J. Abdollahi and S. Dubljevic, Lipid production optimization and optimal control of heterotrophic microalgae fed-batch bioreactor, Chemical Engineering Science, vol.84, pp.619-627, 2012.
DOI : 10.1016/j.ces.2012.09.005

M. Alamir and G. Bornard, Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case, Automatica, vol.31, issue.9, pp.1353-1356, 1995.
DOI : 10.1016/0005-1098(95)00042-U

F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control, Progress in Systems and Control Theory. Birkhäuser Basel, 2012.
DOI : 10.1007/978-3-0348-8407-5

J. C. Allwright, Advances in Model-Based Predictive Control, chapter on min-max Model-Based Predictive Control, 1994.

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, vol.9, issue.6, pp.707-723, 1968.
DOI : 10.1002/bit.260100602

D. Angeli, A. Casavola, and E. Mosca, Constrained predictive control of nonlinear plants via polytopic linear system embedding, International Journal of Robust and Nonlinear Control, vol.9, issue.13, pp.1091-1103, 2000.
DOI : 10.1002/1099-1239(200011)10:13<1091::AID-RNC518>3.0.CO;2-W

A. Ashoori, B. Moshiri, A. Khaki-sedigh, and M. R. Bakhtiari, Optimal control of a nonlinear fed-batch fermentation process using model predictive approach, Journal of Process Control, vol.19, issue.7, pp.1162-1173, 2009.
DOI : 10.1016/j.jprocont.2009.03.006

J. G. Balchen, D. Ljungquist, and S. Strand, State space model predictive control of a multi stage electro-metallurgical process. Modeling, Identification and Control, pp.35-51, 1989.

G. Bastin, D. Dochain10-]-g, G. Becerra-celis, S. Hafidi, D. Tebbani et al., On-line estimation and adaptive control of bioreactors Nonlinear predictive control for continuous microalgae cultivation process in a photobioreactor, Proc. of the 10th ICARV Conference, pp.1373-1378, 1990.

G. Becerra-celis, S. Tebbani, C. Joannis-cassan, A. Isambert, and H. Siguerdidjane, Control strategy for continuous microalgae cultivation process in a photobioreactor, 2008 IEEE International Conference on Control Applications, pp.684-689, 2008.
DOI : 10.1109/CCA.2008.4629634

URL : https://hal.archives-ouvertes.fr/hal-00340521

R. Bellman, The theory of dynamic programming, Bulletin of the American Mathematical Society, vol.60, issue.6, pp.503-515
DOI : 10.1090/S0002-9904-1954-09848-8

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica, vol.38, issue.1, pp.3-20, 2002.
DOI : 10.1016/S0005-1098(01)00174-1

S. E. Benattia, S. Tebbani, and D. Dumur, Nonlinear model predictive control for regulation of microalgae culture in a continuous photobioreactor, Proc. of the 22nd MED Conference, pp.469-474, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01257021

O. Bernard, Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production, Journal of Process Control, vol.21, issue.10, pp.1378-1389, 2011.
DOI : 10.1016/j.jprocont.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-00848385

O. Bernard and J. Gouzé, Transient behavior of biological loop models with application to the Droop model, Mathematical Biosciences, vol.127, issue.1, 1995.
DOI : 10.1016/0025-5564(94)00040-7

L. T. Biegler, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation, Computers & Chemical Engineering, vol.8, issue.3-4, pp.3-4243, 1984.
DOI : 10.1016/0098-1354(84)87012-X

L. T. Biegler, An overview of simultaneous strategies for dynamic optimization, Chemical Engineering and Processing: Process Intensification, pp.1043-1053, 2007.
DOI : 10.1016/j.cep.2006.06.021

L. T. Biegler, X. Yang, and G. A. Fischer, Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization, Journal of Process Control, vol.30, pp.104-116, 2015.
DOI : 10.1016/j.jprocont.2015.02.001

R. Bitmead, V. Wertz, and M. Gevers, Adaptive Optimal Control: The Thinking Man's GPC, 1991.

E. Bourgeois, S. Tebbani, and A. Espinosa, Launcher atmospheric guidance based on nonlinear model predictive control, GNC 2014, p.CD?Rom, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00999334

S. Boussiba and S. Leu, Microalgal biotechnology for environmental remediation . 7th European Workshop Biotechnology of Microalgae, 2007.

