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Introduction 
 

The last decades have shown the improvements on computing and imaging, leading to 

significant advances in medical research. They are used as a supplementary tool in the 

identification of malignancies, in view of providing the most adequate treatments for the 

patients. These tools are particularly relevant in the identification of malignancies which 

are developed without symptoms or poorly identified, opening an important area of new 

contributions. 

 

The worldwide estimation of gastric cancer in 2012 was 951 594 cases (6.8 % of all cancers) 

and a mortality of 723 027 (8.8 % of total death tolls due to cancer) which makes it one of 

the top 5 deadly cancers [1]. The risk to develop this malignancy depends on different 

factors, for instance infection with H. pylori and environmental conditions including 

hygienic, alimentation, smoking, high salty diet and genetic predisposition [2] [3]. 

 

The development of cancer follows a cascade of well-defined stages which most of the 

time are asymptomatic. Under these circumstances, the accurate diagnosis of these early 

stages is highly valuable since it allows low aggressive treatments. Unfortunately, most of 

the time, there are no macroscopic differences between healthy and malignant tissue. 

Therefore, in order to provide a diagnosis, practitioners require evaluating the symptoms 

and the risk factors of the patient. Then, according to this information, they can decide if 

further studies are required.  

 

Nowadays, the diagnosis of gastric pathologies is divided in two procedures. The first one is 

gastroendoscopy which is the visual exploration of the stomach under white light. The 

second one is the collection of biopsies for histological analysis. This procedure has a high 

probability of establishing the correct diagnosis but the collection of biopsies requires a 

significant amount of time, demands extra resources from the gastroenterology and 

histopathology departments [4] and it strongly depends on the accurate collection of 

samples from damaged tissues. Therefore, it is clear that additional sources of information 

are required in order to help on targeting the biopsies.  

 

The identification of precancerous lesions during gastroendoscopy is a challenge for 

practitioners and also for computer-assisted diagnosis systems (CAD) because the lesions 

are multifocalized and present low macroscopic differences with respect to healthy tissue 

[5][6]. Every disease requires its own unique procedure, in order to identify it. The time 

available for gastroendoscopy is limited, taking into consideration that it includes 



 Page 20 
 

preparation of the patient, navigation in the stomach, collection of biopsies and if 

necessary, start a medical treatment. As a result, the exploration time could be reduced to 

5 minutes. In this small amount of time, it has been shown that lesions could be lost, and 

there is always the risk for a complication. Under these circumstances, it is clear that 

immediate feedback about the status of the mucosa could help on providing a faster 

diagnosis, allowing more time for treatment instead of tissue exploration. 

 

There are multiple strategies proposed in order to improve the diagnosis. They include 

label by dyes such as chromoendoscopy, chemicals for fluorescence and markers for new 

techniques in molecular imaging. Besides these approaches, we can consider those where 

no substance is used, for instance techniques based on vibration signatures of tissue in the 

case of Raman and light tissue interaction such as autofluorescence, light scattering, 

spectroscopy and multispectral imaging. The principle that the interaction between the 

light and the tissue is related to the physical properties of the tissue is a well-known fact 

[7]. In particular, changes in the gastric tissue during the development of malignancies 

include chemical structure and architectural modifications, so that histopathological tissues 

may reflect light with different spectrum from those with normal mucosa. This property 

allows us to access absorption, scattering coefficients and blood content, which encode 

information that could help in the diagnosis of precancerous lesions. In this sense, we use 

multispectral imaging to analyze spectral and spatially the surface of the mucosa. 

 

Our vision is that the techniques of light tissue interaction will provide a practical and 

accurate tool to be used in a daily basis during medical procedures, oriented to “see and 

treat concept”. In a first stage, it could provide relative information to improve the 

detection of gastric lesions at an early stage. Then, it can also be extended to evaluate the 

performance of medical treatments and the response of tissues to new medicines. 

Additionally, the development of more accurate models of light tissue interaction, similar 

to those that have been developed for skin, will provide more details of the characteristics 

and elements of the tissue, which could be used as features to improve the diagnosis and 

also to reduce the interobservability presented in gastroendoscopic and histological 

images.  These efforts could lead to an increment of survival rate from the patients and 

most important, their quality life.  

 

This project focuses on the study of gastric mucosa by multispectral imaging to improve the 

diagnosis of malignancies in the stomach. Thanks to the new advances in technology we 

can capture multispectral images from gastric tissue during gastroendoscopy. The main 

contribution is the clinical study of multispectral imaging to differentiate pathologies 

poorly diagnosed or that can only be diagnosed by histological analysis. For this purpose, 

we performed ex vivo studies in a mice model under controlled conditions and we present 

two prototypes developed to acquire multispectral images from gastric tissue. Additionally, 

we present a first group of algorithms to estimate and differentiate between normal and 

pathological tissues based on statistics and machine learning techniques. 
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The content of this thesis is organized in the following way: 

 

Chapter 1 gives a review of the development of gastric cancer, focusing on the different 

stages. It is also presented a review of the techniques and technology used for diagnosis. A 

discussion about the advantages and limitations of these technologies is included. The 

chapter concludes with an evaluation of these technologies and their applications in clinical 

studies. 

 

Chapter 2 is dedicated to the principles of spectroscopy and multispectral imaging, 

including the light tissue interaction, the measurement of the light spectrum, the statistical 

analysis, the extraction of features and an overview of the data mining techniques used to 

differentiate malignant tissues. 

 

Chapter 3 describes the development of precancerous lesions under controlled conditions; 

we explain the mice model and discuss the results obtained from the analysis of ex vivo 

tissues. 

 

Chapter 4 is oriented to a clinical study of the gastritis. We describe a multispectral 

acquisition system based on a filter wheel to collect the spectra and we discuss the results 

from the statistical analysis. 

 

Chapter 5 explains the performed clinical studies in order to evaluate the differentiation of 

malignancies. We describe the data acquired with the prototype based on a filter wheel 

and a second prototype developed based on the learned lesions from the previous one. We 

describe the machine learning techniques used to differentiate the malignancies. We 

discuss the results obtained and finally, we conclude. 

 

Finally, a conclusion summarizes the work and presents the future directions. 
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Chapter 1 

 

Review on gastritis, precancerous lesions 

and their diagnosis 
 

The subject of this chapter is the gastritis due to infection by H. pylori, its evolution into 

precancerous lesions and different approaches for its diagnosis. We introduce the anatomy 

of the stomach and how the gastritis, as well as the others precancerous lesions develop. 

Their diagnosis is difficult since one has to detect subtle variations in the mucosa. In order 

to diagnose these stages, a number of different techniques are currently used in medicine. 

These technologies will be discussed in this chapter and we will focus on their clinical 

importance.  

 

1.1. Anatomy of the stomach 
 

The stomach can be divided in 3 regions based on the histological differences present in 

the mucosa. In figure 1 are presented these regions: fundus, body and antrum. It has been 

reported that some areas of the stomach are more susceptible to develop pathologies. 35% 

are present in the fundus, 25% in the body and finally the antrum with 40% [8]. This 

difference in the areas of development could be the result of the permanence of gastric 

juice in the stomach. 

 

 
 

Figure 1. Parts of the stomach. 
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Considering that the area of tissue from the antrum is small and has high probability of 

develop malignancies, we will focus this study on this area.  

 

The epithelium of the mucosa in a normal state includes glandules and other specialized 

structures for the digestion such as parietal cells (producer of acid HCI), endocrine cells 

(regulator of parietal cells) and chief cells (producer of pepsinogens, which in conjunction 

with the HCI convert proteins into amino acids). These structures are altered during the 

evolution of the gastritis, as it will be described in the following subsections.  

 

1.2. Evolution of gastritis 
 

During the development of pathologies, the structures in the epithelium could change their 

organization or even be replaced by others. Multiple studies have shown the cascade of 

well-defined stages [9]. In the following subsections are described the modifications 

observed in the epithelium during the progression of the disease. 

 

1.2.1. Chronic active gastritis, infection by Helicobacter pylori 
 

Gastritis is defined as the inflammation of the gastric mucosa. The diagnosis is performed 

by histological analysis of biopsies collected during gastroendoscopy. This inflammation 

displays a diffuse distribution in the stomach that is mainly characterized from the 

histopathological point of view as an accumulation of infiltrating leukocytes, such as 

polymorphonuclear neutrophils, mononuclear cells and also by the presence of follicular 

lymphocytes [10][11]. At this stage, the risk of cancer is low. 

 

This inflammation is typically the result of a chronic infection by Helicobacter pylori, which 

could last for life if it is not treated. This responsible bacterium sizes between 2 and 4 µm 

by 0.5 to 1 µm. It has 2 to 6 unipolar flagella for motion and is adapted to the harsh 

environment of the stomach. It creates an alkaline microenvironment by converting urea 

into ammonia and carbamate [12][6].  

 

This bacterium colonizes preferentially the area of the antrum. In order to diagnose the 

infection there are 2 main approaches: invasive and non-invasive methods. The invasive 

methods include biopsy for histology analysis, culture and serology. The non-invasive 

methods are blood, urine, saliva and breathe tests. It is important to highlight that during 

gastroendoscopy the infection cannot be diagnosed with traditional approaches [13], since 

there are no significant macroscopic changes. 

 

The biological mechanisms of defense of the body to this bacterium are still a mystery. 

However, as this bacterium remains on the surface, the defense of the body results in 



 Page 25 
 

epithelial cell damage through malignant tissue due to a combination of inflammatory and 

anti-inflammatory responses [14].   

 

Though this bacterium is considered as a carcinogen by the World Health Organization 

since 1994 [15], its true risk factor is still in discussion, since only some patients develop 

advanced stages of the diseases and gastrointestinal complications.  

 

1.2.2. Atrophy 
 

The atrophy is considered as a precancerous lesion [16][17]. Even though its origin is from 

active gastritis, it shows multifocalized diffusion in the stomach. The diagnosis is performed 

by histological analysis of biopsies collected from gastroendoscopy because the changes 

are currently observed microscopically. This pathology is discovered when the native 

glands from the gastric mucosa shrink or disappear. These glands are typically parietal cells 

oriented to produce acid (HCI) whose disappearance produces hypoacidity [12] [60]. The 

remaining space from the glands is taken by fibrous tissue and infiltrates of leukocytes, 

allowing the submucosal vessels of the gastric mucosa sometimes to be more visible but 

this feature is reported to have a low sensitivity [18]. 

 

1.2.3. Intestinal metaplasia 
 

Intestinal metaplasia is a well-known precancerous condition, which is characterized by the 

replacement of the gastric glands by intestinal type glands [9][17]. Similar to the previous 

stages, the diagnosis is performed by histological analysis of biopsies collected during 

gastroendoscopy. This stage has a significant risk of developing cancer.   

 

The development of this pathology shows at first stage enterocytes (intestinal absorptive 

cells), goblet cells (producer of mucin) and Paneth cells (protection of steam cells to 

renovate the epithelium), which are typically observed in the intestine. This stage is 

defined as complete type. On the other hand, the incomplete type is diagnosed when all 

the cells contain mucin [19] [20]. The complete type could evolve into an incomplete type 

and potentially into a more dangerous stage. These modifications show changes in the 

relief of the surface of the mucosa. 

 

Histologically, it is discovered by staining with hematoxylin and eosin (H&E): the first one is 

for cell nuclei, the second one for cytoplasm [21][5]. 

 

1.2.4. Dysplasia 
 

Dysplastic lesions have more often their origin in tissue with intestinal metaplasia. At this 

stage the gastric mucosa presents muddle mucosal architecture and loss of native glands. 
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One observes mitotic activity in the gastric cells, as well as major changes in their shape 

and organization due to loss of nuclear polarity, cell enlargement and nucleus over 

pigmentation [9][22][23]. This is considered as the last stage before the evolution into a 

cancerous lesion [24][25]. 

 

It can be diagnosed as low grade or high grade dysplasia, depending on morphological 

changes such as epithelial atypia and architecture of the mucosa [26]. At this stage there is 

a controversy between western and Japanese diagnosis since high grade dysplasia is 

diagnosed as cancerous by Japanese physicians. Since there are strong relationships 

between a dysplastic lesion and cancerous lesion, the main difference is related to the 

histological evidence of infiltrations in the stroma. 

 

1.2.5. Cancer Lesion  
 

This is the last stage of the evolution, where the disease invades deeper tissue layers and 

there is high risk that the cancerous cells could be spread in the body. The morphological 

changes include an increase in the thickness of the mucosal layer, reduction of collagen 

and the development of a dense irregular vessel network [27][24]. At this stage, the 5 year 

survival rate is low, the patients most of the time follow strong treatments with 

chemotherapy, removal of the stomach surgically and palate treatments [28]. 

 

The affected population shows a median age for diagnosis of early gastric carcinomas at 63 

years old, showing that men are more affected than women with a ratio of 1.4 – 2.4:1 [3]. 

 

It is known that the best prognosis is achieved for patients whose precancerous lesions are 

identified at an early stage, as mentioned in table 1. Under these circumstances, the main 

advantage for the patient is the high reversibility of the disease, the survival rate, low cost 

and low impact of the treatments, which finally leads to a fast recovery and returns to his 

normal daily life.  

 

Table 1. Evolution of the gastritis associated with H. pylori into precancerous lesions and 

their reversibility. 

Stage Reversibility 

Normal mucosa -- 

Chronic active gastritis 100% 

Atrophy 50 % 

Intestinal metaplasia 20 % 

Dysplasia 8 % 

Cancer 1 % 
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The diagnosis at an early stage is a well-known challenging task because most of the stages 

of the disease fail to develop symptoms, making them a silent disease which is typically 

discovered at advanced stage.  

 

In order to understand this pathology, malignancies in the stomach have been a research 

subject for a long time, mainly oriented to identify the biological mechanism involved. 

Different approaches have been proposed and are currently used in a daily basis for 

diagnosis, which will be discussed in the following subsection. 

 

1.3. Gastroendoscopy and biopsy collection techniques for 

diagnosis. 
 

In the previous paragraphs were described the modifications in the tissue, which are 

presented at microscopical level. As the diagnosis depends on the correct collection of 

biopsies, multiple techniques have been proposed in order to predict the histology during 

gastroendoscopy.  

 

Gastroendoscopy and biopsy collection is currently the gold standard medical procedure to 

diagnose pathologies in the stomach. It follows two stages: visual exploration of the 

stomach (gastroendoscopy, typically under white light) and collection of biopsies. The area 

of the stomach to sample strongly depends on the endoscopist. Studies have shown that 

gastritis is inconstantly diagnosed. In fact, 50% of patients with intestinal metaplasia are 

being missed in current routine gastroenterology practice [29][30]. The reason why 

gastritis cannot be identified during gastroendoscopy is because the gastric mucosa shows 

poor correlation with the histological diagnosis. 

 

In case of other pathologies such as intestinal metaplasia, the traditional features for 

identification are related to subtle mucosal alterations, discoloration (pale gray or reddish 

discoloration), nodular or depressed mucosa, ulcerations, disorganization of the vascular 

pattern and capillaries organized as a honeycomb pattern [31][32] as presented in figure 

2a. It is important to highlight that all these changes are strongly subjective.  

 

In order to diagnose gastritis and preneoplastic lesions, there are two main approaches 

used. The first one is the collection of multiple biopsies, randomly in the antrum and 

corpus. The second one is oriented biopsies, from mucosal changes seen by computed 

virtual chromoendoscopy. 
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a) b) 

 

Figure 2. Gastric tissue diagnosed with intestinal metaplasia observed under a) white light 

and b) NBI. 

 

1.3.1. Random collection of multiple biopsies from antrum and 

corpus 
 

Histologic examination of 4-5 biopsies taken at random remains in practice the most widely 

used approach for dysplasia recognition according to the Sydney protocol [33] [34]. 

Following the current European recommendations for monitoring of patients with severe 

or extensive intestinal metaplasia [35][36][37], such lesions should be monitored every 3 

years by endoscopy with mucosal biopsies. In practice, four to five non–targeted biopsies 

of two topographic sites in antrum and corpus are recommended [35]. 

 

This approach has the disadvantage that multiple biopsies are required in order to assess 

the right diagnosis; it presents interobserver variations and requires time and resources 

from different departments. Taking in consideration these disadvantages, we consider that 

the target biopsies oriented to suspicious areas of gastric tissue identified automatically 

could improve the sensibility of the diagnosis. 

 

In the following subsections we will focus on the current techniques available in medical 

practice for the identification of suspicious tissues. 

 

1.3.2. Oriented biopsies on mucosal changes 
 

1.3.2.1. Narrow Band Imaging (NBI) 
 

The NBI is a commercially available technology proposed by Olympus Medical Co., Tokyo, 

Japan, which is oriented to provide a false color image that produces high contrast 
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between vascular network and the surrounding mucosa [38][39][40]. This technique also 

known as virtual chromoendoscopy is promising in the detection of intestinal metaplasia.  

 

The configuration is nowadays based on two filters (415 and 540 nm), which correspond to 

the main peaks of absorption from hemoglobin. The false color image is created by placing 

the monoband image of 540 nm in the red channel. Then, the monoband image of 415 nm 

is duplicated in the green and blue channels [41]. 

 

As a result of this configuration, the blood vessels are observed in dark colors due to the 

absorption property of the blood. The band of 415 nm is oriented to observe the 

abnormalities of the surface of the mucosa, displaying the superficial capillaries in brown. 

In contrast, the deeper vessels are visible in cyan [38]. 

 

The examination of the gastric mucosa with NBI is oriented to identify abnormalities at the 

surface of the mucosa and blood vessels abnormalities from the vascular network, 

highlighting the pattern associated with intestinal metaplasia, observed with light blue 

crest, irregularities, white opaque substances and tubule-villous aspects [42]. As an 

example, intestinal metaplasia is displayed in figure 2b. 

 

Similar to other techniques, NBI requires a training period and presents observer variation.  

 

1.3.2.2. Flexible Spectral Imaging Color Enhancement (FICE) 
 

FICE is a commercial equipment from Fujifilm Medical Co., Tokyo, Japan, which is oriented 

to enhance the visual information of mucosal structures, by estimating the spectral 

transmission from RGB images.  

 

Images at a single wavelength or monoband are algorithmically estimated between 400 

and 695 nm each 5 nm. It displays false color images based on the combination of the 

estimated monoband images. It includes 10 preconfigured setups oriented to enhance the 

characteristics of the mucosa. In general it uses a combination of the bands at 470 nm, 500 

nm and 550 nm to observe depressed, flat and elevated gastric lesions [43]. Additionally, 

the user can select its own configuration of monoband images. 

 

LASEREO system is a recent improvement of the FICE system that includes two lasers, one 

at 410 nm  ± 10 nm and the other at 450 nm ± 10 nm. The first one is used to obtain the 

blood vessels and superficial mucosal structures. The second one displays deep blood 

vessels. Additionally, it also excites phosphors to create white light illumination. This 

technology has interobserver variations and requires a training period. 
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1.3.2.3. i-scan 
 

The equipment i-scan from Pentax, Tokyo, Japan applies post-processing algorithms to the 

images acquired under white light. The treatment is mainly oriented to image 

enhancement, including edge detection to improve the appearance of mucosal structures. 

It allows the differentiation between structures and depression areas by improving the 

visualization of low-density areas. Additionally, it includes a tone enhancement depending 

on the observed tissue such as esophagus, stomach and colon.  

 

Similar to other techniques displaying false color images, these technologies require a 

training period and present low interobserver agreement.  

 

Up to our knowledge, there are no publications evaluating the role of FICE, lasereo nor i-

scan in the diagnosis of the gastritis [44][43]. Even with NBI which has been the more 

studied, the gastritis remains not detectable with these different techniques. 

