The CM class number one problem for curves

Pinar Kilicer 1, 2
2 LFANT - Lithe and fast algorithmic number theory
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : Let E be an elliptic curve over C with complex multiplication (CM) by the maximal order OK of an imaginary quadratic field K. The first main theorem of complex multiplication for elliptic curves then states that the field extension K(j(E)), obtained by adjoining the j-invariant of E to K, is equal to the Hilbert class field of K, see Theorem 11.1 in Cox [11]. Note that if E is defined over Q, then the Hilbert class field K(j(E)) is equal to K, which implies that the class group ClK is trivial. We can ask for which imaginary quadratic fields K the corresponding elliptic curve with CM by OK is defined over Q. This is equivalent to asking to find all imaginary quadratic fields with trivial class group ClK. This problem is known as Gauss’ class number one problem, which was solved by Heegner in 1952 [16], Baker in 1967 [2], and Stark in 1967 [41]. The imaginary quadratic fields with trivial class group are the fields Q(V−d) with d E {3, 4, 7, 8, 11, 19, 43, 67, 163}. In the 1950’s, Shimura and Taniyama [39] generalized the first main theorem of CM for elliptic curves to abelian varieties. We say that an abelian variety A of dimension g has CM if the endomorphism ring of A contains an order of a CM field of degree 2g. Let K be a CM field of degree 2g with maximal order OK, and let K be a CM type of K. Let A be a polarized simple abelian variety over C of dimension g that has CM by OK. Then the first main theorem of CM says that the field of moduli M of the polarized simple abelian variety A gives an unramified class field H over the reflex field Kr of K. Moreover, the class field H corresponds to the ideal group I0(?r) (see page 17), which only depends on (K,?), see Theorem 1.5.6. Note that the first main theorem of CM implies that if the polarized abelian variety A is defined over Kr, then the CM class group IKr/I0(?r) is trivial. As in the elliptic curve case, we can ask for which CM pairs (K,?) the corresponding CM abelian varieties are defined over Kr. Equivalently, we can ask for which CM pairs (K,?) the CM class group IKr/I0(?r) is trivial. In this thesis we give an answer to this problem for quartic CM fields (see Chapter 2), and for sextic CM fields containing an imaginary quadratic field (see Chapter 3). Furthermore, we can ask for which CM fields the corresponding simple CM abelian varieties have field of moduli Q. Murabayashi and Umegak [31] determined the quartic CM fields that correspond to a simple CM abelian surface with field of moduli Q. In Chapter 4, we determine the sextic CM fields that correspond to a simple CM abelian threefold with field of moduli Q.
Document type :
Theses
Complete list of metadatas

Cited literature [44 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01383309
Contributor : Abes Star <>
Submitted on : Monday, March 27, 2017 - 4:57:59 PM
Last modification on : Tuesday, December 11, 2018 - 1:19:03 AM

File

KILICER_PINAR_2016.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01383309, version 2

Collections

Citation

Pinar Kilicer. The CM class number one problem for curves. General Mathematics [math.GM]. Université de Bordeaux, 2016. English. ⟨NNT : 2016BORD0046⟩. ⟨tel-01383309v2⟩

Share

Metrics

Record views

259

Files downloads

147