N. Gaudin, le circ classe les champs electromagnetiques de radiofrequences comme « peut-etre cancerogenes pour l'homme, 2011.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van-veen, Microwave imaging via space-time beamforming for early detection of breast cancer. Antennas and Propagation, IEEE Transactions on, issue.8, pp.511690-1705, 2003.

M. Gebbard, C. Gersing, . Brockhoff, A. Ph, H. Schnabel et al., Impedance spectroscopy : a method for surveillance of ischemia tolerance of the heart. The Thoracic and cardiovascular surgeon, pp.26-32, 2008.

A. Ivorra, Bioimpedance monitoring for physicians : an overview. Centre Nacional de Microelectrònica Biomedical Applications Group, 2003.

P. Herman and . Schwan, Electrical properties of tissue and cell suspensions Advances in biological and medical physics, p.147, 1957.

P. Herman, . Schwan, R. Kenneth, and . Foster, Rf-field interactions with biological systems : electrical properties and biophysical mechanisms, Proceedings of the IEEE, vol.68, issue.1, pp.104-113, 1980.

H. Schwan, Electrical Properties of Tissue and Cell Suspensions, Proceedings of the 16th Annual International Conference of the IEEE, pp.70-71, 1994.
DOI : 10.1016/B978-1-4832-3111-2.50008-0

K. R. Foster, Herman P. Schwan: A Scientist and Pioneer in Biomedical Engineering, Annual Review of Biomedical Engineering, vol.4, issue.1, pp.1-27, 2002.
DOI : 10.1146/annurev.bioeng.4.092001.093625

K. R. Foster and H. P. Schwan, Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields, pp.25-102, 1996.

S. Abdalla, Low Frequency Dielectric Properties of Human Blood, IEEE Transactions on NanoBioscience, vol.10, issue.2, pp.113-120, 2011.
DOI : 10.1109/TNB.2011.2159734

C. Gabriel, A. Peyman, and E. Grant, Electrical conductivity of tissue at frequencies below 1 MHz, Physics in Medicine and Biology, vol.54, issue.16, p.4863, 2009.
DOI : 10.1088/0031-9155/54/16/002

. Youssif, Evaluation of the dielectric properties of grease containing copolymers and ester, Journal of Applied Polymer Science, 2012.

G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair et al., Bioimpedance analysis for the characterization of breast cancer cells in suspension, Biomedical Engineering IEEE Transactions on, issue.8, pp.592321-2329, 2012.

P. Tibayrenc, L. Preziosi-belloy, and C. Ghommidh, On-line monitoring of dielectrical properties of yeast cells during a stress-model alcoholic fermentation, Process Biochemistry, vol.46, issue.1, pp.193-201, 2011.
DOI : 10.1016/j.procbio.2010.08.007

A. , D. Biasio, and C. Cametti, On the dielectric relaxation of biological cell suspensions : The effect of the membrane electrical conductivity, Colloids and Surfaces B : Biointerfaces, vol.84, issue.2, pp.433-441, 2011.

N. Sandeau, 4Pi-microscopie : Applications à la localisation axiale de luminophores et à l'amélioration de la résolution latérale, d'économie et des sciences, 2005.

J. P. Thiery, Cell adhesion in cancer, Comptes Rendus Physique, vol.4, issue.2, pp.289-304, 2003.
DOI : 10.1016/S1631-0705(03)00031-8

H. F. Lodish, D. Baltimore, A. Berk, and J. E. Darnell, Molecular cell biology, WH Freeman, 1995.

A. Saez, M. Ghibaudo, B. Ladoux, A. Buguin, and P. Silberzan, Les cellules vivantes répondent à la rigidité de leur substrat, pp.94-100, 2007.

A. Sally, C. Kim, L. Tai, . Mok, A. Eric et al., Calcium-dependent dynamics of cadherin interactions at cell?cell junctions, Proceedings of the National Academy of Sciences, pp.9857-9862, 2011.

E. M. Kovacs, Direct cadherin-activated cell signaling a view from the plasma membrane, The Journal of cell biology, vol.160, issue.1, pp.11-16, 2003.

A. , L. Floc-'h, A. Jalil, I. Vergnon, B. L. Chansac et al., ?e?7 integrin interaction with e-cadherin promotes antitumor ctl activity by triggering lytic granule polarization and exocytosis, The Journal of experimental medicine, vol.204, issue.3, pp.559-570, 2007.