 

1.3.2.4.  Chromoendoscopy 
 

Chromoendoscopy is based on the use of a dye in order to highlight specific features from 

the tissue. It is considered as a fast, inexpensive and safe technique used to improve the 

visualization of the gastrointestinal mucosa. The dye used on the tissue can be classified in 

three types depending on their function [39].  

 

 Vital stain which are absorbed by the cells. Oriented to highlight the "mosaic" 

pattern. An example is methylene blue at 0.5% dilution, with which the normal 

mucosa is stain into dark-blue color; stainless tissue is related to the presence of 

metaplastic changes [45][46][47].  

 

 Contrast stain as indigo carmine between 0.1 and 0.4% dilution. It highlights the 

relief from the mucosa accumulated in pitch and valleys of the tissue [48][41]. 

  

 Reactive stain is oriented to modify its color due to the presence of a chemical 

process [45]. An example is congo red at 0.5% dilution as a pH indicator, which 

changes from red at a pH of 5 to dark blue-black at a pH under 3. Therefore, it is 

used to detect acid-secreting gastric cells. Other example is phenol red at 0.1% 

dilution, used to identify H. pylori infection by staining tissue from yellow to red. 

 

The main advantage is that specific features can be highlighted from the tissue using this 

technique. However, there are some drawbacks, for instance the specialized equipment 

required to perform this procedure, the low interobserver agreement and the training 

period required in order to achieve a uniform coating of the mucosa.  
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In the stomach, the dyes most commonly used for advanced lesions are indigo carmine and 

methylene blue. However, the interest is low because the subtle changes in the mucosa are 

difficult to be colored, specifically at an inflammatory stage such as gastritis. Under these 

circumstances, there is no study for the identification of gastritis using this technique. 

 

1.4. Summary 
 

The evolution of the gastritis into precancerous lesions follows a cascade of multiple 

stages. The modifications of the pathological tissues are presented at microscopic level, 

producing low variations with respect to normal mucosa. In order to diagnose them, 

different approaches have been proposed to identify these changes macroscopically. 

Nowadays, the gold standard is the visual exploration of the mucosa and the collection of 

biopsies for histological analysis. This approach has high probability of establishing the 

correct diagnosis but it depends on sampling the pathological tissue. 

 

The modifications of the tissue from a macroscopical point of view display low correlation 

with respect to the histological results. Even though some features could be identified, 

they remain strongly subjective. In fact, up to now, there is no available technology which 

recognizes satisfactorily without biopsy the inflammation stages at a macroscopic level, 

such as inflammatory gastritis or intestinal metaplasia.  

 

Current technologies used for diagnosis rely on imaging light tissue interaction, typically 

under white light or on collecting partial spectral information. The objective of this doctoral 

work is to acquire the full reflectance spectrum from gastric tissue in order to perform 

classification for diagnosis. 
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Chapter 2 

 

Acquisition and processing of the 

reflectance spectrum 
 

The subject of this chapter deals with the reflectance spectrum, oriented to explain how 

spectroscopy and multispectral imaging are used to acquire the reflectance spectrum and 

particularly on how to extract information from it. In this sense, we focus on model fitting, 

statistical analysis and machine learning techniques. As a support, we apply a model of 

light tissue interaction based on diffusion theory to show the variations in the spectrum 

from the biological parameters of gastric tissues, demonstrating that the reflectance 

spectrum encodes biological characteristics of the tissues.  

 

Generally speaking, the interpretation of the spectrum is not an evident task. For instance, 

two different spectrums after being partially sampled by our eyes could be perceived with 

the same color by our brain. This well-known phenomenon is named metamerism, which in 

gastric tissues produces normal and pathological tissues being perceived with the same 

color. This situation makes difficult to identify the pathological tissues during 

gastroendoscopy [56]. Therefore, there is a strong interest on the analysis of the 

information encoded in the reflectance in order to help the human eye to distinguish the 

changes in the tissues and their relation with histology. With this aim, we include the 

statistical analysis in order to identify differences between normal and pathological tissues 

and a methodology based on spectrum preprocessing, feature extraction, feature selection 

and finally, machine learning techniques for classification. 

 

2.1. Principles of Spectroscopy and Multispectral imaging 
 

Multispectral imaging and spectroscopy are oriented to measure the spectral reflectance of 

an object at different wavelengths. Historically, spectrometry has been widely used for 

more than half a century in mineralogy to identify specific chemical signatures [49]. This 

technology has been also exploited in the identification of some specific biological 

reactions and also to study the surface of the earth, military purposes and recently as a 

tool for diagnosis in medicine [50] [51].  
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The main characteristic to differentiate spectroscopy and multispectral imaging is with 

respect to the spatial dimensions acquired. In this sense, spectroscopy acquires one 

dimension (point measurement) and multispectral imaging acquires two spatial dimensions 

as an image. Since spectroscopy is oriented to acquire only one dimension, it is used for a 

single point acquisition from the surface, providing high spectral resolution (sometimes 

more that the nanometric precision). This characteristic makes it non-suitable for mapping 

the observed scene (such as the stomach), or it will require long time to scan a whole 

region of the sample [52]. In the case of multispectral imaging, the three dimensions 

acquired are two spatial dimensions for the image and one spectral dimension for the 

wavelength [53]. The images captured at each wavelength are named monoband images. 

When all the images are stacked according to their wavelength, a multispectral cube is 

obtained, as shown in figure 3. In this case, each pixel of the 2D image could be considered 

as a point measurement or a single spectrum. 

 

 

 
 

Figure 3. Multispectral cube from the antrum, where each pixel includes the full spectrum. 

 

Due to the multiple wavelength nature of multispectral images, three main challenges are 

identified. The first one is the required memory space to store the 3 dimensions (width, 

height and wavelength) from the multispectral image. The second one is that the high 

amount of data from a single multispectral image is preferable to be acquired in a single 

shot and stored as fast as possible in memory. The third one is due to the treatment and 

analysis of big data quantities [54]. With this in mind, we start with the acquisition of the 

spectrum. 
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2.2. Acquisition of reflectance spectra R(λ) 
 

This subsection deals with the different configurations to collect multispectral images, 

definition of the reflectance and calibration of the sensors. 

 

2.2.1. Acquisition techniques 
 

This measured reflectance is the principle of spectroscopy and multispectral imaging. 

Different options have been proposed to acquire multispectral images, they can be 

classified in 4 groups: whiskbroom, pushbroom, staring and snapshot [53][55]. 

 

 Whiskbroom. It is known as a point-scanning method, where the light is diffracted 

by a prism and acquired by a line array detector. The multispectral image is 

generated by moving the sample or the sensor in the two spatial dimensions. 

Commercial spectroscopic systems and confocal scanning instruments use this 

approach. 

 

 Pushbroom. It is also mentioned as line scanning, where one spatial and the 

spectral dimension are acquired at a time, so that only a line of the image is 

generated. Then, a physical movement of the camera is required in order to capture 

the remaining spatial dimension [55]. This technique could be used in production 

lines with a conveyor belt. 

 

 Staring. In this approach, successive images at different wavelengths are acquired 

in a short period of time. It could take advantage of a filter wheel with interference 

filters, electronically tunable filters or even acousto-optic tunable filters among 

others.  

 

 Snapshot. It acquires the 3 dimensions at the same time. Nowadays we can find 

different examples of this approach, for instance the camera from Flux Data Inc, 

Rochester, USA, where the light is split into different sensors so that each of them 

can capture the full image at a specific wavelength. Other example is from the 

company IMEC international, Heverly, Belgium, where filters are included in the 

sensor; in this approach, a pixel from the multispectral image is acquired from a 

window of 4x4 (optional 5x5) pixels in the image, so that each pixel of this window 

acquires one wavelength, producing 20 monoband images (optional 25) in a single 

shot. The disadvantage is that the multispectral image has a smaller resolution. 

 

Generally speaking the first three approaches produce motion artifacts since the scene 

cannot be assured static during the acquisition. With this in mind, registration is required 

between the monoband images in order to reduce the impact of tissue deformation and 

shifting in case of the stomach. 
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2.2.2. Reflectance and sensor calibration 
 

In the formulation of the reflectance spectrum      from a surface element, let us 

consider the spectral irradiance from a source of light I     in         . This light is 

partially back-scattered by the sample typically in all directions and is characterized by its 

spectral exitance      in         over    stereoradians. Therefore, we can define the 

reflectance [56] at each wavelength as shown in equation 1. 

 

     
    

    
 eq (1)  

          

It is important to highlight that the reflectance is dimensionless subject to      

           . The exitance      can be acquired by our eyes or a sensor but in general, we 

are interested in the reflectance R    since it is related to the properties of the object and 

it is independent from the source of light.  

 

The reflectance can be estimated from E    by performing a spectral calibration, where 

I     is measured through a ColorChecker® (X-Rite Inc, Grand Rapids, Michigan), 

Spectralon® (Labsphere Inc, North Sutton, New Hampshire) or Zenith Polymer® 

(SphereOptics GmbH, Germany) from which their reflectance is constant and known at 

near UV, visible and near infrared wavelengths. In this sense, the exitance is acquired from 

two calibrated references, which are a black patch at 2% to obtain            and a white 

patch at 99% to get          . The reflectance is retrieved by using equation 2. 

 

     (
                

                     
) (
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Eq (2)  

 

 

In the following subsection we focus on the different configurations to acquire the 

reflectance. 

 

Despite of the procedure to acquire the spectra, the next section introduces how the 

reflectance from gastric tissue can be modeled based on diffusion theory, focusing on the 

modifications of the reflectance from biological parameters. We mention the most relevant 

algorithms to estimate biological parameters from the reflectance. 

 

2.3. Light transportation in biological tissues 
 

This section deals with the description of the phenomena that occurs during light tissue 

interaction. We start from the photon and the path that it could take once it interacts with 

tissue. In particular, we focus on how it can be absorbed or scattered depending on the 

chemical content and how the reflectance spectrum is generated from the biological 
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properties of the tissue. Then, we discuss the estimation of biological parameters from the 

spectrum. 

 

2.3.1. Phenomena occurring during light tissue interaction 
 

The photon is a quantum of electromagnetic energy, the elementary particle of light and 

electromagnetic (EM) radiation. This radiation is included in the EM spectrum, which is 

divided according to wavelengths. The visible region that humans can perceive is a small 

portion of the EM spectrum as presented in table 2.  

 

Table 2. Spectrum of light [57]. 

 

Electromagnetic 

spectrum 

Acronym Name  

 

 
 

 

Below 100 nm X-ray X-ray 

100 to 400 nm UV Ultraviolet 

 

 

400 to 770 nm 
 

 

 

 

VIS 
 

 

 
 

Visible 
 

 

770 to 2500 nm NIR 
near 

infrared 

2500 to 25000 

nm 
MIR mid infrared 

Above 25000 

nm 
Microwaves Microwaves 

 

When a photon from a light source interacts with the tissue, there are 4 different possible 

paths that it can follow, depending on the architectural and chemical properties of the 

tissue [52][58]. These paths are scattering, absorption, reflection and transmission, as 

presented in figure 4. The main phenomena presented in tissues are absorption and 

scattering. 

 

Absorption. Depending on the chemical content of the tissue, selective photons are 

absorbed at specific wavelengths. The main absorbers are named chromophores, such as 

hemoglobin or water [56], [59]. 

 



 Page 38 
 

 
 

Figure 4. Principal phenomena involved in light tissue interaction. 

 

Scattering. This phenomenon occurs when an element of the tissue makes the photon to 

change its direction. From the microscopical point of view, the scattering is mainly due to 

variations in the refractive index of particles in the medium. There are two types of 

scattering phenomena which depends on the size of the particles [56], [59], [60]. 

 

 Rayleigh scattering is experienced in a medium with particles that are smaller than 

the photon wavelength, such as small organelles and membrane of cells. 

 

 Mie scattering is observed in a medium where particles are larger or equal than the 

photon wavelength; it includes collagen fibers. 

 

Reflection. The photons interacting with the tissue follow the law of reflection so that the 

surface of the tissue acts as a mirror, making that angle of the incident light equal to the 

angle of the outgoing light. In this case, what is observed is the light source as a specular 

reflection [56], [59].  

 

Transmission. The photon passes through the tissue to another layer. 

 

Additionally to these phenomena, we must consider that each wavelength has a different 

penetration depth [58], which in practice, gives us the advantage of the analysis of a 

certain volume by sampling different paths. For example, the red wavelengths have a large 

penetration depth, whereas blue wavelengths have low penetration. In this case, blue 

wavelengths are used to highlight features from the surface.  

 

In the following section we describe a model of light tissue interaction where the 

reflectance is estimated from optical properties such as absorption and scattering, which 

depend on biological parameters. 
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2.3.2.  Theoretical model of light tissue interaction 
 

It is important to realize that in light tissue interaction, the path of the photons is modified 

due to the phenomena previously described. There are different physical models 

developed to analyze this path, such as diffusion theory, Monte Carlo, Kubelka Munk 

theory among others [61], [62]. These methods are used to estimate the reflectance as a 

function of the optical and biological parameters. 

 

Based on diffusion theory, the equation 3, which was proposed in [63], models the 

reflectance      of soft tissues, just as the one found in the stomach. It is based on 

applying the optical properties of tissues such as reduced scattering coefficient        

in       , absorption coefficient       in       , among others. In fact, the biological and 

morphological characteristics of tissue are encoded in these optical properties. 

 

     
     

 
(       ⁄   √          )

 

  √          
 eq (3) 

 

where   is the internal reflection, which is defined in equation 4. 

 

  
      

      
 eq (4) 

 

so that               
            

                   , taking into 

consideration that          ⁄  is the refractive index mismatch between air    and tissue 

surface   . In the case of the stomach,      could vary between 1.36 and 1.45 [64][65].  

 

Additionally,    is the transport albedo defined in equation 5. 

      
      

(            )
 eq (5) 

 

where        is the reduced scattering coefficient, which describes the diffusion of photons 

undergoing several scattering events.        is a decreasing function of wavelength and it 

could be modeled as presented in equation 6. 

 

          
     

(
 

        
)
  

 eq (6) 

 

where the wavelength at 630 nm acts as a reference to normalize the wavelength  ,   is 

the scattering power and it is dimensionless. It models the decreasing function of 

scattering and it could be interpreted as the size of the scatters. In the case of gastric tissue 

we assume    
     

 as          and b as     [66][60]. 
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Then,       from equation 5 is the absorption coefficient which gives information about 

the density of chromophores in a medium, modeled in equation 7. 

 

                                                  eq (7) 

 

where   is the blood volume fraction             is the oxygen saturation of hemoglobin 

        ,   is water content         ,           in [    ],              in [    ] 

and             in [    ] are respectively the absorption spectra for oxygenated blood, 

deoxygenated blood and water [61][66]. 

 

In particular, we can analyze each of the 4 parameters individually (b, B, S and W) in order 

to identify their contributions to the shape of the spectrum as illustrated in figure 5. The 

nominal values for the simulations are       ,             ,         ,    

                ,        ,           and       ,        . The ranges of 

these parameters are considered from extreme possible values [60], [66], [67]. 

 

We can clearly observe in figure 5.a that the changes in the scattering power are mainly in 

the UV and near infrared, with some significant variations in red wavelengths. In the case 

of the blood concentration from figure 5.b, variations are reported in UV, visible and near 

infrared spectrum. When the oxygen saturation varies as in figure 5.c, we observe changes 

in 420 nm which is an absorption peak of hemoglobin, some variations below 500 nm and 

in the red wavelengths; in particular, around 530 nm is observed complex changes which 

more likely are not suitable for diagnosis. Finally, the modifications in water content in 

figure 5.d are mainly presented in the near infrared. 

 

Having a model of light tissue interaction, it is possible to simulate the reflectance from 

optical properties, which are calculated from biological parameters. However, diagnosis 

needs to reverse the model to estimate biological parameters from the spectrum. The 

exact solution exists for infinite media, which is never the case in our applications. In order 

to approximate a solution, strong assumptions and a priori hypotheses with respect to the 

range and initialization of biological parameters are required, with an initial guess close to 

the true values.  

 

The nominal value and range of the optical parameters from the gastric tissue have been 

studied in [64]. Then, in order to estimate the biological parameters, the main approach is 

based on a Newton-type problem, so that some hypotheses of biological parameters are 

iteratively modified in the model of light tissue interaction to estimate a theoretical 

reflectance. Then, it is compared with the experimental data to find the closest match [61], 

[67]. This analysis was performed in [68] for normal, atrophic gastritis, ulcers and 

cancerous gastric tissues. The results of this study show that the blood concentration and 

oxygen saturation decreases in atrophic gastritis. The blood concentration is increased in a 

cancerous stage but with lower oxygen saturation. Additionally, there is an increase in 
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concentration of scatters with different sizes in atrophic gastritis, whereas in cancerous 

tissues, the concentration is reduced but the size is increased. 

 

It is important to realize that fitting a model rarely produces exact solutions. In fact, it 

could lead to different situations, from non to multiple solutions. It is also possible to 

obtain biological values which are not physically possible. Besides these issues, we must 

add that the ground truth of biological parameters is very difficult to obtain. An acceptable 

global error in fitting the model is 20 % [68]. Other approaches already used in skin and 

excised colon tissues could be implemented in gastric tissue. For instance genetic 

algorithms [69], discrete Markov Random fields [70] among others. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Figure 5. Individual contributions of the optical properties in the shape of the reflectance 

spectrum. a) varying the scattering power. b) variation of blood concentration. c) 

Modifications due to oxygen saturation and d) Changes due to water content. 

 

Generally speaking, the most relevant constrains are related to the acquisition under 

controlled conditions of a high spectral resolution from the reflectance, which in particular, 

cannot be achieved during gastroendoscopy. Under these circumstances, other options 

have to be considered, based on statistical analysis and machine learning, aimed for 
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interpretation and classification of the spectra. These methodologies are explained in the 

following sections. 

 

2.4. Statistical analysis of the spectrum 
 

One widely used approach for the interpretation of the collected spectra is its statistical 

analysis. Generally speaking, when the distribution of a population is unknown, studies 

based on hypothesis test and non-parametric analysis are applied [71][72] and can be used 

for instance in medicine, in the evaluation of treatments and effectiveness of a drug.  

 

In the case of this doctoral work, we can apply these analyses to identify the wavelengths 

that display significant changes between normal and pathological tissues, and can be used 

for diagnosis. The following subsections include the description of hypothesis test, how to 

compute the p value according to some relevant non-parametric methods for the statistical 

analysis of the collected spectra. 

 

2.4.1. Hypothesis test and p value [71], [73], [74] 
 

The hypothesis test is a tool to evaluate the data which is assumed as a random variable. It 

is the result from a statistical test, where suppositions about the mean or the probability 

distribution from the random variable are evaluated. It is typically based on the 

formulation of two mutually exclusive hypotheses and the acceptance of one of them. The 

first one is known as H0 or null hypothesis which is the hypothesis under test. The second 

one is    or alternative hypothesis.  

 

In order to reject the null hypothesis, the p value is used and defined as “...the probability, 

when the null hypothesis    is true, of obtaining a sample result as extreme as, or more 

extreme than the observed sample result.” [73] 

 

In consequence, if the p value is small, it is very unlikely that the sample is related to the 

observations by chance as observed in figure 6. In this sense, the p value is used as a 

collector of evidence from the data to reject the null hypothesis H0.  
 

 
Figure 6. Possible results from a statistical test, where a small p value is evidence of 

rejection of the null hypothesis [75]. 
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As an example, let us consider a group of samples  , originated from a normal distribution 

        subject to    , we formulate         and        so that,    indicates 

low probability that the samples in the group were acquired from a population with    . 

In this case, the p value is computed as       |      where   is the mean of  . In 

general, this conditional probability is estimated by using a statistical test, such as Analysis 

of variance, Wilcoxon rank sum, Kruskal Wallis among others. Since in this example    , 

the resulting p value from the statistical test is smaller than 0.05, which is a typical critical 

value to reject the null hypothesis.  

