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Geometric reasoning and planning in the context of human robot interacti on

by Mamoun Gharbi

In the last few years, the Human Robot Interaction (HRI) �eld has been in t he spotlight of the robotics

community. One aspect of this �eld is making robots act in the presence of humans, while keeping them

safe and comfortable. In order to achieve this, a robot needs to plan its actions while explicitly taking

into account the humans and adapt its plans to their needs, capacities and preferences.

The �rst part of this thesis is about human-robot handover: where, when and how to perform them?

Depending on the human preferences, it may be better, or not, to share the handover e�ort between him

and the robot, while in other cases, a unique handover might not be enoughto achieve the goal (bringing

the object to a target agent) and a sequence of handovers might be needed. In any case, during the

handover, a number of cues should be used by both protagonists involvedin one handover. One of the

most used cue is the gaze. When the giver reaches out with his arm, he should look at the object, and

when the motion is �nished, he should look at the receiver's face to facilitate the transfer.

The handover can be considered as a basic action in a bigger plan. The second part of this thesis

reports about a formalization of these kind of \basic actions" and more complexones by the use of

conditions, search spaces and �nal constraints. It also reports about a framework and di�erent algorithms

used to solve and compute these actions based on their description and their interdependencies.

The last part of the thesis shows how the previously cited frameworkcan �t in with a higher level

planner (such as a task planner) and a method to combine a symbolic and geometric planner. The task

planner uses external calls to the geometric planner to assess the feasibility of the current task, and in

case of success, retrieves the state of the world provided by the geometric reasoner and uses it to continue

the planning. This part also shows di�erent extensions enabling a faster search. Some of these extensions

are \Geometric checks" where we test the infeasibility of multiple actions at once, \constraints" where

adding constraints at the symbolic level can drive the geometric search, and \cost driven search" where

the symbolic planner uses information form the geometric one to prune out costly plans.



Version fran�caise

Au cours des derni�eres ann�ees, la communaut�e robotique s'est largement int�eress�ee au domaine de

l'interaction homme-robot (HRI). Un des aspects de ce domaine est de faire agir les robots en pr�esence

de l'homme, tout en respectant sa s�ecurit�e ainsi que son confort. Pour atteindre cet objectif, un robot

doit plani�er ses actions tout en prenant explicitement en compte les humains a�n d'adapter le plan �a

leurs besoins, leurs capacit�es et leurs pr�ef�erences.

La premi�ere partie de cette th�ese concerne les transferts d'objets entre humains et robots : o�u, quand

et comment les e�ectuer? Selon les pr�ef�erences de l'Homme, il est parfois pr�ef�erable, ou pas, partager

l'e�ort du transfert d'objet entre lui et le robot. A certains moment s, un seul transfert d'objet n'est

pas su�sant pour atteindre l'objectif (amener l'objet �a un agent cibl e), le robot doit alors plani�er une

s�equence de transferts d'objet entre plusieurs agents a�n d'arriver �a ses �ns. Quel que soit le cas, pendant

le transfert d'objet, un certain nombre de signaux doivent être �echang�es par les deux protagonistes a�n

de r�eussir l'action. Un des signaux les plus utilis�es est le regard. Lorsque le donneur tend le bras a�n de

transf�erer l'objet, il doit regarder successivement le receveur puis l'objet a�n de faciliter le transfert.

Le transfert d'objet peut être consid�er�e comme une action de base dans un plan plus vaste, nous

amenant �a la seconde partie de cette th�ese qui pr�esente une formalisation de ce type d'\actions de base"

et d'actions plus complexes utilisant des conditions, des espaces de recherche et des contraintes. Cette

partie rend aussi compte de l'architecture et des di��erents algorithmes utilis�es pour r�esoudre et calculer

ces actions en fonction de leur description.

La derni�ere partie de la th�ese montre comment cette architecture peut s'adapter �a un plani�cateur de

plus haut niveau (un plani�cateur de tâches par exemple) et une m�ethode pour combiner la plani�cation

symbolique et g�eom�etrique. Le plani�cateur de tâches utilise des appels �a des fonctions externes lui

permettant de v�eri�er la faisabilit�e de la tâche courante, et en cas de succ�es, de r�ecup�erer l'�etat du

monde fourni par le raisonneur g�eom�etrique et de l'utiliser a�n de poursuivre la plani�cation. Cette

partie montre �egalement di��erentes extensions de cet algorithme, tels que les \validations g�eom�etriques"

o�u nous testons l'infaisabilit�e de plusieurs actions �a la fois ou \l es contraintes" qui permettent au niveau

symbolique de diriger la recherche g�eom�etrique ou encore \recherche dirig�ee par coût" o�u le plani�cateur

symbolique utilise les informations fournies par la partie g�eom�etrique a�n d'�eviter le calcul de plans trop

coûteux.
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Introduction 3

This thesis enters into the so-called human-robot interaction (HRI) �eld. As de�ned by Goodrich

and Schultz (2007), HRI tries to understand and shape the interactions between one or multiple humans

and one or multiple robots. In other words, how exactly an autonomous robot (or multiple autonomous

robots) needs to behave when brought in the vicinity of humans, and more speci�cally when they need

to cooperate or help one (or more) of these humans.