B. Felding-habermann, S. Silletti, F. Mei, C. H. Siu, P. M. Yip et al., A Single Immunoglobulin-like Domain of the Human Neural Cell Adhesion Molecule L1 Supports Adhesion by Multiple Vascular and Platelet Integrins, The Journal of Cell Biology, vol.6, issue.6, pp.1391567-1581, 1997.
DOI : 10.1074/jbc.270.49.29413

C. K. Miranti and J. S. Brugge, Sensing the environment: a historical perspective on integrin signal transduction, Nature Cell Biology, vol.4, issue.4, pp.83-90, 2002.
DOI : 10.1038/ncb0402-e83

C. V. Carman and T. A. Springer, Integrin avidity regulation : are changes in affinity and conformation underemphasized ? Current opinion in cell biology, pp.547-556, 2003.

E. Fear and M. Stuchly, Modeling assemblies of biological cells exposed to electric fields, IEEE Transactions on Biomedical Engineering, vol.45, issue.10, pp.1259-1271, 1998.
DOI : 10.1109/10.720204

C. Poignard, une introduction à la modélisation électromagnétique des cellules biologique, 2007.

R. Pethig, Y. Huang, X. Wang, P. Julian, and . Burt, Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes, Journal of Physics D: Applied Physics, vol.25, issue.5, p.881, 1992.
DOI : 10.1088/0022-3727/25/5/022

J. Voldman, ELECTRICAL FORCES FOR MICROSCALE CELL MANIPULATION, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.425-454, 2006.
DOI : 10.1146/annurev.bioeng.8.061505.095739

W. Arnold and U. Zimmermann, Electro-rotation: development of a technique for dielectric measurements on individual cells and particles, Journal of Electrostatics, vol.21, issue.2-3, pp.151-191, 1988.
DOI : 10.1016/0304-3886(88)90027-7

G. Qiao, C. Duan, . Chatwin, W. Sinclair, and . Wang, Electrical properties of breast cancer cells from impedance measurement of cell suspensions, Journal of Physics : Conference Series, p.12081, 2010.
DOI : 10.1088/1742-6596/224/1/012081

R. Höber, Eine methode, die elektrische leitfähigkeit im innern von zellen zu messen. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, pp.4-6237, 1910.

M. Jean-philippe, Etude du phénomène de relaxation diélectrique dans les capacités Métal-Isolant-Métal, 2008.

K. Asami, Dielectric spectra of biological cells and tissues simulated by threedimensional finite difference method, 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, pp.98-101, 2007.

J. David, N. Bakewell, D. Vergara-irigaray, and . Holmes, Dielectrophoresis of biomolecules, Nanotechnol Nanomed, vol.1, p.1003, 2013.

J. Laforet-ast, Caractérisation de microparticules par méthodes diélectrophorétiques : applications aux cellules biologiques, 2010.

T. B. Jones, Electromechanics of particles, 1995.
DOI : 10.1017/CBO9780511574498

A. Irimajiri, T. Hanai, and A. Inouye, A dielectric theory of ???multi-stratified shell??? model with its application to a lymphoma cell, Journal of Theoretical Biology, vol.78, issue.2, pp.251-269, 1979.
DOI : 10.1016/0022-5193(79)90268-6

X. B. Wang, Y. Hughes, . Huang, P. Becker, and . Gascoyne, Nonuniform spatial distributions of both the magnitude and phase of ac electric fields determine dielectrophoretic forces, BBA)-General Subjects, pp.1243185-194, 1995.

M. P. Hughes, Nanoelectromechanics in engineering and biology, CRC, 2003.

T. L. Mahaworasilpa, H. G. Coster, and E. P. George, Forces on biological cells due to applied alternating (AC) electric fields. I. Dielectrophoresis, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1193, issue.1, pp.118-126, 1994.
DOI : 10.1016/0005-2736(94)90340-9

P. Gascoyne, X. B. Becker, and . Wang, Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements, Bioelectrochemistry and Bioenergetics, vol.36, issue.2, pp.115-125, 1995.
DOI : 10.1016/0302-4598(94)05015-M

J. Gimsa, G. Glaser, and . Fuhr, Theory and application of the rotation of biological cells in rotating electric fields (electro-rotation) Physical characterization of biological cells, pp.295-323, 1991.

