J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, and A. T. Suresh, Tight bounds for universal compression of large alphabets, 2013 IEEE International Symposium on Information Theory, pp.2875-2879, 2013.
DOI : 10.1109/ISIT.2013.6620751

J. Acharya, A. Jafarpour, A. Orlitsky, and A. T. Suresh, Optimal probability estimation with applications to prediction and classification, Conference on Learning Theory, pp.764-796, 2013.

J. Acharya, A. Jafarpour, A. Orlitsky, and A. T. Suresh, Poissonization and universal compression of envelope classes, 2014 IEEE International Symposium on Information Theory, 2014.
DOI : 10.1109/ISIT.2014.6875158

J. Acharya, A. Jafarpour, A. Orlitsky, and A. T. Suresh, Universal compression of envelope classes: Tight characterization via poisson sampling

J. Acharya, C. Daskalakis, and G. C. Kamath, Optimal testing for properties of distributions, Advances in Neural Information Processing Systems, pp.3577-3598, 2015.

D. Aldous, Random walks on finite groups and rapidly mixing markov chains, Seminar on probability, XVII, pp.243-297, 1983.
DOI : 10.1214/aop/1176994578

D. Aldous and P. Diaconis, Shuffling cards and stopping times, American Mathematical Monthly, pp.333-348, 1986.

K. S. Alexander, A counterexample to a correlation inequality in finite sampling. The Annals of Statistics, pp.436-439, 1989.

N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin, NON-BACKTRACKING RANDOM WALKS MIX FASTER, Communications in Contemporary Mathematics, vol.23, issue.04, pp.585-603, 2007.
DOI : 10.1017/S0963548300000390

C. Anderson, Extreme value theory for a class of discrete distributions with applications to some stochastic processes, Journal of Applied Probability, pp.99-113, 1970.

A. Antos and I. Kontoyiannis, Convergence properties of functional estimates for discrete distributions, Random Structures and Algorithms, vol.24, issue.3-4, pp.163-193, 2001.
DOI : 10.1109/TIT.1978.1055934

R. Bahadur, On the number of distinct values in a large sample from an infinite discrete distribution, 26A(Supp. II), pp.67-75, 1960.

A. D. Barbour and A. V. Gnedin, Small counts in the infinite occupancy scheme. Electron, J. Probab, vol.14, issue.13, pp.365-384, 2009.

R. Bardenet and O. Maillard, Concentration inequalities for sampling without replacement. ArXiv e-prints, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01216652

J. Bartroff, L. Goldstein, and . I¸slaki¸slak, Bounded size biased couplings, log concave distributions and concentration of measure for occupancy models. arXiv preprint arXiv:1402, 2014.

R. Basu, J. Hermon, and Y. Peres, Characterization of cutoff for reversible Markov chains, 2015.

T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, The Complexity of Approximating the Entropy, SIAM Journal on Computing, vol.35, issue.1, pp.132-150, 2005.
DOI : 10.1137/S0097539702403645

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, Testing Closeness of Discrete Distributions, Journal of the ACM, vol.60, issue.1
DOI : 10.1145/2432622.2432626

D. Bayer and P. Diaconis, Trailing the dovetail shuffle to its lair. The Annals of Applied Probability, pp.294-313, 1992.

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of extremes: theory and applications, 2006.
DOI : 10.1002/0470012382

A. Ben-hamou and J. Salez, Cutoff for non-backtracking random walks on sparse random graphs, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141192

A. Ben-hamou, S. Boucheron, and M. I. Ohannessian, Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications. arXiv preprint arXiv:1412, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101671

A. Ben-hamou, Y. Peres, and J. Salez, Weighted sampling without replacement. arXiv preprint, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376925

I. Benjamini, H. Duminil-copin, G. Kozma, and A. Yadin, Disorder, entropy and harmonic functions . arXiv preprint arXiv, pp.1111-4853, 2011.

D. Berend and A. Kontorovich, On the concentration of the missing mass, Electronic Communications in Probability, vol.18, issue.0, 2013.
DOI : 10.1214/ECP.v18-2359

D. Berend and A. Kontorovich, A finite sample analysis of the naive bayes classifier, Journal of Machine Learning Research, vol.16, pp.1519-1545, 2015.

