L. Systèmes, A. Sr, and P. , 94 II-5-1-Le système SrO-Fe 2 O 3 -P 2 O 5 95 II-5-2-Le système PbO-Fe 2 O 3 -P 2 O 5 97 II-5-3-Le système CaO-Fe 2 O 3 -P 2 O 5 118 III-1-Synthèse, croissance et résolution structurale des phases AFe 3 O(PO 4 ) 3 (A=Ca, Sr, Pb), 103 III-Croissance cristalline de la phase PbFe 3 O(PO 4 ) 3 par combinaison Bridgman/flux, analyse des cristaux obtenus, résolution sur monocristal et description structurale, p.118

E. Mössbauer and .. , 124 III-2-3-a, p.125

/. Bridgman, .. Bridgman, /. , and .. , 132 III-5-Analyse des cristaux obtenus par croissance par 134 III-5-1-Analyse MEB 135 III-5-3-L'orientation cristallographique, Caractérisation par diffraction des RX, affinement structural .......................... 138 III-5-5-Résolution structurale sur monocristal, p.142

.. Croissance-cristalline-et-facettage, 154 III-8-1-Discussion, p.156

.. Iii-9-conclusion, 167 IV-Propriétés magnétiques des phases AFe 3 O(PO 4 ) 3 (A=Ca, Sr, Pb) poudres et des monocristaux de la phase PbFe 3 O(PO 4 ) 173 IV-1-Rappel sur la théorie des transitions de phase du second ordre 173 IV-1-1-Analogie entre les transitions liquide gaz et paramagnétique ferromagnétique du second ordre 173 IV-2-Hamiltonien d'interactions entre moments magnétiques 175 IV-3-Résultats généraux sur les transitions magnétiques du second ordre, p.180

M. Exemple-de-phosphates, 182 IV-6-Les propriétés magnétiques des cristaux et des frittés de PbFe 3 O(PO 4 ) 185 IV-6-1-Conditions expérimentales 185 IV-6-1-a-Susceptibilité magnétique et cycles d'aimantation, ., p.185

D. Résultats, 185 IV-7-1-Résultats 186 IV-7-1-a-Susceptibilité magnétique, aimantation, aimantation à l'isotherme, .

.. Détermination-de-la-structure-sur-monocristal, 241 V-5-Description structurale et propriétés magnétiques 245 V-5-1-Description de la structure, p.251

M. Castaing, E. Et-cartographie-Élémentale, and W. , 282 VII-5-1-Méthode de correctionCartes de répartition et Carte spectrale, ., p.287

-. Oxy, 74 II-1-2-e-Phosphates mixtes, p.74

.. Croissance-cristalline-des-phosphates, II-4-1-Cristaux pour l

.. A=ca and P. Sr, résolution sur monocristal et description structurale 118 III-1-Synthèse, croissance et résolution structurale des phases AFe 3 O(PO 4 ) 3 118 III-1-1-Synthèse des poudres, Sommaire III-Croissance cristalline de la phase PbFe 3 O(PO 4 ) 3 par combinaison Bridgman/flux, analyse des cristaux obtenus, p.118

E. Mössbauer and .. , 124 III-2-3-a, p.125

/. Bridgman, .. Bridgman, /. , and .. , 132 III-5-Analyse des cristaux obtenus par croissance par 134 III-5-1-Analyse MEB 135 III-5-3-L'orientation cristallographique, Caractérisation par diffraction des RX, affinement structural .......................... 138 III-5-5-Résolution structurale sur monocristal, p.142

.. Croissance-cristalline-et-facettage, 154 III-8-1-Discussion, p.156

M. Exemple-de-phosphates, 182 IV-6-Les propriétés magnétiques des cristaux et des frittés de PbFe 3 O(PO 4 ) 185 IV-6-1-Conditions expérimentales 185 IV-6-1-a-Susceptibilité magnétique et cycles d'aimantation, ., p.185

D. Résultats, 185 IV-7-1-Résultats 186 IV-7-1-a-Susceptibilité magnétique, aimantation, aimantation à l'isotherme, .

V. Sommaire, 229 V-1-Introduction, Synthèse et caractérisation de la nouvelle phase Langbeinite Pb 3 Fe 4 (PO 4 )Des phosphates de la famille des, p.235