E. Gersing, Impedance spectroscopy on living tissue for determination of the state of organs, Bioelectrochemistry and Bioenergetics, vol.45, issue.2, pp.145-149, 1998.
DOI : 10.1016/S0302-4598(98)00079-8

T. Süselbeck, H. Thielecke, J. Köchlin, S. Cho, I. Weinschenk et al., Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system, Basic Research in Cardiology, vol.25, issue.5, pp.446-452, 2005.
DOI : 10.1007/s00395-005-0527-6

P. Aberg, I. Nicander, J. Hansson, P. Geladi, U. Holmgren et al., Skin Cancer Identification Using Multifrequency Electrical Impedance???A Potential Screening Tool, IEEE Transactions on Biomedical Engineering, vol.51, issue.12, pp.512097-2102, 2004.
DOI : 10.1109/TBME.2004.836523

A. Soley, . Lecina, . Gámez, . Cairo, . Riu et al., On-line monitoring of yeast cell growth by impedance spectroscopy, Journal of Biotechnology, vol.118, issue.4, pp.398-405, 2005.
DOI : 10.1016/j.jbiotec.2005.05.022

R. Daniel, M. Merrill, . Bikson, G. John, and . Jefferys, Electrical stimulation of excitable tissue : design of efficacious and safe protocols, Journal of neuroscience methods, vol.141, issue.2, pp.171-198, 2005.

S. Gawad, P. Schild, and . Renaud, Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing, Lab on a Chip, vol.1, issue.1, pp.76-82, 2001.
DOI : 10.1039/b103933b

H. Edward-ayliffe, B. Frazier, and R. Rabbitt, Electric impedance spectroscopy using microchannels with integrated metal electrodes. Microelectromechanical Systems, Journal, vol.8, issue.1, pp.50-57, 1999.

T. Sun, G. Nicolas, S. Green, H. Gawad, and . Morgan, Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs, IET Nanobiotechnology, vol.1, issue.5, pp.69-79, 2007.
DOI : 10.1049/iet-nbt:20070019

T. Sun, C. Van-berkel, G. Nicolas, H. Green, and . Morgan, Digital signal processing methods for impedance microfluidic cytometry, Microfluidics and Nanofluidics, vol.26, issue.2, pp.179-187, 2009.
DOI : 10.1007/s10404-008-0315-3

L. Wang, L. Flanagan, P. Abraham, and . Lee, Side-wall vertical electrodes for lateral field microfluidic applications. Microelectromechanical Systems, Journal, vol.16, issue.2, pp.454-461, 2007.

H. Gou, X. Zhang, N. Bao, and J. Xu, Xing-Hua Xia, and Hong-Yuan Chen. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device, Journal of Chromatography A, issue.33, pp.12185725-5729, 2011.

C. Terrier, Jonctions et adhérence cellulaire, 514401.

C. M. Niessen and B. M. Gumbiner, Cadherin-mediated cell sorting not determined by binding or adhesion specificity, The Journal of Cell Biology, vol.144, issue.2, p.389, 2002.
DOI : 10.1083/jcb.200108040

L. Zhao, L. Fan, X. Zhang, M. Zhu, and W. Tan, The role of microenvironment in aggregation of the 293-human embryonic Kidney cells, Korean Journal of Chemical Engineering, vol.97, issue.5, pp.796-799, 2007.
DOI : 10.1007/s11814-007-0043-5

L. Nicolas, N. Burais, F. Buret, O. Fabregue, L. Krahenbuhl et al., Interactions between electromagnetic field and biological tissues : Questions, some answers and future trends, International Compumag Society Newsletter, vol.10, issue.2, pp.4-9, 2003.

M. Schäfer, H. Schlegel, . Kirlum, M. Gersing, and . Gebhard, Monitoring of damage to skeletal muscle tissues caused by ischemia, Bioelectrochemistry and Bioenergetics, vol.45, issue.2, pp.151-155, 1998.
DOI : 10.1016/S0302-4598(98)00083-X

N. De-jonge, . Db-peckys, D. Kremers, and . Piston, Electron microscopy of whole cells in liquid with nanometer resolution, Proceedings of the National Academy of Sciences, vol.106, issue.7, pp.2159-2164, 2009.
DOI : 10.1073/pnas.0809567106

A. Michael, . Beardslee, L. Deborah, . Lerner, N. Peter et al., Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia, Circulation research, vol.87, issue.8, pp.656-662, 2000.