N. Berestycki and B. Sengul, Cutoff for conjugacy-invariant random walks on the permutation group, 2014.

N. Berestycki, E. Lubetzky, Y. Peres, and A. Sly, Random walks on the random graph, The Annals of Probability, vol.46, issue.1, 2015.
DOI : 10.1214/17-AOP1189

J. Bertoin, Random fragmentation and coagulation processes, 2006.
DOI : 10.1017/CBO9780511617768

URL : https://hal.archives-ouvertes.fr/hal-00103015

L. Bogachev, A. Gnedin, and Y. Yakubovich, On the variance of the number of occupied boxes, Advances in Applied Mathematics, vol.40, issue.4, pp.401-432, 2008.
DOI : 10.1016/j.aam.2007.05.002

B. Bollobás, A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs, European Journal of Combinatorics, vol.1, issue.4, pp.311-316, 1980.
DOI : 10.1016/S0195-6698(80)80030-8

B. Bollobás, Random graphs, 1998.

D. Bontemps, Universal Coding on Infinite Alphabets: Exponentially Decreasing Envelopes, IEEE Transactions on Information Theory, vol.57, issue.3, pp.1466-1478, 2011.
DOI : 10.1109/TIT.2010.2103831

URL : https://hal.archives-ouvertes.fr/hal-00284638

D. Bontemps, S. Boucheron, and E. Gassiat, About Adaptive Coding on Countable Alphabets, IEEE Transactions on Information Theory, vol.60, issue.2, pp.808-821, 2014.
DOI : 10.1109/TIT.2013.2288914

URL : https://hal.archives-ouvertes.fr/hal-00665033

C. Bordenave, P. Caputo, and J. Salez, Random walk on sparse random digraphs. arXiv preprint, 2015.
DOI : 10.1007/s00440-017-0796-7

URL : https://hal.archives-ouvertes.fr/hal-01187523

C. Bordenave, M. Lelarge, and L. Massoulié, Non-backtracking Spectrum of Random Graphs: Community Detection and Non-regular Ramanujan Graphs, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp.1347-1357, 2015.
DOI : 10.1109/FOCS.2015.86

URL : https://hal.archives-ouvertes.fr/hal-01137952

S. Boucheron, G. Lugosi, and P. Massart, A sharp concentration inequality with applications. Random Structures and Algorithms, pp.277-292, 2000.

S. Boucheron, A. Garivier, E. Gassiat, S. Boucheron, G. Lugosi et al., Coding on Countably Infinite Alphabets, IEEE Transactions on Information Theory, vol.55, issue.1, pp.358-373, 2009.
DOI : 10.1109/TIT.2008.2008150

URL : https://hal.archives-ouvertes.fr/hal-00121892

S. Boucheron, E. Gassiat, and M. I. Ohannessian, About Adaptive Coding on Countable Alphabets: Max-Stable Envelope Classes, IEEE Transactions on Information Theory, vol.61, issue.9, pp.614948-4967, 2015.
DOI : 10.1109/TIT.2015.2455058

URL : https://hal.archives-ouvertes.fr/hal-01263282

A. Broder and E. Shamir, On the second eigenvalue of random regular graphs, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp.286-294, 1987.
DOI : 10.1109/SFCS.1987.45

J. Bunge and M. Fitzpatrick, Estimating the number of species: a review, Journal of the American Statistical Association, vol.88, issue.421, pp.364-373, 1993.

O. Catoni, Statistical learning theory and stochastic optimization, Lecture Notes in Mathematics, vol.1851, 2004.
DOI : 10.1007/b99352

URL : https://hal.archives-ouvertes.fr/hal-00104952

N. Cesa-bianchi and G. Lugosi, Prediction, learning, and games, 2006.
DOI : 10.1017/CBO9780511546921

S. Chatterjee, Stein's method for concentration inequalities. Probability theory and related fields, pp.305-321, 2007.

G. Chen and L. Saloff-coste, The Cutoff Phenomenon for Ergodic Markov Processes, Electronic Journal of Probability, vol.13, issue.0, pp.26-78, 2008.
DOI : 10.1214/EJP.v13-474

L. H. Chen, L. Goldstein, and Q. Shao, Normal approximation by Stein's method, 2010.

C. Cooper, Random Walks, Interacting Particles, Dynamic Networks: Randomness Can Be Helpful, Structural Information and Communication Complexity, pp.1-14, 2011.
DOI : 10.1007/s00453-003-1030-9

C. Cooper and A. Frieze, Vacant Sets and Vacant Nets: Component Structures Induced by a Random Walk, SIAM Journal on Discrete Mathematics, vol.30, issue.1, 2014.
DOI : 10.1137/14097937X