.. Détermination-de-la-structure-sur-monocristal, 241 V-5-Description structurale et propriétés magnétiques 245 V-5-1-Description de la structure, p.251

M. Castaing, E. Et-cartographie-Élémentale, and W. , 282 VII-5-1-Méthode de correctionCartes de répartition et Carte spectrale, ., p.287

.. De-spin, 294 VII-9-L'analyse de symétrie et de forme continues 300 VII-9-1-L'analyse de symétrie continue, 300 VII-9-2-L'analyse de forme continue, p.300

V. Emeis, Z. Naturforsch, M. J. Keck, and . Golay, En allemagne, Phys. Rev, vol.67, issue.89, p.1297, 1953.

. Mühlbauer, Innovative induction melting technologies: A historical review, Int. Scientific Colloq. Modell

E. De-la-rue and F. A. Halden, Arc???Image Furnace for Growth of Single Crystals, Review of Scientific Instruments, vol.31, issue.1, pp.35-38, 1960.
DOI : 10.1063/1.1716787

P. Poplawsky, J. E. Thomas-jr, and . Poplawsky, Floating Zone Crystals Using an Arc Image Furnace, Review of Scientific Instruments, vol.31, issue.12, pp.1303-1308, 1960.
DOI : 10.1063/1.1716879

L. Abernethy, T. H. Ramsey-jr, and J. W. Ross, Growth of Yttrium Iron Garnet Single Crystals by the Floating Zone Technique, Journal of Applied Physics, vol.32, issue.3, p.376, 1961.
DOI : 10.1063/1.2000478

Z. Cette-méthode-fut-baptisée-la-méthode, qui sont, en effet, des fonctions de la composition de l'échantillon. Dans cette méthode d'analyse la proportion d'oxygène présente dans nos échantillons n'est pas accessible directement mais calculée par différence à 100% (même si c'est risqué) en considérant (ce qui est à priori vrai) que nos échantillons sont stoechiométriques. C'est pourquoi à chaque fois qu'on analyse un échantillon on mesure tous les éléments y compris l'oxygène, de façon à pouvoir contrôler que la somme des titres « corrigés » est voisine de 100%. Le fait que l'analyse boucle très près de 100% ne signifie pas forcément que le résultat de la mesure est juste, puisqu'il peut y avoir des compensations d'erreurs entre les différents éléments, cependant, une analyse qui ne boucle pas est surement fausse, est le critère qui nous a indiqué les mauvaises statistiques dans les cartes WDS des échantillons poudres pour les éliminer lors de l'extraction des compositions chimiques correspondantes

J. Renard, dans : Transition de phase dans les verres de spin : les expériences sont-elles concluantes ?, Société Française de Physique, Grenoble, septembre 1983, p.315, 1984.

O. Guillot-noel, B. Bellamy, B. Viana, and D. Gourier, matrices, Physical Review B, vol.60, issue.3, pp.1668-1677, 1990.
DOI : 10.1103/PhysRevB.60.1668

B. Piriou, D. Fahmi, J. Dexpert-ghys, A. Taitai, and J. L. Lacout, Unusual fluorescent properties of Eu3+ in oxyapatites, Journal of Luminescence, vol.39, issue.2, pp.97-103, 1987.
DOI : 10.1016/0022-2313(87)90036-6

B. Borkowski, E. Grzesiak, F. Kaxzmarek, Z. Kaluski, J. Karolczak et al., Chemical synthesis and crystal growth of laser quality praseodymium pentaphosphate, Journal of Crystal Growth, vol.44, issue.3, pp.320-324, 1978.
DOI : 10.1016/0022-0248(78)90032-5

M. Szymanski, J. Karolczak, and F. Kaczmarek, Laser properties of praseodymium pentaphosphate single crystals, Applied Physics, vol.41, issue.3, pp.345-351, 1979.
DOI : 10.1007/BF00900479

M. Szymanski, Simultaneous operation at two different wavelengths of an PrLaP5O14 laser, Applied Physics, vol.14, issue.1, pp.13-20, 1981.
DOI : 10.1007/BF00900390