L. Bernard, Caractérisation électrique des tissus biologiques et calcul des phénomènes induits dans le corps humain par des champs électromagnétiques de fréquence inférieure au GHz, 2007.

A. Silve, Nouveaux dispositifs pour l'application contrôlée d'impulsions électriques nanosecondes et pour la détection de leurs effets sur les cellules. Nouveaux résultats et hypothèses sur les paramètres contrôlant l'électroperméabilisation des cellules biologiques, 2011.

A. Ovsianikov, . Gruene, . Pflaum, . Koch, . Maiorana et al., Laser printing of cells into 3D scaffolds, Biofabrication, vol.2, issue.1, p.14104, 2010.
DOI : 10.1088/1758-5082/2/1/014104

S. Byung, . Kim, J. David, and . Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering, Trends in biotechnology, vol.16, issue.5, pp.224-230, 1998.

S. Jennifer, . Liu, J. Zev, and . Gartner, Directing the assembly of spatially organized multicomponent tissues from the bottom up, Trends in cell biology, vol.22, issue.12, pp.683-691, 2012.

M. Nakamura, C. Iwanaga, . Henmi, Y. Arai, and . Nishiyama, Biomatrices and biomaterials for future developments of bioprinting and biofabrication, Biofabrication, vol.2, issue.1, p.14110, 2010.
DOI : 10.1088/1758-5082/2/1/014110

R. Lin, C. Ho, C. Liu, and H. Chang, Dielectrophoresis based-cell patterning for tissue engineering, Biotechnology Journal, vol.20, issue.9, pp.949-957, 2006.
DOI : 10.1002/biot.200600112

R. Glauco, J. R. Souza, . Molina, M. Robert, . Raphael et al., Three-dimensional tissue culture based on magnetic cell levitation, Nature nanotechnology, vol.5, issue.4, pp.291-296, 2010.

A. Sebastian, A. Buckle, H. Gerard, and . Markx, Tissue engineering with electric fields: Immobilization of mammalian cells in multilayer aggregates using dielectrophoresis, Biotechnology and Bioengineering, vol.6, issue.3, pp.694-700, 2007.
DOI : 10.1002/bit.21416

Y. Huang and R. Pethig, Electrode design for negative dielectrophoresis, Measurement Science and Technology, vol.2, issue.12, p.1142, 1991.
DOI : 10.1088/0957-0233/2/12/005

M. P. Hughes, Computer-aided analysis of conditions for optimizing practical electrorotation, Physics in Medicine and Biology, vol.43, issue.12, p.3639, 1998.
DOI : 10.1088/0031-9155/43/12/019

. Clariant, Az 5214 e image reversal photoresist

A. Ramos, . Morgan, A. Ng-green, and . Castellanos, The role of electrohydrodynamic forces in the dielectrophoretic manipulation and separation of particles, Journal of Electrostatics, vol.47, issue.1-2, pp.71-81, 1999.
DOI : 10.1016/S0304-3886(99)00031-5

G. Nicolas, A. Green, A. Ramos, H. Gonzalez, A. Morgan et al., Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. iii. observation of streamlines and numerical simulation, p.26305, 2002.

J. Canny, A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.6, pp.679-698, 1986.

A. Budde and . Grümmer, Electrorotation of cells and particles : an automated instrumentation. Instrumentation science & technology, pp.59-66, 1999.

X. Zhou, R. Burt, and . Pethig, Automatic cell electrorotation measurements: studies of the biological effects of low-frequency magnetic fields and of heat shock, Physics in Medicine and Biology, vol.43, issue.5, p.1075, 1998.
DOI : 10.1088/0031-9155/43/5/003

G. De-gasperis, X. W. Yang, F. Frederick, . Becker, R. Peter et al., Automated electrorotation: dielectric characterization of living cells by real-time motion estimation, Measurement Science and Technology, vol.9, issue.3, p.518, 1998.
DOI : 10.1088/0957-0233/9/3/029

N. Sergey, . Krylov, J. Norman, and . Dovichi, Single-cell analysis using capillary electrophoresis : Influence of surface support properties on cell injection into the capillary, Electrophoresis, vol.21, issue.4, pp.767-773, 2000.