One interesting part of this �eld is to provide robots with enough aut onomy to let them perform and

execute tasks and actions in this human environment. In order to achieve this, they need to \think" and

infer from the geometric properties of the real world. The main focus ofthis thesis is to equip robots

with geometric reasoning enabling them to plan their actions. This planning is done while taking into

account the environment properties but also the human preferencesand social rules.

In the beginning of this thesis we propose an approach to let a mobile manipulation robot (such as

the PR2 from Willow Garage (2008)) handover small objects to a human, which is extended to a multiple

agent case, and where the interaction cues at the exchange moment are studied. A generalisation of this

kind of geometric reasoning is also proposed and then coupled with higherlevel planning in order to

provide the robot with even more autonomy.

1.1 Human-Robot Interaction

Bringing autonomous robots into our houses and work places rises a number ofchallenges that need to

be tackled in order to achieve this integration. Among these challengestwo categories can be isolated:

hardware and software challenges. The hardware challenges cover the design of the robot shapes, such

as the skin, the face, or the eyes. Speci�c actuators and sensors also belongs to this category.

The software challenges, this work belongs to, cover a number of �elds such as task planning, super-

vision, belief management, human-aware motion planning, situation assessment and so on. Among these

challenges, the one interesting us concerns planning the geometricactions needed by the robot to perform

tasks in a human environment. In other words, we want to endow the robotwith actions enabling it to

interact with its environment in general and with the humans in parti cular.

Integrating autonomous robots in human environments can serve multiplepurposes. For example, a

service robot can assist and help elderly people in their houses for everyday life. A guiding robot, can

detect and �nd lost people and help them reach their destination. Another example is the robot co-

worker, as depicted in one of the SAPHARI project (http://www.saphari.eu/ ) use cases. The humans

interacting with this kind of robot are \experts", which means they sh ould be accustomed to work with

the robot in contradiction with the previous examples where the users are more likely naive ones (not

accustomed to the robot). The robot co-worker can be used for multiple tasks such as helping tidying a

workspace, delivering objects, lifting heavy objects or performing precision tasks.
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1.2 Geometric planning

Planning the motions of a robot in a human environment brings a number of issues: the �rst one concerns

the security of the human. When the robot plans its motions close to thehuman, it needs to take into

account the possibility of the human moving in an unexpected or expected way. For example, when

walking, a human will most likely continue walking. Taking this motion i nto account helps to ensure his

safety. Another important issue concerns the comfort of the human, evenwhen insuring this safety, some

motions can create uncomfort or lead to a misunderstanding of the robots behaviour. Planning while

taking this, and other social rules that humans use in a daily basis, into account, is called Human-Aware

Planning.

The supervision asks geometric plans following the plan provided bythe task planner which (should)

deals with symbolic knowledge. A number of researches, such asGhallab et al. (2004), focus on this

task planning while in others, such asLaValle (2006), the main interest lies in the motion planning area.

Between these two research topics, there is a gap where the symbolic knowledge should be transformed

into information usable by the motion planner. This is especially important in human-robot interaction,

as the information about the humans are both symbolic and geometric and need to be dealt with at both

level successfully. This work tries to bridge the gap between thehigh level symbolic planning and the

low level motion planning.

The �rst milestone in this path was to design and improve a unique task which is the handover

(Chapter 2). A second contribution consisted in proposing a global framework able tocommunicate with

both symbolic reasoning and motion planning where multiple actions such as pick, place and navigate

where implemented (Chapter3). The last part consists on a tighter interleaving between the symbolic

layer and this framework (Chapter 4).

1.3 Contributions

The main contribution of my thesis are:

- Giving the robot the ability to choose where and how to perform a handover with a human while

taking into account his safety, comfort, capabilities and preferences. When planning this handover,

the robot computes both its path and the human path in order to assess the feasibility of the

task using a combination of grid-based and sampling-based methods. Thiswork is presented in

Section 2.3.

- Extending the previous work to a multi-agent task where the goal is tobring an object from an

agent to another one (agents can be either robots or humans) through a sequence of handovers.

This approach also takes into account the HRI constraint related to the possible humans in the

environments, and is graph-based using a Lazy Weighted A*. This work is presented in Section2.4.

- Studying the gaze behaviour of both givers and receivers during a handover (or assimilated tasks),

in order to de�ne gaze pattern allowing a more understandable and human-aware task execution.

This work is presented in Section2.5.
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- Proposing a framework (and its formalization) in order to create and plan actions at geometric

level. This framework, called Geometric Reasoner and Planner (GRP),is able to compute, based

on symbolic information (such as the agent performing the task, the object to manipulate or the

support table), complex actions such as pick, place or navigate. This work is presented in Chapter3.