R. D. Plättner, W. W. Krühler, W. K. Zwicker, T. Kovats, and S. R. Chinn, The growth of large, laser quality NdxRE1-xP5O14 crystals, Journal of Crystal Growth, vol.49, issue.2, pp.274-290, 1980.
DOI : 10.1016/0022-0248(80)90162-1

S. R. Chinn and H. Y. Hong, Fluorescence and lasing properties of NdNa5(WO4)4, K3Nd(PO4)2 and Na3Nd(PO4)2, Optics Communications, vol.18, issue.1, pp.87-88, 1976.
DOI : 10.1016/0030-4018(76)90562-9

K. Otsuka, J. Nakano, and T. Yamada, =Gd, La), Journal of Applied Physics, vol.46, issue.12, pp.5297-5299, 1975.
DOI : 10.1063/1.321562

B. Boulanger and J. Zyss, International tables for Crystallography

C. Zaldo, M. Rico, F. Diaz, and J. J. , Progress in crystal growth and characterisation of rare-earth doped non-linear KTP crystals for laser applications, Optical Materials, vol.13, issue.1, pp.175-180, 1999.
DOI : 10.1016/S0925-3467(99)00027-0

K. Itoh and M. Madou, ???doped glass composite optical waveguide systems having tapered velocity couplers, Journal of Applied Physics, vol.69, issue.11, pp.7425-7429, 1991.
DOI : 10.1063/1.347556

R. H. Petit, J. Ferré, and J. Duran, , in a magnetic field, Physical Review B, vol.23, issue.3, pp.1216-1224, 1981.
DOI : 10.1103/PhysRevB.23.1216

L. Adam, A. Pautrat, O. Perez, and P. Boullay, Contrasted role of disorder for magnetic properties in an original mixed-valency iron phosphate, Physical Review B, vol.82, issue.5, p.54401, 2010.
DOI : 10.1103/PhysRevB.82.054401

M. Schlenker and Y. Souche, Magnétisme, I-Fondements, sous la direction d'Etienne du Trémolet de Lacheisserie, Chapitre 13. s.l, Presses universitaires de Grenoble, 1999.

M. T. Averbuch-pouchot, Topics in phosphate Chemistry. London-Singapore : s.n, 1996.

J. P. Attfield, A. W. Sleight, and A. K. Cheetham, Structure determination of ??-CrPO4 from powder synchrotron X-ray data, Nature, vol.15, issue.6080, p.620, 1986.
DOI : 10.1038/322620a0

H. A. Hoeppe, Synthesis, Crystal Structure, and Vibrational Spectra of Ca4P6O19 (Tr??melite) - acatena-Hexaphosphate, Zeitschrift f??r anorganische und allgemeine Chemie, vol.28, issue.6-7, pp.1272-1276, 2005.
DOI : 10.1002/zaac.200400411

I. Shindo, Determination of the phase diagram by the slow cooling float zone method: The system MgO-TiO2, Journal of Crystal Growth, vol.50, issue.4, pp.839-851, 1980.
DOI : 10.1016/0022-0248(80)90146-3

M. S. Joshi, K. Baby, and . Paul, Effect of supersaturation and fluid shear on the habit and homogeneity of potassium dihydrogen phosphate crystals, Journal of Crystal Growth, vol.22, issue.4, pp.321-327, 1974.
DOI : 10.1016/0022-0248(74)90177-8

W. J. Van-enckevort, R. Janssen-van-rosmalen, H. Klapper, and W. H. Van-der-linden, Growth phenomena of KDP crystals in relation to the internal structure, Journal of Crystal Growth, vol.60, issue.1, pp.67-78, 1982.
DOI : 10.1016/0022-0248(82)90173-7

X. Ren, D. Xu, and D. Xue, Crystal growth of KDP, ADP, and KADP, Journal of Crystal Growth, vol.310, issue.7-9, pp.2005-2009, 2008.
DOI : 10.1016/j.jcrysgro.2007.11.008