M. Sancho, G. Martínez, S. Muñoz, J. L. Sebastián, and R. Pethig, Interaction between cells in dielectrophoresis and electrorotation experiments, Biomicrofluidics, vol.4, issue.2, p.2010
DOI : 10.1063/1.3454129

P. Pushkar, M. Lele, E. M. Mittal, and . Furst, Anomalous particle rotation and resulting microstructure of colloids in ac electric fields, Langmuir, vol.24, issue.22, pp.12842-12848, 2008.

C. Holzapfel, U. Vienken, and . Zimmermann, Rotation of cells in an alternating electric field theory and experimental proof, The Journal of Membrane Biology, vol.36, issue.1, pp.13-26, 1982.
DOI : 10.1007/BF01868644

D. Zimmermann, M. Kiesel, U. Terpitz, A. Zhou, R. Reuss et al., A Combined Patch-Clamp and Electrorotation Study of the Voltage- and Frequency-Dependent Membrane Capacitance Caused by Structurally Dissimilar Lipophilic Anions, Journal of Membrane Biology, vol.166, issue.2, pp.107-121, 2008.
DOI : 10.1007/s00232-007-9090-4

R. Hölzel, Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz, Biophysical Journal, vol.73, issue.2, pp.1103-1109, 1997.
DOI : 10.1016/S0006-3495(97)78142-6

L. J. Gentet, G. J. Stuart, and J. D. Clements, Direct Measurement of Specific Membrane Capacitance in Neurons, Biophysical Journal, vol.79, issue.1, pp.314-320, 2000.
DOI : 10.1016/S0006-3495(00)76293-X

K. Ratanachoo, R. C. Peter, M. Gascoyne, and . Ruchirawat, Detection of cellular responses to toxicants by dielectrophoresis, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1564, issue.2, pp.449-458, 2002.
DOI : 10.1016/S0005-2736(02)00494-7

V. Berardi, C. Aiello, A. Bonincontro, and G. Risuleo, Alterations of the Plasma Membrane Caused by Murine Polyomavirus Proliferation: An Electrorotation Study, Journal of Membrane Biology, vol.22, issue.1, pp.19-25, 2009.
DOI : 10.1007/s00232-009-9172-6

C. H. Chuang, Y. M. Hsu, and C. C. Yeh, The effects of nanoparticles uptaken by cells on electrorotation, ELECTROPHORESIS, vol.56, issue.9, pp.1449-1456, 2009.
DOI : 10.1002/elps.200800682

J. Yang, Y. Huang, X. Wang, X. Wang, F. Frederick et al., Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion, Biophysical Journal, vol.76, issue.6, pp.3307-3314, 1999.
DOI : 10.1016/S0006-3495(99)77483-7

P. Gascoyne, R. Pethig, J. Satayavivad, F. Frederick, M. Becker et al., Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1323, issue.2, pp.240-252, 1997.
DOI : 10.1016/S0005-2736(96)00191-5

X. Liu, L. Zhao, Y. Wang, X. Zhang, and W. S. Tan, Effects of calcium ion on adenovirus production with high densities of HEK293 cells, Biotechnology and Bioprocess Engineering, vol.54, issue.3, pp.414-420, 2010.
DOI : 10.1007/s12257-009-3032-1

H. Gerard, . Markx, A. Penelope, R. Dyda, and . Pethig, Dielectrophoretic separation of bacteria using a conductivity gradient, Journal of biotechnology, vol.51, issue.2, pp.175-180, 1996.

Y. Huang, L. Karla, M. Ewalt, R. Tirado, A. Haigis et al., Electric Manipulation of Bioparticles and Macromolecules on Microfabricated Electrodes, Analytical Chemistry, vol.73, issue.7, pp.1549-1559, 2001.
DOI : 10.1021/ac001109s

D. Chen, H. Du, and W. Li, Bioparticle separation and manipulation using dielectrophoresis. Sensors and Actuators A : Physical, pp.329-334, 2007.

