F. Inférence-automatique-du-réseau-induit-par-le-récepteur-de-la, 107 4.5.3 Une nouvelle hypothèse : la phosphorylation de MEK par p38MAPK, p.111

A. Alam, J. Weck, E. Maizels, Y. Park, E. J. Lee et al., Role of the Phosphatidylinositol-3-Kinase and Extracellular Regulated Kinase Pathways in the Induction of Hypoxia-Inducible Factor (HIF)-1 Activity and the HIF-1 Target Vascular Endothelial Growth Factor in Ovarian Granulosa Cells in Response to Follicle-Stimulating Hormone, Endocrinology, vol.150, issue.2, pp.915-928, 2009.
DOI : 10.1210/en.2008-0850

A. Albert, Boolean modeling of genetic regulatory networks, Complex networks. Lecture Notes In Physics, pp.459-481, 2004.

A. Altman, M. Travers, A. Kothari, R. Caspi, D. Peter et al., A systematic comparison of the MetaCyc and KEGG pathway databases, BMC Bioinformatics, vol.14, issue.1, p.112, 2013.
DOI : 10.4056/sigs.1794338

[. Albert, G. Hans, and . Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster, Journal of Theoretical Biology, vol.223, issue.1, pp.1-18, 2003.
DOI : 10.1016/S0022-5193(03)00035-3

A. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene Ontology: tool for the unification of biology, Nature Genetics, vol.9, issue.1, pp.25-29, 2000.
DOI : 10.1038/75556

[. Bansal, V. Belcastro, A. Ambesi-impiombato, and D. D. Bernardo, How to infer gene networks from expression profiles, In : Molecular Systems Biology, vol.31, p.78, 2007.

N. Bidoit, Negation in rule-based database languages: a survey, Theoretical Computer Science, vol.78, issue.1, pp.3-83, 1991.
DOI : 10.1016/0304-3975(51)90003-5

J. Baier and . Larsen, Principles of model checking, 2008.

P. Adrian, M. Bracken, A. Ciro, K. Cocito, and . Helin, E2F target genes : unraveling the biology, In : Trends in biochemical sciences, vol.298, pp.409-417, 2004.

B. Büchel, N. Rodriguez, N. Swainston, C. Wrzodek, T. Czauderna et al., Path2Models: large-scale generation of computational models from biochemical pathway maps, BMC Systems Biology, vol.7, issue.1, p.1, 2013.
DOI : 10.1186/1471-2105-9-399

L. Calzone, A. Gelay, A. Zinovyev, F. Radvanyi, and E. Barillot, A comprehensive modular map of molecular interactions in RB/E2F pathway, Molecular Systems Biology, vol.4, 2008.
DOI : 10.1016/S0092-8674(00)80625-X

E. Caron, S. Ghosh, Y. Matsuoka, D. Ashton-beaucage, M. Therrien et al., A comprehensive map of the mTOR signaling network, Molecular Systems Biology, vol.28, 2010.
DOI : 10.1158/0008-5472.CAN-09-0299

[. Caspi, H. Foerster, A. Carol, P. Fulcher, M. Kaipa et al., The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases, Nucleic Acids Research, vol.36, issue.Database, pp.623-631, 2008.
DOI : 10.1093/nar/gkm900

M. Edmund, A. Clarke, and . Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, Logic of Programs, pp.52-71, 1981.

L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

C. Chassagnole, N. Noisommit-rizzi, J. W. Schmid, K. Mauch, and M. Reuss, Dynamic modeling of the central carbon metabolism of Escherichia coli, Biotechnology and Bioengineering, vol.791, pp.53-73, 2002.

