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If the Earth was suddenly transported into the very cold regions of the solar system,

the water of our rivers and oceans would be changed into solid mountains. The air, or at

least some of its constituents, would cease to remain an invisible gas and would turn into a

liquid state. A transformation of this kind would thus produce new liquids of which we as

yet have no idea.

Antoine Laurent de Lavoisier, [de Lavoisier 1789].

THe elegance of Physics holds perhaps to its universality: few signs combined in an equation

can describe a vast range of seemingly independent phenomena, like Maxwell equations

can reach from light propagation to fridge magnets. Ultracold atoms gases epitomize this uni-

versality, not only because they allow for the study of fundamental quantum properties, but

also because their behavior can be largely tailored so as to mimic and help the understanding

of many quantum complex systems.

This thesis is dedicated to the FERMIX experiment, which focuses on this idea of quantum

simulation. We aim at cooling to ultra-low temperatures two atomic species in order to investi-

gate fundamental problems from quantum and condensed matter physics. In this introduction,

we �rst present the main properties and orders of magnitude that characterize cold atoms, be-

fore addressing two of the motivations that drove an increasing interest to the �eld over the last

decades. We brie�y review state of the art of Fermi-Fermi mixtures apparatus and introduce

the FERMIX experiment, which provided the data presented in this manuscript.

1



2 Introduction

1.1 What are ultracold quantum gases ?

Low temperatures alter the surrounding world: as imagined by Lavoisier, Earth would be very

different if it was to be brought to an average temperature below 0 � C. What Lavoisier could

not envision was that cold does not only produce new liquids, but also new states of matter,

where quantum mechanics prevails.

1.1.1 How cold is ultracold ?

At least two typical length scales are required to describe an ensemble of particles (see Fig.

1.1). The average interparticle distance d is a classical quantity, related to the spatial density

n. The thermal de-Broglie wavelength l dB accounts for the coherent length of the wave-packet

corresponding to each particle in a quantum description. It can be expressed as a function of

the particle mass m and the temperature T of the ensemble:

d = n� 1/3 l dB =

s
2p h̄2

mkBT
, (1.1)

where h̄ is the reduced Planck constant and kB is the Boltzmann constant.

The relevant quantity to distinguish between classical and quantum regime is the dimen-

sionless phase-space density (PSD), which accounts for the balance between interparticle dis-

tance and thermal de-Broglie wavelength:

PSD= l 3
dB/ d3 (1.2)

As long as the temperature is high enough for l dB to be negligible compared to d (PSD� 1),

wavepackets remain well separated from one another and a classical modeling of the ensemble

through a Maxwell-Boltzmann distribution provides an accurate description of the system. On

the other hand, if the temperature is decreased so low that l dB becomes comparable or larger

than d (PSD &1), the wavepackets interfere with one another and the quantum nature of the

system becomes crucial.

Integer spin particles, bosons, interfere constructively. At low temperature, a bosonic ensem-

ble undergoes a phase transition as a macroscopic amount of particles accumulate in the same

microscopic level, forming a Bose-Einstein condensate. Remarkably, this transition is purely

statistical and does not rely on interactions. Half-integer spin particles are called fermions.

Since the bosonic or fermionic nature of a system only depends on the spin of its particles,

it varies from one atomic isotope to the other: for instance 39K and 41K are bosons while 40K is

a fermion. By constrast with bosons, fermions interfere destructively, forbidding the simulta-

neous presence of two particles in the same state. At low temperature, this exclusion principle

forces the ensemble to form a Fermi sea, in which all accessible states are populated by one
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Figure 1.1: Distribution in a harmonic trap. T0 denotes the quantum degeneracy temperature. Left : At
high temperature, the de Broglie wavelength is small compared to the inter-particle distance. The en-
semble follows a classical Maxwell-Boltzmann distribution, corresponding to a Gaussian pro�le. Right :
At low temperature, the wave-packets interfere and the behavior of the system (solid line) becomes
quantitatively different from the classical prediction (dashed line): bosons accumulate in the trap ground
state and a form a Bose-Einstein condensate (downscaled by a factor 10), while fermions are distributed
among increasing energy levels up to the Fermi energy EF according to Pauli exclusion principle.

single particle, up to the Fermi energy EF. This fermionic transition from classical regime to

quantum degeneracy occurs gradually and, unlike for bosons, does not give rise to a phase

transition.

The temperature below which the system becomes ultracold, usually called condensation

temperature TC for bosons and Fermi temperature TF for fermions, depends on the particles

mass and the ensemble average density. With a light mass and high density, electrons in a

metal present a Fermi temperature around 30 000 K and are governed by quantum statistics at

room temperature. Atoms are much heavier and show consequently a much lower quantum

degeneracy temperature. In liquid phase, the critical temperature is reduced to few Kelvins, as

exempli�ed by Helium. As for quantum gases, the thin density further decreases the border of

the quantum domain and temperatures below 10 � 6 K must be reached to observe non classical

behaviors (see Fig. 1.2).

1.1.2 A brief history of cold atoms

The �rst manifestation of a macroscopic quantum behavior took place in 1911 with the dis-

covery of superconductivity by Kamerlingh-Onnes: as soon as mercury is cooled below 4.2 K,

its electrical conductivity vanishes with a steepness typical of phase transitions. Two decades
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Figure 1.2: Orders of magnitude: temperature (in Kelvin) of some reference systems in log scale. Illustra-
tions from top to bottom: "A boy and his atom" (electronic density image from a atomic pixel-art movie),
surface of the sun, Mojave Desert (hottest place on Earth), Vostok station (coldest place on Earth), liq-
uid Helium 4, Boomerang Nebula (coldest place in the Universe), dilution refrigerator, cold Rubidum
atoms, degenerate40K cloud obtained in F ERMIX. All pictures except the last one are under Creative
Commons license.
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later,Kapitza 1 and Allen and Misener 2 found that below 2.17 K, liquid Helium 4 becomes su-

per�uid as its viscosity suddenly disappears, bringing an additional demonstration of the sur-

prising properties that can arise at very low temperature.

Ultra cold bosons

In parallel to those experimental discoveries, following an earlier work by Bose 3 on black body

radiation, Einstein 4 derived the conditions for the Bose-Einstein condensation introduced in

the previous section. While Einstein doubted that this theory would have any practical ap-

plications (" It is a nice theory, but does it contain any truth ?", he wrote to Paul Ehrenfest before

leaving this �eld of research 5), it was found by London 6 and Tisza7 to be an explanation for

Helium 4 super�uidity.

Nevertheless, Einstein's seminal work did not include interparticles interactions which play

a crucial role in Helium 4 super�uidity, notably by limiting the condensed fraction to 10%

whereas an ideal gas is supposed to reach full condensation. Over the following decades, neu-

tral atoms in gaseous phase appeared to be a promising system for the realization of weakly

interacting BECs and �rst attempts focused polarized hydrogen, believed to be an ideal candi-

date thanks to its light mass. The cooling strategy relied on evaporative cooling of magnetically

trapped atoms to reduce temperature below few milliKelvins (see chapter 5), but quantum de-

generacy remained hindered by dipolar losses and a small atom scattering cross section which

forbid ef�cient evaporation.

In the mid '70s, the emergence of adjustable laser light provided the �eld with powerful

tools to manipulate atoms. The optical pumping imagined by Kastler provides a valuable way

to accumulate atoms in a selected internal state8. Lasers also allow to control the outer degrees

of freedom of atoms by acting on their internal degrees of freedom. Taking into account not

only energy exchange but also momentum exchange between light and matter, Einstein had

shown indeed that two radiative forces apply on an illuminated atom 9: cycles of absorption /

spontaneous emission result in a dissipative radiation pressure, pushing the atom along the di-

rection of the beam, while cycles of absorption / stimulated emission give rise to a conservative

dipole potential, proportional to the light intensity.

Those effects allow for a very ef�cient cooling of atoms 10 and ions11, as soon illustrated

by the iconic Magneto-Optical Trap (MOT) 12. Together with forced evaporative cooling, they

gave rise in 1995 to the �rst Bose-Einstein condensation of Rubidium 87 13 and Sodium 2314.

Since then, �fteen bosonic isotopes have been cooled down to degeneracy: hydrogen15, all

1[Kapitza 1938]
2[Allen and Misener 1938]
3[Bose 1924]
4[Einstein 1924]
5[Pais 2005]

6[London 1938]
7[Tisza 1938, Tisza 1947]
8[Kastler 1950]
9[Einstein 1917]
10[Hänsch and Schawlow 1975]

11[Wineland and Dehmelt 1975]
12[Raabet al.1987]
13[Anderson et al.1995]
14[Davis et al.1995a]
15[Fried et al.1998]
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Figure 1.3: BCS-BEC crossover. As the scattering lengtha describing the interaction between two
fermionic species (red and blue) is varied from � ¥ to + ¥ , the system evolves through the BCS-BEC
crossover, forming successively a non interacting Fermi gas (1/ kFa ! � ¥ , where kF is the Fermi
wavevector of the gas), a correlated super�uid of pairs (BCS limit), a strongly interacting ensemble
(unitary limit) and a non interacting Bose-Einstein condensate of molecules (1/ kFa ! + ¥ ).

alkali metal but Francium, two earth alkali (Calcium, Strontium), a noble gas (metastable He),

a transition metal (Chromium) and three Lanthanides (Ytterbium, Erbium, Dysprosium). BEC

of quasi-particles such as magnons16 and polaritons 17 have also been reported.

In addition to the quantum phase transition, many spectacular effects related to phase co-

herence were observed in BEC (for a review, see for instance [Ketterleet al. 1999]). Owing to

their wave nature, two BECs can interfere with one anther, resulting in the formation of mat-

ter wave interferences18. The super�uid behavior, induced by inter-particle interactions, has

remarkable manifestations, such as the appearance of vortices caused by the quantization of

circulation 19 or the existence of critical velocities, below which an impurity moving at constant

speed can not dissipate energy but rather experience a frictionless environment20. All these

effects have been observed experimentally.

Ultra cold fermions

Using the same cooling techniques, several groups tried to bring to degeneracy fermionic iso-

topes21, the cooling of which is all the more challenging as Pauli principle forbids collisions

between indistinguishable particles and prevents evaporation to low temperatures of spin-

polarized ensembles. This dif�culty could be overcome either by sympathetic cooling, where

a bosonic cloud is actively evaporated and thermalises the fermionic sample to low temper-

atures22 or by the simultaneous cooling of two distinct spin-states of the same species 23, and

the �rst degenerate gas of fermionic 40K was obtained four years after the �rst BEC 24. Since

16[Nikuni et al.2000, Demokritov

et al.2006]
17[Amo et al.2009, Balili et al.

2007]
18[Ketterle 2002]

19[Matthews et al.1999],

[Madison et al.2000],

[Abo-Shaeeret al.2001]
20[Raman et al.1999, Onofrio et al.

2000, Fedichev and Shlyapnikov

2001]
21[Cataliotti et al.1998]
22[Schrecket al.2001]
23[Demarco and Jin 1998]
24[DeMarco and Jin 1999]
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then, fermionic quantum degeneracy has also been reached for Lithium 6, metastable Helium

3, three Lanthanides (Dysprosium 161, Erbium 167, Ytterbium 173) and the alkaline earth ele-

ment Strontium 87.

Since atoms are neutral, most of the interparticle interactions are short-ranged. Interactions

between fermions display a remarkable universal behavior. At low energy, elastic collisions

between two particles can be essentially described by a single scalar parameter, thescattering

length, usually noted a. For fermions, this two body quantity is suf�cient to account for the

whole interacting many-body problem. By contrast, additional parameters need to be consid-

ered to treat an interacting bosonic system beyond mean-�eld approaches. The universality of

fermions appears clearly in the unitary regime, where the scattering length diverges and sat-

urates the strength of the interaction. At zero temperature, the chemical potential mand all

corresponding thermodynamical properties 25 are then related to the only available scale set by

the Fermi energy EF and the strongly interacting ensemble scales like an ideal gas:

m¥ = x � EF, (1.3)

where x ' 0.37 is a universal parameter called the Bertsch parameter, named after Georges

Bretsch, professor of the Institute of Nuclear Theory, University of Washington, who offered

600$ reward for the determination of the sign of x26.

The discovery of Feshbach resonances and their adaptation to cold atoms was a turning

point for the �eld in general and Fermions in particular. Feshbach resonances provide an ex-

perimental way to tune the strength of interactions at will, simply by raising a magnetic bias:

the scattering length diverges at resonant values of the �eld, and can thus be adjusted to arbi-

trary values (see section A.4.5). Initially observed on bosonic systems27, Feshbach resonance

gave rise to fast losses due to the concomitant enhancement of inelastic collisions. Fortunately,

fermions are protected from such three-body losses by the Pauli exclusion principle 28.

In addition to enabling the manifestation of the mentioned above universality, Feshbach res-

onances opened the way to the study of fermionic super�uidity through the so-called BCS-BEC

crossover29 (see Fig. 1.3). While a non-interacting Fermi gas forms a Fermi sea as described be-

fore, a small attraction between particles gives rise to weakly coupled pairs with super�uid be-

havior, as described by the Bardeen-Cooper-Schrieffer theory30. When the coupling strength in-

creases, pairs become more tightly bounded, with maximal correlation as the scattering length

diverges in the unitary limit 31. In this regime of strong interactions, a super�uid behavior ap-

pears as soon as the temperature decreases below� 17% of the Fermi temperature32, giving

rise to vortices33 and critical velocity 34 as in the case of bosons. If the coupling strength is fur-

25[Chevy and Salomon 2012]
26[Baker 1999]
27[Inouye et al.1998]
28[Loftus et al.2002, Petrovet al.

2004]

29[Zwerger 2012]
30[Bardeen et al.1957]
31[Zwierlein et al.2004, Zwierlein

et al.2005b]
32[Ku et al.2012]

33[Zwierlein et al.

2005a, Zwierlein et al.2006]
34[Miller et al.2007],

[Delehaye et al.2015]
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Figure 1.4: Quantum simulation. The two pictures were realized by Germain Morisseau.
A complex real system (metallic mercury) presents measurable properties (vanishing resistivity at �nite
temperature). In physics, the system is described by a simpli�ed theoretical model, which can be ex-
pressed in mathematical form (interacting electrons (in red) in a perfect atomic lattice (in blue)). The
reliability of the model is evaluated by comparing its predictions to the properties actually measured
during experiments. It might be mathematically impossible to reach analytical predictions, and a com-
plementary route is to simulate the model, i.e. to realize a synthetic system that follows precisely the
rules of the model and to compare its properties to that of the real system. If both systems do not exhibit
the same behavior, the model does not contain the elements required to describe the system of study.
Quantum simulation suggests to engineer a physical system to perform this veri�cation, and cold atoms
provide unprecedented tools to do so. In our example, fermionic atoms (in red) mimic the behavior of
the electrons, the atomic lattice is replaced by an optical lattice (in blue) and the interaction between
atoms is tuned so as to match that of electrons.
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ther increased, fermions pair in bosonic molecules that have decreasing interactions with one

another and condense if the temperature is low enough 35.

1.2 Why are cold atoms cool ?

The program that Fredkin is always pushing, about trying to �nd a computer simulation

of physics, seem to me to be an excellent program to follow out. [...] And I'm not happy

with all the analyses that go with just the classical theory, because nature isn't classical,

dammit, and if you want to make a simulation of nature, you'd better make it quantum

mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

Richard Feynman, [Feynman 1982].

Cold atoms constitute default-free and tailorable systems that can address a vast class of

problems. At the same time, if cold atoms experiments require a broad range of technologies

from ultra-high vacuum to laser optics (and sometimes plumbing), they remain at manageable

size and allow for an extensive knowledge of the apparatus. This unique balance between

accuracy and handling makes cold atoms a privileged platform for many applications.

1.2.1 Quantum simulation

If solving theoretical equations describing a many body system can be extremely challenging,

performing a quantum numerical simulation on a classical computer is quickly impossible. A

fully quantum treatment of a simple 10x10x10 array of spin 1/2 particles requires the simulta-

neous manipulation of 2 1000 coef�cients, the storage of which necessitates more bits than the

number of atoms in the Universe. As suggested by Feynman, one way to circumvent this is-

sue is to rely on physical simulation: a tailorable system adjusted so as to mimic the behavior

of a complex problem, allowing its study (see Fig. 1.4). To simulate quantum dynamics, the

statistics of the particles and the shape of the Hamiltonian of the system under scrutiny have

to be reproduced. Owing to their large degree of adaptability, cold atoms have proven to be

able to address a broad variety of situations 36, offering tools to tackle complex problems from

condensed matter systems to particle physics, or even black holes physics37!

Tunable interactions

As mentioned before, Feshbach resonances give access to the experimental tuning of interac-

tions between two particles. In the weakly attracting limit, cold fermions form a super�uid

35[Greiner et al.2003, Regalet al.

2003, Zwierlein et al.2003]

36[Jaksch and Zoller 2005, Bloch

et al.2012]

37[Garay et al.2000, Lahavet al.

2010]
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of correlated pairs analogous to superconducting electrons in a metal. At unitarity, they allow

for the study of strongly interacting degenerate systems, such as neutron stars38, where nucle-

ons are in a deep degenerate regimeT = 10� 3 � TF despite a temperature around ten million

Kelvin. It is also possible to preclude collisions by setting the scattering length to zero, thus

realizing an ideal gas without interactions.

Adjustable population imbalance

With optical pumping and selective spin removal (see section 5.1.2), cold atoms experiments

can adjust the population ratio between spin states within the atomic sample. This feature

allowed the study of the Clogston-Chandrasekhar limit 39, which states that BCS-pairing in a

Fermi-Fermi mixture is destroyed by the mismatch of chemical potentials 40. Such population

imbalance can also give rise to speci�c super�uid states, such as the so called Fulde-Ferrell-

Larkin-Ovchinnikov (FFLO) phase 41.

Designable trapping potential

The potential landscape in which the atoms evolve can also be designed: as the conservative

optical dipole force is proportional to the light intensity, any interference pattern shone on the

ensemble will translate in a corresponding energy shift.

Inspired by the periodicity of crystalline structures, optical lattices allowed for the direct

study of the Hubbard model, where interacting atoms can hop from one site to its nearest

neighbors. First works focused on bosons42: as the ratio between interaction and tunneling is

increased, particles tend to localize to minimize their energy and the passage from a delocal-

ized super�uid to such a Mott insulator state corresponds to a phase transition. There works

were soon followed by the study of Fermi-Hubbard 43 and Bose-Fermi Hubbard models44. The

Lorentz covariance of the Bose-Hubbard Lagrangian at integer �lling even allowed for the ob-

servation of a massive Higgs45 mode, amusingly released very few weeks before the CERN

announcement. In parallel, the improvement of data acquisition techniques lead to the emer-

gence of dynamical single site imaging, equivalent to the direct observation of single electrons

in a condensed matter system46. Such techniques allow for instance for the measurement of all

correlation functions, providing access to full counting statistics 47.

38[Gezerlis and Carlson 2008]
39[Clogston 1962, Chandrasekhar

1962]
40[Ozawa et al.2014]
41[Fulde and Ferrell 1964, Larkin

and Ovchinnikov 1965]

42[Greiner et al.2002]
43[Köhl et al.2005, Strohmaier

et al.2007, Jordenset al.

2008, Schneideret al.2008]
44[Gunter et al.2006, Ospelkaus

et al.2006]

45[Endres et al.2012]
46[Bakr et al.2009, Shersonet al.

2010, Haller et al.2015, Parsons

et al.2015, Cheuket al.2015]
47[Levitov et al.1996]
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Controllable disorder

While optical lattices form perfectly periodic crystalline structures (eventually limited by phase

noise), cold atoms also provide a way to study the effect of disorder 48. Notably, the inability of

a wave to propagate in certain disordered potentials (Anderson localization 49) was observed

in a quasi random lattice generated by the overlap of two beams with incommensurate wave-

lengths50 or by a speckle pattern51, as well as in the kicked-rotor equivalent system 52.

Dimensionality

As will be seen in chapter 6, dimensionality plays a crucial role in many physical phenomena.

For instance, the above mentioned Anderson localization presents a very different behavior in

1D (�xed localization length set by the particle's mean free path), 2D (exponential dependence

of the localization edge with the particle's momentum) and in 3D (existence of a mobility edge

above which localization vanishes). Using strong con�nements, cold atoms experiments al-

low for the realization of systems in reduced dimensions and the simulation of corresponding

situations.

Combining the previous control knobs, cold atoms have been used to investigate the equa-

tion of states of thermodynamics ensembles in various conditions. The equation-of-state of

a system is a relation between density (or pressure) and chemical potential, temperature and

internal energy. It constitutes a fundamental statistical tool, completely characterizing the equi-

librium properties of the equivalent class of systems, regardless of their nature. The equation of

state has been measured for dilute bosons as a function of temperature in three dimensions53,

in two dimensions 54 and in one dimension 55. The study of ultracold gases in more than three

dimensions is now considered 56, considering internal degrees of freedom of the atoms as a

discrete extra dimension.

For fermions in three dimensions, the equation of state has been obtained as a function of

temperature at unitarity 57, as a function of interaction strength at zero temperature 58 and as a

function of spin imbalance 59. The equation of state of the 2D Fermi gas through the BEC-BCS

crossover was also recently reported60.

48[Fallani et al.2008],

[Gurarie et al.2009]
49[Anderson 1958]
50[Casati et al.1989], [Roatiet al.

2008], [Schreiberet al.2015]
51[Billy et al.2008],

[Kondov et al.2011]
52[Grempel et al.1984, Chabéet al.

2008, Manaiet al.2015]
53[Ensher et al.1996, Gerbieret al.

2003, Gerbieret al.2004]
54[Hung et al.2011, Rathet al.

2010, Yefsahet al.2011]
55[Van Amerongen et al.

2008, Armijo et al.2011]
56[Boada et al.2012, Celiet al.

2014, Zenget al.2015, Priceet al.

2015]
57[Thomas et al.2005, Stewart

et al.2006, Luoet al.

2007, Nascimbeneet al.

2010, Horikoshi et al.2010]
58[Shin et al.2008, Bulgac and

Forbes 2007, Navonet al.2010]
59[Bausmerth et al.2009, Chevy

2006, Loboet al.2006, Zwierlein

et al.2006, Navonet al.2010]
60[Boettcher et al.2016, Fenech

et al.2016]



12 Introduction

Taking advantage of the different optical response of different atomic species, it is also possi-

ble to engineer a species-dependent con�nement so as to realize a mixed dimensional system,

where one sub part explores more dimensions than the other. This enables for instance the

study of the Kondo effect, where localized (0D) impurities are immersed in a 3D mixture of

two spin states61, mimicking the interaction of itinerant fermions with magnetic impurities.

More examples are detailed in the last chapter of this manuscript, which is dedicated to the

study of 2D-3D systems.

Long range interaction

In addition to contact interactions, cold atoms also offer several opportunities to study the

in�uence of long-range potentials by engineering inter-particle dipolar forces 62. While weak

dipolar gases can simply be obtain as spinor BECs with small scattering length 63, stronger

interactions can be reached by using highly magnetic atoms such as Chromium, Erbium or

Dysprosium 64, polar hetero molecules65 or Rydberg states66.

The existence of such long-range forces changes drastically the behavior of the gas, inducing

speci�c dynamics and instabilities 67. Those gases also allow for the simulation of a wider range

of problems inspired by condensed matter systems, such as the ferro�uid-like Rosensweig in-

stability 68, where horn-shaped crystal droplets self-organize in triangular structures.

Arti�cial gauge �elds

Since atoms are neutral, they do not experience a Lorentz force when immersed in a magnetic

�eld. Several experimental techniques have been found to mimic the behavior of charged par-

ticles such as electrons69. One way to do so is to exploit the similarity between the Lorentz

and the Coriolis forces, both proportional and orthogonal to the particle velocity, which can be

done by stirring the sample 70. Another way is to imprint on the particle the same (Berry) phase

as the one that would have been accumulated over the trajectory through the �eld (see section

4.3). This can be done by laser assisted transitions, as demonstrated both in bulk phase71 and

in optical lattices 72. Notably, these methods allowed for the study of quantum Hall physics 73

and opened the way to the realization of the Hofstadter butter�y 74, a fractal organization of the

electronic energy levels as a function of the magnetic �ux per plaquette. The equivalent mag-

netic �eld reached in these experiments exceeds the values obtainable on real systems, which

would require a �eld of � 105 T in a metallic lattice.

61[Kondo 1964, Baueret al.2013]
62[Santos 2010]
63[Stamper-Kurn and Ueda 2013]
64[Griesmaier 2007]
65[Ni et al.2008]
66[Weimer et al.2008, Pohlet al.

2010b, Schaußet al.2012]
67[Lahaye et al.2009]
68[Saito et al.2009, Kadauet al.

2016]
69[Dalibard et al.2011]
70[Madison et al.2000]

71[Lin et al.2009a]
72[Aidelsburger et al.2011, Struck

et al.2013]
73[Mancini et al.2015]
74[Hofstadter 1976, Aidelsburger

et al.2013, Miyake et al.2013]
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The same techniques can be applied to generate non-Abelian gauge �elds75, extending the

U (1) symmetry group corresponding to a magnetic �eld to a SU(2) or SU(3) symmetry. Such

perspectives open the way to the quantum simulation of spin-orbit coupling 76, or even of the

standard model of particle physics 77.

1.2.2 Metrology and applications

Within 25 years of existence, the �eld of cold atoms has given rise to some of the most precise

measurements ever performed. Taking advantage of the very narrow line-width of atomic tran-

sitions, several groups realized atomic clocks with unprecedented accuracy 78, down to 10 � 18,

paving the way to a new de�nition of the time unit 79. Atomic clocks are already widely used

as time standards, and the launching of project P HARAO will soon provide a direct worldwide

synchronization, besides allowing the fundamental study of quantum mechanics and general

relativity 80. Cold atoms are also used for precision measurements of fundamental constants,

such as the �ne structure constant 81, Cavendish constant82 or the proton radius 83.

The maturity of the �eld also appears through the emergence of cold atom technologies

out of the lab, as epitomized by the Quantum Manifesto, a call upon Member States and the

European Commission to launch a   1 billion initiative in quantum technology 84. Several start-

ups85 already commercialize plug-and-play sensor systems based on cold atoms to detect weak

magnetic �elds, probe local gravity or serve as gyroscopes.

1.3 Ultracold fermionic mixtures

Our experiment is dedicated to the study of fermionic mixtures. The simultaneous manipu-

lation of two different species is challenging, but allows for the realization of situations that

cannot be addressed by a simple spin mixture. For instance, atoms can be species-selectively

con�ned 86 or assembled in polar molecules. The mass imbalance also results in a mismatch

between Fermi surfaces, giving rise to a richer low-temperature phase diagram as mentioned

in the previous section.

We work with two fermionic alkali, 6Li and 40K. Because of their single electron-like struc-

ture, alkali atoms are easier to address with laser light than most other atoms and constitute

a privileged choice for cold atoms experiments. Among all alkali, 6Li and 40K are the only

two stable fermionic isotopes; besides, both atoms show particularly interesting properties:
6Li exhibits a very broad Feshbach resonance around 800 G and a large background scattering

75[Osterloh et al.2005, Jacobet al.

2007]
76[Stanescuet al.2007, Wanget al.

2012, Cheuket al.2012]
77[Ashery 2012]

78[Bloom et al.2014, Nicholson

et al.2015]
79[Riehle 2015]
80[Laurent et al.2015]
81[Bouchendira et al.2011]

82[Rosi et al.2014]
83[Pohl et al.2010a]
84[QuantumManifesto 2016]
85Muquans, ColdQuanta, iXBlue
86[Onofrio and Presilla 2004]
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length, while 40K presents an inverted hyper�ne structure which makes most of its trappable

spin-state stable against collisions. As of today, there are �ve (soon six) fermion-fermion exper-

iments in the world and all of them rely on those two species, with different cooling strategies.

1.3.1 Fermi-Fermi mixtures over the world

Pioneer works were performed in the group of Kai Dickmann, �rst in Munich (Germany) and

later in Singapore. A triple MOT of 6Li, 40K and 87Rb is loaded87 and transported to a Ioffe-

Pritchard trap, where fermions are sympathetically cooled by the forced RF-evaporation of

Ribudium 88. The system has been used to produce bosonic molecules in rovibrational ground

state89 and to investigate 6Li- 40K Feshbach resonances90.

In Amsterdam (Netherlands), the group of Jook Walraven built an apparatus with two 2D-

MOT 91, one for 6Li and one for 40K. Potassium atoms were evaporatively cooled to degeneracy,

�rst in a magnetic trap, then in an optical trap. The system allowed the thorough study of

Feshbach resonances92, but was closed in before Lithium degeneracy could be attained.

In Boston (USA), the group of Martin Zwierlein implemented two Zeeman slowers to cap-

ture simultaneously 6Li and two Potassium isotopes, 40K and 41K. The forced evaporation of

the bosonic 41K in a magnetic trap cools all three species to degeneracy93. The experiment

is now dedicated to the production of Na-K molecules in rovibrational ground state to study

dipolar effect 94.

In Innsbruck (Austria), the group of Rudi Grimm and Florian Schreck uses a single Zeeman

slower to address simultaneously 6Li, 40K and 88Sr. Two species of the three species can be

selectively captured in a MOT and loaded in an optical dipole trap. Double degeneracy was

reached by performing a forced evaporative cooling on Lithium at Feshbach resonance 95. The

resulting gas presents a strong population imbalance in favor of Lithium, and was used to

study the collisional stability of the mixture 96. Focusing on the strongly interacting limit, the

group observed the hydrodynamic expansion of the gas 97 and the appearance of repulsive

polarons, Potassium impurities dressed by surrounding Lithium atoms 98. In this regime, they

also reported the measurement of the predicted strong atom ( 40K)-dimer ( 6Li- 40K) attraction 99.

In Shanghai (China), the group Yuao Chen is currently building a new apparatus with a

design similar to ours (see below) and addresses 6Li,40K and 41K. Bose-Einstein condensation

was reached for 41K and the system has been proven to be able to address fermionic isotope as

well.

87[Taglieber et al.2006]
88[Taglieber et al.2008]
89[Voigt et al.2009]
90[Costa et al.2010]
91[Tiecke et al.2009]

92[Tiecke et al.2010a, Tieckeet al.

2010b]
93[Wu et al.2011]
94[Park et al.2012, Parket al.2015]
95[Spiegelhalder et al.2010]

96[Spiegelhalder et al.2009]
97[Trenkwalder et al.2011]
98[Kohstall et al.2012]
99[Levinsen and Petrov 2011, Jag

et al.2014]
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1.3.2 The FERMIX experiment: a mixture of fermions in mixed dimensions

In Paris, our group, today led by Tarik Yefsah, Frédéric Chevy and Christophe Salomon, has

started a new 6Li- 40K machine in 2008. We use a Potassium 2D-MOT and a Lithium Zeeman

slower to load a double species MOT100. The atoms are magnetically transported to a science

cell, where forced evaporation is performed �rst magnetically, then optically, and we reached

quantum degeneracy for 40K for the �rst time in France in July 2014. In the past, the apparatus

was notably used to study the formation of heteronuclear molecules 101. In the future, one of

the main objective of the experiment is to realize mixed dimensions by con�ning selectively

one species while leaving the other one essentially free. To that end, Lithium and Potassium

are particularly well-suited, as their strong mass imbalance helps the selective con�nement.

1.4 Outline of this thesis

The thesis presents the work performed during my PhD, from September 2012 to December

2015. Our main achievements are twofold: we produced a deeply quantum degenerate Potas-

sium sample, notably by developing a new cooling scheme 102 based on optical gray molasses,

and we simulated the dynamics of harmonically con�ned non-interacting Weyl particles with

Lithium atoms in a quadrupole trap 103.

Chapter 2 : The FERMIX experiment.

The design, construction and maintenance of the apparatus constitute an important part

of the work accomplished on a daily basis.

In this chapter, we present the FERMIX experiment, its typical performance and accessible

knobs so as to give the reader an overview of the possibilities offered by the system and

to serve as reference for future developments. We focus on recent improvements of the

apparatus and notably the implementation of the so-called L -enhanced gray molasses,

a new sub-Doppler cooling scheme which allowed us to reach a phase space density of

10� 4 for both species within the MOT chamber.

Chapter 3 : Quasi-thermalization of fermions in a quadrupole trap.

At low temperature, spin-polarized 6Li atoms behave like an ideal gas, without any in-

teraction. Yet we observe that, in a linear potential such as a quadrupole trap, the sample

relaxes towards a steady state as the energy imparted on its center-of-mass is transferred

to the inner degrees of freedom of the cloud. This energy redistribution relies on the

non-separability of the con�ning potential but the momentum distribution in the station-

ary state is nevertheless strongly anisotropic, with inhomogenous effective temperatures

which illustrates the non-Boltzmann nature of the distribution.
100[Ridinger et al.2011a]
101[Ridinger et al.2011b]

102[Fernandeset al.2012, Sievers

et al.2015]

103[Suchet et al.2016]
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This chapter is dedicated to the experimental, numerical and theoretical study of this

phenomenon.

Chapter 4 : Analog simulation of Weyl particles in a harmonic trap

Weyl fermions are massless particles which appear as theoretical elementary particles as

well as low-lying excitations in condensed matter systems. By means of a canonical map-

ping, we show that the behavior of such non interacting Weyl particles in a harmonic trap

is equivalent to that of cold fermions in a quadrupole potential, which we studied before.

We translate our previous results into predictions for the dynamics of a Weyl distribution:

unlike massive particles, Weyl particles do not oscillate endlessly in a harmonic trap but

relax towards a non-Boltzmann distribution. Analytical results are derived and predict

anisotropic effective temperature even in an isotropic con�nement. We also translate in

the language of cold atoms speci�c properties of relativistic particles, such as the Klein

paradox, equivalent to Majorana losses.

Chapter 5 : Evaporative cooling to quantum degeneracy

Going back to cooling to ultralow temperatures, we present the forced evaporation which

allows us to reach deep quantum degeneracy for 3 � 105 Potassium atoms in two spin

states at 62 nK, corresponding to 17% of Fermi temperature. Preliminary results concern-

ing the loading of Lithium atoms in the optical trap and numerical simulations for the

simultaneous evaporation of both species are also presented. We also review standard

techniques required to manipulate and monitor a sample of cold atoms and to use it to

calibrate the experimental apparatus.

Chapter 6 : Effective long range interactions in mixed dimensions

Taking advantage of the presence of two species, the FERMIX experiment should be able to

address systems in mixed dimensions, where Potassium atoms are con�ned in 2D planes

while Lithium atoms remain essentially free. We study theoretically such a situation and

show how the presence of a 3D gas gives rise to effective long range interactions, medi-

ated from one plane to the other. We suggest an experimental veri�cation of this effect

by measuring the beat-note of coupled oscillations of 2D-layers con�ned in neighboring

sites of an optical lattice.



Chapter

2 The FERMIX experiment

Contents

2.1 Vacuum chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Optical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Atomic sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Lithium Zeeman slower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Potassium 2D-MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 MOT and CMOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 L enhanced D1 gray molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Experimental implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Spin polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Magnetic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Magnetic quadrupole trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.2 Magnetic transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.3 Magnetic bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Security system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Radio Frequency / Microwave system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 High power lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10.1 532 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10.2 1064 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.11.1 Absorption imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.11.2 Time-of-�ight expansion of non-interacting particles . . . . . . . . . . . . . . . . . 47

2.11.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.12 Computer control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

17



18 The FERMIX experiment

THe construction and maintenance of the experimental apparatus represents an important

part of the work carried out over the last four years. As I started my Ph.D., the magnetic

transport had just been implemented in its current version but showed a disappointing ef�-

ciency due to the high initial temperature of the atomic cloud. I contributed to the conception

and development of a new cooling scheme, the so called D1 gray molasses, which signi�cantly

improved this ef�ciency and eventually allowed the realization of a degenerate 40K cloud. I

also took part in the construction of the radio-frequency (RF) system for evaporation and popu-

lation transfer, installed the high power lasers setup, implemented the high �eld power supply

and worked on the construction of the security system.

The objective of this chapter is to give a general overview of the system, to describe the main

steps of the experimental sequence and to show explicitly which knobs are easily accessible

and tunable1. The last steps of cooling, allowing the realization of a quantum degenerate gas

of Potassium, are described in chapter 5 together with our calibration methods.

As a convention in the �gures, analog controls over the experiment are indicated in bold

font and digital channels are shown in italic font. For the sake of clarity, most of the technical

references are presented in annex A.5. The standard values of the main parameters are also

recorded to present typical orders of magnitudes that are dealt with and to serve a reference

for future developments of the experiment.

The FERMIX experiment in installed two levels below the ground, limiting all perturbations

from the outside. It is composed of three separate tables, isolated by opaque panels and con-

nected only through optical �bers, in order to avoid any stray light. Two tables are dedicated

to the laser system, to generate the required laser beams, while the third one hosts the vacuum

chambers (see Fig. 2.1).

A typical sequence lasts about 60 seconds. A double species magneto optical trap (3D-MOT)

is loaded during 18 s, accumulating few 10 9 Lithium 6 and Potassium 40 atoms coming from a

Zeeman slower and a two dimensional magneto optical trap (2D-MOT) respectively. After the

atomic sources are turned off, the 3D-MOT is magnetically compressed to increase the spatial

density. A brief phase of optical molasses allows for an important cooling, leading to a signi�-

cant increase of the phase space density. The atoms are optically pumped to low-�eld seeking

states in order to be transferred into a magnetic trap. An ensemble of coils allow for an adia-

batic displacement of the con�ning potential, transporting the atoms from the MOT chamber

to a science cell, 65 cm away. While a blue detuned optical plug reduces Majorana losses, an RF

evaporation is performed until the cloud is cold enough to be loaded into an optical trap. An

optical evaporation cools the sample further down to deep degeneracy, producing a cloud of

3 � 105 Potassium atoms in two spin states as cold as 62 nK, at 17% of the Fermi temperature.

Eventually, a resonant beam is sent on the cloud and the image of its shadow is projected on a

CCD camera, recording the spatial distribution of the atoms.

1A more detailed description of the construction of the apparatus can be found in the previous thesis of the
group [Ridinger 2011, Salez 2011].
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Figure 2.1: Overall picture of the vacuum chambers. The main parts are : the atomic sources (Li Zeeman
slower and K 2D-MOT), the MOT chamber, the magnetic transport and the science cell.

2.1 Vacuum chambers

As the atoms are trapped and cooled down, they form an extremely sensitive system. Any

background impurity colliding with the cloud would lead to losses as the atoms would be

kicked out of the trapping potential, whose typical depth is between hundreds of mK for a MOT

and few � K at the end of evaporation [Van Dongen et al. 2011]. An ultra-high vacuum (UHV),

below 10� 9 mbar and typically around 10 � 12 mbar is therefore required, as the background

pressure will ultimately limit the lifetime of the ensemble. Since evaporative cooling can extend

to several dozens of seconds, it is crucial that the surrounding environment generates as little

perturbation as possible.

Some parts of the system are more sensitive than others and several differential pumping

stages are used to improve the vacuum quality in the most critical regions. By limiting the

ballistic �ow of particles coming from higher pressure regions, important pressure gradients

can be obtained.

The atomic sources (Lithium Zeeman slower and Potassium 2D-MOT) are obvious sources

of pollution, all the more so as they require a moderate ( � 100� C) to strong ( � 500� C) heating

on regular operation to generate satisfying �uxes. Three 20 L/s Varian ions pumps are located

close to the lithium oven and one is dedicated to the potassium 2D-MOT. All-metal UHV valves

can isolate atomic sources from the rest of the experiment, especially when a stronger heating

is needed to regenerate the sources.

The MOT chamber is an octagonal chamber with optical windows on each face, top and

bottom. The pumping is achieved by a 40 L/s Varian ion pump and a St707 non evaporable

getter to adsorb H 2, H2O, CO, and CO2. The lifetime measured in the MOT is about 5 seconds.

The magnetic transport is an L-shaped elbow, which turning point is 30.95 cm away from
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Figure 2.2: Energy levels of lithium and potassium. Note that 40K has an inverted hyper�ne, rendering
its magnetic trappping easier. Values are taken from [Gehm 2003] and [Tiecke 2010].

Lithium 6Li d Transition d Potassium 40K
6Li crossover + 116MHZ D2 Prcp -593 MHz 39K crossover
Zeeman Prcp -76G D2 Prcp -3 G 2D MOT Prcp
Zeeman Rep -76G D2 Rep -2G 2D MOT Rep

3D MOT Prcp -4.5 G D2 Prcp -2.9G 3D MOT Prcp
3D MOT Rep -2.6 G D2 Rep -5.2G 3D MOT Rep

Imaging 0 D2 Prcp 0 Imaging
D1 Prcp +4 G D1 Prcp +2.3G D1 Prcp

D1 Repump +4 G D1 Rep +2.3G D1 Repump

Table 2.1: Optical transitions of 6Li and 40K. The Potassium master laser is locked on 39K crossover
because this isotope is predominant in the spectroscopy cell, since its natural abundance of is over 90%.
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the MOT center and 33.75 cm away from the science cell center. As the atomic sources, it can be

isolated from the MOT chamber with an all-metal valve. The transport is connected to two ion

pumps with �ows of 20 L/s and 40 L/s and coated with Titanium-Zirconium-Vanadium alloy,

a getter technology developed at CERN. Two additional strips of St707 getter are also installed.

The science cell is a glass parallelepiped of 23 mm x 23 mm x 10 mm designed for the

requirements of the experiment and manufactured by Hellma GmbH. The glass walls, 4 mm

thick, are made of uncoated Vycor, a fused silicon dioxide. It allows a much better optical

access than the MOT chamber and bene�ts from the L-shape of the transport to reduce the

ballistic trajectories of background particles. The ultra-low vacuum allows for lifetimes up to

100 seconds. To avoid magnetic disturbance, the closest ion pump is shielded in a mu-metal

box manufactured by Atelier Soudupin.

2.2 Optical system

Laser light has proven to be an extremely versatile tool, allowing for the trapping, cooling and

imaging of atoms. Cycles of absorption / spontaneous emission result in a radiative pressure

exerted on the atoms while and cycles of absorption / stimulated emission lead to a conserva-

tive dipole force. Laser light also allows for the manipulation of the inner degrees of freedom

by optical pumping. To address atomic transitions, it is essential to generate laser beams with

adequate frequency, power and polarization; and half of the system is dedicated to this task.

Most beam can be injected in a Fabry-Perot cavity (ThorLabs SA-200-5B, FSR : 1.5 GHz) simply

by �ipping a mirror, allowing for an easy monitoring which has proven to be extremely useful

to diagnose some issues2.

The technical details are presented in annex A.5. Logical schemes of both Lithium and Potas-

sium optical tables are depicted in Fig 2.3 to summarize beam paths and computer controls.

Lithium and Potassium are both alkali atoms and as such they display the same simple

atomic structure (see Fig. 2.1 and the main parameters summarized in table 2.2). Since the

S1/2 ground state displays two hyper�ne levels, almost every beam has to be doubled by a

repumping light, to avoid the accumulation of the atoms in an un-addressed state. All in all,

ten beams are shaped for each atomic species.

The D2 transition, from the ground S1/2 level to the excited P3/2 level, is the most commonly

used. Its bandwidth G/2 p � 6 MHz is almost the same for both atoms and the saturation in-

tensity, Isat, on the order of milliwatts per centimeter squared, only differs by the optical wave-

lengths. The strategy for generating laser beams addressing the D2 line is the same for both

2For instance, an important instability was found as a back re�ection from one beam was accidentally injected
in the TA amplifying another beam, resulting in strong �uctuations of the power ratio between both beams despite
an almost constant total power. As the power of each beam was stable as long as the other beam was turned off,
the problem was diagnosed by analyzing the light in a Fabry-Perot cavity and solved by dis-injecting the back
re�ection.
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Figure 2.3: Logical scheme of the40K (top) and 6Li (bottom) optical tables. Analog (digital) controls
over the system are written in bold (italic) font. Optical sources are pictured with rounded box and
AOM - EOM are represented with rectangular boxes and the corresponding frequency modulation is
indicated in MHz. When relevant, the 0 th order of an AOM is picture in dashed line. See annex A.5 for
technical details. Zig-zag lines represent mechanical shutters.
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Units 40K 6Li

m u 40 6
G/2 p [MHz] 6.03 5.87

Isat == p hcG/3 l 3 [mW/cm 2] 1.75 2.54
l D2 [nm] 766.7 670.977
l D1 [nm] 770.1 670.992

Trec = h̄2k2
D2

/2 mkB [� K] 0.4 3.5
TDop = hG/2 kB [� K] 145 141

Table 2.2: Properties of 40K and 6Li. We note kDi = 2p / l Di the wave vector. Values are taken from
[Tiecke 2010] and [Gehm 2003] respectively.

species. A master diode is frequency locked on a saturated absorption error signal. Its light is

ampli�ed by a tapered ampli�er (TA) from few mW to several hundreds of mW and injected in

a single mode optical �ber for spatial �ltering. The light is further divided by polarizing beam

splitters, each new beam being frequency shifted by acousto-optical modulator (AOM) to reach

a controlled detuning with respect to the atomic transition. An additional step of ampli�cation

is required to reach suf�cient power. With the exception of the Li-Zeeman beams, principal

and repumping lights are injected together in TAs with negligible power losses. This strategy

enables a perfect superposition of both beams, before the light is �ber-coupled to the main

table. The frequency of each beam can be adjusted over dozens of MHz by tuning the radio-

frequency (RF) driving the AOMs, while their amplitudes can be controlled by attenuating the

RF power. It is also crucial to be able to switch off quickly and completely the beams in order to

avoid shining stray light onto the atoms, especially during evaporative cooling. AOMs allow

for an attenuation of 10 � 4 within few tens of nanoseconds; a complete extinction is insured by

mechanical shutters, cutting the beam in few hundreds of microseconds.