T. Cover and J. Thomas, Elements of information theory, 1991.

I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Channels, 1981.
DOI : 10.1017/CBO9780511921889

P. Cuff, J. Ding, O. Louidor, E. Lubetzky, Y. Peres et al., Glauber Dynamics for the Mean-Field Potts Model, Journal of Statistical Physics, vol.126, issue.1, pp.432-477, 2012.
DOI : 10.1007/BF02124328

A. B. Cybakov, IntroductionàIntroductionà l'estimation non paramétrique, 2003.

D. Haan and A. Ferreira, Extreme value theory: an introduction, 2007.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Physical Review E, vol.33, issue.6, p.66106, 2011.
DOI : 10.1103/PhysRevE.78.046110

URL : https://hal.archives-ouvertes.fr/hal-00661643

L. Devroye and L. Gyorfi, Nonparametric density estimation: the L1 view, 1985.

L. Devroye and G. Lugosi, Combinatorial methods in density estimation, 2012.
DOI : 10.1007/978-1-4613-0125-7

P. Diaconis, The cutoff phenomenon in finite Markov chains., Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1659-1664, 1996.
DOI : 10.1073/pnas.93.4.1659

P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions. Probability Theory and Related Fields, pp.159-179, 1981.

P. Diaconis, R. L. Graham, and J. A. Morrison, Asymptotic analysis of a random walk on a hypercube with many dimensions. Random structures and algorithms, pp.51-72, 1990.

J. Ding, E. Lubetzky, and Y. Peres, The Mixing Time Evolution of Glauber Dynamics for the Mean-Field Ising Model, Communications in Mathematical Physics, vol.127, issue.2, pp.725-764, 2009.
DOI : 10.1007/s00220-009-0781-9

J. Ding, E. Lubetzky, and Y. Peres, Total variation cutoff in birth-and-death chains. Probability theory and related fields, pp.61-85, 2010.

D. Dubhashi and D. Ranjan, Balls and bins: A study in negative dependence. Random Structures and Algorithms, pp.99-124, 1998.

M. Dutko, Central limit theorems for infinite urn models. The Annals of Probability, pp.1255-1263, 1989.

B. Efron and C. Stein, The jackknife estimate of variance. The Annals of Statistics, pp.586-596, 1981.

B. Efron and R. Thisted, Estimating the number of unseen species: How many words did Shakespeare know?, Biometrika, vol.63, issue.3, pp.435-447, 1976.
DOI : 10.1093/biomet/63.3.435

P. Elias, Universal codeword sets and representations of the integers, IEEE Transactions on Information Theory, vol.21, issue.2, pp.194-203, 1975.
DOI : 10.1109/TIT.1975.1055349

W. Esty, Confidence Intervals for the Coverage of Low Coverage Samples, The Annals of Statistics, vol.10, issue.1, pp.190-196, 1982.
DOI : 10.1214/aos/1176345701

W. Esty, The Efficiency of Good's Nonparametric Coverage Estimator, The Annals of Statistics, vol.14, issue.3, pp.1257-1260, 1986.
DOI : 10.1214/aos/1176350066

W. W. Esty, Confidence intervals for an occupancy problem estimator used by numismatists, Math. Sci, vol.9, issue.2, pp.111-115, 1984.

M. Falahatgar, A. Jafarpour, A. Orlitsky, V. Pichapati, and A. T. Suresh, Universal compression of power-law distributions, 2015 IEEE International Symposium on Information Theory (ISIT), pp.2001-2005, 2015.
DOI : 10.1109/ISIT.2015.7282806

R. A. Fisher, A. S. Corbet, and C. B. Williams, The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population, The Journal of Animal Ecology, vol.12, issue.1, pp.42-58, 1411.
DOI : 10.2307/1411

D. A. Freedman, On tail probabilities for martingales. the Annals of Probability, pp.100-118, 1975.

J. Friedman, A proof of Alon???s second eigenvalue conjecture and related problems, Memoirs of the American Mathematical Society, vol.195, issue.910, 2008.
DOI : 10.1090/memo/0910

W. A. Gale and G. Sampson, Good???turing frequency estimation without tears*, Journal of Quantitative Linguistics, vol.73, issue.3, pp.217-237, 1995.
DOI : 10.3115/981732.981742

S. Ganguly, E. Lubetzky, and F. Martinelli, Cutoff for the east process. arXiv preprint, 2013.

A. Garivier, A Lower-Bound for the Maximin Redundancy in Pattern Coding, Entropy, vol.27, issue.4, pp.634-642, 2009.
DOI : 10.1093/qmath/2.1.85

URL : https://hal.archives-ouvertes.fr/hal-00479585

]. E. Gassiat, Codage universel et identification d'ordre par sélection de modèles, 2014.