- Developing the Symbolic Geometric Action Planner (SGAP) which interleaves task and geometric

planning and produces plans that contains, in addition to the classicalsymbolic plan, the geo-

metric information, such as the trajectories, relative placements, grasps, and postures, needed to

execute the plan in the real word. This framework, by using facts computed at geometric level and

backtracks, is able to tackle the rami�cation problem. This work is presented in Section4.3.

- Adding a number of powerful heuristics enabling SGAP to decreasethe combinatorial explosion

resulting from the complexity of the geometric world, or the symbolic models. This heuristics use

constraints, di�erent level of actions, cost computation and speci�c request to the GRP framework

to enhance the search e�ciency. This work is presented in Section4.4.
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2.2 The di�erent handover phases and their main contributions

Figure 2.1 shows the four di�erent handover phases: taking the decision, approaching the agent1 while

preparing the handover, giving/taking the object, and disengaging. These phases are composed of two

parts, a timeline of the di�erent actions the agents need to perform,and a sequence of communication

cues to make the handover as uent as possible, the next subsectionspresent in more details these four

phases and their components.

2.2.1 Taking the decision

Three di�erent reasons might support the decision of a robot to performa handover:

� The other agent (a human or a robot) asks for an object, and the robot performs a handover to

give it to him.

� As a proactive behaviour, the other agent needs a handover and the robot proposes it to him.

� The robot needs an object and asks the other agent to give it to him.

This phase is related to the more generic �eld of task planning (analysed in Ghallab et al. (2004))

which is more detailed in Chapter 4.

2.2.2 Approaching the other agent while preparing the handover

In this phase, the agent needs to perform three actions:

Getting the object Optional for the giver as he may already have the object in hand, and doesn't

exist for the receiver. This action is about fetching the object, andthe most important part here,

is the grasp: it may have a direct impact on the future handover. Various studies have been done

in the �eld of grasping with robots, part of them depicted by Bicchi and Kumar (2000) and some

of them, detailed in the next paragraph, focused on the particular problem of grasping in order to

handover the object.

Numerous contributions concern this particular topic, among them, Berenson et al.(2008), where

the authors choose the grasps for the objects accounting for the future actions, for example, when

placing a glass in a dishwasher, some grasps will not work while others will. Pandey et al. (2012)

extended this idea to the handover, where a grasp is chosen in orderto leave enough space to allow

another grasp. Aleotti et al. (2012) and Aleotti et al. (2014) also choose the grasps accounting

for the receiver: they segment the object, �nd the \handles" of this object (a hammer handle for

example), and perform the handover while presenting this part to the receiver. Kim et al. (2004)

have a similar approach but introduce the notion of dangerous features concerning objects such

as a knife sharp edge, and plan a change of grasp, in case the robot needs to graspthe object

1An agent is someone or something able to act and change its environment, it can be a human or a robot.
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with the �rst hand, take it with the other hand and then give it to a hum an while presenting the

non-dangerous part.

While these papers focus on �nding an algorithmic solution to this problem, Chan et al. (2013a)

and Chan et al. (2014) propose a learning approach where the robot learns how to grasp the objects

that are exchanged by the surrounding humans.

Choosing a handover posture We believe that this choice should be made while taking explicitlythe

human and the environment in general into account. The position should favour the human comfort

while enabling a great latitude (for example, handovers above a counter or through a window should

be possible). In this phase, the choice concerns the general postureif the agent is a human, but

the complete con�guration if it is a robot.

Walters et al. (2007) show that humans with no prior interaction with a robot will prefer t o

receive an object from the sides if they are sitting or standing againsta wall, but will prefer a

frontal approach when standing in the middle of a room (the reason given isthat while sitting,

a robot might be intimidating and standing against a wall might restrain movements inducing an

uncomfortable situation). Koay et al. (2007) argue that the intimidation feeling disappears when

the human gets used to the robot, thus making the frontal approach the mostpreferred one in

all the cases. Sisbot et al. (2007a) and Sisbot et al. (2010) base the robot placement on a list of

parameters such as the distances between the robot and the human (proxemics theory, Hall (1966)),

the visibility of the robot by the human (not going behind him or behind an obstacle) but also the

human arm comfort and the robot navigation distance.

On a slightly di�erent direction, Shi et al. (2013) propose an approach where the robot performs a

handover with an already walking pedestrian, handing them yers. They propose a model based

on analysing humans distributing yers and implement this model to perform a user study on a

real robot.

Navigating to the handover position Human aware navigation is a widely studied �eld and complex

as shown by the survey ofKruse et al. (2013). When navigating among humans, a robot needs

to take into account various parameters such as the humans' comfort and safety, the dynamics of

the environment such as the humans' future movements and so on. At the end of this action, the

agents need to be at the handover position (or in a close enough location) tobe ready to perform

the handover.