O. Jung-kwon and J. Kim, system, Physical Review B, vol.48, issue.9, pp.6639-6642, 1993.
DOI : 10.1103/PhysRevB.48.6639

URL : https://hal.archives-ouvertes.fr/in2p3-00443989

N. Balamurugan and P. , Investigation of the Growth Rate Formula and Bulk Laser Damage Threshold KDP Crystal Growth from Aqueous Solution by the Sankaranarayanan-Ramasamy (SR) Method, Crystal Growth & Design, vol.6, issue.7, pp.1642-1644, 2006.
DOI : 10.1021/cg050680n

G. Li, G. Su, X. Zhuang, Z. Li, and Y. He, Rapid growth of KDP crystal with new additive, Journal of Crystal Growth, vol.269, issue.2-4, pp.443-447, 2004.
DOI : 10.1016/j.jcrysgro.2004.05.074

N. Angert, L. Kaplun, M. Tseitlin, E. Yashchin, and M. Roth, Growth and domain structure of potassium titanyl phosphate crystals pulled from high-temperature solutions, Journal of Crystal Growth, vol.137, issue.1-2, pp.116-122, 1994.
DOI : 10.1016/0022-0248(94)91257-2

M. Roth and M. Tseitlin, Growth of large size high optical quality KTP-type crystals, Journal of Crystal Growth, vol.312, issue.8, pp.1059-1064, 2010.
DOI : 10.1016/j.jcrysgro.2009.10.019

R. Solé, X. Ruiz, R. Cabré, . Jna, M. Gavaldà et al., KTiOPO 4 single crystals grown from neodymium modified fluxes, Journal of Crystal Growth, vol.167, issue.3-4, pp.681-685, 1996.
DOI : 10.1016/0022-0248(96)00280-1

C. Zhang, Z. Hu, L. Huang, W. Zhou, G. Zhi-lü et al., Growth and optical properties of bulk KTP crystals by hydrothermal method, Journal of Crystal Growth, vol.310, issue.7-9, pp.2010-2014, 2008.
DOI : 10.1016/j.jcrysgro.2007.12.007

A. A. Ballman, H. Brown, and D. H. Olson, Growth of Potassium Titanyl Phosphate (KTP) from molten tungstate melts, Journal of Crystal Growth, vol.75, issue.2, pp.390-394, 1986.
DOI : 10.1016/0022-0248(86)90052-7

F. C. Zumesteig, J. D. Bierlein, and T. E. Gier, : A new nonlinear optical material, Journal of Applied Physics, vol.47, issue.11, p.4980, 1976.
DOI : 10.1063/1.322459

T. Sun, X. Zhou, X. Wang, G. Shen, Y. Kong et al., Crystal growth and characterization of non-centrosysmmetric polyphosphates, type III KNd(PO3)4 and KGd(PO3)4, Journal of Crystal Growth, vol.312, issue.9, pp.1627-1631, 2010.
DOI : 10.1016/j.jcrysgro.2010.01.036

N. Wizent, G. Behr, F. Lipps, I. Hellmann, R. Klingeler et al., Single-crystal growth of LiMnPO4 by the floating-zone method, Journal of Crystal Growth, vol.311, issue.5, pp.1273-1277, 2009.
DOI : 10.1016/j.jcrysgro.2009.01.090

D. P. Chen, A. Maljuk, and C. T. Lin, Floating zone growth of lithium iron (II) phosphate single crystals, Journal of Crystal Growth, vol.284, issue.1-2, pp.86-90, 2005.
DOI : 10.1016/j.jcrysgro.2005.06.024

G. Xu, . Jingli, H. Jiyangwang, Y. Zhao, and . Yu, Optical properties of Ga3PO7 single crystals, Journal of Crystal Growth, vol.311, issue.11, pp.3163-3166, 2009.
DOI : 10.1016/j.jcrysgro.2008.10.024

M. Beaurain, P. Armand, and P. Papet, Synthesis and characterization of ??-GaPO4 single crystals grown by the flux method, Journal of Crystal Growth, vol.294, issue.2, pp.396-400, 2006.
DOI : 10.1016/j.jcrysgro.2006.05.074