C. Chaouiya, A. Naldi, E. Remy, and D. Thieffry, Petri net representation of multi-valued logical regulatory graphs, Natural Computing, vol.57, issue.2, pp.727-750, 2011.
DOI : 10.1007/s11047-010-9178-0

C. Chaouiya, D. Bérenguier, M. Sarah, A. Keating, . Naldi et al., SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools, BMC Systems Biology, vol.7, issue.1, p.1, 2013.
DOI : 10.1186/1752-0509-5-198

URL : https://hal.archives-ouvertes.fr/hal-00926033

[. Chatain, S. Haar, L. Jezequel, L. Paulevé, and S. Schwoon, Characterization of Reachable Attractors Using Petri Net Unfoldings, In : Computational Methods in Systems Biology, 2014.
DOI : 10.1007/978-3-319-12982-2_10

URL : https://hal.archives-ouvertes.fr/hal-01060450

[. Czauderna, C. Klukas, and F. Schreiber, Editing, validating and translating of SBGN maps, Bioinformatics, vol.26, issue.18, pp.2340-2341, 2010.
DOI : 10.1093/bioinformatics/btq407

[. Chang and R. Lee, Symbolic logic and mechanical theorem proving. Academic press, 2014.

[. Clocksin, S. Christopher, and . Mellish, Programming in PROLOG, 2003.

P. Crépieux, S. Marion, N. Martinat, V. Fafeur, Y. L. Vern et al., The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation, Oncogene, vol.20, issue.34, pp.34-4696, 2001.
DOI : 10.1038/sj.onc.1204632

H. Chen, M. Burt, and . Sharp, Content-rich biological network constructed by mining PubMed abstracts, BMC bioinformatics, vol.51, pp.1-13, 2004.

J. Couvreur and Y. Thierry-mieg, Hierarchical Decision Diagrams to Exploit Model Structure, Formal Techniques for Networked and Distributed Systems - FORTE 2005. Lecture Notes In Computer Science, pp.443-457, 2005.
DOI : 10.1007/978-3-540-30232-2_18

URL : https://hal.archives-ouvertes.fr/hal-01488360

[. Czauderna, M. Wybrow, K. Marriott, and F. Schreiber, Conversion of KEGG metabolic pathways to SBGN maps including automatic layout, BMC Bioinformatics, vol.14, issue.1, p.1, 2013.
DOI : 10.1186/1752-0509-6-139

[. Demolombe, L. Fariñas-del-cerro, and N. Obeid, Logical modeling of biological systems Chap. A Logical Model for Molecular Interaction Maps, pp.125-166, 2014.

E. Demir, P. Michael, S. Cary, K. Paley, C. Fukuda et al., The BioPAX community standard for pathway data sharing, Nature Biotechnology, vol.35, issue.9, pp.935-942, 2010.
DOI : 10.1038/nbt.1666

M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the ACM (JACM), vol.73, pp.201-215, 1960.

B. Michael, . Eisen, T. Paul, . Spellman, O. Patrick et al., Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences 95, pp.25-14863, 1998.

[. Eker, M. Knapp, K. Laderoute, and P. Lincoln, José Meseguer et Kemal Sonmez Pathway logic : Symbolic analysis of biological signaling, Pacific Symposium on Biocomputing. T. 7, pp.400-412, 2002.

[. Fayruzov, J. Janssen, D. Vermeir, C. Cornelis-et-martine-de, and . Cock, Modelling gene and protein regulatory networks with Answer Set Programming, International Journal of Data Mining and Bioinformatics, vol.5, issue.2, pp.209-229, 2011.
DOI : 10.1504/IJDMB.2011.039178

[. Flobak, A. Baudot, E. Remy, L. Thommesen, D. Thieffry et al., Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling, PLOS Computational Biology, vol.58, issue.8, p.1004426, 2015.
DOI : 10.1371/journal.pcbi.1004426.s012

URL : https://hal.archives-ouvertes.fr/hal-01221572

[. Fages and S. Soliman, Abstract interpretation and types for systems biology, Theoretical Computer Science, vol.403, issue.1, pp.52-70, 2008.
DOI : 10.1016/j.tcs.2008.04.024

URL : https://hal.archives-ouvertes.fr/hal-01431355

[. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi et al., CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks, Proceedings of the IEEE 96, pp.1254-1265, 2008.
DOI : 10.1109/JPROC.2008.925458

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub et al., A user's guide to gringo, clasp, clingo, and iclingo, 2008.