Optical sources are temperature-stabilized by Peltier elements (Roithner Lasertechnik, ref.

TEC1-12705T125) that transfer the heat to the optical table through a thick aluminum plate,

allowing an economical air cooling. The current supplies are protected against abrupt power

failures (which happened quite often during the works in the building) by uninterruptible

power supplies (Vision UPS Pro Blue 1000 VA).

An independent optical system has been implemented to address the D 1 transition, from

the ground S1/2 level to the excited P1/2 level, and allows for optical gray molasses. For 40K,

the transition is 3nm away from the D 2 line, too far to be reached by the same master laser.

The D1 system follows the exact same structure as the D2 system, with an independent master

laser. The only difference between both setups is that the D1 repumping beam is obtained not

with an AOM, but as a side band generated by an electro-optical modulator (EOM) tuned at

the hyper�ne splitting frequency.

While the system is dedicated to 40K, we could adapt it for the bosonic 41K atoms with

minor modi�cations (see Fig. 2.4). Since the atomic source contains even more 41K than 40K

(see section 2.3.2), it is enough to change the light frequencies to address the new species.
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Figure 2.4: Adaptation of the potassium optical table 41K. For most AOM, it is suf�cient to change
the driving frequency. For some AOM (in blue), the order must be changed with respect to 40K setup.
Some AOM (in red) must be removed or changed for a model with resonant frequency close to 100 MHz
(rempumper commun and D 1 setup).

Starting with a working system for 40K, it took about a month to reach ultracold temperatures

with 41K with the same techniques. In particular, the D 1 gray molasses described in section

2.5 could be readily applied to the bosonic isotope. Eventually, we managed to trap 2 � 105

atoms at 55 nK in an optical dipole trap described by w? /2 p = 73 Hz and wk/2 p = 4.8 Hz.

Despite a temperature close to the critical value Tc = 72 nK we did not observe the formation

of a Bose Einstein condensate, a limitation we attribute to the too small waist of the laser beam,

increasing the three-body losses.

By locking the secondary master laser (Unicorn) on the D 2 line rather than the D 1 line, it is

even possible to manipulate 40K, 41K and 6Li at the same time. However, this con�guration

does not permit to drive D 1 transition, limiting the sequence to a triple species MOT in absence

of ef�cient molasses cooling.

For 6Li, the two transitions are only 10 GHz apart, close enough for an alternative lock-

ing strategy instead of using an additional spectroscopy cell 3. While the repumping beam is

generated by an EOM just like on the 40K system, the frequency of the principal beam is con-

3For a more technical description of the system, see [Fernandes 2014].
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Units 6Li Zeeman slower

P [mW] 50
Islow / Irep - 8

dslow [G] -75
drep [G] -75
D B [G] 790

Units 40K 2D-MOT

P [mW] 350
dcool [G] -3.5
drep [G] -2.5

Icool/ Irep - 2
I+ / I� - 2.4
PPush [mW] 10
¶x,yB [G/cm] 11

Table 2.3: Optimised values for the Lithium Zeeman slower and Potassium 2D-MOT.

trolled by an offset lock. This technique is adapted from [Ritt et al. 2004] and relies on the beat

note between the locked D2 beam and the D1 master laser to be locked. The beating signal is

recorded by a fast photo-diode (ref. Newport 1580-A) 4 and mixed with a tunable frequency

reference around 9.78 GHz delivered by a dielectric resonator oscillator. The resulting signal

is split between two arms, one being fed into a high pass �lter while the other one provides a

�xed attenuation. The comparison between both arms results in a dispersive error signal with

a steep slope centered on the cut frequency of the �lter. A PID circuit locks the error signal by

controlling both the current of the D 1 master laser (for high frequency corrections) and the posi-

tion of the optical grating in the laser cavity (for the low frequency corrections). This technique

enables an accurate frequency locking (a Lorentzian �t of the mixed down signal spectrum has

a full width at maximum height of 0.39 MHz for a cut frequency of 82 MHz) with a very broad

locking range.

2.3 Atomic sources

As the vacuum system is completely sealed, atomic sources have to be included in the vac-

uum chamber to provide a ballistic �ux towards the MOT chamber. As long as light induced

interactions can be neglected, a simple accounting shows that the stationary amount of atoms

gathered in the MOT is proportional to the incoming �ux and inversely proportional to the life-

time of the trapped atoms. A high �ux is therefore required to reach a suf�cient atom number,

a critical parameter to perform an ef�cient evaporation. Experimentally, we reach in the MOT

chamber loading rates of 1.7 � 108 6Li/sec and 2 � 108 40K/sec. Those values are roughly �ve

times smaller than those presented in previous works of the group and it appears that main-

taining an optimal capture rate over long periods of time is very challenging. However, the

current values are suf�cient to reach quantum degeneracy.

4This photo-diode model is know to be easily damaged in the standard operation and constitutes a weak point
of the setup.
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2.3.1 Lithium Zeeman slower

6Li atoms are coming from a Zeeman slower, a standard technique widely used in the cold

atom community [Metcalf and van der Straten 1999]. Our design is an improved version of

a previous experiment of the group [Schreck 2002]; the main parameters are summarized in

table 2.3 (for a complete description of our system, see [Salez 2011]). Zeeman slowing has

proven to be a robust technique, particularly well suited for Lithium sources. Indeed, Lithium

presents a very low vapor pressure at room temperature [Nesmeyanov and Margrave 1964]

and temperatures above 600 K are required to reach a suf�cient ambient pressure, around 10 � 8

mbar. It might therefore be challenging to reach a compromise between signi�cant heating and

satisfying optical access, rendering dif�cult the direct loading from of a vapor cell.

The lithium sample, 3g of nearly pure 6Li provided by Cambridge Isotope Laboratory, is

heated to � 500� C in a cylindrical tube (the "oven") surrounded by Thermocoax cables. A

thermal stream escapes from a 6 mm hole pinched on the oven and a collimation tube reduces

the divergence of the outgoing atomic beam, directed to the MOT chamber. The oven temper-

ature plays a critical role on the atomic �ux and is regulated by a PID circuit.

Two superimposed laser beams are sent against the atomic stream: theprincipal beam ad-

dresses the D2 transition jF = 3/2 i ! jF = 5/2 i and the repumpingbeam drives the D2 tran-

sition jF = 1/2 i ! jF = 3/2 i . The slowing strategy relies on the radiative pressure exerted

on the atoms by a counter-propagating laser beam. The strength of the interaction depends on

the detuning of the light with respect to the atomic frequencies, which can be affected by both

the Doppler and Zeeman effects. The atoms initially have a high velocity ( vthermal � 1000m/s);

they thus experience a strong Doppler shift, which decreases as they slow down. In order to

maintain a constant detuning through the cooling process, a spatially variable magnetic �eld

generates a Zeeman shift. As the atoms move forward, both shifts decrease so as to compensate

each other. Within less than 2m, the atom velocity can be reduced below the capture velocity of

the MOT: v�nal < vcapture ' 50m/s. The cooling mechanism can only address atoms within a

velocity range given by the difference in Zeeman shift between oven and MOT regions; faster

atoms are not sensitive to the laser beams and will follow a ballistic �ight unaddressed by the

cooling mechanism.

To avoid sending resonant light through the MOT region, we use the so-called "spin-�ip"

con�guration, in which the magnetic bias crosses zero and changes orientation through the

slower. The �nal bias is non-zero and the optimal detuning for the Zeeman beams prevents

them from perturbing the atoms in the MOT. This con�guration also reaches a strong magnetic

�eld difference between the two extremities of the slower, measured to 790 G, while maintain-

ing reasonable current through the coils.

Only a small fraction of atoms actually escape from the oven and a vast majority hit its

walls and tubes. As they cool down, those atoms can solidify and clog the output of the oven,

resulting in a dramatically reduced �ux. Luckily, the surface tension of lithium decreases with
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Figure 2.5: Schematics of the 2D-MOT

temperature [Yakimovich and Mozgovoi 2000] and the capillary forces drag liquid lithium back

to the hotter regions, i.e. the oven. To increase this effect, the walls of the collimation tube are

covered with stainless steel mesh, resulting in a larger contact surface. These precautions are

not always suf�cient to completely prevent the clogging and it is sometimes necessary to heat

the whole area in order to liquefy solid lithium and facilitate the evacuation of the blockage. To

do so, additional Thermocoax are installed along the output of the oven and the temperature

is slowly increased while maintaining a gradient towards the oven ( � 25 K/cm). To avoid

spreading too much Lithium out of the oven, its temperature remains below 600 � C. During

the procedure, which usually lasts overnight, the lithium oven is isolated from the rest of the

vacuum system to prevent its integrity.

2.3.2 Potassium 2D-MOT

Unlike 6Li, a 40K source needs to be optimized under economical constraints. The natural

abundance of this isotope is below 0.01% and a strong enrichment is necessary. We bought

from Technical Glass Inc, Aurora, USA a 100 mg sample containing 4mg of 40K, 89.5mg of 39K

and 6.5mg of 41K, for 4000$. The closure of the company makes it quite challenging to �nd

satisfying samples on the market nowadays.

In order to avoid wasting all the atoms with an incorrect velocity range, the cooling strategy

relies on a two dimensional magneto-optical trap (2D-MOT). Two pairs of counter-propagating

transverse beams generate an optical molasses that slows down the atoms (see Fig. 2.5). If

an atom moves in one direction, a Doppler shift brings the red-detuned facing laser closer to

resonance, so that the atom experiences a force opposed to its velocity. In addition, racetrack

coils induce a 2D quadrupole magnetic �eld with a cylindrical geometry, such that the beams,

in s+ � s � con�guration, also generate an elastic restoring force that drags the atoms towards

a 0 �eld line centered in the cell. If an atom is away from the magnetic center, a Zeeman
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shift brings the laser pushing it towards the center closer to resonance. In one dimension,

the resulting radiative pressure, taking into account both Doppler and Zeeman shifts, can be

written to the lowest order under the form:

F (x, vx) = � Kx � mavx. (2.1)

It can be shown [Dalibard 2015] that coef�cients K and a depend on the light intensity and

detuning, the transition linewidth and the magnetic �eld gradient, providing as many knobs

to tune the capture and cooling ef�ciency.

A pair of axial beams increases the molasses effect. One of those beams (axial -) hits a 45�

mirror with a hole and a part of its power is not therefore re�ected. The atoms facing the

shadow of the hole are only addressed by the other beam (axial +), which results in a net force

pushing the atoms through the hole and towards the MOT, 55 cm away. A supplementary

pushing beam, targeting the mirror hole, allows for a decoupling of powers and has proven to

increase the outgoing �ux by a factor 2. The main parameters of the 2D-MOT are summarized

in table 2.3.

The atoms supplying the 2D-MOT are trapped from an ambient potassium pressure of

� 10� 7 mbar. This pressure can be estimated and monitored by measuring the absorption

signal in the 2D-MOT cell. The light is set at the cooling frequency and attenuated below the

saturation intensity to avoid power broadening and send on a photo diode after it traveled 10.5

cm through the cell. By modulating the frequency of the light, it is possible to determine the

maximal absorption of the gas, which can be related to the atomic density faced by the beam.

In standard operating condition, absorption is around 40%.

It is necessary to heat the sample to generate suf�cient vapor pressure. However, this pro-

cedure has proven to be tricky, as an overheating has led to a macroscopic migration of the

sample towards uncontrolled low temperature regions. Three windings of a water-cooled PVC

tube have been installed close to the glass-to-metal connection (see Fig. 2.5) in order to con-

trol the deposit of potassium crystals. If the source seems to migrate elsewhere, the rest of the

surrounding cell is heated up to � 180� C so that the atoms are brought back to the cold point

where they crystallize. During this procedure, the 2D-MOT is isolated from the rest of the ap-

paratus to protect the vacuum quality. The cold point is also set to low temperature (12 � C)

overnight. During normal operation, the temperature of this cold point is raised to 40 � C by

a water chiller Termotek 5, reaching a stationary regime within 30 minutes and allowing for a

satisfying vapor pressure.

5The control module of this chiller model is easily damaged and had to exchange it twice in two years. Equiv-
alent models from other companies, such as Thermotek P1020, have shown a better robustness but do not reach a
satisfying temperature.
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Units 6Li-MOT 40K-MOT

P [mW] 110 220
dprcp [G] -5 -3
drep [G] -3 -5
Iprcp [ Isat] 4 12

Iprcp / Irep - 5 20
¶B [G/cm] 8 ! 45
T [mK] 1 ! 0.8 0.24! 2

Natoms [109] 2.1 ! 1.9 3.2! 3
n [1011 cm� 3] 0.26 ! 1.8 0.7! 3.7

PSD [10� 5] 0.03 ! 0.3 0.02! 0.06

Table 2.4: Optimised values for the 3D-MOT and the ensuing CMOT. The phase space density is esti-
mated as PSD= nl 3

T and does not take into account the existence of different internal states.

2.4 MOT and CMOT

A magneto-optical trap (MOT) is the starting point of almost all cold atom experiments [Dal-

ibard 2015]. Like in a 2D-MOT, a bichromatic optical molasses is combined with a magnetic

gradient to cool and trap the atoms at the same time. A complete description of our system can

be found in [Ridinger 2011] and the main parameters are presented in table 2.4.

Within 18 seconds, we trap 2.1 � 109 6Li-atoms at 1 mK and 3.2 � 109 40K-atoms at 240� K.

The losses due to interspecies light-induced collisions were reduced to � 10% by using low

magnetic �eld gradient and low repumping power. The �uorescence of trapped atoms are

recorded on photodiodes and allow for a real time monitoring of the population of each species.

In a simpli�ed Doppler model, the temperature in the MOT is ultimately limited at low laser

intensity by the line-width of the optical transition. The behavior of the atoms can be described

by a random walk as they absorb and re-emit photons [Gordon and Ashkin 1980], leading to a

diffusion in momentum space. In steady-state, the �nal temperature results from the balance

between the diffusion rate and the damping force and can be shown to be

kBT =
h̄
2

d2 + G2/4
jdj

�
h̄G
2

. (2.2)

For both 6Li and 40K, this Doppler limit corresponds to � 150 � K. Even though additional

Sisyphus effects decrease the limit set by this toy model [Drewsen et al. 1994], the Doppler

temperature gives a relevant order of magnitude for most experiments.

After the MOT is loaded, the lasers responsible for the atomic �ux are turned off. It was

found optimal to increase the spatial density of the cloud before the following molasses phase

(see below). To do so, the magnetic �eld gradient is increased while the light intensities are

reduced and turned closer to resonance. Densities are multiplied by a factor 5, which also

leads to a higher loss rate. This compressed-MOT (CMOT) phase is therefore limited to less
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Figure 2.6: Sisyphus cooling in a bright molasses (a) and a gray molasses (b). In both cases, the spatial
modulation of the energy levels is correlated with the departure rate (pictured as the width of the line),
so that the atoms climb up more potential hills than they fall down. In a gray molasses, the optical
pumping brings the atom to a dark state, uncoupled to the light (no light shift). The non adiabatic
passage to a bright state (pictured as a red arrow) is mostly due to motional coupling.

Figure 2.7: The energy levels and transitions resulting in the light shifts presented in Fig. 2.6. The
standard bright Sisyphus effect is described with structure (a) while the simple L system (b) gives rise
to a gray molasses. For 40K and 6Li, both intra- and inter-hyper�ne transitions must be taken into
account (c). The Raman detuning D plays an important role in the cooling ef�ciency, as shown in �gure
2.8.
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Units 6Li molasses 40K molasses

P [mW] 300 230
dprcp [G] + 4 + 2.3
drep [G] + 4 + 2.3
Iprcp [ Isat] 14 ! 1 14! 2.5

Iprcp / Irep - 20 8
Capture phase [ms] 2
Cooling phase [ms] 3

T [� K] 48 11
N [109] 1.2 3.2
n [1011 cm� 3] 0.7 3

PSD [10� 5] 8 10

Table 2.5: Optimised values for the D1 molasses. To ensure a satisfying capture ef�ciency, we use rel-
atively high initial intensities. Their values are decreased during a cooling phaseto optimize the �nal
temperature.

than 5 ms, a duration found to be short enough to avoid signi�cant losses.

2.5 L enhanced D 1 gray molasses

After the MOT phase, the atomic cloud is still too hot to perform an ef�cient magnetic transport

or to consider an evaporative cooling. Several ways exist to reduce further down the temper-

ature of the cloud. For instance, to decrease the Doppler limit, a transition narrower than the

D2 line can be addressed, such as then = 2 ! n = 3 transition for 6Li [Duarte et al. 2011] or

the n = 4 ! n = 5 transition for 40K [McKay et al. 2011]. However, the corresponding light is

in the near-UV domain and its implementation on the experiment is challenging because of the

limited power delivered by commercially available sources.

Sisyphus cooling provides another way to reach lower temperatures [Lett et al. 1989] by

taking advantage of the degenerate structure of the atomic ground state. Two counter prop-

agating red detuned beams are sent on the atoms and generate a periodic modulation of the

light polarization. In this con�guration, both the energies of the Zeeman sub-levels and their

optical pumping rates are spatially modulated (see Fig. 2.6). A positive correlation between

those quantities means that atoms in one Zeeman state are most likely to be transferred to the

other state when they reach a maximal energy shift. On average, atoms climb potential hills,

on the top of which they are optically pumped to the bottom of the hill after they absorbed

and spontaneously re-emitted a photon. As a result, they climb up more hills than they roll

down, explaining the name of the mechanism and leading to a net energy loss. Considering

the same random-walk description as before, the steady-state temperature is given by [Metcalf

and van der Straten 1999]:

kBT =
h̄G2

16d
�

I
Isat

, (2.3)
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where d is the detuning of the beam. This can be understood as the value set by the height of

the potential created by the light shift: if the atoms are too cold and slow to climb up a hill,

they stop the Sisyphus cycling. For vanishing intensities, a more detailed approach gives a

lower bound characterized by the recoil temperature kBTrec = h2/2 l 2m (' 3.5� K for 6Li and

' 0.4� K 40K).

Unfortunately, the D 2 transition of 6Li and 40K feature a too narrow excited P3/2 state to

allow an ef�cient Sisyphus cooling, since non resonant coupling are still strong enough to dis-

rupt the required correlations between light shift and optical pumping. For 40K, it is possible

to reach sub-Doppler temperatures as low as 15 � K but with signi�cant atom losses, limiting

the cloud to � 107 atoms [Modugno et al. 1999, Gokhrooet al. 2011]. For6Li, the excited state

is even narrower, forbidding the use of standard Sisyphus cooling.

We took advantage of the wider hyper�ne splitting of the P1/2 state to implement a novel

cooling scheme, based on the same ideas but addressing the blue detuned D1 transition [Fer-

nandes et al.2012, Sieverset al.2015]. Two main ingredients result in a strong cooling together

with a good capture ef�ciency : the existence of dark states among each S1/2 hyper�ne levels

and of coherences between them.

The results presented in the section were published in

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L.

Khaykovich, C. Salomon and F. Chevy. `Simultaneous sub-Doppler laser cooling of fermionic
6Li and 40K on the D 1 line: Thoery and experiment', Physical Review A, vol. 91, no. 2, p.

023426 (2015)

2.5.1 Working principle

In a grey molasses, like in the previously described Sisyphus cooling, counter propagating

beams give rise to spatial modulation of the light shift and departure rate. However, when

the standard description of the Sisyphus effect relies on a F ! F0 = F + 1 transition [Dalibard

and Cohen-Tannoudji 1989], the D1 line corresponds to the F ! F0 = F and F ! F0 = F �
1 transitions (see Fig. 2.7). As a result, some linear combination of Zeeman sublevels form

dark states, which remain uncoupled to the light and whose energy is not modulated. This

is well known in the text-book L system, where two grounds states jg1,2i are coupled to an

excited state jei by a potential V described by driving frequencies W1,2. A linear combination

jy D i = 1p
W2

1+ W2
2

(W1 jg1i � W2 jg2i ) is disconnected from the excited state : hej V jy D i = 0. The

generalization to 3D is not straightforward, but the existence of dark states can still be proven

[Ol'shaniî and Minogin 1992].

The presence of dark states leads to two differences with the previous picture. First, once

an atom is pumped from the top of a potential hill to a dark state jy D i , it remains there until a

motional coupling brings it back to a bright state jy Bi (red arrow in Fig. 2.7). The probability
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Figure 2.8: Atom number and �nal temperature of the 40K cloud as a function of the Raman detuning
D, as measured after 5 ms of D1 molasses. Note the narrow cooling zone near the Raman-condition
lowering the temperature (red triangles) to 20 mK and a �at cooling region below � 0.1Gand above 2 G
resulting from gray molasses cooling without hyper�ne coherence effects. The strong heating peak at
small and positive Raman detuning can be described by a Fano pro�le. Picture from [Sievers et al.2015]

for this non-adiabatic passage can be written perturbatively as [Weidemuller et al.1994] :

P =
�
�
�
�

1
2m

hy D j p2 jy Bi
EB � ED

�
�
�
�

2

(2.4)

The faster the atom, the more likely it is to quit the dark state and resume Sisyphus cycles,

provided that its velocity remains smaller than a capture velocity discussed below. On the

contrary, cold and slow atoms accumulate in dark states, uncoupled to the light, hence the

name gray molasses. This effective velocity-selective coherent population trapping reduces the

�uorescence emitted by the atoms and allows theoretically for �nal temperatures lower than

the recoil-limit [Aspect et al. 1988]. The second difference is that the light should be blue-

detuned to result in a cooling effect. Equation 2.4 shows indeed that the transition is all the

more probable as the energy difference between dark and bright state is small. The bright state

should therefore be up-shifted for the atoms to climb up-hill, and not fall down-hill.

Since atoms accumulate in uncoupled states, gray molasses could theoretically cool the en-

semble even below the recoil temperature. However, except for a F = 1 ! F0 = 1 transition,

the recoil momentum results in a slight energy mismatch between the atomic states, giving rise

to off-resonant light-matter interactions which transfer atoms from dark states back to bright

states and ultimately limit the lowest achievable temperatures.

The principle of gray molasses was presented in the '90s [Shahriar et al. 1993, Weidemuller

et al. 1994] and implemented on the D2 line of Cesium atoms in 1D [Valentin et al. 1992]

and 3D [Boiron et al. 1995]. However, unlike the D 2 transition, the D 1 line does not provide

closed transitions. In such a situation, coolingand repumingdesignations are not relevant since

both transitions play equal roles. We will call principal the beam with the highest intensity,
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addressing the hyper�ne levels with the greatest angular momentum F, and keep the repumper

designation for the weakest beam.

In addition to the gray Sisyphus effect induced within each hyper�ne manifold by one

beam, the presence of another beam gives rise to coherences between the two hyper�ne levels.

This feature clearly appears close to the Raman condition (see Fig. 2.8), when both beams have

the same detuning with respect to the excited state (D = dprcp � drepump = 0 in Fig. 2.7). The co-

herent driving from one hyper�ne level to the other allows new dark states, resulting in a �nal

temperature 2 to 4 times lower than out of this condition and justifying the name of the tech-

nique. On the other hand, a small red detuning from the Raman condition results in a strong

heating, which can be interpreted in terms of Fano-pro�le [Lounis and Cohen-Tannoudji 1992]:

the interference between a broad and a sharp scattering processes (namely scattering from the

repumper and principal states) can strongly increase off-resonant transitions.

The theoretical description and numerical simulation of the L enhanced D1 gray molasses

cooling have been performed by our group with the collaboration of Saijun Wu [Sievers et al.

2015, Grieret al.2013], and several experiments tested the main points of the theory.

2.5.2 Experimental implementation

For 40K, the inverted hyper�ne structure allows a double gray molasses : the principal jF = 9/2 i
! jF0 = 7/2 i and repumping jF = 7/2 i ! jF0 = 7/2 i transitions both exhibit dark states. The

situation is slightly different for 6Li: while the principal transition jF = 3/2 i ! jF0 = 3/2 i
is described by the aforementioned model, the repumping transition jF = 1/2 i ! jF0 = 3/2 i
corresponds to the standard Sisyphus cooling presented as introduction to this section. Nev-

ertheless, the D1 transition still allows an optical molasses forbidden by the narrow structure

of the D2 line and the hyper�ne coherences at Raman resonance do improve signi�cantly the

achievable temperatures. Moreover, we observed that the robustness of the mechanism allows

for the simultaneous cooling of both species without signi�cant deterioration of the conditions

with respect to the single species cooling.

We implemented the D 1 cooling with minimal modi�cations of the existing setup. The op-

tical system is described in section 2.2. The light is �ber coupled to the main optical table and

superimposed with the MOT beams by a D-shaped mirror 6. The overlap takes place far from

the MOT chamber, so that both beams are almost parallel as they address the atoms. This way,

D1 beams have the correct polarization, position and angle with respect to the atoms trapped

in the MOT.

Experimentally, the cooling strategy must strike a balance in terms of light intensity. On the

one hand, as long as the temperature is well above the recoil limit, it scales as T µ I / d and a

lower intensity leads to a lower temperature. On the other hand, the capture velocity, estimated

6This D-shaped mirror constitutes a weak point for the stability of the system and requires minor realignment
every other month.
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Units 6Li molasses 40K molasses

dprcp [G] +3 +2
drep [G] +0.3 +0.3
Iprcp [ Isat] 0.1 1

Iprcp / Irep - 1/ 12 1/24
Duration [� s] 70 50

T [mK] � 300 � 200
N [109] 1 3

PSD [10� 5] 0.4 3

Table 2.6: Optimised values of the spin-polarisation step for the loading of the magnetic quadrupole
trap. The temperatures are measured in single species operation and atom numbers are measured in the
magnetic trap.

as the maximal velocity still allowing an ef�cient Sisyphus cycling, scales as vc µ I / d2 and a

lower intensity results in a poor capture ef�ciency. A balance was found by changing the light

power through the cooling step: a high initial intensity permits the capture of most of the

atoms and a slow ramp down reduces the �nal temperature. The main parameter values of the

molasses are summarized in table 2.5.

The existence of dark states relies on the degeneracy between dressed states. If this condi-

tion can be reached between hyper�ne levels by tuning the Raman detuning, it must also be

preserved between Zeeman sub-levels by avoiding any kind of magnetic �elds. We installed

three large coils, far from the MOT chamber, to generate a homogeneous compensation bias

and cancel stray �eld that could occur due to external conditions.

Since the implementation of the D 1 gray molasses on our experiment, it has also been used

in other groups [Burchianti et al. 2014] and proven to work on 39K [Nath et al. 2013, Salomon

et al. 2013],23Na [Colzi et al. 2016] and 7Li [Grier et al. 2013]. We also realized an unpublished

work on 41K, as mentioned in section 2.2.

2.6 Spin polarisation

After the optical molasses, the spin population of the atoms is completely unpolarized: atoms

are distributed among all Zeeman sublevels of both hyper�ne ground states. Before applying

any kind of magnetic trapping, it is therefore useful to pump the atoms into low-�eld seeking

states (see section 2.7.1).

A small magnetic bias ( � 1G) is applied within 400 � s, so as to select a symmetry axis. A

collinear s+ light is applied during 70 � s for 40K and 50 � s for 6Li to pump the atoms into

increasing mF states. The duration of this step is kept as short as possible: as the atoms are

untrapped, they expand freely, decreasing their density. Furthermore, the size of the cloud also

impacts the loading ef�ciency of the ensuing magnetic trap and a wide distribution results in a
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poor mode matching.

Since every absorption / emission cycle increases the temperature of the distribution (see

table 2.2 for recoil temperatures), it is essential to minimize the number of cycles performed

by the atoms. To do so, it is useful to accumulate atoms into dark states, which cannot be ad-

dressed by the light. For 40K, the s+ light drives the jF = 9/2 i ! jF0 = 9/2 i transition (with

an additional repuming light addressing the other hyper�ne level jF = 7/2 i ! jF0 = 9/2 i ) on

the D2 line. Because of the narrow structure of the D 2 line of 6Li, we drive the jF = 3/2 i !
jF0 = 3/2 i transition on the D 1 line instead (with a repuming light addressing the jF = 1/2 i !
jF0 = 3/2 i ). In both cases, atoms accumulate in stretch states (jF = 9/2, mF = 9/2 i and jF =
3/2, mF = 3/2 i respectively), where they can not absorb s+ photons for the driving transition.

Despite this precaution, the �nal states are not completely decoupled from the light: the polar-

ization of the beam is never perfectly s+ and for 40K, off-resonant coupling to the F0 = F + 1

level, enhanced by power broadening, should be taken into account. Those reasons also explain

why it is important to perform the spin polarization as quickly as possible. Experimentally, we

measure a temperature increase of� 45� K for 40K and � 170� K for 6Li, together with a very

good pumping ef�ciency as almost 100% of Potassium atoms and 90% of Lithium atoms are

eventually loaded in the magnetic trap.

2.7 Magnetic system

Together with light, magnetic �elds provide some of the most useful ways to manipulate cold

atoms by taking advantage of the energy shift resulting from the Zeeman effect. A complete

derivation of the behavior of alkali atoms in a magnetic �eld is presented in annex A.1.

On the FERMIX apparatus, eleven independent power supplies are used to engineer the

required �elds. The value of the output current can be set directly (CC mode) or by controlling

the delivered voltage (CV mode). While the �rst mode ensures a constant current, independent

of the load �uctuations (due to Joule heating, for instance), the second mode permits a faster

response and is used when �elds must be varied quickly. Both low intensities (MOSFET) and

high intensities (IGBT) transistors are used as switches to interrupt and dispatch the current

through the system, as depicted in �gure 2.9.

2.7.1 Magnetic quadrupole trap

As detailed in the following chapter, magnetic trapping requires the existence of a local min-

imum of the magnetic �eld modulus. The easiest way to produce such a �eld is certainly the

anti-Helmholtz con�guration, as proposed by Pauli. Two parallel coils of radius R and distant

of D carry opposite currents I . Considering an origin between the two coils, the resulting �eld
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can be expanded close to the symmetry center [Meyrath 2004]:

B = b
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where z is the direction of the coils 7. In a proper anti-Helmholtz con�guration, D = R and

b = 48
25

p
5

mI
R2 . As long as the �eld is smaller than few Gauss, the resulting energy shift for an

atom in a Zeeman sub-level mF is the so called quadrupole potential:

DE = mBgFmFb
q

x2 + y2 + 4z2, (2.6)

where mB is the Bohr magneton and gF is the Landé factor. For low �eld seeking states, mF > 0,

the potential leads to a restoring force towards the magnetic center, con�ning the ensemble

within a volume of typical dimension r0 = kBT/ mBb.

After the optical pumping, atoms populate low-�eld seeking states and can be loaded in the

magnetic gradient. However, the loading requires good mode matching between the free cloud

and the con�ned distribution. Furthermore, as long as the trapping gradient is not settled, the

gas keeps expanding and the �eld should thus be ramped as fast as possible to a value such

that r0 matches the initial size of the cloud.

Experimentally, the temperature of the cloud after the optical molasses is around 20 � K and

its size is � 1.5 mm. We increase the current in the MOT coils as fast as possible until r0 reaches

this value. It should be noted that the ramp-up speed is limited by eddy currents induced in

the metallic structures and it is likely that the �eld is cannot be reached in less than � 1 ms.

Almost 100% of 40K atoms and 90% of 6Li atoms are captured during this step. During the

following 450 ms, the �eld is slowly raised to 80 G/cm to compress adiabatically the ensemble

(see section 3.1.4), ensuring a strong con�nement for the ensuing magnetic transport.

2.7.2 Magnetic transport

In many experiments, in order to perform an evaporative cooling in optimal conditions, atoms

must be transported from the MOT-chamber to a science cell with better optical access and

vacuum. Optical transport relies on deformable [Léonard et al. 2014] or movable [Gustavson

et al. 2002] lenses to trap atoms around the focal point of a laser and displace it from one

cell to the other. Magnetic transport consists in displacing the center of a magnetic gradient

instead. This can be done by installing a pair of coils on a translation stage [Lewandowski

2002], a simple solution that is nevertheless challenging in terms of mechanical stability and

might impact the optical access to the science cell. Another option is to switch successively

7Note that we de�ne the gradient along the weak directions x and y. Another convention is to de�ne b as the
gradient along the strong axis z.
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Coils Axial �eld

MOT 0.91 G/A/cm
SpinPol 4.8 G/A

Push 0.16 G/A - 0.073 G/A/cm
Inner (H) 8.00 G/A + 0.61 G/A/cm 2

Inner (AH) 2.5 G/A/cm
Outter (H) 2.089 G/A - 0.29 G/A/cm 2

Outter (AH) 0.24 G/A/cm
V1 2.8 G/A/cm
V2 -2.8 G/A/cm

Coils Axial �eld

T1/2 0.37 G/cm - 0.29 G/cm
T1 3.3 G/A/cm
T2 5.5 G/A/cm
T3 3.7 G/A/cm
T4 5.5 G/A/cm
T5 -3.7 G/A/cm
T6 -2.6 G/A/cm
T7 2.6 G/A/cm
T8 3.7 G/A/cm
T9 2.6 G/A/cm

Figure 2.9: Electrical system of the experiment. IGBT are pictured as solid switches, MOSFET as dashed
switches. References for the power supplies are given in annex A.5. The utility of the different coils is
given in the main text. Gradient are given along the strong axis. A description of the IGBT setting for
MOT, inner and outer coils in Helmoltz (H) or Anti-Helmoltz (AH) con�guration is given in table 2.7.
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IGBT Helm. Anti Helm. Inv. Helm. Inv. Anti Helm.

H 1 0 0 1
AH 0 1 1 0

H/AH 1 1 0 0
AAH 0 0 1 1

IGBT MOT Helm. Anti Helm.

MOT 1 0 0
HF 0 1 1
A 0 0 1
B 0 1 0
Q 0 1 0

Table 2.7: IGBT con�guration for a versatile control of the magnetic �eld around the science cell. The
electrical system is presented in �gure 2.9.

overlapping pairs of coils, so as to deform smoothly and continuously the magnetic �eld.

The latter option has be implemented on the experiment and used to transport the atoms in

6 seconds 64 cm away from the MOT, through a a 90� elbow. The transport requires 14 pairs

of coils (pairs T1/2 to T9, V1, V2 as well as the inner and outer pairs of coils of the science cell)

and an additional push coil, as shown in �gure 2.9. The ensemble holds on a metallic cooling

plate, the temperature of which is water regulated (Termotek P1020) in order to avoid thermal

dilatation.

Even though it represented a major time investment during its conception and realization,

the magnetic transport allows for stable and reproducible experiments. For a detailed descrip-

tion of the transport, see [Fernandes 2014] and [Sievers 2014]. We estimate that� 80% of the
40K atoms and 70% of the 6Liatoms are successfully transported to the science cell, with a tem-

perature increase of 130� K for both species. Those values are considerably improved by the D 1

molasses, which reduces the spread of the cloud and prevents it from clipping on the differen-

tial pumping tube at the entrance of the transport. Without the preceding CMOT and molasses

steps, the transport ef�ciency is limited to � 50% and the heating is increased to 400� K.

2.7.3 Magnetic bias

Once the atoms are trapped in the science cell, it can be necessary to raise an homogeneous

magnetic bias to reach Feschbach resonances or perform spin selective imaging. Bias �elds

are also used to compensate ambient magnetic �elds during the molasses step or to select a

symmetry axis during the spin polarization step.

When two coils carry the same current, the induced �eld close to the symmetry center takes

the form:

B = m
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In the Helmholtz con�guration, D = R and the curvature described by the last term vanishes,

leaving a pure bias up to the fourth order.
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Without coils With coils

MOT 0.6 0.3
Science cell 2.2 1.1

Zeeman 2.6 2.2
IGBT 1.5 1.5

HighFiness 1.1 1
Transport 6 2

Table 2.8: Water �ux (L/min) cooling most of the coils of the experiment as well as a plate supporting
high current IGBTs. Transport coils are supported by a water-cooled plate while the other coils have
hollow wires allowing a direct cooling.

To allow for a versatile magnetic con�guration, two pairs of coils (inner and outer) sur-

round the science cell (see table 2.7). The inner coils can be powered either in anti-Helmholtz

or Helmholtz con�guration by �ipping IGBT switches, while the current direction can be set

independently through each of the outer coils, allowing any of the four possible con�gurations

(anti-Helmholtz, Helmholtz or inverted con�gurations) and thus providing control over the

magnetic �eld curvature.

The inner coils are also dedicated to the tuning of the Feschbach resonances. Notably, the

resonance between6Li and 40K is quite narrow ( DB = 1 G around B0 = 100 G) and a stable

�eld is required to avoid accidental sweeps across the resonance. A High Finess power supply,

with a current stability below 10 � 5 was purchased for this purpose 8.

2.8 Security system

As described above, the experimental setup deals with important electrical currents that might

result in a strong heating of the coils, leading to a damage or a melting of the insulating plastic

coating. All coils supporting high currents, as well as the magnetic transport and a metallic

plate supporting IGBTs, are water-cooled to prevent such dramatic accident (see table 2.8).

An additional security system was installed to monitor each water �ux through �ow-meters

(Gems Sensors RFS and Flow Switch FS-926). In addition, several thermistors are glued on

several coils to measure their temperatures. A supplementary module, dedicated to humidity

measurement, is not currently used. If any of measured values passes a �xed threshold, the

security systems switches off all the power supplies through their Remote Shut-Down (RSD)

channel.

All technical drawings of the security system are presented in annex A.6.

8This model presented repeated failures, as an instrumentation ampli�er (INA128P) of the command circuit
was easily damaged and had to be exchanged every other day. The problem was solved by installing an analog
optocoupler between the computer control channel and the input port of the power supply.
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2.9 Radio Frequency / Microwave system

While lasers allow the manipulation of optical transitions, radio-frequency ( � MHz) and micro-

wave (� GHz) sources are required to drive transitions both between and within hyper�ne

Zeeman states.

Experimentally, we need to reach three distinct frequency domains. In order to perform

an evaporative cooling in a magnetic trap, atoms must be selectively transferred from low-�eld

seeking states to untrapped high-�eld seeking states. For 40K, we drive hyper�ne jS1/2 , F = 9/2 i
! jS1/2 , F = 7/2 i transitions, with frequencies between 1.1 GHz and 1.28 GHz. For 6Li, we ad-

dress hyper�ne jS1/2 , F = 3/2 i ! jS1/2 , F = 1/2 i transitions, with frequencies between 228

MHz and 400 MHz. Finally, in order to manipulate the spin population of the sample, it is

useful to drive transitions between Zeeman sublevels. A magnetic bias is applied to lift the de-

generacy and an RF signal allows for adiabatic transfer or Rabi oscillations between the states,

transferring the atoms from one state to another (as in section 5.1.2). The required frequencies

depend on the amplitude of the magnetic bias, but typical values stand between 3 MHz (at few

Gauss) and 50 MHz (around 200 G).

The strategy used to emit the RF/MW radiations is the same for all three domains (see Fig.

2.10). An electrical signal with a selected frequency is ampli�ed and sent to an antenna that

radiates it into electromagnetic waves. Antennae are simple windings of a thin metallic cable,

with a size optimized for the emission of the dedicated radiation, placed few centimeters away

from the science-cell. The resonant frequency and impedance matching of the antenna are

further tuned by adapting its electrical properties with an RLC circuit and its geometry with a

sizable BNC cable (see [DeMarco 2001]).

2.10 High power lasers

The �nal stages of the experimental sequence take place in an optical trap. Cycles of absorption

/ stimulated emission give rise to an energy shift called light shift, proportional to the light

intensity I and depending on its detuning with respect to the atomic transition [Grimm et al.

2000] :

U (r) = �
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where w is the light frequency, w0 the atomic frequency and G ' 2p � 6 MHz the associated

linewidth. The light intensity pro�le of Gaussian beam propagating along z takes the form:
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Figure 2.10: Radio-frequency and micro-wave components. The construction allows a fast switching
between input channels (CH1/CH2) sources. Two Agilent sources are controlled by LAN cable and
used for evaporative cooling, while the Rohde-Scwhartz and SRS sources are pre-programmed and
triggered during the sequence. Technical references are given in annex A.7.

Figure 2.11: High power lasers close to the science cell. The setup is described in the main text and
performances are detailed in table 2.9. We introduce directions x (along ODT1 beam),y (along transport)
and z (opposed to gravity).
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Verdi ODT 1 ODT2

Units 6Li 40K 6Li 40K 6Li 40K

l nm 532 1064 1064
P W 7 10 5
w � m 20 42 340
zR mm 2.3 4.3 300
U0 � K 780 800 220 410 1.6 3.5

w? /2 p kHz i 16.6 i 6.5 4.2 2.2 0.044 0.025
wk/2 p Hz i 100 i 39 29 12.6 - -

Table 2.9: Main parameters of the high power lasers described in �gure 2.11.Frequencies are given in
the harmonic approximation (2.10) ; wk is the axial frequency along the propagation of the beam and
w? orthogonal to it. For the Verdi, the potential is repulsive and its steepness is given by the imaginary
frequencies.

where w is the beam waist and zR = p w2/ l is the corresponding Rayleigh length. Conse-

quently, a tightly focused laser can generate a strong repulsive potential for blue detuning or

attractive potential for red detuning, which can be expressed close to the focal point as:

U (r) = �
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with a height (or depth) U0 ' h̄G2

4jdj
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2Isat
(typically between few mK and 1 mK) and frequencies

w? =
q

4U0
mw2 perpendicular to the beam propagation (typically between � 100 Hz and � 1

kHz) and wk =
q

2U0
mz2

R
along it (typically one hundred times smaller than w? ). Both repulsive

and attractive potentials are used in the experiment (see Fig. 2.11 for the implementation and

table 2.9 for the performances.).

2.10.1 532 nm laser

When evaporated in a magnetic quadrupole, atoms can escape the trap as they move through

the center of the potential, where a vanishing bias prevents them from following the �eld ori-

entation. Those Majorana losses, described in section 3.1.3, can be attenuated by focusing a

blue-detuned laser on the central region to prevent atoms from reaching it. A Coherent Verdi

single mode laser is used for this purpose, as its wavelength (532 nm) makes it repulsive for

both 6Li and 40K. 7 watts of power are focused into a waist w � 20� m at the center of the

magnetic trap, resulting in an optical plug of � 800� K (see Fig. 2.12).

The beam can be switched off within microseconds by means of an acousto-optical modu-

lator. The pointing of the laser is monitored by imaging the focus of the beam on a 4-quadrant

photodiode (Newport Model 2901), delivering a voltage proportional to the distance of the spot

to the center of the diode. The position of the focus can be �ne tuned by piezo mirrors (New-

port AG-M100N) and a LabView script has been developed to bring automatically the spot on

the 4-quadrant diode to a reference position. The root mean squared displacement averaged
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Figure 2.12: In situ picture of a 40K cloud in a plugged quadrupole trap. Notice the depletion of atoms
in the center of the distribution. The RF evaporation has been pushed to Tcut = 100� K, further than in
a normal operating sequence, to reduce the size of the beam and help with the plug alignment.

over 3 minutes is around 1 � m, well smaller than the waist, showing a satisfying stability. To

further reduce the sensitivity of the system, the laser beam is directed towards the transport

direction (see Fig. 2.11), so that small displacements due to thermal dilatation of the transport

support should be compared to the Rayleigh length of the beam zR ' 2 mm rather than to its

waist.

2.10.2 1064 nm laser

Optical traps provide comfortable conditions to perform evaporative cooling to ultralow tem-

peratures. The trapping volume is small, and the strong con�nement allows a high collision

rate. Besides, unlike in a magnetic quadrupole trap, the con�ning potential does not depend

on the spin state of the atoms and the spin composition of the cloud can thus be freely adjusted,

allowing the use of Feschbach resonances.

We �rst implemented a Verdi Coherent single mode laser at 1064 nm. Unfortunately, this

prototype was quite experimental and failed after few months. The production of this model

was stopped by the constructor and we advantageously replaced it with a Mephisto Innolight

module, delivering � 18 W of power. The beam can be switched off within 0.5 � s by an AOM

and is injected through a �ber for pointing stability (NKT Photonics LMA-PM-10, with a SMA

905 APC connector at the input (7º) and a SMA 906 PC connector at the output). This part of

the setup is installed in a closed box over-pressurized with �ltered air (Walker Filtration) to

prevent dust from accumulating close to the optics, where due to high light intensities it might

burn and damage the coatings.

The ef�ciency of the �ber coupling falls from � 85% at low intensity to � 60% at high

powers, limiting the output power to 11 W. The light is sent along the x direction (see Fig.

2.11) on the science cell with a 10� angle to avoid optical interference with retro-re�ected light,

and focused in a w = 42� m waist (the corresponding Rayleigh length is zR = 4.3 mm). The

outgoing light is fed into an optical beam dump.

Initially, the potential must be deeper than 200 � K to capture atoms from the magnetic

quadrupole trap. To perform an evaporation, the potential depth is lowered progressively



2.10 - High power lasers 45

Figure 2.13: 40K in the optical dipole traps. ( Left ): 7 � 106 atoms at 2 mK after 5 ms time-of-�ight from
the single arm ODT. (Right ): 4 � 106 atoms at 1.2mK after 5 ms time-of-�ight the crossed ODT.

to � 1� K and the light intensity is accordingly varied over 4 orders of magnitude. To maintain

the control and stability of the optical power through the whole range, we monitor the power

of a back re�ection on the science cell (Thorlabs SM05PD4A mounted InGaAs-Photodiode

(FGA10)) and feed the signal in a logarithmic ampli�er (Analog Devices AD8304). A PID con-

troller (Stanford Research Systems SIM960) compares the measured value to a reference set

by computer and adjust the RF power that feeds the aforementioned AOM to tune the optical

power. This setup allows a retro-control and a dynamical setting of the light intensity and thus

of the potential depth. In addition, taking advantage of the logarithmic ampli�er, a linear ramp

of the control voltage results in an exponential decrease of the optical power.