X. Wang, Y. Huang, . Burt, R. Markx, and . Pethig, Selective dielectrophoretic confinement of bioparticles in potential energy wells, Journal of Physics D: Applied Physics, vol.26, issue.8, p.1278, 1993.
DOI : 10.1088/0022-3727/26/8/019

H. Morgan, P. Michael, . Hughes, G. Nicolas, and . Green, Separation of Submicron Bioparticles by Dielectrophoresis, Biophysical Journal, vol.77, issue.1, pp.516-525, 1999.
DOI : 10.1016/S0006-3495(99)76908-0

H. Li and R. Bashir, Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes, Sensors and Actuators B: Chemical, vol.86, issue.2-3, pp.215-221, 2002.
DOI : 10.1016/S0925-4005(02)00172-7

T. Schnelle, G. Müller, and . Fuhr, Trapping in AC octode field cages, Journal of Electrostatics, vol.50, issue.1, pp.17-29, 2000.
DOI : 10.1016/S0304-3886(00)00012-7

T. Schnelle, C. Müller, G. Reichle, and . Fuhr, Combined dielectrophoretic field cages and laser tweezers for electrorotation, Applied Physics B: Lasers and Optics, vol.70, issue.2, pp.267-274, 2000.
DOI : 10.1007/s003400050044

M. Frenea, B. L. Sp-faure, P. Pioufle, H. Coquet, and . Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis, Materials Science and Engineering: C, vol.23, issue.5, pp.597-603, 2003.
DOI : 10.1016/S0928-4931(03)00055-9

URL : https://hal.archives-ouvertes.fr/hal-00739225

M. Frenea-robin, Micromanipulation de particules par diélectrophorèse : application au rangement matriciel et au tri de cellules sur puce, 2003.

L. Abel, . Thangawng, A. Melody, . Swartz, R. Matthew et al., Bond?detach lithography : a method for micro/nanolithography by precision pdms patterning, Small, vol.3, issue.1, pp.132-138, 2007.

J. Tong, A. Craig, Y. Simmons, and . Sun, Precision patterning of PDMS membranes and applications, Journal of Micromechanics and Microengineering, vol.18, issue.3, p.37004, 2008.
DOI : 10.1088/0960-1317/18/3/037004

H. Becker and C. Gärtner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.70, issue.1, pp.12-26, 2000.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7

J. Garra, . Long, . Currie, . Schneider, M. White et al., Dry etching of polydimethylsiloxane for microfluidic systems, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.20, issue.3, pp.975-982, 2002.
DOI : 10.1116/1.1460896

R. Janelle, . Anderson, T. Daniel, H. Chiu, . Wu et al., Fabrication of microfluidic systems in poly (dimethylsiloxane ), Electrophoresis, vol.21, pp.27-40, 2000.

T. Thorsen, J. Sebastian, . Maerkl, R. Stephen, and . Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.580-584, 2002.
DOI : 10.1126/science.1076996

S. Menad, A. El-gaddar, N. Haddour, S. Toru, and M. Brun, François Buret, and Marie Frenea-Robin. From bipolar to quadrupolar electrode structures : an application of bond-detach lithography for dielectrophoretic particle assembly, Langmuir, 2014.

K. Suk-ryu, X. Wang, K. Shaikh, and C. Liu, A method for precision patterning of silicone elastomer and its applications. Microelectromechanical Systems, Journal, vol.13, issue.4, pp.568-575, 2004.

. Gabrielweb and . Ifac, Institute For Applied Physics

S. Grimnes, O. Rikshospitalet, N. Herman, and P. Schwan, Interface phenomena and dielectric properties of biological tissue. Encyclopedia of surface and colloid science, pp.2643-2653, 2002.

M. Brun, Électrodes nanocomposites pour applications en microfluidique, 2011.

J. Mathieu-brun, A. Chateaux, P. Deman, R. Pittet, and . Ferrigno, Nanocomposite Carbon-PDMS Material for Chip-Based Electrochemical Detection, Electroanalysis, vol.129, issue.2, pp.321-324, 2011.
DOI : 10.1002/elan.201000321

W. Ryan, . Going, L. Brandon, . Conover, J. Michael et al., Electrostatic force and torque description of generalized spheroidal particles in optical landscapes, NanoScience+ Engineering International Society for Optics and Photonics, pp.703826-703826, 2008.