[. Gong, E. James, and . Ferrell, The Roles of Cyclin A2, B1, and B2 in Early and Late Mitotic Events, Molecular Biology of the Cell, vol.21, issue.18, pp.3149-3161, 2010.
DOI : 10.1091/mbc.E10-05-0393

E. Clare, . Giacomantonio, J. Geoffrey, and . Goodhill, A Boolean model of the gene regulatory network underlying Mammalian cortical area development, PLoS Computational Biology, vol.6, issue.9, p.1000936, 2010.

T. Daniel and . Gillespie, Exact stochastic simulation of coupled chemical reactions " . In : The journal of physical chemistry 81, pp.2340-2361, 1977.

P. Gloaguen, P. Crépieux, D. Heitzler, A. Poupon, and E. Reiter, Mapping the follicle-stimulating hormone-induced signaling networks, Frontiers in Endocrinology, vol.2, p.45, 2011.
DOI : 10.3389/fendo.2011.00045

URL : https://hal.archives-ouvertes.fr/hal-01129612

P. Gloaguen, Inférence automatique de modèles de voies de signalisation à partir de données expérimentales, These, 2012.

I. Harvey and T. Bossomaier, Time out of joint : Attractors in asynchronous random boolean networks, Proceedings of the Fourth European Conference on Artificial Life, pp.67-75, 1997.

[. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn et al., Competing G protein-coupled receptor kinases balance G protein and ??-arrestin signaling, Molecular Systems Biology, vol.3, issue.1, p.590, 2012.
DOI : 10.1038/msb.2012.22

URL : https://hal.archives-ouvertes.fr/hal-00776169

M. Steven, Y. Hill, J. Lu, . Molina, M. Laura et al., Bayesian inference of signaling network topology in a cancer cell line, Bioinformatics, vol.2821, pp.2804-2810, 2012.

A. Hartmann and F. Schreiber, Integrative Analysis of Metabolic Models ???????? from Structure to Dynamics, Frontiers in Bioengineering and Biotechnology, vol.97, 2014.
DOI : 10.1007/s00253-012-4543-9

M. Hucka, A. Finney, M. Herbert, H. Sauro, . Bolouri et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

K. Inoue, A. Doncescu, and H. Nabeshima, Completing causal networks by meta-level abduction, Machine learning 91, pp.239-277, 2013.
DOI : 10.1007/s10994-013-5341-z

URL : https://hal.archives-ouvertes.fr/hal-00999312

K. Inoue, Logic programming for Boolean networks, IJCAI Proceedings- International Joint Conference on Artificial Intelligence. T. 22. 1, p.924, 2011.

K. Inoue, Linear resolution for consequence finding, Artificial Intelligence, vol.56, issue.2-3, pp.301-353, 1992.
DOI : 10.1016/0004-3702(92)90030-2

[. Jacob, La logique du vivant : une histoire de l'hérédité. Gallimard, 1987.

[. Juty and . Nicolas-le-novère, Systems Biology Ontology, In : Encyclopedia of Systems Biology, pp.2063-2063, 2013.
DOI : 10.1007/978-1-4419-9863-7_1287

A. Stuart and . Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of theoretical biology, vol.223, pp.437-467, 1969.

[. Kersting-et-luc-de-raedt, Bayesian Logic Programming : Theory and Tool, Statistical Relational Learning, 2007.

[. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.28, issue.1, pp.27-30, 2000.
DOI : 10.1093/nar/28.1.27

H. Kitano, Systems Biology: A Brief Overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.
DOI : 10.1126/science.1069492

H. Kitano, A graphical notation for biochemical networks, BIOSILICO, vol.1, issue.5, pp.169-176, 2003.
DOI : 10.1016/S1478-5382(03)02380-1

W. Kurt and . Kohn, Molecular interaction map of the mammalian cell cycle control and DNA repair systems, In : Molecular biology of the cell, vol.108, pp.2703-2734, 1999.

[. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath et al., Simulation and Verification for Computational Modelling of Signalling Pathways, Proceedings of the 2006 Winter Simulation Conference, pp.1666-1674, 2006.
DOI : 10.1109/WSC.2006.322941

[. Li, P. Brazhnik, B. Sobral, J. John, and . Tyson, A quantitative study of the division cycle of Caulobacter crescentus stalked cells, PLoS Computational Biology, vol.41, p.9, 2008.

L. Loewe, S. Moodie, and J. Hillston, Quantifying the implicit process flow abstraction in SBGN-PD diagrams with Bio-PEPA, Electronic Proceedings in Theoretical Computer Science, vol.6, 2009.
DOI : 10.4204/EPTCS.6.7

[. Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli et al., BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic acids research 34, pp.689-691, 2006.
DOI : 10.1093/nar/gkj092

[. Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber et al., The Systems Biology Graphical Notation, Nature Biotechnology, vol.267, issue.8, pp.735-741, 2009.
DOI : 10.1038/nbt.1558

[. Novère, E. Demir, H. Mi, S. Moodie, and A. Villeger, Systems biology graphical notation : entity relationship language Level 1 (Version 1.2), Nature Precedings, 2011.

[. Mi, F. Schreiber, N. L. Novère, S. Moodie, and A. Sorokin, Systems Biology Graphical Notation: Activity Flow language Level 1, Nature Precedings, 2009.
DOI : 10.1038/npre.2009.3724.1

S. Moodie, N. L. Novère, E. Demir, H. Mi, and A. Villeger, Systems biology graphical notation : process description language Level 1, Nature Precedings, 2011.

W. Marwan, C. Rohr, and M. Heiner, Petri Nets in Snoopy: A Unifying Framework for the Graphical Display, Computational Modelling, and Simulation of Bacterial Regulatory Networks, Bacterial Molecular Networks : Methods and Protocols, pp.409-437, 2012.
DOI : 10.1007/978-1-61779-361-5_21

[. Markowetz and R. Spang, Inferring cellular networks ??? a review, BMC Bioinformatics, vol.8, issue.Suppl 6, 2007.
DOI : 10.1186/1471-2105-8-S6-S5

[. Nabeshima, K. Iwanuma, K. Inoue, and O. Ray, SOLAR : An automated deduction system for consequence finding, pp.2-3, 2010.

A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, Dynamically consistent reduction of logical regulatory graphs, Theoretical Computer Science, vol.412, issue.21, pp.2207-2218, 2011.
DOI : 10.1016/j.tcs.2010.10.021

URL : https://hal.archives-ouvertes.fr/hal-01284743

[. Novichkova, S. Egorov, and N. Daraselia, MedScan, a natural language processing engine for MEDLINE abstracts, Bioinformatics, vol.19, issue.13, pp.1699-1706, 2003.
DOI : 10.1093/bioinformatics/btg207

[. Nigam, R. Donaldson, M. Knapp, T. Mccarthy, and C. Talcott, Inferring Executable Models from Formalized Experimental Evidence, In : Computational Methods in Systems Biology. Lecture Notes in Computer Science, pp.90-103, 2015.
DOI : 10.1007/978-3-319-23401-4_9

K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano, A comprehensive pathway map of epidermal growth factor receptor signaling, Molecular Systems Biology, vol.273, issue.1, 2005.
DOI : 10.1038/msb4100014

D. Jeffrey, I. Orth, . Thiele, Ø. Bernhard, and . Palsson, What is flux balance analysis, Nature Biotechnology, vol.283, pp.245-248, 2010.

[. Paulevé, G. Andrieux, and H. Koeppl, Under-Approximating Cut Sets for Reachability in Large Scale Automata Networks, Computer Aided Verification. T. 8044. Lecture Notes in Computer Science, pp.69-84, 2013.
DOI : 10.1007/978-3-642-39799-8_4

A. Pe-'+01-]-dana-pe-'er, G. Regev, N. Elidan, and . Friedman, Inferring subnetworks from perturbed expression profiles, Bioinformatics, vol.17, pp.215-224, 2001.