URL : https://hal.archives-ouvertes.fr/hal-00182375

R. U. Barz and S. V. Ghemen, Water-free gallium phosphate single-crystal growth from the flux, Journal of Crystal Growth, vol.275, issue.1-2, pp.921-926, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.079

S. Hirano, K. Miwa, and S. Naka, Hydrothermal synthesis of gallium orthophosphate crystals, Journal of Crystal Growth, vol.79, issue.1-3, pp.215-218, 1986.
DOI : 10.1016/0022-0248(86)90439-2

D. V. Balitsky, E. Philippot, . Ph, V. S. Papet, F. Balitsky et al., Comparative crystal growth of GaPO4 crystals in the retrograde and direct solubility range by hydrothermal methods of temperature gradient, Journal of Crystal Growth, vol.275, issue.1-2, pp.887-894, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.028

M. K. Yoshimura, S. Fujii, and . Somiya, Phase equilibria in the system Nd2O3???P2O5???H2O and growth of NdP5O14 single crystals under hydrothermal conditions, Journal of Crystal Growth, vol.71, issue.2, pp.333-339, 1985.
DOI : 10.1016/0022-0248(85)90088-0

F. Khlissa, M. Férid, M. C. Pujol, X. Mateos, J. J. Carvajal et al., Crystal growth, characterization and spectroscopic study of europium-doped NaY(PO3)4, Journal of Crystal Growth, vol.311, issue.18, pp.4360-4364, 2009.
DOI : 10.1016/j.jcrysgro.2009.05.030

G. S. Gopalakrishna, M. J. Mahesh, K. G. Ashamanjari, and J. Shashidharaprasad, Hydrothermal synthesis, morphological evolution and characterization of Na2CoP2O7 crystals, Journal of Crystal Growth, vol.281, issue.2-4, pp.604-610, 2005.
DOI : 10.1016/j.jcrysgro.2005.04.086

B. M. Wanklyn, F. R. Wondre, W. Davison, and R. Salmon, The flux growth of some transition metal phosphates, Journal of Materials Science Letters, vol.2, issue.9, pp.511-515, 1983.
DOI : 10.1007/BF00721469

A. P. Malakho, V. A. Morozov, K. V. Pokholok, B. I. Lazoryak, and G. Van-tendeloo, Layered ordering of vacancies of lead iron phosphate Pb3Fe2(PO4)4, Solid State Sciences, vol.7, issue.4, pp.397-404, 2005.
DOI : 10.1016/j.solidstatesciences.2005.01.007

O. Sqalli, A. Oulmekki, M. Ijjaali, T. , B. Malaman et al., Synthesis, crystal structure and magnetic properties of Fe2Pb3???xBax(PO4)4 (0???x<3), Materials Letters, vol.59, issue.11, pp.1329-1333, 2005.
DOI : 10.1016/j.matlet.2005.01.005

B. I. Lazoryak, V. A. Morozov, A. A. Belik, S. S. Khasanov, V. Sh et al., Crystal Structures and Characterization of Ca9Fe(PO4)7and Ca9FeH0.9(PO4)7, Journal of Solid State Chemistry, vol.122, issue.1, pp.15-21, 1996.
DOI : 10.1006/jssc.1996.0074

J. Goodenough, Magnetism and the Chemical Bond, 1963.

A. Duisenberg, L. Kroon-batenburg, and A. Schreurs, -14, Journal of Applied Crystallography, vol.36, issue.2, pp.220-229, 2003.
DOI : 10.1107/S0021889802022628

G. M. Sheldrick, Sadabs program for scaling and correction of area detector data

H. Stanley, Introduction to phase transitions and critical phenomena, 1971.

G. Toulouse and P. Pfeuty, Introduction au groupe de renormalisation et à ses applications: phénomènes critiques des transitions de phase et autres, 1975.

J. Renard, M. Delhaes, and . Drillon, Magnetic phase transitions in lowdimensional systems, Organic and inorganic low-dimensional crystalline materials. s.l, 1987.

L. J. De-jongh, Magnetic properties of layered transition metal compounds, Physics and chemistry of materials with low-dimensional structures. s.l, 1990.