As the trapping frequency along the beam propagation axis is set by the Rayleigh length,

it is much smaller than the transverse frequencies (see Fig. 2.13). In order to increase the

steepness of the axial trapping at low powers, the 0 th order of the AOM is recycled and sent

perpendicularly to the previous beam (ODT 2 beam). The same power monitoring is installed

to allow for an independent control of both intensities. The crossed beam position can be

controlled by piezo mirrors to �ne tune its overlap with the optical dipole trap.

In the quantum degenerate regime, the trapped atomic cloud is cooled around 100 nK and

the pointing and power stability of the beams are crucial to avoid parasitic heating. Ultimately,

the residual heating will be given by spontaneous emissions breaking the cycles of absorption

and stimulated emission. The corresponding rate Gsc can be estimated to:

h̄Gsc(r) =
G
jdj

UODT(r), (2.11)

underlying the importance of a strong detuning to reduce the scattering rate. Each scattering

event provides a recoil energy to the atoms and the resulting heating power can be estimated

to

Pheat = 2ErecGsc (2.12)

where Gsc is the scattering rate averaged over the trap, Erec is the recoil energy of the atom,

and the factor 2 comes from the contribution of both longitudinal and transverse directions.

Relating the energy of the cloud to its temperature through the virial theorm, we estimate the
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heating effect for 40K to �T = 0.96mK/s in the trap at full power and �T = 10 nK/s in the trap at

the end of evaporation, a value small enough to be allow holding times of few seconds.

2.11 Imaging system

The standard data acquisition consists in sending a resonant light pulse on the atomic cloud,

whose image is recorded on a charge coupled device (CCD) camera.

2.11.1 Absorption imaging

The light intensity reaching a pixel of the camera is attenuated by the optical density of the

cloud integrated on the line of sight. Quantitatively, the intensity I captured at position (x, y)
on the pixel matrix can be expressed thanks to the Beer-Lambert law as

I (x, y) = I0(x, y) exp

0

B
@� msabs

Z

line of sight

dz0n(x0, y0, z0)

1

C
A , (2.13)

where I0(x, y) is the incoming intensity, sabs is the absorption cross section,m is the magni�ca-

tion of the imaging system and n(x0, y0, z0) is the atomic density at the position imaged on the

camera.

For a frequency close to resonance, the absorption cross section can be written as [Cohen-

Tannoudji et al.2001]:

sabs(w) =
3l 2

2p
C2

1 + 4(1 + 2 I
Isat

)
� d

G

� 2 , (2.14)

where d = w � w0 is the detuning between the light and the atomic frequencies. When scanning

this detuning around the resonance, the cross section displays a Lorentzian behaviour, with

width given by the natural linewidth G and a power-broadening factor. In most cases, the

intensity is low enough for this factor to be negligible.

In this formula, C is the Clebsch-Gordan coef�cient corresponding to the optical transition.

If an external magnetic �eld gives a quantization direction, it is possible to address a closed

imaging transition and C2 = 1. However, in the some cases, the atomic magnetic moment is

randomly distributed and we use a value averaged over all possible transition : C2 = 0.4 for
40K and C2 = 0.5 for 6Li.

It is thus possible to estimate the integrated density n2D (x, y) =
R

l.o.s.
dz n(x, y, z) from the

ratio between the measured and incoming intensities. From this quantity, it is straightforward

to obtain the total number of atoms, N =
R

dxdy n2D (x, y). Another relevant measurement

is the size sx,y of the 1D distribution along each direction nx
1D =

R
dy n2D (x, y) and ny

1D =
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R
dx n2D (x, y), which can be related to the population, temperature and trapping frequencies

of the cloud, as shown in the following paragraph.

2.11.2 Time-of-�ight expansion of non-interacting particles

An in-situ image of the cloud can be taken to access directly to its density distribution. How-

ever, several non-trivial effects, such as non uniform frequency shifts due to the con�ning po-

tential or remaining magnetic bias, can make the data analysis challenging. What's more, the

small size of the sample may result in a too strong optical density and require an extremely

good optical resolution.

An alternative way to acquire image is to perform a time-of-�ight experiment: the trapping

potential V0 is abruptly switched off and the released atoms expand in all directions for dura-

tion t without further interactions. Since this method was used to acquire most data in this

thesis, we present it here with some details in order to derive expressions required to analyze

a distribution of fermions at any temperature.

Free ballistic expansion

If fermions move freely, without interactions or outer potential, the momentum of each particle

is conserved during their ballistic �ight and the size of the cloud can give a direct insight on

the temperature of the distribution:

n(r, t ) =
Z

dr0dp0 fFD(r0, p0)d(r � r0 � p0t/ m) (2.15)

=
1

(2p h̄)3

Z
dp0

1

exp
�

b p2
0

2m + bV0
�
r � p0

m t
�

� bm
�

+ 1
, (2.16)

where fFD is the Fermi-Dirac distribution, b = ( kBT) � 1 and we introduced the chemical poten-

tial m.

For a harmonic trap V0(r) = å
i
mw2

i x2
i /2, the density can be analytical derived using poly-

logarithm function 9 :

9Polylogarithm function are de�ned as Li n(z) = 1
G(n)

+ ¥R

0
dq qn� 1

1
z eq� 1

!
z� 1

z. As useful relation is
+ ¥R

� ¥
dxLi n(ze� x2

) =
p

p Li n+ 1/2 (z)
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where we introduced the fugacity Z = ebm.

In the classical limit, the temperature is large compared to chemical potential. In this regime,

the integrated 1D densities (2.17) display a Gaussian distribution, whose width given by:

s2
x (t ) = s2

0 +
kBT
m

t2, (2.18)

where s2
0 = kBT

mw2
x

is the width of the initial Boltzmann distribution. By performing successive

time-of-�ight with increasing durations, it is therefore possible to measure the temperature T

as the slope of width squared over time, without any knowledge of the trapping potential.

In the degenerate regime, the complete formula (2.17) is required to �t the non-Boltzmann

distribution of the cloud. Note that the amplitude and width of the distribution are related,

reducing to two the �tting parameters if the trapping frequencies are known. This allows for a

simultaneous determination of the atom number and cloud temperature.

In both cases, it is remarkable that at long TOF, the isotropy of the initial momentum distri-

bution is transferred to the position distribution, regardless of the initial trap geometry. This

situation can be drastically different when particles are interacting.

Expansion in a surrounding potential

When a time-of-�ight is performed at high magnetic bias, a residual curvature may still be

present and give rise to a weak harmonic potential Vext = 1
2m

�
w2

ext,xx2 + w2
ext, yy2 + w2

ext, zz
2
�

,

where wext,i is real for a con�ning potential and imaginary for a repulsive potential (see section

5.1.3).

This additional effect can be taken into account in the previous expression by changing
q

1 + w2
i t 2 to

r
cos2 (wext,i t ) + w2

i
w2

ext,i
sin2 (wext,i t ), considering cos( iq) = cosh(q).

In the classical regime, the substitution leads to
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Figure 2.14: Raw and treated data from absorption imaging after 5 ms TOF. On the picture, � 107 40K
atoms after the optical molasses.

s2
x (t ) =

trap

kBT
m

 
1

w2
i

cos2 (wext,i t ) +
1

w2
ext,i

sin2 (wext,i t )

!

(2.19)

=
anti

kBT
m

 
1

w2
i

cosh2 (wext,i t ) +
1

w2
ext,i

sinh2 (wext,i t )

!

(2.20)

Those formulas were used to characterize the curvature of the inner and outer coils close to

the science cell, as shown in table 2.9.

2.11.3 Experimental setup

As presented in section 2.2, the laser system provides tunable light for imaging 40K and 6Li

both at low magnetic bias and at high �eld, as the Zeeman shift induces signi�cant changes on

the resonance frequency.

A �rst imagingpicture is taken with a 100 � s light pulse. The measurement is destructive,

as atoms are pushed away by the probe beam. During the following 50 ms, the atoms are let

to expand at high temperature until they collide with the surrounding chamber. A second

referencepicture is taken in the absence of atoms. Two additional backgroundpictures are taken

in the same conditions but in the absence of light, in order to measure the dark noise of the

CCD camera. The integrated density at each point is then computed as

n2D (x, y) =
1

msabs
log

�
Iimg � Iimg,bg

Iref � Iref,bg

�
(2.21)

Four independent CCD cameras are installed on the experiment to acquire images from the

MOT chamber and along three directions around the science cell. We use Pixel�y QE 270XD

cameras, with a pixel matrix of 1392 px � 1024 px, a pixel size of 6.45� m and a quantum ef�-

ciency of 25% for potassium light and 43% for lithium light. The magni�cation and numerical

aperture of each imaging system are summarized in table 2.10.
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System w [mm] m NA

MOT Chamber 13.8 0.4 0.12
Science cell x 4 1.6 0.039
Science cell y 6 0.6 0.056
Science cell z 2.7 2.55 0.17

Table 2.10: Imaging system of the MOT chamber and science cell. w is the waist of the imaging beam,
m the measured magni�cation and NA the numerical aperture calculated taking the imaging lenses as
limiting aperture. The calibration procedure is explained in section 5.1.3.

2.12 Computer control

Three computers are dedicated to the control and monitoring of the experiment (see Fig. 2.15).

The main computer runs the user interface of the experiment. We use Cicero Word Gener-

ator10, an open source software developed by Aviv Keshet at MIT for cold atom experiments.

The suite is composed of two applications with a client / server architecture. The client Cicero

is a user-friendly interface, where sequences are designed as a succession of steps with variable

durations. During each step, the value of each digital and analog channel can be controlled.

The server Atticus translates those sequences into output buffers that are downloaded to the

output hardware. The software is mostly adapted for National Instrument cards and Norman

Kretschmar extended the source code to integrate LAN connection (notably to address Agilent

RF generators).

We currently use six analog (NI PXI-6713) and three digital output cards (NI PXI-6533 and

NI PXI-6536). Each of the analog cards has 8 BNC outputs delivering 0 to 10 Volts and up to

250mA. The digital cards have 24 channels, outputting either 0V or 5V (only 3.3V for NI PXI-

6536). When a digital channel is used to �ip an IGBT, the fast switching of high intensities may

induce high voltage in the control channel, destroying the output. To prevent this situation,

most digital channels are opto-coupled to isolate them from the experiment (the electrical de-

sign of the optocoupler box is given in annex). Note also that while the digital channels provide

a �xed voltage, some of the devices they control are current-controlled. It is in particular the

case for most of the RF "ZAS" switches, that are notably used to turn on and off optical beams.

An additional 50 Wwas installed at the input of those devices to avoid short-cutting the output

card, which would result in a voltage drop of the whole control system.

Sequence steps might have very different durations: while the loading of the MOT or an

evaporation can last several seconds, it takes only � 100� s to take an image of the atoms. To

avoid long redundant buffers, we synchronize the output cards with a variable frequency clock

(Opal Kelly, ref. XEM 3001). This FPGA card generates pulses only when an output needs to

be updated, and this variable timebase is used by output cards as sample clock. This reduces

considerably the buffer size, allowing a faster loading of the sequence and a time resolution

10http://akeshet.github.io/Cicero-Word-Generator/
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Figure 2.15: Computer control of the experiment. The type of information exchanged between the el-
ements is written in italic font. The electronic boards for the optocoupler box are presented in annex
A.6.

of � 0.2� s. A better resolution, allowing for instance smoother ramps, can be achieved by

pre-setting the device and using the computer signal as a simple trigger.

A second computer controls the cameras installed on the experiment through a Python soft-

ware originally coded by Martin Teichmann and further developed by successive generations

of PhD students. It communicates with Atticus, triggers the camera and download the four

series of raw data (see section 2.11.3). A third computer is used to treat the data, mostly using

Mathematicascripts.

Altogether, the computer system allows for an adjustment of most experimental knobs, lim-

iting to a minimum the physical tuning of the apparatus. Together with a good stability of the

machine, the automation of data acquisition and treatment permits to run repeated sequences

over long periods of time, providing a large amount of results.

2.13 Conclusions

In this chapter, we presented the main parts of the experimental apparatus and the knobs to

control them. At the moment of writing, the system is reopening after almost a year of shut-

down due to major works in the institute. The previous developments allowed an ef�cient

cooling of � 3 � 105 Potassium atoms to quantum degeneracy (T = 0.17TF) within one minute.

Lithium has been successfully transported to the science-cell and loaded to the optical dipole

trap, but its evaporation is still challenging.

The FERMIX experiment is a powerful and demanding machine; its construction and main-
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tenance are by themselves an important part of the work performed on a daily basis. It is also

extremely versatile and can be tuned to address a broad variety of situations, some of which

will be described in the following chapters.
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H Ow does an excited system relax, and towards what steady state does it relax ? This ques-

tion has been a bone of contention at the core of statistical physics since the emergence of

Boltzmann's kinetic theory [Vilani 2010]. While the H theorem states that the thermodynamic

potential of the ensemble can only decrease during its spontaneous evolution (see annex A.2),
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this constraint is not strong enough to fully dictate the system's behavior (see annex A.2.2).

In most cases, collisions between particles redistribute the energy in such a chaotic way that

the ensemble eventually reaches a thermal distribution, completely characterized by one single

scalar parameter, its temperature. However, some systems simply don't relax, such as massive

particles in a harmonic trap which oscillate endlessly according to Kohn theorem [Kohn 1961].

In some systems, such as hard-core bosons in a one-dimensional lattice [Kinoshitaet al. 2006],

the existence of non trivial integrals of motion restricts the exploration of phase-space in a way

that the relaxation of the initial excitation gives rise to a non-thermal distribution. It has been

proposed that these systems could be described using Generalized Gibbs Ensembles [Chomaz

et al.2005, Rigolet al.2007] that were recently observed experimentally [Langen et al.2015].

Ensembles of non-interacting particles provide another example of generalized Gibbs en-

sembles. Indeed, the energies of each particle are independently conserved and provide as

many constants of motion. This can result in a surprising behavior, despite the apparent sim-

plicity of the system. For instance, Landau has shown that in a plasma where collisions between

the charged particles are negligibly rare, collective mode of oscillations are damped, restoring

an arrow of time in an isentropic evolution [Landau 1946, Ryutov 1999].

This chapter focuses on the relaxation following the excitation of collisionless Lithium atoms

in a magnetic quadrupole trap which, despite many years of usage in the community, still ex-

hibits non-intuitive behaviors. Although the absence of collisions precludes thermalization

towards a proper Boltzman distribution, as reported qualitatively in [Davis et al. 1995a], we

show that the ensemble reaches a state of quasi-equilibrium that we characterize by effective

temperaturescorresponding to the width of the momentum distribution. Surprisingly, although

the potential is non-separable and should couple the different directions of motion, the dynam-

ics along the symmetry axis of the trap appears to be only weakly coupled to the motion in the

transverse plane. By contrast, effect temperatures equilibrate within this plane, corresponding

to a quasi-thermalisation.

We �rst present the Boltzmann equilibrium of an atomic ensemble con�ned in a magnetic

quadrupole potential, before we introduce our initial experimental study of the phenomenon.

Numerical simulations performed to support the experimental �ndings are presented in the

following section and a simple and robust model, relying on energy conservation and virial

theorem, is presented and tested against several excitation method. We �rst consider a sim-

pli�ed excitation scheme to highlight the main features of the phenomena and then propose a

more sophisticated description to account for the experimental results. Finally, we derive ana-

lytical predictions for the case of isotropic linear con�nement and investigate the impact of the

geometry and dimensionality of the trap.

Most of the experimental results presented in this chapter are to be published in Europhysics

Letters
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Daniel Suchet, Mihail Rabinovic, Thomas Reimann, Norman Kretzschmar, Franz Sievers,

Christophe Salomon, Johnathan Lau, Olga Goulko, Carlos Lobo, and Frederic Chevy, "Analog

simulation of Weyl particles in a harmonic trap with cold atoms", published in Europhysics

Letters, vol. 114, page 26005 (2016).

A second publication, dedicated to the theoretical analysis, is currently under preparation.

3.1 Equilibrium properties of neutral atoms in a quadrupole trap

As an introduction to this chapter, we recall important results required to describe magnetically

trapped atoms and estimate the related orders of magnitude relevant in the experiment.

3.1.1 Quadrupole traps

Magnetic �elds provide a powerful way to trap and manipulate neutral particles. Because of

their angular momentum, atoms present a magnetic moment mwhich can be coupled to an

applied external magnetic �eld B0(r), resulting in a Zeeman shift of the energy levels. For

magnetic �eld smaller than few Gauss, the corresponding Hamiltonian takes the form:

H0 (r, p) =
p2

2m
� ms .B0(r), (3.1)

where s is the atomic spin. As long as the spin follows adiabatically the direction of the �eld,

the energy of a mF Zeeman sub-level can be expressed perturbatively as

H0 (mF, r, p) =
p2

2m
� mBgFmF jB(r)j , (3.2)

where gF is the Landé factor of the hyper�ne state and mB = 1.4 � h [MHz/G ] (see annex A.1

for a complete derivation). An inhomogeneous �eld thus modulates spatially the energy of the

particles, giving rise to a restoring force towards the local minima and expelling particles from

local maxima. Since Wing's theorem [Wing 1984] states that no static maximum of jBj can be

found in vacuum, a trapping potential can be obtained only for low-�eld seekingstates, which

spins remain anti-parallel to local direction of the �eld and will be con�ned close to the �eld

minima 1.

The idea of magnetic trapping was introduced as early as 1960 [Heer 1963] and several �eld

con�guration have been proposed over the following years to engineer traps relying on the

same principle. Magnetic trapping quickly became one of the main techniques in the toolbox

of the cold-atom community, allowing the �rst electromagnetical trapping of neutral atoms

1The same kind of situation arises for charged particles in an electrostatic �eld as Earnshaw's theorem states the
absence of local maximum for a static potential in the vacuum. The absence of low �eld seeking states forbids the
existence of electrostatic traps.
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[Migdall et al. 1985] and the �rst realization of a quantum degenerate gas [Anderson et al.

1995].

A simple way to implement a magnetic trap certainly consists in two parallel coils in anti-

Helmholtz con�guration, as detailed in section 2.7.1. Close to their symmetry center, the �eld

can be expressed up to the fourth order as:

B(r) = b

0

B
@

x

y

� 2z

1

C
A + O(r5), (3.3)

where b is the magnetic �eld gradient, proportional to the electrical current. For low-�eld

seeking particles with magnetic moment m, the Zeeman shift results in a con�ning quadrupole

potential:

V0(r) = mb
q

x2 + y2 + 4z2, (3.4)

displaying a strong trapping axis z and a weak trapping symmetry plane (x, y).

Even though more sophisticated schemes have been developed, the robustness of quadrupole

trap makes them one of the most commonly used technique. In the F ERMIX machine, they are

used to gather atoms after the optical molasses phase, to transport atoms to the science cell and

con�ne them during the �rst steps of evaporation. Nevertheless, despite many years of usage,

quadrupole traps still exhibit poorly explored behaviors, as will be shown in this chapter.

3.1.2 Initial Boltzmann distribution and typical orders of magnitude

Let us consider a cloud of atoms in the potential (3.4), which corresponds to the experimental

situation where Potassium and Lithium atoms (typically � 109) are optically pumped and

loaded in the magnetic trap with typical gradients b ' 80 G/cm.

Because of collisions between the two species and among Potassium atoms, the equilibrium

distribution of the ensemble can be described by a Boltzmann distribution characterized by a

temperature T:

f0(r, p) =
N

(2p h̄)3

l 3
dB

Ve
exp

�
�

1
kBT

�
p2

2m
+ V0(r)

��
, (3.5)

where Ve = 4p r3
0 is the effective volume of the trap [Walraven 2010] and l dB =

q
2p h̄2/ mkBT

is the thermal de-Broglie wavelength. We introduced a typical length scale r0 that describes the

spread of the distribution in the potential:

r0 =
kBT
mBb

' 0.55 mm, (3.6)

where the numerical value is estimated for T � 300� K, corresponding to the experimental
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Figure 3.1: Time evolution of a Lithium cloud trapped in the quadrupole trap. Left : the atom number
decays exponentially, with a lifetime � 2.8 s limited by the background pressure. Right : simultaneously,
the temperature T slowly increases, with a heating rate estimated by a linear regression to 5.1 � 2.1� K/s.
Here, we plot ms2/ kBt2

TOF µ T, where s is the measured width of the distribution after time-of-�ight
tTOF.

situation.

Gravitational energy can also be taken into account, resulting in a tilt of the potential along

the vertical direction. This leads a modi�cation of the effective volume to Ve = 4p r3
0

(1� g2)2 , where

g = mg
2mBb. However, in this chapter, we only consider strong magnetic trapping ( gK ' 0.04,

gLi ' 0.006) such thatg � 1 and we will neglect this effect.

It will also be useful to introduce a typical velocity v0 and a time scale t0 de�ned as

v0 =

r
kBT
m

' 0.6 m/s, t0 =
r0

v0
' 0.9 ms, (3.7)

where the values are calculated for Lithium atoms. These scales will be used to express most

results in dimensionless units by setting kBT = m = mBb = 1.

3.1.3 Loss mechanisms

Several mechanisms can lead to a departure of atoms from the quadrupole potential, resulting

in a �nite lifetime and heating rate of the remaining ensemble. Experimentally we measured in

the magnetic trap a lifetime of � 3 s and a heating rate below 7mK/s (see �gure 3.1).

The most obvious source of losses are collisions with residual background particles, the

rate of which depends on the quality of the ambient vacuum. In the MOT region, Gvac � 5 s

compatible with the measured lifetime.

It should be noted that low-�eld seeking trappable states are not the states with the lowest

energy. High-�eld seeking states, expelled from the magnetic potential, have indeed a lower

energy and any mechanism resulting in a spin �ip of the atoms will lead to an expulsion from
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Figure 3.2: A simple picture of Majorana losses. Bold blue arrows represent the local direction of the
magnetic �eld while thin red arrows picture the orientation of the atomic angular momentum over a
trajectory from left to right. For trapped particles, the spin must remain anti-parallel with the �eld. In the
uppercase, the direction of the magnetic �eld varies slowly enough for the spin to follow it adiabatically.
In the lower case, as the particle moves through region where the �eld vanishes, the spin cannot follow
its orientation and might become parallel to it, leading to the expulsion of the particle.

the trap. It is therefore essential to avoid light leaks that could not only heat the ensemble but

also drive optical pumping. Two additional mechanisms can induce such spin-�ips.

Majorana losses

Zeeman sublevels are de�ned according to the orientation of the local magnetic �eld. As an

atom moves through the trap, it remains in the same state only if its spin follows adiabatically

the direction of the �eld. Otherwise, the atom undergoes a non-adiabatic passage towards

another Zeeman sublevel that might be expelled from the potential (see Fig. 3.2), resulting in a

so-called Majorana loss[Majorana 1932].

The ability of a spin to follow the �eld direction depends on the Larmor frequency wL =
mBB/¯h. In a quadrupole potential, close to the trap center, the �eld vanishes and the atom is

more likely to change its orientation. Majorana losses therefore appear as a leak at the bottom of

the potential well: the colder the atoms, the more likely they are to pass close to the center and

the more prevalent Majorana losses become. A simple estimate can provide insightful orders

of magnitude [Petrich et al. 1995] (for a quantum description, see for instance [Bergeman et al.

1989]).

Let us consider an atom in a stretched state gFmF = 1, with velocity v and passing the

center at a distanced. The typical magnetic �eld experienced by the atom is given by B � db

and varies over a typical time � d/ v. If the corresponding rate is larger than the Larmor

frequency, the adiabatic following breaks down; Majorana losses therefore occur if the atom
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crosses a so-calleddeath radius:

d �

s
vh̄

mBb
, (3.8)

and the loss rate can be estimated as the �ux through the corresponding shell

�N
N

= � GM '
h̄
m

�
mBb
kBT0

� 2

. (3.9)

In addition to the depletion of atoms, Majorana losses also induce a speci�c amount of heating,

as the coldest atoms of the distribution are most likely to leave the trap. If collisions allow for

a quasi-thermal equilibrium, the anti-evaporation due to Majorana losses results in a heating

rate [Chicireanu et al.2007]:
�T
T

= +
4
9

GM , (3.10)

and the temperature increases over time as

T(t) = T0

r

1 +
8
9

GM (T0)t. (3.11)

This behavior was used by two groups to estimate the value of the Majorana rate GM , found to

be in reasonable agreement with the expression (3.9) up to a geometrical factor C � 0.040 for

both Rubidium 87 [Dubessy et al. 2012] and 23Na [Heo et al. 2010]. In the conditions of this

chapter, because of the relatively high temperatures, the corresponding time scale is about one

minute, much longer than the duration of the experiments.

Inelastic collisions

The internal state of an atom can change after a collision, in which case the collision is said to

be inelastic. Since the trappability of an atom depends on its internal state, inelastic collisions

can induce losses in the sample and heat signi�cantly the remaining atoms. A careful choice of

trapped states is therefore necessary.

For 6Li, the only state simultaneously trappable at high temperatures in a magnetic trap

andcollisionally stable is jF = 3/2, mF = 3/2 i . The linear trapping regime for the j1/2, � 1/2 i
state extends only up to 27 G, corresponding to a temperature of 0.2 mK, too low to trap a

signi�cant amount of the initial distribution. The other low-�eld seeking state, j3/2, 1/2 i ,
can lead to spin-exchange collisions j3/2, 1/2 i + j3/2, 1/2 i ! j 3/2, 3/2 i + j1/2, � 1/2 i . The

resulting heating, corresponding to the hyper�ne splitting of the S1/2 level, is strong enough to

expel the atoms out of the trap.

For 40K the situation is less tragic. Thanks to the inverted hyper�ne structure, the lower

manifold corresponds to higher momentum and displays several trappable states. Among

them, jF = 9/2, mF = 9/2 i , j9/2, 7/2 i and j9/2, 5/2 i are collisionally stable, as the inelastic
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collision rate of the allowed transitions is very low. For instance, [DeMarco 2001] determined a

two body loss rate L2 = 10� 14 cm� 3/s as an upper bound for the j7/2 i + j5/2 i ! j 9/2 i + j3/2 i
process within the F=9/2 manifold, whereas for Lithium, the inelastic spin exchange collision

rate is typically around L2 ' 10� 9 cm� 3/s for [Houbiers et al.1998].

The case of inter-species spin exchange collisions will be addressed in section 5.4.

3.1.4 Density of states and adiabatic compression

As long as the trapping gradient is increased or decreased slowly enough for the ensemble to

follow its evolution adiabatically, phase-space density is conserved. For instance, in a more

con�ned trap, the spatial density is higher and the temperature increases so as to keep nl 3
dB

constant. To express this conservation, we �rst need to �nd the density of state r (E), which can

be calculated as the integral over phase-space of the quantity d
�

E � p2

2m � U (r)
�

:

r (E) µ

8
><

>:

E7/2

jbxbybzj
for U (r) = mB

q
b2

xx2 + b2
yy2 + b2

zz2

E2

jwxwywzj
for U (r) = 1

2m
�

w2
xx2 + w2

yy2 + w2
zz2

� (3.12)

We consider a smooth compression of the trapping potential, as one of the trap parameters

is ramped from an initial to a �nal value. As long as the process is adiabatic, the entropy is

conserved through the evolution. In the canonical ensemble, the entropy can be expressed as

S = kB
¶ (T log Z)

¶T
, (3.13)

where Z =
R

dEr (E) exp
�

� E
KBT

�
is the partition function. In a quadrupole trap, the previous

expression of the density of states, with bx = by = bz/2, leads to

Tf = Ti

�
bf

bi

� 2/3

. (3.14)

The same tools can be used to describe the adiabatic compression of a harmonic trap, which

will be useful in following chapters to describe the evaporation in an optical dipole trap. If

only one trapping frequency is changed, the same calculation leads to

Tf = Ti

�
w f

wi

� 1/3

. (3.15)
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Figure 3.3: Thermalization experiment. Temperature of the 6Li atoms as a function of the magnetic trap
duration. The magnetic gradient b linearly increases from 20 G/cm to its �nal value of 80 G/cm in 450
ms, resulting in an adiabatic compression and heating of the cloud. Red triangles represent the vertical
temperature, blue circles the temperature in horizontal direction. (a) Spin polarized, fermionic 6Li in
the quadrupole magnetic trap. Intra-species collisions are suppressed and the vertical and horizontal
temperatures can not thermalize. (b) 6Li is trapped together with 40K . Inter-species collisions enable
thermalization of the vertical and horizontal temperatures. Picture from [Sievers 2014].

3.2 Experimental investigations

In this section, we report our experimental observations concerning the behavior of cold 6Li

atoms in a quadrupole potential and we show that, despite the absence of collisions, the system

relaxes towards a steady state, though non describable by a Boltzmann distribution. We start

by presenting the conditions in which the phenomenon was �rst observed and introduce a

more systematic way to study it.

3.2.1 Initial observations: anisotropic effective temperatures

After the gray optical molasses, atoms are optically pumped into low-�eld seeking states and a

magnetic gradient is raised up to create the quadrupole potential. Once the atoms are trapped,

their temperature can be measured by a time-of-�ight experiment, as described in section

2.11.2: we release the atoms from the trap and record the 2D density of the cloud, as we in-

tegrate along the line of sight y. We then measure the width of the distribution along x and z

after various waiting time and deduce the temperature from the expansion speed of the cloud;

we de�ne this way two temperatures Tx and Tz.

The initial temperatures of the Lithium cloud measured just after loading are signi�cantly

different as Tx ' 150� K and Tz ' 250� K (see Fig. 3.3). This discrepancy is attributed to the

spin polarization beam, which is sent on the atoms bottom-up.
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As long as both 40K and 6Li are loaded into the potential, the two temperatures eventually

equilibrate after few hundreds of milliseconds (see �gure 3.3 b): because of collisions, both

distributions relax towards a Boltzmann distribution (3.5) with a temperature T0 ' 400mK.

The temperature increase between 0 and 500 ms is mostly due to the adiabatic compression

of the cloud which results in the heating described by eq. (3.14). It should be noted that the

preceding simultaneous D 1 cooling for both species is necessary to observe this thermalization.

Before the molasses was implemented on6Li, the temperature difference between 40K and 6Li

was so large that the overlap of their respective volumes was too small to allow for a suf�cient

collision rate and 6Li essentially behaved as if no 40K atoms were present in the trap.

The situation is drastically different when 6Li is alone in the trap, as pictured in �gure 3.3 a.

In this case, the temperatures measured along the two directions do not reach the same value;

even after 1.5 s,Tx ' 315� K and Tz ' 620� K. This implies that the equilibrium distribution

must be non-Boltzmanian and as such, the notion of temperature should be dealt with more

carefully. A thermal distribution, as for instance eq.(3.5), can be fully described by a well-

de�ned uniform temperature, which is suf�cient to calculate all its moments. By contrast, a

more general distribution has no reasons to be characterized by a single scalar value. The

quantities measured through the time-of-�ight experiment should thus be treated as effective

temperatures which represent the width of the momentum distribution:

Ti =



p2

i

�

2m
. (3.16)

For a thermal cloud, (3.16) obviously corresponds to the real temperature of the distribution.

3.2.2 Further measurements

In the previous experiment, the temperature discrepancy between Tx and Tz results from the

kick delivered by the spin-polarizing beam propagating along z. In order to study more quan-

titatively the relaxation of the system, we performed further measurements with controllable

excitations.

We use interspecies interactions to prepare an initial Lithium sample in a thermal equilib-

rium. Experimentally, we load 10 7 Lithium 6 atoms and 10 9 Potassium atoms in the quadrupole

and wait 500 ms. The reduced amount of Lithium facilitates its thermalization with Potassium

at T0 � 300� K; 40K atoms are then removed from the trap by shining in resonant light, which

leaves6Li unaffected.

We deliver 2 a momentum kick to the cloud by quickly turning on a magnetic bias �eld B0

2We �rst attempted to excite the cloud as previously by shining the spin-polarizing beam, with variable duration
and / or intensity. However, the resulting optical pumping leads to additional losses and the starting conditions of
the ensuing thermalization were excitation-dependent.
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Figure 3.4: Displacement d of the magnetic center along x (blue squares) and z (red circles) in dimen-
sionless units as a function of the current used to generate the bias. (Left ): the pushcoil creates a bias
along x, with dx/ r0 = 0.07I . (Right ): Along z, the Spinpolcoils create a bais alongz, with dz/ r0 = 0.3I .
In both cases, the displacement along the transverse direction is less than 1% of the displacement along
the excited direction. For technical details concerning the coils, see section 2.7.

that displaces the center of the trapping potential by a distance d:

d =
�

B0,x

b
,

B0,y

b
,

B0,z

2b

�
(3.17)

The existing set-up allowed independent displacement along x and z. We calibrated the dis-

placement by loading a small sample and raising up slowly the bias, so that the cloud can

follow adiabatically the magnetic center. An in situ image at resonance points out the center of

the potential (see Fig. 3.4). We could achieve displacements up todx � 7r0 and dz � 4r0.

We let the cloud evolve in the displaced potential for a short time t . The kick duration is

typically a few ms and is limited by the eddy currents in the steel chamber surrounding the

cloud. During the kick, the ensemble acquires an overall momentum of magnitude q � mBbt ,

similar to free fall in gravity. If the kick is short enough, the displacement of the center-of-mass

d � mBbt 2/2 can be neglected.

After the duration t , the bias is abruptly switched off, restoring the trap to its initial con�g-

uration, and we let the cloud evolve during a variable duration t before switching off all �elds

to perform a time of �ight measurement. The resulting time evolution of the center-of-mass

position is shown in �gure 3.5. As expected from the previous observations, the oscillations

are damped and the distribution reaches a quasi-steady state within a few milliseconds. In

the mean time, we observe an increase of the momentum distribution width, which we take to

represent an effective heating DT.

The heating DT results from the redistribution of the energy DE gathered during the kick,

but this quantity is not directly accessible through the experiment. Instead, we measure center

of mass momentum q induced by the excitation. The value of the heating DT as a function of

the kick strength is shown in �gure 3.6 and discussed below.
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Figure 3.5: Center-of-mass oscillations of the Lithium cloud after a kick along z (a) and x (b). Blue
squares (resp. red circles) are experimental data alongx (resp. z). Solid lines are exponentially damped
sinusoidal oscillations. Damping results solely from dephasing of single particle trajectories. Here,
r0 = kBT/ mBb � 0.6 mm and t0 =

p
mkBT/ mBb � 1 ms.

Figure 3.6: Temperature increaseDT/ T0 = ( T � T0)T0 along x (blue squares) and z (red circles) as
a function of the normalized CoM momentum h acquired during the kick. a) z momentum kick at
b = 70 G/cm. b) x momentum kick at b = 55 G/cm. Solid lines are quadratic �ts to the experimental
data with coef�cients given in the text. Error bars represent the temperature statistical uncertainty and
shaded zones give the 95% con�dence level of the �ts. Dashed lines are results of numerical simulations
presented in Fig. 3.11
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A limitation for the accurate estimation of q originates from eddy currents, which ap-

pear when abruptly switching off the quadrupole magnetic trap (gradients are of the order

of 80 � 150 G/cm) and last several ms. The transient magnetic �eld creates inhomogeneous

transitory Zeeman shifts which deform the atomic cloud pro�le at short TOF duration. Time-

of-�ights long enough for the eddy current to vanish show a very poor detectivity because of

the relatively high temperature of the cloud and of the small mass of Lithium atoms. Cooling

the sample further down leads to higher Majorana losses during the 500ms of thermalization,

resulting in an additional heating of the cloud. To overcome this obstacle, we used a highly

saturated probe beam with a saturation parameter s = 24, in order to power broaden the ab-

sorption resonance to a width G0 = G
p

1 + s, where G= 6 MHz is the natural width of the D2

transition. Measurements were made by averaging 10 images for 6 different TOF between 1.5

and 3ms. The �t errors are given by the error bars in �gure 3.6 and account for our statistical

errors of typically 0.05/ mkB. Performing the experiment with 4 different magnetic gradients,

we estimate a systematic uncertainty of 0.2/ mkB for the �tted amplitude of the parabolic de-

pendence of the heating on the momentum kick.

In addition, eddy currents can result in a potential error in the measurement of the center

of mass momentum, with or without kick. For instance, in the absence of a kick, we observe a

small parasitic velocity v0 which is proportional to the magnetic gradient band reaches 30 cm/s

at b = 85 G/cm. The velocity of the center of mass of the cloud after an excitation is thus given

by:

v tot = v0 + q/ m, (3.18a)

v0 =
+ ¥Z

0

dt F(t, x(t)) , (3.18b)

where F is the force due to the eddy currents. If this force varies only slowly with the position

of the cloud, v0 does not depend on q. We estimate v0 by measuring v tot in absence of kick

(q = 0). To infer the actual momentum q delivered to the cloud solely by a kick, we then

subtract v0 from the velocity v tot measured right after the kick.

The results presented in �gure 3.6 show a very strong anisotropy, as the temperature in-

creases much more in the direction of the kick than in the transverse directions. A kick in the z

direction produces strong heating along z, but has very little effect along x. Conversely, a kick

in the (x, y) plane results only in small heating in the z direction. De�ning the strength of the

kick through the dimensionless parameter h as per

h =
hqi

p
mkBT0

, (3.19)

we �nd that for kicks along x the best quadratic �ts are given by DTx/ T0 = 0.52(5)stat (20)syst �
h2 and DTz/ T0 = 0.10(4)stat (5)syst � h2. For kicks along the strong axis z, DTz/ T0 = 0.63(7)stat
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(20)syst � h2 and DTx/ T0 = � 0.14(5)stat (8)syst � h2.

3.2.3 Preliminary conclusions

Four main features of the experiment presented above should be emphasized:

(i) A pure 6Li cloud is an ideal gas with no interactions, as proven by the anisotropy of

the effective temperatures at long times. Indeed, while 6Li- 40K interactions allow the Lithium

ensemble to relax towards a thermal equilibrium within few collisions [Snoke and Wolfe 1989],
6Li alone can not reach a Boltzmann distribution. The absence of collisions between 6Li atoms

results from the Pauli exclusion principle: as all particles are in the only trappable spin state

jF = 3/2, mF = + 3/2 i , they are indistinguishable and s-wave collisions are forbidden by sym-

metry 3. At the �rst �nite order, p-wave collisions exhibit a thermal threshold, estimated to 6

mK for Lithium [Ketterle and Zwierlein 2008], which is well above the temperatures at stake.

Note that for 40K, the p-wave threshold is much lower, around 200 mK [DeMarco et al. 1999].

In addition to the simultaneous presence of several spin-states, this prevents Potassium from

exhibiting the same behavior as Lithium.

(ii) Despite the absence of collisions, the ensemble does relax towards a steady state after the

excitation. The relaxation can be attributed to the dephasing of the single particle trajectories

as they oscillate in the potential. This behavior illustrates that collision-induced relaxation

towards a thermal Boltzmann distribution is not the only way for a system to reach a stationary

distribution.

(iii) The energy acquired by the atoms during the kick is redistributed within the cloud even

though collisions are absent, as shown by the damping of the oscillations. The energy increase

results in a spread of the momentum distribution, which appears as an effective heating.

(iv) This redistribution is strongly anisotropic, as the effective temperature increases much

more along the kick direction than in the transverse direction, even though the trapping poten-

tial is non separable. The x and z axes appear to be effectively decoupled. We will show that

this property, inherited from the trap geometry and dimensionality, is non trivial.

3.3 Numerical simulations

In order to account for those results, we performed numerical simulations on an ensemble of

105 particles. Using those simulations, we can understand the observed anisotropy and effec-

tive heating, but also study the behavior of quantities that are not accessible in the experiment

for technical reasons (such as the distribution along the imaging axis y) or fundamental reasons

3S-wave and p-wave collisions are presented in annex A.4.4.
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(such as a direct measurement of the imparted energy DE).

Several ways to excite the initial distribution can be considered. As in the experiment, a kick

can be applied by displacing the trap center by an amount d for a duration t before bringing

it back to its initial position. A simpler excitation consists of an ideal momentum kick, where a

momentum q is added to each of the particles, resulting in a shift of the center-of-mass by the

amount q in momentum space. In the same way, an ideal position kickconsists in dragging the

center-of-mass away from the trap center by an distance d without initial velocity.

3.3.1 Numerical methods

Since the particles do not interact with each other, the trajectory of each single particle can be

integrated independently from all the others and average values are obtained by summing all

contribution.

Step one Generate initial conditions

The initial position (x, y, z) and momentum (px, py, pz) of the particle are drawn at ran-

dom from a Boltzmann distribution function f (r, p). Gaussian random generators are

implemented in most programming languages and it is straightforward to generate the

initial momentum. However, the position does not follow a usual statistics and a dedi-

cated procedure must be applied.

We de�ne a rescaled position r0 = (x, y, 2z) such that the distribution function f 0(r0) =
f (r) is isotropic. The rescaled position can be generated with two angles j (uniform

between 0 and 2p ) and q (such that cosq is uniform between � 1 and 1), as well as a

modulus r0 = jr0j, which should be drawn at random from the distribution:

f 0(r0) =
1
2

Z
d3pdj dqr02 cosqf (r, p) (3.20a)

=
1
2

�
mBb
kBT

� 3

r02 exp
�

�
mBb
kBT

r0
�

(3.20b)

where the 1/2 factor comes from the Jacobian of the transformation r ! r0. It is easier for

a computer to generate a random number Y between 0 and 1 with a uniform probability

than to generate a radius r0 from f 0. From a realization y of such a random variable, it

is thus straightforward to generate j and q, but a numerical integration is required to

estimate r0 [Presset al.2007].

To do so, we consider r0 = g(y), such that the probability f 0(r0)dr0for the corrected radius

to be around r0 at dr0 is the probability for Y to be around y at dy. SinceY is uniformly

distributed, this relation leads to f 0(r0)dr0 = dy, which can be integrated as y =
r0R

0
f 0(x)dx.
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Noting F0 the primitive function of f 0with F0(0) = 0

F0(r0) = 1 � exp
�

�
mBb
kBT

r0
�  

1 +
mBb
kBT

r0+
1
2

�
mBb
kBT

r0
� 2

!

, (3.21)

the corrected radius can be expressed as the solution ofF0(r0) = y.

In summary, three random variables Y1,2,3 are generated between 0 and 1. The initial

rescaled position is de�ned by j = 2p y1, cosq = 2y2 � 1 and r0 such that F0(r0) �
y3 = 0. From there, the real initial position is calculated as x = r0

p
1 � cos2 qcosj ,

y = r0
p

1 � cos2 qsin j and z = 1
2r0cosq.

The same reasoning can be applied for a 2D distribution, where the corrected radius fol-

lows the distribution f 0
2D (r0) =

�
mBb
kBT

� 2
r02 exp

�
� mBb

kBT r0
�

. In such a case, the primitive

function to be inverted is

F0
2D (r0) = 1 � exp

�
�

mBb
kBT

r0
� �

1 +
mBb
kBT

r0
�

. (3.22)

Step two Integrate the equations of motion

Starting from the aforementioned initial conditions, the equation of motion can be easily

integrated numerically with an applied force F = � mBb
kBT r r0. We used the Python numer-

ical solver odeint from the integrate module of the scipy library and record the position

and velocity of the particle at each time step.

Step three Update the mean value and the mean squared value of the distribution

In order to avoid �lling the memory of the computer, we do not keep all the values for

each of the� 105 particles of the six coordinates at each of the � 103 time-steps until the

end of the simulation. Instead, to estimate the average and the standard deviation of the

distribution, we update the mean value and the mean squared value of the distribution

at each time-step after each single particle simulation:

xn(t) =
1
n

(xn(t) + (n � 1) xn� 1(t)) (3.23)

x2
n(t) =

1
n

�
x2

n(t) + (n � 1) x2
n� 1(t)

�
, (3.24)

where xn(t) is the value taken by the coordinate x at time t for the particle that has just

been simulated, while xn� 1(t) is the average value of this coordinate at time t over the

previous (n � 1) particles. We reduce that way the number of stored variables to the

number of time steps.

Step four Calculate the standard deviation of the distribution

Once all trajectories have been simulated, we compute the standard deviation of each
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coordinate at each time using the stored data:

s2(t) =
N

N � 1

�
x̄2

N (t) � x̄N
2(t)

�
(3.25)

3.3.2 Comparison with the experiment

We now present the results obtained with the numerical methods presented above.

For simplicity, we �rst consider the behavior after an ideal momentum kick q = q0(1, 0, 0),
as presented in �gure 3.7. The oscillations of the center of mass are completely damped out

after � 30t0, as in the experiment. This con�rms that the experimentally observed damping

is not due to unaccounted interactions. The simulation predicts a relaxation of the effective

temperatures towards a steady state after � 100t0 and an effective decoupling between the z

and x direction. The y direction also appears to be decoupled from the strong axis z, but reaches

the same �nal effective temperature as the other weak axis x. Complementary simulations of

kicks along y or z con�rm this behavior regardless of the kick orientation. The dynamics thus

features a quasi-thermalization within the symmetry plane of the distribution.

Numerics also provide access to the time evolution of higher moments of the momentum

distribution. For instance, �gure 3.8 show that the �rst eight moments converge towards a

steady value in about the same time after the same ideal momentum kick. The ensemble does

seem to reach a stationary distribution, in which all measurable quantities are constant over

time.

In the experiment, the momentum kick is not ideal and the shape of the excitation ramp

must be taken into account in the numerics. Because of the eddy currents, the rising time of the

magnetic �eld bias shifting the trap center is actually much longer than the current duration

controlled by computer. Increasing the control duration actually results in increasing the ampli-

tudeof the displacement d. The extinction of the bias is also governed by eddy currents, which

set its decay time. To account for these effects, we consider excitations of constant duration t

and increasing displacement d (see Fig. 3.9).