S. P. Boyd and L. Vandenberghe, Convex Optimization, 2004.

F. Breitenecker, A. Kugi, I. Troch, M. Benavides, D. Telen et al., Parameter identification of the droop model using optimal experiment design, IFAC- PapersOnLine 8th Vienna International Conference on Mathematical Modelling, pp.586-591, 2015.

A. E. Bryson and Y. C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.6, 1975.
DOI : 10.1109/TSMC.1979.4310229

C. Büskens and H. Maurer, Online Optimization of Large Scale Systems , chapter Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods, pp.57-68, 2001.

E. F. Camacho and C. Bordons, Model Predictive Control, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00683813

M. Cannon, D. Ng, and B. Kouvaritakis, Nonlinear Model Predictive Control: Towards New Challenging Applications, chapter Successive Linearization NMPC for a Class of Stochastic Nonlinear Systems, pp.249-262, 2009.

A. Casavola, D. Famularo, and G. Franze, Predictive control of constrained nonlinear systems via LPV linear embeddings, International Journal of Robust and Nonlinear Control, vol.5, issue.1, pp.281-294, 2003.
DOI : 10.1002/rnc.818

B. Chachuat, B. Srinivasan, and D. Bonvin, Adaptation strategies for real-time optimization, Computers & Chemical Engineering, vol.33, issue.10, pp.1557-1567, 2009.
DOI : 10.1016/j.compchemeng.2009.04.014

C. C. Chen and L. Shaw, On receding horizon feedback control, Automatica, vol.18, issue.3, pp.349-352, 1982.
DOI : 10.1016/0005-1098(82)90096-6

H. Chen and F. Allgöwer, A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability??????This paper was not presented at any IFAC meeting. This paper was accepted for publication in revised form by Associate Editor W. Bequette under the direction of Editor Prof. S. Skogestad., Automatica, vol.34, issue.10, pp.1205-1217, 1998.
DOI : 10.1016/S0005-1098(98)00073-9

Y. Chisti, Biodiesel from microalgae, Biotechnology Advances, vol.25, issue.3, pp.294-306, 2007.
DOI : 10.1016/j.biotechadv.2007.02.001

P. D. Christofides, R. Scattolini, D. Muñoz-de-la-peña, and J. Liu, Distributed model predictive control: A tutorial review and future research directions, Computers & Chemical Engineering, vol.51, pp.21-41, 2013.
DOI : 10.1016/j.compchemeng.2012.05.011

D. W. Clarke, Application of generalized predictive control to industrial processes, IEEE Control Systems Magazine, vol.8, issue.2, pp.49-55, 1988.
DOI : 10.1109/37.1874

D. W. Clarke, C. Mohtadi, and P. S. Tuffs, Generalized predictive control???Part I. The basic algorithm, Automatica, vol.23, issue.2, pp.137-148, 1987.
DOI : 10.1016/0005-1098(87)90087-2

D. E. Contois, Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures, Journal of General Microbiology, vol.21, issue.1, pp.40-50, 1959.
DOI : 10.1099/00221287-21-1-40

P. Cougnon, D. Dochain, M. Guay, and M. Perrier, On-line optimization of fedbatch bioreactors by adaptive extremum seeking control, Journal of Process Control, vol.21, issue.10, pp.1526-1532, 2011.
DOI : 10.1016/j.jprocont.2011.05.004

J. Crassidis, F. Markley, T. Anthony, and S. Andrews, Nonlinear Predictive Control of Spacecraft, Journal of Guidance, Control, and Dynamics, vol.20, issue.6, pp.1096-1103, 1997.
DOI : 10.2514/2.4191

C. R. Cutler and B. C. Ramaker, Dynamic matrix control-a computer control algorithm, Automatic Control Conference, 1980.

R. M. De-keyser and A. R. Van-cauwenberghe, Extended prediction self-adaptive control, IFAC Symp. on Identification and System Parameter Estimation, pp.1317-1322, 1985.