Communication cues

The communication cues (CC) for this phase (Approaching the other agent while preparing the handover)

are depicted in Figure 2.2, it consists in the joint action signals. One of the agents signals to the other

one his intention of performing a handover with him. If the other agent gets the signal, his attention will

focus on the agent and both of them should agree on this intention. If the other agent does not get the

signal or does not agree to perform the handover, the �rst agent will try again until it seems clear that

no handover is possible, then he aborts the task. In the other case, both agents establish the intention
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Yamane et al. (2013) adopt a di�erent approach where they learn from a human motion database

how to perform a handover (either the �nal position of the arms or the ti ming or the motion

legibility.)

The timing of the action Each agent needs to execute his motion at the right timing. Huber et al.

(2008) di�erentiate between three time phases: the reaction time (the time the receiver takes to

begin its motion after the giver started his) the manipulation time (wh ile both agents manipulate

the object) and the post-handover time (the disengagement phase). They �nd that a handover

mean time is less than 2 seconds, the reaction time is around 0.35 secondsand the manipulation

time is around 1.2 seconds. Koene et al. (2014) show through a user study the importance of

respecting the temporal precision over the spatial one: if the robot is too fast, the human may

think the robot is upset, while if it is too slow he may feel bored orfrustrated.

The motion legibility As shown in a number of researches, such asDragan et al. (2015), a legible

motion brings more comfort and safety feeling for the human, and the human-robot handover also

follows this rule. Both Micelli et al. (2011) and Huber et al. (2008) show that a motion where the

end e�ector executes straight lines is preferred over a motion in the joint space. Moreover,Dehais

et al. (2011) and Mainprice et al. (2010) assert that straight lines need to be combined with a higher

level motion planner taking into account the human comfort and safety. Palinko et al. (2014) go

as far as adapting the arm trajectory to the object weight in order to give to the receiver more

information about the object weight.

The arm control also plays an important role in human-robot interactions, the usage of motions

with limited jerk such as the one proposed byBroqu�ere et al. (2008) enables for a better comfort

while extending the arm. Di�erent control strategies have been tested by di�erent teams: Prada

et al. (2014) formalised and implemented a Dynamic Movement Primitives control strategy on a

robotic arm, Kajikawa et al. (2002) use the human-human handover analysis done byShibata et al.

(1995) to de�ne a control strategy and Erden et al. (2004) use a fuzzy controller to execute the

motion.

The second action during thegiving object phase is to release the object at a good timing.Mason

and MacKenzie(2005), Endo et al. (2012), Chan et al. (2013b), Jindai et al. (2015) and He and Sidobre

(2015) developed a force detection object in order to record data from human-human handovers and

apply it to a controller when performing a human-robot handover. Cabibihan et al. (2013) achieve the

same detection with a glove like sensor worn by both participants. Thepurpose of all these approaches

is to make the robot release the object at the moment it detects the particular forces, applied to the

object, corresponding to a �rm grasp from both agents. This moment triggers the object release which

is an issue: it is often ambiguous (even for humans) and it can be done during the agents motions.

Communication cues

During this phase, a number of signals need to be exchanged and the �rst one is the starting signal

for reaching out with the arm. Cakmak et al. (2011b) claim that the robot reaching out with the arm

(moving the arm from a rest position to the handover position) is in itself the starting signal. Micelli
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work which incorporate the CC to the timeline. Inside a phase, the CC are not linked to the timeline,

but each phase needs its own signals to be achieved before its end. This chapter contributions can be

categorized following the di�erent phases illustrated in the �gure with the dark coloured parts.

Some contributions tackle the problem of executing handovers whiletaking into account all or part

of these phases, for exampleSisbot et al. (2008) propose a state machine approach where they handle

interruptions and suspension when the robot already start reaching outwith the arm. In Fiore et al.

(2016) and in Karami (2014), they use a Partially observable Markov decision process (POMDP)to

choose which action to perform and when to perform it (for example, when reaching out with the arm,

if the human attention is driven away from the robot, this one should enter in a stand by phase).
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2.3 Sharing the e�ort with the human

The focus of this section is the particular problem of �nding good object handover con�gurations, which

is formulated as a special instance of the motion planning problem (Choset (1991), Choset et al. (2005),

LaValle (2006)). We will consider mobile manipulators such as the PR2, exchanging object with a human

and introduce the notion of \shared e�ort" in the handover plan. This wor k has been done in cooperation

with Jim Mainprice and presented by Mainprice et al. (2012).

In this work, both agents (involved in the handover, robots or humans) areconsidered, and both

their motions are computed, in a possibly cluttered workspace. Computing the human motion might

seem meaningless, as the human will not follow the computed trajectory, but the reason behind this

computation is to enable the system to �nd solutions to problems where the human cannot be reached

by the robot. Figure 2.5 illustrates this problem: the human is in a workspace not reachable bythe

robot who still wants to hand him over an object. By computing the human motions, the algorithm can

�nd solutions to this problem and choose among them one compatible with the human preferences. For

example, in Figure 2.5(b), the robot proposes pro-actively a solution to the human which reduceshis

displacement.