R. Alexander, T. Pico, . Kelder, P. Martijn, K. Van-iersel et al., WikiPathways : pathway editing for the people, PLoS Biology, vol.67, p.184, 2008.

G. Pardini, P. Milazzo, and A. Maggiolo-schettini, Component identification in biochemical pathways, Theoretical Computer Science, vol.587, pp.104-124, 2015.
DOI : 10.1016/j.tcs.2015.03.013

[. Paulevé, M. Magnin, and O. Roux, Refining Dynamics of Gene Regulatory Networks in a Stochastic ??-Calculus Framework, Lecture Notes in Computer Science, vol.81, issue.25, pp.171-191, 2011.
DOI : 10.1021/j100540a008

[. Paulevé, M. Magnin, and O. Roux, Static analysis of Biological Regulatory Networks dynamics using abstract interpretation, Mathematical Structures in Computer Science, vol.131, issue.04, pp.4-651, 2012.
DOI : 10.1007/s11538-008-9304-7

[. Przulj, Graph theory approaches to protein interaction data analysis " . In : Knowledge Discovery in proteomics, 2004.

A. Richard, J. Comet, and G. Bernot, Formal Methods for Modeling Biological Regulatory Networks, pp.83-122, 2006.
DOI : 10.1007/1-4020-4223-X_5

URL : https://hal.archives-ouvertes.fr/hal-00342170

A. Rocca, N. Mobilia, É. Fanchon, T. Ribeiro, L. Trilling et al., In : Logical modeling of biological systems. Wiley, 2014. Chap. Asp for construction and validation of regulatory biological networks, pp.167-206

A. Rougny, C. Froidevaux, Y. Yamamoto, and K. Inoue, In : Logical modeling of biological systems, Chap. Analyzing SBGN-AF Networks Using Normal Logic Programs, pp.325-361, 2014.

A. Rougny, Y. Yamamoto, H. Nabeshima, G. Bourgne, A. Poupon et al., Completing signaling networks by abductive reasoning with perturbation experiments, Proceedings of the 25st International Conference on Inductive Logic Programming, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01259205

A. Rougny, C. Froidevaux, L. Calzone, and L. Paulevé, Qualitative dynamics semantics for SBGN process description, BMC Systems Biology, vol.7, issue.1, p.42, 2016.
DOI : 10.1186/s12918-016-0285-0

URL : https://hal.archives-ouvertes.fr/hal-01332679

A. Rzhetsky, M. Seringhaus, B. Mark, and . Gerstein, Getting Started in Text Mining: Part Two, PLoS Computational Biology, vol.6, issue.2, p.1000411, 2009.
DOI : 10.1371/journal.pcbi.1000411.g001

[. Ray, T. Soh, and K. Inoue, Analyzing Pathways Using ASP-Based Approaches, pp.167-183, 2012.
DOI : 10.1007/978-3-642-28067-2_10

[. Sachs, O. Perez, D. Pe-'er, A. Douglas, . Lauffenburger et al., Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data, Science, vol.308, issue.5721, pp.523-529, 2005.
DOI : 10.1126/science.1105809

M. Sari, I. Bahceci, U. Dogrusoz, S. Onur-sumer, Ö. Bülent-arman-aksoy et al., SBGNViz: A Tool for Visualization and Complexity Management of SBGN Process Description Maps, PLOS ONE, vol.14, issue.5, p.128985, 2015.
DOI : 10.1371/journal.pone.0128985.g009

B. Schoeberl, C. Eichler-jonsson, E. D. , G. , and G. Müller, Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology, vol.20, issue.4, pp.370-375, 2002.
DOI : 10.1038/nbt0402-370