H. De and H. Siegler, Optimization of biomass and lipid production in heterotrophic microalgal cultures, 2012.

G. De-nicolao, L. Magni, and R. Scattolini, Stabilizing receding-horizon control of nonlinear time-varying systems, IEEE Transactions on Automatic Control, vol.43, issue.7, pp.1030-1036, 1998.
DOI : 10.1109/9.701133

N. M. De, L. T. Oliveira, and . Biegler, An extension of Newton-type algorithms for nonlinear process control, Automatica, issue.2, pp.31281-286, 1995.

D. Dehaan and M. Guay, A new real-time perspective on non-linear model predictive control, Journal of Process Control, vol.16, issue.6, pp.615-624, 2006.
DOI : 10.1016/j.jprocont.2005.10.002

P. Deuflhard, A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numerische Mathematik, vol.6, issue.4, pp.289-315
DOI : 10.1007/BF01406969

L. Dewasme, S. Fernandes, Z. Amribt, L. O. Santos, . Ph et al., State estimation and predictive control of fed-batch cultures of hybridoma cells, Journal of Process Control, vol.30, pp.50-57, 2015.
DOI : 10.1016/j.jprocont.2014.12.006

C. Diaz, P. Dieu, C. Feuillerat, P. Lelong, and M. Salome, Adaptive predictive control of dissolved oxygen concentration in a laboratory-scale bioreactor, Journal of Biotechnology, vol.43, issue.1, pp.21-32, 1995.
DOI : 10.1016/0168-1656(95)00101-5

M. Diehl, R. Amrit, and J. B. Rawlings, A Lyapunov Function for Economic Optimizing Model Predictive Control, IEEE Transactions on Automatic Control, vol.56, issue.3, pp.703-707, 2011.
DOI : 10.1109/TAC.2010.2101291

URL : https://hal.archives-ouvertes.fr/hal-01068544

M. Diehl, H. G. Bock, and J. P. Schlöder, A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control, SIAM Journal on Control and Optimization, vol.43, issue.5, pp.1714-1736, 2005.
DOI : 10.1137/S0363012902400713

M. Diehl, H. J. Ferreau, and N. Haverbeke, Nonlinear Model Predictive Control: Towards New Challenging Applications, chapter Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation, pp.391-417, 2009.

D. Dochain, Automatic control of bioprocesses, 2008.

D. Dochain and M. Perrier, Adaptive backstepping nonlinear control of bioprocesses Advanced control of chemical processes, 7th International Symposium, pp.77-82, 2004.

D. Z. Du, P. M. Pardalos, C. Enzing, M. Ploeg, M. Barbosa et al., Minimax and Applications. Nonconvex Optimization and Its Applications Microalgae-based products for the food and feed sector: an outlook for Europe, 2013.

R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss, State and Output Feedback Nonlinear Model Predictive Control: An Overview, European Journal of Control, vol.9, issue.2-3, pp.190-206, 2003.
DOI : 10.3166/ejc.9.190-206

C. E. García, D. M. Prett, and M. Morari, Model predictive control: Theory and practice???A survey, Automatica, vol.25, issue.3, pp.335-348, 1989.
DOI : 10.1016/0005-1098(89)90002-2

A. Gautam, Y. C. Chu, and Y. C. Soh, Robust <formula formulatype="inline"><tex Notation="TeX">$H_{\infty}$</tex> </formula> Receding Horizon Control for a Class of Coordinated Control Problems Involving Dynamically Decoupled Subsystems, IEEE Transactions on Automatic Control, vol.59, issue.1, pp.134-149, 2014.
DOI : 10.1109/TAC.2013.2281872