(a) Initial situation

(b) Final situation

Figure 2.5: The human cannot be handed directly the object, the robot needs to plana path for both
of them in order to achieve the task



Chapter 2. Handover 18

The human preferences may vary depending on the context: he may prefer not standing up, or not

moving from his actual location (as he may be buzzy) or, in contrast, he may be eager and in a hurry

to get the object and prefers moving toward the robot than waiting for it to come closer. One of the

criteria introduced and used here is themobility, which is a representation of this contrast (between the

least movements possible for the handover and the fastest possible handover) and enables the system to

balance between \shared e�ort" and comfort.

(a) Initial situation (b) Final situation

(c) Initial situation (d) Final situation

Figure 2.6: A young person who is in a hurry to get his drink will express more comfort getting a glass
above the counter (a & b) while an older person may be more comfortable while waiting for the robot to
navigate to him even if the task will take more time (c & d). The blue path is the robot navigation path,
and the green one is the human walking path.

We propose a formulation of the underlying planning problem and an e�cient algorithmic solution.

Figure 2.6 presents an example of a handover task solved by our planner with di�erent settings of the

mobility parameter.

This section is organized as follows: Subsection2.3.1gives a formal de�nition to the handover planning

problem. Subsection2.3.2 introduces a simple but yet computationally e�cient algorithm based on a

combination of grid-based and sampling-based methods. Subsection2.3.4 presents the simulation and

experimental results obtained using this approach. Subsection2.3.5 shows an implementation on a real

robot of the algorithm and a user study done to test the relevance of themobility parameter.
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2.3.1 The human-robot handover planning problem

In this subsection, a formal de�nition of the handover planning problem is proposed. First, inputs

and outputs are presented, then the search space is de�ned along withthe feasibility and interaction

constraints to be taken into account.

2.3.1.1 Inputs and outputs

The inputs of the problem can be summarized into: the initial con�gurat ions of the giver qinit
g and the

receiver qinit
r (q refer to the con�guration), the kinematic model of both agents, and the environment

(and the position of every object in it).

In the rest of this section, as the robot and the human can both be either the giver or the receiver (It

is also possible to consider two robots or two humans), we will refer to the two handover protagonists as

the giver (noted g) and the receiver (notedr ). The human needs to be taken into account explicitly, two

paths (noted � ) will be computed: the �rst one, � g, the path taking the giver from its initial position to

the �nal handover position, and the second one,� r , that brings the receiver to his �nal handover position.

Those paths are represented as parametric curves in their respective con�guration space.

2.3.1.2 The handover search space

Let's consider the con�guration spaceCspaceformed by the Cartesian product between the giver con-

�guration space Cspaceg and the receiver con�guration spaceCspacer :

Cspace= Cspaceg � Cspacer

The con�guration space of an agent consists on all the con�gurations allowed by the kinematic of

said agent (more details are available in Section3.2). Thus Cspacecontains all con�gurations allowed

for both agents involved in the handover. Finding the solution for this kind of problems implies to �nd a

handover con�guration qhand = ( qhand
g ; qhand

r ) 2 C (qhand
g is the giver con�guration and qhand

r the receiver

one) which belongs to a subspaceCspacefeasible � Cspacerestricted by the constraints listed below:

Collision free both agents con�gurations, at the handover con�guration qhand , must be collision free

regarding self-collision, collision with obstacles and with each other. This subspace is named

Cspacef ree and is illustrated in Figure 2.7

Reachability both agents, at the handover con�guration qhand , must be able to reach the exchanged

object i.e. the gripper of the robot and the hand of the human must grasp theobject at the same

time. This subspace is namedCspacereach and is illustrated in Figure 2.8.

Stability both agents, at the handover con�guration qhand , have to be stable regarding newton law of

mechanics. This subspace is namedCspacestab and is illustrated in Figure 2.9.
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(a) Behind an obstacle (b) Behind the human

Figure 2.12: Two social uncomfortable positions where the robot is partially hiddento the human

Figure 2.13: The musculoskeletal comfort for a human in a handover con�guration (as shown in Marler
et al. (2005))

Finally, the e�ciency constraint that limits the total duration of the handover and favours e�cient

plans. This cost, clen , is computed based on the maximum value of the time taken by either agents to

reach the handover con�guration qhand .

Some of these desired constraints such as the human displacement and the action duration may

contradict one another (if both agents share the work load, the task will be done faster but if we minimize

the human displacement, the task will take longer as the robot must do most of the work). To balance

the impact of the di�erent properties on the output plan, we use the mobility parameter reecting the

human's physical capabilities and his eagerness to obtain the object.

Indeed, the handover duration may generate discomfort if it does not match with the human possible

eagerness orurgency to get the object. High mobility values will balance motion and comfort constraints

to favour quicker plans, resulting in the �nal cost de�ned as:
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(a) With a standing human (b) With a sitting human (c) With a robot

Figure 2.14: Some handover con�gurations for human-robot handovers and robot-robot handovers
(these are just informative, more positions are available).

c = ( cmot + cconf ) � (1 � mobility ) + clen � mobility

Where mobility 2 [0; 1]. As explained in next section, these interaction constraints and their corre-

sponding cost functions are evaluated during the planning process and are combined together according

to the human preferences modelled by themobility parameter.