W. Jiang, X. Z. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, , and 0.29), Physical Review B, vol.78, issue.14, p.144409, 2008.
DOI : 10.1103/PhysRevB.78.144409

A. Modaressi, A. Courtois, R. Gerardin, B. Malaman, and C. Gleitzer, Fe3PO7, Un cas de coordinence 5 du fer trivalent, etude structurale et magnetique, Journal of Solid State Chemistry, vol.47, issue.3, pp.245-255, 1983.
DOI : 10.1016/0022-4596(83)90016-6

A. Daidouh, J. L. Martinez, C. Pico, and M. L. Veiga, Structure Characterization and Magnetic Behavior of NaNi4(PO4)3and KMn4(PO4)3, Journal of Solid State Chemistry, vol.144, issue.1, pp.169-174, 1999.
DOI : 10.1006/jssc.1999.8141

W. Gunsser, D. Fruehauf, K. Rohwer, and A. Zimmermann, Synthesis and magnetic properties of transition metal cyclotetraphosphates M2P4O12 (M = Mn, Co, Ni, Cu), Journal of Solid State Chemistry, vol.82, issue.1, pp.43-51, 1989.
DOI : 10.1016/0022-4596(89)90220-X

M. Drillon, E. Coronado, R. Georges, J. C. Gianguzzo, and J. Curely, to (5/2): Thermal and magnetic properties, Physical Review B, vol.40, issue.16, p.10992, 1989.
DOI : 10.1103/PhysRevB.40.10992

J. Seiden, Propri??t??s statiques d'une cha??ne isotrope altern??e de spins quantiques 1/2 et de spins classiques, Journal de Physique Lettres, vol.44, issue.23, pp.947-952, 1983.
DOI : 10.1051/jphyslet:019830044023094700

J. Xu-qiang, J. Darriet, R. Soubeyroux, and . Georges, New 1-d ferrimagnetic chains in Ba2CaMnFe2F14, Journal of Magnetism and Magnetic Materials, vol.74, issue.2, pp.219-224, 1988.
DOI : 10.1016/0304-8853(88)90071-6

O. Kahn, Y. Pei, M. Verdaguer, J. Renard, and J. Sletten, Magnetic ordering of manganese(II) copper(II) bimetallic chains; design of a molecular based ferromagnet, Journal of the American Chemical Society, vol.110, issue.3, pp.782-789, 1988.
DOI : 10.1021/ja00211a017

A. Caneschi, D. Gatteschi, J. Renard, P. Rey, and R. Sessoli, Magnetic phase transition and low-temperature EPR spectra of a one-dimensional ferrimagnet formed by manganese(II) and a nitronyl nitroxide, Inorganic Chemistry, vol.28, issue.10, pp.1976-1980, 1989.
DOI : 10.1021/ic00309a041

P. J. Van-koningsbruggen, O. Kahn, K. Nakatani, Y. Pei, J. Renard et al., Magnetism of A-copper(II) bimetallic chain compounds (A = iron, cobalt, nickel): one- and three-dimensional behaviors, Inorganic Chemistry, vol.29, issue.18, pp.3325-3331, 1990.
DOI : 10.1021/ic00343a014

G. C. Defotis, R. S. Wiese, and C. W. Scherrer, O: A quasi???one???dimensional Heisenberg antiferromagnet, Journal of Applied Physics, vol.67, issue.9, pp.5857-5859, 1990.
DOI : 10.1063/1.345989

M. Whangbo, H. Koo, and D. Dai, Spin exchange interactions and magnetic structures of extended magnetic solids with localized spins: theoretical descriptions on formal, quantitative and qualitative levels, Journal of Solid State Chemistry, vol.176, issue.2, pp.417-481, 2003.
DOI : 10.1016/S0022-4596(03)00273-1

F. Ladieu, F. Bert, V. Dupuis, E. Vincent, and J. Hammann, The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems, Journal of Physics: Condensed Matter, vol.16, issue.11, pp.735-741, 2004.
DOI : 10.1088/0953-8984/16/11/023

J. Villain, Insulating spin glasses, Zeitschrift f???r Physik B Condensed Matter and Quanta, vol.120, issue.350, pp.31-42, 1979.
DOI : 10.1007/BF01325811