G. Goffaux, A. Vande, and . Wouwer, Design of a Robust Nonlinear Receding-Horizon Observer - Application to a biological system, Proc. of the 17th IFAC World Congress, pp.15553-15558, 2008.
DOI : 10.3182/20080706-5-KR-1001.02630

G. Goffaux, A. Vande, and . Wouwer, Design of a Robust Nonlinear Receding-Horizon Observer - First-Order and Second-Order Approximations, pp.295-304, 2009.
DOI : 10.1007/978-3-642-01094-1_24

G. C. Goodwin, J. Østergaard, D. E. Quevedo, and A. Feuer, Nonlinear Model Predictive Control: Towards New Challenging Applications, chapter A Vector Quantization Approach to Scenario Generation for Stochastic NMPC, pp.235-248, 2009.

A. Grancharova, T. A. Johansen, and P. Tøndel, Explicit Nonlinear Model Predictive Control, 2007.
DOI : 10.1007/978-3-642-28780-0

E. Gyurkovics and A. M. Elaiw, Assessment and Future Directions of Nonlinear Model Predictive Control, chapter Conditions for MPC Based Stabilization of Sampled-Data Nonlinear Systems Via Discrete- Time Approximations, 2007.

E. Harinath, L. T. Biegler, and G. A. Dumont, Control and optimization strategies for thermo-mechanical pulping processes: Nonlinear model predictive control, Journal of Process Control, vol.21, issue.4, pp.519-528, 2011.
DOI : 10.1016/j.jprocont.2011.01.009

E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan et al., Predictive Control Using an FPGA With Application to Aircraft Control, IEEE Transactions on Control Systems Technology, vol.22, issue.3, pp.1006-1017, 2014.
DOI : 10.1109/TCST.2013.2271791

R. Hermann and A. Krener, Nonlinear controllability and observability, IEEE Transactions on Automatic Control, vol.22, issue.5, pp.728-740, 1977.
DOI : 10.1109/TAC.1977.1101601

R. Huang, S. C. Patwardhan, and L. T. Biegler, Robust stability of nonlinear model predictive control with extended Kalman filter and target setting, International Journal of Robust and Nonlinear Control, vol.27, issue.11, pp.1240-1264, 2013.
DOI : 10.1002/rnc.2817

R. Huang, V. M. Zavala, and L. T. Biegler, Advanced step nonlinear model predictive control for air separation units, Journal of Process Control, vol.19, issue.4, pp.678-685, 2009.
DOI : 10.1016/j.jprocont.2008.07.006

M. Huntley and D. G. Redalje, CO 2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change, pp.573-608, 2007.

G. A. Ifrim, M. Titica, M. Barbu, L. Boillereaux, G. Cogne et al., Multivariable feedback linearizing control of Chlamydomonas reinhardtii photoautotrophic growth process in a torus photobioreactor, Chemical Engineering Journal, vol.218, pp.191-203, 2013.
DOI : 10.1016/j.cej.2012.11.133

A. Isidori, Nonlinear Control Systems: An Introduction. Communications and Control Engineering, 2013.

A. Jadbabaie and J. Hauser, On the stability of receding horizon control with a general terminal cost, IEEE Transactions on Automatic Control, vol.50, issue.5, pp.674-678, 2005.
DOI : 10.1109/TAC.2005.846597

J. V. Kadam and W. Marquardt, Sensitivity-based solution updates in closed-loop dynamic optimization, 2005.

A. Kasperski, Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach. Studies in Fuzziness and Soft Computing, 2008.

S. S. Keerthi and E. G. Gilbert, Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations, Journal of Optimization Theory and Applications, vol.30, issue.2, pp.265-293
DOI : 10.1007/BF00938540

E. C. Kerrigan and J. Maciejowski, Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution, International Journal of Robust and Nonlinear Control, vol.14, issue.4, pp.395-413, 2004.
DOI : 10.1002/rnc.889

D. Kraft, Computational Mathematical Programming, chapter On Converting Optimal Control Problems into Nonlinear Programming Problems, pp.261-280, 1985.