2.3.2 The proposed algorithm

This section presents the handover planner that was developed to compute human-robot handovers while

accounting for the interaction constraints introduced earlier. The approach relies on a combination of

grid-based and sampling-based algorithms that consider the workspace obstacles and the kinematics

models of both agents. After some grid based pre-processing, the method consists of iteratively sam-

pling feasible handover con�gurations, evaluating their cost and �nally returning the minimal cost plan

obtained.

The main steps of the handover planner are sketched in Algorithm1. The initialization phase, called

initGrids , consists on computing a planar grid where each cell contains informationabout the agents

accessibility (if they can reach it or not) and the navigation distancesfrom each agent initial position to

this cell (Figure 2.15). In this phase, a set of preselected handover con�gurations between the two agents

is loaded (in some cases, multiple sets are loaded Figure2.14)

After the initialization, the algorithm enters a loop (from line 4 to 23), where each iteration consists

on �nding a feasible handover con�guration qhand 2 Cspacefeasible , where the exact values of both agents

degrees of freedom are encoded. After the loop, the algorithm chooses the best qhand according to the

cost presented in Section2.3.1.3.

In order to �nd a qhand , the algorithm goes through 6 steps:

� Sampling a random position,p = ( x; y; � ), in the receiver accessible space (line5)

� Computing the navigation path � r of the receiver from his initial position to this sampled position

(using a standard technique,Choset (1991), consisting of descending the distance gradient in the

pre-processed receiver grid) (line6)
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� Transforming p into a fully speci�ed qhand by iterating through the set of preselected handing over

con�guration and choosing a collision free con�guration. (line 7)

� Extracting the givers position from qhand (line 11)

� Computing the navigation path � g of the giver from his initial position to this position (same

technique as� r ) (line 12)

� Computing qhand cost, as explained in the previous subsection. (line16)

If one of the steps fails (such as failing to �nd a collision free con�guration or a path) the algorithm

loops over the steps until a stopping criterion is satis�ed (Line17 to Line 21). When all the steps succeed,

the computed cost is compared to the stored handover con�guration cost. If it is lower, the new qhand

is stored and the loop continues. In the current implementation thestopping conditions combine two

criteria, and break out of the loop as soon as one of them is reached:

Maximum time Set by the user, and checked after each loop, it stops once the maximumtime is

reached.

A minimal improvement of the best current solution The user sets a threshold: if after a �xed

number of iterations (also set by the user) the algorithm does not improve the cost with a di�erence

bigger than the threshold, it breaks out of the loop.

The �nal paths � g and � r consist of a set of way points corresponding to the traversed cells centres

interpolated by straight lines. The orientation � along these paths is selected implicitly by facing the

agent to the next way point.

The next subsections describe in further details the processing done during the initialization phase

and the main steps of the algorithm. Some additional pre-processing thatcan be done to speed-up the

sampling of constrained handover solutions are also described.

2.3.2.1 Distance propagation and initialization

In order to speed up the computation of feasible handover con�gurations and the cost evaluation of those

solutions, the method integrates a precomputing phase in which 2D grids are constructed and processed.

Two grids, depicted on Figure 2.15, one for the giver (referred to as thegiver grid) and one for the

receiver (referred to as thereceiver grid), provide an approximation of the free-space and the navigation

distance to the initial position. This enables to �nd, at a very low c omputational cost, the regions of the

workplace accessible for each agent.

The free-space grids are computed using bounding cylinders of the agents in resting postures. The

resting postures, also depicted in Figure2.15, correspond to navigation con�guration of the arms. A cell

is marked as free if when placed at its centre, the corresponding bounding cylinder is not in collision

with the environment.

The accessible space and the navigation distance to the initial position of a cell are simultaneously

computed with a standard wave propagation technique: for each cell, a collision free test is done with
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Algorithm 1 Computing handover plans
1: function ComputePlan (pg,pr ,mobility ) . Giver and robot receiver position and the human

mobility
2: costbest  1
3: G  initGrids (pg; pr ; mobility )
4: while StopCondition ( ) do
5: p  SampleReceiverPos
6: � r  DescendOnReceiverGrid (p)
7: qhand  BestFeasibleConf (p)
8: if qhand == NULL then
9: continue looping

10: end if
11: pgiv  GetGiverPos (qhand )
12: � g  DescendOnGiverGrid (prob)
13: if � g == NULL then
14: continue
15: end if
16: cost  ComputeCost (mobility ,� g,� r ,qhand )
17: if cost > costbest then
18: continue
19: else
20: costbest  cost
21: StoreBest (qhand ,� g,� r )
22: end if
23: end while
24: return (qhand ,� g,� r ) . agents handover con�guration and their navigation path
25: end function

the bounding cylinder, then its distance to the initial positions is computed (not the Euclidean, the

navigation distance). Figure 2.15 shows the free space and the propagated distance of a robot and a

human from their initial position, where green cells are close to the initial position and red cells are far.