After an excitation characterized by a displacement d and a duration t , the relation between

the imparted center-of-mass momentum and the effective heating in the steady state can be

approximated by a quadratic �t DTi / T = aih2 (see Fig. 3.11). Thea coef�cients depend a priori

on d and t ; however, for short excitation times, their dependence over t almost vanishes. Their

remaining dependence on d is depicted in �gure 3.10 and is explained in the following section.

For kicks along z, az does not vary signi�cantly with the trap displacement for the experi-

mentally relevant settings d & 1, in which case az ' a0 = 0.5. The value of t essentially sets

the strongest achievable kick h and we take t = 0.6t0 in the simulation to cover the experi-

mentally accessible range of excitations. The heating coef�cient a0 = 0.5 is within error bars in
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Figure 3.7: Time evolution the center-of-mass position (above) and of the distribution effective tem-
perature (below ) after a momentum kick q = q0 (1, 0, 0). Results from numerical simulation over 10 4

particles. Blue, grey and red lines correspond to the x, y and z directions respectively.
The motion is only along the kick direction x, but the spread of the momentum distribution affects both
x and y directions. The strong axis z is almost unaffected by the initial excitation, showing at the end
of the simulation a very slight cooling with respect to the initial distribution.

Figure 3.8: Relaxation of successive moments of the momentum distribution along x after an ideal kick
q = q0 (1, 0, 0). 1st order (blue), 2nd (green), 4th order (grey), 6th order (red), 8th order (black). For
clarity, results are renormalized by their stationary values ( hp2

x i 0 = 1.18,hp4
x i 0 = 4.17,hp6

x i 0 = 24.33
and hp8

x i 0 = 196.05) and by the indicated offset.
All calculated moments converge to a steady value within a few hundred time units. Data points are
calculated from the numerical simulation of 10 4 particles.
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Figure 3.9: Excitation ramp. Solid lines show the time evolution of the displacement d induced by the
magnetic bias, the rise and fall duration of which is set by eddy currents. Increasing the control duration
(from black to blue) actually increase the amplitude reached by the displacement d. We approximate
those kicks by step functions of constant duration t and increasing amplitude, shown in dashed lines.

agreement with the experimental result az = 0.63(7)stat(20)syst. The decoupling of the x direc-

tion appears more pronounced in the simulation DTx/ T0 = � 0.006h2 than in the experiment

DTx/ T0 = � 0.14(5)stat(8)syst � h2, a difference we attribute to imperfections of the magnetic

excitation procedure.

For kicks along x, ax strongly varies with the kick amplitude d (blue points in Fig. 3.10)

and therefore a quantitative comparison with the experiment requires a detailed knowledge of

the shape of the transient excitation currents. This would require a complete modeling of all

metallic parts in and around the experiment. Nevertheless, �tting the duration t = 3t0 leads

to DTx/ T0 = 0.48� h2 (to be compared to DTx/ T0 = 0.52(5)stat(20)syst � h2) and DTz/ T0 =
� 0.006� h2 (to be compared to DTz/ T0 = 0.10(4)stat(5)syst � h2). The chosen duration of 3 t0 is

consistent with the decay time of the eddy currents in our chamber ( � 3 ms).

3.4 A simple model for the effective heating

In this section, we present simple and robust arguments to account for the observed non-

thermal distribution. Using energy conservation and virial theorem and two additional as-

sumptions motivated by the previous observations, we calculate how the energy initially im-

parted onto the cloud is redistributed and converts into an effective heating. Within this model,

we calculate analytically the expected relation between the kick strength h and the effective

heating for different modes of excitation, �rst for the ideal kick, then for more realistic excita-

tions.
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Figure 3.10: Heating coef�cient a along the kick direction versus trap center displacement d for kicks
along x (blue) and z (red). a is de�ned as a = DT/ (T0h2), relating excess temperature to kick strength
h (see text). For kicks along z, az � 0.5 and is almost constant. On the contrary, for kicks along x, ax
shows a strong dependence on displacementd. Solid lines are derived from equations (3.31)-(3.38) and
(3.27a)-(3.27b). Filled symbols are results from numerical simulations.

Figure 3.11: Numerical simulation of the temperature increase as a function of the normalized CoM
momentum kick h. Data points are obtained by solving the classical equations of motion along x (blue
squares),y (gray triangles) and z (red circles). In the simulation, kick duration is kept constant at t =
0.6t0 for z and t = 3t0 for x, with increasing values of displacement d. The effective temperatures
along x and y are equal and almost totally decoupled from z. Solid lines are the best quadratic �ts to
the data: DTx/ T0 = DTy / T0 = 0.48� h2 and DTz/ T0 = � 0.006� h2 for a kick along x and DTx/ T0 =
DTy/ T0 = � 0.006h2, DT/ T0 = 0.52h2 for a kick along z. The dashed line in (a) is given by equation
(3.41), assuming zero cross-thermalization betweenz and x.
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3.4.1 General predictions

In our experiment, the energy transfer from the center-of-mass to the internal degrees of free-

dom of the atomic cloud does not rely on interactions between particles. The absence of colli-

sions is also responsible for the non-thermal nature of the �nal distribution. Indeed, according

to Thermodynamics' Second Law, Boltzmann's distribution maximizes the entropy of the sys-

tem for a given energy. In our experiment, we start with a thermal cloud characterized by a

total energy E and equilibrium entropy S(E). The excitation delivers an additional energy DE

per particle, but does so without increasing the system's entropy. The latter is also conserved

throughout the ensuing evolution because the ensemble remains collisionless (see annex A.2).

The �nal steady state thus exhibits a larger energy E + DE for the same entropy S, in contra-

diction to the usual growth of the entropy expected for a collisional system. The lack of full

thermalization is then embodied by the anisotropic temperatures measured in the long time

limit.

The energy transfer relies on the complexity of the single particle trajectories in phase-space,

which originates from the non-harmonicity and non-separability of the underlying Hamilto-

nian (3.2). The same kind of behavior was reported in a Ioffe-Pritchard trap and leads to a

decoupling between directions [Surkov et al. 1994]. A generalization of this result can be ap-

plied in our situation to describe the effective decoupling between the weak trapping plane ( x,

y) and the strong trapping axis z.

Even though the potential (3.4) has a simple form, the classical motion of con�ned particles

is complex and quickly gives rise to chaotic behavior. For instance, by considering Poincaré

sections of single particle trajectories, it was shown for instance that islands of stability appear

for low energy excitations, and eventually vanish at higher energies [Bergeman et al.1989]. The

accurate dynamical description of the evolution towards a steady state is beyond the scope of

this study.

It is nevertheless possible to reach predictive results by taking advantage of energy conser-

vation and virial theorem 4, which states that in a steady distribution, the kinetic and potential

energies are related by

2hTi = hV i , (3.26)

where hTi =


p2/2 m

�
is the kinetic energy stored in the distribution and hV i is its potential

energy. These two conditions are nevertheless not suf�cient to predict the �nal thermodynamic

properties of the system. To calculate the �nal effective temperature of the cloud, we make two

additional assumptions motivated by the result of the experiment and simulations:

(i) The symmetry axis z is almost completely decoupled from the symmetry plane ( x, y).

(ii) Whatever the kick's orientation may be, the �nal temperatures along the x- and y-

directions are equal by symmetry.

4A derivation of virial theorem is presented in annex A.3.2.
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Under these conditions one �nds for the �nal temperatures,

z � kick : DTx = DTy � DTz & DTz '
2

3kB
DE, (3.27a)

x � kick : DTx = DTy ' 1
3kB

DE & DTz � DTx,y, (3.27b)

where DE is the total energy transferred to the cloud through the excitation.

These relations are con�rmed by all of our numerical simulations. But, as mentioned before,

it is not possible to measure DE directly to test the model against the experiment. It is thus nec-

essary to relate the imparted energy to accessible parameters, such as the kick strengthh. For

an ideal kick, the additional energy DE = h2q2
0/2 m is straightforward to estimate and provides

together with eq. (3.27) an accurate prediction in agreement with the numerical simulations.

3.4.2 In the experiment: direct kick of the cloud

In a more realistic situation, the relation between DE and h is more complicated to estimate. In

this subsection, we calculate the energy and momentum gained by the atomic ensemble as the

trap is shifted by a distance d for a duration t .

Kick strength The momentum gathered by the center-of-mass of the cloud during the excita-

tion takes the form

q =
Z

drdp f (r, p; t ) p (3.28a)

=
Z

dr0dp0 f0(r0, p0) p(r0, p0, t ) (3.28b)

Here, we used the Liouville theorem to express the conservation of volume in phase-

space,drdp f (r, p; t ) = dr0dp0 f0(r0, p0), where r0 and p0 were the initial position and

momentum of the particle at position r with momentum p at time t and the initial distri-

bution f0 is given by eq. (3.5).

The momentum p(t ) can be related to p0 using Newton's law in the displaced trap. We

consider a series expansion up to the second order, which will be useful to estimate the

imparted energy as well:

p(t ) = p0 + t¶ tp +
1
2

t 2¶2
t p (3.29)

= p0 + t Fd +
1
2

t 2 (p0.r r ) Fd (3.30)

As the integration of the �rst term cancels by symmetry, the kick strength q can be written

up to �rst order in t :

q = t
Z

dr0dp0 f0(r0, p0) Fd (3.31)
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Figure 3.12: Energy increaseDE (left ) and momentum q (right ) gained by the cloud after duration
t in a potential displaced by d along the x direction (blue) or z direction (red). Axes are scaled in
dimensionless units. Data points are coming from numerical simulations with 10 5 particles, solid lines
are given by eq (3.38) and eq (3.31) respectively, without free parameter.

The numerical value of the integral (3.31) is plotted in �gure 3.12 and shows very good

agreement with the behavior observed in the simulations fort short excitation times t .

Imparted energy During the excitation, the cloud acquires not only kinetic energy hTi as the

center-of-mass falls towards the displaced trap center, but also potential energy hV i , as

the trap displacement reduces the cloud's con�nement, enabling it to expand. To estimate

the total energy given to the cloud, it is necessary to include both contributions.

Using the same strategy as before, the kinetic energy stored in the cloud at time t can be

expressed as

hTi =
Z

dr0dp0 f0(r0, p0)
p(t )2

2m
, (3.32)

where the expression of p(t ) is given by (3.30). Up to second order, the kinetic energy of

the cloud takes the form

hTi = E0
kin +

t 2

2m

Z
f0

�
F2

d + (p0.r r ) (p0.Fd)
�

, (3.33)

where the in�nitesimal volume dr0dp0 was omitted for clarity. To further simply this

expression, we de�ne L 0 = p0.r r + F0.r p that gives the evolution of the ensemble in

the unperturbed trap and use the properties of the Liouville operator,
R

f0 L 0 [G] = 0,

obtaining:

hTi = hTi 0 +
t 2

2m

Z
f0 Fd (Fd � F0) (3.34)

The potential energy of the cloud as the trap is brought back to its initial position can be

calculated in the same way,

hV i =
Z

dr0dp0 f0(r0, p0) f (r, p; t ) V0 (r(t)) . (3.35)
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Figure 3.13: Validity range of the Taylor expansions in t for DE (left ) as given by (3.38) andq (right ) as
given by eq (3.31), as a function of the displacement d along x (blue) or z (red). The validity range is
estimated as the time after which the discrepancy between the Taylor expansion and the value estimated
numerically over 10 5 particles exceeds 20%, as arbitrary threshold.

Expanding up to second order in t

V0 (r(t)) = V0

�
r0 + t

p0

m
+

1
2m

t 2F
�

(3.36a)

= V0 (r0) +
t
m

(p0.r r ) V0 +
1

2m
t 2 ((F.r r ) + (p0.r r ) (p0.r r )) V0 (3.36b)

Employing the same techniques as before to take advantage of the symmetry of the inte-

grals and the properties of the Liouville operator, we �nally �nd:

hV i = hV i 0 +
t 2

2m

Z
f0 F0 (F0 � Fd) . (3.37)

The total energy increase can therefore be written as

DE =
t 2

2m

Z
f0 (F0 � Fd)

2 . (3.38)

The numerical value of the integral 3.38 is plotted in �gure 3.12 and a very good agree-

ments is found with the behavior observed in the simulations.

The ratio between the measured momentum (squared) and the energy increase that we want

to estimate depends on the displacement d. The numerical results has already been presented

in �gure 3.10 and are reproduced by eq.(3.38) and (3.31) without free parameters. For zero

displacement, Fd = F and, as expected, no energy is given to the cloud. For strong displacement
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d � r0, we can Taylor-expand the expression and obtain

z � kick :DE =
3
2

q2 =
3
2

E0h2 (3.39)

x � y � kick :DE =
3
4

q2 =
3
4

E0h2 (3.40)

As mentioned in the introduction of this section, the energy gain is in fact larger than the value

q2/2, because the cloud also expands during the excitation whereby it gains additional poten-

tial energy.

Inserting these asymptotic expressions in eq. (3.27), we �nally obtain the relative tempera-

ture increase along the excitation direction

DT
T0

=
h2

2
= a0 � h2 (3.41)

Remarkably, although the decoupling between degrees of freedom enhances the temperature

increase alongz for a given energy (eq. (3.27a), the stronger con�nement reduces the amount

of potential energy acquired during the kick in such way that all three directions show the

same relation between temperature increase and momentum kick. The value a0 = 0.5 is in

good agreement with the measurement performed experimentally.

The validity range of the previous Taylor expansions (3.31) and (3.38) with respect to t

depends on the value of the displacement dand the direction of the kick. Figure 3.13 shows this

validity range, estimated as the duration after which the discrepancy between the prediction

of Taylor expansions and the value obtained in the simulation exceeds 20%.

Along x, the limiting factor is the validity of the Taylor expansion of DE, which appears

to be an acceptable estimate only for duration t shorter than t0. For such shorts kick, the

momentum acquired by the center of mass does not exceed q0. As the momentum measured

in the experiment can go up to 1.2 q0, the Taylor expansions (3.31) and (3.38) do not apply to

our results. The good agreement between the prediction (3.41) and our experimental �ndings

shows that the validity range of the Taylor approximation is actually extended for the DE/ h

ratio.

Along z, the validity range of the approximation is limited to t � t0 for most values of d

but this duration is long enough to allow kicks up to q � 2q0, well above the values measured

in the experiment. Consequently, the Taylor expansion can be relevant within experimentally

accessible parameters and the prediction (3.41) can be applied, in good agreement with the

measured value.
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Figure 3.14: Heating after adiabatic displacement along x (left) and z (right). Results from numerical
simulations over 104 particles. Solid lines are given by (3.44-3.43) and the energy redistribution (3.27),
without any free parameter.

Figure 3.15: Heating along x (blue squares) and z (red circles) after adiabatic displacement along x
(left) and z (right). Experimental results obtained in a trap of gradient b = 80 G/cm. The temperature is
estimated by a time-of-�ight measurement with 6 different durations. Each measurement is performed
10 times and the errors bars indicated the standard error of the �t procedure. The solid lines are �ts by
equations (3.44) and (3.43) respectively assuming the energy redistribution (3.27), with T0 and b as free
parameter. Dashed lines are obtained without free parameters. Shaded areas give the 95% con�dence
level of the �ts.
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3.4.3 Another excitation: adiabatic displacement

Another way to provide energy to the distribution is to displace the trap center by slowly

raising up a magnetic �eld bias, so that the cloud can follow adiabatically the �eld zero. Once

the trap has been displaced by a distanced, the bias is abruptly switched off and the cloud is

suddenly exposed to the initial potential. If the extinction is fast enough, no kinetic energy is

given to the cloud during this process and it is possible to calculate analytically the potential

energy of the ensemble:

hV i =
Z

drdp f0(r, p) V0(r � d) (3.42)

The energy increase in then the simply the gain in potential energy:

z � kick :DE = kBT0

 
4 + ( 2d/ r0)2 � e� (2d/ r0) (4 + ( 2d/ r0))

(2d/ r0)
� 1

!

(3.43)

x � y � kick :DE = kBT0

 
4 + ( d/ r0)2 � e� (d/ r0) (4 + ( d/ r0))

(d/ r0)
� 1

!

(3.44)

Inserting (3.44) and (3.43) into (3.27), we can express the expected heating as a function of the

displacement d. The comparison with numerical simulations is shown in �gure 3.14. Along z,

a slight unpredicted decrease of the effective temperature is observed in the numerics, but does

not hinder the almost complete decoupling. Within the ( x,y) plane, the analytical predictions

are accurately veri�ed by the numerical data.

Experimentally, this method has the advantage that the kick strength, simply given by the

displacement d, is easier to estimate. We keep a40K sample during the excitation, wait 200 ms,

and remove it selectively just before releasing the offset bias, so the 6Li ensemble starts from a

thermal distribution. Measurements are performed in a magnetic gradient set to b = 80 G/cm.

Results are presented in �gure 3.15; a �t was performed taking the initial temperature T0

and the gradient b as free parameters. As expected, the heating along the unexcited direction is

negligible compared to the heating of the excited direction. Along x, the best �t is obtained for

T0 = 367mK and b = 109 G/cm. Along z, with a gradient set to to the same value, the best �t

is obtained for T0 = 340mK and b = 62 G/cm. In both cases, the theoretical prediction without

any free parameter is within the 95% con�dence level of the �t.

This additional validation shows that the energy redistribution (3.27), which assume a quasi-

thermalization within the weak trapping plane ( x,y) and a complete decoupling with the strong

axis z does not depend on the way the system is excited. A perfect momentum kick, a perfect

position kick or the intermediate experimental regime are all compatible with the same redis-

tribution of the imparted energy.
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3.5 Quasi thermalization in an isotropic trap

The previous results (3.27) were obtained for an anisotropic trap V0 = mBb
p

x2 + y2 + 4z2, con-

strained by Maxwell equations. The effective decoupling between directions could be inherent

to this speci�c geometry.

In this section, we study theoretically the quasi-thermalisation of non-interacting particles

in an isotropic potential V = mBb
p

x2 + y2 + z2. We show that in such a 3D trap, the effec-

tive heating remains anisotropic as the kick orientation breaks the equivalence between all

directions. Considering ideal kicks, we calculate analytically the expected heating to DTk =
7DE/15 along the kick direction, while the two transverse directions are heated by an amount

DT? = DE/10. Surprisingly, the result is different in a 2D isotropic potential, where the heating

DT2D = DE/3 kB is isotropic.

3.5.1 Isotropic 2D potential

We �rst show that for non interacting massive particles in a two dimensional trap V2D =
mBb

p
x2 + z2, the heating resulting from a momentum kick q is isotropic and converges to-

wards the value kBDT2D = q2/6 m for both directions. To do so, we show that any trajectory in

this 2D potential is fully characterized by two quantities, its energy E and angular momentum

Lz. As a consequence, the distribution function must be isotropic. This result strongly relies

on Bertrand's theorem (demonstrated in A.3.3), which states almost all but circular orbits are

open. The isotropy of the heating, along with energy conservation, leads to the result.

Step 1 Two trajectories with the same energy E and angular momentum Lz are arbitrarily close in

phase-space, for almost all values of E and Lz.

Consider two initial positions (r0, q0, pr0, Lz) and (r0
0, q0

0, p0
r0, Lz) with the same momentum

Lz and energy E = p2
r /2 m + V (r) + L2

z/2 mr2. We want to show that the two trajectories

starting from those two points will come arbitrarily close to one another.

SinceLz and E are constants of motion, pr (t) is immediately given by r(t). We denote q1

the value at which the system, starting from (r0, q0, pr0, Lz), reaches its perihelion r1 for

the �rst time.

Starting from (r0
0, q0

0, p0
r0, Lz), since E0 = E, the trajectory will reach the same perihelion

r0 = r1 with p0
r = 0. From one perihelion to the next one, the systems gathers a constant

apside angle qA , which can be expressed in terms of Lz and E:

Lz = mr2dq/ dt (3.45a)

) qA = 2

perihelionZ

aphelion

Lzr

2m
�

H0 � V (r0) � L2
z

2mr02

�
r02

dr (3.45b)
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Figure 3.16: Trajectories in a linear potential. We �rst consider a trajectory starting at point A =
(r0, q0, pr0, Lz). The �rst perihelion of this trajectory is B. We now consider a second trajectory, start-
ing at point C = (r0

0, q0
0, p0

r0, Lz) with the same energy and orbital momentum. We show that this second
trajectory will come arbitrarily close to point B, meaning that the two trajectories are one and the same.

According to Bertrand's theorem, the only central potential where the apside angle is

always commensurate with p are the Coulomb potential and the harmonic potential.

For the linear potential considered here, the apside angle is therefore incommensurate

with p , except for an ensemble of trajectories of measure zero. For all other trajectories,

Poincaré's section for q0[2p ] is thus dense in [0, 2p [ and q0will come to a value arbitrarily

close to q1.

We have therefore proven that there is only one trajectory with a given (E, Lz).

Step 2 The stationary distribution function f(r, p) only depends on the energy E and the angular

momentum Lz.

Consider a trajectory (r(t), p(t)) with �r = � ¶p H et �p = ¶r H. According to Liouville's

equation,
d
dt

f (r, p) = �r¶r f + �p¶p f = � ¶p H.¶r f + ¶r H.¶p f = 0 (3.46)

Therefore, for any two points (r1, p1) and (r2, p2) belonging to the same physical trajec-

tory, f (r1, p1) = f (r2, p2) holds.

According to the previous step, two points with the same energy and momentum have

almost the same trajectory; by continuity, the distribution function can be expressed as a

function of the energy and momentum only:

f (r, p) = g (E (r, p) , Lz (r, p)) . (3.47)

Step 3 The heating is isotropic.

After the kick, we assume that the system evolves towards a distribution f . As proven

before, this distribution depends only on the energy and the angular momentum. In
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polar coordinates (r, q, p, j ), we can express the energy as perE = p2

2m + V (r) and angular

momentum as Lz = pr sin (q � j ).

The momentum distribution is therefore given by:

n(p, j ) =
Z

d2r f (r, p) (3.48a)

=
Z

rdrdqg
�

p2

2m
+ V (r), pr sin (q � j )

�
(3.48b)

=
Z

rdrdq0g
�

p2

2m
+ V (r), pr sin

�
q0�

�
(3.48c)

n(p) is independent of the angle j and therefore isotropic. The kinetic temperature, ex-

pressed as the standard deviation of n(p), does not depend on the direction.

Step 4 The energy redistribution leads to kBDT2D = DE/3 .

Using Virial theorem, we can relate the initial and �nal energies to the kinetic energies,

E = 3hTi = 3 (hTi x + hTi z) . (3.49)

We relate the kinetic energy to our de�nition of the effective temperature: hTi x = kBTx/2.

Considering the isotropy of heating and energy conservation, we obtain the result

DE = 3kBDT2D. (3.50)

Equation (3.50) is tested against numerical simulation (see Fig. 3.18), showing very good agree-

ment with an R-squared value above 0.997 without any free parameter.

3.5.2 Isotropic 3D potential

We show that, even in a fully isotropic 3D potential V = mBb
p

x2 + y2 + z2, the heating is

anisotropic as the excited direction reaches a higher steady state temperaturekBDTk = 7DE/15

as the other two. Those two transverse directions receive a fraction of the input energy and

reach the same �nal temperatures kBDT? = DE/10, thus showing a quasi-thermalization.

To calculate analytically the heating in an isotropic 3D linear trap, we use the property that,

in a central potential, all trajectories remain planar. Within each plane, the 2D analysis of the

previous paragraph can be applied. The global behavior is then obtained as the sum over all

planes. The calculation presented below was performed by Jonathan Lau and Carlos Lobo.

Step 0 Coordinate system.

In order to take advantage of the planar nature of the trajectories, we �rst introduce an

adequate coordinate system (see Fig. 3.17). Directionsu and v are de�ned such that the
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Figure 3.17: Introducing the coordinate system. We introduce the basis (u, v, w ), derived from the
Cartesian coordinates with two rotations q and j such that the motion of the particle remains in the
(u, v) plane.

plane they generate contains the relevant trajectory. Starting from the Cartesian coordi-

nates (x, y, z), we consider a rotation q around the x direction, followed by a rotation j

around the u direction.

Within the (u, v) plane, we consider polar coordinates (r, ar ) for the position and
�
p, ap

�

for the momentum. We can therefore express Cartesian coordinates as

x = r cosar sin j + r sin ar sin qcosj (3.51a)

y = � r cosar cosj + r sin ar sin qcosj (3.51b)

z = r sin ar cosq (3.51c)

and resp. for r ! p and ar ! ap.

The Jacobian of this transformation is therefore given by j Jj = r2p2
�
�sin

�
ar � ap

�
cosq

�
�

Step 1 Estimation of the energy contained in a plane(q, j ) after a small kick qz along z up to the second

order.

The initial distribution of the cloud is given by a Maxwell-Boltzmann distribution:

f
�
r, p, t = 0� �

= A exp
�

�
1

kBT

�
p2

2m
+ mBbr

��
. (3.52)

where the constant A normalizes the distribution.

At t = 0, we perturb the ensemble by applying a sudden momentum kick qz:

f
�
r, p, t = 0+ �

= f
�
r, p � qzuz, t = 0� �

(3.53)

We calculate the kinetic and potential energies for the particles orbiting in a plane (q, j )
right after the excitation. Using the aforementioned coordinates, we can express the dis-
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tribution function as

f = A exp

 

�
q2

z

2mkBT
�

mBbr
kBT

�
p2 � 2pqz cosqsin ap

2mkBT

!

. (3.54)

The potential and kinetic energies are given by

hV i plane =
Z

dardapdpdr j Jj mBbr f
�
r, ar , p, ap

�
, (3.55)

hTi plane =
Z

dardapdpdr j Jj
p2

2m
f

�
r, ar , p, ap

�
. (3.56)

and their analytical forms can be expressed using the modi�ed Bessel functions.

Even though the kinetic and potential energies evolve during the relaxation of the cloud,

the total amount of energy imparted onto the plane, hEi plane = hTi plane + hV i plane, is

conserved and can be calculated with the initial values obtained above.

For small enough kicks (ie qz �
p

mkBT), we expand the expression initial energies

hTi 0
plane + hV i 0

plane up to the second order in qz:

hEi plane =
9j cosqj

4p
kBT +

3j cosqj
32mp

�
16 cos2 q+ 3 cos(2q) � 9

�
q2

z + O(q3
z). (3.57)

Step 2 Expression of the effective temperature within the orbital plane as a function the imparted energy.

In the steady state, we can relate the energy of the plane to the spread of the momentum

distribution using the virial theorem:

hTi ¥
plane = 2hV i ¥

plane ) hEi plane = 3hTi ¥
plane =

3
2m

�

p2

u

�
+



p2

v

��
. (3.58)

Step 3 Expression of the effective temperature along each direction as a function of the energy imparted

onto each orbital plane.

We can relate the distributions along (x, y, z) to their expressions along each plane:



p2

x

�
=



p2

u sin2 j
�

+


p2

v sin2 qcos2 j
�

+ 2hpu pv sin qcosj sin j i (3.59a)
D

p2
y

E
=



p2

u cos2 j
�

+


p2

v sin2 qsin2 j
�

� 2hpu pv sin qcosj sin j i (3.59b)


p2

z

�
=



p2

v cos2 q
�

(3.59c)

Since the system is invariant under a rotation around the kick direction, the distribution

is independant of j and the cross terms vanish. Furthermore, as proven in the previ-

ous paragraph, the equilibrium momentum distribution is isotropic within a 2D isotropic

plane and


p2

u

�
=



p2

v

�
. We can therefore de�ne a non ambiguous temperature for the
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1D 2D isotropic 2D anisotropic 3D isotropic 3D exp. trap ( x,y) 3D exp. trap (z)

kBDTx 2DE/3 DE/3 2 DE/3 7 DE/15 DE/3 0
kBDTz - DE/3 0 DE/10 0 2DE/3
kBDTy - - - DE/10 DE/3 0

Table 3.1: Heating along each direction for different trap geometries. Results for the 1D, 2D and 3D
isotropic traps are analytical calculations veri�ed with numerical simulations (the 1D case can not be
realized experimentally due to Majorana losses). Results for the 2D and 3D anisotropic traps assume
complete decoupling between x, y and z.

Figure 3.18: Heating as a function of the kick strength after an excitation along x in an isotropic 2D
trap (left) and 3D trap (right). Temperatures are given along x (blue squares), y (gray triangles) and z
(red circles). Points are obtain by numerical simulation over 10 000 particles. Solid lines are given by
equations (3.50) and (3.62a-3.62b) withDE = q2/2 m without any free parameter.
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Figure 3.19: Heating after an excitation of amplitude DE along x in an anisotropic potential V =
mBb

p
x2 + y2 + g2

zz2, as a function of the anisotropy factor g2
z. Temperatures are given along x (blue

squares),y (gray triangles) and z (red circles). Points are obtained by numerical simulation over 100 000
particles. Dashed lines show the prediction for an isotropic trap as derived in eq. (3.62). Solid lines are
given by the previous model, assuming a complete decoupling between z and the other two directions.
Note that the heating along y brutally jumps from its value in an isotropic trap DTy/ T0 = DE/10 to a
value close to a strongly anisotropic situation DTy/ T0 = DE/3 as soon as g2

z 6= 1.

Figure 3.20:Left : the thermalization time is estimated as the duration after which the unexcited direction
y reaches its �nal value Ty = Tx. Right : Thermalization time as a function of the anisotropy factor g2

z.
The solid line given by the best hyperbolic �t t = 6.67

g2
z � 1

t0.
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plane,
1
m



p2�

plane =
1
3

hEi plane . (3.60)

The above expressions (3.59) can be therefore further simpli�ed to:

kBTy = kBTx =


p2

x

�
=

mp
6

pZ

0

dq hEi plane

�
1 + sin2 q

�
, (3.61a)

kBTz =


p2

z

�
=

mp
3

pZ

0

dq hEi plane cos2 q. (3.61b)

Step 4 Expression of the effective heating.The expression of hEi plane obtained before can be read-

ily integrated to relate the heating in each direction to the kick initially applied to the

atoms. Considering that the energy transferred to the cloud is DE = q2
z/2 m, we can

express the heating as a function of the kick's energy:

kBTy = kBTx = DE/10, (3.62a)

kBTz = 7DE/15. (3.62b)

Equations (3.62a-3.62b) are in very good agreement with numerical simulations, reaching R-

squared values above 0.9 without any free parameter, as shown in �gure 3.18.

Results obtained in this section are summarized in table 3.1. Remarkably, it appears that the

expected heating remains anisotropiceven in a 3D isotropic trap, but that this results strongly

depends on the system dimensionality.

3.6 In�uence of the trap anisotropy

We have shown that the energy redistribution for non-interacting particles in a strongly anisotropic

trap V = mBb
p

x2 + y2 + 4z2 is qualitatively different from the one in a isotropic trap V =
mBb

p
x2 + y2 + z2. In the �rst case, the anisotropy is set by the trap while in the second, the

symmetry breaking is induced by the excitation. In this section, we investigate numerically the

intermediate regime as we vary the trap geometry by playing with a factor gz > 1:

V = mBb
q

x2 + y2 + g2
zz2. (3.63)

3.6.1 Anisotropy of the steady state

We �rst estimate the effective heating resulting from an initial excitation along x as a function of

the trap geometry g2
z. Results are presented in �gure 3.19 and show a very �at behavior: as soon

as the trap shows the slightest anisotropy g2
z > 1, the heating along x and y suddenly jump
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from their isotropic value (3.62) to their fully decoupled value (3.27). Along z, the effective

heating becomes continuously smaller as the con�ning potential becomes more anisotropic,

reaching an almost complete decoupling as soon asg2
z > 1.1

The energy redistribution thus weakly depends on the con�nement geometry: in all anisotropic

con�gurations, the symmetry plane is almost decoupled from the symmetry axis and presents

a homogeneous heating. The situation observed in the previous chapter is thus not due to a

peculiar geometry but illustrates a broadest kind of behavior.

3.6.2 Quasi-thermalization time

In an isotropic trap, if the steady-state towards which the distribution relaxes scarcely depends

on the con�nement geometry, the time it takes for the system to relax does.

We estimate the quasi-thermalization time t as the time it takes for the unexcited direction

y to reach 99% of its �nal value. Results are resented in �gure 3.20. The more symmetric the

trap, the longer the relaxation time, which diverges as the con�nement becomes isotropic. A

rational �t estimates the scaling law to t µ (g2
z � 1) � 1, with an R-squared value of 0.99.

The scaling can be interpreted in terms of precession period. It is well known that in a

Newtonian �eld such as gravity, an anisotropy of the source distribution leads to precession of

the orbital plane. Jonathan Lau extended the result to a quadrupole potential and showed that,

in the (g2
z � 1) � 1 limit, the precession rate of a single particle trajectory can be expressed as:

�f = �
E Lz

3L3 (g2
z � 1), (3.64)

where L is the angular momentum of the particle. This scaling suggests that the equipartition

of energy within the ( x,y) plane is due to this precession mechanism. This qualitative picture

explains the abrupt change in behavior for the y heating as well as the progressive evolution of

the z heating for increasing values of gz. The slower the precession rate, the longer it takes for

the dephasing to redistribute the energy along the two directions of the symmetry plane. For a

small anisotropy, the energy redistribution is �rst dictated by the isotropic behavior, before the

precession of orbital planes equilibrate temperatures along x and y. The heating along z thus

remains close to its isotropic value, while the heating along x and y reach the average value

between both directions. As gz increases, the dynamics changes qualitatively as the precession

dispatches the energy faster and faster. For a large anisotropy, the imparted energy is �rst

redistributed between within the symmetry plane, before other repartitions could take place.
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3.7 Conclusions

In this chapter, we have shown that, even in the absence of interactions, a spin-polarized

Lithium cloud in a quadrupole potential can relax towards steady state. We characterize this

non-Boltzmann equilibrium by effective temperatures corresponding to the spread of the mo-

mentum distribution, an experimentally accessible parameter. If the cloud is perturbed by an

initial excitation, the imparted energy is redistributed owing to the dephasing of single parti-

cle trajectories and results in an effective heating. The non-thermal nature of the steady state

appears clearly as the �nal temperatures do not equilibrate between directions, but show a de-

coupling between the strong axis z and the symmetry plane (x,y). Yet, within the symmetry

plane, the temperatures do equilibrate regardless of the initial excitation, showing a quasither-

malization.

Assuming a complete decoupling, general considerations allow for quantitative predictions

of the heating resulting from an initial excitation. Numerical simulations were performed and

veri�ed those results in various situations (ideal kick, experimental excitation, adiabatic dis-

placement). Their application to experiments requires to estimate the imparted energy from

measurable parameters, such as the center of mass momentum or position. This estimation

depends on the actual description of the excitation and we propose two different schemes for

which analytical predictions, numerical simulations and experimental results are in satisfying

agreement.

We demonstrated analytically the value of the effective heating in an isotropic trap and show

that the result strongly depends on the dimensionality of the system. In 2D, the temperature

increase becomes isotropic regardless of the initial excitation while in 3D, the kick's direction

provides a symmetry breaking. The isotropic geometry appears as a particular case, as the en-

semble evolves towards an almost decoupled steady state as soon as the con�nement is slightly

anisotropic, with a relaxation time all the shorter as the anisotropy increases.

In the next chapter, we will show that the exact same behavior appears on an ensemble of

non-interacting relativistic Weyl particles con�ned in a harmonic trap.
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M Assless Weyl particles constitute one of the paradigms of High Energy Physics and emerge

in condensed matter systems in the form of low-energy excitations. Unlike massive par-

ticles, they possess a linear dispersion relation around the so called Weyl point. This linearity

induces the conservation of helicity, i.e. the projection of the particle's spin onto the direction of

its momentum, resulting among other things in remarkable transport properties. The behavior

of Weyl particles in a trap is also highly non-intuitive, as they undergo anomalous tunneling

which can lead to a decrease or cancellation of the back-scattering on a potential barrier, as

depicted by the Klein paradox.

Those properties have brought an increasing interest in Weyl particles, even more so as

they have also been suggested to represent possible platforms for quantum computation and

quantum information processing. Using a canonical mapping, we show that some properties

of non-interacting Weyl particles con�ned in a harmonic trap can be simulated and studied

with cold atoms in a quadrupole potential. In absence of collisions, all the results presented in

the previous chapter can therefore be applied to describe the evolution of out-of-equilibrium

Weyl particles following an initial excitation. We show that, unlike massive particles which

would oscillate without damping, a distribution of Weyl particles in a harmonic trap relaxes

91
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towards a steady state, even in the absence of interactions and that the energy initially imparted

onto the cloud is redistributed anisotropically. This analogy also allows us to translate speci�c

properties of ultra-relativistic particles in the language of cold atoms, interpreting for instance

the Klein paradox as a manifestation of Majorana losses.

In this chapter, we �rst review some properties of Weyl particles and recent developments in

the �eld. We introduce the mapping that allows the analog simulation of harmonically trapped

Weyl particles with cold atoms and adapt results from the previous chapter to describe the re-

laxation dynamics of a Weyl ensemble dragged away from the trap center. We then derive

geometric potentials associated with the Berry phase of the system and study numerically the

in�uence of the resulting topological properties on the previous dynamics. Finally, we show

that our approach of analogue simulation can be used to study a much wider variety of prob-

lems, such as massive relativistic particles or particles with 2D spin-orbit coupling.

4.1 Weyl particles: from high energy Physics to cold atoms

Recents observations of Weyl particles in condensed matter systems [Huang et al. 2015, Lu

et al. 2015, Xuet al. 2015b] have brought them under the limelights 1. We start this chapter by

reviewing the main properties of Weyl fermions that triggered the wide interest for this �eld of

research.

4.1.1 A paradigm in high energy physics

Weyl fermions were �rst introduced in 1929 as massless solutions to the Dirac equation [Weyl

1929]
�
i h̄gm¶m � m

�
Y = 0 (4.1)

where the Dirac matrices g0,1,2,3 are de�ned such that the Hamiltonian H = g0
�
g i pi + m

�
is

hermitian and satis�es the relativistic equation H2 = m2c4 + p2c2. Together with Majorana and

Dirac fermions [Pal 2010], Weyl fermions provide a description of all possible spin 1/2 matter

�elds.

Two properties related to the spin of a particle serve as criteria to discriminate between

solutions of the Dirac equation. The helicity corresponds to the projection of the spin S of a

particle onto its momentum p

h = 2
S.p
p

. (4.2)

For a spin 1/2 particle, the eigenvalue of such an operator are + 1, corresponding to "right-

handed" particles and � 1, corresponding to "left-handed" particles. The helicity operator com-

mutes with the Dirac Hamiltonian (4.1), meaning that helicity is a conserved quantity for free

1And allowed all kinds of puns, as epitomized by the viewpoint "Where the Weyl Things Are" [Vishwanath 2015]
or the commentary "It's been a Weyl coming" [Bernevig 2015]. Nature Physics editorial [Editorial 2015] summarized
the situation: "Like London buses, you wait for a Weyl then a few come along at once."
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particles. As a dot product, helicity is also obviously invariant under rotations, but not under

Lorentz boosts. For an observer going faster than the particle, the orientation of the momentum

is inverted and the helicity changes sign.

On the other hand, the chirality is de�ned by the effect of the g5 = ig0g1g2g3 matrix, which

anti-commutes with all Dirac matrices. Two projectors L, R = 1
2

�
1 � g5

�
can be de�ned from

this operator, leading to a partition of the Hilbert space as the sum of left-chiral and right-chiral

solutions of the Dirac equation

Y = Y L + Y R, (4.3)

with Y L = LY, LY L = Y L and RY L = 0, and equivalent relations can be written for Y R.

The chirality has opposite properties with respect to helicity: it is boost invariant, but is not

conserved through the evolution of free particles because g5 anticommutes with the mass term

g0m.

In absence of rest mass, the helicity and chirality of Weyl fermions can be identi�ed and

constitute a well de�ned quantity, independent of the observer (as the velocity of massless

particles is invariant under a Lorentz boost) and conserved through the time evolution (as g5

anti-commutes with all terms of the Hamiltonian). Left and right handed Weyl fermions appear

as irreducible representations of the Lorentz group and, remarkably, any massive fermionic

�eld (Majorana or Dirac) can be expressed as the direct sum of two massless Weyl �elds with

opposite helicities.

Weyl fermions appear as building blocks of particle physics, but had never been observed

directly in that �eld. They were suggested at �rst to describe neutrinos, but the observation of

�avour oscillations implying a non-zero rest mass ruled out this hypothesis.

4.1.2 Emergent low energy excitations

Even though Weyl fermions have no existence of their own in high energy physics, they appear

as a relevant description of low energy excitations of electrons in crystalline structures with a

linear dispersion relation around a so-called Weyl point. In both low and high energy physics,

the Hamiltonian takes the form

HWeyl = h̄ å
i2f x,y,zg

ci j kisj = h̄ck .s , (4.4)

where h̄ is the reduced Planck constant, c has dimension of velocity, k is the momentum of the

particle (relative to the Weyl point) and si are Pauli matrices (in the basis of the bands involved).

The latter equality corresponds to an isotropic dispersion relation. Because of this analogy

and because of the very small overlap between the valence and conduction bands, condensed

matter systems displaying such a dispersion relation are called Weyl semi metals[Nielsen and

Ninomiya 1983, Young et al. 2012]. The corresponding dispersion relation is pictured in �gure
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Figure 4.1: Left : one dimensional dispersion relation around a Weyl point described by (4.4), for spin s
oriented along + x (solid line) or along � x (dashed line). Particles with positive helicity (ie spin aligned
with momentum) have positive energies (red) while particles with negative helicity have negative ener-
gies (blue). Right : �lling of two Weyl points in momentum space. The distance between the nodes is set
by the geometric properties of the material. The two bands connect far from the nodes, as indicated by
the dashed lines. The grey plane represents the surface state resulting from the topological properties
of the system (see main text), with energies in the gap between the nodes. Fermi arcs are the 1D Fermi
surface of those states.

4.1.

Equation (4.4) reminds the low energy excitations emerging from 2D Dirac points in graphene

[Geim and Novoselov 2007]. However, the difference of dimensionality leads to very distinc-

tive properties 2. A gap can easily be opened in a graphene Dirac cone by an orthogonal mag-

netic �eld, inducing an additional term mBsz, where mis the magnetic moment of the particle.

By contrast, all three Pauli matrices are involved in (4.4) and the Weyl cone is therefore pro-

tected against most perturbations [Turner and Vishwanath 2013].

The robustness of a Weyl point can be related to the existence of a topological quantity, the

chirality quantum number[Hosur and Qi 2013], which is de�ned as

c = sign[det(ci j )] = � 1. (4.5)

The chirality quantum number corresponds to the Chern number of the valence band: as an

electron follows adiabatically the eigenstates of the band juk i , it experiences the equivalent of

an effective vector potential A = ihuk jr k juk i , corresponding to a Berry connection in momen-

tum space [Berry 1984]. After a round-trip, the resulting accumulated phase corresponds to an

2Dirac points can also be extended to 3D, where they describe the touching point of four bands. Just like Dirac
fermions can be expressed as the direct sum of two Weyl fermions, a Dirac point can be seen as the overlap of
two Weyl points with opposite chirality. The resulting Dirac point has no topological protection as additional 4 � 4
matrices can open a gap, but its robustness can nevertheless be increased by the crystalline symmetries.
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effective magnetic �ux of

ZZ
d2k .A =

I

FS
dk F(k ).dS(k ) = 2pc , (4.6)

where the integral can be carried over any Fermi surface enclosing the Weyl node and F(k ) =
r k � A is analogous to a Berry curvature. Equation (4.6) corresponds to the �ux that would

induce a single magnetic charge, which is why Weyl points are sometimes treated as magnetic

monopoles in the momentum space. We will show in section 4.3 that this properties remains

true for trapped Weyl particles.

In between two separated Weyl points, each 2D slice in momentum space can be thought as a

topological insulator with a gap depending on the distance to the nodes. In �nite size samples,

this results in the existence of edge states whose energies belong to the gap between the nodes

(see Fig. 4.1). Those edge states give rise to a characteristic feature of Weyl semimetals, as

their �lling up to the chemical potential corresponds to a 1D Fermi surface called Fermi arc.

Using angle resolved photo-emission spectroscopy [Behrends et al.2015], such Fermi arcs were

recently observed in TaAs [Xu et al.2015a], Na3Bi [Xu et al.2015b] as well as in photonic crystals

[Lu et al.2015].

The previous discussion shows that every Weyl point has a �xed chirality and radiates a

Chern �ux. This topological property leads to a phenomenon speci�c to 3D systems: the Adler-

Bell-Jackiw chiral anomaly [Adler 1969, Bell and Jackiw 1969], which corresponds to the non-

conservation of electric charge. For particles with unit charge e and chirality c described by

(4.4), an electricE and magnetic B �elds induce an electromagnetic current j c such that

¶tnc + div ( j c ) = � c
e3

32p 2h̄2 E.B, (4.7)

where nc is the density of particles with chirality c . The apparent paradox is solved by consid-

ering that, since the total Chern number over all bands should be zero, Weyl points necessarily

exist as pairs with opposite chirality [Nielsen and Ninomiya 1981] and the total current j+ + j�
is well conserved as charges are pumped from one point to the other (see Fig. 4.2).