A. Gnedin, B. Hansen, and J. Pitman, Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws, Probability Surveys, vol.4, issue.0, pp.146-171, 2007.
DOI : 10.1214/07-PS092

A. V. Gnedin, Regeneration in random combinatorial structures, Probability Surveys, vol.7, issue.0, pp.105-15610, 2010.
DOI : 10.1214/10-PS163

I. J. Good, The Population Frequencies of species and the estimation of population parameters, Biometrika, vol.40, pp.16-264, 1953.

I. J. Good and G. H. Toulmin, THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION COVERAGE, WHEN A SAMPLE IS INCREASED, Biometrika, vol.43, issue.1-2, pp.45-63, 1956.
DOI : 10.1093/biomet/43.1-2.45

L. Gordon, Successive Sampling in Large Finite Populations, The Annals of Statistics, vol.11, issue.2, pp.702-706, 1983.
DOI : 10.1214/aos/1176346175

S. Griffiths, R. Kang, R. Oliveira, and V. Patel, Tight inequalities among set hitting times in Markov chains, Proceedings of the American Mathematical Society, pp.3285-3298, 2014.
DOI : 10.1090/S0002-9939-2014-12045-4

R. Grübel and P. Hitczenko, Gaps in Discrete Random Samples, Journal of Applied Probability, vol.AH, issue.04, pp.1038-1051, 2009.
DOI : 10.1016/j.aam.2007.05.002

L. Gyorfi, I. Pali, and E. Van-der-meulen, On Universal Noiseless Source Coding for Infinite Source Alphabets, European Transactions on Telecommunications, vol.34, issue.1, pp.125-132, 1993.
DOI : 10.1002/0471200611

L. Györfi, I. Pali, and E. C. Van-der-meulen, There is no Universal Source Code for Infinite Alphabet, Proceedings. IEEE International Symposium on Information Theory, pp.267-271, 1994.
DOI : 10.1109/ISIT.1993.748370

Y. Han, J. Jiao, and T. Weissman, Minimax estimation of discrete distributions under 1 loss, IEEE Trans. Inform. Theory, issue.11, pp.616343-6354, 2015.

Y. Han, J. Jiao, and T. Weissman, Adaptive estimation of Shannon entropy, 2015 IEEE International Symposium on Information Theory (ISIT), pp.1372-1376, 2015.
DOI : 10.1109/ISIT.2015.7282680

J. Hermon, A technical report on hitting times, mixing and cutoff. arXiv preprint, 2015.

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1007/BF02883985

L. Holst, Some Limit Theorems with Applications in Sampling Theory, The Annals of Statistics, vol.1, issue.4, pp.644-658, 1973.
DOI : 10.1214/aos/1176342460

H. Hwang and S. Janson, Local limit theorems for finite and infinite urn models, The Annals of Probability, vol.36, issue.3, pp.992-102207, 2008.
DOI : 10.1214/07-AOP350

S. Janson, The Probability That a Random Multigraph is Simple, Combinatorics, Probability and Computing, vol.19, issue.1-2, pp.205-225, 2009.
DOI : 10.1017/CBO9780511814068

J. Jiao, K. Venkat, Y. Han, and T. Weissman, Minimax Estimation of Functionals of Discrete Distributions, IEEE Transactions on Information Theory, vol.61, issue.5, pp.2835-2885, 2015.
DOI : 10.1109/TIT.2015.2412945

K. Joag-dev and F. Proschan, Negative association of random variables with applications. The Annals of Statistics, pp.286-295, 1983.

N. L. Johnson and S. Kotz, Urn Models and Their Application: An Approach to Modern Discrete Probability Theory., Biometrics, vol.34, issue.3, 1977.
DOI : 10.2307/2530628

V. Kaimanovich, Boundary and entropy of random walks in random environment, Prob. Theory and Math. Stat, vol.1, pp.573-579, 1990.

V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy. The annals of probability, pp.457-490, 1983.

S. Kamath, A. Orlitsky, D. Pichapati, and A. T. Suresh, On learning distributions from their samples, Proceedings of The 28th Conference on Learning Theory, pp.1066-1100, 2015.