A. Walsh and G. W. Watson, The origin of the stereochemically active Pb(II) lone pair: DFT calculations on PbO and PbS, Journal of Solid State Chemistry, vol.178, issue.5, pp.1422-1428, 2005.
DOI : 10.1016/j.jssc.2005.01.030

M. Giot, A. Pautrat, G. Etré, D. Saurel, M. Hervieu et al., : Macroscopic ac measurements and neutron scattering, Physical Review B, vol.77, issue.13, p.134445, 2008.
DOI : 10.1103/PhysRevB.77.134445

S. Sugano, Y. Tanabe, and H. Kamimura, Appendix 4. Multiplets of transition-metal ions in crystals, pp.294-301, 1970.

S. Alvarez, D. Avnir, M. Llunell, and M. Pinsky, Continuous symmetry maps and shape classification. The case of six-coordinated metal compoundsElectronic supplementary information (ESI) available: tables of CSD refcodes, structural parameters and symmetry measures for the studied compounds. See http://www.rsc.org/suppdata/nj/b2/b202096n/, New Journal of Chemistry, vol.26, issue.8, pp.996-1009, 2002.
DOI : 10.1039/b200641n

P. Pikl, D. De-waal, A. Aatiq, and A. Jazouli, Vibrational spectra and factor group analysis of Mn(0.5+x)Ti(2???2x)Cr2x(PO4)3 {0???x???0.50}, Vibrational Spectroscopy, vol.16, issue.2, pp.137-143, 1998.
DOI : 10.1016/S0924-2031(98)00007-1

P. D. Battle, A. K. Cheetham, W. T. Harrison, and G. J. Long, The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3, Journal of Solid State Chemistry, vol.62, issue.1, pp.16-25, 1986.
DOI : 10.1016/0022-4596(86)90211-2

P. D. Battle, T. C. Gibb, S. Nixon, and W. T. Harrison, The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3, Journal of Solid State Chemistry, vol.75, issue.1, pp.21-29, 1988.
DOI : 10.1016/0022-4596(88)90299-X

A. Leclaire, A. Benmoussa, M. M. Borel, A. Grandin, and B. Raveau, K2???xTi2(PO4)3 with 0 ??? x ??? 0.5: A mixed-valence nonstoichiometric titanophosphate with the langbeinite structure, Journal of Solid State Chemistry, vol.78, issue.2, pp.227-231, 1989.
DOI : 10.1016/0022-4596(89)90101-1

K. K. Rangan and J. Gopalakrishnan, New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal, Journal of Solid State Chemistry, vol.109, issue.1, pp.116-121, 1994.
DOI : 10.1006/jssc.1994.1080

J. Isasi and A. Daidouh, Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure, Solid State Ionics, vol.133, issue.3-4, pp.303-313, 2000.
DOI : 10.1016/S0167-2738(00)00677-9

H. Wulff, U. Guth, and B. Loescher, The Crystal Structure of K2REZr(PO4)3(RE = Y, Gd) Isotypic with Langbeinite, Powder Diffraction, vol.26, issue.02, p.103, 1992.
DOI : 10.1016/0022-5088(88)90131-2

S. T. Norberg, = Er, Yb or Y), and an alternative description of the langbeinite framework, Acta Crystallographica Section B Structural Science, vol.58, issue.5, pp.743-749, 2002.
DOI : 10.1107/S0108768102013782/os0095KCrTPsup5.hkl

I. V. Ogorodnyk, I. V. Zatovsky, N. S. Slobodyanik, V. N. Baumer, and O. V. Shishkin, Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure, Journal of Solid State Chemistry, vol.179, issue.11, pp.3461-3466, 2006.
DOI : 10.1016/j.jssc.2006.07.015

G. M. Sheldrick, Sadabs program for scaling et correction of area detector data

V. Petricek, M. Dusek, and L. Palatinus, The crystallographic computing system, 2006.

H. Zabrodsky, S. Peleg, and D. Avnir, Continuous symmetry measures, Journal of the American Chemical Society, vol.114, issue.20, pp.7843-7851, 1992.
DOI : 10.1021/ja00046a033