Y. Kuriki and T. Namerikawa, Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensusbased control, 2015 European Control Conference (ECC), pp.3079-3084, 2015.

P. L. Lee and G. R. Sullivan, Generic model control (GMC), Computers & Chemical Engineering, vol.12, issue.6, pp.573-580, 1988.
DOI : 10.1016/0098-1354(88)87006-6

M. A. Leli? and M. B. Zarrop, Generalized pole-placement self-tuning controller Part 1, Basic algorithm, International Journal of Control, vol.132, issue.2, pp.547-568, 1987.
DOI : 10.1080/00207178508933410

W. C. Li and L. T. Biegler, Process control strategies for constrained nonlinear systems, Industrial & Engineering Chemistry Research, vol.27, issue.8, pp.1421-1433, 1988.
DOI : 10.1021/ie00080a014

D. Limon, T. Alamo, and E. F. Camacho, Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties, Decision and Control Proceedings of the 41st IEEE Conference on, pp.4619-4624, 2002.

D. Limon, T. Alamo, and E. F. Camacho, Robust stability of minmax MPC controllers for nonlinear systems with bounded uncertainties, Proceeding of the mathematical Theory of Networks and Systems, 2004.

D. Limon, T. Alamo, D. M. Raimondo, D. Muñoz-peña, J. M. Bravo et al., Nonlinear Model Predictive Control: Towards New Challenging Applications, chapter Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control, pp.1-26, 2009.

D. Limon, T. Alamo, F. Salas, and E. F. Camacho, Input to state stability of min???max MPC controllers for nonlinear systems with bounded uncertainties, Automatica, vol.42, issue.5, pp.797-803, 2006.
DOI : 10.1016/j.automatica.2006.01.001

D. A. Linkers and M. Mahfonf, Advances in Model-Based Predictive Control, chapter Generalized Predictive Control in Clinical Anesthesia, 1994.

J. M. Maciejowski, Predictive control, 2002.
DOI : 10.1007/BFb0113856

L. Magni, G. De-nicolao, R. Scattolini, and F. Allgöwer, Robust model predictive control for nonlinear discrete-time systems, International Journal of Robust and Nonlinear Control, vol.37, issue.3-4, pp.229-246, 2003.
DOI : 10.1002/rnc.815

L. Magni and R. Scattolini, Stabilizing decentralized model predictive control of nonlinear systems, Automatica, vol.42, issue.7, pp.1231-1236, 2006.
DOI : 10.1016/j.automatica.2006.02.010

L. Magni and R. Scattolini, Assessment and Future Directions of Nonlinear Model Predictive Control, chapter Robustness and Robust Design of MPC for Nonlinear Discrete-Time Systems, pp.239-254, 2007.

L. Magni and R. Scattolini, Robustness and Robust Design of MPC for Nonlinear Discrete-Time Systems, 2007.
DOI : 10.1007/978-3-540-72699-9_19

L. Magni and R. Sepulchre, Stability margins of nonlinear receding-horizon control via inverse optimality, Systems & Control Letters, vol.32, issue.4, pp.241-245, 1997.
DOI : 10.1016/S0167-6911(97)00079-0

L. Mailleret, O. Bernard, and J. P. Steyer, Nonlinear adaptive control for bioreactors with unknown kinetics, Automatica, vol.40, issue.8, pp.1379-1385, 2004.
DOI : 10.1016/j.automatica.2004.01.030

N. I. Marcos, M. Guay, and D. Dochain, Output feedback adaptive extremum seeking control of a continuous stirred tank bioreactor with Monod's kinetics, 11th IFAC Symposium on Computer Applications in Biotechnology, pp.807-818, 2004.
DOI : 10.1016/j.jprocont.2003.12.002

D. Q. Mayne, Control of Constrained Dynamic Systems, European Journal of Control, vol.7, issue.2-3, pp.87-99, 2001.
DOI : 10.3166/ejc.7.87-99

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, vol.36, issue.6, pp.789-814, 2000.
DOI : 10.1016/S0005-1098(99)00214-9

F. B. Metting, Biodiversity and application of microalgae, Journal of Industrial Microbiology & Biotechnology, vol.87, issue.5-6, pp.477-489, 1996.
DOI : 10.1007/BF01574779

H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, vol.38, issue.11, pp.1623-1633, 1993.
DOI : 10.1109/9.262032

J. Monod, Recherches sur la croissance des cultures bactériennes, Actualités scientifiques et industrielles. Hermann, 1958.

