Skip to Main content Skip to Navigation

Diversité des communautés phytoplanctoniques en relation avec les facteurs environnementaux en mer d'Iroise : approche par la modélisation 3D

Abstract : Phytoplankton diversity depends on physical, chemical and biological local conditions. Moreover, physical transport could also impact the distribution of autotrophic organisms/species within phytoplankton communities. Therefore, phytoplanktonic assemblages exhibit significant spatial (bioregionalization) and temporal (successions) variability in terms of species diversity as well as productivity. Coastal regions are particularly contrasted area with sharp environmental gradients underlying strong heterogeneity in phytoplankton communities' composition. In this context, the Iroise Sea presents a seasonal, highly productive, tidal front, which separates two distinctregimes. Eastside, continental shelf waters are regularly mixed by tidal currents while offshore waters remain stratified throughout the whole summer period.Thus, the Iroise Sea may be an opportune region to study the processes linking the frontal structure dynamic and its impact on phytoplanktonic diversity.This thesis aims, more specifically, at characterizing phytoplankton communities in the Iroise Sea interms of both functional and phenotypic diversity over a seasonal cycle in general and during the summer at the frontal interface in particular. This work is based on a 3D numerical modeling approach using a physical/biogeochemical coupled model. As a first part of this thesis, the implementation of a regional configuration for the Iroise Sea has been conducted, including the technical coupling between the hydrodynamical model (ROMS-AGRIF) and the phytoplankton diversity model (DARWIN). This work was the first necessary step to simulate and study the Iroise sea phytoplanktonic diversity.Our results show a pronounced seasonal cycle of the phytoplankton functional composition, driven by the surface mixed layer depth that influenced light and nutrients' availabilty. Indeed, during winter, the biomass is dominated by picoplankton in the Iroise Sea. Then, as water column becomes stratified offshore, in April, a characteristic phytoplankton bloom occurs with a larger contribution of microphytoplancton (mainly diatoms). During summer, the nutrient-replete coastal well-mixed area remains highly productive and dominated by diatoms while surface stratified offshore waters (where phytoplankton growth is nutrient-limited) show higher coexistence between phytoplankton functional types.We also examined the phytoplankton phenotypic diversity simulated within the frontal region in relation with the surrounding areas in September (summer conditions). The results highlight a diversity maximum located at the surface slightly westward from the biomass maximum of the front. This diversity maximum is suggested to be the result of the upward transport of typical phenotypes from the offshore Deep Chlorophyll Maximum (DCM) toward the Surface at the west warm side of the front. Indeed, picoplanktonic phenotypes growing in the DCM coexist, in this diversity maximum, with those from the surface oligotrophic waters and ubiquitous ones growing in the eastside mixed coastal waters.Finally, the effect of tidal spring/neap tide cycle has been investigated and shows, for the first time, how this cycle impacts the phytoplankton biomass and the phenotypic community composition within the coastal well-mixed, homogeneous system. Indeed, the neap-tide conditions of reduced vertical mixing and stabilization lead to an increase in total phytoplankton biomass associated with the rapid development of fast-growing, opportunistic, diatoms species and a decrease in phenotypic diversity.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, October 18, 2016 - 12:21:10 PM
Last modification on : Tuesday, May 10, 2022 - 3:25:41 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01383247, version 1



Mathilde Cadier. Diversité des communautés phytoplanctoniques en relation avec les facteurs environnementaux en mer d'Iroise : approche par la modélisation 3D. Sciences de la Terre. Université de Bretagne occidentale - Brest, 2016. Français. ⟨NNT : 2016BRES0030⟩. ⟨tel-01383247⟩



Record views


Files downloads