S. Karlin, Central Limit Theorems for Certain Infinite Urn Schemes, Indiana University Mathematics Journal, vol.17, issue.4, pp.373-401, 1967.
DOI : 10.1512/iumj.1968.17.17020

M. Kearns and L. Saul, Large deviation methods for approximate probabilistic inference, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp.311-319

J. C. Kieffer, A unified approach to weak universal source coding, IEEE Transactions on Information Theory, vol.24, issue.6, pp.674-682, 1978.
DOI : 10.1109/TIT.1978.1055960

T. Klein and E. Rio, Concentration around the mean for maxima of empirical processes. The Annals of Probability, pp.1060-1077, 2005.

R. E. Krichevsky and V. K. Trofimov, The performance of universal encoding. Information Theory, IEEE Transactions on, vol.27, issue.2, pp.199-207, 1981.

H. Lacoin, The Cutoff profile for the Simple-Exclusion process on the cycle. arXiv preprint, 2015.

D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, 2009.
DOI : 10.1090/mbk/058

D. A. Levin, M. J. Luczak, and Y. Peres, Glauber dynamics for the mean-field Ising model: cutoff , critical power law, and metastability. Probability Theory and Related Fields, pp.223-265, 2010.

E. Lubetzky and Y. Peres, Cutoff on all ramanujan graphs. arXiv preprint, 2015.

E. Lubetzky and A. Sly, Cutoff phenomena for random walks on random regular graphs, Duke Mathematical Journal, vol.153, issue.3, pp.475-510, 2010.
DOI : 10.1215/00127094-2010-029

E. Lubetzky and A. Sly, Explicit Expanders with Cutoff Phenomena, Electronic Journal of Probability, vol.16, issue.0, pp.419-435, 2011.
DOI : 10.1214/EJP.v16-869

E. Lubetzky and A. Sly, Cutoff for General Spin Systems with Arbitrary Boundary Conditions, Communications on Pure and Applied Mathematics, vol.105, issue.1, pp.982-1027, 2014.
DOI : 10.1016/0022-1236(92)90073-R

E. Lubetzky and A. Sly, Universality of cutoff for the Ising model. arXiv preprint, 2014.

A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, vol.4, issue.3, pp.261-277, 1988.
DOI : 10.1007/978-3-642-61856-7

K. Luh and N. Pippenger, Large-deviation bounds for sampling without replacement, American Mathematical Monthly, vol.121, issue.5, pp.449-454, 2014.

R. Lyons, R. Pemantle, and Y. Peres, Ergodic theory on galton-watson trees: Speed of random walk and dimension of harmonic measure. Ergodic Theory and Dynamical Systems, pp.593-619, 1995.

L. Massoulié, Community detection thresholds and the weak Ramanujan property, Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC '14, pp.694-703, 2014.
DOI : 10.1017/S0963548309990514

D. Mcallester and L. Ortiz, Concentration inequalities for the missing mass and for histogram rule error, The Journal of Machine Learning Research, vol.4, pp.895-911, 2003.

D. A. Mcallester and R. E. Schapire, On the convergence rate of Good-Turing estimators, pp.1-6, 2000.

E. Mossel and M. I. Ohannessian, On the impossibility of learning the missing mass. arXiv preprint, 2015.

E. Mossel, J. Neeman, and A. Sly, A proof of the block model threshold conjecture, Combinatorica, vol.22, 2013.
DOI : 10.1214/11-AAP789

A. Müller and D. Stoyan, Comparison methods for stochastic models and risks. Wiley Series in Probability and Statistics, 2002.

]. A. Nilli, On the second eigenvalue of a graph [127] M. I. Ohannessian and M. A. Dahleh. Rare Probability Estimation under Regularly Varying Heavy Tails, Discrete Mathematics Journal of Machine Learning Research-Proceedings Track, vol.91, issue.23, pp.207-21021, 1991.

R. I. Oliveira, Mixing and hitting times for finite Markov chains, Electronic Journal of Probability, vol.17, issue.0, pp.1-12, 2012.
DOI : 10.1214/EJP.v17-2274

A. Orlitsky and N. P. Santhanam, Speaking of Infinity, IEEE Transactions on Information Theory, vol.50, issue.10, pp.2215-2230, 2004.
DOI : 10.1109/TIT.2004.834734

A. Orlitsky and A. T. Suresh, Competitive distribution estimation: Why is good-turing good, Advances in Neural Information Processing Systems, pp.2134-2142, 2015.