 

It is also possible to be more rigorous than 0.05 in the level of significance, for instance 

0.01 or even smaller [51]. This selection is defined in advance and depends on the nature 

of the data, the statistical test and the experience from the person performing the analysis. 

 

The example discussed is a one-tail event (right tail), but it could be tested the left tail 

configuration by modifying the definition of the hypotheses as         and       . If 

the rejection region includes left and right tail, the hypotheses are defined as         

and        to create a two-tailed test. It depends on the formulation of the hypotheses.  

 

2.4.2. Statistical non-parametric analysis 
  

In the statistical analysis of the data from unknown populations, it is typically preferable to 

use non-parametric test since in general no assumptions are required with respect to the 

population distribution [72]. Typically, the hypothesis H1 is related to possible variations in 

centrality and changes in the distribution with respect to the observed samples. The 

following subsections are addressed to three non-parametric tests: analysis of variance, 

Wilcoxon-Mann-Whitney and Kruskal-Wallis. It is very important to highlight that there are 

many other non-parametric tests available.  

 

2.4.2.1. Analysis of variance (ANOVA) [72], [73] 
 

The analysis of variance (ANOVA) is a qualitative evaluation of independent samples based 

on the F-test. It is assumed that the samples were originated from a normal distribution. 

This test is applied to evaluate the evidence for significant differences between the means 

of the groups.  

 

Let us assume that having   independent samples separated in   groups, each of them 

with    samples             so that   ∑   
 
   . Each sample group has a mean    

which allows us to define the linear model in equation 8.  

 

           eq (8) 
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Where     is the     sample from the     group and     is a normal random error       
  . 

The hypothesis test is defined as                

and                            . The evaluation is based on an F distribution as 

illustrated in equation 9. 

     

∑              
 

   
∑  ∑              

 
 
 

   

 eq (9) 

 

Then the exact p value is computed from the F distribution, by providing      with 

          degrees of freedom. Finally, it is compared with the level of significance 

defined for the study in order to reject the null hypothesis. 

 

2.4.2.2. Wilcoxon-Mann Whitney [72], [73], [76], [77] 
 

Wilcoxon-Mann-Whitney is also known as Wilcoxon rank sum test. This test is applied to 

identify if the population medians is the same for the two groups. Let us consider two 

independent populations   and  , with    and    samples respectively. When the samples 

are arranged together and ranked, we can identify patterns and relationships between the 

two populations. For instance, if the samples have the same median, the probability that    

is greater or smaller than    is the same.  

 

Let us define the distribution function for each group as      and     . Then we can 

define a shift  , so that            . Consequently the two hypotheses to test are 

              and                 for a    . 

 

In order to proceed with the test, the samples from the two groups are sorted 

incrementally in a single sequence, which allows us to define the indicator in equation 10. 

 

    {
 

 

             

              

                  eq (10) 

 

Then, Mann Whitney U statistic is defined in equation 11. 

 

  ∑∑   

  

   

  

   

 eq (11) 

 

This is used to compute the parameter W in equation 12. 

 

    
  

 
       eq (12) 
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Then the Z value is calculated following equation 13. 

 

     
|      

               
 |

√                  
  

 eq (13) 

 

The p value is obtained from      in a Z distribution. Finally, the p value is computed with 

the level of significance from the study. The advantage of this approach is that it works 

with ranks and can be used with normal or discrete data. Therefore, it is widely applied in 

the biological and medical domains [71] [72].  

 

2.4.2.3. Kruskal Wallis test [72], [73], [76] 
 

It is considered as an extension for more than 2 groups of the Wilcoxon rank sum test, 

which is applied to establish if the samples are originated from the same distribution. Since 

it is oriented to   groups      , the hypotheses to test are defined as          

     and                                   . The statistical test is defined in 

equation 14. 

 

  (
  

      
∑(

  
 

  
)

 

   

)         eq (14) 

 

where   is the total of samples and    is the summation of ranks in the   group. The   

value is used to compute the p value in a chi-square distribution with       degrees of 

freedom. Finally, the obtained p value is compared with the level of significance defined in 

the statistical study. 

 

After the statistical evaluation of the spectrum and the validation that there is a significant 

statistical difference between the two groups, the next step is the classification of tissues 

according to their pathology. 

 

2.5. Classification framework 
 

This section is devoted to supervised machine learning approaches for the classification of 

tissues according to their pathology. It is based on extraction of statistical features from 

the spectrum and classification algorithms. 
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2.5.1. Preprocessing of the spectrum 
 

Multispectral images collected during gastroendoscopy display in general strong variations 

in the amplitude of the measured spectrum. This situation is the result from the non-

homogeneous illumination and the different distances between gastric tissue and the 

camera during the acquisition. 

 

Under these circumstances, we can rely only on the shape of the spectrum and not on its 

amplitude to differentiate pathological tissues. Therefore, in order to compare the 

collected spectrum, it is considered as scattering points in a q-dimensional Euclidean space 

[78], so that the spectrum of a pixel is defined in equation 15. 

 

               eq (15) 

 

where   is the number of wavelengths of the multispectral image. We consider the 

normalization L1 as presented in equation 16. 

 

   
  

∑   
 
   

                        ∑  

 

   

     eq (16) 

 

where    is the     wavelength of the collected spectrum and    is the     wavelength of the 

normalized spectrum. This normalization forces the energy of the spectrum to be the same 

for all the samples.  

 

Once the acquired spectrum is normalized, the next step is to extract and select features 

from the spectrum for classification, which are addressed in the following section. 

 

2.5.2. Feature extraction and selection 
 

In this work, we are interested in the shape of the spectrum since it encodes the biological 

characteristics of the mucosa. In order to extract features from it, we consider the 

spectrum as a probability distribution, so that it can be modeled statistically [79]–[81]. The 

advantage of statistical features is that they represent quantitative values of the collected 

data. 

 

Let us define as an example a vector of features                presented in table 3, 

where it is included the statistical descriptors and the measurements of the normalized 

spectrum as defined in equation 16. 
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Table 3. Example of features. 

 

Feature Definition 

Mean of absolute deviation 
 

 
∑ |          |

 

   
 

Mean deviation about 

median 

 

 
∑ |            |

 

   
 

Standard deviation      

Median of absolute 

deviation 
MAD( ) 

Variance       

Skewness (
 

 
∑      ̅  

 

   
) (

 

 
∑      ̅  

 

   
)

 
 ⁄

⁄  

Entropy  ∑ (
  

 
   

  

 
)      (

              

   
)

 

   
 

Kurtosis (
 

 
∑      ̅  

 

   
) (

 

 
∑      ̅  

 

   
)

 

⁄  

Reflectance Spectral measurement at specific wavelengths 

Ratios Ratio between different wavelengths 

 

After having a set of descriptors, a key point in a classification approach is to select among 

these features the ones that have high discriminative potential to differentiate between 

the groups. In this sense, we search for an efficient feature subset. In general, we consider 

the evaluation criteria of the features to differentiate between three main approaches 

which are wrappers, filters and embedded methods [82]. 

 

2.5.2.1. Wrapper approach 
 

Wrapper approaches are strongly related to the classification algorithm since it searches 

for the subset of features that produces high performance from the learning algorithm. In 

general, it takes in consideration the interaction of a feature subset, handling their 

dependencies and redundancies. It includes as disadvantages the high risk of overfitting, its 

computational cost and the strong dependence with the classifier [83], [84]. 

 

There are different examples in the literature of this approach, such as exhaustive search, 

where all possible combinations of subsets of features are tested. This case can only be 

applied with low numbered features since it is impractical in a big feature set. Another 

approach is forward selection which is an iterative method. It starts from an empty feature 

vector in which a feature is added at each iteration. In this step, all the variables that are 

not part of the set are evaluated, so that only the feature which inclusion is the most 

significant for the classification task will be added. Similar case for backward elimination, 
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with the difference that it starts with the full set of features, from which non-significant 

features are removed at each iteration. There are different options to stop these methods, 

such as reaching a fix number of variables, identifying no improvement when features are 

added or removed [82], [83], [85]. Another interesting approach includes the use of 

artificial intelligence which is the case for example of genetic algorithms, which is a 

stochastic search inspired in biological evolution [82], [83]. 

 

2.5.2.2. Filter approach 
 

In the case of filter approaches, the evaluation criterion does not involve the classifier 

algorithm, providing ranked features independent from the classification algorithm. The 

output is a relevance index where the features are sorted according to their discriminative 

power to differentiate the groups. The main disadvantage of this approach is with respect 

to the interdependences between features, since they are not taken into account. In some 

specific circumstances, this situation could be considered as an advantage since redundant 

features are more robust in the case of noisy data. 

 

There are different examples of filter approaches for instance those based on statistical 

test which have been proof to be powerful methods and therefore, they have been widely 

used. It includes correlation based filters, where the strength of association between 

features is measured by Pearson correlation, by Chi square statistics or by t-test statistics 

[82]–[84]. 

 

The application of t-test for feature selection requires two assumptions: normal 

distribution and equal variance between the classes. The t-test [83] is divided in two parts. 

Firstly the pooled variance   
  is computed as presented in equation 17 where    and    

are the number of samples for each class and    and    are their standard deviations. 

 

  
  

        
          

 

       
 eq (17) 

 

The second step is the computation of the t value as presented in equation 18, where    

and     are the mean of each class. 

 

  
|       |
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)

 
eq (18) 

 

As a result of this procedure, the features are ranked according to their contributions on 

the separability between two classes.  
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2.5.2.3. Embedded approach 
 

This approach is oriented to learn the features which contribute to the classification while 

the classifier is trained. Therefore, it could be oriented as an optimization problem where 

the use of a large number of features is penalized, aimed to create a compact subset of 

features which are significant for the prediction of the classes. They have the advantage 

that it is not required to split the data set for training and testing [83], [84]. 

 

Some examples of this approach include regularization algorithms such as LASSO (Least 

Absolute Shrinkage and Selection Operator), which is used for feature selection and 

shrinkage [83], [86], [87]. We can also find decision trees [82] where the feature vector is 

divided depending on the “splitting criterion”, such as mutual information. 

 

Some significant algorithms for classification are discussed in the next subsection. 

 

2.5.3. Classification algorithms 
 

The analysis and interpretation of the data collected from multispectral imaging is a non-

trivial task. Thus, we take advantage of classification and learning algorithms in order to 

highlight differences in the tissues due to pathology. Generally speaking, classification is 

oriented to define the separation rule    so that       , where                    

                     and   is the sample set so that unseen samples can be separated in 

one of the two classes.  

 

In the present doctoral work we apply three common supervised approaches to create the 

separation rules. In this sense, the following paragraphs are oriented to describe these 

methods for classification, which are k nearest neighbor, support vector machine and 

neural networks [52].  

 

2.5.3.1. K nearest neighbor [86], [88] 
 

The K nearest neighbor classifier (k-nn) is considered a simple and highly performing 

algorithm which is applied as a baseline to compare other classifiers. This algorithm is 

based on the minimal Euclidean distance between the sample under test   and the k-

closest samples from the training sample, depending on   as the number of neighbors to 

be considered. Then, the sample under test will be assigned the class of the majority of its 

  nearest neighbors. This principle is defined in equation 19. 

 

 ̂    
 

 
∑   

        

 eq (19) 
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Where  ̂    is the assigned class for the sample under test  ,       is the neighborhood 

of   which includes    samples so that         and    is the class of those closest 

neighbors. 

 

2.5.3.2. Support Vector Machine (SVM) [86], [88], [89]  
 

SVM is a well-known classifier which shows high performance and robustness in many 

classification tasks.  

 

The principle of SVM is that the input data is projected into a high dimensional space. Then, 

it is in this space where a hyperplane is defined, as shown in figure 7. 

 

 
Figure 7. Hyperplane which defines the decision boundaries between two groups in a SVM 

classifier. 

 

The hyperplane is defined according to equation 20. 

 

              eq (20) 

 

where   are the training samples,   is a unit vector, so that ‖ ‖   ,    is a constant and 

     is the function of the hyperplane which produces the maximum separation between 

the training samples from the two classes. This margin   in equation 21 is not surprisingly 

equidistant to the closest nearest samples from the two classes. 

 

  
 

‖ ‖
 eq (21) 

 

The classification rule in the hyperplane is defined in equation 22. 

 

 ̂                       ̂         eq (22) 
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2.5.3.3. Neural Networks using Generalized Relevance Learning 

Vector Quantization [90]–[94] 
 

Neural Networks (NN) using generalized relevance learning vector quantization is a robust 

and performant classifier. Similar to other neural network approaches, it has three layers 

implemented. The input layer is oriented to include the input data. The output layer 

contains the possible classes or outcomes of the classification. The hidden layer is where 

the separation rules are estimated.  

 

Let us consider having a set of training samples   with   number of classes, where each 

sample    has multiple components such that   
  is the     element of the     samples of  . 

Additionally, a fix number   of prototypes                also named codebook or 

weight vectors are initialized for each class. The prototypes which are better 

representatives of the class have higher weights. Thus, the learning is performed by 

minimizing the sigmoid function   of a relative distance measurement defined in equation 

23. 

 

  ∑  (
  

 (  )      
 (  )

  
 (  )      

 (  )
)

 

   
 eq (23) 

 

where   
 (  ) is the square Euclidean distance between    and the closest prototype    

belonging with the same class of    and   
 (  ) is for the closest prototype    with 

different class of   . In particular, a relevance factor is included in the distance 

measurement as shown in equation 24 

‖     ‖ 

 
 ∑   (  

    
 )

  

   
 eq (24) 

 

where    is the     weight, subject to ∑     
 
  and    . We used    instead of    which 

is typically used in literature to avoid confusion with the wavelength. The update of this 

relevance factor is shown in equation 25. 

 

   { 
     (     )

 
  

    (     )
  

                                      

         
   eq (25) 

 

where   is a learning factor subject to          . The learning rules are computed from 

the derivatives of equation 23, so that the prototypes W which are near to the correct 

classified training samples are better representatives of the classes.   

 

After reviewing these three common supervised classification algorithms, the next 

subsection is dedicated to evaluate the performance of the classification methodology. 
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2.5.4. Evaluation of the classification performance 
 

Generally speaking it is required to separate the dataset in training and testing in order to 

evaluate the performance of a classifier. However, in many cases this cannot be achieved 

due to the small size of the database.  

 

Typically, cross validation is performed to estimate the performance of the classification 

methodology when the available database is small. Additionally, the bias is reduced since 

each iteration has different data for training. In practice, if a filter approach is applied, the 

selection of features should also be included in the cross validation in order to avoid any 

bias.  

 

In our case, we apply Leave One Patient Out Cross Validation (LOPOCV) [95] since it is 

observed that samples from the same patient are in general strongly correlated. LOPOCV is 

an iterative process where the full information from a patient is removed in order to be 

used for testing, whereas the remaining of the database is used for training the classifier. 

This procedure is repeated until all the patients have been tested. 

  

There are different metrics to estimate the performance of a classifier. In a binary 

classification, we compare the ground truth with the predicted outcome. For this purpose, 

a confusion matrix is presented in table 4 which includes the different possible outcomes 

from a sampled after classification.  

 

Table 4. Confusion matrix of possible outcomes from the classification. 

 
 

Some parameters related to the performance of the classification include the accuracy, 

which indicates the percentage of samples that are correctly classified. The sensitivity or 

recall shows the percentage of spectra from pathological tissues that are correctly 

classified. The specificity is the percentage of spectra from normal tissues that are correctly 

identified [96], [97]. These parameters are shown in equations 26, 27 and 28 respectively. 

 

          
     

           
   eq (26) 

 

             
  

     
   eq (27) 
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   eq (28) 

 

Other parameters are the precision or positive prediction factor, which indicates the 

chance that a positive prediction is correct, defined in equation 29 

 

                    
  

     
   eq (29) 

 

F-score combines the precision and sensitivity so that    
                        

                      
 

 

There are many options to estimate the performance of the classification approach. 

Depending on what is desired to evaluate, some parameters could be more significant than 

others, for instance, having high sensitivity and high specificity is the ideal case because 

there are few chances that pathological tissue will be missed. However, this cannot be 

always achieved; it could be the case of a system which shows high sensitivity and low 

specificity. In this case, a sample identified as pathology will have high chances of being 

pathological but, there could be many false positives due to the low specificity. On the 

other hand, high specificity and low sensitivity could bring some certainty that the tissue is 

normal but once more, the risk of having false negative is traduced in pathological tissue 

missed. Between these two circumstances we would rather have false positives, so that 

these patients could have further medical studies to corroborate the results. The selection 

of the evaluation parameters remains to the user. 

 

2.6. Summary 
 

In this section we have addressed how to acquire multispectral images, the reflectance 

spectrum and how it is related to biological parameters of the tissue. In particular, we have 

described a model of light tissue interaction based on diffusion theory, describing the 

different phenomena involved. These phenomena modify the path of the photons and are 

the responsible for the changes in the spectrum, mainly modifying absorption and 

scattering. These properties are modified in the tissues depending on their biological and 

architectural composition of the tissue. 

 

Taking in consideration the acquisition conditions in the stomach, an interesting option in 

the task of identifying changes in the spectrum due to the development of the pathology 

could be performed by statistical analysis, taking advantage of non-parametric analysis. 

Another option is the use of machine learning techniques. In this sense, we detailed how to 

process the acquired spectrum, focusing on the extraction of features from the spectrum 

based on a statistical approach and the methodology to select those who could be more 



 Page 54 
 

relevant for the classification task. In particular, the filter approach allows obtaining an 

independent rank of features from the classifier applied. 

 

We also briefly described well-known supervised algorithms for classification, i.e. K-nn, 

SVM and Neural Networks. We explained also how to evaluate their performance: in 

particular LOPOCV is a powerful tool in case of data sets with a low number of patients. It is 

important to realize that LOPOCV requires performing the feature selection and the 

training of the classifier with the same subgroup of patients to avoid a possible bias in the 

classification. Different parameters were discussed for the analysis of the classification 

performance. They strongly depend on the characteristics that the user decides to evaluate 

from the classifier. 
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Chapter 3 

 

Reflectance of gastritis pathology under 

controlled conditions 
 

Gastritis is part of the stages described in the cascade of cancer development resulted from 

a chronic infection by H. pylori [9]. As mentioned in the chapter 1, there is a direct link 

between H. pylori and gastric lesions which has been demonstrated by epidemiological 

studies in animal models and also in humans [98], [99]. The mice model develops different 

stages of a chronic gastritis, originated in a chronic infection from H. pylori within months 

after inoculation. This bacterium infects half of the world population and it is considered 

type I carcinogen by the World Health Organization [15], [100], [101].  

 

The subject of this chapter turns on the analysis of the reflectance acquired from a mice 

model of infection of H. pylori, aimed to identify the wavelengths which show the most 

significant changes due to the development of the pathology. These identified wavelengths 

are candidates for diagnosis of gastritis. 

 

3.1. Model of experimentation 
 

The pathogenesis resulting from the infection by H. pylori is a dynamic process where the 

mechanisms involved are difficult to identify. Under these circumstances, a fundamental 

part of biological research is the development of animal models of infection in a controlled 

environment. These models are used to understand the origin and development of 

diseases, the response of the host, the mechanisms involved and the environmental 

influences and could also be used to test reverting strategies, treatments and vaccinations 

[100].   

 

Studies under controlled conditions require monitoring factors such as culture viability of 

the bacteria H. pylori, infection process, frequency of dosing, diet of the animal model, 

temperature conditions and microbial circumstances of the setting. In this sense, we 

worked with the unit of pathogenesis of Helicobacter in the department of microbiology 

from the Institut Pasteur in Paris, which has been studying H. pylori infection. 
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In the study of pathologies in the stomach originated in a H. pylori infection, we must 

consider two characteristics to develop an accurate model infection. The first one is the 

animal model or host. The second one is the strain of the bacteria which can colonize the 

stomach. In the following sections we will detail the applied combination of animal host 

and bacterium strain implemented for this doctoral work. 