F. Buret, N. Faure, L. Nicolas, R. Perrussel, and C. Poignard, Numerical studies on the effect of electric pulses on an egg-shaped cell with a spherical nucleus, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00477495

K. Maswiwat, M. Holtappels, and J. Gimsa, On the field distribution in electrorotation chambers???Influence of electrode shape, Electrochimica Acta, vol.51, issue.24, pp.5215-5220, 2006.
DOI : 10.1016/j.electacta.2006.03.048

B. Thomas and . Jones, Basic theory of dielectrophoresis and electrorotation, Engineering in Medicine and Biology Magazine IEEE, vol.22, issue.6, pp.33-42, 2003.

A. Pilla, J. Nasser, and . Kaufman, Gap junction impedance, tissue dielectrics and thermal noise limits for electromagnetic field bioeffects, Bioelectrochemistry and Bioenergetics, vol.35, issue.1-2, pp.63-69, 1994.
DOI : 10.1016/0302-4598(94)87013-6

P. H. , C. Camargo, K. G. Satyanarayana, and F. Wypych, Nanocomposites : synthesis, structure, properties and new application opportunities, Materials Research, vol.12, issue.1, pp.1-39, 2009.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

I. Karen, . Winey, A. Richard, and . Vaia, Polymer nanocomposites, MRS bulletin, vol.32, issue.04, pp.314-322, 2007.

T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose et al., Recent advances in graphene based polymer composites, Progress in Polymer Science, vol.35, issue.11, pp.1350-1375, 2010.
DOI : 10.1016/j.progpolymsci.2010.07.005

T. Erik, Z. Thostenson, T. Ren, and . Chou, Advances in the science and technology of carbon nanotubes and their composites : a review, Composites science and technology, issue.13, pp.611899-1912, 2001.

E. Hammel, . Tang, . Trampert, . Schmitt, . Mauthner et al., Carbon nanofibers for composite applications, Carbon, vol.42, issue.5-6, pp.1153-1158, 2004.
DOI : 10.1016/j.carbon.2003.12.043

M. Endo, . Kim, . Hayashi, T. Nishimura, . Matusita et al., Vapor-grown carbon fibers (VGCFs), Carbon, vol.39, issue.9, pp.1287-1297, 2001.
DOI : 10.1016/S0008-6223(00)00295-5

G. Gary, . Tibbetts, L. Max, . Lake, L. Karla et al., A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Composites Science and Technology, vol.67, issue.7, pp.1709-1718, 2007.

P. Cardoso, J. Klosterman, . Covas, and S. Van-hattum, Quantitative evaluation of the dispersion achievable using different preparation methods and DC electrical conductivity of vapor grown carbon nanofiber/epoxy composites, Polymer Testing, vol.31, issue.5, pp.697-704, 2012.
DOI : 10.1016/j.polymertesting.2012.04.006

L. Eric and . Crump, Economic impact analysis for the proposed carbon black manufacturing neshap. US Environmental Protection Agency. Office of Air Quality Planning and Standards. Innovative Strategies and Economics Group, 2000.

K. Stephan, . Pittet, . Renaud, . Kleimann, . Morin et al., Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures, Journal of Micromechanics and Microengineering, vol.17, issue.10, pp.17-69, 2007.
DOI : 10.1088/0960-1317/17/10/N01

M. Yamamoto, T. Yasukawa, M. Suzuki, S. Kosuge, H. Shiku et al., Patterning with particles using three-dimensional interdigitated array electrodes with negative dielectrophoresis and its application to simple immunosensing, Electrochimica Acta, vol.82, pp.35-42, 2012.
DOI : 10.1016/j.electacta.2012.02.109

K. Ino, A. Ishida, Y. Kumi, M. Inoue, M. Suzuki et al., Electrorotation chip consisting of three-dimensional interdigitated array electrodes, Sensors and Actuators B: Chemical, vol.153, issue.2, pp.468-473, 2011.
DOI : 10.1016/j.snb.2010.11.012

L. Chopinet, M. Wasungu, and . Rols, First explanations for differences in electrotransfection efficiency in vitro and in vivo using spheroid model, International Journal of Pharmaceutics, vol.423, issue.1, pp.7-15, 2012.
DOI : 10.1016/j.ijpharm.2011.04.054