S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar, Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae, Bioinformatics, vol.18, issue.2, pp.351-361, 2002.
DOI : 10.1093/bioinformatics/18.2.351

J. Scott, T. Ideker, M. Richard, R. Karp, and . Sharan, Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks, Journal of Computational Biology, vol.13, issue.2, pp.133-144, 2006.
DOI : 10.1089/cmb.2006.13.133

[. Schomburg, A. Chang, and D. Schomburg, BRENDA, enzyme data and metabolic information, Nucleic Acids Research, vol.30, issue.1, pp.47-49, 2002.
DOI : 10.1093/nar/30.1.47

[. Schuster, T. Dandekar, A. David, and . Fell, Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering, Trends in Biotechnology, vol.17, issue.2, pp.53-60, 1999.
DOI : 10.1016/S0167-7799(98)01290-6

P. Shannon, A. Markiel, O. Ozier, S. Nitin, . Baliga et al., Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.11-2498, 2003.
DOI : 10.1101/gr.1239303

[. Snoussi, Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach, Dynamics and stability of Systems, pp.3-4, 1989.
DOI : 10.1016/S0006-3495(71)86192-1

J. Saez-rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, A. Douglas et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular Systems Biology, vol.41, p.331, 2009.
DOI : 10.1038/msb.2009.87

[. Thiele, N. Swainston, M. Ronan, A. Fleming, S. Hoppe et al., A community-driven global reconstruction of human metabolism, Nature Biotechnology, vol.8, issue.5, pp.419-425, 2013.
DOI : 10.1093/bioinformatics/btp392

R. Thomas, Boolean formalization of genetic control circuits, Journal of theoretical biology, vol.423, pp.563-585, 1973.

[. Thieffry and R. Thomas, Dynamical behaviour of biological regulatory networks?II . Immunity control in bacteriophage lambda, In : Bulletin of Mathematical Biology, vol.57, issue.2, pp.277-297, 1995.

[. Thomas, D. Thieffry, and M. Kaufman, Dynamical behaviour of biological regulatory networks?I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state, In : Bulletin of mathematical biology, vol.572, pp.247-276, 1995.

[. Vogt, T. Czauderna, and F. Schreiber, Translation of SBGN maps: Process Description to Activity Flow, BMC Systems Biology, vol.7, issue.1, p.115, 2013.
DOI : 10.1016/j.tplants.2010.03.005

[. Vennekens, M. Denecker, and M. Bruynooghe, Abstract, CoRR abs, p.1672, 2009.
DOI : 10.1145/116825.116838

P. Martijn, A. C. Van-iersel, T. Villéger, . Czauderna, E. Sarah et al., Software support for SBGN maps : SBGN-ML and LibSBGN, Bioinformatics, vol.28, pp.15-2016, 2012.

[. Videla, C. Guziolowski, F. Eduati, S. Thiele, N. Grabe et al., Revisiting the Training of Logic Models of Protein Signaling Networks with ASP, Computational Methods in Systems Biology, pp.342-361, 2012.
DOI : 10.1007/978-3-642-33636-2_20

[. Waltemath, R. Adams, A. Daniel, . Beard, T. Frank et al., Minimum Information About a Simulation Experiment (MIASE), PLoS Computational Biology, vol.5307, issue.4, p.1001122, 2011.
DOI : 10.1371/journal.pcbi.1001122.s002

URL : https://hal.archives-ouvertes.fr/hal-00772491

[. Waltemath, R. Adams, T. Frank, M. Bergmann, F. Hucka et al., Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language, BMC Systems Biology, vol.5, issue.1, p.198, 2011.
DOI : 10.1038/35002125

U. Wittig, R. Kania, M. Golebiewski, M. Rey, L. Shi et al., SABIO-RK--database for biochemical reaction kinetics, Nucleic acids research 40, pp.1-790, 2012.
DOI : 10.1093/nar/gkr1046