A. Orlitsky, N. Santhanam, and J. Zhang, Always Good Turing: Asymptotically Optimal Probability Estimation, Science, vol.302, issue.5644, pp.427-431, 2003.
DOI : 10.1126/science.1088284

A. Orlitsky, N. P. Santhanam, K. Viswanathan, and J. Zhang, On modeling profiles instead of values, Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp.426-435, 2004.

A. Orlitsky, N. P. Santhanam, and J. Zhang, Universal compression of memoryless sources over unknown alphabets. Information Theory, IEEE Transactions on, vol.50, issue.7, pp.1469-1481, 2004.

Y. Peres, American institute of mathematics (AIM) research workshop " sharp thresholds for mixing times Summary available at http://www, 2004.

Y. Peres and P. Sousi, Mixing Times are Hitting Times of Large Sets, Journal of Theoretical Probability, vol.20, issue.3, pp.1-32, 2013.
DOI : 10.1145/225058.225086

M. S. Pinsker, On the complexity of a concentrator, 7th International Telegraffic Conference, pp.1-318, 1973.

J. Pitman and N. M. Tran, Size biased permutation of a finite sequence with independent and identically distributed terms. ArXiv e-prints, 2012.

J. Pitman and M. Yor, The two-parameter poisson-dirichlet distribution derived from a stable subordinator. The Annals of Probability, pp.855-900, 1997.

M. Raginsky and I. Sason, Concentration of Measure Inequalities in Information Theory, Communications and Coding, vol.10

J. Rissanen, Stochastic complexity and modeling. The annals of statistics, pp.1080-1100, 1986.

J. Rissanen and J. G. Langdon, Arithmetic Coding, IBM Journal of Research and Development, vol.23, issue.2, pp.149-162, 1979.
DOI : 10.1147/rd.232.0149

B. Rosén, Asymptotic Theory for Successive Sampling with Varying Probabilities Without Replacement, II, The Annals of Mathematical Statistics, vol.43, issue.3, pp.373-397, 1972.
DOI : 10.1214/aoms/1177692543

N. Ross, Fundamentals of Stein???s method, Probability Surveys, vol.8, issue.0, pp.210-293, 2011.
DOI : 10.1214/11-PS182

L. Saloff-coste, Random Walks on Finite Groups, Probability on discrete structures, pp.263-346, 2004.
DOI : 10.1007/978-3-662-09444-0_5

R. J. Serfling, Probability Inequalities for the Sum in Sampling without Replacement, The Annals of Statistics, vol.2, issue.1, pp.39-48, 1974.
DOI : 10.1214/aos/1176342611

M. Shaked and J. G. Shanthikumar, Stochastic orders Springer Series in Statistics, 2007.

G. I. Shamir, Universal lossless compression with unknown alphabets&# 8212; the average case. Information Theory, IEEE Transactions on, vol.52, issue.11, pp.4915-4944, 2006.

Q. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, Journal of Theoretical Probability, vol.13, issue.2, pp.343-356, 2000.
DOI : 10.1023/A:1007849609234

V. Strassen, The Existence of Probability Measures with Given Marginals, The Annals of Mathematical Statistics, vol.36, issue.2, pp.423-439, 1965.
DOI : 10.1214/aoms/1177700153

A. T. Suresh, Statistical inference over large domains, 2016.

R. Szekli, Stochastic ordering and dependence in applied probability, Lecture Notes in Statistics, vol.97, pp.978-979, 1995.
DOI : 10.1007/978-1-4612-2528-7

Y. W. Teh, A hierarchical Bayesian language model based on Pitman-Yor processes, Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the ACL , ACL '06, pp.985-992, 2006.
DOI : 10.3115/1220175.1220299

G. Valiant and P. Valiant, Estimating the unseen, Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC '11, pp.685-694, 2011.
DOI : 10.1145/1993636.1993727

R. Van-der-hofstad, Random Graphs and Complex Networks, 2013.
DOI : 10.1017/9781316779422

R. Van-der-hofstad, G. Hooghiemstra, and P. Van-mieghem, Distances in random graphs with finite variance degrees. Random Structures Algorithms, pp.76-123, 2005.

Q. Xie and A. R. Barron, Asymptotic minimax regret for data compression, gambling, and prediction . Information Theory, IEEE Transactions on, vol.46, issue.2, pp.431-445, 2000.

Y. Yu, On the inclusion probabilities in some unequal probability sampling plans without replacement, Bernoulli, vol.18, issue.1, pp.279-28910, 2012.
DOI : 10.3150/10-BEJ337