As mentioned earlier, during the initialization phase, this method loads a set of prede�ned handing

con�gurations as illustrated in Figure 2.16. These handover con�gurations are namedQHR in the rest of

the chapter. They are selected o�ine and do not depend on the workspacenor on the absolute position

of the agents. Thus, each con�guration is de�ned relatively to the receiver position and consists of the

receiver and the giver arm Degrees of freedom.

2.3.2.2 Sampling the receiver positions

The �rst step of each iteration consists of sampling the receiver position and orientation p = ( x; y; � )

inside the accessible space stored in the pre-processed grid (receiver and giver grid). In order to sample

this triplet a cell is selected then a point is sampled inside the cell and �nally an orientation is randomly

sampled.

For each position p chosen, we �nd only one handover plan, that we consider as the best givenour

criteria, thus, it is important to sample the positions that yield be tter solutions. Subsection2.3.3provides

two enhancements of the pre-processing phase to bias both the selection of the cell and the orientation

of the receiver.



Chapter 2. Handover 27

(a) Human distance grid ( receiver grid ) (b) Robot distance grid ( giver grid )

Figure 2.15: The distance propagation (a) is human centred and (b) is robot centred. The green cells
correspond to nearest positions, and the red the farthest.

Figure 2.16: The preselected con�gurations of a robot relative to a human standing andsitting.

2.3.2.3 Returning the best feasible con�guration

The con�gurations QHR illustrated in Figure 2.16 are sorted according to theccomf cost (see Subsec-

tion 2.3.1.3). Here, this cost is computed independently from the environmentand is used as a heuristic.

Later, during the real cost computation, the obstacles are considered fora better estimation of the cost.

When searching for the best feasible handover con�guration at the receiver position p, the �rst feasible

con�guration is selected (i.e. collision free and accessible to the giver).

This process enables the method to �nd solutions in constrained environment (e.g. a handover through

a small windows connecting separated workspaces) while saving thecomputation time as the cost does

not need to be recomputed (due to the sorting).
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(a) Ring region (b) Solution on the side

Figure 2.18: The estimated handover positions of the robot, feasible (in blue) and closest feasiblecellmin

(in red) for a given human position according to the reaching capabilities of the human and the robot.

cBias = cmot � (1 � m) + clen � mobility

This cost approximates the �nal c presented in Subsection2.3.1.3and is used to evaluate the quality

of the candidate handover solution.

In order to bias the human direction sampling, the valid cell that mini mizes the robot motion from its

initial position to the ring region (in red in Figure 2.18) is stored in the combined grid. When sampling

� , directions facing this cell are favoured.

Next section provides simulation results of this algorithm with di�e rent settings of the mobility

parameter.

2.3.4 Results

This section reports the algorithm ability to �nd handover plans betw een a robot giver and a human

receiver in workspaces containing sparse obstacles, and the strategies it produces using di�erent values

of mobility , with it convergence rate when using di�erent pre-processing variants and their sampling

schemes.

In order to assess its performance, the algorithm has been implemented, along with test environments,

in Move3D Sim�eon et al. (2001) and simulations were performed on a computer equipped with a 2.26GHz

INTEL processor running on one core only.

2.3.4.1 The mobility parameter

Figure 2.19 shows three handover strategies that have been computed for the sameproblem using three

values of mobility . For low values of mobility , the human (receiver) is supposedly less involved, asked

as little e�ort as possible, on the contrary high values of mobility require more e�ort and participation

from him, resulting in faster handover strategies. This time enhancement results from the parallelisation

of the navigation (both agents navigate at the same time, making the global time needed to achieve the

task smaller) and from the human navigation speed, which is higher than the one of the robot.
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(a) m = 0 (b) m = 0.35 (c) m = 1

(d) m = 0 (e) m = 0.35 (f) m = 1

Figure 2.19: Three values of themobility parameters are used to generate three handover strategies.
The �rst three pictures depict the resulting trajectories wh ile the three bottom pictures show the �nal
handover con�guration that accounts for the 3D obstacles.

� mobility = 0 : Generates a long path for the robot to reach the handover position but the human

does not move.

� mobility = 0.35 : A shorter robot path to a feasible handover position over the table is allowed by

a small displacement of the human.

� mobility = 1 : Evenly shared e�ort between the robot and the human enables a constrained handover

position through the shelves.

Note that depending onmobility the solution proposed by the planner can be radically di�erent. The

resulting plan accounts for the feasibility of the handover position and motion using the 3D models of

both agents even though planning of navigation motion is performed in 2D Cartesian space.

2.3.4.2 Performance of pre-processing variants

Figure 2.20shows the cost improvement over two seconds on a single run corresponding to approximately

one thousand sampled positions and �ve hundred fully tested handoverstrategies on the example of

Figure 2.19. The graphs illustrate the interest of the proposedcombined gridsand bias variants.