 

3.1.1. Mice model 
 

Early studies on H. pylori tested several potential hosts, such as piglets, primates, cats, 

mice, dogs, gerbils and ferrets which are colonized by their own species of Helicobacter. 

Generally speaking, it is preferable to use the smallest practical animal which models the 

features of the pathology under study, such as the mouse. It includes the advantage of fast 

reproduction; it is easy to inoculate and cost-efficient for the study.  

 

In spite of the mentioned advantages of using a mice model, there are some disadvantages 

that should be taken into consideration, for instance the biological variations in mucosa, 

physiology of the stomach and the limited genetic diversity of the host and the bacteria. 

Unfortunately, these disadvantages could not represent the pathology in a diverse 

population of host or patients. Besides, the mice could develop gastric lesions which are 

only specific for the mouse such as mucous metaplasia [100]. 

 

Nowadays, there are different mice models available for studies such as the Swiss mice, 

strains NMRI, C57BL/6, C3H/HE [77] among others. It is important to mention that the 

infection in each model could vary. In the present doctoral work, we used the mice NMRI 

which could develop a chronic infection by H. pylori [102]. The next section will address the 

H. pylori strain SS1.  

 

3.1.2. H. pylori strain SS1 
 

There are more than 35 discovered species of helicobacter but only few of them could 

produce gastritis in humans, which are H. pylori, H. felis, H. fennelliae, H. cinaedi and H. 

Heilmannii [103]. This is due to the species barrier which is a natural mechanism that limits 

a disease to spread between one type of animal to another. This constraint reduces the 

capability of the bacterium to colonize the host, which in our case, restricts the 

development of models of infection of a bacterium specialized in humans. Under these 

circumstances, early studies worked with strains obtained from cats and ferrets which were 

successfully tested in mice, but the studies were limited to specific lesions, for instance H. 

felis could induce advanced gastric lesions and H. Heilmannii could develop lymphomas 

[100]. 

 

The human H. pylori strain SS1 was successfully developed in 1997. Also named Sydney 

strain, it adheres to the epithelium of mice stomach in high numbers and for a long period. 
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The gastric mucosa of the mice showed strong similarities in the development of the 

infection in humans, including histology and architectural modifications. Additionally, it is 

cagA and vacA positive, which are antibodies for identification of the bacterium [99], [100], 

[104]. Thanks to these advantages, it has been widely used on research. 

 

3.2. Mice experiments 
 

The ideal case to study the development of pathology is having sufficient amount of 

subjects from which we can follow their evolution so that multiple samples could be 

acquired during a period of time. Unfortunately, this is not our case, since the sacrifice of 

the mice is required to analyze its stomach. Under these circumstances, a typical approach 

is to use two groups: pathological (inoculated with H. pylori) and control (H. pylori free). 

This configuration allows collecting independent samples at different stages of the 

pathology with the control group as a reference. The experiments on mice were approved 

by the Institut Pasteur safety animal care and ethic committee in accordance with 

European guidelines. 

 

In this subsection, we will describe the infection methodology and the different campaigns 

of sacrifice, giving special emphasis to the characteristics of the pathological tissues.  

 

3.2.1. Infection by H. pylori strain SS1 
 

For this study, the bacteria were grown on blood agar base 2 (Oxoid Lyon, France)  plates 

supplemented with 10% defibrinated horse blood (bioMérieux, Marcy L’Etoile, France) and 

an antibiotic-antifungal mixture consisting of vancomycin (10mg/ml), polymixin B (2.5IU/L), 

trimethoprim (5mg/ml) and amphotericin B (4mg/ml). The plates were incubated at 37°C 

for 24 to 48h under microaerobic conditions (7% O2, 10% CO2; AnoxomatTM system). 

 

In total twenty five NMRI female mice of five-weeks old were acquired from Charles River 

Laboratories (France). These pathogen-free mice were housed in polycarbonate cages and 

acclimatized during one week before starting the experiments. 15 mice were orogastrically 

inoculated with 150 µl of a suspension of bacteria (108 colony forming unit (cfu)/ml) and 10 

non-infected mice received 150 µl of peptone broth. 

 

3.2.2. Campaigns of acquisition 
 

In the study of the stages of gastritis development, we consider that the changes in tissue 

are originated on the development of the pathology. For this purpose, a total of 25 mice 

were sacrificed after 1, 3, 7 and 12 months post inoculation, as presented in figure 8.  
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Figure 8. Acquisition campaigns and mice infected with H. pylori strain SS1. 

 

In each acquisition campaign the mice were euthanized using CO2 inhalation. Their 

stomachs were excised and opened from the greater curvature. In figure 9 is displayed a 

stomach on one side with a chess pattern for reference, where each square is 2 mm side. 

Thanks to this information we estimate the surface of the stomach as 130 mm2. This 

example is slightly bigger than the average of the sacrificed mice with mean size equals to 

119 mm2 with a standard error of the mean of 15. 

 

In all the acquisition campaigns no macroscopical lesions were observed on the surface of 

the mucosa. Fragments containing antrum and fundus were used for histology analysis of 

the gastric inflammatory lesions and H. pylori gastric colonization assessment. This 

procedure is described in the next subsection. 

 

 

Figure 9. Stomach from a mouse, with a chess pattern of 2 mm side of the square for 

reference. 
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3.2.3. Analysis of biopsies from mice stomachs 
 

The biopsies from gastric tissue were fixed in RCL2® (Alphelys, France) and embedded in 

low-melting-point paraffin wax (Poly Ethylene Glycol Distearate; Sigma, USA). Sections of 4 

µm-thick were stained by hematoxylin and eosin treatment (H&E) and examined blindly for 

histopathologic lesions [105], [106]  by L. Fiette, senior pathologist from the Institut 

Pasteur. A typical image of histology is observed in figure 10. We observe the presence of 

granulated tissue associated with inflammatory cell infiltrates. 

 

  
        a)         b) 

 
Figure 10. Histological analysis of gastric mucosa magnified 10x, a) non infected mice and 
b) mice infected with H. pylori SS1 and sacrificed after 12 months post inoculation, which 

displays granulation tissue associated with inflammatory infiltrates. 

3.3. Acquisition of the reflectance from mice stomachs 
 

The reflectance from the dissected stomach was measured using two systems. The first one 

is the spectrometer Konica Minolta CM-2600d from Konica Minolta Co Ldt, Osaka, Japon. 

The second one is the multispectral camera Flux Data FD1665 from Flux Data Inc, 

Rochester, USA. These devices are displayed in figure 11. 

 

  

              a)               b) 
 

Figure 11. Acquisition systems a) spectrometer Konica Minolta CM-2600d and b) 
multispectral camera Flux Data FD1665. 
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3.3.1. Spectrometer Konica Minolta CM-2600d 
 

The spectrometer Konica Minolta includes a light source and a small integration sphere of 

52 mm diameter. This instrument is used to retrieve the reflectance of the measured 

surface from 400 nm to 740 nm each 10 nm in a circular area of 6 mm diameter. This 

system acquires a high spectral resolution in the visible range but it does not include NIR 

wavelengths. Additionally, it requires a black and white calibration before being used. 

Measurements of the intensity of the reflectance were performed on 4 randomly 

distributed areas of mucosa on each stomach, as displayed in figure 12. 

 

 
 

Figure 12. Point measurement of reflectance by the spectrometer at 4 random locations.  

 

3.3.2. Multispectral camera Flux Data FD1665 
 

3.3.2.1. Characteristic of the camera 
 

The multispectral camera Flux Data retrieves 7 monoband images, from which 6 are from 

the visible spectrum (2 images at different bands from the blue, green and red 

wavelengths) and 1 in the near infrared. Even though the spectral resolution is inferior in 

comparison with the spectrometer, the advantage is the spatial resolution and the 

acquisition of the NIR waveband.  

 

Physically, this camera has 3 independent sensors for the acquisition. The images are 

acquired almost at the same time. The measured delay between the trigger from each 

sensor is 1 ms. The acquisition software was developed in C++ and it takes advantage of 

the SDK from the manufacturer. In figure 13 is displayed the normalized sensibility of each 

channel from the multispectral camera. 
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Figure 13. Normalized sensibility of each channel of the multispectral camera Flux Data 

FD1665. 

 

The light source used for the acquisition of the reflectance was a Xenon lamp, which is 

typically found in the medical domain. The geometry between the multispectral camera 

and the light source plays an important role in the measurement. The system is configured 

at 45° between the light source and the multispectral camera. Additionally, 2 linear 

polarizers are included, one for the light source and the other for the multispectral camera 

configured in cross polarization. The polarizers and the geometric alignment are used to 

reduce the areas of specularity in the multispectral images. The general view of the setup is 

displayed in figure 14. A white calibration was performed before each acquisition 

campaign. 

 

 

 

Figure 14. Set up for the acquisition for the multispectral acquisition of ex vivo samples 

from mice stomach a) front view and b) isometric view. 

 

a) b) 
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3.3.2.2. Stomach segmentation from multispectral image  
 

In the acquired multispectral images from the mice we can observe the stomach, the 

background which is a white tissue and sometimes some traces of blood. In order to 

extract the mice automatically we take in consideration the homogeneity of the surface of 

the stomach in comparison with the rugosity from the background. Taking advantage of 

this characteristic we developed an algorithm based on texture. This procedure is detailed 

in figure 15 and explained in the following paragraphs. 

 

The multispectral image includes the wavelengths in the visible range. Thus it is straight 

forward to compute a white light image as if it were observed by the naked eye. For this 

work, the computed image has only visualization purposes since it facilitates the 

observation of the background, the stomach and its shadow as displayed in figure 15.a).  

 

The simulated white light image is obtained by removing the NIR channel and separating 

the 6 remaining channels in pairs which are later on averaged to obtain an RGB image so 

that the first two wavebands are used for the blue channel, the third and fourth channels 

are the green channel and the fifth and sixth wavebands are used for the red channel. 

 

In the case of the automatic segmentation, we use the third waveband of the multispectral 

image which is the green channel from the first sensor. This image is displayed in figure 

15.b). In general, the green channel is used in applications of computer vision because 

most of the color cameras are based on a Bayern patter. This configuration has the 

particularity that green sensors are more numerous than red and blue [107] so that, the 

output green image is the result from a higher population of samples. 

 

The edges of the object are obtained by applying a high pass sobel filter of 3x3 pixels in 

horizontal configuration which is displayed in equation 30. Thanks to this filtering we 

obtain an image    with the horizontal edges. The pixels in the border of the image were 

duplicated so that 2 extra rows and 2 extra columns are included to apply the filter and 

retrieve an image of the same size. 

 

   [
   
   

      
] eq (30) 

 

The transpose of this sobel filter is used to obtain the image Iy with the vertical edges. The 

magnitude of the gradient is obtained by equation 31. The resulting image with the edges 

is displayed in figure 15.c). 

 

       √  
    

  eq (31) 
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  a) 

 
  b) 

 
  c) 

 
  d) 

 
  e) 

 
  f) 

 
  g) 

 
  h) 

Figure 15. Segmentation of the stomach from mice. a) Original image b) monoband image 

centered at 520 nm c) result from a sobel filter d) opening on the image, e) threshold and 

inversion, f) entropy filter and identification of the centroid of the stomach, g) estimated 

mask of the stomach and h) segmented stomach. 

Stomach 

Blood 

artifact 

Shadow 
Background 
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The next step includes the morphological operator opening which is applied with a circular 

mask of 5x5 pixels in order to increase the edges as observed in figure 15.d). Then, the 

image is binarized so that any edge superior to a threshold of 0.01 is equalized to 1. Then, 

the image is inverted to obtain the stomach in white as displayed in figure 15.e.  

 

At this point, we observe a clear contour of the stomach but unfortunately, this 

segmentation also included the shadow from the stomach on the tissue. In order to 

identify this area, we compute the entropy in a window of 9x9 pixels so that the shadow 

will appear as a soft white area under the contour from the mice clearly observed in figure 

15.f). After that, the centroid from the mice is estimated and displayed as a blue spot. The 

coordinates of this centroid are used as a seed to a region growing algorithm to segment 

the stomach which mask is displayed in figure 15.g). Finally, the segmented mouse from 

the color image is displayed in figure 15.h) for reference. 

 

After that, four areas of 6 mm diameter (5784 neighbor pixels in a diamond shape) were 

randomly extracted from the multispectral image, following the description in figure 12. A 

mean spectrum from each area is computed and used for the statistical analysis. This 

procedure was repeated 10 times obtaining homogeneous results at each iteration. In 

order to validate this conclusion, we take advantage of the statistical analysis Anova which 

returned a p value higher than 0.1, confirming that there is no statistical significant 

difference between the iterations. The aim of this procedure is to simulate the random 

acquisition performed with the spectrometer and therefore, facilitate the comparison of 

the two acquisition systems with the statistical tools.  

 

3.4. Bacterium colonization and histopathological results 
 

The results from colonization of H. pylori are displayed in figure 16. The colonization is 

expressed in cfu/g (colony-forming unit per grams). The colonization was slightly reduced 

within time but finally stabilized which is an indicator of the infection of the bacterium in 

the tissue. Generally speaking we observe that the mice scarified at 7 and 12 months after 

inoculation had a similar concentration of the bacteria. In the particular case at 12 months 

the high variation in the bacterium indicates that the colonization in one mouse was higher 

than the other subjects. In any case, taking in consideration the concentration of the 

bacteria after 12 months post inoculation, it is clear that the stomachs had developed 

gastritis. 
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Figure 16. Colonization of the bacterium H. pylori in the stomach of mice, sacrificed in each 

acquisition campaign. 

All the infected mice showed inflammatory cells infiltrates. The evolution of the disease is 

displayed in table 5 from precocious to a chronic inflammation. A mixed inflammatory 

infiltrates and glandular structures were identified by histological analysis at each 

acquisition campaign in the inoculated group. As expected, these modifications in the 

tissue were not observed in the control group. These gastritis modifications at 

microscopical level are the aim of this study. In particular, their identification based on the 

analysis of the reflectance will be discussed in the next section. 

 

Table 5. Evolution of the inflammation of the gastric mucosa after infection by H. pylori. 

Time after inoculation of 

 H. pylori 
Infiltration Diagnosis 

1 month Discreet erythema Precocious inflammation 

3 months Dense with polynuclear cells Severe acute inflammation 

7 months lymphoplasmocytic Mild chronic inflammation 

12 months lymphoplasmocytic Chronic inflammation 

 

3.5. Statistical analysis of the reflectance  
 

This section is devoted to the analysis of the reflectance acquired from the tissue. In order 

to identify the wavelengths which are candidates for the differentiation of the pathology, 

we take advantage of statistical analysis. In this sense, we take in consideration that the 

samples are originated from two independent groups and that the reflectance is the 

quantitative response variable. In chapter 2 was detailed some of the statistical non 

parametric test that could deal with these constraints. 
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As a departing point, we assume that mice from the control group have normal mucosa so 

that they can be used as a reference to normalize the spectra from the inoculated mice 

between the different acquisition campaigns. This normalization is performed by using a 

ratio between the spectra from inoculated mice and the mean of the control group of the 

session. The advantage of this normalization is that it allows us to observe the trend of the 

data and a fair comparison between the different acquisition campaigns. 

 

The statistical analysis is divided in two parts for each acquisition system. The first one is 

oriented to identify the wavelengths which display statistical significant differences. It 

includes a comparison between the two groups (inoculated and control group) at each 

acquisition campaign following an individual evaluation of each acquired wavelength. This 

analysis is performed by Wilcoxon-Mann-Whitney non-parametric test. This test is oriented 

to identify a difference in the medians as was explained in chapter 2 so that having the 

distribution functions      and      for the control and inoculated group respectively, we 

test the null hypothesis where both groups have the same distribution and the alternative 

hypothesis H1 where a shift is included in the distribution (             for a    ). 

 

The second part of the analysis is oriented to verify that from the inoculated group, we can 

observe statistically significant variation of the reflectance in each acquisition campaign. 

For this purpose, an extension of the Wilcoxon-Mann-Whitney non-parametric test is 

Kruskal-Wallis which is applied on the data from the normalized inoculated mice, so that 

we test the null hypothesis where the distribution from the normalized inoculated data at 

each campaign is the same (                                      ) and the 

alternative H1 where there is at least a pair       .  

 

3.5.1. Analysis of the control group 
 

In figure 17 are displayed the box plots of the raw spectra acquired with the spectrometer 

from the control group. The first point to highlight is the similitude on the measurements in 

each acquisition campaign, so that mice with normal mucosa display the same trends on 

the spectrum.  

 

On the other hand, we observe from this figure variations in the amplitude of the spectrum 

between the different acquisition campaigns, even though the samples were collected 

from H. pylori free mice. This situation was expected because these changes could be 

related to the biological conditions such as diet, environmental temperature, month of the 

year, humidity, etc. Overall, it is important to highlight that we assume that these 

variations on the amplitude of the spectrum are related to the biological conditions and 

not to the infection and therefore, we expect that the inoculated mice will be affected by 

these biological conditions in the same proportion as the control group. 
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a) 

 

b) 
 

  
c) d) 

 

Figure 17. Box plots from the samples of the control group at a) 1 month, b) 3 months, c) 7 

months and d) 12 months after inoculation. 

 

In the case of the spectra acquired with the multispectral camera, it displayed a similar 

trend that the spectra acquired with the spectrometer. In figure 18 is displayed the spectra 

collected from the control group. Similar to the spectrometer, we first highlight the 

homogeneity on the collected spectrum at each acquisition campaign. The exception is the 

control group at 3 months post inoculation. In this acquisition campaign the acquired 

reflectance from the control group was observed homogeneous in the measurements from 

the same stomach but different between the subjects from the same acquisition campaign. 

This situation is mainly related to the illumination conditions which were not completely 

homogeneous between the stomachs, producing as a consequence the observed variation 

in the reflectance. Even though the acquired reflectance shows some differences in 

amplitude, the average behavior of the data is similar to the one acquired by the 

spectrometer. Under these circumstances, we decide to pursuit the study considering this 

variation of the illumination as part of the inherent noise of the signal. The next section is 

devoted to the analysis between the inoculated and control group. 
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Figure 18. Box plot from the samples from the control group acquired with the 

multispectral camera. 

 

3.5.2. Analysis between inoculated and control group 
 

This analysis is oriented to identify the wavelengths which could be used for diagnosis of 

gastritis. In figure 19 is displayed the mean of the normalized spectrum from the inoculated 

group from each acquisition campaign. It also highlights the wavelengths which were 

statistically significant at each acquisition campaign resulted from Wilcoxon-Mann-Whitney 

non-parametric statistical test at a level of significance (p < 0.05). In our case, these are the 

wavelengths which are candidates for the diagnosis that will be discussed in the following 

paragraphs. 
 

 
Figure 19. Normalized data from the spectrometer at each acquisition campaign. The 

statistical significant wavelengths retrieved from Wilcoxon-Mann-Whitney analysis are 

highlighted.  
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In the statistical analysis on the data acquired with the spectrometer we observe that the 

bands between 620 and 660 nm are statistically significant at 1 and 3 months after 

inoculation. The changes at these wavelengths could be originated on the blood 

oxygenation or on the variation in the size of the scatters as showed in the curves from the 

theoretical model of light tissue interaction detailed in chapter 2.  
 

In the case of 3 months after inoculation, all the wavelengths were identified as significant 

with the spectrometer. This situation makes us consider the origin of these changes on the 

blood concentration which modifies the full spectrum as showed in the theoretical model 

of light tissue interaction from chapter 2. In this sense, this result is coherent because a 

change in the blood concentration is known to be related to an acute inflammation due to 

the increment on fluids, coagulation factors and inflammatory infiltrates [108]. 