M. Morari and P. J. Campo, Robust model predictive control, American Control Conference, pp.1021-1026, 1987.

M. Morari and J. H. Lee, Model predictive control: past, present and future, Computers & Chemical Engineering, vol.23, issue.4-5, pp.667-682, 1999.
DOI : 10.1016/S0098-1354(98)00301-9

E. Mosca, J. M. Lemos, and J. Zhang, Stabilizing I/O receding horizon control, 29th IEEE Conference on Decision and Control, pp.2518-2523, 1990.
DOI : 10.1109/CDC.1990.203454

R. Munoz-tamayo, P. Martinon, G. Bougaran, F. Mairet, and O. Bernard, Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models, Journal of Process Control, vol.24, issue.6, pp.991-1001, 2014.
DOI : 10.1016/j.jprocont.2014.04.021

URL : https://hal.archives-ouvertes.fr/hal-00998525

Z. K. Nagy and R. D. Braatz, Robust nonlinear model predictive control of batch processes, AIChE Journal, vol.93, issue.7, pp.1776-1786, 2009.
DOI : 10.1002/aic.690490715

X. M. Nguyen, F. Lawayeb, P. Rodriguez-ayerbe, D. Dumur, and A. Mouchette, Nonlinear model predictive control of steel slab walkingbeam reheating furnace based on a numerical model, Proc. of the 2014 IEEE MSC, pp.191-196, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086860

J. E. Normey-rico, J. Gómez-ortega, and E. F. Camacho, A Smith-predictor-based generalised predictive controller for mobile robot path-tracking, Control Engineering Practice, vol.7, issue.6, pp.729-740, 1999.
DOI : 10.1016/S0967-0661(99)00025-8

M. Olaizola, Commercial development of microalgal biotechnology: from the test tube to the marketplace, Biomolecular Engineering, vol.20, issue.4-6, pp.459-466, 2003.
DOI : 10.1016/S1389-0344(03)00076-5

S. Olaru and D. Dumur, A parameterized polyhedra approach for explicit constrained predictive control, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.1580-1585, 2004.
DOI : 10.1109/CDC.2004.1430269

T. Parisini and R. Zoppoli, A receding-horizon regulator for nonlinear systems and a neural approximation, Automatica, vol.31, issue.10, pp.311443-1451, 1995.
DOI : 10.1016/0005-1098(95)00044-W

J. C. Peeters and P. H. Eilers, The relationship between light intensity and photosynthesis???A simple mathematical model, Hydrobiological Bulletin, vol.2, issue.2, pp.134-136, 1978.
DOI : 10.1007/BF02260714

G. Pin, D. M. Raimondo, L. Magni, and T. Parisini, Robust Model Predictive Control of Nonlinear Systems With Bounded and State-Dependent Uncertainties, IEEE Transactions on Automatic Control, vol.54, issue.7, pp.1681-1687, 2009.
DOI : 10.1109/TAC.2009.2020641

L. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, 1964.

S. J. Qin and T. A. , A survey of industrial model predictive control technology, Control Engineering Practice, vol.11, issue.7, pp.733-764, 2003.
DOI : 10.1016/S0967-0661(02)00186-7

D. M. Raimondo, D. Limon, T. Alamo, and L. Magni, Robust Model Predictive Control Algorithms for Nonlinear Systems: An Input-to- State Stability Approach, Model Predictive Control, 2010.