The chiral anomaly 4.7 also induces remarkable transport properties [Burkov 2015], such as

• Negative magneto-resistance

One of the �rst signatures of the chiral anomaly was suggested in the form of a negative

magneto resistance [Nielsen and Ninomiya 1983]. If the temperature and chemical poten-

tial are small enough for the positive Landau levels ( n > 0 in Fig. 4.2) not to be populated,

collisions between particles with the same chirality are suppressed due to lack of avail-

able phase-space. In absence of impurities in a clean sample, the charge imbalance can

only be relaxed through collisions of particles close two different Weyl points. As Weyl

points are well separated in momentum space, such processes require strong momentum
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Figure 4.2: Landau levels of a Weyl particle. In an external magnetic �eld Buz, the energy spectrum
of a charged particle in (4.4) is given for n 6= 0 by En = sign(n)c

p
2h̄jnjeB+ ( h̄kz)2, where kz is the

momentum from the Weyl node along the direction of the magnetic �eld. The zeroth Landau levels
n = 0 are highly degenerate (with a factor SeB/¯h, Sbeing the sample area) and provide one dimensional
chiral levels with different energies for right chiral nodes ( E0 = + h̄ckz) and left chiral nodes ( E0 =
� h̄ckz). The occupancy of the zeroth Landau levels is pictured with �lled symbols.
An intuitive picture recovers the expression (4.7) of the chiral anomaly [Hosur and Qi 2013]. In presence
of a magnetic �eld B, the zeroth Landau levels can be pictured as conducting wires parallel to the
magnetic �eld. An external electric �eld E sets particles in motion through those wires. Because the
zeroth Landau Level is chiral, the slope of the relation dispersion is �xed for each Weyl nodes. Particles
are pumped from one node to the other, resulting in a apparent non-conservation of the charge for each
node taken separately.

transfer and the corresponding relaxation time can be long, improving the conductivity

of the electron gas. Furthermore, the degeneracy of the Landau levels contributing to

the current is proportional to the magnetic �eld's strength. Those two effects lead to a

decrease of the resistance in the direction of an applied magnetic �eld, proportional to

the �eld strength, as opposed to the response of an ordinary metal or semiconductor that

shows a weak, positive magneto-resistance independent of the external �eld orientation.

Observations of such negative magneto-resistance was reported, for instance in Bi0.97Sb0.03

[Kim et al. 2013], HgMnTe [Orlita et al. 2014] and TaAs [Huang et al. 2015]. Most of these

experiments were performed in a semi-classical regime, without Landau-level quantiza-

tion, where intra-node collisions dominate over other relaxation processes. In such cases,

the negative magneto-resistance effect still remains but scales with the square of the mag-

netic �eld [Son and Spivak 2013].

• Anomalous Hall effect

As mentioned before (eq. (4.6)), each 2D slice between the Weyl nodes in momentum

space can be thought of as topological insulators with unit Chern number. As a result,

charged particles in presence of an electric �eld give rise to a current J = E � Gh orthog-
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Figure 4.3: A possible setup to probe the existence of a non-local transport. A voltage VSD is applied at
one end of the sample. At a distance L much larger than the typical range of the induced current (set
by the sample thickness d), the presence of a persistent voltageVNL advertises the existence of a chiral
anomaly, which prevents the relaxation of carriers' populations. Illustration from [Parameswaran et al.
2014], where a measurement of this non-ohmic voltage is suggested by taking advantage of an external
magnetic �eld.

onal to the �eld. The Hall conductivity Gh can be expressed as:

GH =
e2

2p h̄ å
i

c ik i , (4.8)

where the sum is taken over the Weyl points, c i is the chirality of the node and k i its

position in momentum space [Burkov 2014]. This conductivity is not proportional to an

external magnetic �eld and does not depend on impurities, but relies only on the intrinsic

properties of the material (namely the distance between Weyl nodes), hence the name

intrinsic anomalous Hall effect (AHE) [Nagaosa et al.2010].

• Non-local transport

Another spectacular behavior related to the chiral anomaly takes the form of non-local

transport properties, as a persistent voltage can be measured much further from the elec-

trodes than the standard Ohmic range.

Consider a rectangular piece of ordinary metal with four contacts attached as in �gure

4.3. Two of those contacts are used as source and drain for an electric currentJ. The volt-

age applied between those points quickly drops away from the contacts, with a typical

distance given by the mean free path, limited by the width d of the sample.

In a Weyl semimetal in presence of a local magnetic �eld, the chiral anomaly gives rise

to an imbalance between the occupation of the two Weyl nodes. As mentioned above,

the relaxation of the imbalance is limited by internode scattering and the corresponding

mean free path can be much larger than sample width. At distances L � d, the valley
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Figure 4.4: Illustration of the Klein paradox. As a Weyl particle arrives on a potential barrier, it can
access the lowest branch of the dispersion relation. The spin of the particle is conserved as the potential
commutes with it (the particle remains on a solid line) and the potential thus scatters a particle of positive
momentum to a negative momentum state. The direction of motion, given by ¶p H, is preserved and the
particle keeps moving forward, tunneling through the barrier.

imbalance remains and could be measured with a local probe magnetic �eld, whereas the

Ohmic voltage has vanished [Parameswaran et al.2014].

4.1.3 Weyl particles in a trapping potential: the Klein paradox

Around Weyl- or Dirac points, the linearity of the dispersion relation makes the local density of

carrier extremely sensitive to electric �elds, and opens the way to the engineering of quantum

devices by applying an external con�nement. For instance, quantum dots using electrostatic

gates could be realized in graphene strips, despite the high density of conduction electron

ne ' 4 � 1015 cm� 2 [Castro Neto et al. 2009]. Such quantum dots in semi metal are promis-

ing candidates for the realization of quantum dots solar cells, as their reduced gap allows for

ef�cient multiexciton generation [Delerue and Allan 2011].

However, unlike massive particles described by the Schrodinger equation, relativistic-like

particles have a peculiar ability to escape through potential barrier under certain conditions,

rendering the realization of localized states challenging. This effect originates from the Klein

paradox3 [Klein 1929] and is pictured in �gure 4.4. As a Weyl particle arrives at a potential

barrier, it can access the lowest branch of the dispersion relation, where the kinetic energy de-

creases with momentum. As a result, the particle tunnels through barriers much higher than

its energy, with perfect transmission for an in�nitely high barrier. In the strictly one dimen-

3Historically, Klein paradox was introduced for massive particles facing barriers exceeding twice their rest mass.
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sional case, such as carbon nano-tubes, the Klein paradox leads to a suppression of the back-

scattering of relativistic electrons [Ando et al. 1998] and forbids their trapping. In the 2D case,

Klein paradox can be extended to show that the quantum tunneling of a particle through a bar-

rier possesses resonant incident angles, at which the barrier becomes transparent [Katsnelson

et al.2006]. Apart from these speci�c cases (1D and resonant angles at 2D), it isa priori possible

to con�ne relativistic-like particles despite Klein paradox, for instance by applying a harmonic

electric potential on a layer of graphene [Silvestrov and Efetov 2007].

4.2 Analogue simulation of Weyl particles

Predicted decades ago, the observation of Weyl points was reported only recently. A reason

might be that the pairing of Weyl points with opposite chiralities makes the experimental real-

ization of Weyl semimetals challenging. Indeed, in most materials, Weyl points are degenerate

and the resulting Dirac semimetal does not feature the topological properties mentioned above.

To lift the degeneracy and separate Weyl points in momentum space, time-reversal or inversion

symmetry must be broken, strongly constraining the exploitable compounds.

Owing to their high degree of control and versatility, ultra-slow cold atoms offer a comple-

mentary route for the experimental study of ultra-fast relativistic Weyl particles. For instance,

the simulation of Weyl particles has recently been proposed as a 3D extension of the 2D Harper

Hamiltonian where inversion symmetry breaking, required to generate Weyl points, would be

ensured by a site-dependent hopping phase [Dub�cek et al. 2015]. However, such a realization

requires a very �ne control of the arti�cial magnetic �ux per plaquette, all the more so as the

lattice is large: �ux �uctuations above 1-2% would destroy the Weyl nodes in a 160 � 160� 160

lattice [Lepori et al. 2015]. Ions chains have also been proven able to mimic the behavior solu-

tions of Dirac equation [Gerritsma et al.2010], including Klein paradox [Gerritsma et al.2011].

In this section, we propose an alternative approach: instead of reproducing the exact Hamil-

tonian (4.4), we show that non-interacting Weyl particles con�ned in a harmonic trap can be

mapped onto Lithium atoms in a quadrupole potential. This mapping enables us to apply re-

sults presented in the previous chapter to predict the relaxation of Weyl particles which were

dragged away from the trap center. We can also interpret properties of Weyl particles in terms

of atomic physics, highlighting for instance the parallel between the Klein paradox and Majo-

rana losses.
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4.2.1 Canonical mapping

Let us �rst recall the Hamiltonian of a spin 1/2 particle with magnetic moment min a magnetic

�eld, as introduced at the beginning of the previous chapter:

H0 (r, p) =
p2

2m
� ms .B0(r), (4.9)

where s are the Pauli matrices. In a quadrupole trap, the magnetic �eld takes the form B(r) =
b(gxx, gyy, gzz), where z is the symmetry axis of the coils, bdenotes the magnetic �eld gradient

and Maxwell's equations imply gx = gy = 1, gz = � 2.

Starting from the above Hamiltonian (4.9), we de�ne X and P by a canonical mapping ex-

changing position and momentum:

X i =
cpi

mbg i
, Pi = �

mbxig i

c
, (4.10)

with cbeing an arbitrary velocity scale. These new coordinates verify the commutation relation

[X, P] = i h̄ and can be used to rewrite the previous Hamiltonian as:

H = cs .P +
1
2

k0 å
i

g2
i X2

i , (4.11)

where k0 = m2b2/ mc2 (note that k0 has the dimension of a spring constant, not of a wave

vector). The �rst term corresponds to the kinetic energy cs � P of a massless Weyl particle

moving at velocity c while the second one is readily identi�ed as an anisotropic harmonic

potential, characterized by spring constants ki = g2
i m2b2/ mc2 along each direction i. Massless

Weyl particles in a harmonic trap are thus equivalent to massive atoms in a magnetic �eld

gradient. In the following, Weyl particles and massive atoms will be referred to using upper-

and lower-case symbols respectively.

4.2.2 Majorana losses and Klein paradox

The single-particle trajectories of the Weyl particles or Lithium atoms can be obtained using

Ehrenfest's theorem, applied to the Hamiltonians (4.11) and (4.9).

�X i = csi (4.12)

�Pi = � k0g2
i X i (4.13)

�s = 2cs � P/¯h. (4.14)

�pi = mbg isi (4.15)

�xi = pi / m (4.16)

�s = 2mBs � B(r)/¯h. (4.17)

Note that Eq. (4.12) through (4.17) are fully quantum, but since we work in the classical

regime, we will only consider their mean values.
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Equation (4.14) describes the precession of the Weyl particle's spin around the direction of

its momentum P just like eq. (4.17) does for the well-known atomic spin precession around the

local magnetic �eld. Those equations motivate a re-interpretation of Klein paradox in terms

of Majorana losses, described in section 3.1.3. For both systems, as long as the rate of change

of the particle's energy is small enough (i.e. much smaller than 2 Pc/¯h for Weyl particles and

2mBB/¯h for atoms), the spin follows adiabatically the local orientation of the momentum for

Weyl particles and of the magnetic �eld for atoms, and its helicity is conserved throughout the

trajectory.

The breakdown of this adiabatic following leads to spin �ips and an helicity inversion, cor-

responding to a transfer to negative energy states which are expelled from the trap. This loss

process corresponds to Majorana losses for magnetically trapped and Klein paradox for Weyl

particles, which thus appear as two descriptions of the same phenomenon.

Just like the death radius d describes the distance below which the magnetic �eld is too

weak for atoms with velocity v to follow adiabatically the local orientation of the �eld, we

can de�ne a death momentum Pbelow which Weyl particles at distance D from the trap center

are most likely to undergo helicity-�ips. Following the same procedure as in section 3.1.3, or

simply using the canonical mapping (4.10) introduced before, we express:

ddeath �

s
vh̄

mBb
! Pdeath �

r
h̄
c

k0D. (4.18)

For a con�ned ensemble at temperature T, the corresponding loss rate can be estimated to:

GMajorana '
h̄
m

�
mb

kBT

� 2

! GKlein ' h̄k0

�
c

kBT

� 2

. (4.19)

Just like Majorana losses prevent the existence of a true thermodynamic equilibrium in a

quadrupole trap, Klein paradox prevents the stable trapping of Weyl particles in external po-

tentials. In one dimension, particles will necessarily move through regions where the adiabatic

following breaks down, rendering their trapping impossible. In higher dimensions, some tra-

jectories can avoid the death region and, for suf�ciently high temperatures, Klein-Majorana

losses can be neglected. In such conditions, particles of positive and negative helicities are

described by the effective Hamiltonians:

H� = � cP+
1
2 å

i

ki X
2
i . (4.20)

4.2.3 Quasi-thermalization in a harmonic trap

In the previously described experiment, Lithium atoms are spin-polarized in the hyper�ne

state jF = 3/2, mF = 3/2 i and, strictly speaking, are not spin 1/2 particles. However, as long
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as Majorana losses can be neglected, they are described by the same Hamiltonian as positive

helicity Weyl particles in absence of Klein paradox (see equation (4.20)) and will consequently

exhibit similar dynamics, with a magnetic moment m = mB, where mB is the Bohr Magneton.

The results presented in the previous chapter about Lithium atoms can therefore be generalized

to predict the behavior of Weyl particles in a harmonic trap. To do so, we �rst explicit more

carefully the equivalence between the two systems:

Trapping potential In the previous chapter, we studied the relaxation of collisionless Lithium

atoms in a linear trap V = mBb
p

x2 + y2 + g2
zz2 after being excited out of equilibrium.

Those results can be transposed to predict the behavior of Weyl particles in a harmonic

potential:

V =
1
2

k0(x2 + y2 + g2
z z2). (4.21)

Effective temperature For 6Li atoms, we considered an effective kinetic temperature kBTi =
hp2

i i / m. Equivalently, we de�ne an effective potential temperature for Weyl particles

corresponding to the spread of the position distribution:

kBTi = kihX2
i i . (4.22)

Excitation For 6Li atoms, we considered an ideal momentum kick, shifting the momentum

distribution by an amount q0. Equivalently, this corresponds to an ideal position kick

R0 =
p

kBT/ k0, dragging the Weyl particles away from the trap center, releasing them

and letting them oscillate in the harmonic potential.

In addition, we also treated ideal position kicks, shifting the position distribution by an

amount d, and a realistic description of the experimental sequence, during which the

cloud acquires a momentum q while it evolves in a shifted potential for a duration t .

Equivalently, we consider for Weyl particles an ideal momentum kicks, changing the po-

sition of the Weyl point in momentum space, and an intermediate regime, as the Weyl

distribution moves by an amount hRi while evolving for a duration t in a shifted Weyl

node.

Kick strength For 6Li atoms, we de�ned an experimentally accessible kick strength h, which

could be used to estimate the energy imparted onto the cloud during the excitation. To

transpose all previous results, we extend equation (3.19) to de�ne a kick strength for Weyl

fermions:

h =

s
å i kihRi i 2

kBT0
(4.23)

We can now translate the conclusions of the previous chapter into predictions for harmoni-

cally trapped Weyl particles:
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(i) After an initial excitation, the center of mass of a Weyl distribution does not oscillate

endlessly, but stops after oscillations. This behavior contrasts strongly with the one of massive

particles in the same potential, which would oscillate forever owing to Kohn theorem (see

annex A.3.1). The damping results from the dephasing of single particle trajectories.

Noting that hs i 2 = 1, equation (4.12) shows that even in a harmonic trap, Weyl particles

move at a constant velocity c, whereas classical massive particles would move with a constant

oscillation frequency. As a result, massive particles would remain in phase with each other

and their center of mass would keep oscillating, while the momentum distribution of a Weyl

particles cloud spreads in such a way that the center of mass eventually comes to a halt. For

Lithium atoms in a quadrupole trap, the dephasing and the resulting damping are due to the

linearity of the potential energy; for Weyl particles, both effects are due to the linearity of the

kinetic term.

(ii) The energy DE acquired during the excitation is redistributed, increasing internal energy

of the Weyl-cloud and leading to a spread in position space. The steady-state distribution is

non-thermal and the relaxation towards it can be interpreted in terms of effective heating. A

partial quasi-thermalization takes place, as some of the directions can reach the same �nal

temperature regardless of the kick's orientation. The relation between the imparted energy DE

and the measurable kick strength h depends on the modality of the excitation.

(iii) The spread of the distribution depends on whether the trap is anisotropic and on the

dimensionality of the system.

In a 3D isotropic con�nement, the kick direction provides a symmetry breaking and the

kicked direction reaches a higher temperature as the other two. The situation is completely

different in 2D, where both axis reach the same temperature, regardless of the kicks orientation:

DT3D
k =

7
15kB

DE & DT3D
? =

1
10kB

DE. (4.24)

DT2D
k = DT2D

? =
2

3kB
DE. (4.25)

As soon as the trap presents a slight anisotropy gz > 1, the directions of the symmetry plane

reach the same �nal value and are decoupled from the symmetry axis. Taking into account

energy conservation, virial theorm and assuming a complete decoupling, the corresponding

effective heating DT can be related to the imparted energy DE by the relations:

z � kick : DTx = DTy � DTz & DTz '
2

3kB
DE, (4.26)

x � kick : DTx = DTy ' 1
3kB

DE & DTz � DTx,y, (4.27)
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The relaxation time t also depends on the anisotropy, and will be shorter if the trap is more

anisotropic, with a scaling law expected to be:

t µ (g2
z � 1) � 1. (4.28)

4.3 Geometric potentials

As we wrote the expression of the Hamiltonian (4.9) experienced by 6Li in a magnetic gradient,

or that of Weyl particles in a harmonic trap (4.21), we assumed that the spin would follow

adiabatically the local direction of the �eld. However, this hypothesis induces additional effects

that we have not taken into account so far [Berry 1984]. When the particle travels through the

�eld, the adiabatic evolution of its internal state leads to geometric gauge potentials and the

phase accumulated during the trip can be expressed as the sum of two contributions [Aharonov

and Stern 1992]: a dynamical phase due to the energy of the particle and a geometrical phase

due to its path. This additional term may lead to a higher degree of mixing of the effectively

decoupled directions.

Indeed, magnetic quadrupoles have already been used to generate non trivial topological

properties. For instance, by slowly lowering the magnetic center into an optically trapped

condensate, it is possible to realize an effective magnetic monopole as the spins of the ensemble

follow the direction of the �eld [Ray et al. 2014]. Berry phases have also been displayed in a

similar system, the so-called time-averaged orbiting potential trap ( TOP-trap) [Petrich et al.

1995], where the �eld's zero describes a circular orbit at a frequency smaller than the Larmor

frequency (for the atoms to follow adiabatically the direction of the �eld) but larger than the

oscillation frequency (so that the atomic motion is mostly dictated by the average value of the

potential). It was shown in [Müller et al.2000, Franzosiet al.2004] that the equilibrium position

of an atomic cloud con�ned in such a trap was slightly tilted depending on the sense of rotation

of the zero. In the equivalent picture, the topological properties of Weyl particles could perhaps

be put forward by a periodic displacement of the Weyl point in momentum space, which would

result in a �nite equilibrium momentum depending on the node path.

In this section, we estimate the Berry potentials of Weyl fermions in a harmonic potential

and determine numerically their in�uence on the previously studied quasi-thermalization.

4.3.1 Berry phase, scalar and vector potential

A standard way to derive the expression of the geometric potentials consists in assuming the

adiabatic following of the internal state of the system and to estimate the time evolution of the

wavefunction [Sukumar and Brink 1997]. We follow a similar approach for the Hamiltonian of

Weyl particles in a harmonic trap (4.21).
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To simplify the calculations, we consider a set a variable (Z0 = g � 1
Z Z, P0

Z = gZ PZ ), such that

the anisotropy is transferred to the kinetic term and the Hamiltonian takes the form:

H =
1
2

k0R02 + s .P0c. (4.29)

In momentum space, the local eigenstates are given by the direction of the momentum P:

s .P0c j � i P0 = e�
�
P0� j � i P0 , (4.30)

where the eigenenergies aree� (P0) = � P0c. In order to refer to a �xed quanti�cation direction,

we de�ne a unitary operator R (P) such that

j�i P = R (P)j�i . (4.31)

Considering the position R̂ = i h̄r P as an operator, we can write its transformed expression as:

R †(P)R̂R (P) = R̂ + T̂(P), (4.32)

where the Hermitian matrix operator T̂(P) is de�ned as:

T̂(P) = i h̄R †(P) (r PR (P)) . (4.33)

Within this rotated frame, the transformed Hamiltonian takes the form:

H0 = R †(P0)HR (P0) =
1
2

k0
�
R̂0+ T̂(P0)

� 2
+ cR †(P0)

�
s .P0� R (P0), (4.34)

As long as the energy difference between eigenstates is large enough to prevent non-adiabatic

passage, the system remains polarized along the rotated quanti�cation axis:

jy + (t)i =
Z

d3P0j +
�
P0, t

�
jP0i 
 j+ i P0 . (4.35)

Using Schrödinger equation, we express the time evolution of the amplitude j + :

i h̄
¶
¶t

j + = P0 h+ jH j + j+ i P0 (4.36a)

= h+ jH0j + j+ i (4.36b)

=
�

k0

2

�
R0� A (P0)

� 2 + e+ + U (P0)
�

j + , (4.36c)

where we introduced the Berry connection A (P), which behaves like a vector potential:

A (P) = �h + jT̂(P) j+ i = � i h̄ � Ph+ jr Pj+ i P, (4.37)
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and a geometric scalar potential U (P) de�ned as:

U (P) =
k0

2
� h + jT̂(P)2 � A (P)2 j+ i =

h̄2k0

2
� jP h� j r P j+ i Pj2 . (4.38)

The adiabatic following thus gives rise to two additional terms which must be taken into

account when calculating the time evolution of the system. To obtain the explicit expression

of the geometric forces and implement them in the numerical simulations, we decompose the

local eingenstatesj � i P onto the �xed direction Pz:

j+ i P =

r
1 + PZ

2
j+ i PZ

+

r
1 � PZ

2
PX + iPYq

P2
X + P2

Y

j � i PZ
(4.39a)

j � i P =

r
1 � PZ

2
PX � iPYq

P2
X + P2

Y

j+ i PZ
+

r
1 + PZ

2
j � i PZ

. (4.39b)

With those expression, we can compute the expression of the scalar potential and of the effec-

tive magnetic �eld corresponding to the Berry curvature BA = r P0 � A (P0):

U (P) =
h̄2k0

2
(1 + g2

Z )P2
X + ( 1 + g2

Z )P2
Y + 2g2

Z P2
Z

4(P2
X + P2

Y + g2
Z P2

Z )2
, (4.40a)

BA (P) = h̄
gZ

2
P

(P2
X + P2

Y + g2
Z P2

Z )3/2
. (4.40b)

Remarkably, the effective magnetic �eld takes the form of an electric �eld radiated by a single

charge; as mentioned in the introduction of this chapter, Weyl points behave like magnetic

monopoles in momentum space.

In order to simulate numerically the relaxation of an ensemble in presence of those addi-

tional terms, we �rst introduce dimensionless variables:

X = X0X̃, P = P0P̃, t = t0t̃ , (4.41)

X0 =
p

kBT/ k0, P0 = kBT/ c, t0 =
p

kBT/ k0c2, (4.42)

The time evolution of the mean values is given by Ehrenfest's theorem:

d
dt̃

P̃0
i = � X̃0

i , (4.43a)

d
dt̃

X̃ i =
g i P̃iq
å g2

j P̃2
j

+
P3

0

h̄2
0k0

FU,i +
P2

0

k0X0h̄0
FA,i , (4.43b)

where FU = � r P0U and FA = k0X � (r P0 � A (P0)) . We introduced h0 =
p

(kBT)3/ k0c2 so as
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to de�ne a dimensionless Planck's constant:

˜̄h =
h̄
h̄0

= 0.002�
b [G/cm ]

(T [� K])3/2 , (4.44)

where the numerical value is given for the equivalent Lithium system. At the temperature

considered before, ˜̄h = 0.0003.

4.3.2 Effect of the geometric potentials

Starting from the same thermal distribution as before,

f0(R0, P0) µ exp
�

�
1

kBT

�
k0

2
R2

0 + c
q

Px
2 + Py

2 + g2
zPz

2
��

, (4.45)

we now consider a time evolution dictated by (4.43). Even in the absence of kick, this initial

distribution is not stationary because of the additional geometric terms. However, for dimen-

sionless Planck's constants up to ˜̄h = 1, their in�uence is small enough for the effective heating

to remain below 2% of the initial temperature, even after a hold time of 1000 time units. The

absence of effect was observed both for isotropic and anisotropic con�nements.

The manifestation of geometric terms appears more pronounced in the dynamical behavior

of the ensemble. For instance, �gure 4.5 (left) shows the dependence over ˜̄h of the effective

heating resulting from a ideal kick d = R0(1, 0, 0) within the symmetry plane of an anisotropic

trap. For increasing values of ˜̄h, an additional coupling appears between directions 4: the two

effective temperatures of the symmetry plane continue to equilibrate, but at a lower value as

the third direction gains a larger part of the imparted energy.

In the experimental conditions of this chapter and the previous one, the mixing due to geo-

metric terms can legitimately be neglected. Nevertheless, we can push forward the investiga-

tion to see if we can �nd a con�guration that highlights a signature of the Berry terms.

The enhanced heating along the symmetry axis seems to be an promising quantity to display

the effect of the geometric potentials (see Fig. 4.5, right), all the more as it starts from almost

zero background. However, a higher value of ˜̄h also results in a higher Klein-Majorana loss rate,

which can not be neglected anymore. To take those losses into account, we remove particles as

soon as their trajectory brings them too close to the death momentum, i.e.

P̃x
2 + P̃y

2 + g2
zP̃z

2 < ˜̄h
p

X̃2 + Ỹ2 + Z̃2. (4.46)

The number of remaining particles as a function of time is shown in �gure 4.6 (left). Remark-

ably, the losses saturate within few dozen of time units and the number remains almost con-

4This enhancement of the coupling is much weaker in an isotropic con�nement, where the effect appears to be
limited to less than few percent for ˜̄h � 1.
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Figure 4.5: Left : Effective heating along x (blue squares), y (gray triangles) and z (red circles) as a
function of ˜̄h = h̄/¯h0. Temperatures corresponding to ˜̄h for the equivalent 6Li system is a magnetic
quadrupole b = 100 G/cm are indicated above the graph. The heating is recorded at long times after an
ideal kick R0� (1,0,0) in an anisotropic con�nement ( g2

x = g2
y = 1, g2

z = 4). The solid lines are given by
the previous predictions in absence of geometric potentials (4.26) and (4.27). The slight discrepancy for
z close to ˜̄h = 0 was already observed in the previous chapter.
Right : Effective heating as a function of the kick strength h in the same trap, for ˜̄h = 1 (same color code).
Solid lines are given by the previous predictions in absence of geometric potentials (4.26) and (4.27).
Dashed lines are the best quadratic �ts to the data. Within the symmetry plane ( x,y), the behavior is
scarcely affected (DTx = DTy = 0.304� DE instead of DE/3) while the heating along z is signi�cantly
enhanced (DTz = 0.1� DE instead of � 0 in the absence of coupling).
Klein-Majorana losses are not taken into account here.

Figure 4.6: Left : Remaining atom number as a function of time, after a unit kick with ˜̄h = 1. Losses are
de�ned by the passage through a death-circle in momentum space (4.46). The steady value is close to 22
500 particles and decreases by less than 2% betweent = 100t0 and t = 1000t0. The initial decay, �t by
an exponential (black line) corresponds to a rate of � 0.2 per time unit, within the order of magnitude
expected by the Klein-Majorana loss rate (4.19).
Right : Effective heating as a function of time after a kick R0� (1,0,0) with ˜̄h = 1. Solid lines: taking
into account Klein-Majorana losses. Dashed lines: without losses. Straight lines: previous predictions
in absence of geometric potentials (4.26) and (4.27), for comparison. The effective heating resulting from
the energy redistribution is overwhelmed by the modi�cation of the distribution due to the losses.
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stant up to 1000 t.u. The behavior is due to the absence of collisions: as trajectories are not

redistributed, particles whose trajectories are subject to losses are quickly expelled while the

other particles might never get even close to the death momentum, at least for small durations

compared to a -possible- ergodicity period of the system.

The effective temperature of the remaining particles is presented in �gure 4.6 (right) as a

function of time. The Klein-Majorana losses have a strong impact on the effective heating,

changing signi�cantly the shape of the distribution at long times and completely overwhelming

the previously mentioned signal.

The interplay between Berry phases and Klein-Majorana losses illustrates that both effects

can be seen as two manifestations of the same underlying adiabatic hypothesis [Sukumar and

Brink 1997]. In the basis set by the local eigenstates, the Berry potentials correspond to diag-

onal matrix elements of the operator (4.33), depicting the continuous following of the same

state, while the Klein-Majorana losses are described by off-diagonal terms, resulting in the

breakdown of the adiabatic following. While an optimal value for ˜̄h can perhaps be found in

our quadrupole-like con�guration to observe a maximal in�uence of the Berry terms, this rela-

tion between topological properties and non-adiabatic following has a broader range and will

be investigated in a future work.

4.4 Conclusions and outlooks

Using a canonical mapping, we showed that non-interacting Weyl particles in an anisotropic

harmonic trap are equivalent to cold fermionic atoms such as 6Li in a quadrupole potential.

Taking bene�t of this analogy, we could also interpreted the Klein paradox in terms of Ma-

jorana losses and concluded that Weyl particles could be trapped in 2D and 3D potentials at

suf�ciently high temperatures.

We derived the expression of the topological potentials and showed numerically that their

effects were not signi�cant at the previously considered temperatures. At lower temperatures

however, they result in a coupling of the symmetry axis z with the symmetry plane ( x,y), but

their signal is hindered by the increased Klein-Majorana losses. The interplay between both

effects highlights the underlying adiabatic hypothesis.

Extending the results obtained in the previous chapter, we showed that Weyl particles

dragged away from the center of a harmonic would not oscillate like massive particles, but

relax towards a non-thermal steady-state as the imparted energy leads to an anisotropic spread

of the distribution. The long-time distribution remains anisotropic in a 3D isotropic trap, but

becomes isotropic in 2D. However, the slightest symmetry breaking of the con�nement leads

to an strong decoupling between the symmetry axis and the symmetry plane.

The canonical mapping presented here is not limited to the simulation of Weyl fermions,

but can address a broader range of problems, such as the dynamics of harmonically con�ned
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massive relativistic particles. Indeed, in a Ioffe-Pritchard trap, a bias �eld gives rise to a non-

zero magnetic �eld at the trap center and the overall �eld is of the form B =
q

B2
0 + b2 å i a2

i x2
i .

In this case, the analogue system would be described by the relativistic kinetic energy E =
p

m2c4 + p2c2 where the mass can be tuned as a function of B0.

The very same mapping allows for the study of spin-orbit coupling [Koller et al. 2015].

In a hybrid trap consisting of the superposition of an optical dipole trap and a 2D magnetic

quadrupole trap, the Hamiltonian takes the form

h =
p2

2m
+

mw2

2
(x2 + y2) +

mw2
zz2

2
� mBb(sxx � syy). (4.47)

Applying our mapping to the variables (x, y, px, py) leads to the equivalent Hamiltonian

H =
P2

2m
+

mw2

2
(X2 + Y2) +

mw2
zZ2

2
�

mBb
mw

(sxPx + syPy), (4.48)

which turns out to describe a 2D spin-orbit coupled particle. Finally, in the same trap, it is also

possible to engineer a Rashba coupling by taking X = py/ mw, Px = � mwy, Y = px/ mw, Py =
� mwx.

These results illustrate the powerful ability of Physics to take advantage of similarities be-

tween systems of very different natures to study a complicated problem with a handier exper-

iment.
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L Aser cooling and sub-Doppler techniques opened the way to a signi�cant decrease of the

achievable temperatures, but most optical cooling strategies are limited to a phase-space

density of � 10� 3, notably because of light induced collisions. An ef�cient way to overcome

this dif�culty and reach ultralow temperatures is the so called evaporative cooling, which was

�rst proposed and applied to magnetically trapped hydrogen [Hess 1986, Hess et al.1987], and

soon successfully adapted to other alkali atoms [Petrich et al.1995, Ketterle and Druten 1996].

The working principle of evaporative cooling is known to every one who tried to drink a

hot beverage and cooled it by blowing on its surface. As a fraction of the particles is taken

away (mostly particles with highest energies, capable of escaping the liquid phase), the dis-

tribution is out of equilibrium, but collisions soon redistribute the remaining energy and the

ensemble relaxes towards a thermal state. The new equilibrium has a colder temperature than

the previous one, all the more so as the thermalization required to pay the latent heat to re-

store a satisfying vapor pressure. In this way, the temperature can be decreased to extremely

111
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low values as long as particles can be sacri�ced, which already implies that a large initial atom

number is crucial to reach quantum degeneracy.

This chapter is dedicated to the experimental realization of an ultracold gas of 40K: 1.5� 105

atoms in the j9/2, � 9/2 i state and as many in the j9/2, � 7/2 i state were cooled to T = 62 nK,

at 17% of the Fermi temperature TF. Lithium atoms have also been transported to the science

cell and partially loaded in the dipole trap; their cooling to degeneracy is still to be achieved

and will be addressed at the end of the chapter.

In the �rst section, we present the standard techniques which allow for the manipulation

and measurement of the internal state of the atoms and show how to use the sample to cali-

brate the apparatus, a compulsory step to interpret correctly the experimental data. We then

brie�y illustrate the principles of evaporative cooling to underline the main parameters of the

technique, which is performed in three steps that we detail: the cloud is �rst cooled in a mag-

netic trap, then transferred into an optical dipole trap and further evaporated to degeneracy.

Eventually, we summarize the short and middle term projects that can be addressed by the

FERMIX machine as soon as the system will have fully recovered from its long inactivity due to

the major renovation works in the institute.

5.1 Diagnostic tools in the science cell

The realization of an cold atomic sample is at the same time an objective of the FERMIX exper-

iment and a means to characterize the apparatus, a precise knowledge of which is required to

interpret any experimental data. The objective of this section is twofold: we introduce standard

techniques used to measure and manipulate spin populations and show how to use them in

order to estimate and calibrate the properties of our experimental setup.

In this section, all examples will deal with 40K, for which the measurements were performed

in the experiment.

5.1.1 Spin selective measurements

Thermometry in the quadrupole trap

As the atomic cloud reaches the magnetic quadrupole trap of the science cell, it is too large and

hot with respect to the cell size and the �eld of view of the imaging to allow long time-of-�ight

experiments. An alternative way to probe its temperature is to estimate the energy distribution

of the ensemble. To do so, it is possible to rely on a so-calledradio-frequency knife: RF-radiation

of frequency wcut is sent on the atoms to drive a transition from a trappable jF = 9/2 i state to a

jF = 7/2 i state which is expelled from the trap. As the Zeeman shift is inhomogeneous within

the quadrupole magnetic �eld, only a fraction of the atoms will actually undergo a transition.
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Figure 5.1: Left : RF knife. A radio frequency wcut selectively removes atoms with an energy higher than
DE = E0 � h̄wcut = h̄(d9/2 � d7/2 ), where E0 is the hyper�ne splitting of the ground state and dm is
the Zeeman frequency shift of the jmi sub-level. The choice of h̄wcut thus sets the trap depth h = ( E0 �
h̄wcut)/ kBT = Tcut / T. Right : RF Thermometry: the number of atoms with an energy smaller than kBTcut
in a quadrupole trap only depends on the distribution temperature. A �t N (Tcut) = N0 � P(9/2, Tcut / T)
allows to estimate the temperature T. Here, we measure a temperature of 360� 5� K for 2.5 � 108 atoms
as they arrive in the science cell.

Those atoms are located in a shell of magnetic �eld Bcut such that

h̄wcut = E0 + DE (Bcut) , (5.1)

where E0 is the hyper�ne splitting of the S1/2 state and DE (Bcut) = hkBT is the additional

energy difference between the two states caused by the Zeeman effect. Assuming that collisions

ensure a good redistribution of the trajectories, any atom with an energy higher than DE (Bcut)
will cross the shell at some point of its oscillations and will be expelled from the trap. This

picture motivates the name of the technique (see Fig. 5.1).

Strictly speaking, the height of the cut depends on the atomic spin state. However, at

low temperatures (below few mK), the difference in Zeeman shifts between the j9/2, 9/2 i !
j7/2, 7/2 i transition and the j9/2, 7/2 i ! j 7/2, 7/2 i transition is small enough to treat all

trappable spin states as the same.

If the duration of RF knife is long enough for all atoms with high enough energy to reach the

RF-knife, but short enough to avoid evaporation so that the ensemble's temperature remains

constant, the remaining atom number Ncut is given by:

Ncut

N0
= P(9/2, Tcut / T), (5.2)

where N0 is the total atom number, P is the normalized incomplete Gamma function 1 and we

1We de�ne incomplete Gamma functions as:

G(a, h) =

hZ

0

du ua� 1e� u.
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Figure 5.2: Controlled spilling experiment. Left : Con�ning potential (solid line) and spatial distribution
(dashed line) for Potassium atoms in the j9/2 i (red lines) and j7/2 i (blue lines) spin states in the same
magnetic gradient b. Gravity is oriented along - z. The reduced momentum of the j7/2 i state induces
a reduced con�nement and thus a wider spread of the distribution. Right : remaining atom number as
a function of the trap opening b. The �t function is given by equation (5.4) for mF 2 f 9/2, 7/2, 5/2 g.
We take N0, a = L/ r0b1/3

0 , f9/2 and f7/2 as free parameters and �t their values to f9/2 = 0.25� 0.02,
f7/2 = 0.36� 0.03, f5/2 = 1 � f7/2 � f9/2 = 0.39� 0.04

used the expression of the density of state r (E) µ E7/2 demonstrated in section 3.1.4.

By measuring Ncut for decreasing values of Tcut, we obtain a tomographic reconstruction of

the cloud (see Fig. 5.1), with initial atom number and temperature as the only free parameters.

Controlled spilling from a quadrupole trap

As the RF-knife cannot resolve the difference between j9/2, 9/2 i and j9/2, 7/2 i states, it is not

appropriate to probe the spin composition of the ensemble. A complementary approach is to

use the difference of trapping stiffness experienced by different spin states. While the stretched

low �eld seeking state experiences a linear potential with a slope mBb, the other states evolve

in a potential of slope (mF/ F) � mBb and display a larger spread in the trap.

In a real experiment, the extension of the distribution is ultimately limited by the size of

the coils or the proximity of obstacles such as the wall of the vacuum chamber. The distance

L to the obstacle imposes a spin-selective cut on the distribution Ecut(mF) = ( mF/ F) � mBL.

Furthermore, gravity results in an effective decrease of the trapping stiffness along z by an

amount

bg = mK g/ mB ' 7 G/cm. (5.3)

Those functions are related to the standard Euler Gamma function through G(a) = G(a, ¥ ) and we introduce the
normalized ratio :

P(a, h) = G(a, h)/ G(a)
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These effects can be used to measure the spin population of the cloud by controlled spilling.

Starting from a compressed quadrupole trap b0, we decrease the magnetic gradient tob, causing

the distribution to spread. If the trapping force exerted on a spin-state becomes weaker than

gravity (ie mF
F mBb < bg), atoms in this state will fall out off the trap. The total remaining number

of atoms is given by:

N
N0

= å
mF> 0

fmF � P

 
9
2

,
mF/ F � b � bg

b2/3 b1/3
0

L
r0

!

q
� mF

F
b � bg

�
, (5.4)

where N0 is the initial atom number, r0 = kBT/ mBb0 is the typical extension of the spatial

distribution and fmF is the fraction of atoms in the mF state. The denominator accounts for the

cooling induced by the adiabatic decompression of the trap, as demonstrated in section 3.1.4.

An example of this measurement is presented in �gure 5.1.

Stern Gerlach experiment

The Stern-Gerlach experiment is one of the most well-known methods to determine the spin

composition of a sample2. As different spin states experience different potential slopes (mF/ F) �
mBb, a free fall in a magnetic gradient spatially separates the populations of Zeeman sublevels.

Experimentally, we perform Stern-Gerlach measurements to probe the spin composition of

a cloud in the optical dipole trap. We take advantage of the presence of two sets of coils close to

the science cell to switch on simultaneously a magnetic gradient b, which will separate the spin

states, and a magnetic bias, which moves the magnetic zero far from the cloud. As the atoms

are released from the optical potential, they fall in a modi�ed gravity g(1 � 2mFmBb/ Fbg).
For suf�ciently long times of �ight tTOF, such that the distance between two successive states

� mBbt2TOF/2 is larger than the spread of the cloud s(t) =
q

s2
0 + kBT/ m � t2

TOF, the population

of each spin state can be resolved as shown in �gure 5.3. However, the correct evaluation of

the spin population may require an additional step: because of the spatial inhomogeneity of

the magnetic �eld, all spin-states do not share the same imaging frequency. In addition, the

Clebsch-Gordan coef�cient depends on the addressed transition. Those parameters must be

taken into account in the form of corrective factors when calculating the atom number with

absorption imaging.

High �eld imaging

At high magnetic bias, the Zeeman shift differs enough from one spin state to the other to

allow spin-speci�c imaging. The resonance value of the optical transition can be calculated

analytically by taking into account the energy shift of both the ground state (as given by the

2And to support legends, as illustrated by the article "Stern and Gerlach: How a Bad Cigar Helped Reorient
Atomic Physics" [Friedrich and Herschbach 2003]
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Figure 5.3: Stern-Gerlach experiment: a time-of-�ight in a magnetic gradient separates spatially the
populations of Zeeman sublevels. Pictures are taken after the �rst optical evaporation, as atoms are
captured in the optical dipole trap. Top: atoms in the j9/2 i and j7/2 i states, after the evaporation.
Bottom : after the adiabatic transfer, the atoms populate the j � 9/2 i and j � 7/2 i states. Middle : by
ramping back and fourth the driving RF frequency, the atoms can be distributed among all 10 Zeeman
sublevels. The adiabatic passage is described in section 5.1.2.
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Figure 5.4: Landau Zener adiabatic sweep. Left : Eigenenergies of the dressed states of a simpli�ed 2
levels system. The bare ground state jgi is pictured in blue and the bare excited state jei in red. In
dashed line, WR = 0 does not allow the anti-crossing of the two levels. Right : Eigen-energies of the 10
Zeeman sublevels of a40K atom. A magnetic bias of 20 G leads to an energy shift at zero frequency. All
levels are coupled by a Rabi frequency WR = 700 kHz. Most notably, the low-�eld seeking state j � 9/2 i
is transfered to the other stretch state j + 9/2 i by sweeping the RF from low to high frequency.

Breit-Rabi formula) and the excited state (as given by the Paschen-Back formula). As soon as

the magnetic bias exceeds� 100 G, the difference between resonance frequencies are much

larger than the atomic linewidth and the population of each Zeeman sublevel can be imaged

independently.

In the experiment, we work around the Feschbach resonance of Potassium at 200 G. The

corresponding detuning is around 300 MHz with respect to the imaging frequency at zero

�eld, too far to be reached simply by detuning the already installed acousto-optical modulator.

A dedicated imaging system was thus installed to address the required transition.

5.1.2 Spin manipulation

Once the atoms are loaded into a spin independent con�nement, such as a dipole trap, their

spin states can be manipulated without (or with limited) losses. In this section, we present

techniques dedicated to the control of the spin composition of the cloud. We will not address

optical pumping, which was already described in section 2.6.

Landau-Zener adiabatic passage

The adiabatic passageallows for the transfer of atoms from one state to the other (for a peda-

gogical derivation, see [Steck 2012]). To get a simpli�ed picture, let us consider a system with

only two energy levels f jgi , jei g separated by E0 and coupled by a Rabi frequency WR resulting

from an RF-radiation of frequency wRF (see �gure 5.4). As the radiation frequency increases,

the coupling between the two states results in the anti-crossing of the energy levels. At low
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frequency, in the ground state of the {atom + radiation } system, the atomic state is essentially

jgi . At high frequency, the ground state of the total system corresponds to an atomic state es-

sentially in the jei level. By slowly sweeping the RF frequency from low to high values, the

total system adiabatically follows its ground state and atoms are transferred from jgi to jei .

The Landau-Zener formula expresses the probability of successfully following one state dur-

ing the transfer. We consider a linear ramp of frequency, performed over a duration T from

wRF = E0/¯h � D/2 to wRF = E0/¯h + D/2, with D � WR. The probability for an atom ini-

tially in the ground state to end up in the excited state is then given by [Landau 1932, Zener

1932, Rubbmarket al.1981]:

P(g ! e) = 1 � exp
�

�
2p W2

RT
D

�
. (5.5)

For the transfer to be ef�cient, its duration T must be much longer than W� 1
R .

Experimentally, the energy difference E0 is generated by the difference in energy shifts be-

tween Zeeman sublevels. Within the F = 9/2 manifold of 40K, 10 sub levels must be taken

into account (see Fig. 5.4) and the complete derivation is more complicated than for the two-

levels system. Nevertheless, this simpli�ed picture is still valid if the magnetic bias is strong

enough to go beyond the linear Zeeman regime. In that case, the difference between successive

resonant frequencies can be larger than the Rabi frequency and the complete adiabatic passage

is then practically reduced to 9 independent passages j9/2 i ! j 7/2 i ! ... ! j � 9/2 i . For

instance at 19.2 G, the resonant frequencies of thej9/2 i ! j 7/2 i and j7/2 i ! j 5/2 i transitions

are � 2p � 6.213 MHz and � 2p � 6.151 MHz respectively, while the Rabi frequency is esti-

mated to be WR ' 10 kHz. With those values, we could transfer more than 90% of Potassium

atoms from the j9/2 i state to the j � 9/2 i state (see Fig. 5.3).

Complementary, a fast ramp can be used to �ip spins non-adiabtically from one state to the

others. When ramping quickly, the driving frequency back and fourth through the resonance,

spin populations of both levels tend to equilibrate in the end (see Fig. 5.3).