A. Yamamoto, H. Rougny, K. Nabeshima, H. Inoue, C. Moriya et al., Completing SBGN-AF Networks by Logic-Based Hypothesis Finding, Proceedings of the first Proceedings of the first International Conference on Formal Methods in Macro-Biology, pp.165-179, 2014.
DOI : 10.1007/978-3-319-10398-3_14

URL : https://hal.archives-ouvertes.fr/hal-01110133

A. Yuryev, Z. Mulyukov, E. Kotelnikova, S. Maslov, S. Egorov et al., Automatic pathway building in biological association networks, BMC Bioinformatics, vol.7, issue.1, p.171, 2006.
DOI : 10.1186/1471-2105-7-171

[. Zhang, M. V. Shah, J. Yang, B. Susan, X. Nyland et al., Network model of survival signaling in large granular lymphocyte leukemia, Proceedings of the National Academy of Sciences 105, pp.42-16308, 2008.

A. Zinovyev, E. Viara, L. Calzone, and E. Barillot, BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks, Bioinformatics, vol.24, issue.6, pp.876-877, 2008.
DOI : 10.1093/bioinformatics/btm553

[. Zupan, J. Demsar, I. Bratko, P. Juvan, A. John et al., GenePath: a system for automated construction of genetic networks from mutant data, Bioinformatics, vol.19, issue.3, pp.383-389, 2003.
DOI : 10.1093/bioinformatics/btf871

A. Sommaire and P. , 207 A.1.1 Sketch de preuve de la propriété 2, p.207

. Sketch-de-preuve, Nous procédons, pour chacune des règles (TR1) et (TR2), en montrant

. @bullet-la-chaîne, V al@N " si V al = unset et V ar est de la forme undef ined(E, N )

. @bullet-la-chaîne, V al@V ar " sinon

. Enfin, les trois règles suivantes correspondent à toutes les étapes d'après la première concaténation : uoiLabel(E, L, N + 1) :? not undef (E, V ar1); V al1 = unset

. Théorème and P. Soit, P ) sa traduction en réseau Booléen. Soit I 0 une interprétation de P , et I 0 , I 1 , I 2 , . . . l'orbite de I 0 par rapport à P . Alors S(I 0 ) ? sy S(I 1 ) ? sy S(I 2 ) ? sy, est l'unique trace de la dynamique synchrone de B(P )

. Preuve and P. Soit, ) le RB obtenu à partir de P par la traduction introduite dans [Ino11] et donnée dans la section 5.3. Soient I une interprétation de P et s l'état global de B(P ) tel que S(I) ? sy s . Soit v i ? var(P ) une variable propositionnelle de P, Par construction de B(P ), v i ? V . Nous montrons d'abord que s = S(T P (I))

S. Soit, S. Carte, S. De, and O. =. , Nous dénotons par A = {a 1 , o m } l'ensemble des opérateur logiques de S, par O AN D (resp. O OR , O N OT ) l'ensemble des opérateurs logiques AND de S (resp. OR, NOT) Pour une activité a i ? A de S, nous dénotons par req(a i ) (resp. stim(a i ), inh(a i )) les sources de l'ensemble des stimulations nécessaires (resp. stimulations, inhibitions) ciblant a i . Pour un opérateur logique o i ? O de S, nous dénotons par in(o i ) l'ensemble des noeuds (activités ou opérateurs logiques) à la source d'un arc logique ciblant o i, Nous montrons maintenant la proposition zsh :1 : command not found : :w Soient ? T RAD (S) la traduction de S en SBGNLog-AF, ? ON T O l'ensemble des axiomes ontologiques de SBGNLog-AF limités à ceux traduisant les relations is_a Soit ?(S) le programme défini par : ?(S), pp.1-18

. Finalement, At (S) le programme obtenu de ?(S) en supprimant la notion de temps de ce programme, Nous appliquons les trois étapes de transformation à ? At (S) pour obtenir le programme ? At (S) f

+. (. Comme-body, M n?1 = I n?1 , par définition de M n , body + (R ) ? M Comme body ? (R) ? I n?1 = ?, M n?1 = I n?1 et que pour tout variable propositionnelle v l , v l ? M n?1 ssi present