D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. Camachp, Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability, European Journal of Control, vol.15, issue.1, pp.5-21, 2009.
DOI : 10.3166/ejc.15.5-21

R. Ramine, K. M. Raman, J. B. Rawlings, and K. R. Muske, Model algorithmic control (MAC); basic theoretical properties The stability of constrained receding horizon control, Automatica IEEE Transactions on Automatic Control, vol.18, issue.410, pp.401-414, 1982.

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design, 2009.

L. D. Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kolmanovsky, Automotive Model Predictive Control: Models, Methods and Applications, 2010.

J. Richalet, Pratique de la commande prédictive, Hermes, 1992.

J. Richalet, Industrial applications of model based predictive control, Automatica, vol.29, issue.5, pp.1251-1274, 1993.
DOI : 10.1016/0005-1098(93)90049-Y

J. Richalet, S. Abu-el-ata-doss, C. Arber, H. B. Kuntze, A. Jacubash et al., Predictive functional control application to fast and accurate robots, Proc. 10th IFAC Congress, 1987.

J. Richalet, A. Rault, J. L. Testud, and J. Papon, Algorithmic control of industrial processes, 4th IFAC Symposium on Identification and System Parameter Estimation, 1976.

J. Richalet, A. Rault, J. L. Testud, and J. Papon, Model predictive heuristic control, Automatica, vol.14, issue.5, pp.413-428, 1978.
DOI : 10.1016/0005-1098(78)90001-8

J. A. Rossiter and B. Kouvaritakis, Constrained stable generalised predictive control, IEE Proceedings D -Control Theory and Applications, pp.243-254, 1993.
DOI : 10.1049/ip-d.1993.0033

M. Rugabotti, D. M. Raimondo, A. Ferrara, and L. Magni, Robust model predictive control of continuous-time sampled data nonlinear systems with interval sliding mode, IEEE Transaction on Automatic Control, vol.56, issue.3, pp.556-570, 2010.

J. M. Sánchez and J. Rodellar, Adaptive Predictive Control: From the Concepts to Plant Optimization. Prentice-Hall international series in systems and control engineering, 1996.

F. L. Santamaria and J. M. Gómez, Economic Oriented NMPC for an Extractive Distillation Column Using an Index Hybrid DAE Model Based on Fundamental Principles, Industrial & Engineering Chemistry Research, vol.54, issue.24, pp.6344-6354, 2015.
DOI : 10.1021/acs.iecr.5b00853

L. O. Santos, L. Dewasme, D. Coutinho, A. Vande, and . Wouwer, Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: Assessment and robustness, Computers & Chemical Engineering, vol.39, pp.143-151, 2012.
DOI : 10.1016/j.compchemeng.2011.12.010

A. H. Sayed, V. H. Nascimento, and F. A. Cipparrone, A Regularized Robust Design Criterion for Uncertain Data, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.4, pp.1120-1142, 2002.
DOI : 10.1137/S0895479800380799

R. Scattolini, Architectures for distributed and hierarchical Model Predictive Control ??? A review, Journal of Process Control, vol.19, issue.5, pp.723-731, 2009.
DOI : 10.1016/j.jprocont.2009.02.003

P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings, Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, vol.44, issue.3, pp.648-654, 1999.
DOI : 10.1109/9.751369

D. Selisteanu, E. Petre, and V. Rasvan, Sliding mode and adaptive sliding-mode control of a class of nonlinear bioprocesses, International Journal of Adaptive Control and Signal Processing, vol.4, issue.8-9, pp.795-822, 2007.
DOI : 10.1002/acs.973

E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, vol.34, issue.4, pp.435-443, 1989.
DOI : 10.1109/9.28018

P. Spolaore, C. Joannis-cassan, E. Duran, and A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, vol.101, issue.2, pp.87-96, 2006.
DOI : 10.1263/jbb.101.87

URL : https://hal.archives-ouvertes.fr/hal-00133263

S. Tebbani, D. Dumur, G. Hafidi, A. Vande, and . Wouwer, Nonlinear Predictive Control of Fed-Batch Cultures of Escherichia coli, Chemical Engineering & Technology, vol.12, issue.6, pp.1112-1124, 2010.
DOI : 10.1002/ceat.201000029