Spin selective removal

It is sometimes useful to prepare a fully spin-polarized sample, for instance to measure Rabi

oscillations towards an empty state or to avoid interspecies interactions. One way to do so is to

take advantage of the difference between energy shifts that affect the Zeeman sublevels. If an

applied magnetic bias is strong enough, the separation between optical transitions ( jS1/2 , F =
9/2, mFi ! j P3/2 , F = 11/2, m0

Fi ) or RF transitions resonances (jS1/2 , F = 9/2, mFi ! j S1/2 , F =
7/2, m0

Fi ) can be larger than the transition bandwidth and allows to address each sublevel in-

dependently. The energy acquired during the transition is large enough to expel the atom from

the trapping potential and the population of a Zeeman state can thus be selectively removed

with only minor in�uence on the remaining atoms.
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Figure 5.5: Left : estimation of the radial trapping frequencies by measuring the center-of-mass position
(blue points) and the cloud spatial spread (red points). Solid lines are given by sinusoidal �t with

exponential decay. Right : estimation of the beam waist. w(P) =
r

12c2

mw2
0

G
D

P
w4 , where w0 is the frequency

of the D2 transition, Gits bandwidth, D its detuning with respect to the laser frequency and m the mass
of the atom. P is measured with a bolometer and the beam waist w is a free parameter. The best �t is
obtained for w = 38.6� m � 0.7.

5.1.3 Calibration of the apparatus

While the previous sections were dedicated to the control and probing of the atomic sample,

we show in this section how the sample can be used to calibrate the trapping frequencies of the

optical trap, the Rabi frequency of the RF radiation driving the j � 9/2 i $ j � 7/2 i transition,

the magnetic biases and curvatures as well as the imaging magni�cation.

Trap frequency

A precise knowledge of the con�ning frequencies is required to estimate correctly the atomic

density, which is involved in most physical quantities such as the collision rate or the Fermi

temperature. In addition, the measurement of the oscillation frequencies of a cloud, and its

comparison to the bare trap frequency, is an interesting way to put under scrutiny several

effects, for instance the in�uence of interactions (see section 6.3.3).

Atoms provide an easy way to measure the frequency w0 of their con�ning potential. Kohn

theorem, demonstrated in annex A.3.1, states that the oscillation frequency of cloud's center of

mass is set byw0, regardless of the atomic interactions. To measure w0 it is suf�cient to kick

the center of mass, for instance by switching quickly off and on the con�ning potential, such

that the cloud begins to fall. The ensuing oscillations give access to the trap frequency. An

alternative way is to take advantage of the breathing mode: for a non-interacting gas, the spread

of the distribution also oscillates, but at twice the trapping frequency [Guery-Odelin et al.1999].

Both measurements are illustrated in �gure 5.5.

By measuring the trapping frequency in an optical dipole trap for several laser powers, it is
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Figure 5.6: Rabi frequency measurement for Vpp = 0.2. We �t N (t) = N0

�
1 � exp(� 2p W2

R
t [ms]

100[kHz ]

�

and estimate WR = 0.55 kHz � 0.04.

also possible to estimate the waist of the beam, given that w µ
p

P/ w2. The power dependence

picture on �gure 5.5 gives for instance w = 38.6mm � 0.7, in reasonable agreement with the

expected value of 42mm based on the parameters of the optical elements used in the setup.

Rabi frequency

The adiabatic passage described before provides a useful way to measure the Rabi frequency

WR driving the transition induced by the RF radiation. Equation (5.5) shows that the ef�ciency

of the adiabatic transfer depends on whether the RF sweep is performed faster than the Rabi

frequency. By measuring the transfer ef�ciency for several sweep velocities, it is therefore pos-

sible to estimate the value of WR.

Experimentally, we prepare a sample in a pure j � 9/2 i state. We then perform an RF ramp

of width D = 100 kHz and variable duration T around the resonant frequency of the j � 9/2 i !
j � 7/2 i transition at 115 G and we measure the number of atoms in the j � 7/2 i state. The

result is pictured in �gure 5.6 for peak-to-peak voltage of 0.2 V delivered by the RF generator.

Given that the Rabi frequency scales as the square root of the RF power, ie linearly with the

peak-to-peak voltage, we can estimate its value for any radiative power. At maximum power,

Vpp = 10 V and the corresponding Rabi frequency can be calculated to beWR = 27.7 kHz.

Magnetic bias

An accurate calibration of the magnetic bias induced by a set of coils in Helmholtz con�gura-

tion is required to take advantage of Feschbach resonances, all the more so as the resonances

for 6Li- 40K are less than a Gauss wide. An ef�cient way to perform such a calibration is to

measure the Zeeman shift of the resonant frequency of a well known transition. The resolution

of the measurement will be ultimately limited by the width of the transition, and it is therefore
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Figure 5.7: Left : population of the j9/2 i (red circles) and j7/2 i (blue squres) states after an RF pulse of
t = 18ms as a function of the RF frequency. We �t simultaneously both set of data with the expression
of the Rabi oscillation (5.6) and the analog formula for the population in the other state. The best �t is
obtained for h = 0.55,Wt = 0.51� p and w0 = 99.0874� 0.0004 MHz, corresponding to a magnetic
bias B = 202.326� 0.001 G.Right : Calibration of the inner coils close to the science cell. A linear �t close
to high �elds gives B[G] = 8.0� I [A] + 0.31

advantageous to address a hyper�ne transition, with a width set by Rabi frequency WR, rather

than an optical transition for which G � 2p � 6 MHz.

Experimentally we prepare a sample mostly in the j9/2 i state. After setting the magnetic

bias to a �xed value, we drive the j9/2 i ! j 7/2 i transition by sending a RF-radiation of fre-

quency wRF for a duration t such that t WR ' p , and we measure the atom number in both

states as a function of the RF frequency. The number of atoms remaining in the j9/2 i state after

the pulse is given by

N9/2 = N0
9/2 +

N0
7/2 � N0

9/2

1 + (wRF � w0)2 / W2
R

� sin2
� q

W2
R + (wRF � w0)2t /2

�
, (5.6)

where h̄w0 is the energy difference between both states set by the Zeeman shift and N0
i is the

initial population of the state j i i . The population transfer is maximal when the RF frequency is

exactly equal to the Zeeman shift, which can be related to the magnetic �eld through the Breit-

Rabi formula. The result of such an experiment is shown in �gure 5.7 and effectively provides

a measurement of the magnetic bias with a precision up to the milliGauss regime.

Magnetic curvature

As soon as two coils are not in a perfect Helmoltz con�guration, they produce not only a mag-

netic bias but also a magnetic curvature b00, which appears as a second order term in the spatial

Taylor expansion of the �eld close to the symmetry center, leading to a Zeeman shift of the

form

E(r) = E0(r) �
1
2

mw2
B(x2 + y2) +

1
2

m
� p

2wB

� 2
z2, (5.7)
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Figure 5.8: Time of �ight measurement of the magnetic curvature induced by the inner coils close to the
science cell at 30 A. Blue squares (red circles) show the cloud width measured along the x (z) direction
as a function of time. For atoms in the j � 9/2 i , the curvature leads to a trapping potential along z and
expulse the atoms along the other two directions. Solid lines are �ts given by (5.8), with wx,y,z, wB and
T as free parameters. We obtain the best �t for wB = 6.5� 0.1 Hz. Dashed lines are the best �t assuming
wB = 0, for comparison.

where E0 denotes the shift due to the magnetic bias alone and wB =
p

mBgFmFb00/ m. This

curvature results in a slight modi�cation of the trapping frequency, which might be dif�cult to

measure directly. A time of �ight experiment provides an alternative way to estimate b00as the

expansion of a cloud in such a surrounding potential is given by:

s2
x,y(t) =

kBT
m

 
1

w2
x,y

cosh(
p

2wBt) +
1

2w2
B

sinh(
p

2wBt)

!

(5.8a)

s2
z (t) =

kBT
m

�
1

w2
z

cos(wBt) +
1

w2
B

sin(wBt)
�

, (5.8b)

where wx,y,z are the initial trapping frequencies before the cloud is released. These formulae

are used to �t the expansion dynamics of the cloud as shown in �gure 5.8 with wB as free

parameter, thus allowing for the measurement of the magnetic curvature.

Imaging magni�cation

A time-of-�ight experiment enables one not only to calibrate the magnetic curvature, but also

to determine the magni�cation of the imaging system. We �rst bring the camera into focus by

moving the imaging lens on a translation stage so as to minimize the size of the image of a very

small cloud. A coarse estimate of the magni�cation of the system can be obtained by measuring

the size of a calibrated stainless steel mesh of 320� 320 � m placed successively close to both

sides of the science cell. To perform a more accurate measurement, we release a small and cold

cloud from the optical dipole trap and measure the position of its center of mass as it falls. Its

real acceleration, set by gravity, is well known in absolute value. The measured acceleration
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Figure 5.9: Calibration of the imaging magni�cation along x (blue) and y (red). We record the raw
position (position in pixel � size of a pixel) as a function of time and �t a parabola x(t) = x0 + a0t2/2.
The magni�cation is estimated as m = a0/ g. Here, we obtain m = 1.59 for the imaging system along x
and m = 0.6 for the imaging system along y.

then depends on the pixel size of the CCD camera (6.45� m) and on the magni�cation of the

imaging system. The comparison of both values thus allows for a calibration of the optical

system. However, this method assumes the absence of any remanent magnetic gradient, which

would alter the effective gravity. Because of its heavier mass, 40K is naturally a much better

candidate for those measurements than 6Li.

Now that we introduced the calibrated toolbox required to manipulate and probe the atomic

samples, we turn to the description of the cooling technique that allowed us to reach quantum

degeneracy for 40K.

5.2 Principle of evaporative cooling

The objective of evaporative cooling is to increase above unity the phase-space density of the

distribution, de�ned as:

PSD= n0l 3
dB = N l 3

dB/ Ve, (5.9)

where l dB is the de Broglie wavelength already introduced and n0 is the central density. We

also introduce the trap volume Ve, which corresponds to the volume that would be occupied

by the gas if its density was uniformly n0:

Ve =
N
n0

=
Z

d3r exp(�
U (r)
kBT

). (5.10)

We quantify the ef�ciency of the evaporation using the ratio:

a = �
d log(PSD)
d log(N )

, (5.11)
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Figure 5.10: Principle of evaporative cooling. Left : in a trap in �nite depth, collisions between particles
redistribute the energy. Particles which gathered most of the energy and leave the trap ; the remaining
distribution has therefore less energy and relaxes towards a colder temperature. Spilling and inelas-
tic processes induce atom losses without evaporation. Right : starting from a thermal distribution at
temperature T1, we consider decrease the trap depth to hkBT. Atoms with an energy higher than the
cut (red) will be spilled and a fraction of the distribution will eventually get evaporated (green). The
remaining atoms (blue) relax towards a thermal distribution at temperature T2 < T1.

which essentially expresses how many atoms must be sacri�ced in order to gain one order of

magnitude in phase-space density.

As mentioned in the introduction of this chapter, evaporative cooling consists in selectively

removing a fraction of the ensemble with the highest energies. Inter-particle interactions re-

distribute the remaining energy within the sample, causing a relaxation towards a thermal

distribution after few collisions 3 and repopulating the high energy wings of the distribution,

which can again be evaporated further. This process is an out-of-equilibrium problem with

time dependent parameters and a quantitative treatment can be extremely sophisticated. In

this section, we present a simple qualitative model with the objective of highlighting the main

parameters that are relevant for an experimental optimization of the process. This approach is

mainly inspired by [Davis et al.1995b] and [Cohen-Tannoudji 1996].

Let us consider a conservative trap U µ r3/ d with a �nite depth Uc (see Fig. 5.10). We

assume that the atomic distribution is almost thermal, so that a temperature T can be de�ned

for the distribution. In many approaches, the ensemble is for instance described by a truncated

Boltzmann distribution:

f (r, p) = n0l 3
dB exp(�

H (r, p)
kBT

) � q(Uc � H (r, p)) . (5.12)

A key parameter is the ratio between the trap depth and the cloud temperature h = Uc/ kBT:

the higher the trap, the more energy particles take away from the ensemble as they evaporate.

3� 3 for a uniform single species gas to � 20 for hetero-species gas in a linear trap [Walraven 2010]
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A rule of thumb can be formulated by reducing the problem to a single parameter k, which

expresses the average excess of energy taken away by an evaporated atom. Ifh is lowered, the

loss of dN < 0 atoms thus corresponds to an energy variation dE = ( h + k)kBT � dN. Relating

the energy and temperature of the cloud through the virial theorem E = ( 3/2 + d)NkBT, the

cooling resulting from this energy loss can be expressed as:

dT
T

=
�

(
3
2

+ d)(h + k) � 1
�

dN
N

. (5.13)

The phase-space density decreases because of atom losses, but increases because of the cool-

ing. These two contributions lead to the following balance:

d(PSD)
PSD

=
dN
N

� (
3
2

+ d)
dT
T

= �
�

h + k � (
5
2

+ d)
�

dN
N

. (5.14)

If the trap remains deep enough, the gain in temperature compensates the atomic losses, and

the phase-space density increases.

According to this simpli�ed picture, it appears as if the deeper the potential, the more ef�-

cient the evaporation. However, the situation is rendered more complicated by the presence of

additional inelastic and spilling losses as well as parasitic heating, which constrain the evapo-

ration dynamics (see Fig. 5.10). If the trap is too high, very few collisions will result in particles

being energetic enough to evaporate and the cooling will be extremely slow, leaving enough

time for those additional losses to deplete the sample. The evaporation should therefore be

forcedby actively decreasing the trap depth to accelerate the process.

This analysis points out a second key parameter of any evaporation, namely the ratio be-

tween the rate of non-evaporative processes and the actual evaporation rate, which is essen-

tially set by the trap depth and geometry as well as the collision rate:

gcoll =
1

2(d+ 1/2 )
n0sv̄, (5.15)

where v̄ =
q

8kBT
p m is the particles' average quadratic speed and s = 4p a2 is the scattering cross

section, related to the scattering length a (see annex A.4.3).

If the dynamical decrease of the trap depth is correctly performed, the collision rate can in-

crease during the evaporation and even diverge in �nite time (the so called runaway regime),

owing to the non linearity of the process. However, this regime can only be attained if the aver-

age number of collisions per particle before leaving the trap inelastically (given by gcoll / Ginel )

is large enough. Numerically, in a harmonic trap, this number must exceed � 300 for the

runaway regime to be achievable [Guery Odelin 1998].

Several re�nements can be introduced to improve the toy model presented above. For in-

stance, in real evaporations, inelastic processes such as Majorana losses do not occur at a con-
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Figure 5.11: Magnetic evaporation of 40K: starting from 1.5 � 109 atoms at 320mK, we obtain 2 � 108

atoms at 90mK after 5 seconds of evaporation. All points come from experimental data. a) Trap depth
h = Tcut / T, where the cut temperature is set by the RF-knife. b) Atom number through the evapo-
ration. c) Temperature, as measured by the RF tomography technique (see section 5.1.1) through the
evaporation. d) Density (blue squares) and s-wave collision rate (red circles) through the evaporation.
e) Evaporation ef�ciency, estimated to a ' 1.5.
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stant rate, but are in fact temperature dependent. A more detailed description of the scattering

cross sections can also be required, notably to take into account p-wave interactions which

play a predominant role for 40K above � 20mK [DeMarco et al. 1999, Fernandes 2014]. Whats

more, we assumed that the trap kept the same steepness throughout the process, which will

not be the case in an optical potential [Ketterle and Druten 1996]. Nevertheless, this simpli�ed

picture provides some rule-of-thumb scaling laws and identi�es two key parameters as the

main experimental knobs to tune the ef�ciency of the evaporation, namely the ratio between

the trap depth and the ensemble temperature, as well as the ratio between the collision rate

and the inelastic loss rate.

5.3 Evaporative cooling of Potassium

As Potassium atoms arrive in the magnetic quadrupole trap in the science cell, they form a

cloud of � 109 atoms at � 320mK, mostly in the j9/2, 9/2 i and j9/2, 7/2 i states. Magnetic

con�nement offers a large trapping volume as well as a good steepness, and direct evaporative

cooling has been proven to be ef�cient enough to reach quantum degeneracy [DeMarco and

Jin 1999]. However, in order to manipulate the spin states and to take advantage of Feschbach

resonances, atoms must be loaded into an optical trap which, unlike a quadrupole trap, is spin-

independent. With the perspective of achieving double degeneracy of 6Li and 40K, the loading

of a dipole trap is therefore not optional. Yet, as the ensemble arrives in the science cell, it is too

hot and too large to be ef�ciently loaded into an optical dipole trap of limited depth. To increase

the mode matching, and hence the loading ef�ciency, our cooling strategy can be decomposed

into three steps: the Potassium cloud is �rst evaporatively cooled in the magnetic trap, then

transferred into the optical dipole trap and further evaporated to quantum degeneracy.

5.3.1 Magnetic RF-evaporation

The RF-knife introduced in section 5.1.1 provides a simple means to decrease arbitrarily the

trap depth h of the magnetic con�nement by adjusting the driving frequency. Experimentally,

we start with a sample of 1.5 � 109 atoms at � 320mK in a quadrupole trap with a magnetic

�eld gradient b = 125 G/cm, corresponding to a PSD of 7 � 10� 6. We ramp down linearly

the frequency of the RF knife from Tcut = 3.5 mK to Tcut = 0.7 mK in 5 seconds. At the end

of the evaporation, the sample contains 10% of the initial atoms at 95 mK, corresponding to a

phase-space density of 2� 10� 4.

The evaporation ef�ciency, de�ned as (5.11), is rather low with a � 1.5, to be compared

to a � 3 for the RF evaporation of Rubidium. As a result, despite excellent initial conditions

compared to other 40K experiment, we can only obtain standard values at the end of this step.

The reasons for this limitation are still to be fully understood. The ef�ciency should be quite

robust with respect to the initial spin composition of the cloud, as both s-wave and p-wave
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collisions take place [DeMarco et al. 1999]. Losses due to background pressure are moderate,

as proven by the long lifetime of the sample in the dipole trap ( & 60 s). In a quadrupole trap,

special care should also be given to Majorana losses (previously described in section 3.1.3),

which strongly reduce the evaporation ef�ciency.

Majorana losses are indeed equivalent to an anti-evaporation process, as atoms with lowest

energy spend more time close to the magnetic zero and are therefore most likely to leave the

trap. The temperature increases asT0
p

1 + t/ TM and the corresponding heating rate, propor-

tional to h̄
m (mBb/ kBT)2, increases as the temperature is lowered. For40K at 75mK, we measure

TM � 9s, which is comparable with the evaporation time. In order to circumvent this issue,

we focus on the trap center a repulsive blue detuned 532nm laser beam so as to prevent atoms

from reaching the magnetic zero [Davis et al. 1995a, Dubessyet al. 2012]. The setup was pre-

sented in section 2.10.1 and results in an optical plug of � 0.8 mK height. Majorana losses are

now strongly suppressed, as illustrated by the increased heating of TM � 70s.

Despite its moderate ef�ciency, this sequence is quick and optimized to increase the atom

number loaded in the optical trap, as described in the following section, allowing for the real-

ization of a degenerate cloud.

5.3.2 Loading of the optical trap

During the RF evaporation, a red-detuned 1064nm laser of waist w is shone onto the atoms (see

section 2.10.2 for technical references), resulting in a hybrid optical and magnetic potential 4:

Uhybrid = mBb
q

x2 + y2 + 4z2 � U0 exp
�

� 2
y2 + ( z � z0)2

w2

�
+ mgz+ E0, (5.16)

where U0 � 0.5 mK is the optical trap depth and E0 is set such that Umin = 0, as shown on

�gure 5.12 [Lin et al. 2009b]. To avoid Majorana spin�ips, the laser beam does not cross the

magnetic center but rather passes at a distancez0 � � 100mm, chosen to optimize the trap

loading. Along the propagation direction x, the optical con�nement set by the Rayleigh length

is negligible compared to the magnetic trapping set by r0 = kBT/ mBb. The resulting trapping

frequency is thus set by the magnetic �eld gradient:

wk =
1
2

s
mBb
mz0

. (5.17)

The partition of atoms between the magnetic and optical potentials can be pictured by esti-

mating the occupied volume (see Fig. 5.12). At high temperatures, the volume is essentially

that of a magnetic trap while, at low temperature, it is mostly that of the optical trap, meaning

that the atoms are transferred from one to the other. The hybrid trap thus bene�ts from advan-

4The optical plug is not included in eq.5.16.
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Figure 5.12: Hybrid trap. Left : trapping potential. In red, the magnetic contribution captures a large
volume but is spin dependent. In blue, the optical contribution presents a larger depth but a smaller
volume. The position of the optical dipole trap is found to be optimal � 100mm below the magnetic
center. Right : effective volume of a distribution in (5.16) as a function of the temperature (blue squares).
The solid lines are the effective volume in a purely optical (blue) and magnetic (red) potential. As the
temperature goes down, the atoms accumulate in the optical potential.

tages of both trapping strategies (large volume of the magnetic quadrupole trap, broad range of

evaporation and spin independence of the optical dipole trap) without their main drawbacks.

Experimentally, at the end of the RF-evaporation, we ramp down the magnetic gradient

adiabatically to � bg = mg/ mB = 7 G/cm within 400ms. This step loads 20% of the atoms in

the optical dipole trap, mostly in the j9/2 i and j7/2 i states, resulting in a sample of 2.8� 107

atoms at 45� K. Even though the loading is adiabatic, the modi�cation of the trap geometry

does not conserve the phase-space density [Weberet al. 2003]. This dimpleeffect leads to an

increase the PSD by a factor 15 to 3� 10� 3.

5.3.3 Optical evaporation

Considering a simpli�ed two-levels atom, a laser propagating along x will induce a trapping

potential which can be written close to its focal point as [Grimm et al.2000]:

UODT(r) =
1
2

mw2
? (y2 + z2) +

1
2

mw2
kx2, (5.18)

where w? =
q

4U0
mw2 is the strong trapping frequency and wk =

q
2U0
mz2

R
is typically one hun-

dred times smaller. Those frequencies depend on the trap depth, which can be expressed as a

function of the light intensity I and of its detuning d with respect to the atomic transition:

U0 =
h̄G2

4jdj
I

2Isat
, (5.19)

where Gis the natural linewidth of the optical transition and Isat is the saturation intensity.
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Figure 5.13: Optical evaporation of 40K: starting from 2.8 � 107 atoms at 45� K, we obtain 8 � 106 atoms
at 1.5mK after 5.5 seconds of evaporation. All points come from experimental data. a) Trap depth h =
Tcut / T, where the cut temperature is set by the optical power. b) Atom number through the evaporation.
c) Temperature (red circles) and ratio to the Fermi temperature TF (blue square) through the evaporation.
d) Density (blue squares) and s-wave collision rate (red circles) through the evaporation. e) Evaporation
ef�ciency, estimated to a ' 3.7.
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To perform the evaporation, we decrease exponentially the optical power from 10 W to 170

mW in 5.5 seconds, thereby reducing the trap depth. At the end of this step, the sample is

composed of 8 � 106 atoms at 1.5mK and the ef�ciency of the evaporation can be estimated to

be a � 3.7 (see Fig. 5.13).

Unlike in a magnetic trap, the trapping frequencies of an optical dipole trap depend on the

light intensity w µ
p

I , and both the con�nement and the collision rate decrease during the

cooling [O'Hara et al. 2001]. At the end of the evaporation, the axial frequency is reduced to

wk � 2.5 Hz, which prevents any ef�cient further cooling.

To increase the axial con�nement, a second laser beam with a much larger waist is sent per-

pendicularly to the �rst optical dipole trap (technical details were presented in section 2.10.2).

The polarization of both beams are orthogonal to prevent interference and the resulting trap-

ping frequencies are given by the superposition of both potentials:

wx = w? 2, wy = w? 1, wz =
q

w2
? 1 + w2

? 2, (5.20)

where w? 1,2 denotes the radial trapping frequencies of the �rst and second laser beam.

Experimentally, we ramp up the second beam with a waist w2 = 340mm to 4.8W within

1.5s, leading to a potential of depth U0 = 3.5mK and radial frequency w? 2/2 p = 25 Hz. The

loading rate of the cross trap is kept slow because of the weak axial frequency but shows a

good ef�ciency as, eventually, 4.8 � 106 atoms are trapped in the dimple. The �nite depth of

the potential results in an additional evaporation and despite the compression of the cloud, its

temperature decreases to 1.3mK, showing an increase of the PSD to T/ TF = 0.7.

To tune inter-particle interactions by taking advantage of Feschbach resonances (see ap-

pendix A.4.5), Potassium atoms must be transferred into the adequate spin states. The adia-

batic passage described in section 5.1.2 is used to populate thej � 9/2 i and j � 7/2 i states with

equal atom number. These states present a s-wave Feschbach resonance atB0 = 202 G, with

a width DB = 7 G. However, a p-wave resonance is also located around 200 G [Gaebleret al.

2007], increasing the inelastic losses and rendering challenging the use of the s-wave resonance

to enhance the evaporation ef�ciency. For the time being, we performed the �nal of evapora-

tion at the background value of the scattering length, far above the resonance in order to be

able to bring the interactions to zero without crossing the unitary regime.

The �nal step of evaporation takes place in the crossed dipole trap. The axial frequency is

kept constant by the second beam while the power of the �rst beam is decrease from 170 mW

to 57 mW in 14 seconds.

To determine the atom number and temperature, we ramp the magnetic bias to 209 G = B0 +
DB, such that scattering length vanishes and perform a time of �ight for the non-interacting

ensemble. The result for a 20 ms TOF is shown in �gure 5.14. We measure 1.5� 105 atoms in

the j � 9/2 i state, and roughly the same amount in the j � 7/2 i state, at a temperature of 60
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Figure 5.14: Left : 2D spatial density of the cloud, averaged over 5 pictures, at the end of evaporation
in the j9/2, � 9/2 i state, after 20 ms TOF.Right : corresponding 1D integrated density (solid blue line).
The best �t with a polylogarithm function (solid red line) gives an atom number of 1.5 � 105 atoms,
a temperature of T = 62 nK and a degeneracy parameter T/ TF = 0.16. The corresponding Fermi
temperature, TF=400 nK, is in excellent agreement with its theoretical value. For comparision, a non
degenerate gaussian �t (dashed line) gives the same atom number, but a much higher temperature
T = 140 nK. The discrepancy between both �ts highlights the non-classical behavior of the sample.

nK.

The ratio to the Fermi temperature can be estimated directly by �tting the 1D-integrated

density with a Polylogarithm function (see section 2.11.2), or indirectely by calculating the

Fermi temperature as:

kBTF = h̄w(6N )1/3 ' 395nK, (5.21)

where w3 = wxwywz is the harmonic average of the trapping frequencies. Both methods are in

excellent agreement and give T/ TF = 0.16, implying that the sample was cooled down to the

deeply degenerate regime.

5.4 Double evaporative cooling of 6Li and 40K

One of the objectives of the FERMIX experiment is to produce a double degenerate Fermi gas

of 6Li and 40K. At the moment of writing this thesis, we were able to cool 2 � 106 6Li atoms

down to 68 mK in the plugged magnetic trap and to load 4.5 � 105 of them at 38 mK in the

optical dipole trap, in which the evaporative cooling is still to be performed. In this section, we

present these preliminary results and suggest strategies for further cooling to degeneracy.

5.4.1 6Li -40K interactions

The inter-species interactions constitute a key parameter of the simultaneous cooling of 6Li

and 40K. If the overlap between the clouds of 6Li and 40K is large enough, collisions will
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redistribute the energy between the two distributions and facilitate the thermalization of the

clouds. This effect was already used in connection with the quasi-thermalization experiments

(section 3.2.1) to prepare a thermal Lithium gas in a magnetic trap.

For the 6Li- 40K system, the triplet scattering length was reported to be at = 62a0 and the

singlet scattering length at as = 52a0, where a0 is Bohr radius [Wille et al. 2008]. The positions

and widths of 6Li- 40K Feschbach resonances were thoroughly studied experimentally [Tiecke

et al.2010a] and theoretically [Tiecke et al.2010b]. It should be noted that Feschbach resonances

also increase inelastic collisions, resulting in a �nite decay rate [Naik et al.2011].

Far from those enhanced losses, the spin exchange collision rate between6Li and 40K is rea-

sonably small. This results from the inverted hyper�ne structure of Potassium, which strongly

suppresses spin relaxation if any of the two interacting atoms is in the lowest Zeeman sublevel

[Simoni et al. 2003]. The small difference between the singlet and triplet scattering lengths fur-

ther reduces the inelastic collision rate. As a consequence, it has been shown that a mixture of

104 40K atoms immersed in a sea of 107 6Li atoms was collisionally stable, with a two body loss

rate for Potassium below L2 = 6 � 10� 13 cm� 3/s across the entire Lithium BEC-BCS crossover

[Spiegelhalder et al.2009].

5.4.2 Magnetic RF-evaporation

After the magnetic transport, we obtain 10 8 Lithium atoms in the science cell at 400 mK. Only

the jF = 3/2, mF = 3/2 i spin state is stable against spin exchange collisions and trappable

in a magnetic quadrupole. As mentioned in the previous chapters, since s-wave collisions are

forbidden by the Pauli principle and p-wave collisions are present only above 6 mK, a cold pure
6Li sample behaves like an ideal gas and does not thermalize by itself. To cool and evaporate a

Lithium sample, it is therefore necessary to consider the sympathetic cooling technique, which

consists in cooling actively one species (Potassium in our case) while relying on collisions to

thermalize the other species with the coolant [Modugno et al.2001].

The cooling of Lithium represents an additional thermal load for Potassium, whose evapora-

tion must dissipate both internal energies. The presence of Lithium thus reduces the ef�ciency

of the Potassium evaporation and starting from the same initial conditions, much less atoms

reach the same �nal temperature. It was observed in [Tiecke 2009] that the density of Potassium

was limited to 10 12 cm� 3, two orders of magnitude below its value for a single species evapora-

tion. In our experiment, we reduce the Lithium sample arriving in the science cell to 10 7 atoms

by detuning the Zeeman slower, so as to minimize the detrimental effects for Potassium.

The load can be further reduced by removing Lithium atoms with highest energies. Taking

advantage of the large difference between the 6Li and 40K hyper�ne splittings (228 MHz and

1.2 GHz respectively), it is indeed possible to utilize two species-speci�c RF knifes to tune

independently the trap depth for both species. We found the optimal con�guration to be TLi
cut =



134 Evaporative cooling to quantum degeneracy

Figure 5.15: 4.5� 105 Lithium atoms (in red) and 1.9 � 105 Potassium atoms (in blue) at � 38 mK in the
optical dipole trap at the end of the RF evaporation, after 0.5 ms TOF.

1.5� TK
cut.

The optical plug plays a crucial role for the evaporation of Lithium, which is much lighter

than Potassium and thus has a � 6 times higher Majorana loss rate. In absence of the plug, the

anti-evaporation due to Majorana losses prevents any ef�cient cooling of the Lithium sample

and also keeps Potassium at higher temperatures. With the plug, we measured a lifetime of

� 20 s for 2 � 106 Lithium atoms at 68 mK at the end of the evaporation. After the magnetic

quadrupole is switched off, we measure in the optical dipole trap 4.5 � 105 Lithium atoms and

1.9� 105 Potassium atoms at � 38 � K, as shown in picture 5.15.

5.4.3 Optical evaporation

The constraints for the optical evaporation are quite different from the ones present in the

magnetic trap. As the trapping potential is now spin-independent, we can consider a j1/2 i �
j � 1/2 i spin mixture of Lithium to take advantage of the large s-wave scattering length. On

the other hand, the trap geometry can not be tuned independently for both species and it is

about half as deep for Lithium as for Potassium. Lithium atoms will thus have much higher

evaporation and spilling rates than Potassium. For instance, in a deep potential hK = 10, the

Lithium evaporation rate is e� hLi / e� hK ' 150 times faster than the one of Potassium [Fernandes

2014]. Moreover, the mass imbalance between the two species is such that Lithium atoms will

take most of the kinetic energy during binary collisions. The sympathetic cooling of Potassium

by Lithium is therefore extremely demanding in terms of initial atom numbers, requiring a

reduced Potassium sample immersed in a large Lithium cloud [Spiegelhalder et al.2010].

An alternative approach is being considered in our group to allow the simultaneous cooling

of two samples with approximately the same atom numbers [Fernandes 2014].

In an equilibrated mixture, the collision rate between potassium atoms (set by aK = 170a0)

is larger than the interspecies collision rate (aLiK = 63a0) but smaller than collision rate between
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Figure 5.16: Simultaneous optical evaporation of 6Li and 40K: starting from 4.5 � 105 Lithium atoms at
40� K and 2 � 106 Potassium atoms at the same temperature, we obtain 7� 104 atoms at 190 nK and
106 Potassium atoms at 200 nK after 3 seconds of evaporation. The scattering lengths are :aK = 1000a0,
aLi � � 300a0 and aLiK = 63a0. Inelastic losses are not taken into account. Numerical simulations
performed by Cedric Enesa.
All data for 6Li are shown in red (resp. blue for 40K). a) Trap depth h = Tcut / T. The trap is about
twice as deep for 40K as for 6Li. c) Atom number through the evaporation. d) Temperature (solid lines)
and ratio to the Fermi temperature TF (dashed lines) through the evaporation. b) Evaporation ef�ciency,
estimated to aLi ' 4.4 and aK ' 13.4.
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Lithium atoms ( aLi � � 300a0). This results in the evaporation rate of Potassium being much

smaller than the one of Lithium, all the more so as the trap is deeper for 40K than for 6Li. As a

consequence, Potassium is sympathetically cooled by Lithium ; because of the mass imbalance,

the resulting thermal load is too heavy for keeping a satisfying amount of 6Li at the end of

evaporation. One strategy to circumvent this issue is to accelerate the evaporation of Potassium

by enhancing its intra-species collision rate. If the scattering lengths are such that

aK � aLi � aLiK , (5.22)

very few interspecies collisions take place and the dual-species cooling essentially reduces to

two independent single species evaporations. Both evaporations may occur at the same rate,

as the higher scattering rate of Potassium compensates the difference in trap depth. In this

case, Potassium remains as cold as Lithium and the thermalization of both species at the end of

evaporation does not lead to a signi�cant atom loss. Experimentally, this can be done by taking

advantage of the Feschbach resonance of Potassium at 202 G. For instance, provided that the

intra-species scattering length is increased to aK = 1000a0, the evaporation rate is almost the

same for both species for a trap depth of hK ' 8.

A preliminary simulation was performed by Cedric Enesa using a classical model and ne-

glecting inelastic losses (see Fig. 5.16) [Enesa 2015]. Starting from 4.5� 105 Lithium atoms

at 40� K and 2 � 106 Potassium atoms at the same temperature, we obtain 7� 104 Lithium

atoms at 190 nK and 106 Potassium atoms at 200 nK after 3 seconds of evaporation. This model

implies to a very good cooling ef�ciency for Lithium with aLi ' 4.4, even in presence of Potas-

sium. The evaporation ef�ciency of Potassium, aK ' 13.4, is due to the high hK cut ratio. Its

value is clearly overestimated, as inelastic losses, which also increase close to the Feschbach

resonance, are not taken into account. Nevertheless, these preliminary results are encouraging

for the experimental realization of a double species degeneracy.

5.5 Conclusions

In this chapter, we reviewed standard techniques which were applied to monitor and manip-

ulate the internal degrees of freedom of the Potassium cloud, and use it to calibrate our appa-

ratus. We have shown that we could produce for the �rst time in France a cloud of 40K with

1.5 � 105 atoms in the j � 9/2 i state and as many in the j � 7/2 i state, at a temperature of

62 nK corresponding to 17% of the Fermi temperature, in the deeply degenerate regime. We

presented preliminary works concerning the simultaneous evaporative cooling of 6Li and 40K,

resulting in the loading of 2 � 4 � 105 atoms at 40� K in the optical dipole trap. Numerical

simulation were performed to support an innovative cooling strategy, where both species are

evaporated independently at similar rates, to avoid a too strong thermal load on the Lithium

cloud.
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As a longer term project, once both 6Li and 40K are brought to degeneracy, the FERMIX

apparatus will focus on the realization of ultra-cold mixtures in mixed dimensions. Taking

advantage on the difference of trapping potential experienced by the two species, it is indeed

possible to engineer a species-selective trap to strongly con�ne one atomic cloud while keeping

the other one almost free. The next and last chapter is dedicated to some perspectives opened

by such systems.
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A T the end of XIX th century, the English theologian Edwin Abbott imagined in a religious

satire how different life would be if we were to live in a two dimensional world [Abbott

1884]. As it turned out, dimensionality plays indeed a crucial role for many physical phe-

nomena, which have a completely different behavior in 2D or 1D as compared to the usual

3D situation. For instance, in reduced dimensions, thermal �uctuations destroy any long

range order at �nite temperature and prevent spontaneous symmetry breaking, as stated by

the Mermin-Wagner theorem [Mermin and Wagner 1966] (see [Hadzibabic and Dalibard 2011]

for a pedagogic approach). As a consequence, some phase transitions are forbidden, such

as the ferro/para magnetic transition or Bose Einstein condensation. Instead, systems in re-

duced dimensions exhibit peculiar properties, such as the emergence of quasi-long range order

through the so called Berezinskii-Kosterlitz-Thouless transition in two dimensions [Berezin-

ski�i 1972, Kosterlitz and Thouless 1973, Minnhagen 1987] or the formation of speci�c states of

matter, as epitomized in one dimension by the bosonic Tonks-Girardeau [Girardeau 1960] gase

and the ferminionc Luttinger-Tonomaga liquid [Giamarchi 2004]. Moreover, we have shown

in the previous chapters that the anisotropy of Weyl particles quasi-thermalization was also

dimension dependent.

As mentionned in the introduction, cold atoms provide powerful tools for the experimental

study of systems in reduced dimensions, allowing the realization of the previously mentioned

139
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problems1. Furthermore, atomic systems allow for additional methods to tune the elastic in-

teractions. Indeed, in experimental realization, systems in reduced dimensions are obtained

from con�ned 3D systems. They therefore always display a �nite transverse length l? , much

smaller than both the inter-particle spacing and thermal wavelength (such that transverse de-

grees of freedom remain frozen out) but much larger than the range of the van der Waals type

interactions. Consequently, two-body interactions are unaffected by the con�nement at short

distances and the scattering length2 ais then set by the 3D scattering length a3D and the con�ne-

ment length l? [Petrov and Shlyapnikov 2001]. This also results in so called con�nement induced

resonances[Olshanii 1998], which occur when a3D approachesl? and allow to tune interactions

within the plane from strongly repulsive to strongly attractive [Haller et al.2010].

Cold atoms could also open the door to a supplementary approach considering mixed di-

mensions, where part of the system is con�ned in 0-, 1- or 2D while the other part evolves with

more degrees of freedom. For instance, the scattering of matter waves off �xed disordered

impurities, giving rise to the Anderson localization, can be seen as a 0D-3D system[Anderson

1958]. The interaction between electrons con�ned in a graphene layer with freely propagating

photons comes down to a 2D-3D problem [Novoselov et al. 2005]. In more exotic situations,

gravity can be pictured as an 11 dimensional quantity restricted to our 4 dimensional world

[Maartens 2004]. Some of those problems can be simulated by the FERMIX experiment, as

Potassium atoms can be con�ned in 2D planes by an optical lattice which will leave Lithium

atoms mostly unaffected.

Effective interactions in mixed dimensions have been previously addressed in the litera-

ture. For instance, [Recati et al. 2005, Fuchset al. 2007] showed that two localized impurities

immersed in a 1D quantum liquid present Casimir-like interactions by calculating the action

of the system, from which the free energy is derived. Their results were extended in [Schecter

and Kamenev 2014] to the case of mobile impurities. Closer to our situation, the interactions

between a 2D and a 3D ideal Fermi gas is described in [Nishida and Tan 2008], and extended

in[Nishida 2010] to estimate with a diagrammatic approach the behavior of two 2D layers con-

nected by an ideal 3D Fermi gas.

In this chapter, we propose an approach developed in collaboration with Georg Bruun and

Zhigang Wu. We �rst describe 2D-3D interactions between a free atom and a con�ned one.

We then turn to the calculation of the effective long range interaction between two 2D-planes

immersed in a 3D cloud which can carry momentum from one plane to the other. Using the

standard tools of atomic physics, we recover some of the results published in the literature and

extend our predictions to unaddressed situations, as the 3D cloud is brought to the BEC side of

the Feshbach resonance. Finally, we consider an experimental proposal to test the predictions

1The realization of Tonks Girardeau gas was �rst reported in 2004 [Paredes et al. 2004] and that of Luttinger
liquid in 2005 [Moritz et al.2005]. The BKT transition was observed in 2006 [Hadzibabic et al.2006].

2The de�nition of the scattering length requires some precautions. In particular, the scattering amplitude tends
to zero for low energies in 2D, in stark contrast with the 3D behavior, where it can be used to de�ne the scattering
length [Levinsen and Parish 2015].
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using Potassium layers con�ned in an optical lattice and immersed in a 3D Lithium cloud.

If a 2D layer is dragged away from equilibrium, the mediated long-range interaction should

set in motion the neighboring planes and the measurement of the beat-note frequency of the

oscillations provides an experimental access to the interlayer interactions.

6.1 Scattering in mixed dimensions

In this section, we introduce a description of a 2D-3D collision, where A-atoms are con�ned in

a 2D plane zA = 0 while B-atoms are free to move in three dimensions. As a �rst remark, we

notice that the problem is equivalent to a 3D scattering event: while the system has �ve degrees

of freedom, the conservation of momentum along the two dimensions of the con�ning plane

reduces the number of independent quantities to three. As in a 3D scattering situation, we will

be able to consider a scattering length to account for the interaction properties.

Notations

In this chapter, we will deal simultaneously with vectors in two and three dimensions.

As often as possible, 3D vectors are written with roman letters r and 2D vectors with bold

Greek letters r . A 3D vector v 2 R3 can be decomposed as an in-plane vectorn? 2 R2

and a transverse component vz. Conversely, a 2D vector n? 2 R2 and an additional

component vz can be assembled to form a 3D vectorv = dn? , vzc.

We also also introduce the standard identities to avoid any ambiguity on the choice of

normalization:
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å
k

=
�

L
2p

� 3 Z
d3k

Id = å
k

jk i hk j =
Z

d3r jr i hr j

hk j r i =
1

p
L3

exp ( ik .r)

y †(r) =
1

L3/2 å
k

e� ik .rc†
k

c†
k =

1
L3/2

Z
d3r eik .ry †(r)
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Figure 6.1: Scattering in mixed dimension. Left : At lowest order, the scattering eigenstates (6.9) are the
superposition of a plane wave (in red) and an elliptical wave (in blue). The amplitude f (k i , n) gives the
amplitude of probability for incident particle to be scattered in direction n (represented by the shade of
the blue dashed line). Right : Numerical estimation of the 2D-3D scattering length. Figure from [Nishida
and Tan 2008].

Figure 6.2: Resonance conditions for thea2D� 3D scattering length. When the energy of the scattering
state is equal to that of a bound state (see eq. (6.13), the scattering length diverges. Graphically, this
corresponds to the crossing of the green dashed line with an energy level of the harmonic oscillator in
the right-hand side of the picture. We denote w0

z =
p

mB/ mwz the trapping frequency of an 2D-3D

molecule and Eb = h̄2

2ma2
A � B

its binding energy.



6.1 - Scattering in mixed dimensions 143

Our approach follows the description of 3D-3D interactions presented in annex A.4.2. As a

2D and a 3D particles are interacting, the corresponding Hamiltonian takes the form:

H =
1

2mB

�
p2

B? + p2
Bz

�
+

p2
A?

2mA
+ V (rB? � rA? , zB) (6.1)

We introduce the center of mass quantities (R, P) and the relative coordinates (r, p) to rewrite

the previous equation as:

H =
P2

?
2M

+

 
p2

?
2m

+
mA

mA + mB

p2
z

2m

!

+ V (r) (6.2a)

= H2D
CoM + H0 + V, (6.2b)

where M = mA + mB is the total mass and m = mAmB/ (mA + mB) is the reduced mass. The

eigenstates ofH0 are 3D planes wavesjk i with anisotropic masses, such that the corresponding

eigenenergies take the following form:

E0
k =

h̄2

2m
(k2

x + k2
y +

mA

mA + mB
k2

z). (6.3)

To each plane wave jk i can be associated a scattering eingenstatejy +
k i with the same energy

E0
k . These eigenstates satisfy the Lippman-Schwinger equation:

jy +
k i = jk i + G0+ (E0

k )V jy +
k i , (6.4)

with G0(E0
k ) =

�
E0

k � H0 + ih
� � 1

being the resolvent. The matrix elements of the resolvent are

Green functions and can be estimated by introducing a closure relation over plane waves:

hr jG0(E0
k )jr0i =

� m

2p h̄2
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where we introduced the relative position r = r � r0and the deformed vectors

k̃ =
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At distances large compared to the �nite range b of the interaction potential, r̂ ' r̂ � n̂.r̂0,

where n̂ = r̂ / r̂ is the direction of the deformed position r̂. As pictured in �gure 6.1, the scatter-

ing eigenmodes appear as the superposition of a plane and an ellipsoidal wave:

y +
k (r) =

exp( ik .r)
p

L3
+ f (k , n̂)

exp
�

iek � br
�

br
, (6.8)
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where the contribution along the direction n̂ is set by the scattering amplitude f :

f (k , n̂) = �
m
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r
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Z
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k

�
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To simplify this expression, we restrict ourselves to the Born approximation and replace

within �rst order of perturbation theory y +
k (r) ! exp( ik .r)/

p
L3 in the integral (6.9). At low

energies, considering that the length scale set by the wave vector is much smaller than the

range of the potential k � b� 1, the exponential factor in the integral (6.9) is close to 1 and the

scattering amplitude takes the isotropic form of a 2D - 3D scattering length:
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Z
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The optical theorem3, stating the conservation of the �ux during the scattering, allows us to

express the scattering eigenstate as

y +
k (r) =

exp( i k̃ .r̂)
p

L3
�

a2D� 3D

1 + i k̃a2D� 3D

exp
�

iek � br
�

br
, (6.11)

where we used k̃ .r̂ = k .r.