I. Pour-une-interprétation-de-herbrand and ?. , nous dénotons par S t (I) l'état global de B(S) correspondant à I au temps t : S t (I) = (b 1 , . . . , b n ) où b i = 1 si present(a i , t) ? I

S. Étant-donné-un-graphe-d-'influences and R. Le, S) modélisant S d'après les principes généraux (B1?7) comporte une fonction Booléenne par activité de S. Choisir une fonction Booléenne à appliquer à chaque pas de temps revient donc à choisir exactement une activité de S. Ce choix peut être encodé par la règle ASP suivante, ) : activity(A)}1 :? time(T ), t < tmax. (A19), p.1

L. Ensuite, A16?18) ne peut se faire que pour l'activité qui a été choisie au temps T . Ceci peut être encodé en ajoutant à chacun de ces axiomes la condition apply(A, T ), pour former les nouveaux axiomes suivants : present(A, T ) :? time(T ); time(T ), A, vol.next activity

. Apply-(-a, not hasM odulator(A); present(A, T )

. Apply-(-a, hasM odulator(A); not hasStimulator(A)

. Not-hasp-resentinhibitor, A21) present(A, T ) :? time(T ); time(T

. Apply-(-a, hasM odulator(A); hasP resentStimulator

. Enfin, une activité qui n'a pas été choisie au temps T conserve sa valeur au temps T , qui est le successeur de T : present(A, T ) :? time(T ); time(T )

@. Rad, S) est la traduction de S en SBGNLog-AF écrite en ASP

@. On, ensemble des axiomes ontologiques de SBGNLog-AF écrits en ASP

. Considérons-Également-un-entier, qui est la version ASP du programme logique ? T (T max ), et le programme

D. Alors and . La, même façon que les traces finies de la dynamique synchrone peuvent être calculées à partir de ? T r (S, T max ), les traces de sa dynamique synchrone peuvent être calculées à partir de ? T r (S, T max ) Nous avons la propriété suivante

C. Propriété, . 1s, ·. Sy, S. Sy, and . Tmax, T max un entier positif non nul, et {M 1 Alors l'ensemble {s ? sy S 1 (M i )

. Notons-qu-'à-deux-modèles-stables-de-?-t-r-(-s and . Peut-correspondre-la-même-trajectoire, En effet, chaque modèle stable M i contient un ensemble d'atomes {apply(a i,t , t) | a i,t ? V, 0 ? t < T max } tel que, pour deux modèles stables M i et M j donnés, il existe un entier t pour lequel a i,t = a j,t . Or choisir, à un instant t donné, c'est-à-dire à partir d'un état global donné, d'appliquer telle fonction d'un RB plutôt que telle autre n'influe pas sur la trace partant de cet état

. @bullet-p-=-{p-1, p m } l'ensemble des processus de la carte

@. O-=-{o-1, o q } l'ensemble des opérateurs logiques de la carte

@. Pour-chaque-processus-p and ?. , nous dénotons par reac(p) (resp. prod(p)) l'ensemble des réactifs (resp. produits) de p qui ne sont pas de type source ou puits ; par req(p) (resp. stim, inh(p)) l'ensemble des stimulateurs nécessaires (resp. stimulateurs, inhibiteurs) qui modulent p

@. Pour-chaque-opérateur-logique-o, nous dénotons par in(o) l'ensemble des noeuds (EPNs ou opérateurs logiques) sources d'un arc logique entrant sur o

S. Nous-dénotons-par and . {s-1, S r } l'ensemble valide d'histoires considéré, et par ?S = S?S S l'ensemble des EPNs qui sont dans une histoire

R. Nous-encodons-la-carte-considérée-en-un, S. Défini-par-le-triplet-(-?, and T. , où ? est l'ensemble des automates de ce RA, S l'ensemble de ses états globaux, et T l'ensemble de ses transitions locales, suivant l'encodage défini dans la section 6