 

In figure 20 are displayed the results of the normalization of inoculated mice with respect 

to the control group acquired with the multispectral camera and the significant 

wavelengths resulted from Wilcoxon-Mann-Whitney non-parametric test. 
 

 
Figure 20. Normalized data from the multispectral camera and the results from the 

statistical analysis. 

We first highlight that in general the data displays similar trends with both acquisition 

systems; only the acquisition campaign at 12 months after inoculation shows a different 

trend. There is a strong variability on the acquired data, which is expected considering its 

biological origin and the acquisition conditions. The red wavelengths are statistically 

significant in the first and seventh month after inoculation. In contrast with the data from 

the spectrometer, the infection at 3 months is not considered statistically significant even 

though there is a marked difference with respect to the control group. This situation was 
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expected due to the wide variation in the samples from the control group as previously 

described. As a consequence of this situation, we consider that the low signal to noise ratio 

makes more difficult the identification of the differences between the inoculated and the 

control group. 

 

In the case of the acquisition campaign at 7 months post-inoculation almost all 

wavelengths were statistically significant from the multispectral camera. This situation 

makes us consider the cross talk between the channels from the multispectral camera since 

each measurement includes other wavelengths as can be observed in figure 13, in 

particular the first channel where an expected measurement between 420 and 460 nm will 

also include the wavelengths between 510 and 550 nm.  

 

Another point to consider is the fact that ex vivo samples display different constant 

modifications [109]. In particular the blood concentration, a main feature that is typically 

reduced after dissection. Even though most of the blood remains after sacrifice, it could 

leak in random proportions during the preparation and acquisition of the reflectance. 

Additionally, the cells will die slowly due to a lack of oxygen and the mucosa will dry within 

time. 

 

The results from the statistical analysis from the spectrometer and the multispectral 

camera allow us to consider some wavelengths that could be candidates for diagnosis of 

the gastritis. For this purpose, we take into account the sensibility of each channel from the 

multispectral camera. These wavelengths are displayed as a summary in table 6. 

 

Table 6. Band of wavelengths which are candidates for diagnosis of the gastritis. 

 430 - 450 nm 470 – 590 nm 620 – 680 nm 

Precocious 

inflammation 

Decrement of the 

reflectance 
NS 

Increment of the 

reflectance 

Severe acute 

inflammation 

Decrement of the 

reflectance 

Decrement of the 

reflectance 

Decrement of the 

reflectance 

Mild chronic 

inflammation 

Decrement of the 

reflectance 

Decrement of the 

reflectance 

Decrement of the 

reflectance 

Chronic 

inflammation 

Decrement of the 

reflectance 

Increment of the 

reflectance 
NS 

NS: Not significant 

 

Generally speaking the band of wavelengths between 430 to 450 nm and 470 to 590 nm 

could be related to an increase of the oxygen saturation during the development of 

gastritis. The changes in the band between 620 to 680 nm could be related to the oxygen 

saturation and the size of the scatters presented in the tissue.  
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3.5.3. Analysis between the acquisition campaigns 
 

The second part of the analysis is based on Kruskal-Wallis to identify if the data between 

the acquisition campaigns have significant differences. This analysis is based on the 

reflectance from the inoculated mice which were normalized by the control group from 

their respective acquisition campaign. The results are displayed in table 7. 

 

Table 7. Wavebands with significant differences between acquisition campaigns from the 

normalized inoculated data. 

 
Wavebands identified as 

statistical significant (p < 0.05) 

Wavebands not identified as 

statistical significant 

 (p ≥ 0.05) 

Spectrometer 
400 – 410 nm 

430 – 740 nm 
420 nm 

Multispectral camera 

Flux Data 
420 – 810 nm None 

 

In the case of the spectrometer, we observe that only the waveband at 420 nm was not 

significant between the acquisition campaigns; all the others were statistical significant at 

p<0.05. This particular situation indicates that the spectrum evolve differently during the 

development of the gastritis, the exception was the band at 420 nm, which had the same 

behavior in all the stages of the pathology, making it not relevant for diagnosis. 

 

A similar procedure was followed for the case of the multispectral camera Flux Data. In this 

case all the wavebands were identified as statistically significant between the acquisition 

campaigns at p < 0.05. The waveband at 420 nm could not be identified as significant 

because the acquisition channel from the multispectral camera collects a wide spectrum 

which includes mainly wavebands identified as statistical significant.  

 

Given these points and the non-significant variations between the samples at the same 

acquisition campaign, the interpretation of the analysis performed with Kruskal-Wallis is 

that there are different diagnosis between the acquisition campaigns for the inoculated 

mice and that this situation is observed with both acquisition systems. Additionally, this 

situation is confirmed with the diagnosis from the histological analysis. 

 

The encouraging results from this study with the statistical analysis of the reflectance and 

the identification of wavelengths which are candidates for the diagnosis are considered as 

evidence that there are measured differences in the reflectance related to the 

development of gastritis. Therefore, a main outcome from this pilot study is the 

foundations to start a similar study with a larger group of mice. 
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3.6. Summary  
 

Mice model of infection of H. pylori is a key element in the analysis of the development of 

gastritis. We oriented this study to the identification of potential wavelengths which could 

be used in the diagnosis of gastritis. 

 

The mice were separated in two groups, the inoculated with H. pylori and the control group 

bacterium free. There were 4 acquisition campaigns at 1, 3, 7 and 12 months after 

inoculation where mice from both groups were sacrificed. 

 

The reflectance from mice stomach was collected by two different acquisition systems. The 

first one was a spectrometer which allows collecting point measurements at high spectral 

resolution. The second one was a multispectral camera with high spatial resolution but low 

number of wavelengths available. 

 

The study was based on the analysis of the reflectance by applying two non-parametric 

statistical tests. The first one is Wilcoxon-Mann-Whitney oriented to identify if there is a 

change in the reflectance between the group inoculated with H. pylori and the control 

group bacterium free. The second one is Kruskal-Wallis to identify changes in the 

normalized data from inoculated mice between acquisition campaigns.  

 

The results from this study shows a significant variations in the mucosa measured at 

different stages of the development of the pathology between the two groups analyzed. 

The conclusion from these analyses shows that 3 bands of wavelengths are candidates for 

the diagnosis of gastritis. These bands are delimited to 430 to 450 nm, between 470 and 

590 nm and between 620 and 680 nm and could be related to changes in the size of the 

scatters, blood concentration and increments in the oxygen saturation during the 

development of the pathology. 
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Chapter 4 

 

Clinical study of gastritis 
 

Following the previous chapter oriented to the development of gastritis in a mice model, 

this chapter turns on the clinical study of the reflectance and how it could help in the 

identification of gastritis in humans. For this purpose, a first multispectral acquisition 

prototype was developed in order to collect multispectral images from the stomach. We 

describe the equipment and the algorithms developed to process the multispectral images. 

In this sense, we focus on statistical analysis of the reflectance to show the changes in the 

spectrum between pathological and normal mucosa. These modifications will be discussed 

and we will emphasize the wavelengths which are candidates to improve their diagnosis. 

 

4.1. Filter wheel based prototype for multispectral acquisition 
 

This subsection deals with the first prototype used to acquire multispectral images and the 

processing of these images to extract the spectrum.  

 

4.1.1. Acquisition system 
 

A general view of the first prototype developed for this doctoral work is shown in figure 21. 

White light is produced by a Xenon lamp of 175W which is typically used in 

gastroendoscopy. This light is filtered sequentially by one of six interference filters of 

25mm diameter placed in a rotating filter wheel. The filtered light is transported by the 

illumination fibers of the gastroendoscope in order to be delivered at the stomach and 

used to illuminate the gastric tissue with a single waveband at a time. The RGB camera 

from the gastroendoscope acquires the image, which is transferred into the 

gastroendoscopic unit (Olympus Exera II). Finally a computer connected to the 

gastroendoscopic unit stores the images in a video sequence (640×480 pixels, 25 fps).  
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Figure 21. Block diagram of the first acquisition prototype based on a filter wheel. 

 

The six interference filters used in the filter wheel have center wavelength of 440, 480, 

520, 560, 600 and 640 nm with a full width at half maximum of 80 nm. These filters were 

selected in order to measure the visible spectrum equitably, taking into consideration the 

spectral sensitivity of the camera from the gastroendoscope, which is limited for red 

wavelengths. Additionally, the measurements of the absorption peaks of hemoglobin were 

also considered, in particular, the first peak at 420 nm and those occurring between 530 

and 650 nm. This configuration is advantageous for a fast implementation since only the 

illumination is modified which allows to be used with any commercial endoscope. An 

example of the acquired images at different wavebands is displayed in figure 22. 

 

   

 

   
 

Figure 22. Images acquired from gastric tissue at different wavebands from the prototype 

based on a filter wheel. 

 

The video containing the multispectral images was deinterlaced using Yadif algorithm 

[110]. After that, the image from each waveband was extracted semiautomatically, taking 

in consideration the frame rate, the illumination time of each filter and their transition 
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time. The resulting acquisition time is approximately one second for each multispectral 

image. This acquisition time is not negligible, since involuntary movements of the gastric 

tissue introduce motion artifacts. With this in mind registration was performed between 

the monoband images in order to reduce the impact of the tissue deformation and shifting. 

 

4.1.2. Registration of multispectral images 
 

The registration of images acquired during gastroendoscopy includes some constraints due 

to the nature and conditions of acquisition. For instance, due to the high homogeneity of 

gastric tissue, the moist environment and the use of different wavebands for illumination, 

traditional registration methods using salient points fail to register the images. In the 

present doctoral work, CLAHE algorithm [111] was first applied as an image contrast 

enhancement to improve the quality of the image. This algorithm is based on Adaptive 

Histogram Equalization algorithm where the image is divided in 64 regions or tiles from 

which a histogram is calculated in each of them and transformed into a uniform 

distribution. The maximum number of elements at each gray level is limited or clipped in 

order to avoid noise enhancement, specifically from homogeneous areas. Finally bilinear 

interpolation is applied to neighboring tiles to create the final image [112]–[114]. 

 

After performing contrast enhancement on each monoband image, hierarchical motion-

based estimation [115] was used for registration. In this superresolution approach, 5 levels 

of Gausssian pyramids are calculated, the size of the image at each level is half the size of 

the previous one. These images are then used to estimate the motion according to an 

affine model [54]. Starting from the smaller image, the affine transformation is calculated 

and transferred between the different levels of the pyramid, where it is used as initial 

estimation and refined by including the local information, aimed to obtain at the end the 

best matching. 

 

Taking in consideration the sequential acquisition, the first and the last monoband images 

acquired have the longer elapsed time and therefore, more difficult to register. Under 

these circumstances, the image at 560 nm was used as a reference for the registration, 

since it is in the middle of the sequence, having as an advantage that the elapsed time is 

only half compared to the extreme images of the sequence. The computed transformations 

are then applied to the original raw multispectral images. In figure 23 is displayed a 

simulated white light image from the multispectral image. We highlight the improvements 

in the sharpness of the computed image before and after registration. 
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Figure 23. Simulation of white light image calculated from a) overlapping the raw 

monoband images and b) registered monoband image. 

 

4.1.3. Processing of multispectral images 
 

The acquired multispectral images could show areas of tissue such as the pylorus, tissue 

folds and artifacts including gastric bubbles and specularities which are not interesting to 

analyze. Thus, aimed to extract the spectrums for the analysis of the pathology, a region of 

interest was selected manually by the user to remove these artifacts. Only the specular 

areas were removed automatically by thresholding, which was set to a value of 240 / 255. 

In figure 24 is showed the result of this procedure.  

 

 
 

 
 

Figure 24. a) Registered image and b) selected region of interest from the image. 

From the region of interest, 20 patches of size 5 x 5 empirically chosen were randomly 

selected and averaged in order to obtain a single spectrum from the multispectral image. 

Then, the spectrum was normalized using L1-normalization according to equation 16 from 

the chapter 2. This procedure was repeated 10 times per multispectral image to include the 

possible variations of the spectrum in the multispectral image. The next section is devoted 

to the analysis of the extracted spectra. 

 

a) b) 

a) b) 
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4.2. Database 
 

This subsection is oriented to the description of the subjects and the multispectral images 

that were collected.  

 

4.2.1. Subjects 
 

The population for this clinical study included patients referred to endoscopic unit of the 

hospital Ambroise Paré, Boulogne-Billancourt, France, during the period of one year 

between October 2012 and November 2013. These patients provided informed consent 

and were scheduled for gastroendoscopy under general anesthesia with the indicator for 

biopsy collection from the antrum and corpus. These biopsies were placed in 10% formalin 

and embedded in paraffin in order to cut transversal sections of 4 µm thickness. These 

samples were stained by HES for routinely histological analysis. Additionally, PCR 

(Polymerase Chain Reaction) and immunochemistry using PFLEX Polyclonal Rabbit antibody 

were performed to grade the infection from H. pylori and the gastric pathology according 

to the recommendations from the Updated Sydney System. The histopathological diagnosis 

was performed by a senior pathologist. 

 

The characteristics of the patients are displayed in table 8. Most of the patients displayed 

normal mucosa and therefore are placed in the control group. The Standard Error of the 

Mean (SEM) estimates the discrepancy on the ages of the patients. There were no 

significant differences in gender or age for this study between the groups (p > 0.1).  

Table 8. Clinical features from the patients. 

 
Number of 

patients  

Age 

(+/-SEM) 

Gender ratio 

(H:F) 

Gastritis group 8 54.87 (5.77) 3:1 

Control group 17 59.64 (2.61) 0,7:1 

 

4.2.2. Collected multispectral images 
 

Multispectral images from the antrum were collected from 25 patients who were eligible if 

no visible lesions were observed during gastroendoscopy whereas histological analysis 

found one of two diagnoses: active gastritis or normal mucosa.  

 

In this study, the waveband at 480 nm was removed because the filter was broken in the 

middle of the acquisition campaign. Under these circumstances, the data at this waveband 

was erratic and therefore, not suitable for this study. 
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Taking into consideration that the source of light was constant, the images acquired when 

the gastroendoscope was far away from the gastric tissue were considerably dark, 

producing a low signal to noise ratio. In consequence, these multispectral images were not 

taken in consideration. Additionally, since the stomach could move during the acquisition, 

we used the multispectral images where the images at each waveband were sharp and 

display low movements between them so that they were suitable to be registered 

according to the procedure described in the previous section. 

 

The mean number of studied images for each clinical condition is presented in table 9. 

There was no significant statistical difference between the two groups in terms of mean 

number of multispectral images (p > 0.1). 

 

Table 9. Multispectral images from the two clinical groups. 

Diagnosis 
Gastritis group 

(N=8) 

Control group 

(N=17) 

Mean number of 

multispectral images per 

patient (+/- SEM) 

4.63 (1.13) 5.29 (0.92) 

 

Granted that there is no bias in the database related to the number of patients, age, 

gender or mean number of multispectral images, the next step is the statistical analysis of 

gastritis which will be addressed in the following section. 

 

4.3. Analysis of gastritis 
 

This subsection deals with the clinical study of inflammatory gastritis due to infection by H. 

pylori. The study is divided in a qualitative and a quantitative analysis between patients 

diagnosed with gastritis and those diagnosed with normal mucosa. This analysis is oriented 

to identify the changes in the spectrum due to the development of the gastritis. 

 

4.3.1. Qualitative analysis of multispectral images 
 

The multispectral images were observed by senior endoscopist Dominique LAMARQUE. 

There were no visible differences between images under white light from control or gastric 

patients as illustrated in figure 25 (a-b). The band at 560 nm highlighted areas with a wooly 

dark weft appearance on one patient with active inflammation as presented in figure 25d. 

This showed evidence of texture modification which is not visible under white light. In 

contrast, the images from subjects in the control group showed a smooth uniform mucosal 

surface as shown in figure 25 c.  

 



 Page 79 
 

 

Figure 25. Images under white light from control group (a) and gastritis (b). In the band at 

560 nm, we observe that the tissue from the control group (c) is smooth, in comparison 

with the gastritis one (d) which presents black spots and a non-uniform surface. We 

observe that the band at 560 nm highlights areas with a wooly dark weft appearance on 

the patients with active inflammation as is presented in figure (d). 

4.3.2. Statistical analysis 
 

The patients were grouped under one of two clinical conditions based on the 

gastroendoscopic and histological results: control group or pathological group (active 

gastritis). The control group presented few mononuclear cells in the mucosa and no H. 

pylori infection. On the other hand, the pathological group showed positive H. pylori 

infection, as assessed by immunohistochemistry or by specific PCR and inflammatory 

infiltrates, including mononuclear and polynuclear cells. 

 

We computed a reference spectrum for the normalized data of the control group, as the 

mean response at each captured waveband. Later on, each patient from the gastritis group 

was compared to the control group in order to measure the percentage of variation. In 

order to quantify the differences between the normalized spectra from the two groups, we 

use ANOVA statistical test to identify if there is a significant statistical difference between 

them. Additionally, this analysis allows us to identify the wavebands which are candidates 

to be used for diagnosis. 
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The samples from the patient with a healthy diagnosis are displayed in figure 26. General 

speaking we observe a homogeneous distribution. 

 

 

Figure 26. Distribution of samples with a healthy diagnosis. 

The analysis of the spectra from pathological patients is shown in figure 27. We observed 

that the bands at 560 nm, 600 nm and 640 nm have statistical significance in order to 

identify the gastritis. In particular, the band at 560 nm had the minimum p-value among all 

the collected wavebands.  

 

Figure 27. Ratio of variation in the spectrum from patients with active inflammation 

compared with the reference spectrum from control group. 
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The waveband of 560 nm showed a significant decrement of the reflected light with 

respect to the reference computed from the control group. On the other hand, we clearly 

observed a significant increment of the reflected light presented in the wavebands of 600 

nm and 640 nm. These results are similar to what was observed in the mice model as can 

be seen in the chapter 3, so that the wavebands above 560 nm are identified as significant 

in both analyses. However, the red wavelengths showed an increment of reflectance in 

humans whereas in mice was observed a decrement of reflectance. The band at 440 nm 

displayed a decrement in the reflectance in both cases, but, it was not identified statistical 

significant for human diagnosis. The band at 520 nm was important for diagnosis in the 

mice, but it is not the case for humans. These new findings lead us to reduce the 

wavelengths which are candidates for the diagnosis of the gastritis, on which future studies 

could be based, in particular focusing on wavelengths above 540 nm.  

We would expect the blood concentration as a main feature involved in the differentiation 

of the gastritis. This feature is mainly based on the amplitude of the spectrum as discussed 

in chapter 2, which measurement requires an acquisition of the reflectance under 

controlled conditions with a strictly constant distance and angle between the prove and 

the tissue. Unfortunately, these conditions cannot be achieved with this acquisition 

system. 

Taking special attention to the wavelengths above 540 nm, we first consider the waveband 

at 560 nm, which could be related to the absorption peak of hemoglobin as was discussed 

in chapter 2 and 3. In particular, this waveband could be correlated to microvessels density, 

which is identified in intramucosal gastric carcinoma [116], [117].  

We have no such clear explanation for the reflectance changes observed at the bands at 

600 nm and 640 nm, but we have some hypotheses. During gastritis, the inflammatory cells 

such as neutrophils are recruited in the stroma. It could be evoked that as part of the 

defense mechanism of the cells the orientation and concentration of heavy proteins could 

be different and may also contribute to the modifications of the reflectance. Under this 

situation, we consider two cases; the first one is the laminin, a protein concentrated in the 

cells which main activities are related to repair the cells. The second case is the collagen 

network produced by the fibroblasts, which are also involved in tissue repair [118]–[120]. 