It is straightforward to verify that the wave functions (6.11) are also stationary solutions of

Schrödinger equation when the scattering potential V is replaced by the pseudo potential:

U (r ) = g2D� 3D � d(r )
¶
¶r̂

( r̂ .), (6.12)

where g2D� 3D = a2D� 3D �
q

mA
mA + mB

2p h̄2

m . Together with (6.14), this expression shows that the

2D-3D coupling constant can be replaced by the 3D-3D coupling constant as long as the scatter-

ing length is small enough compared to other length scales. For regular functions, the pseudo

potential (6.12) is equivalent to a Dirac potential U (r ) = g2D� 3D d(r ), which we will use in the

following.

To estimate the value of the scattering length and relate it to the 3D-3D scattering length

between A and B atoms, a more detailed description of the system is required [Massignan

and Castin 2006]. A-atoms are not purely 2D, but rather con�ned to the ground state of an

harmonic trap of frequency wz. At distances shorter than the transverse length lz =
p

h̄/ mAwz,

the con�ning potential becomes irrelevant and the interaction only depends on the standard A-

B scattering length aA � B. This short-distance condition constraints the long-distance behavior

of scattering states, and the corresponding numerical integration has been reported in [Nishida

and Tan 2008] (see Fig. 6.1). In particular,a2D� 3D shows resonances when the energy of the open

3The optical theorem takes the form 4p j f j2 = Im ( f ) (see annex A.4.3).
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channel (h̄wz/2) coincides with the energy of a bound state in the closed channel [Lamporesi

et al.2010]:
h̄wz

2
= h̄wz

r
mA

mA + mB

�
n0+

1
2

�
�

h̄2

2ma2
A � B

, (6.13)

where the second term of the right-hand expression is the binding energy of the A-B Feshbach

molecule (see annex A.4.5) and the �rst term results from the con�nement of the molecule in

potential mw2
zr2/2 (see Fig. 6.2).

The width of the successive resonances decreases aslz increases anda2D� 3D approaches the

limit

a2D� 3D �!
lz

aA � B
! ¥

aA � B

s
(mA + mB)

mA
, (6.14)

which we will use as a numerical estimate to lay down orders of magnitude.

6.2 Mediated long-range interactions

Let us consider two parallel planes of A-atoms (Potassium in our case) separated by a distance

Dz. Assuming that there exist only contact interactions, the two layers can naturally not inter-

act with one another. An intermediate 3D cloud of B-atoms (Lithium) changes this situation:

excitations can now propagate through the B cloud and carry momentum from one layer to the

other. In other words, the presence of a 3D cloud allows for a mediated long range interaction

between the 2D planes (see �gure 6.3). In this section, we calculate the effective long-range

potential experienced by A-atoms in the presence of a B-cloud.

6.2.1 Mathematical framework

Neglecting many body effects within the planes, we consider two single A impurities con�ned

in facing 2D planes and interacting with the B cloud. The Hamiltonian of the system can be

written as:

H = HA + HB + V, (6.15)

where HA (resp. HB) accounts for A-atoms (resp. B-atoms) andV = V2D� 3D
1 + V2D� 3D

2 denotes

the local interaction between each 2D plane and the 3D cloud. Each contact interaction can be

described as:

V2D� 3D
a =

Z
d3rd2r Ua

�
rk � r

�
d(r? � za) y †

B(r)y †
A,a(r )y A,a(r )y B(r), (6.16)

where y †
B(r) (y B(r)) creates (annihilates) a B-atom at position r and y †

A,a(r ) (y A,a(r )) creates

(annihilates) an A-atom at position r in the layer a. We consider only a weak coupling between
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Figure 6.3: Effective long range interaction. Left : two 2D planes of A atoms (blue) separated by Dz
can exchange momentum by creating and absorbing excitations in an intermediate 3D gas of B atoms
(red). Right : the previous situation can be equivalent to a direct long-range interaction between the two
planes (green broken line), in the absence of intermediate B-atoms.

the 2D and 3D species, which we describe using the pseudo potential Ua(r ) = g2D� 3D d(r )
introduced before.

The situation we aim to describe corresponds to scattering events of the form:

j i i = jground i 
 jk1i 
 jk2i ! j f i = jground i 

�
�k0

1

�



�
�k0

2

�
, (6.17)

where states are expressed in the basis

j3D B � atomsi 
 j2D A � atoms (plane 1)i 
 j2D A � atoms (plane 2)i . (6.18)

To parameterize this transition, we introduce the center of mass momentum kCoM = (k1 + k2) /2,

conserved during the process. We note with p the exchanged momentum

p = k0
1 � k1 = k2 � k0

2, (6.19)

which is related to the energy transferred from one plane to the other:

DE = Ek0
1
� Ek1 = Ek2 � Ek0

2
=

h̄2

2mA
kCoM .p . (6.20)
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Real case Effective case

H = HA + HB + V Heq = HA + Veff

# "

Ti f = hf jVG0V j i i () Ti f = hf jVeff j i i

Table 6.1: De�nition of the effective long range interaction Veff. We de�ne the effective interaction be-
tween two A-atoms as the potential Veff that leads to the same transition amplitude from the initial state
j i i to the �nal state j f i as the �rst contributing order of the mixed dimensional case (i.e. second order,
as shown in section 6.2.2), where the interaction is mediated by the B-cloud.

Scattering properties can be addressed using theS matrix, which expresses this transition

amplitude as the overlap between the initial and �nal states subjected to the time evolution

operator U I (t1, t2) = exp (� iV (t2 � t1)/¯h):

Si f = hf j U I (+ ¥ , � ¥ ) j i i = df ,i � 2ipd
�
Ef � Ei

�
Ti f (6.21)

The T matrix can in turn be expanded through the Dyson equation

T = V + VG0V + ..., (6.22)

where the resolvent G0 is given by

G0(z) =
1

z � (HA + HB)
. (6.23)

We de�ne the effective long range interaction as the potential Veff which gives rise to the

same T matrix within the Born approximation as the real contact potential V up to �rst con-

tributing order (see table 6.1).

6.2.2 Effective interaction: general expression

We need to estimate the leading order in the expansion of the T matrix. Since we consider

scattering events in which the Lithium cloud is eventually and initially in the same state, the

�rst order T = V does not contribute and we must therefore estimate:

Ti f = hf j VG0 (Ek1 + Ek2) V j i i . (6.24)

We calculate only Hartree terms, describing to interlayer exchange interactions, and neglect

Fock terms, which would correspond to intra-layer forward scattering. The second order of the
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matrix element Ti f is the sum of two contributions:

Ti f = hf j V2D� 3D
1 G0 (Ek1 + Ek2) V2D� 3D

2 j i i + hf j V2D� 3D
2 G0 (Ek1 + Ek2) V2D� 3D

1 j i i . (6.25)

This matrix element is related to the density-density response function of the 3D B-cloud and

can be expressed through its compressibility c B:

Ti f =
1

2p L2 g2
2D � 3D �

Z
dkz e� ikzDz c B
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p
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,
h̄

2m
kCoM .p

!

, (6.26)

where the center of mass momentum kCoM and the exchanged momentum p were already

de�ned above. We will now brie�y present the main steps of the calculation.

• Introducing closure relations, we isolate the B-cloud so as to express both terms of (6.25)

as matrix elements of an operator A acting only on the 3D gas. Taking Ti f = T(1)
i f + T(2)

i f ,

we write for instance:

T(1)
i f = hB : 0j M jB : 0i (6.27a)

M =


k0

1
�
� V1 jk1i G(B)

0 (DE)


k0

2
�
� V2 jk2i (6.27b)

where G(B)
0 (z) = 1

DE� HB
. The objective is then to sum over all intermediate states of the

mediating B-cloud.

• Matrix elements of interspecies potentials Va can be expressed so as to explicitly sum over

all transverse momentums:



k0

1
�
� V1 jk1i =

1
2p L2 Ũ1

�
k0

1 � k1
� Z

dpz e� ipzz1

� Z
d3r eidk1� k0

1,pzc.ry †
B(r)y B(r)

�
(6.28)

• Because of momentum conservation, the T matrix element (6.25) can be simpli�ed to:

Ti f =
1

2p L5

Z
dpz e� ipz(z1� z2)Ũ2(� p )Ũ1(p )

� h0j
�

F� p
d
G(B)

0 (DE) Fp + Fp
d
G(B)

0 (DE) F� p

�
j0i (6.29)

where Fp =
R

d3r eip.ry †
B(r)y B(r) with p = dp , pzc.

• The operator appearing in the previous expression can be directly related to the compress-

ibility of the B-cloud, which we de�ne in the following way: if a system is perturbed by
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an excitation w(r, t) = mcos(k .r � wt), its density response is given by:

r k =
1
L3

Z
d3r e� ik .r

D
y †(r)y (r)

E
(6.30a)

=
1
2

mc(k , w)e� iwt . (6.30b)

Expressing the time evolution of the system initially at rest under the in�uence of W,

we can show that c (p, DE/¯h) = L� 3 h0j
�

F� p cG0 (DE) Fp + Fp cG0 (DE) F� p

�
j0i , hence the

expression (6.26).

According to our de�nition of the effective long range potential, the expression (6.26) corre-

sponds to the matrix element hk0
1, k0

2j Veff jk1, k2i . To express the effective potential as a func-

tion of the inter-particle distance in real space, we apply a Fourier-transform to this expression:

Veff (kCoM , r ) =
�

L
2p

� 2

�
Z

d2p Ti f e� ip .r (6.31a)

=
1

8p 3 g2
2D � 3D �

Z
d3k e� i(k ? .r + kz.Dz) c B

�
k ,

h̄
2m

k ? .kCoM

�
(6.31b)

6.2.3 Effective interaction for kCoM = 0

The existence of a favored frame, in which the 3D cloud stands still, breaks the Galilean invari-

ance of the problem. This results in the explicit dependence of the effective potential (6.31) on

the center of mass momentum kCoM through the exchanged energy DE = h̄2

2mk ? .kCoM , which

sets the relevant frequency in the compressibility.

In order to get a simpli�ed picture, we �rst consider the case where the center of mass of

the two Potassium atom system is at rest kCoM = 0. The effective potential is then given by the

Fourier transformation of the compressibility at zero frequency:

Veff(r ) =
1

8p 3 g2
2D � 3D �

Z
d3k exp

 

� ik .

$
r

Dz

'!

c B (k , 0) (6.32)

Ideal 3D Fermi gas

If the 3D B-cloud is an ideal Fermi gas, the compressibility is well known [Giuliani and Vignale

2005] and the long range potential in real space takes the same form as in the Ruderman-Kittel-
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Figure 6.4: Effective long range interaction. Left : the 3D gas is a Bose-Einstein condensate of dimers
with healing length x and the interaction takes the form of a Yukawa potential (6.38). We normalize the
potential with VBEC

0 = � g2
2D � 3DnDmD / p h̄2x. Right : the 3D gas is an ideal Fermi gas with Fermi wave

vector kF and the interaction takes the form of a RKKY potential (6.34). We normalize the potential with
VFG

0 = g2
2D � 3DmBk4

F/ p 3h̄2.

Kasuya-Yosida (RKKY) interaction:

cFG (k , 0) = �
mkF

2p 2h̄2

�
1
2

+
k2 � 4k2

F

8kFk
log

�
�
�
�
k � 2kF

k + 2kF

�
�
�
�

�
, (6.33)

VFG
eff (r ) = g2

2D � 3D
mBk4

F

p 3h̄2 �
2kFRcos(2kFR) � sin (2kFR)

(2kFR)4 , (6.34)

where kF =
�
6p 2nB

� 1/3
is the Fermi wave vector of the 3D B-cloud and R =

p
r 2 + Dz2 the

distance between A-atoms. The expression is the same as the one derived in [Nishida 2010] for

a weak 2D-3D coupling.

3D Bose-Einstein condensate

On the BEC side of the crossover, 3D B-fermions form a condensate of strongly bound dimers.

Accordingly, the 2D-3D scattering length (6.14) should account for the interaction between A-

atoms and B-dimers:

aA � B ! aA � D & mB ! mD = 2mB. (6.35)

As long as the interspecies scattering length remains small compared to the size of the

molecules4, the atom-dimer scattering length can be approximated by the �rst order Born ap-

proximation [Zhang et al.2014]:

aA � D = 4
mA + mB

mA + 2mB
� aA � B, (6.36)

4i.e. a2D� 3D � aB, where aB is the intraspecies scattering length of B.



6.3 - Proposal for an experimental realization 151

by estimating the interaction energy of a particle A with the cloud of dimers to gA � DnD =
gA � BnB.

Using the Bogoliubov description, the compressibility of the B-gas can be expressed analyti-

cally [Pethick and Smith 2008] and the long range interaction (6.31) takes the form of a Yukawa

potential:

cBEC (k , 0) = �
nD

mDc2

1

1 + 1
2x2k2

, (6.37)

VBEC
eff (r ) = � g2

2D � 3D
nDmD

p h̄2x
�

exp
�

�
p

2jRj/ x
�

jRj/ x
, (6.38)

where nD = nB/2, mD = 2mB are the density and mass of the molecular dimers, c =
p

gDnD / mD

is the speed of sound in the condensate andx = h̄/
p

2mBc is the corresponding healing length.

The dimer-dimer coupling constant gD can be related to the atom-atom coupling constant as

gD = 0.6gB [Petrov et al.2005].

The calculation in the unitary limit is more challenging, as the compressibility of the B-cloud

is not analytical anymore. An estimate could perhaps be obtained from the Fourier transform

in real space of the numerical results reported in [Kinnunen and Bruun 2015] and will be the

subject of a future work.

6.3 Proposal for an experimental realization

Once a double degenerate mixture of 6Li and 40K is obtained, the FERMIX experiment should

be able to address the study of mixed dimensional systems by con�ning one species in an

optical lattice and keeping the other species almost free. In order to take advantage of the

weaker mass of Lithium, we have chosen to trap Potassium atoms in the lattice.

In this section, we will consider the impact of the effective long-range interaction on two

coupled 2D layers. We �rst summarize the properties of the optical setup constructed to gener-

ate the required lattice. We then extend the description of the effective potential to account for

the interaction between the two layers. Finally, we present a proposal that would enable us to

test the previous predictions against experimental results.

6.3.1 Implementation of an optical lattice

The optical setup described in this section has been realized and tested by Mihail Rabinovich.

A preliminary signal has been obtained on the atoms, but the setup is not fully implemented

yet.
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6Li 40K

Trap depth U0 [mK] 6.4 39

Transverse freq. w? /2 p [Hz] 440 380

Axial freq. wk/2 p [kHz] 170 160

Tunneling time t � 6 � s � 60 s

Axial temperature ¯hwk/ kB [� K] 7.9 7.5

Fermi temperature TF [� K] - 1.8

Heating rate �T [� K/s] 0.053 0.19

Table 6.2: Expected trapping parameters in the optical lattice, assuming a beam power of 150 mW and
a waist of 80 mm. The Fermi temperature of Potassium is estimated for 5 � 103 atoms per plane. The
tunneling time is estimated with expression (6.39) for 40K and by the truncation of the central equation
to 40 terms for 6Li.

The laser source is a commercial photodiode lasing up to 150 mW at 808 nm. The diode is

installed in a home-made mount with a grating in Littrow con�guration, reducing its linewidth

below 1 MHz. A tapered ampli�er increases the optical power and an AOM allows a fast

switching of the beam. At the output of a polarization maintaining �ber, this system delivers

up to 500 mW of optical power. Technical details are presented in annex A.6.

To generate the optical lattice, the light will be send along the same direction as the optical

dipole trap ( x axis) and retro-re�ected. The resulting potentials for 6Li and 40K are presented

in table 6.2. In the ground state, the tunneling time is related to the hopping constant t = h̄/4 J.

In the tight binding limit,

J
Er

'
4

p
p

�
V0

Er

�
exp

 

� 2

r
V0

Er

!

, (6.39)

where Er is the recoil energy and V0 the lattice depth [Dalibard 2013]. For Potassium, the

associated time scale is very large, and atoms will essentially remain in the ground state of

each lattice site sinceTk > TF. By contrast, Lithium displays a short tunneling time, which

means that atoms will hop from one site to the other, as an almost free gas with an effective

massm� = 1.22mLi .

6.3.2 Effective interaction between two layers

We now consider two clouds con�ned in two separated layers generated by the setup described

in the above section, with 2D densities n1,2(r ). According to our previous calculations (6.34-

6.38), the range of the potential, given by the healing length x on the BEC side of the cross

over and by the Fermi wave vector kF on the BCS side, is small compared to the size of the

2D plane set by the trapping frequency. We can therefore assume that the atomic density with

a signi�cant contribution to the interaction energy is almost constant over the range of the



6.3 - Proposal for an experimental realization 153

Figure 6.5: Dependence of the coupling constant gDz characterizing the effective long range interac-
tion as a function of the distance Dz between the two planes. We note kF the wave-vector of the 3D
mediating gas. In blue, the 3D gas in an ideal Fermi gas and we normalize the coupling constant by
gFG

0 = g2
2D � 3D � mk2

F/4 p 2h̄2. In red, the 3D gas is a Bose-Einstein condensate of molecules, with sound
velocity c and we normalize the coupling constant by gBEC

0 = � g2
2D � 3DnD /¯hc.

potential:

Z
d2r 1 n1(r 1)

� Z
d2r 2 Veff(r 1, r 2)n2(r 2)

�
'

Z
d2r n1(r )n2(r ) � geff. (6.40)

In this approximation, the effective potential (6.31) can be simpli�ed further:

geff(kCoM ) =
Z

dr Veff(kCoM , r ) (6.41a)

=
g2

2D � 3D

8p 3 �
Z

d3k e� ikZ Dz
� Z

d2r e� ik ? .r
�

c B

�
k ,

h̄
2m

k ? .kCoM

�
(6.41b)

=
g2

2D � 3D

2p
�

Z
dkz e� ikZ Dz c B (kzez, 0) = gDz (6.41c)

Remarkably, the coupling constant gDz does not depend on the center of mass momentum.

Its expression can be evaluated on both sides of the BEC-BCS cross over:

gFG
Dz = g2

2D � 3D
mk2

F

4p 2h̄2 �
(2kFDz) cos(2kFDz) � sin(2kFDz) + ( 2kFDz)2 (si(2kFDz) � p /2 )

(2kFDz)2 ,

(6.42)

gBEC
Dz = � g2

2D � 3D
nD

h̄c
� exp

�
�

p
2

Dz
x

�
, (6.43)

where si(x) =
xR

0
dt sin(t)

t is the sine integral function. The behavior of these two terms is de-

picted in �gure 6.5.
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Figure 6.6: Coupled oscillations induced by the effective interaction. Left : The blue cloud is initially
dragged to a distance e0 from the trap center and released. In absence of interactions, its center of mass
would simply oscillate at the trap frequency. However, the interplane interaction transfers energy from
the �rst plane to the second one, initially at rest. In this situation, the motion of the unexcited plane is
a proof of the existence of a long range interaction and the beating period provides a measurement of
the coupling strength. Right : time evolution of e1 (blue) and e2 (red), as given by classical equation of
motion (6.48) with wA = 1.1� w0. Initially, e1 = e0 and e2 = 0.

6.3.3 Coupled oscillations between two layers

One way to test experimentally the previous results would be to measure the in-plane oscilla-

tion frequencies of two Potassium layers 5 interacting through a 3D Lithium cloud. This method

is inspired by [Matveeva et al. 2011] in which such a situation is considered for dipolar long

range interactions, and has been proven to be very a powerful tool for measuring small cou-

plings [Delehaye et al.2015].

In the optical lattice, the 2D planes of Potassium are not only strongly con�ned in the axial

direction z, but also weakly in the transverse plane. Dragged away from equilibrium, for in-

stance by focusing a laser close to the lattice so as to deform the optical potential, a Potassium

pancake will oscillate in the ( x,y) plane. Because of the coupling between consecutive planes,

the oscillation of one layer will transfer energy to and induce motion among its neighbors 6.

The coupled oscillations' frequency depends on the strength of the coupling and thus provides

an experimental access to test of our predictions.

To estimate this frequency, we consider the situation pictured in �gure 6.6 with two 2D

clouds �lled with N particles, separated by Dz and con�ned in the ( x,y) plane by the potential:

Vtrap =
1
2

mw2
0

�
x2 + y2�

. (6.44)

We drag the system away from the trap center, for instance along x, and release it. We denote

5In this section, we restrict the analysis to two interacting layers, but it could be extended to describe the behavior
of several coupled planes stacked on the 1D lattice sites. Rather than a modulation of the oscillation amplitude, the
long-range coupling would then result in the propagation of transverse oscillation along the pile.

6In an equivalent picture, the coupling between planes lifts the degeneracy of individual oscillators, which re-
sults in a frequency shift with respect to the bare oscillations.
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ei the small displacement of the center of mass of cloud i. The oscillation frequency can be

deduced from the expression of the energy of the system. We �rst calculate the interaction

energy between both clouds :

Eint =
Z

d2r1d2r2 (V (r1 � r2) n1 (r1 � e1ux) n2 (r2 � e2ux)) (6.45a)

= Ee= 0
int + Ie1e2 �

1
2

I
�
e2

1 + e2
2

�
, (6.45b)

where we used a Taylor expansion of ni to the second order and introduced

I =
Z

d2r 1 d2r 2

�
Veff (r 1 � r 2)

¶n1

¶x
¶n2

¶x

�
. (6.46)

The previous integral can be further simpli�ed using expression (6.41): assuming that Potas-

sium atoms constitute an ideal Fermi gas within each plane, (6.46) simply becomes:

I = gDzN
m2w2

0

2p h̄2 . (6.47)

The total energy of the system corresponds to the sum of the kinetic, potential and interac-

tion energies:

DE(e) = Ee
0 + I e1e2 �

1
2

I
�
e2

1 + e2
2

�
, (6.48)

where DE(e) is the increase of energy due to the initial excitation and Ee
0 is the bare energy in

absence of interaction:

Ee
0 =

1
2

Nm �e1
2 +

1
2

Nm �e2
2 +

1
2

Nmw2
0e2

1 +
1
2

Nmw2
0e2

2. (6.49)

In order to further reduce the problem, we consider separately the two eigenmodes of the

oscillations. The energy of the symmetric solution e1 = e2 corresponds to a harmonic oscilla-

tor with frequency wS independent of I , while that of the anti-symmetric solution e1 = � e2

explicitly relies on the interaction:

wS = w0 (6.50) wA = w0

r
1 �

mgDz

p h̄2 (6.51)

The corresponding values are summarized in table 6.3. Within experimentally realistic pa-

rameters, on the BEC side of the resonance, the symmetric and anti-symmetric modes are ex-

pected to show a frequency difference of 11 Hz, which should be accessible through measure-

ments [Ferrier-Barbut et al.2014]. By contrast, on the BCS side, the frequency difference is much

smaller, rendering the measurement of the effects due to long range interactions dif�cult.

Besides the direct measurement of the oscillation frequencies, the coupled motion provides

an easier way to test our predictions. If only one plane is initially excited, the initially imparted

energy will be transferred back and forth between the two oscillators (see Fig. 6.6). The ampli-
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Figure 6.7: Summary of results presented and to come. The phase diagram for a ideal 3D Fermi gas as a
function of the 2D-3D coupling strength was reported in [Nishida 2010]. We investigate the behavior of
the system also as a function of the 3D-3D interactions. In this thesis, we focused on the kFa2D � 3D ! 0�

limit, allowing Born approximation. We recover the RKKY potential on the BCS side of the 3D cloud and
predict a Yukawa potential on the BEC side. A more general derivation, addressing the strong 2D-3D
interaction, will be the subject of a future work with Georg Bruun and Zhigang Wu. In the opposite
limit kFa2D � 3D ! 0+ , 2D and 3D particles are expected to pair in mixed dimensional molecules. The
same treatment could be applied to estimate the interaction mediated from one molecule to the other by
the unpaired 3D particles.
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BEC

x 2.7� m

VBEC
0 0.7 � 10� 5 EF

gBEC
Dz 6.32� 10� 45 J/m 2

wA � wS 11.6 Hz

Ideal Fermi Gas

k� 1
F 0.32� m

VFG
0 7.2 � 10� 5 EF

gFG
Dz 1.62� 10� 46 J/m 2

wA � wS -0.07

Table 6.3: Orders of magnitude for the anti-symmetric mode induced by mediated long range in-
teraction. The optical lattice parameters are presented in table 6.2. The coupling is expressed in
units of the Potassium Fermi energy EF. The 2D-3D coupling constant is estimated to g2D3D =
gLiK

p
mK / (mK + 1.22mLi ), with aLiK = 63 � a0.

tude of motion will thus be periodically modulated, the beat note frequency being given by the

difference between the symmetric and anti-symmetric eigenmodes.

6.4 Conclusions

In this chapter, we described interactions in mixed dimensions as the superposition of an inci-

dent plane wave and a scattered ellipsoidal wave. We studied the case of effective long range

interactions, where the excitations of a 3D system allow for the exchange of momentum be-

tween two separated 2D planes. We extended previous theoretical predictions to address the

case where the 3D gas is ramped across over the BEC-BCS crossover. Assuming weak 2D-3D

interactions, we showed that the mediated long range interaction can be related to the com-

pressibility of the 3D gas. Within the Hartree approximation, it approaches asymptotically a

Yukawa potential on BEC side and a RKKY potential on the BCS side. Those results are pre-

sented in �gure 6.7.

We then proposed an experimental veri�cation of our model. We presented the setup which

will give rise to a mixed-dimensional system to lay down relevant orders of magnitudes. We

suggested to probe the existence of long range interactions by measuring the coupled oscilla-

tions of two planes. The frequency of the anti-symmetric mode, which appears as a beat-note

frequency, can be related to the strength of the coupling and provides a way to test our predic-

tions.

To conclude this chapter, we recall the main limitations of the previous study:

• All calculations were done at zero temperature. Experimentally, we expect to work at

temperatures around 5 to 15% of the Fermi temperature.

• The 2D-3D interaction is supposed to be weak enough to be treated within Born's approx-

imation, and taken into account simply by the coupling constant g2D� 3D. This approxi-

mation is justi�ed when a2D� 3D is the smaller length scale of the problem, which can be

realized by taking advantage of Feshbach resonances to tune its value.
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• A-atoms are treated as single impurities ; their statistics and interactions are not taken

into account, nor is their in�uence on the 3D cloud. Those effects can be experimentally

minimized by working with dilute 2D gases, such that 3D particles are much more nu-

merous.

• When moving through the B-cloud, A-atoms can radiate propagating excitations which

would take away their energy. Following the Landau criterion, such a situation would

arise if the velocity of an A particle exceeds the sound velocity in the B super�uid and this

effect remains negligible as long as the A atoms' Fermi velocity is small enough [Delehaye

et al.2015].

• The tuning of the interspecies interactions can be experimentally challenging. The Fes-

hbach resonances are known to be narrow and display a short lifetime due to enhanced

inelastic losses. This will probably limit the reachable scattering length, but we showed

that a measurable signal should be accessible at background value.

Some of these points are currently under investigation in collaboration with Zhigang Wu

and Georg Bruun.



Conclusion
The main results presented in this thesis are twofold.

First, we have signi�cantly improved the F ERMIX apparatus. We notably developed and

implemented a new cooling scheme, the so-called L enhanced gray molasses, which takes ad-

vantage of the existence of dark states among and between the hyper�ne manifolds addressed

by the D1 transition. This technique could be applied simultaneously on both 6Li and 40K, en-

abling us to reach a phase-space density of 10� 4, the highest value reported for the laser cooling

of these two species. It has since then been successfully adapted to the cooling of other isotopes

(Lithium 7, Potassium 39, Potassium 41) and species (Sodium 23), proving its broad range of

application.

The improvement in phase-space density allowed us to realize the �rst degenerate 40K gas

in France, with 3 � 105 atoms in two spin states at 62 nK, corresponding to 17% of the Fermi

temperature. Several experiments could be performed with such a sample.

For instance, a highly degenerate fermionic cloud is expected to display dramatically altered

light scattering properties, as the Pauli principle forbids the decay of an excited state to an

occupied ground state and thus reduces the accessible phase-space [Görlitzet al. 2001]. Two

temperature ratios play a crucial role in this blocking of spontaneous emission, analogous to the

Purcell effect [Purcell 1946]. The degree of degeneracy of the ensemble, estimated as the ratio

x = T/ TF between the temperature of the cloud and the Fermi temperature, accounts for the

occupancy of phase-space. The recoil strength, expressed as the ratiok = TR/ TF between the

recoil temperature and the Fermi temperature, is related to the likelihood for a fermion initially

immersed in the Fermi sea to reach a state above the Fermi surface after absorbing and re-

emitting a photon. The smaller these two ratios, the stronger the Pauli blocking, and signi�cant

effects above 20% of scattering suppression can be obtained as soon asx < 0.2 and k < 1. Due

to its inverted hyper�ne structure, 40K is a promising candidate for the observation of this

effect [Shuve and Thywissen 2009], as open transitions can be closed by the Pauli blocking,

resulting in an apparent increase of the measured atom number.

The long-term objective of the F ERMIX experiment is the simultaneous cooling of 6Li to de-

generacy. A preliminary measurement showed that both species could be loaded in the optical

dipole trap, but a signi�cant improvement of the atom number is still required to maintain a

satisfying ef�ciency during the last steps of evaporation. In order to reduce the thermal load

for Lithium and keep balanced populations, we plan to take advantage of the Potassium Fesh-

159
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bach resonance to decouple effectively both evaporations. Hopefully this cooling scheme will

soon make the FERMIX experiment able to study ultra-cold Fermi-Fermi mixtures.

Once both species have been brought to ultra-low temperatures, they could be used to real-

ize a mixed-dimensional system. We developed a theoretical analysis of such a situation, where
40K is con�ned in 2D-planes immersed in a 3D 6Li cloud. We demonstrated that an effective

long range interaction can be mediated from one layer to the next one by the surrounding cloud

and derived the expression of the coupling within Born's approximation on both the BEC and

BCS sides of the resonance. We proposed a scheme for an experimental veri�cation of our pre-

dictions by measuring the beat-note period of coupled oscillations between pancakes con�ned

in neighboring sites of an optical lattice.

Besides this proposal, several problems could be studied by relying on such a mixed dimen-

sional simulator. For example, mixed dimensions open new perspectives for E�mov physics. In

the unitary limit, three particles can form Borromean-like trimers, whose binding energies form

a geometric series characterized by a universal factor [E�mov 1970, E�mov 1973]. It was long

believed that these E�mov trimers could only exist in three dimensions, where the short-range

boundary condition enforces a non trivial interaction at unitarity. However, mixed dimensions

provide additional ways to generate E�mov bound states, provided that the mass ratio of the

two involved species belongs to a critical interval [Nishida and Tan 2011]. A fermionic 6Li- 40K

degenerate mixture, such as the one we aim at producing, is well suited for such realizations, as

two 2D Potassium atoms can bind with and through a 3D Lithium atom. Furthermore, the exis-

tence of inter-layer con�gurations helps preventing three-bodies recombinations and increases

the stability of E�mov trimers with respect to the 3D scenario.

Furthermore, with the appropriate optical con�guration, the F ERMIX apparatus could be

used to engineer alternative mixed-dimensional schemes, for instance 1D-3D or 0D-3D sys-

tems. In addition to E�mov physics, these systems offer the opportunity to study speci�c

phenomena, such as the Kondo effect mentioned in the introduction.

Second, we proved that some dynamical properties of non-interacting Weyl particles in a

harmonic trap could be simulated with spin-polarized Lithium atoms in a quadrupole trap.

Our method relies on a canonical mapping to translate properties of Weyl fermions into the

language of atomic physics. For instance, this mapping allowed us to re-interpret the Klein

paradox as Majorana spin-�ip losses.

Despite their apparent simplicity, we have shown that these equivalent systems display

non trivial properties. We showed that an ensemble of Weyl particles dragged away from the

trap center does not oscillate continuously, but relaxes towards a strongly anisotropic steady

state which cannot be described by a Boltzmann distribution. This provides an interesting

example of relaxation in the absence of collisions, midway between harmonically con�ned

massive particles, which oscillate without damping, and interacting particles in non harmonic

potentials, which usually relax towards a thermal state.
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As the oscillations are damped, the energy initially imparted to the center of mass of the

ensemble is redistributed within the cloud. De�ning effective temperatures as the second mo-

ments of the distribution, we characterized the heating following the excitation. Even though

the Hamiltonian is non separable, the strongly con�ning axis appears to be almost decoupled

from the symmetry plane. Yet, within this plane, effective temperatures equilibrate, showing

a quasi-thermalization. Using general theorems, we estimated the expected heating and �nd a

good agreement between theory and numerics without free parameters. Experimentally, these

predictions have been successfully tested against two different excitation methods.

In order to study the in�uence of the trap geometry, we derived analytical results for the

relaxation in an isotropic trap based on Bertrand's theorem. In 3D, we have shown that the

effective heating remains anisotropic as the excitation breaks the initial symmetry. By con-

trast, the effective heating becomes isotropic in 2D. These results were validated and extended

to intermediate trap geometries by numerical simulations, notably allowing an estimation of

the relaxation time and suggesting an interpretation of the quasi-thermalization based on the

precession of orbital planes.

We derived expressions of the involved Berry phases and showed numerically that the ad-

ditional coupling they provide is negligible at the considered temperatures. The simultaneous

enhancement of the in�uence of geometric potentials and of Klein-Majorana losses, while com-

promising the ability of quasi-thermalization to illustrate topological properties, illustrates that

both effects originate from the same adiabatic hypothesis.

Finally, it should be noted that the very same mapping could be used to study various situ-

ations. For instance, particles in a Ioffe-Pritchard trap appear as analog to massive relativistic

particles, while in a hybrid magneto-optical trap, they could be used to engineer a Rashba

coupling.

The FERMIX experiment is about to reach its intended operational capacities and demon-

strates an increasing ability to address fundamental problems of quantum mechanics. As

shown in this work, the experiment highlights several strengths of Physics. Universality �rst

of all, as two systems with very different natures, such as ultra-slow cold atoms and ultra-fast

relativistic Weyl particles, can be found to behave in the same way. It also epitomizes the in-

terplay between theory and experiment, as both are accessible in the lab: the setup remains

on a human scale and standard concepts can be readily derived and tested against data. But

mostly, it illustrates how new lines of research can sometimes emerge by serendipity: even

well-known and thoroughly studied systems such as the quadrupole magnetic trap can exhibit

an un-described behavior, providing new tools for the study of exotic situations and pushing

forward the boundaries of understanding.
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text of the manuscript. Annex A.1 is dedicated to the Zeeman effect, throughly used in the

�eld of cold atoms. Annex A.2 introduces Boltzmann equation and illustrates some historical

paradoxes of the H theorem, at the core of the kinetic theory of gases. Annex A.3 demonstrates
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the Kohn, virial and Bertrand's theorem, with an original approach. Annex A.4 summarizes

elements of the elastic collisions theory required to address scattering problems. Eventually,

annex A.5 provides the technical references of the devices used on the apparatus.

A.1 Alkaline atoms in magnetic �elds

The Zeeman effect accounts for the in�uence of an external magnetic �eld on the eigenelements

of an atom. The atom is coupled to the �eld through its magnetic momentum M , which can

be related to the angular momentums (orbital L, intrinsic S and nuclear I ) through Wigner-

Eckart theorem. As a consequence, a small �eld will lift the degeneracy of the so called Zeeman

sublevelswhich differ only by their projected angular momentum. At a highest order, the im-

pact on the hyper�ne splitting must be taken into account. In asymptotic regimes, convenient

formulae can be derived to estimate the Zeeman shifts. If the magnetic �eld is small enough,

such that its in�uence is negligible compared to the hyper�ne splitting, the energy shift of each

Zeeman sublevel is linear with the �eld and proportional to its projected momentum. If the

magnetic �eld is strong enough, such that the hyper�ne splitting can be neglected, the energy

shift is still proportional to the �eld but only depends of the electron intrinsic orientation. The

calculation can be explicitly carried out for L = 0; the resulting Breit-Rabi formula is therefore

appropriate for the ground states of alkali atoms and plays an important role in our case.

This appendix reviews and summarizes the main results describing the behavior of alkali

atoms such as Lithium and Potassium in a magnetic �eld.

A.1.1 Wigner-Eckart theorem and Lande factor

The magnetic momentum of an atom is a vectorial operator and follows as such the Wigner-

Eckart theorem: The restriction of any vectorial operator V to an eigenspace of the angular

momentum F is proportional to the angular momentum with a coef�cient

hV.Fi F

F(F + 1) h̄2 . (A.1)

Here, a vectorial operator is de�ned by its commutation relations [Fx, Vx] = 0,
�
Fx, Vy

�
= i h̄Vz

and [Fx, Vz] = � i h̄Vy (and circular permutations) while the mean value can be estimated on

any state of the eigenspace.

Three angular momentum are required to describe an atomic state and the magnetic mo-

mentum can therefore be expressed as the sum of three contribution. The proportionality fac-

tor between a magnetic momentum and the related angular momentum is expressed with Bohr

magneton mB = ēh
2me

' 1.4� hMHz/G and so called Landé factor, usually noted g.

• The orbital momentum L of the electron is associated to a magnetic momentum M L =
� mB

h̄ gLL with gL = 1.
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dL s p d f

Li 0.40 0.04 0 0
K 2.19 3.59 2.46 0.02

gJ S1/2 P1/2 P3/2

Li 2 0.666 1.335
K 2 2/3 4/3

Table A.1: Landé factors (left) and quantum defects for Lithium and Potassium, as given by [Burkhardt
and Leventhal 2010]

40K ahf bhf

42S1/2 -285.730 -
42P1/2 -34.523 -
42P3/2 -7.585 -3.445

6Li ahf bhf

22S1/2 152.136 -
22P1/2 17.386 -
22P3/2 -1.155 -0.10

Table A.2: Hyper�ne structure of 6Li and 40K, as given by [Arimondo et al.1977]

• The intrinsic momentum S of the electron (or spin) is associated to a magnetic momen-

tum M S = � mB
h̄ gSS with gs ' 2. This value is predicted by Dirac equation; magnetic

anomalies modify it by � + 0.02.

• The nuclear momentum I is associated to a magnetic momentum M I = � mB
h̄ gI I . The

factor gI depends of the nuclei but is always much smaller than 1 (1.7 � 10� 4 for 40K and

� 4.5� 10� 4 for 6Li).

It is often useful to consider composed angular momentum, such as J = L + S and F = J+ I .

We can therefore introduce the corresponding Landé factors

gJ =
gS

2
J( J+ 1) + S(S+ 1) � L(L + 1)

J( J+ 1)
+

gL

2
J( J+ 1) + L(L + 1) � S(S+ 1)

J( J+ 1)
, (A.2)

gF =
gJ

2
F(F + 1) + J( J+ 1) � I ( I + 1)

F(F + 1)
+

gI

2
F(F + 1) + I ( I + 1) � J( J+ 1)

F(F + 1)
. (A.3)

The Wigner-Eckhart theorem is extremely useful as long as the vectorial operator can be cor-

rectly approximated by its restriction to a subspace of the angular momentum. This is correct

as long as the variations due to the operator are small compared to the difference between two

subspaces. SinceS and I are intrinsic quantities, the previous results are always correct. For

L (resp. J, F), they hold until the energy shift becomes comparable to the atomic structure of

� 100 THz (resp �ne structure � 100 GHz, hyper�ne structure � 100 MHz)

A.1.2 Zeeman hamiltonian

To account for the Zeeman effect on alkali, we describe an atom with the following Hamiltonian

[Cohen-Tannoudji et al.1997],

H = H0 + Wso + Whf + HZ , (A.4)
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where

• H0 describes a spinless valence electron in the electrostatic potential of the nuclei and core

electron cloud. For alkali atoms, the energy of an orbit depends not only on the principal

quantum n, but also on the angular momentum L, as the orbit can bring the valence

electron to cross inner electronic layers. This effect can be simply taken into account by

the so-calledquantum defect[Hanle 1984]. The eigenenergies then take the formE0(n, L) =
� Ry/ (n � dn,L)2, where Ry is the Rydberg constant and dn,L is the quantum defect, mostly

depending on L (see table A.1).

• Wso describes the coupling between the spin S and the orbital angular momentum L. It

can be written, as any interaction lifting the degeneracy of the J = S + L levels, under the

form:

Wso µ L.S ' af ( J( J+ 1) � L(L + 1) � S(S+ 1)) , (A.5)

where af gives the �ne structure splitting.

• Whf accounts for the coupling to the angular momentum of the nuclei, generating the

hyper�ne structure of the atom:

Whf =
ahf

h̄2 I .J+
bhf

h̄2

3(I .J)2 + 3
2 h̄(I .J) � I2J2

2I (2I � 1) J(2J � 1)
(A.6a)

=
ahf

2
(F(F + 1) � I ( I + 1) � J( J+ 1)) if bhf = 0 (A.6b)

where ahf and bhf are the magnetic dipole and electric quadrupole constants respectively.

• HZ describes the coupling of magnetic momentums to an external magnetic �eld:

ĤZ = �
�

ˆM S + ˆM L + ˆM I

�
.B (A.7)

A.1.3 Asymptotic behaviors

• At low �eld: linear Zeeman effect treatment

If the Zeeman shift is much smaller than the hyper�ne splitting, the Zeeman effect can be

taken into account perturbatively. Atomic states are correctly described by their projected

angular momentum mF and their (degenerate) energies are given by:

E(mF) = E0(n, L) + ahf (F(F + 1) � I ( I + 1) � J( J+ 1)) /2 (A.8)

Up to �rst order in perturbation, the Zeeman effect is given by

DE = hmFj HZ jmFi =
mB

h̄
gFB mF (A.9)
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Figure A.1: Asymptotic regimes for the Zeeman shift of the P3/2 states of 40K (left) and 6Li (right) as a
function of the magnetic �eld. The low �eld regime is given by equation (A.9), where the coupling to
the magnetic �eld is treated perturbatively. The high �eld regime is given by equation (A.11b), where
the hyper�ne structure is estimated as a perturbation.

For Lithium as well as Potassium, this regime is only valid as long as the magnetic �eld

does not exceed few Gausses (see Fig. A.1).

• At high �eld: Paschen-Back regime

If the Zeeman shift is much larger than the hyper�ne splitting, the restriction of the

Hamiltonian to an eigenspace of the angular momentum F is not relevant anymore and

the projected momentum mF is not a good quantum number to describe the situation.

The magnetic momentum M cannot be expressed with F but must be described as the

sum of M I and M J, making mI and mJ the relevant quantum numbers.

We therefore consider the eigenstatesjn, L, S, J, I , mJ, mI i of the Hamiltonian H = H0 +
Wso + HZ , whose energies shift with respect to B = 0 are given by

DE = mB (gJmJ + gI mI ) B/¯h (A.10)

To take into account the hyper�ne splitting, we calculate at lowest order

dE = hmJ, mI j Hhf jmJ, mI i (A.11a)

= ahfmI mJ + bhf
9m2

I m
2
J � 3I ( I + 1)m2

J � 3J( J+ 1)m2
I + I J ( I + 1) ( J+ 1)

4IJ(2I + 1)(2J+ 1)
(A.11b)

For Potassium, this regime is valid as soon as B > 50 G for P3/2 states (resp. B > 200 G

for P1/2 states). For Lithium, this regime is valid as soon as B > 3 G for P3/2 states (resp.

B > 30 G for P1/2 states). It is therefore the relevant expression to estimate the shifts at

typical biases of the experiment (see A.1).
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Figure A.2: Zeeman shift of the S1/2 manifold of 40K (left) and 6Li (right) as a function of the magnetic
�eld, as estimated by the Breit Rabi formula (A.15)

A.1.4 Breit-Rabi formula

For S orbitals, as the angular momentum L = 0, the Zeeman effect can be analytical calculated

as show in [Breit and Rabi 1931]. Using standard notations, we rewrite

H = H0 + ahf

�
IzJz +

1
2

( I+ J� + I� J+ )
�

/¯h2 + mBB (gJJz + gI Iz) /¯h (A.12)

SinceJ = 1/2, we can expand the matrix expression of the Hamiltonian over the basis fj n, L =
0, S, J = S, I , mJ, mI ig = fj mJ, mI ig :

H � H0 =

0

B
B
B
B
B
B
B
@

E
�
mF = �

�
I + 1

2

��
0 0 0

0 M11(� I ) M12(� I ) 0

0 M21(� I ) M22(� I ) 0
...

0 0 0 E
�
mF =

�
I + 1

2

��

1

C
C
C
C
C
C
C
A

(A.13)

where the M matrices have the following form

M11(mI ) = ahfmI /2 h̄2 + mBB
� gJ

2
+ mI gI

�
/¯h, (A.14a)

M22(mI ) = � ahf (mI + 1) /2 h̄2 + mBB
�

�
gJ

2
+ (mI + 1) gI

�
/¯h, (A.14b)

M12(mI ) = ahf

q
I ( I + 1) � (mI + 1) mI /2 h̄2 = M21(mI ). (A.14c)

This block matrix can be easily diagonalized: the stretch states mF = � ( I + 1/2 ) are already

eigenstates and each subspacefj � 1/2, mI i , j+ 1/2, mI � 1ig with a constant mF is stable. The
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corresponding eigenvalues give the Zeeman shift:

DE =

8
><

>:

ahf

2h̄2 I � mB
h̄

� gJ
2 + gI I

�
B for mF = �

�
I + 1

2

�

� ahf

4h̄2 + gI mBmFB �
ahf( I+ 1

2)
2

r
1 + 2mB(gI � gJ)mF

ahf( I+ 1
2)

2 B + m2
B(gI � gJ)2

a2
hf( I+ 1

2)
2 B2 for jmFj <

�
I + 1

2

�

(A.15)

Their values are plotted on �gure A.2.

