : 10.1109/CVPR.2015.7298835

J. Whitehill, T. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo, Whose vote should count more: Optimal integration of labels from labelers of unknown expertise, NIPS, p.25, 2009.

C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, Pfinder: real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.7, pp.780-785, 1997.
DOI : 10.1109/34.598236

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust Face Recognition via Sparse Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.2, pp.210-227, 2009.
DOI : 10.1109/TPAMI.2008.79

Y. Wu, J. Lim, and M. Yang, Online Object Tracking: A Benchmark, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.61-75, 2013.
DOI : 10.1109/CVPR.2013.312

Y. Wu, J. Lim, and M. Yang, Object Tracking Benchmark, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.9, pp.1834-1848
DOI : 10.1109/TPAMI.2014.2388226

C. Yang, R. Duraiswami, and L. Davis, Efficient mean-shift tracking via a new similarity measure, CVPR, p.17, 2005.

H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song, Recent advances and trends in visual tracking: A review, Neurocomputing, vol.74, issue.18, pp.3823-3831, 2011.
DOI : 10.1016/j.neucom.2011.07.024

M. Yang, Y. Wu, and G. Hua, Context-Aware Visual Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.7, pp.1195-1209, 2009.
DOI : 10.1109/TPAMI.2008.146

A. Yilmaz, O. Javed, and M. Shah, Object tracking, ACM Computing Surveys, vol.38, issue.4, pp.1-45, 2006.
DOI : 10.1145/1177352.1177355

M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, ECCV, p.29, 2014.
DOI : 10.1007/978-3-319-10590-1_53

J. Zhang, S. Ma, and S. Sclaroff, MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization, ECCV, 2014a. 32, 46, and 95
DOI : 10.1007/978-3-319-10599-4_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.666.3510

K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M. Yang, Fast Visual Tracking via Dense Spatio-temporal Context Learning, ECCV, 2014b. 21 and 23
DOI : 10.1007/978-3-319-10602-1_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.640.545

S. Zhang, H. Yao, X. Sun, and X. Lu, Sparse coding based visual tracking: Review and experimental comparison, Pattern Recognition, vol.46, issue.7, pp.1772-1788, 2013.
DOI : 10.1016/j.patcog.2012.10.006

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, Low-Rank Sparse Learning for Robust Visual Tracking, ECCV, pp.2012-2023
DOI : 10.1007/978-3-642-33783-3_34

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, Robust Visual Tracking via Structured Multi-Task Sparse Learning, CVPR, pp.2012-2023
DOI : 10.1007/s11263-012-0582-z

B. Zhong, H. Yao, S. Chen, R. Ji, T. Chin et al., Visual tracking via weakly supervised learning from multiple imperfect oracles, Pattern Recognition, vol.47, issue.3, pp.1395-1410, 2014.
DOI : 10.1016/j.patcog.2013.10.002

W. Zhong, H. Lu, and M. Yang, Robust object tracking via sparsitybased collaborative model, CVPR, pp.48-61, 2012.

X. Zhou, L. Xie, P. Zhang, and Y. Zhang, An ensemble of deep neural networks for object tracking, 2014 IEEE International Conference on Image Processing (ICIP), pp.2014-2041
DOI : 10.1109/ICIP.2014.7025169

G. Zhu, F. Porikli, and H. Li, Tracking randomly moving objects on edge box proposals. arXiv preprint

C. L. Zitnick and P. Dollár, Edge Boxes: Locating Object Proposals from Edges, ECCV, 2014. 6, pp.54-101
DOI : 10.1007/978-3-319-10602-1_26