The density of inflammatory infiltration and edema are other hypotheses. It may be the 

case that these mechanisms of defense play an important role in the increase of 

reflectance due to the rearrangement of the cytoskeleton and the storage of water and 

other substances, included but not limited to a higher presence of oxyhemoglobin, whose 

reflectance is higher between 600 and 700 nm in comparison with deoxy-hemoglobin [121] 

as was observed in chapter 2.  

Even though the results from this preliminary study are promising, the small sample of 

patients is considered as a limitation. Therefore, a comparative study on a large scale is 
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required for future studies. Since the gastritis is only one stage in the cascade of cancer 

development, the next analysis is oriented to the identification of precancerous lesions. 

 

4.4. Summary  
 

In the cascade of cancer development, gastritis originated in an infection by H. pylori is 

considered as an early stage which could evolve into other types of lesions if the long term 

infection is not treated.  

 

In the tissue diagnosed as gastritis, the mechanism of defense and repair from the cells are 

activated, producing changes in the reflectance. In order to study these small changes 

between gastritis and normal mucosa we presented a first acquisition prototype based on 

a filter wheel which helped us to collect the spectra of gastric mucosa from patients 

diagnosed with two different pathologies: normal mucosa and gastritis.  

 

The analysis of the collected spectra includes a qualitative and quantitative analyses to 

identify the changes in the tissue between pathological and normal mucosa. In this sense, 

we observe from the qualitative analysis wooly patches in the waveband at 560 nm from 

some patients diagnosed with gastritis. In contrast, none of the patients with normal 

mucosa displayed this feature.  

 

The quantitative analysis highlighted some wavebands which are candidates to the 

identification of the gastritis. The results are consistent to what was observed in the mice 

model discussed in chapter 3. In particular, we observe that the bands above 540 nm are 

strong candidates for diagnosis. Relating these results with the model of light tissue 

interaction, we could consider two main features for diagnosis with this acquisition 

prototype: oxygen saturation and size of the scatters. 
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Chapter 5 

 

Clinical studies on precancerous lesions 
 

This chapter is devoted to two clinical studies of precancerous lesions in the stomach. The 

chapter is divided in two parts, according to the acquisition system used to acquire the 

reflectance of gastric tissues. The first clinical study is based on the collected data from the 

prototype based on a filter wheel, which was described in chapter 4. This prototype has 

some limitations, mainly on the acquisition time and the range of wavelengths to capture 

so that we develop a second prototype to overcome these limitations. Therefore the 

second clinical study is based on the collected data from the system GEMS (Gastro 

Endoscope MultiSpectral) which takes advantage of a multispectral camera Flux Data. 

Details about the system will be described in the following sections.  

 

In the cascade of cancer development the precancerous lesions are diagnosed mainly from 

a not treated chronic gastritis by H. pylori. This infection leads to modifications in the tissue 

as was described in chapter 1 and later on into precancerous lesions. For these clinical 

studies, we included patients diagnosed with precancerous lesions, containing atrophy and 

intestinal metaplasia. Dysplasia was also considered but there were no patients with this 

diagnosis in our database.  

 

In the analysis of the reflectance we perform a statistical analysis on the samples acquired 

from patients with precancerous conditions and those with healthy mucosa. We 

additionally implement machine learning techniques to identify the multispectral images 

collected from precancerous conditions. 

 

5.1. Differentiation of precancerous lesions from the prototype 

based on a filter wheel 
 

This subsection deals with the clinical study based on the reflectance spectrum acquired 

from the prototype based on a filter wheel which was described in chapter 4. It is 

important to mention that the preprocessing steps described in the same chapter are also 

applicable for this study, so that we will use a single normalized spectrum from each 

multispectral image. The normalization of the spectrum is L1-normalization as described in 

chapter 2. 
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5.1.1. Database 
 

In this subsection are described the subjects and the multispectral images that were 

collected during gastroendoscopy.  

 

5.1.1.1. Subjects 
 

Similar to the study of gastritis from chapter 4, the population for this clinical study 

included patients referred to endoscopic unit of the hospital Ambroise Paré, Boulogne-

Billancourt, France, during the period of one year between October 2012 and November 

2013. The characteristic of these patients is that they were scheduled for gastroendoscopy 

under general anesthesia with the indicator for collection of biopsies from antrum and 

corpus and that these patients showed no evidence of visible lesions during 

gastroendoscopy. The biopsies were histologically analyzed for the diagnosis of the patient. 

  

The characteristics of the 17 patients are displayed in table 10. Most of the patients were 

diagnosed with healthy mucosa and therefore are placed in the control group. The results 

showed that 12 patients were diagnosed with healthy mucosa; 5 patients displayed 

precancerous lesions in their histological samples. It is also included the SEM to estimate 

the discrepancy on the ages of the patients. There were no significant differences in gender 

or age for this study between the two groups (p > 0.1).  

 

Table 10. Clinical features from the patients. 

 

Number 

of 

patients  

Age 

(+/-SEM) 

Gender ratio 

(H:F) 

Group with 

precancerous 

lesions 

5 68.6 (14.87) 3:2 

Control group 12 64.5 (11.36) 1:1 

 

5.1.1.2. Collected multispectral images 
 

From the 17 patients we use in total 102 multispectral images for this study, 74 correspond 

to normal mucosa and 28 to precancerous mucosa. Since the power of the source of light 

was constant, the observed tissue in the multispectral images could be overexposed or 

underexposed, depending if the gastroendoscope was close or far to the gastric tissue. In 

this sense, the low signal to noise ratio from the image makes them not suitable for this 

study. Additionally, involuntary movements of the gastric tissue could arrive during the 
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acquisition of the multispectral image. We use multispectral images where the images at 

each waveband display low movements between them so that they could be registered 

following the procedure described in chapter 4. 

 

The mean number of studied images for each clinical condition is presented in table 11. 

There was no significant statistical difference between the two groups in terms of mean 

number of multispectral images for each patient (p > 0.05). 

Table 11. Multispectral images from the two clinical groups. 

Diagnosis 

Group with 

precancerous 

lesions (N=12) 

Control group 

(N=5) 

Mean number of 

multispectral images per 

patient (+/- SEM) 

6.16 (3.38) 4.35 2.39) 

 

5.1.2. Statistical analysis 
 

For this study, the patients were grouped under one of two clinical conditions based on the 

gastroendoscopic and histological results: control group or group with precancerous 

lesions. Similar to the analysis performed on the gastritis, a reference spectrum from the 

control group is computed as the mean measured response from each waveband. This 

average spectrum was used as a reference to measure the percentage of variation of the 

group with precancerous lesions. We observe in figure 28 the box plot of samples from the 

patients with a healthy diagnosis.  

 

Figure 28. Box plot of samples from the control group having a healthy profile. 
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Taking in consideration the trends of the data, we immediately highlight the strong 

similitude with the control group discussed in chapter 4 and the observed homogeneous 

distribution with few outliers highlighted as a red cross. 

The ANOVA statistical test was used to identify the statistical difference between the two 

groups. The results are displayed in figure 29. In this analysis we observe that only the 

wavebands at 480 and 520 nm were identified as significant for the differentiation of 

precancerous lesions. The patients with precancerous lesions showed an increment in the 

reflectance with respect to the reference spectrum of the control group. We must highlight 

that the band at 520 showed the minimum p-value. 

 

Figure 29. Ratio of variation in the spectrum from patients with precancerous lesions 

compared with the spectrum from the control group. 

 

The wavelengths between 460 nm and 540 nm could be related to changes in the 

concentration of oxygen saturation as described in chapter 2. Additionally, the oxygen 

saturation could also be related to modifications in the bands above 600 nm. However, 

these wavebands were not identified as significant in this study. We have no clear 

explanation of this situation, but we consider that it could be related to the contributions 

on the spectrum from fibrous tissues. These fibrous tissues are associated with variations in 

the size of the scatters. In order to validate this hypothesis further studies are required, 

collecting the spectrum below 400 nm and above 600 nm, taking in consideration that 

above 700 nm the water content starts to be measured. 

Another point to consider is that during the development of precancerous lesions, the 

space previously occupied by glands is replaced by fibrous tissues. In this sense, we 

expected significant modifications on the spectrum above 600 nm. However, this situation 
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was not identified; we consider that the acquisition system is not suitable to measure this 

small contribution to the spectrum. Further study is required including wavelengths below 

400 nm and above 700 nm. 

Another key point to consider is the similitude in the behavior of the reflectance with 

respect to the one acquired with the spectrometer in the mice model at 12 months after 

infection from chapter 3. In particular, we pay attention to the behavior of between 450 

and 580 nm where it is observed an agreement in the increment of the reflectance. This 

situation makes us consider a link in the general behavior of the spectrum due to the 

development of malignancies in gastric tissues.  

Based on these discoveries, the next step is oriented to differentiate precancerous tissues 

from our database by applying techniques of classification. 

5.1.3. Classification of multispectral images with precancerous 

lesions. 
 

This subsection is oriented to describe a methodology to process the collected spectrum in 

order to differentiate between two clinical conditions: precancerous lesions and healthy 

mucosa. 

The procedure selected to differentiate the tissue follows a computation of statistical 

features from the normalized spectrum. Then these features are ranked according to their 

discriminative power to differentiate between precancerous and healthy gastric tissues. 

After that a supervised approach of classification is applied to differentiate pathological 

tissues, including an evaluation of the performance of the classification in our database.  

5.1.3.1. Balance of the database for classification tasks 

 
In a classification task, it is known that classifiers could display a low performance when the 

database is imbalanced [122]. The reason is that the generation of classification rules leads 

to generalization of a single rule where all the samples are labeled with the same class. For 

instance, having 10% of samples from one class and 90% of samples from the other class, 

the learning algorithm could generalize to label all the samples as the second class and 

achieve 90% accuracy.  

 

A popular approach for this issue is to balance the database so that both classes have the 

same number of samples. This can be done by oversampling the class with the minor 

number of samples. 

 

In our case, the construction of the database follows a sampling procedure were 20 

patches of 5 x 5 pixels are extracted and averaged to obtain a single spectrum from each 
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multispectral image, as was described in chapter 4. In the resulting database the control 

group have more multispectral images that the precancerous group.  

 

In order to balance the database, we repeat this sampling procedure without replacement 

so that we obtain the same number of spectra for both clinical conditions. It is important to 

highlight that this situation is not an issue when using non parametric statistical test, which 

some of them are used in this doctoral work. 

 

With a balanced database, the next step is the extraction of features from the spectrum. 

 

5.1.3.2. Extraction of features 
 

This step is oriented to obtain projections of the spectrum which can describe in a full or 

partial way the spectrum. For this purpose we assume that the spectrum follows a 

probability distribution which allows us to compute statistical features from it. In table 12 is 

displayed the list of features used for this doctoral work, which includes the features 

mentioned in chapter 2 and the normalized intensities from the collected wavebands. The 

ranking of the features will be explained in the next section. 
 

Table 12. Ordered list of features. 

Rank Feature 

1 Mean of absolute deviation 

2 Mean deviation about median 

3 Standard deviation 

4 Median of absolute deviation 

5 Variance 

6 Waveband at 520 nm 

7 Entropy 

8 Waveband at 480 nm 

9 Kurtosis 

10 Waveband at 440 nm 

11 Waveband at 640 nm 

12 Waveband at 560 nm 

13 Skewness 

14 Waveband at 600 nm 

 

5.1.3.3. Feature ranking  
 

Between the different approaches to rank the features, we chose a filter approach to 

obtain a ranking according to their discriminative information that will not depend on the 

classifier. The metric used is the pooled variance t-test described in chapter 2, from which 



 Page 89 
 

the t value acts as a measurement of the discriminative potential of the features to 

differentiate the pathology. In figure 30 is displayed the measured t value for the features, 

following the ranking of table 12. From this ranking we must highlight that the statistical 

features display a higher rank than the single elements of the spectrum and therefore, they 

are considered as strong candidates to differentiate the precancerous lesions. Additionally, 

the two elements of the spectrum which appears top ranked are precisely those identified 

as significant from the statistical analysis previously described in this chapter namely 480 

nm and 520 nm. 

 

Figure 30. Measurement of the discriminative potential of the ranked features from table 

12 by using pooled variance t test.   

5.1.3.4. Classification 

 
In this doctoral work we apply three common supervised approaches to estimate the 

separation rules between healthy and precancerous tissues. These three methods are K-nn, 

SVM and NN which were described in detail in chapter 2.   

Each of these techniques follows a step of training in order to learn the classes and a 

testing step on unknown data which is data that was not used for the training. In particular, 

this is a key point in the evaluation of the classifiers since the samples from the same 

patient display a strong correlation between them, so that the training and testing should 

not have samples from the same patient. Under these circumstances, we use LOPOCV 

previously described in chapter 2 to use all the samples from one patient at a time as 

unknown data and the remaining of the database is used for training the classifiers.  

In order to avoid a bias, the ranking and classification should be performed in each 

iteration of the cross validation. Therefore, it is obvious that at each iteration the section of 

the database used for training contains always a different combination of the patients 

(total of patients – 1). Under these circumstances, a slightly different ranking of features is 
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obtained for each iteration. Then, we must highlight that the resulting position of the 

features is strongly similar in all the iterations so that a majority vote is implemented to 

obtain the general ranking of features, as displayed in table 12. 

Besides the cross validation, the classifiers are trained and tested iteratively with an 

incremental number of features, starting from the top ranked and adding the next top 

ranked feature in each iteration so that in the last iteration all the features are used for the 

classification. The performance of the classification is quantitatively evaluated based on 

accuracy, sensitivity and specificity.  

5.1.3.5. Results of the classification 
 

In figure 31 we can observe the performance of the classifiers with a different number of 

features, increased progressively by order of rank. Each classifier reaches a maximum 

performance with a different number of features. This situation was expected since the 

features are ranked according to their discriminative information, so that when features 

with low discriminative potential are included, we identify a decrease on the performance 

of the classification.  

 

 
 

Figure 31. Quantitative evaluation of the classifiers with different number of features, 

increased progressively by order of rank, a) accuracy, b) sensitivity and c) specificity. 
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Table 13 displays the best performance of each classifier. For evaluation we consider three 

different aspects. The first one is the simplicity, where a low number of features is 

preferred over a complex and numerous set of features. The second one is the high 

sensitivity to detect precancerous lesions so that if a sample is classified as precancerous it 

is very likely that effectively is precancerous tissue. Generally speaking it is preferable to 

obtain false positive samples or samples of healthy tissue classified as precancerous that 

will follow further medical studies than missing a precancerous lesion. Finally, the accuracy 

to obtain the maximum number of samples from healthy and precancerous tissues 

correctly classified. 

Table 13. Best performance of the classifiers. 

 SVM NN K-nn 

Number of features 2 8 4 

Accuracy 0.77 0.72 0.62 

Sensitivity 0.91 0.85 0.61 

Specificity 0.62 0.59 0.63 

 

The best performance of k-nn is achieved with 61% sensitivity and 4 top-ranked features, 

which is not acceptable for the identification of precancerous tissues. On the other hand, 

the 85% and 91% sensitivity of NN and SVM respectively are strongly remarkable. However, 

SVM outperforms the other classifiers in terms of accuracy, sensitivity and specificity with 

two or four top-ranked features. These strong differences on the classification 

performance are expected since each classifier has a different learning rate. Unfortunately, 

we do not have a clear explanation on the relation between the top ranked statistical 

features with respect to the biological conditions encountered in the gastric tissue. 

These encouraging results show that it could be possible to identify patients with 

precancerous conditions. As part of the improvements, we consider that the inclusion of 

more features could help in the identification, in particular those that can be correlated 

with biological parameters such as the decomposition of the spectrum in absorption and 

scattering. Additionally, we consider that testing other classification approaches such as 

elastic nets and decision trees could provide a more robust solution for the identification of 

malignancies. Further studies should be performed including more patients and other 

gastric pathologies poorly identified during gastroendoscopy.  

The main advantage of the acquisition system based on a filter wheel is that it allows us to 

collect multispectral images from gastric tissues during gastroendoscopy. Regrettably, it 

has two main limitations. The first one is related to the long time required to collect a 

multispectral image. This acquisition time is enough to produce motion artifacts which 

affect the image quality and risk the registration of the monoband images. The second one 

is with respect to the limitation to collect the spectrum above 640 nm, which reduces the 
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capability to analyze the effect of other biological conditions such as water content and the 

size of the scatters in the gastric tissues.  

 

Taking these circumstances in consideration, we propose a different acquisition system, an 

updated version which includes a multispectral camera to collect the multispectral images 

in a single shot and covers a wider spectrum, including the red and near infrared bands. 

This system will be described in the following section. 

 

5.2. Identification of precancerous lesions from the prototype 

GEMS (Gastro Endoscope MultiSpectral) 
 

This subsection turns on the acquisition system GEMS. This system was conceived to 

overcome the limitations identified on the previous prototype which was based on a filter 

wheel. In particular, we increase the spectral range of the system by acquiring the NIR 

wavelengths and the reduction of the acquisition time by collecting a multispectral image 

in a single shot. In the next subsections we will explain the different parts of the acquisition 

system, the processing of the acquired multispectral images and finally, we use this system 

in a clinical study for the identification of precancerous lesions. 

 

5.2.1. Acquisition system 
 

The system GEMS is designed to acquire multispectral images from the gastric mucosa. The 

general diagram is displayed in figure 32. Similar to the prototype based on a filter wheel, it 

takes advantage of a gastroendoscope in order to access the stomach but this time the 

gastric mucosa is observed by two imaging systems. The first one is the camera integrated 

in the gastroendoscope, which we use as a white light image. The second one is from a 

microendoscope which collects the multispectral image. 
 

 
Figure 32. Elements of the system GEMS.  
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The main 5 parts of the system GEMS are the gastroencoscopic unit, the microendoscope, 

the source of light, the block of optics which allows us to transfer the image from the fibers 

to the sensor of the multispectral camera Flux Data and finally the software to pilot the 

acquisition of the images. We will describe each of these elements in the following 

subsections. 

 

5.2.1.1. Gastroendoscopic unit 
 

The gastroendoscopic unit is the Olympus Exera II which includes the gastroendoscope, a 

source of light and a video processing unit. The tip of the gastroendoscope includes the 

fibers to illuminate the gastric tissue, the gastroendoscopic camera, an injector of water 

and air for use during medical procedures and the operational channel. The other end of 

the gastroendoscope is bifurcated. One connector goes to the source of light, which also 

provides insufflation and water. The other one is connected to the video unit as displayed 

in figure 33. 
 

 
Figure 33. Gastroendoscopic unit. The gastroendoscope has two connections, one to the 

video unit and the other to the source of light. 

 

The video unit processes the images acquired with the camera. It transfers the image to 

the screen to be observed by the practitioner. The image from the gastroendoscope is 

updated in real time. In this sense, we record the gastroendoscopic image displayed at the 

same time that the trigger of the multispectral camera. 

 

5.2.1.2. Microendoscope 
 

The microendoscope has a diameter of 2.5 mm, which fits perfectly into the operational 

channel of the gastroendoscope as observed in figure 34. Additionally in this image we can 

observe the different elements of the tip of the gastroendoscope. 
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Figure 34. Elements at the tip of the gastroendoscope and the microendoscope in the 

operational channel. 

 

The microendoscope has a length of 2,500 mm, a field of view of 60° and it includes 30,000 

fibers to transport the image of the gastric tissue to the exterior of the body of the patient. 

The output of the optical fiber strand has a diameter of 0.8 mm and a numerical aperture 

of 0.4.  

 

After the acquisition of gastric images, the microendoscope is disinfected, following 

standard medical disinfection and sterilization by using peracetic acid which do not damage 

the microendoscope [123].  

 

In the next subsection we will describe the source of light and the connection with the 

gastroendoscope. 