A.1.5 Remark on notations

As shown in this appendix, the hyper�ne states are eigenstates of the system only at zero

�eld. The projected angular momentum mF is therefore not a good quantum number gen-

erally speaking, when arbitrary magnetic �eld are applied. Nevertheless, we will refer to those

numbers to label without ambiguity the eigenstates of the Zeeman Hamiltonian. Strictly speak-

ing, the spin-state jmFi should be understood as the eigenstate adiabatically connected to jmFi
at zero �eld.
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A.2 About Boltzmann equation

We review and summarize some of the properties of Boltzmann equation used in chapter 3, and

present two of the historical paradoxes associated to the H-theorem to illustrate the complexity

of the relaxation problem. For a more detailed presentation, see for instance [Pottier 2007].

A.2.1 Collisionless Boltzmann equation

We consider a dilute gas of N neutral atoms, which we assume to be described at time t by a

distribution f (r, p, t), not necessarily the equilibrium function. f (r, p, t) drdp gives the proba-

bility to �nd at time t a particle in volume dr around r with a momentum as close as dp from

p.

Liouville theorem states that the distribution function is constant along any trajectory in

phase space. In absence of interactions between particles, it simply corresponds to particle

conservations: the number of particles in the phase-space volume dr0dp0around (r0, p0) at time

t0used to be in the phase-space volumedrdp around (r, p) at time t, provided that

¶t r(t) = p(t)/ m, (A.16a)

¶tp(t) = F(r(t)) , (A.16b)

where F = � ¶rU is the outer potential exerted on the atoms.

In terms of distribution function, Liouville theorem can be written as f (r0, p0, t0) dr0dp0 =
f (r, p, t) drdp, which we can express as

�
¶t +

p
m

¶r + F¶p

�
f = 0, (A.17)

and we introduce the Liouville operator L such that ¶t f = �L f :

L =
p
m

.r r + F.r p (A.18)

Equilibrium distribution

Starting from given initial conditions, it is almost impossible to predict from the previous equa-

tions the steady state that the system is going to reach. On the other hand, it is straightforward

to verify that a Boltzmann distribution f0 de�ne as:

f0 (r, p) =
N

(2p h̄)3

l dB

Ve
exp

�
� b

�
p2

2m
+ U (r)

��
, (A.19)
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where Ve =
R

dr exp (� bU (r)) is the effective volume occupied by the gas, is an stationary

solution of the collisionless Boltzmann equation (A.17).

Considering a kinetic de�nition of the temperature as the standard deviation of the momen-

tum distribution, we identify b = (kBT) � 1 for the Boltzmann distribution (A.19). Remarkably,

f0 is completely de�ned by this single scalar parameter T, which implies that any physical

quantity can be expressed as a function of the temperature. This is not the case for all solu-

tions to the Boltzmann equation, and a steady state distribution can require more than one

parameter.

The Boltzmann distribution plays a crucial role in the kinetic theory of gases and we intro-

duce two properties of the Liouville operator that are useful to derive the results presented in

this manuscript

• L [ f0] = 0, since Boltzmann's distribution is a stationary solution of Boltzmann's equa-

tion.

• L is antisymmetric for the scalar product, ie hajL [b]i = � hL [a] jbi with

hajbi =
Z

drdq f0ab (A.20)

A.2.2 H theorem

General formulation of the Boltzmann equation

If interactions cannot be neglected between atoms, Liouville theorem still applies for the N par-

ticles distribution function. Several strategies can be considered to estimate the marginal single

particle distribution. The BBGKY hierarchy treats the problem iteratively, expressing the single

particle distribution as the solution of an equation involving the two-particles distribution and

so on. The Vlasov equation corresponds to a mean �eld treatment of the second order of the

BBGKY development and serves as framework for most of plasma physics.

Boltzmann approach relies on a series of simpli�cations:

• Only binary collisions are taken into account. This supposes that the gas is dilute enough

for three-body events to be extremely rare.

• All collisions are considered as elastic and no internal degrees of freedom are changed.

Most of the time, the interactions are treated as independent of the energy of the particles.

• All collisions are micro-reversible: the probability for two colliding atoms with momen-

tum p1 and p2 to emerge from the collision with momentum p0
1 and p0

2 is the same as the

probability of the reverse process.
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• The Stosszahlansatz, or pre-collisional chaos, is probably the strongest hypothesis as it

supposes that, before their interaction, the two particles are completely uncorrelated.

Under those conditions, the time evolution of the distribution function can be expressed as

�
¶t +

p
m

¶r + F¶p

�
f =

�
¶ f
¶t

�

collisions
, (A.21)

where the collision term takes the form
�

¶f
¶t

�

collisions
=

Z
dq

Z
dWs (p, q, W)

�
�
�
p
m

�
q
m

�
�
�
�

fp0fq0 � fp fq
�

. (A.22)

In the integral, p0has the same modulus asp but is oriented in the W direction and q0 is �xed

by the energy and momentum conservation. The cross-section s(W) corresponds to the proba-

bility for particles to deviate from their initial trajectories by a solid angle W. The value of the

cross section depends on the nature of the interactions, as detailed in annex A.4.

H theorem

It is often assumed that, in presence of collisions, the distribution function will eventually re-

lax towards f0 (even though particles in a harmonic potential provide a good counter example

through the undamped oscillations of both the center-of-mass motion (see Kohn theorem be-

low) and the monopole breathing mode [Lobser et al. 2015]). The qualitative idea relies on the

H theorem, that plays a key-role in Boltzmann theory and has been a bone of contention since

its formulation [Vilani 2010].

Boltzmann introduced the quantity H de�ne as

H (t) =
Z

drdp f (r, p, t) log f ((r, p, t) (A.23)

which can easily be related to the more familiar entropy S(t) = � kBH (t).

The H-theorem states that this quantity can only decrease during the time evolution of the

system
d
dt

H (t) � 0 (A.24)

or equivalently, the entropy of the isolated system can only increase.

The demonstration relies on the integration of eq.(A.21) and the inequality saturates for

distributions such that the collision term vanishes. In the interacting case, the only distributions

verifying this condition are the local Maxwellians de�ned as

f (r, p, t) = n(r, t)
�

1
2p mkBT(r, t)

� 3/2

exp
�

�
(p � mu(r, t)) 2

2mkBT(r, t)

�
, (A.25)
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where the density n, temperature T and velocity u �elds are free parameters. Note that such a

distribution may not be a steady state of Boltzmann equation (ie L [ f ] 6= 0). The non-interacting

case, considered in chapter 3 and 4, provides an additional situation of evolution with constant

entropy.

Classical paradoxes

• Loschmidt's reversibility paradox [Loschmidt 1876]

Starting from a given initial condition, H decreases during the evolution of the

system. At time t, H has reached a valueH (t) < H0 and we reverse the speed of

all particles. Since collisions are micro-reversible, the system will resume its initial

con�guration in which H = H0. During this evolution, H has increased, in contra-

diction with the H theorem.

This paradox relies on a wrong interpretation of the Stosszahlansatz: as time is reversed, the

micro-reversibility implies that particles display pre-collisionalcorrelations, but post-collisional

chaos. Deriving Boltzmann equation with this modi�ed hypothesis inverses the sign of the

collision term: the entropy decreases (or the quantity H increases) during the evolution of the

system. Qualitatively, the reverse evolution starts with correlated particles and every collision

brings the system closer to the initial distribution, where all particles were uncorrelated; the

decrease of entropy translates this loss of information. A further objection can then be formu-

lated:

The situation presented above shows that Boltzmann equation is not relevant to

describe some systems, such as distributions with initial correlations.

The assessment is true, but does not constitute a paradox of any kind, as illustrated by spin

echo experiments. However, these systems with strong initial correlations require a very deli-

cate construction and a typical con�guration, drawn at random in phase-space, is very unlikely

to display such features. The story says that, as Boltzmann was confronted to Loschmidt's re-

versibility paradox, he answered: “Go ahead then, reverse them !”.

• Poicaré-Zermelo's recurrent paradox [Zermelo 1896]

Poicaré demonstrated in 1889 the recurrence theorem [Poincaré 1890]:

Let us consider a system which dynamics conserves the phase volume of any

�nite element and which evolution remains contained in a �nite phase space vol-

ume. Then, after suf�ciently long time (the so-called Poincaré recurrence time), the

system will return to a state arbitrarily close to its initial state.
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Owing to Liouville theorem and energy conservation, the two premesis are veri�ed for most

closed physical systems. Few years after the publication of Poincaré memoir, Zermelo formu-

lated a paradox relying on his theorem:

How can a system returns to its initial con�guration, with the initial quantity

H0, if H can only increase during its evolution ?

Mathematically, the paradox comes from the applicability of the Poincaré theorem, which con-

cerns �nite systems of N particles. Boltzmann equation supposes an in�nite number of degrees

of freedom and is therefore not subject to the theorem.

Physically however, systems do contain a �nite number of particles. Nevertheless, the re-

currence time scales exponentially with N and for macroscopic samples, the corresponding

periods are much longer than the age of the universe. What's more, Boltzmann equation re-

mains valid only as long as the Stosszahlansatz is relevant. Long before the recurrence time

is reached, the pre-collisional correlations might not be negligible and the system will exit the

validity range of the H theorem.
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A.3 Kohn, virial and Bertrand theorems

In this annex, we present derivations of three theorems used in the main text, namely the Kohn,

virial and Bertrand's theorems. The demonstration of the latter is an original work, inspired by

several proofs reported in the literature.

A.3.1 Kohn theorem

Kohn's theorem is a very strong result to study particles trapped in a harmonic potential and

was �rst formulated to describe the cyclotron motion of particles in a static, uniform magnetic

�eld [Kohn 1961]. It states that regardless of the inter-particles interactions, the center of mass

of the distribution oscillates at the cyclotron frequencies. Its extension in [Brey et al. 1989]

generalized this result to the case of identical particles in a harmonic trap. Later, in [Dobson

1994], the "harmonic potential theorem" demonstrates the rigid transport of the many-body

wavefunction.

Proof

We describe trapped particles with the Hamiltonian

H = Hkin + Htrap + Hint = å
i

p2
i

2m
+ å

i

1
2

mw2r2
i + å

i ,j

w
�
r i � r j

�
. (A.26)

We introduce the center of mass variables R = å
i
r i / N and P = å

i
p i , as well as the

relative coordinates xi = r i � R and q i = p i � P/ N. With these notations, we can rewrite

the Hamiltonian (A.26) as:

H = HCoM + Hrel , (A.27a)

HCoM =
P2

2Nm
+

1
2

Nmw2R2, (A.27b)

Hrel = å
i

q2
i

2m
+ å

i

1
2

mw2x2
i + å

i ,j

w
�

xi � xj

�
. (A.27c)

Note that relative- and center of mass- coordinates commute and [R, P] = i h̄. We have

therefore [Hrel , R] = [Hrel , P] = 0, and the center of mass follows the simple Hamiltonian

of a trapped particle with mass Nm in a harmonic potential.

The same proof can be applied for particles with a charge q in an additional static or

uniform magnetic �eld B(r) = r � A and uniform electric �eld E(t). The center of mass

Hamiltonian is then given by

HCoM =
(P � QA )2

2M
+

1
2

M w2R2 + QE(t).R, (A.28)
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with Q = Nq and M = Nm.

The theorem can be further extended to show that the wave function of the N particles

system can be expressed as the product of a center of mass wave function and an “in-

ternal” wave function. To do so, we must introduce the Jacobi coordinates u1 = r1 � r2,

u2 = r1+ r2
2 � r3, ..., un = r1+ ...+ rn

n � rn+ 1 and the corresponding momenta. Those coordi-

nates do verify the canonical commutation relations and we can show that they can be

used to rewrite Hrel , hence the result.

A.3.2 Virial theorem

Virial theorem was formulated by Rudolf Clausis in 1870 [Clausius 1870] and applies to parti-

cles in a potential V (r) such that

V ( l r) = l nV (r). (A.29)

In particular, this class includes all potential with the form V (r) =
�
axxp + ayyp + azzp

� q, with

n = pq.

The theorem can be formulated as follows: for any ensemble submitted to a potential (A.29),

the kinetic energy EK and the potential energy EP in the steady states are related through the

relation:

2EK = nEP (A.30)

Virial theorem is often used in stellar physics and provides for instance a derivation of Chan-

drasekhar limit for the stability of white dwarf stars.

Lemma Euler Theorem

For any potential, if e � 1, we can write V ((1 + e)r) ' V (r) + e(r.¶r ) V (r)

SinceV ((1 + e)r) = ( 1 + e)nV (r) ' V (r) + neV (r), this leads to Euler theorm for homo-

geneous functions:

(r.¶r ) V (r) = nV (r) (A.31)

Proof We describe an ensemble of particles in a potential V with the distribution function

f (r, p, t). The evolution of f is governed by Liouville equation

¶f = L f ,

with the Liouville operator being L = p
m.¶r � (¶rV ) .¶p .

Let us consider the quantity C(t) = hr.p i =
R

f r.p. In steady state, ¶tC = 0 and we can

express

0 =
Z

¶t f r.p =
Z

L ( f ) r.p = �
Z

f L (r.p) (A.32)
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Figure A.3: Three orbits in central potentials. In a), the Hook potential results in an apside angle
qA = p /2. In b), the Coulomb potential gives qA = p . In c), an arbitrary potential gives a rosette-
like trajectory.

where we integrated by parts. Using Euler theorem, we can express L (r.p) = p2/ m �
nV, and the previous condition leads to

Z
f

p2

m
= n

Z
f V (A.33)

hence the virial theorem.

A.3.3 Bertrand's theorem

Bertrand's theorem describes the behaviour of particles trapped in a central force potential

V (r). The theorem states that, even if any arbitrary potential admits a circular orbit, only two

are such that all bound orbits are closed: the Coulomb potential VC(r) = � k/ r and the Hook

potential VH (r) = k0r2.

The corollary of this theorem is that any potential apart from VC and VC will admit rosette-

like orbits, as the particle will cover densely all positions between the aphelion and the perihe-

lion (see Fig. A.3)

The theorem was �rst formulated in 1873 by J. Bertrand [Bertrand 1873] (see [Santos et al.

2011] for an english translation) as a general analysis of bound orbits. It was proposed as a

tool for the study of the three-body problem and can be used as an alternative demonstration

to the shape of Newton's gravitational potential, since all trajectories observed among celestial

bodies are closed.

Several proofs to Bertrand's theorem can be found nowadays. Most of them have the same

structure and only differ in the last step of the demonstration. The original proof uses a global

approach; a perturbative method can also be applied [Goldstein et al. 2001] or additionnal

constant of motion can be invoked [Martinez-y Romero et al. 1992]. Many more rely on an
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inverse transform [Grandati et al. 2008, Santoset al. 2009]. Here, we show a global approach

inspired by [Arnold et al.1997].

Few words of vocabulary, illustrated on �gure A.3:

• The apside angle qA is the angle [AOP between the the aphelion A, the center O et the

perihelion P.

• An orbite is closed if the trajectory followed by a particle will eventually loop. Equiva-

lently, this condition corresponds to the apside angle being commensurate with p : qA =
m
n p .

Step 1 If all orbits are closed, than the apside angle must be the same for all trajectories

Let us consider a closed orbit. As mentioned above, this condition requires that the apside

angle of this trajectory is commensurate with p .

If the apside angle was not the same for all orbits, but depended continuously of the

energy or angular momentum of the trajectory, it would necessarily take values incom-

mensurate with p according to the intermediate value theorem.

Therefore, if all orbits are closed, they must all have the same apside angle qA .

Step 2 For almost circular orbits, the only central potentials with constant apside angles are V(r) =
k ln r/ r0 and V(r) = kra with a > � 2 and a 6= 0. The corresponding apside angles are

qA = pp
2+ a

We consider a point-like particle with mass m subject to the force F(r) = � ¶rV (r)ur and

decribe its trajectory in polar coordinates (r, q).

The energy conservation can be expressed as

E =
1
2

m�r2 +
1
2

mr2 �q2 + V (r). (A.34)

Using the conservation of angular momentum L = mr2 �quz, we can express the kinetic

energy as a function of the distance r and of its angular dependance:

�r2 + r2 �q2 =
�

Lz

mr2

dr
dq

� 2

+
L2

z

2mr2 . (A.35)

We follow Binet's notation u = r � 1, so that du
dq = � 1

r2
dr
dq and we can write eq.(A.34) as

E =
L2

z

2m

�
du
dq

� 2

+ Veff(u), (A.36)
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Figure A.4: Effective potentials (black line), expressed as the sum of the kinetic (red dashed line) and
potential (green dashed line) energies, for a < 0 (left) and a > 0 (right). For a given energy (blue
horizontal line), the aphelion ( rmin ) and perihelion ( rmax) de�ne the accessible position range.

where we introduced (see Fig. A.4)

Veff(u) =
L2

z

2m
u2 + V (u� 1). (A.37)

Let us consider a circular trajectory u0 with energy E0 and momentum Lz and a stable

orbit close to it, such that u = u0 + r (q). Up to the second order, Veff(u) = Veff(u0) +
1
2r 2V00

eff(u0) sinceV0
eff(u0) = 0 and eq. (A.36) reads

E =
L2

z

2m

�
dr
dq

� 2

+
1
2

r 2V00
eff(u0), (A.38)

which describes an oscillation with the angular frequency

W =

s
mV00

eff(u0)
L2

z
=

s
3V0(r0) + r0V00(r0)

V0(r0)
> 0, (A.39)

where we used V0
eff(u0) = 0 ) V0(r0) = L2

z/ mr3
0 and expressed the stability of the orbit.

Without any loss of generality, we can chose the origin such that u = u0 + A cosWq. The

aphelion is reached for q = 0 and the perihelion for q = qA = p / W. The condition

expressed in step 1 thus leads to

3V0(r) + rV 00(r)
V0(r)

= 2 + a, . (A.40)

with a > � 2. For a = 0, eq. (A.40) leads toV (r) = k ln r/ r0 and qA = p /
p

2, and we

can rule out this potential since its aspide angle is incommensurate with p . For a 6= 0, we

�nd V (r) = k0ra and

qA =
p

p
2 + a

. (A.41)
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Step 3 The only possible values for the apside angle to be commensurate withp area = 2 anda = � 1,

hence Bertrand's theorem

For each value of a, since the apside angle is the same for all trajectories, we will restrict

the study to a convenient situation and express the apside angle using eq. (A.36)

qA =
Lzumaxp

2m

1Z

umin
umax

dx
p

E � Veff(xumax)
. (A.42)

For a > 0, we consider an orbit with an energy E ! + ¥ . The aphelion is approaching

zero asumax = r � 1
min ! ¥ , while the perihelion as located at umin = 0 (see Fig.A.4). We can

thus consider V (1/ umax) ! 0 and therefore E ' L2
z

2mu2
max. We can express the effective

potential as:

Veff(xumax) = Ex2 +
La

z

(2m)a/2 Ea/2

k
xa '

E! ¥
Ex2 (A.43)

Considering umin
umax

! 0, eq. (A.42) leads to

qA �!
E! ¥

1Z

0

dx
p

1 � x2
= p /2. (A.44)

Comparing eq. (A.44) and (A.41), the only possible potential is the Hook potential, corre-

sponding to a harmonic motion with a = 2.

For a < 0, orbits can exist only if k < 0 and E < 0. With such prerequisites, we consider

an orbit with an energy E ! 0� . The aphelion is then given by � ku� a
max = L2

z
2mu2

max while

the perihelion as located at umin = 0 (see Fig. A.4). The apside angle is thus converging

towards

qA �!
E! 0

Lzumaxp
2m

1Z

0

dx
q

� L2
z

2mu2
maxx2 � kx� au� a

max

=
p

2 + a
. (A.45)

Comparing eq. (A.45) and (A.41), the only possible potential is the Coulomb potential,

corresponding to an elliptique motion with a = � 1.
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A.4 Elements of collision theory

The behavior of a many body system depends crucially on the interactions between particles,

as epitomized by the BEC-BCS crossover. In the appendix, we review the main tools used to

model a two-body elastic interaction.

The study of the interacting and scattering properties of a system is a wide �eld and can

easily be the object of a dedicated work. The objective of this presentation is simply to explicit,

without demonstration, most of the concepts used in the previous chapters (scattering length,

Feshbach resonance...) and to introduced the tools required to describe interactions in mixed

dimensions (chapter 6).

The approach follows essentially that of [Walraven 2010] and [Cohen-Tannoudji and Guery

Odelin 2011] to which we refer for all demonstrations of the results stated here.

Figure A.5: Scattering on a central potential. An incoming plane wave jk i i propagates towards a scat-
tering center of �nite range b. Following adiabatically the potential, the initial state becomes jy +

i i close
to the center.. The interaction can project the incoming state onto the outgoing state jy �

f i , which will

in turn become a plane wave jk f i far from the center. The probability amplitude of such a scattering is
given by the S-matrix element Sf i , which can be estimated thanks' to the T matrix. The superposition
of all outgoing waves can be described as a spherical wave with the scattering amplitude f . The cross
section ds(W) expresses the size of the effective target that leads to a deviationW.
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A.4.1 Mathematical framework

Let us consider two particles traveling towards each other from a far distance (ie larger than

the interaction range). As they move closer, the interaction disturbs their trajectories. Because

of energy and momentum conservation, in absence of internal state modi�cation, the particles

will eventually separate from each other and resume their motion. The interaction dictates

the deviation of the particles or, equivalently, the dephasing of the wavefunction. Those main

ingredients are depicted on �gure A.5.

We describe the two interacting particles by the wavefunction Y and the following Hamil-

tonian:

Htot =
p2

1

2m1
+

p2
2

2m2
+ V (r1 � r2) (A.46a)

=
P2

2(m1 + m2)
+

�
p2

2m
+ V (r)

�
, (A.46b)

where we introduced the reduced mass m = m1m2
m1+ m2

, the center of mass momentum P = p1 + p2,

the relative momentum p = 1
m (m2p1 � m1p2), and the relative position r = r1 � r2. Taking

advantage of the commutation of the relative- and center-of-mass quantities, we seperate Y as

Y (r1, r2) = j (R) y (r). (A.47)

In the following, we will concentrate on the scattering problem described by y and the Hamil-

tonian

H =
p2

2m
+ V (r), (A.48)

corresponding to the scattering of a particle on a central potential.

We set the universe in a theorist shoe box of size L, allowing the quanti�cation of wave

vectors jk i , eigenstates ofH0 = p2/2 m. We also consider an adiabatic switching on and off of

the scattering potential overtime, following Gell-Mann and Goldberger:

V (r, t) = V (r) exp
�

�
hjt j
h̄

�
, (A.49)

with h ! 0+ . Qualitatively, this corresponds to considering that the interaction occurs during

a �nite time. Long before the particle arrives close to the potential center, and long after it was

scattered, the interaction is negligible. This allows us to consider quantities long before and

long after the scattering:

f (� ¥ ) = lim
h! 0

�
h
h̄

� ¥Z

0

f (t)e� ht/¯hdt (A.50)
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A.4.2 Scattering eigenstates

To predict the properties of the interaction, we consider the eigenelements (y k , Ek ) of the

Hamiltonian and review their main properties:

Hy k = Ek y k . (A.51)

• Each state jk i with energy ek of the free Hamiltonian H0 is associated to an advanced and

delayed scattering steady state jy �
k i such that

jy �
k i � U I (0, � ¥ ) jk i (A.52a)

= (1 + G� (ek)V ) jk i (A.52b)

H jy �
k i = ekjy �

k i (A.53)

G� (E) =
1

E � H � ih
(A.54)

where U I (t, t0) = exp
�

� i t0� t
h̄ V

�
is the evolution operator in interaction representation.

In other words, starting from a plane wave jk i far from the potential, the wave function

becomesjy +
k i close to the scattering center but keeps the same energyek . Equivalently,

a wavefunction jy �
k 0i close to the scattering center will eventually become a plane wave

jk 0i far from it.

• The resolvant G(E) satis�es Dyson equation

G(z) = G0(z) + G0(z)VG(z), (A.55)

where G0(E) = 1
E� H0� ih is the resolvent, whose matrix elements correspond to Green

functions. This self consistent equation plays a crucial role to expand perturbatively the

scattering elements presented below.

• The scattering eigenstates satisfy Lippman-Schwinger equation

jy �
k i = jk i + G0� (Ek)V jy �

k i (A.56)

A.4.3 Scattering matrices, amplitude and cross section

Because of the scattering, a plane wavejk i propagating towards the center will give rise to

outgoing waves in different directions jk 0i and the properties of the scattering potential dictates

the amount radiated in each direction. We introduce the main tools used to describe and predict

those deviations.

S Matrix The S matrix characterizes the probability amplitude for an incident state jk i to
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emerge as an outgoing statejk 0i after the collision.

Sk 0,k =


k 0�� U I (� ¥ , + ¥ ) jk i (A.57a)

=


y �

k 0

�
�y +

k

�
, (A.57b)

ie the probability amplitude is the overlap between the initial state forward propagated

to the potential and the �nal state retropropagated to the potential (see �gure A.5).

T Matrix

The T matrix is directly related to the S matrix by the relation

Sf i = df ,i � 2ipd
�
Ef � Ei

�
Tf i . (A.58)

The point of this relation is that the T matrix can be easily expanded in terms of the inter-

action potential V and the resolvant G, allowing its evaluation. Using Dyson equation,

the T matrix takes the following form

T = V + VGV = V + VG0V + VG0VG0V + ... (A.59)

Scattering amplitude

Far away from the scattering center, the scattering eigenstates are plane waves. Closer

to the center, they can be expressed as the superposition of a plane wave and a spherical

wave, which amplitude in the direction u is given by the scattering amplitude f (k , u):

y +
k (ru) '

1
p

L3
eik .r +

1
p

L3
f (k , u)

eikr

r
(A.60)

where

f (k , u) = �
m

p
L3

2p h̄2

Z
d3r0e� ik .r0

V (r0)y +
k (r0) (A.61)

The scattering amplitude is the natural description of the cross section, presented below.

It can be estimated from the T matrix through the relation

f (k, n, u) = �
mL3

2p h̄2 hku jTjk i (A.62)

Cross sections

The differential cross section ds
dW express the likelihood for an incoming particle to be

scattered in the solid angle W. More quantitatively, with an incoming particle �ux f i , the

outgoing �ux f s at a distancer in the solid angle W with a precision dW is set by:

f ids = f s(r, W)r2dW. (A.63)
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Taking into account the symmetry properties of indistinguishable particles, the differen-

tial cross section corresponding to the scattering from k to k 0 is related to the scattering

amplitude through

ds
dW

(k ! k 0) =

8
><

>:

j f (k, q) + f (k, p � q)j2 for bosons

j f (k, q) � f (k, p � q)j2 for fermions

j f (k, q)j2 for distinguishable particles

(A.64)

where q is the angle betweenk and k 0. The total cross section expresses the likelyhood for

a particle to be deviated in any direction. It is related to the scattering amplitude through

the optical theorem, which expresses the �ux conservation

stot (k) =
Z

dW
ds
dW

=
4p
k

Im ( f (k, q = 0)) . (A.65)

A.4.4 Low energy limit

When considering ultracold atoms, further simpli�cations allow to summarize the effect of the

interaction to few scalar parameters, notably the scattering amplitude, which we introduce in

this section.

Assuming a spherical interaction potential, we decompose the wavefunction into spherical

harmonics with increasing orbital momentum l. Because of energy and momentum conserva-

tion, the effect of the scattering is essentially described by the dephasing hl accumulated be

each partial wave during the process. We express the scattering amplitude and cross section as

a sum over all spherical modes:

f (k, q) =
+ ¥

å
l= 0

(2l + 1) flPl (cos(q)) (A.66a)

fl =
1

2ik

�
e2ihl (k) � 1

�
(A.66b)

sl (k) = 4p å
l

(2l + 1)j fl j2 (A.67a)

=
4p
k2 å

l

(2l + 1) sin2 hl (A.67b)

where Pl are Legendre polynomials and hl (k) is the phase shift of the partial wave l.

For arbitrary potential with a �nite range b, this phase can be written in the low energy limit

as:

tan hl '
kr! 0

�
2l + 1

[(2l + 1)!!]2
(kal )2l+ 1, (A.68)

where al is the l-wave scattering length. The result can be extended for power-law potential

V µ r � s for partial waves l < 1
2(s � 3).

Each spherical harmonic contributing to the wavefunction has a angular momentum l ( l +
1) h̄2. At the range of the interaction potential, this momentum results in a kinetic barrier which
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can be overcome only if the kinetic energy of the colliding particle is high enough:

h̄2k2

2m
>

l ( l + 1) h̄2

b2 ,
2p b
l dB

> l (A.69)

As a result, at low energy l dB � b, only the �rst harmonic l = 0, the so-called s-wave, will

contribute to the scattering.

S wave collisions Considering equation (A.68), we introduce the scattering length a and the

effective interaction length re to expand the s-wave phase shift:

cot(h0) = �
1
ka

+
1
2

kre + ... (A.70)

The scattering amplitude and the cross section for distinguishable particles thus take the

form

f0 =
1

kcot(h0) � ik
'

1

� 1
a + 1

2rek2 � ik
(A.71a)

s0(k) = 4p j f0j2 =
4p a2

�
1 � 1

2arek2
�

+ ( ka)2
(A.71b)

If the interaction can be reduced to the single s-wavecontribution, it is entirely described

at low energy by the scattering length, which accounts for the dephasing induced by the

collision. The speci�cities of the potential can then be neglected and the scattering is

equivalent to the one caused by a pseudo potential:

U (r) =
2p h̄2

m
a � d(r)

¶
¶r

r. (A.72)

Singlet and triplet scattering length To describe the interaction between two alkali atoms,

the spin degree of freedom must also be taken into account. Considering only

the electrons, the spin con�guration can be either symmetric (triplet state) or anti-

symmetric (singlet). Because of Pauli principle, the symmetry will constrain the

orbital wave-function of the electron cloud and thus the interaction experienced by

the atoms at a given internucleus distance r. The interatomic electrostatic potential

should therefore be expressed as the superposition of a singlet and triplet potential:

Vel(r) = Vs(r) jS = 0i hS = 0j + Vt(r) jS = 1i hS = 1j (A.73)

= VD (r) + J(r) S1.S2, (A.74)

where S = S1 + S2 is the total electronic spin, VD = 1
4 (Vs + 3Vt) and J = Vt � Vs.

At low temperature, the singlet and triplet potential result in scattering lengths as

and at respectively. The triplet scattering length notably accounts for the collisions
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6Li- 6Li 6Li- 40K 40K-40K

as/ a0 39 52 104

at / a0 -2200 63 169

Ref. [Ottenstein et al.2008] [Falkeet al.2008] [Wille et al.2008]

Table A.3: singlet and triplet scattering length for the atoms at stake in the FERMIX experiment. The
values are expressed in units of Bohr radius a0 = 52.92 pm.

between stretch-states. Their values for Li and K are given in table A.3

P wave collisions For spin polarized fermions, the symmetry of the internal state forbids any

symmetric external wave-function because of Pauli principle. S-wave collisions are thus

ruled out and the �rst contributing order is given the so called p-wavecollisions,

cot(h1) = �
3

k3a3
1

+
1

kr1
. (A.75)

The scattering amplitude and the cross section for distinguishable particles take the form

f1 =
1

kcot(h1) � ik
'

1

� 3
k2a3

1
+ 1

r1
� ik2

(A.76a)

s1(k) = 12p j f1j2 =
12p a2

1�
a1
r1

� 3
k2a1

� 2
+ a2

1k2
(A.76b)

Note that the �rst spherical harmonic is anti-symmetric and p-wave collisions are there-

fore forbidden for indistinguishable bosons.

Temperature dependence The cross section of s- and p-waves collisions at �nite temperature

can be estimated as

ss,p(T) =
Z

d3k n(k , T)ss,p(k ) (A.77)

where n(k , T) is the density of particles in momentum space at temperature T. For dis-

tinguishable particles, p-waves predominate at high temperatures but vanish at low tem-

perature. The crossover regime is around 6 mK for Lithium. For Potassium, p waves

collisions predominates over s-waves until � 100� K and remain signi�cant until 20 � K

[DeMarco et al.1999].

A.4.5 Feshbach resonances

Initially introduced in nuclear physics [Feshbach 1962], Feshbach resonances are the experi-

mental way to tune the interactions at will; they are one of those magical knobs that make
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cold atoms such a versatile platform. Here, we simply introduce the main concepts behind

scattering resonances. For a detailed review, see [Chinet al.2010].

Because of energy and momentum conservation, two elastically interacting particles cannot

form a bound state and will eventually leave as free states. Nevertheless, the existence of bound

states can strongly alter the scattering properties as a virtual coupling between the open and

closed channel will change phase shifts. This coupling is that much stronger as the energy of

both state are equal, just like the scattering of light by a two levels system is maximal as the

light has the same frequency as the atomic transition. Close to resonance, the energy difference

between bound and scattering states dictates the value of the scattering length; if this difference

can be adjusted, any scattering length can be achieved.

More quantitatively, considering a zero energy scattering state
�
�y +

0

�
coupled by the Hamil-

tonian W to a bound state jy resi of energy Eres close to 0 (see �gure A.6), the scattering length

takes the form:

a = abg +
2p 2m

h̄2

�
� 
 y +

0

�
� W jy resi

�
�2

Eres + DE
, (A.78)

where the background value abg is the scattering length in absence of coupling and DE is the

energy shift of the bound state induced by the coupling.

Experimentally, the most usual way to take advantage of this effect is the so-called magnetic

Feshbach resonance, which plays on the differential Zeeman shift between the singlet and triplet

states. Because they don't have the same magnetic moment, the singlet and triplet states don't

experience the same energy shift in a given magnetic �eld. At low energy, only the lowest

state is accessible and provides scattering statesjy +
0 i (open channel). However, the magnetic

interaction between electronic spins can couple both states and transfer colliding atoms to a

bound state jy resi with an energy close to the scattering state (closed channel). By tuning on the

magnetic �eld, it is possible to adjust the energy difference between jy +
0 i and jy resi , leading to

a divergence of the scattering length when the two energies coincides. Close to the resonance,

the scattering length takes indeed the form [Moerdijk et al.1995]:

a = abg

�
1 �

DB
B � B0

�
, (A.79)

where B is the applied magnetic bias, B0 is the �eld for which both states have the same energy

(including the energy shift due to the coupling) and DB is the width of the resonance.

In addition to the elastic process considered in this section, inelastic collisions resulting in

atom losses are also increased close to Feshbach resonances and should be taken into account

in a more quantitative approach.

The idea of tuning cold atoms interaction through magnetic Feshbach resonances was pro-

posed in the early '90s [Tiesinga et al. 1993] and realized soon after [Inouye et al. 1998]. The

same strategy can be applied with other means to control the energy difference between a
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Figure A.6: Feshbach resonance.Left : Two channel model. At �nite magnetic �eld, the singlet state
(red) is up shifted with respect to the triplet state (blue), which is therefore the only accessible channel
(open channel) for scattering states with lowest energy jy +

0 i . The energy difference between the closed
channel bound state jy resi and the scattering state jy +

0 i determine the value of the scattering length.
Right : Resonant scattering. Just like the scattering of light by a two level system, the elastic interaction of
two atoms is strongly altered when bound and scattering states have equal energy, allowing an ef�cient
virtual coupling between both states.

bound state in the closed channel and a scattering state in the open channel, such as microwave

[Papoular et al. 2010], RF- [Moerdijk et al. 1996] or optical [Theis et al. 2004] dressing. Those

alternatives allow the simultaneous and independent control of several scattering lengths in a

multicomponent gas [Zhang et al.2009].

A.4.6 Getting familiar with a Feshbach resonance

As mentioned before, 40K features a 7 G wide Feshbach resonance at 202 G, allowing a complete

control over the scattering length between j � 9/2 i and j � 7/2 i states. So far, we did not take

advantage of this resonance on the FERMIX experiment and several text-book measurements

could be useful to develop a better knowledge of our system [Ketterle and Zwierlein 2008].

One easy way to observe a resonance is to measure the reduced lifetime due to the increase of

the inelastic scattering rate [Courteille et al.1998]. However, a more accurate study shows that

the maximal three body losses enhancement is located well below the actual resonance.

A more accurate method to determine the position of a Feshbach resonance is to study the

formation of Feshbach molecules. At large positive scattering length, two colliding atoms de-

scribed by the two channel Hamiltonian present a bound state of energy:

Eb �
h̄2

2ma2 , (A.80)

where a > 0 is the scattering length and mthe reduced mass. Atoms can be adiabatically trans-

fered to this Feshbach moleculeas they follow the lowest energy state through a sweep across

the Feshbach resonance, starting from a small negative scattering length [Regalet al. 2003].
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Experimentally, this can be done by ramping the magnetic bias; the sweeping time should be

slow compared to the Landau-Zener rate 0.11 G/ � s/10 13 cm� 3 for 40K, but fast enough to limit

enhanced losses induced by the resonance. A transfer ef�ciency up to 90% can be achieved

with this method.

When imaging the cloud at the atomic resonant wavelength l , molecules are transparent if

a . l /2 p and the formation of molecules appears as a decrease of the atom number. On the

other hand, the total atom number is restored by ramping the �eld back up to its initial value.

At colder temperatures, molecules undergo Bose-Einstein condensation and the distribution

presents a characteristic bimodal distribution [Zwierlein et al.2005b].

A radio-frequency radiation with a frequency resonant with the binding energy (A.80) can

dissociate the molecules, revealing their presence [Chinet al.2004]. With such a RF-spectroscopy,

it is possible to determine the onset of molecular dissociation and hence the value of the �eld

for which (A.80) vanishes [Bartenstein et al.2005]. While this method is particularly well suited

for 6Li, for which the electron and nuclear spins are decoupled as soon as the magnetic �eld

exceeds few hundreds of Gauss, rendering the resonant frequency very insensitive to small

magnetic �uctuations (1.5 kHz/G for the j1/2, 1/2 i ! j 1/2, � 1/2 i transition at 800 G). A sat-

isfying resolution can thus be achieved without dedicated �eld stabilization. By contrast, for
40K, the resonant frequency of the j9/2, � 9/2 i ! j 9/2, � 7/2 i transition close to the 202 G Fes-

hbach resonance varies by 150 kHz/G, but this increased sensitivity is still suf�cient to allow

for measurements with kilohertz resolution.
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A.5 Technical references

In this appendix, we present most of the technical references of the elements presented in the

�gures of chapter 2.

A.5.1 AOMs and EOMs

Name RF Source Device Ampli Freq (MHz)

Lithium

Li Lock VCO CrystalTech 3200-115 ZHL-1-2W 94.26
Li MOT Rep VCO CrystalTech 3200-115 ZHL-1-2W 215.16
Li MOT Prcp VCO CrystalTech 3080-125 ZHL-1-2W 94.26
Li Zee Prcp VCO CrystalTech 3200-124 ZHL-1-2W 170.11
Li Img Sw VCO CrystalTech 3200-124 ZHL-1-2W 126.8

Li D1 VCO CrystalTech 3200-124 ZHL-1-2W -189
Li SpinPol VCO CrystalTech 3200-124 ZHL-1-2W -224.73

Li EOM Spectro VCO CrystalTech 3080-122 ZHL-1-2W -80
Li EOM D1 VCO CrystalTech 3200-124 ZHL-1-2W -175

Potassim

K D2 Lock VCO InterAction ATM 1101A2 ZHL-1-2W -120
K 3D Prcp VCO CrystalTech 3200-124 ZHL-1-2W 217.2

K Rep Com VCO CrystalTech 3200-124 ZHL-1-2W -218.44
K 2D Prcp VCO CrystalTech 3200-124 ZHL-1-2W 170.11

K Img Sweep VCO CrystalTech 3200-124 ZHL-1-2W 126.8
K 3D Rep VCO CrystalTech 3200-124 ZHL-1-2W -189
K 2D Rep VCO CrystalTech 3200-124 ZHL-1-2W -224.73

K Img switch VCO CrystalTech 3080-122 ZHL-1-2W -80
K Img HF VCO CrystalTech 3200-124 ZHL-1-2W -175

K 3D Switch VCO CrystalTech 3080-122 ZHL-1-2W -90
K SP VCO CrystalTech 3080-122 ZHL-1-2W -59.81

K D1 lock VCO CrystalTech 3200-124 ZHL-1-2W -267.93
K D1 switch VCO CrystalTech 3200-124 ZHL-1-2W 200

K EOM Spectro VCO Qubig ZHL-1-2W 20

K EOM D1
WinfreakTech

SynthNV
Qubig E0-K40-3M ZHL-5W-2G+ 1285.8

High power lasers

YAG1 VCO MCQ80-A2.5-L1064 ZHL-20W-13+ 79.7
YAG2 VCO MTS80-A3-1064AC ZHL-1-2W 80.6
Verdi VCO MCQ110-A2-VIS ZHL-1-2W 109

Table A.4: AOM and EOM for on the optical tables.



192 Appendix

A.5.2 Power supplies

Power supply Ref Control Use

Zeeman Delta Electronika SM 35-45 CV Zeeman
SpinPol Delta Electronika SM 1540-D CV Bias

Blue Delta Electronika SM 45-140 CC/CV MOT, transport, quad trap
Yellow Delta Electronika SM 45-70D CV Push, Transport
Orange Delta Electronika SM 45-70D CV Transport
White Delta Electronika SM 15-400 CC/CV Quad trap, compensation

Annexe Delta Electronika SM 30-200 (x2) CV Transport
Genesys TDK-Lambda GEN 50-200 CV Transport

HighFiness High Finesse 30A/15V CC Bias
CompX Delta Electronika ES 030-10 CV Compensation
CompY Delta Electronika ES 030-10 CV Compensation

Table A.5: Power supplies described in �gure 2.9.

A.5.3 Optical sources

Name Reference I(A) T(� C) Output (mW)

Lithium

Pinguin EYP-RWE-0790-0400-0750-SOT3-0000 0.104 19.3 20
Eagle EYP-TPA-0765-01500-3006-CMT03-0000 0.87 22 120

Racoon EYP-TPA-0765-01500-3006-CMT03-0000 0.8 18.5 120
Mouse EYP-TPA-0765-01500-3006-CMT03-0000 0.8 16 40
Shiva Toptica DL pro 770nm 0.148/0.870 19.4/20 115

Potassium

Lynx EYP-RWE-0790-0400-0750-SOT3-0000 0.085 20 25
Guepard EYP-TPA-0765-01500-3006-CMT03-0000 2.4 23 260
Gazelle EYP-TPA-0765-01500-3006-CMT03-0000 2.5 19 380
Zebra EYP-TPA-0765-01500-3006-CMT03-0000 2.9 15.5 250

Unicorn Toptica DL pro 770nm 0.1 21.3 24
Chimpanze EYP-TPA-0765-01500-3006-CMT03-0000 2.3 21 180

High power lasers

Verdi Coherent Verdi V12 38 24 11 W
Mephisto Innolight Mephisto MOPA 25W 50 24 22 W

Optical lattice

Dog Axcel Photonics M9-808-0150 0.061 25 150 mW
Bear TA-EYP-TPA-0808-01000-4006-CMT04-0000 2.5 17 980 mW

Table A.6: Laser sources and tapered ampli�ers. Output powers of TAs are measured at the output of a
single mode optical �ber. Output powers for diodes are measured at the injection of the following TA.
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A.5.4 RF system

Type Ref Freq. (MHz) Power

VCO MC -ZX95-1300 400 - 1300 + 8 dBm
Agilent N5161A MXG ATE 0.1 - 3000 + 13 dBm

Rode-Schwarz SMB 100A 0.09 - 1100 + 18 dBm
SRS DS 345 10� 8 - 30 + 20 dBm

Switch MC ZAS-1 5 - 450 - 50 dB
Fast Switch MC ZASW-2-50DR+ 0 - 5000 - 90 dB

Ampli K MC ZHL-30W-252+ 0.7 - 2500 + 50 dB
Ampli Li MC LZY-1+ 20 - 512 + 40 dB

Ampli MC LZY-22+ 0.1 - 200 + 43 dB
Coupler MC ZSCJ-2-1+ 5 -500 -

Circulator K RADC-800-2000M-S23 800 - 2000 -
Circulator Li RADC-225-400M-N23 225-400 -

Table A.7: RF components described in �gure 2.10.

A.6 Electrical schemes

In this appendix, we present the electrical schemes of the security system and the optocoupler

box which isolates the command card from the IGBTs. Those drawings were conceived and

realized by the workshop of the institute.
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Figure A.7: Security system: connections to and from the box. The output is a 0-5V TTL signal provided
to the Remote Shut Down circuit of each power supply.



A.6 - Electrical schemes 195

Figure A.8: Security system: thermistances monitoring and main output. The value of 8 thermistors is
continuously compared to reference values set by potentiometers. If one of the monitored temperature
exceeds the threshold, the output signal of the security system is switched off to 0V.
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Figure A.9: Security system: humidity monitoring. This card is not currently used in our experiment.
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Figure A.10: Security system: �ow monitoring. The water �ows of 6 cooling systems are continuously
monitored. If any of them is below a threshold �xed by a potentiometer incorporated on the �uxmeters,
the output signal of the security system is switched off to 0V.
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Figure A.11: Optocouplers between computer and system (1/2).
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Figure A.12: Optocouplers between computer and system (2/2).
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