URL : https://hal.archives-ouvertes.fr/hal-00495723

S. Tebbani, F. Lopes, and G. Becerra-celis, Nonlinear control of continuous cultures of Porphyridium purpureum in a photobioreactor, Chemical Engineering Science, vol.123, pp.207-219, 2015.
DOI : 10.1016/j.ces.2014.11.016

URL : https://hal.archives-ouvertes.fr/hal-01237345

S. Tebbani, F. Lopes, R. Filali, D. Dumur, and D. Pareau, Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor, Bioprocess and Biosystems Engineering, vol.13, issue.3???4, pp.83-97, 2014.
DOI : 10.1007/s00449-013-0928-0

URL : https://hal.archives-ouvertes.fr/hal-00936841

S. Tebbani, M. Titica, C. Join, M. Fliess, D. Dumur-toroghi et al., Model-based versus model-free control designs for improving microalgae growth in a closed photobioreactor: Some preliminary comparisons Observer based backstepping controller for microalgae cultivation, 22nd MED Conference, pp.7482-7491, 2013.

V. Utkin and J. Shi, Integral sliding mode in systems operating under uncertainty conditions, Proceedings of 35th IEEE Conference on Decision and Control, pp.4591-4596, 1996.
DOI : 10.1109/CDC.1996.577594

V. S. Vassiliadis, Computational solution of dynamic optimization problems with general differential algebric constraints, 1993.

Z. Y. Wan and M. V. Kothare, Efficient Scheduled Stabilizing Output Feedback Model Predictive Control for Constrained Nonlinear Systems, IEEE Transactions on Automatic Control, vol.49, issue.7, pp.1172-1177, 2004.
DOI : 10.1109/TAC.2004.831122

L. Wang, Model Predictive Control System Design and Implementation Using MATLAB R . Advances in Industrial Control, 2009.

R. Wang, G. P. Liu, W. Wang, D. Rees, and Y. B. Zhao, <formula formulatype="inline"><tex Notation="TeX">$H_{\infty}$</tex></formula> Control for Networked Predictive Control Systems Based on the Switched Lyapunov Function Method, IEEE Transactions on Industrial Electronics, vol.57, issue.10, pp.3565-3571, 2010.
DOI : 10.1109/TIE.2009.2038341

R. Wang, B. Wang, G. P. Liu, W. Wang, and D. Rees, <formula formulatype="inline"><tex Notation="TeX">$H_{\infty}$</tex></formula> Controller Design for Networked Predictive Control Systems Based on the Average Dwell-Time Approach, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.57, issue.4, pp.310-314, 2010.
DOI : 10.1109/TCSII.2010.2043386

L. Würth, R. Hannemann, and W. Marquardt, Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization, Journal of Process Control, vol.19, issue.8, pp.1277-1288, 2009.
DOI : 10.1016/j.jprocont.2009.02.001

B. E. Ydstie, Extended horizon adaptive control, Proc. 9th IFAC World Congress, 1984.

L. A. Zadeh and B. H. Whalen, On optimal contro and linear programming, IRE Trans. Aut. Control, vol.7, issue.4, pp.729-740, 1962.

J. Zarate-florez, J. J. Martinez, G. Besancon, and D. Faille, Explicit coordination for mpc-based distributed control with application to hydropower valleys, 50th IEEE Conference on Decision and Control and European Control Conference, pp.830-835, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00620482

V. M. Zavala and L. T. Biegler, The advanced-step NMPC controller: Optimality, stability and robustness, Automatica, vol.45, issue.1, pp.86-93, 2009.
DOI : 10.1016/j.automatica.2008.06.011

A. Zheng and M. Morari, Stability of model predictive control with soft constraints, Proceedings of 1994 33rd IEEE Conference on Decision and Control, pp.729-740, 1994.
DOI : 10.1109/CDC.1994.411277