5.2.1.3. Source of light 
 

As part of the characteristics to improve in the previous prototype based on a filter wheel, 

we identify that we were not able to acquire the reflectance in the red wavelengths and 

the NIR. We consider that this situation is mainly due to the fact that these wavelengths 

are filtered in the source of light of the gastroendoscopic unit displayed in figure 35.a. The 

filtering could be performed through a dichroic filter or an elliptical reflector which reflects 

only the wavelengths in the visible range.  

In order to overcome this issue, we chose to illuminate the tissue with an external source 

of light. In this sense we chose a Xenon lamp which typically provides a relative flat 

spectrum in the visible range. The power of the source of light is 175 W and the NIR 

wavelengths are not filtered as can be observed in figure 35.b.  
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a) b) 

 

Figure 35. Spectrum from the light source of the a) Gastroendoscopic unit, which does not 
provide illumination above 700 nm and b) Xenon lamp from the system GEMS which 

includes the NIR. 

The inclusion of this external source of light creates some issues. The first one is related to 

the distribution of the light. In figure 36 is observed the tip of the gastroendoscope which 

includes two groups of fibers oriented to illuminate the tissue and the microendoscope to 

collect the image in the operational channel. Under this geometrical configuration, the 

distance D1, D2 and D3 are not assured to be constant during the acquisition.  

 
Figure 36. Distribution of light when using only the source of light from the 

gastroendoscope. The distances D1 (gastroendoscope to tissue), D2 (gastroendoscope to 
microendoscope) and D3 (microendoscope to the tissue) are not assured to be constant.  

In figure 37 are displayed the test of this configuration in order to capture a chess pattern. 

We observe that using the fibers of the gastroendoscope to illuminate the scene the 

collected image from the microendoscope is considerably dark whereas the image from the 

gastroendoscope is close to saturation. Using this configuration could require to increase 

D3 
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the integration time of the camera to get an image with a better quality, but, the images 

could be blurry and display motion artifacts. 

  
a)       b) 

   
Figure 37. Acquisition of a chess pattern illuminated with the gastroendoscope. a) image 
from the gastroendoscope and b) image from the microendoscope in the first channel of 

the multispectral camera, which is considerably dark. 

Under these circumstances, we connect the source of light to the illumination fibers from 

the microendoscope which are distributed in a ring around the imaging fiber bundle. The 

resulting geometrical configuration for the illumination is displayed in figure 38. Similar to 

the previous configuration, the distances D1, D2 and D3 are not assured to be constant 

during the acquisition.  

 

 
                     a)           b) 
Figure 38. Illumination using the gastroendoscope and GEMS, the captured light (bold red 
arrows) is mainly the contribution from the microendoscope (dotted red arrows) and in 

lower amount the light from the gastroendoscope (thin red arrows). 

The image captured by the microendoscope is the result from the contributions of the light 

from the gastroendoscope and the illumination from the microendoscope. In this sense, we 

Light from the 

gastroendoscope 

Light from the 

gastroendoscope 

Light from 

micro-

endoscope 

D1 

D2 

D3 

Gastroendoscope 
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must highlight that the spectrum from the two light sources is different, which contribution 

varies depending on the distance with respect to the scene. This configuration induces 

significant uncertainties with respect to the lighting spectrum. In order to solve this issue, 

we take advantage that the contributions of the gastroendoscope are negligible when the 

power is reduced to a minimum value since the power of the light from the 

microendoscope is highly superior that the gastroendoscope. This configuration provides 

images from the microendoscope less dark and suitable to be exploited as observed in 

figure 39. 

  
a) b) 

 

Figure 39. Acquisition of a chess pattern illuminated with the source of light from the 
microendoscope. a) image from the gastroendoscope and b) image from the 

microendoscope. 

In order to avoid damaging the tissue with the delivered power, a typical gastroendoscope 

delivers 1.5 W. In our case, we measure the power from the microendoscope with the 

powermeter Gentec-EO TPM-300 and the sensor thermopile ps-330wb. The delivered 

power from the microendoscope was 0.28 W. Considering the source of light of 175 W and 

the delivered power of 0.28 W there is a significant loss of energy. This situation is due to 

different factors, for instance the conversion efficiency from electrical power to luminal 

power, the lamp produces light in all directions and it is only a part of it is collected for 

transportation and absorption by the fibers since we observe that the temperature of the 

microendoscope was increased after use. 

 

5.2.1.4. Optical relay block 
 

This module is designed to transfer the output image from the microendoscope into the 

sensors of the multispectral camera Flux Data. As was previously mentioned, the output of 

the optical fiber strands has a diameter of 0.8 mm and a numerical aperture of 0.4. The 

photographic lens of the camera Flux Data has an effective focal length of 25 mm and the 

camera sensors have 658 x 492 pixels for the two sensors in the visible range and 659 x 494 

for the sensor in the NIR with a pixel size of 9.9 µm for both type of sensors. A rigid 
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registration was performed to achieve an overlap between the images from the three 

sensors.  

 

This module transfers the image from the 0.8 mm diameter fiber bundle of the 

microendoscope on a disk with a diameter of 450 pixels on the sensor of the camera Flux 

Data. Then, the magnification is computed following equation 32, obtaining an expected 

magnification of      times. 
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(32) 

 

The optical relay block is designed to provide limited chromatic aberration between 400 
nm and 1000 nm spectral range and to collect all the light that exits from the fiber bundle. 
This optical system is displayed in which was designed by MCF Hervé Sauer from the 
Institut d'Optique Graduate School. The description of the components is enlisted in table 
14. 
 

 
Figure 40. Optical design to transfer the image from the microendoscope to the sensor of 

the camera Flux Data.  

 

Table 14. List of elements of the optical relay block.  

Component Characteristics 

Microendoscope 
30,000 fibers in a diameter of 0.8mm with a numerical aperture 

of 0.4 

20x NA 0.45 
Microscope  objective 

Olympus MPLFLN 20x/0.45 ∞/0 

70 mm lens VIS+NIR 2/3” Schneider-Kreuznach Tele-Xenar 2.2/70 kompakt 

35 mm lens VIS+NIR 2/3” Schneider-Kreuznach Xenoplan 1.9/35 non kompakt 

Camera Flux Data Objective Zeiss Distagon T* 2.8/25 ZF 

 

Output head of the 

microendoscope 

20x NA 0.45 

Microscope objective 

70 mm lens 35 mm lens 

Camera Flux Data with its Zeiss photographic lens 
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The image at the output of the optical fiber strands is transferred to infinity with an infinity 

corrected flat-field semi-apochromatic commercial microscope objective, which has a 0.45 

NA which is slightly bigger than the 0.40 NA of the microendoscope fibers and 9 mm focal 

length which is a 20x magnification for a 180 mm microscope tube lens. Such magnification 

leads to an object field of view largely greater than the required diameter of 0.8 mm of the 

microendoscope output. Then, to match the angular field of view of the multispectral 

camera with its Zeiss 25 mm lens, the image is magnified angularly by (-70.5/34.9) = -2.02 

by two commercial industrial vision lenses, specifically chosen to be simultaneously 

corrected for the visible and the NIR spectral ranges. The configuration head to tail builds 

an afocal system when the two objectives are each focused at infinity. We must highlight 

that this afocal system is a crucial element in the design as it also sends the exit pupil from 

the microscope objective close to the virtual entrance pupil of the Flux Data camera Zeiss 

lens. This pupil conjugation is absolutely required to avoid a strong vignetting that could 

reduce the field of view to a small part of the 0.8 mm output diameter from the 

microendoscope. Finally, the Flux Data camera lens is focused at infinity to collect the 

image of the afocal assembly. The expected magnification can be corroborated by equation 

33.  
 

              
             

             

                 

                 
       eq (33)  

 

The full optical relay is displayed in figure 41. The optomechanical setup was designed and 

built by the mechanical workshop from the Institut d’Optique Graduate School.  
 

 
 
 
 
 

Figure 41. Mechanical components of the optical relay block.  

Microendoscope 

Microscope objective Objective 2  Objective 3  Camera Flux Data 

with its Zeiss lens 

Micrometric 

translation 

adjustment 

Kinematic base 

Microendoscope Kinematic 

base 
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It includes in the specifications an accuracy of ±1 µm in the axial position of the 

microendoscope and an accuracy of ±9 arcmin between the optical axis of the microscope 

objective and the normal to the optical fiber strands.  

We can notice that the mechanical setup includes an adjustment on the translation of the 

objective from the microscope to achieve ±1 µm accuracy and two kinematic bases, the 

first one to adjust the orientation of the optical axis of the microscope objective, the 

second one for the orientation of the camera Flux Data.  

This system has some limitations, for instance we have low spatial resolution because the 

image transported by the fiber bundle is only a section of the size of the image that the 

multispectral camera can acquire. Additionally, the image formed on the fiber bundle 

output should be slightly blurred in order to avoid the Moiré pattern encountered when 

the optical relay block is in focus as observed in figure 42.  

 
 

 
 

Figure 42. Image from the microendoscope a) In focus where the Moiré pattern is clearly 

observed, b) Image out of focus to be slightly blurred in order to avoid the Moiré pattern. 

 

5.2.1.5. Software for GEMS 
 

In figure 43 is displayed the graphical visual environment that was developed for the 

system GEMS. It was coded in Microsoft Visual C++ Express edition 2010 to collect two 

types of synchronized images. The first one is the VGA image from the gastroendoscope 

acquired with a video acquisition card. The second one is the 7 channels multispectral 

image collected by a Fire-Wire port. The interface was designed to be user friendly, 

intuitive with 3 available buttons. The first one is used to start the acquisition, the second 

one to stop the acquisition and a third one to exit the application. The collected images are 

displayed in real time for the user. The program runs under a windows operating system 

(Windows 7). The microendoscope after insertion in the operational channel of the 

a) b) 
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gastroendoscope arrives up to a point that is visible by the camera of the gastroendoscope 

so that the practitioner can observe both images in the screen. 

 

 
Figure 43. Graphical user interface for the system GEMS. On the left is the image from the 

gastroendoscope where the microendoscope is observed. On the right is the image 

collected by the microendoscope. 

 

The description of the image processing methodology implemented for the collected 

multispectral images is detailed in the following subsection. 

 

5.2.2. Preprocessing of multispectral images 
 

For this clinical study, the acquired multispectral images were from the antrum. Similar to 

the acquisition system based on a filter wheel, the source of light is constant so that the 

collected images when the gastroendoscope is far away from the gastric tissue are 

considerably dark, producing a low signal to noise ratio. Under these circumstances, these 

multispectral images were removed. 

 

The image of the gastric tissue collected by the microendoscope is observed in a circle, 

typically at the center of the picture. The position of this circle could be slightly shifted by 

some pixels between acquisitions. This situation is mainly due to the physical connection of 

the microendoscope to the block of optics. 
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In order to identify the active area of the microendoscope, we identify that sometimes 

during the acquisition the distance between the microendoscope and the tissue is 

considerably small, producing as a consequence a saturated image. This image is almost a 

perfect binary image where the working area is in white and the background is black. We 

approximate the area by using a circle Hough-transform obtaining a circle typically of 400 

pixels diameter. We can observe in figure 44 the active area of the microendoscope in a 

blue circle. 
 

 
 

Figure 44. Active area of the microendoscope, identified with circular Hough transform. 

After that, the user manually selects the region of interest in order to remove artifacts such 

as bubbles of gastric juice, border of folds of the gastric tissue and the pylorus sphincter. 

Then, the specular areas are removed by threshold with a value of 240/255. An example is 

displayed in figure 45 where the antrum and specular reflections are removed. 
 

      
a) b) 

Figure 45. a) Simulation of white light image from the multispectral image where we 

observe the antrum (left) and specular reflections (top and right). b) Manually selection of 

the region of interest. 
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From the region of interest, we empirically chose 20 patches of size 5 x 5 pixels, which were 

randomly selected and averaged in order to obtain a single spectrum from each 

multispectral image. After that, the normalization L1 was used on the averaged spectrum. 

This procedure was repeated 10 times, oriented to include possible changes in the shape of 

the spectrum in the multispectral image. In the next section, we describe the 

characteristics of the database and the collected multispectral images. 

 

5.2.3. Database 
 

This subsection is devoted to describe the characteristics of the population of patients and 

the multispectral images that were collected. 

5.2.3.1. Subjects 
 

This clinical study included patients referred to the endoscopic unit of the hospital 

Ambroise Paré, Boulogne-Billancourt, France, during the period of one year and a half, 

between July 2014 and December 2015. Similar to the previous clinical studies, the patients 

were scheduled for gastroendoscopy under general anesthesia. As part of the 

gastroendoscopy procedure, biopsies were collected from the antrum and corpus analyzed 

histologically to provide the diagnosis of the patient. Additionally, the infection from H. 

pylori was graded by immunochemistry by using PCR.  

The characteristics of the patients from this clinical study are displayed in table 15. In total 

20 patients take part of this study. They were separated in two groups according to their 

diagnosis: healthy or precancerous. The healthy group includes patients with normal 

mucosa and gastric inflammation which makes them part of the control group. The 

patients with precancerous conditions included atrophy and intestinal metaplasia. It is 

important to mention that there were no significant differences in age between the two 

clinical groups (p > 0.05). 

 

Table 15. Clinical features from the patients. 

 

Number 

of 

patients  

Age 

(+/-SEM) 

Gender ratio 

(H:F) 

Group with 

precancerous 

lesions 

5 74.4 (4.46) 2:3 

Control group 15 59.20 (3.46) 4:11 
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5.2.3.2. Collected multispectral images 
 

The 20 patients of this study include a total of 1383 multispectral images, 1143 are part of 

the control group and 240 are included in the precancerous group.  

 

In table 16 are displayed the mean number of studied images for the two clinical 

conditions. There was no significant statistical difference between the two groups in terms 

of the mean number of multispectral images for each patient (p > 0.05). 
  

Table 16. Mean number of multispectral images for the two clinical groups. 

Diagnosis 

Group with 

precancerous 

lesions (N=5) 

Control group 

(N=15) 

Mean number of 

multispectral images per 

patient (+/- SEM) 

76.2 (17.04) 48.0 (16.90) 

 

The next section is oriented to the statistical analysis of the precancerous lesions. 

5.2.4. Statistical analysis 
 

The collected samples from the control group are displayed as box plots in figure 46. From 

this figure we observe that the samples show a trend to a homogeneous distribution with 

some outliers which are highlighted as a red cross.  

 

 

Figure 46. Distribution of samples from the control group. 
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Taking in consideration this behavior, we can estimate a reference spectrum based on the 

mean spectrum of the normalized data from the control group. Then, this reference 

spectrum is used to compare the normalized spectra from the precancerous group. The 

outcome of this comparison is oriented to identify the percentage of variation between the 

two groups, as displayed in figure 47. 

 

Figure 47. Ratio of variation in the spectrum from patients with precancerous lesions 

compared with the spectrum from the control group. 

Additionally, in the same figure we observe the result from the statistical analysis ANOVA, 

which is used to identify significant statistical differences between the two groups at each 

waveband. We must highlight that the general trend of the patients with a precancerous 

profile is slightly different with respect to the one observed in the previous clinical study 

with the prototype with a filter wheel. However, there is an agreement between the two 

clinical studies with respect to the statistical significant wavebands, which are those 

between 460 nm and 540 nm. From the previous clinical study we hypothesize that these 

wavebands are related to the oxygen saturation, but we do not have a clear biological 

explanation for the differences on the measured reflectance with the two acquisition 

systems. In this sense, an increment of the reflectance with the system based on a filter 

wheel and a decrement in the reflectance with the system GEMS in the same region of the 

spectrum. We consider that this situation could be related to the spectral sensibility of the 

sensors and the cross talk, in particular with the system GEMS to the red wavebands as was 

previously discussed in chapter 3. 

 

In contrast with the previous clinical study, the waveband between 540 to 590 nm was 

identified as statistical significant with the system GEMS; these wavebands could also be 
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related to the oxygen saturation. We consider that these wavebands were not identified in 

the previous study due to the spectral resolution of the acquired image. 

 

We observe that waveband between 510 and 540 nm displayed a higher reflectance. We 

could relate the origin of these differences to the spectral sensibility of the filters and the 

cross talk with respect to other channels, in particularly with the red wavelengths as was 

mentioned in the previous chapter. Another important similitude with respect to the 

previous clinical study is that the red wavebands, between 600 nm and 700 nm were not 

identified as significant. 

 

A main advantage from the system GEMS is that we have higher spectral resolution, so that 

we have access to the NIR. This waveband was identified as statistical significant for the 

diagnosis. The variation in the NIR could be related to biological changes in the water 

content and a smaller proportion to the size of the scatters and the oxygen saturation as 

mentioned in chapter 2. The precancerous group showed an increment in the reflectance 

with respect to the control group and it could be related to the development of 

precancerous tissues by the replacement of glands by fibrous tissues. Additionally the 

mucosa from precancerous tissues is mentioned by practitioners as thicker than normal 

mucosa. In this sense, we could consider that these thickness or turbidity with a high 

concentration of suspended materials or small scatters play an important role to increase 

the reflectance. 

It is clear that a model of light tissue interaction applied to the collected spectra could be 

used to analyze the scattering originated in the size of the molecular structures. 

Additionally, it could provide significant information to improve the biological 

interpretation of the changes in the gastric tissues.  

 

5.2.5. Classification of multispectral images with precancerous 

lesions. 
 

In this subsection we develop the methodology evaluated to differentiate the patient 

according to their clinical condition. We follow the procedure described for the 

differentiation of precancerous lesions from the prototype based on a filter wheel. It 

follows the computation of statistical features from the normalized spectrum, the 

evaluation and ranking according to their discriminative information to differentiate the 

clinical condition and the classification in order to differentiate pathological tissues. 

 

5.2.5.1. Balance of the database for classification tasks 
 

Similar to the database collected from the prototype based on a filter wheel, our database 

is imbalanced since we have more patients with healthy mucosa than precancerous lesions. 

In this sense, the images from precancerous lesions were resampled, following the 
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procedure described in section 2.2 from this chapter where 20 patches of 5 x 5 pixels were 

extracted and averaged in order to obtain additional measurements from the multispectral 

images of patients with precancerous lesions. This procedure was repeated until we obtain 

the same number of samples for the group of healthy mucosa and the group of 

precancerous tissues. 

 

5.2.5.2. Extraction of features 
 

Assuming that the spectrum follows a probability distribution, we can extract statistical 

features from it. We can observe in table 17 a list of features which were extracted from 

the spectrum, including those mentioned in the analysis of the precancerous lesions from 

the prototype based on a filter wheel and a new feature which is the interquartile range 

and the normalized intensities from the spectrum. The ranking of these features will be 

explained in the next section. 
 

Table 17. Ordered list of features 

Rank Feature 

1 Median of absolute deviation 

2 NIR 

3 Inter quantile range 

4 Waveband between 540 – 590 nm 

5 Kurtosis 

6 Waveband between 460 – 510 nm 

7 Waveband between 510 – 540 nm 

8 Variance 

9 Waveband between 590 – 620 nm 

10 Skewness 

11 Mean deviation about median 

12 Waveband between 420 - 460 nm 

13 Waveband between 620 – 720 nm 

14 Standard deviation 

15 Entropy 

16 Mean of absolute deviation 

 

5.2.5.3. Feature ranking  
 

The features are ranked according to their discriminative information to differentiate 

between the two clinical conditions. Similar to the previous analysis, the metric is the 

pooled variance t-test as displayed in figure 48. We identify that the wavebands in the NIR 

as well as the channels identified as statistical significant from the statistical analysis are 

top ranked. Statistical features remain top ranked, but we identify that some of them 
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change its rank; this is expected, since the acquired spectrum is wider and it includes more 

samples than the one collected with the filter wheel. Additionally, it could also be due to 

the sensibility of the multispectral camera. 

 
Figure 48. Measurement of the discriminative potential of the ranked features from table 

17 by pooled variance t test. 

5.2.5.4. Classification 
 

In order to evaluate our approach we follow the test of three common supervised 

classification approaches which are K-nn, SVM and NN which were described in chapter 2. 

We follow the procedure described for the differentiation of multispectral image from 

healthy and precancerous lesions described in the previous clinical study based on the 

prototype with a filter wheel. 

 

As part of the evaluation of the classification, we use LOPOCV so that we take one patient 

at a time for testing whereas the classifier is trained with all the remaining patients. This 

separation in the database includes the feature ranking so that there is no information 

from the patient under test during the training. Additionally, each classifier was tested 

iteratively with an incremental number of features, according to their rank obtained from 

the feature ranking. Finally, the performance of the classification is evaluated 

quantitatively taking as a metric the accuracy, sensitivity and specificity. 

 

5.2.5.5. Results of the classification 
 

The results of the classification are displayed in figure 49. We would expect a performance 

similar to the previous clinical study but it was not the case. This situation could be related 

to the low number of patients with precancerous lesions used for this study which could 
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display dispersion and limited overlap in their measurements, making difficult for the 

classifiers generate the classification rules. Other factor could be related to the sensibility 

of the system and that the measurements include cross talk between other channels, 

especially from the red wavelengths which are not candidates for the differentiation of the 

pathology as was previously identified in the statistical analysis. 

  

 
 

Figure 49. Quantitative evaluation of the classifiers with different number of features, 
increased progressively by order of rank, a) accuracy, b) sensitivity and c) specificity. 

On the other hand, from this study we can analyze the identification of healthy mucosa; 

there are more patients with this clinical condition with respect to precancerous lesions. 

These samples will display some overlap or repeatability on the measurements which could 

be learnt by the classifiers, allowing us to reach specificity above 60 % and as good as 84 % 

when using SVM. The NN seems to need more features before achieving its maximum 

performance in terms of specificity. 

Similar to the previous study, SVM overcome the other classifiers with a simple hypothesis. 

The sensitivity is in all the cases below 50 %. Then NN shows its best performance when 

learning with 17 or more features. 

This performance is not satisfactory for a clinical study. Further analyses are required, with 

more data since it is known that with more examples of patients with pathological tissues, 
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the classifiers could easily learn the separation. Additionally, further studies are required 

including other pathologies in the stomach which are poorly identified.  

5.3. Summary  
 

In this chapter we discussed the clinical study of precancerous lesions from images 

acquired from two acquisition systems. The first acquisition system was based on a filter 

wheel whereas the second one is based on a multispectral camera (system GEMS). 

The system GEMS is oriented to solve the main issues discovered from the prototype based 

on a filter wheel. Between the main improvements we highlight the acquisition of a 

multispectral image of 7 channels in a single shot, which allows us to avoid motion artifacts 

in the images. Other improvement is the increment in the spectral sensibility of the 

measuring system so that the collected spectrum included six wavebands in the visible 

range and one in the NIR. 

In both clinical studies the samples were separated in two groups according to their clinical 

condition: healthy or precancerous lesions. The study included a statistical analysis and a 

classification task. 

With respect to the statistical analysis we arrive to similar conclusions from both clinical 

studies since the wavebands between 460 and 580 nm were identified as statistical 

significant. The biological modification on this waveband is related mainly to the oxygen 

saturation. 

The increment in the spectral sensibility of the system GEMS allowed us to evaluate the 

NIR for diagnosis of precancerous lesions. We found that this waveband could help in the 

diagnosis since it is related to changes in the water content, oxygen saturation and size of 

the scatters from the tissue. In particular the size of the scatters should be consider for 

future studies because we consider that the precancerous tissues included more scatters of 

small size in comparison with the control group. Additionally, we also consider that 

precancerous tissues have lower oxygen saturation that normal gastric tissue. 

The classification task was satisfactory for the first acquisition prototype but not for the 

system GEMS. We consider that this situation could be related to the low number of 

patients with precancerous conditions which makes the learning step a difficult task for the 

classifiers. In this sense, further studies are required to include more patients and to 

evaluate other pathologies in the stomach which are poorly identified. 
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Conclusions and future perspectives 
 
Nowadays there is a strong interest to improve gastroendoscopic procedures to a further 

point in the diagnosis than the visualization of gastric tissue and the collection of biopsies. 

In particular, we are interested on the early detection of malignancies which could bring 

important advantages for the patients, including accurate diagnosis, low invasion and 

potentially less expensive. 

 

Up to our knowledge, we are the first to perform multispectral analysis from 

gastroendoscopic images from the gastric mucosa. This exploratory study quantitatively 

analyzes the variation in the reflectance during the development of malignancies. The 

objective of this study is to identify wavebands that could be used in the diagnosis for the 

differentiation of the pathology.  

 

The use of multispectral imaging is considered strongly promising for medical 

implementation. It has been proof to be practical in other medical domains, such as 

analysis of the skin. It is known that the light encodes chemical and architectural 

information from the tissue in a non-invasively way. In this sense, it could be used to 

provide quantitative information for objective diagnosis. Thanks to the development of 

new multispectral cameras, miniaturization of sensors and the capacity to handle high 

amount of data we can evaluate this approach in other medical domains, for instance in 

the stomach.  

 

This exploratory study demonstrates the use of multispectral images in order to analyze 

the differences between the spectra of light collected from tissues with different 

pathologies. We propose two working systems for the acquisition of multispectral images 

from gastric tissues. The first one is based on a filter wheel whereas the second one is 

based on a multispectral camera and it was designed to overcome the main limitations 

from the first one. For instance, the spectral sensibility is increased to cover the visible and 

the NIR and the multispectral image is acquired in a single shot to avoid motion artifacts. 

 

We first perform an exploratory study in a mice model of infection of H. pylori to evaluate 

the modifications due to the development of active gastritis. The use of animal models of 

infections allows us to study the bacterium under controlled conditions. In this doctoral 

work it was performed with NMRI mice. Under this model we can study chronic infection 

but a mild response of the tissue.  
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In the mice model of gastritis, we show a significant variation in the mucosa measured at 

different stages of the development of the inflammation. The analyses show that 3 bands 

of wavelengths are candidates for the diagnosis of gastritis. These bands are delimited to 

430 to 450 nm, between 470 and 590 nm and between 620 and 680 nm and could be 

related to changes in the size of the scatters, blood concentration and increments in the 

oxygen saturation during the development of the pathology. The next study should be 

performed with the mice model C57BL/6 and the strain H. pylori SS1. Later on, it is 

suggested another study for dysplastic and precancerous lesions, including INS GAS mice 

infected with H. pylori SS1 or mice C57BL/6 but with the bacterium H. felis. 

 

Taking advantage of the acquisition system based on a filter wheel we performed a clinical 

study from gastritis. We identify that gastritis in humans modifies the interaction between 

light and tissue, showing statistically significant modifications in the spectrum at 560 nm, 

600 nm and 640 nm. We do not have a clear biological explanation for the modifications 

observed at these wavelengths. However, we have different hypotheses that could explain 

these modifications, for instance the microvessels density in inflammation, and the 

recruitment of neutrophils in conjunction with fibroblast activity in cell arrangements 

originated in the mechanism of defense and repair from cells. These conditions could 

impact the oxygen saturation and the size of the scatters. 

 

Another identified feature from the patients diagnosed with gastritis was areas with a 

wooly dark weft appearance in the band at 560 nm. We believe that these patches could 

be related to changes in the size of the scatters. 

 

We also identify the NIR as statistically significant and a strong candidate for the 

differentiation of the pathology. From the NIR we can differentiate the water content and a 

smaller proportion the size of the scatters and the oxygen saturation. Future studies should 

be oriented to this waveband or even at longer wavelengths. However, technical 

challenges include the difficulties related to the construction and calibration of the sensor 

and a clinical limitation is that the source of light at those wavelengths induces heat to the 

tissue. 

 

The results of classification suggest the differentiation of type of inflammation by 

multispectral imaging based on the acquisition system with a filter wheel. The statistical 

features are considered candidates for the differentiation of the pathology. However, there 

is no biological interpretation. 

 

In the analysis of precancerous lesions with GEMS prototype we identify the wavebands 

between 460 and 580 nm as statistical significant and could help in the diagnosis of 

precancerous lesions. We consider that these bands are related to the oxygen saturation. 
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During the development of the premalignant lesions, we identify that there is a 

modification in the size of the scatters. We hypothesize that it is related to the collagen 

which is recruited during the inflammation to replace at a later point the glands in the 

gastric tissues that shrink or disappear due to the development of the pathology. More 

work is required to understand the biological mechanisms that are involved in the 

development of the pathology. 

 

The classification with the acquisition system GEMS shows a low accuracy, which could be 

related to the low number of patients used for training the classifiers. Future studies 

should be oriented to create a database with a sufficient number of clinical cases with their 

pathological definition and spectral signatures. This kind of database could lead to the 

estimation of a model for pathological tissues in gastric mucosa, which includes biological 

variations due to age, genetic variation, background and symptoms displayed. Even though 

the construction of such database to study the pathology is utopic, it is clear that a main 

objective is the model of light tissue interaction which takes in consideration more 

biological parameters. The main challenge is to reach a model from which we can reflect 

the observed changes in histology. This kind of model will require the combination of 

different techniques available such as MiE diffusion theory, Monte Carlo modeling finite 

element for the mechanical interactions among others. Taking the spectrum as an input, 

the outcome is a transversal cut of the simulated tissue that could include biological 

parameters or representative features. These features could also display a statistical 

significance for the differentiation in a classification task.  

 
The results from this preliminary study for gastritis and precancerous lesions are promising 

and we consider that in the future, they could be used for diagnosis. Some limitations 

should be noted such as the small number of samples, the fact that this study included only 

patients from single center. With respect to the acquisition system, we consider to increase 

the spectral and spatial resolution to include more wavebands in the NIR taking in 

consideration that these wavelengths could induce heat to the tissues. Additionally, it 

should also include a study on the ultraviolet. The vision in a short term for this system is to 

be used as an additional tool during gastroendoscopy that could help in the diagnosis by 

indicating areas of tissues which are more likely to have precancerous lesions so that the 

practitioner could decide to collect biopsies. 

The development in a long term is the automatic identification of pathologies. We consider 

a CAD (Computer Aided Diagnosis) system which integrates models of light tissue 

interaction which achieves high level of confidence oriented to facilitate the diagnosis of 

diseases for the doctors. Additionally, this could also help in order to relieve the workload 

of pathologist. In the development of such systems, we must also consider the analysis 

cost-benefit. The benefits should always be oriented for the patient, such as a faster and 

more accurate diagnosis, with a treatment that brings the higher prognosis. On the other 

hand, the cost of medical equipment is relevant since it should cover norms in its 

development, characteristics, components, materials and protocols to be used. The 
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inclusion of a multispectral camera could provide a strong advantage for the 

gastroendoscopic system since it is considered low-invasive. For this kind of study it 

required to evaluate other pathologies and also include other wavebands. 

Another direction of this study is that we can study the biological changes involved during 

the development of pathologies. 

With respect to the histological analysis, it will remain as the main tool for diagnosis. We 

expect more automatic computer vision tools integrated in the microscopes in order to 

reduce interobservability by identifying the main histological structures which could be 

used for the diagnosis. This could include the segmentation of a specific glands or pattern 

in the architecture of the tissues. This kind of automation could help to study the size, 

shape, morphological appearance, architecture, distribution, etc. of the structures at each 

stage of the development of the pathology. 

With the advance of new technologies, we expect other approaches for diagnosis, such as 

the gene therapy expression and imaging biomarkers through the blood. In this case, 

multispectral imaging could play an important role to help in the diagnosis and also to 

follow the treatment. Before reaching that point, the large pattern variety in the gene 

expression should be resolved.  

Another perspective of this doctoral work is to consider extending this technology to 

diseases which are poorly identified during endoscopy. In particular, inflammatory bowel 

diseases where multispectral imaging could help in the diagnosis and in the evaluation of 

the treatment.   

We strongly believe that a minimally invasive diagnostic based on multispectral imaging 

could help in the diagnosis of pathologies during endoscopy. 
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Annexe. Synthèse 
 

Imagerie multispectrale pour améliorer la 

détection des lésions précancéreuses en 

endoscopie digestive 
 

L'évolution de la gastrite et des lésions précancéreuses suit une cascade de plusieurs 

étapes. Les modifications des tissus pathologiques affichent de faibles variations par 

rapport à la muqueuse normale d'un point de vue macroscopique. Même si certaines 

variations pourraient être identifiées, cela reste fortement subjectif. Le diagnostic classique 

des maladies de l'estomac est divisé en deux procédures. La première est une 

gastroendoscopie où l'estomac est visuellement exploré sous une lumière blanche. La 

seconde est une biopsie pour l'analyse histologique. Cette procédure a une forte 

probabilité d'établir le diagnostic correct mais elle dépend fortement d’un bon 

prélèvement des échantillons de tissus endommagés. 

 

Ce travail porte sur l'étude de la muqueuse gastrique par imagerie multispectrale. La 

contribution principale est une étude clinique sur la gastrite et les lésions précancéreuses 

mettant en évidence les changements dans le tissu. A cet effet, nous  avons  effectué une 

étude  ex-vivo dans  un modèle murin de l'infection de Helicobacter pylori. Nous avons 

identifié que les bandes délimitées entre 430 et 450 nm, entre 470 et 590 nm et entre 620 

et 680 nm comme candidates pour le diagnostic. Elles peuvent être liées à des 

changements de la taille des particules diffusantes, à la concentration de sang et à 

l’augmentation de la saturation en oxygène. 

 

Pour les études cliniques nous proposons deux prototypes d’imageurs multispectral 

compatibles avec les gastroendoscopes actuels pour acquérir des images du tissu 

gastrique:le premier est basé sur une roue à filtres et le deuxième sur une caméra 

multispectrale qui permet d’acquérir une image multispectrale de 7 canaux en single 

shot avec six bandes dans le visible et un dans le NIR. 

 

A partir de l’étude clinique de la gastrite nous observons des patches laineux dans la bande 

de 560 nm chez certains patients atteints de gastrite et qui ne sont pas visibles chez les 

patients avec une muqueuse normale. De plus, les bandes au-dessus de 540 nm sont 
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identifiées comme candidates pour le diagnostic. Ces bandes peuvent être liées à la 

saturation en oxygène et la taille des particules diffusantes. Dans l’étude des lésions 

précancéreuses, les bandes entre 460 et 580 nm sont identifiées comme candidates pour le 

diagnostic. Ces bandes peuvent être liées à la saturation en oxygène. En plus, nous avons 

proposé une méthodologie pour identifier les tissus pathologiques, qui est basé sur des 

caractéristiques statistiques extraites des spectres acquis, classées en fonction de leur 

pouvoir discriminants et une classification supervisée où nous cherchons la meilleure 

performance de trois algorithmes de classification: le plus proche voisin, un réseaux de 

neurones et une Support Vector Machine avec une évaluation de la performance 

rigoureuse en utilisant une validation de type Leave One Patient Out Cross Validation.  

 

Nous avons trouvé que la bande NIR pourrait aider dans le diagnostic car elle est liée à des 

changements dans la concentration de l’eau, la saturation en oxygène et la taille des 

particules diffusantes. En particulier, les tissus précancéreux peuvent inclure 

principalement de diffuseurs de petite taille. De plus, nous considérons également que les 

tissus précancéreux ont moins de saturation en oxygène que le tissu gastrique normal. 

 

Les résultats de classification ont été satisfaisants pour le premier prototype d'acquisition, 

mais pas pour le système GEMS. Nous considérons que cette situation pourrait être liée au 

faible nombre de patients avec des conditions précancéreuses qui rend l'étape  

d’apprentissage difficile pour les classificateurs. Dans ce cas-là, nous considérons que 

d'autres études incluent plus de patients sont nécessaires. 

 

Les résultats démontrent la pertinence de l’imagerie multispectrale comme un outil 

supplémentaire pour un diagnostic objectif. 
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Résumé : L'évolution de la gastrite et des lésions 

précancéreuses suit une cascade de plusieurs étapes. 

Les modifications des tissus pathologiques affichent 

de faibles variations par rapport à la muqueuse 

normale d'un point de vue macroscopique. Même si 

certaines variations pourraient être identifiées, cela 

reste fortement subjectif. Le diagnostic classique des 

maladies de l'estomac est divisé en deux procédures. 

Le premier est une gastroendoscopie où l'estomac est 

visuellement exploré sous une lumière blanche. Le 

second est la biopsie pour l'analyse histologique. 

Cette procédure a une forte probabilité d'établir le 

diagnostic correct mais il dépend fortement de la 

sélection correcte des échantillons de tissus 

endommagés. 

Ce travail porte sur l'étude de la muqueuse gastrique 

par imagerie multispectrale. La contribution 

principale est l'étude clinique de l'imagerie 

multispectrale afin de différencier les pathologies 

mal diagnostiquées ou qui ne peuvent être 

diagnostiquées que par l'analyse histologique. A cet 

effet, nous avons effectué (1) une étude ex-vivo dans  

un modèle de  souris de l'infection de Helicobacter 

pylori dans le but d'identifier les longueurs d'onde 

qui pourraient être utilisées pour le diagnostic. (2) 

Nous proposons deux prototypes compatibles avec 

les gastroendoscopes actuels pour acquérir des 

images multispectrales du tissu gastrique : le premièr 

est basé sur une roue à filtres et le second sur une 

caméra multispectrale avec sept canaux. De plus, (3) 

nous présentons une méthodologie pour identifier les 

tissus pathologiques, qui est basé sur des 

caractéristiques statistiques extraites des spectres 

acquis, classées en fonction de leur pouvoir 

discriminants et une classification supervisée, où 

nous cherchons la meilleure performance de trois 

algorithmes de classification: le plus proche voisin, 

un réseaux de neurones et une Support Vector 

Machine avec une évaluation de la performance 

rigoureuse en utilisant une validation de type Leave 

One Patient Out Cross Validation. Les résultats 

démontrent la pertinence de l’imagerie 

multispectrale comme un outil supplémentaire pour 

un diagnostic objectif. 

 

 

 

Title : Multispectral imaging to improve the detection of precancerous lesions in digestive endoscopy  
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Abstract: The evolution of gastritis into 

precancerous lesions follows a cascade of multiple 

stages. The modifications of the pathological tissues 

display low variations with respect to normal mucosa 

from a macroscopical point of view. Even though 

some features could be identified, they remain 

strongly subjective. The current gold standard for 

diagnosis of gastric diseases is divided in two 

procedures. The first one is gastroendoscopy where 

the stomach is visually explored under white light. 

The second one is biopsy collection for histological 

analysis. This procedure has a high probability of 

establishing the correct diagnosis but it strongly 

depends on the accurate collection of samples from 

damaged tissues. 

This doctoral work focuses on the study of gastric 

mucosa by multispectral imaging. The main 

contribution is the clinical study of multispectral 

imaging to differentiate pathologies poorly 

diagnosed   or    that    can   only   be   diagnosed   by 

 

histological analysis. For this purpose, we performed 

(1) ex vivo studies in a mice model of infection of 

Helicobacter pylori in order to identify the 

wavelengths which could be used for diagnosis. (2) 

We propose two prototypes compatible with current 

gastroendoscopes to acquire multispectral images 

from gastric tissue: the first one is based on a filter 

wheel and the second one on a multispectral camera 

with seven channels. Additionally, (3) we present a 

methodology to identify pathological tissues, which 

is based on statistical features extracted from the 

acquired spectra, ranked according to their 

discriminative power and a supervised classification, 

where we search for the best performance of three 

classification algorithms: Nearest Neighbor, Neural 

Networks and Support Vector Machine with a 

rigorous performance evaluation by using leave one 

patient out cross validation. The results demonstrate 

the relevance of multispectral imaging as an 

additional tool for an objective diagnosis. 

 

 