The simplest case (mobility =0) is not shown in the �gure since all variants converge to the displayed

solution after a couple of iterations. However, for the two more complex cases, the basic pre-processing

shows di�culty to �nd handover above the table ( mobility =0.35) or through shelves (mobility =1). In
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Figure 2.23: The robot executes a handover of a can to the human, all these situationshave been tested
with success.

2.3.5.2 The user study

We ran a human-robot interaction experiment confronting the participants to choices of hand-over con-

�gurations provided by our planner: the shortest-time feasible plan at the cost of substantial e�ort asked

from the human, or the plan that minimizes the human e�ort, at the cost of l ow global time performance.

Objective and subjective measures are discussed to validate our hypothesis.

Hypothesis

� The mobility of the human receiver depends on the task and intrinsic parameters associated to the

receiver such as physical capacities or involvement in another task.

� Accounting for the receiver mobility leads to more e�cient hand-overs, especially when it matches

the context.

Experiment Design

We have designed an experiment consisting of collecting objectiveand subjective data on human-robot
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eager to get the object while the second task should force the participant to pay less attention to the

handover.

Four types of interactions are then possible, referred to in the rest of this section as:

A : Shortest handover plan with chronometer

B : Shortest handover plan with 'Sudoku'

C : Less e�ort handover plan with chronometer

D : Less e�ort handover plan with 'Sudoku'

Figure 2.25 and Figure 2.26 illustrate type B and D scenarios.

(a) Init (b) Signal

(c) Handover (d) End

Figure 2.25: Type B scenario: the robot hands-over an object through the walls

Evaluation

In order to evaluate the uency and the e�ciency of the interaction, t wo measures were extracted from the

videos recordings: the reaction time (time between the participant�rst motion and the robot releasing

the ball) and the total time (between the robot starting motion, and the b all entering the tube). The

quality of the interaction is evaluated with a set of subjective criteria collected by compiling the survey's

answers.

The survey

The form combines three types of questions;open, closedand evaluation. Eight multiple choice questions

were asked, �ve of which enable the participants to evaluate one of the interaction criteria with a �ve-point

Likert scale. The evaluation questions concern: the comfort of the handover, the distance appropriateness,

the scariness of the robot, the surprising factor, the eagerness of theparticipant to get the object and

the timing appropriateness. The closed questions aim to determineif the participants understood the
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(a) Init (b) Signal

(c) Handover (d) End

Figure 2.26: Type D scenario: the robot handover the object with a large detour

location where the object was going to be exchanged and if they found the location natural or not.

Finally, participants were asked if they would have preferred to be handed the object in one of the

alternative solution as depicted in Figure 2.24.

Results and discussion

In this part we compare the times measured on the video recordings and the answers of the survey to

study the validity of our hypothesis. The results are reported in Figure 2.27 and Figure 2.28.

Times

The total times of the task reported in Figure 2.27(a) indicate that the handover was realized faster

with motions of type A and B, which is normal as the handover chosen here prioritizes the handover

global time. It is actually faster in A than in B because of the reaction times reported in Figure2.27(b):

it is shorter for the participants given a time constraint and longer when they are given a game (for

both kinds of priority). This suggests that participants were more aware and prompt to accomplish the

handover when given a time constraint. We believe this particular observation of the subjects' behaviour

corroborates the second part of our hypothesis that postulates that the current task modulates the

mobility of the human receiver.

Subjective measures

Concerning the subjective measures, they are summarized in Figure 2.28. The scariness of the robot

a�ects the users only in type D interaction, which is quite normal as they are focused on the Sudoku

and suddenly the robot reaches out near them with the object. The distances are felt less appropriate in

case A and B, the cases where the robot stand behind the wall. This can beexplained by the fact that
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(a) Total time (s) (b) Reaction time (s)

Figure 2.27: The total time and the human reaction time to ful�l the goal

we couldn't give the subjects the eagerness feeling (also in the �gure, the di�erence between the cases

is not signi�cantly interesting) and thus, they did not understand w hy the robot was so far. For the

same reason, the comfort was better appreciated in the two last cases. However, nearly all the subjects

from case B would have preferred the other path for the robot, and while the subjects from D liked

unanimously the path, some in C would have preferred the other one. This shows that when the context

did not correspond to the robot actions, the subjects did not like it, which corroborates the �rst part of

our hypothesis.

Figure 2.28

Conclusion on the user study

The user study con�rms partially our hypothesis, but another one is needed where the eagerness param-

eter is handled more carefully. The videos of this user study are available at https://www.youtube.

com/playlist?list=PLJeAfn0C8Ci3DMyLG3Q1KzXgeCMIBg1fW

This section was about how an agent can handover an object to another agent, in the next section,

we address a more global problem of where and how to do a sequence of handovers in order to bring an

object from an agent (robot or human) to another one.
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2.4 Multiple agent handover problem

This section presents the work done, in cooperation with Jules Waldhart, concerning the computation of

a handover sequence, where multiple agents (humans and robots) are involved in a task with a prede�ned

goal which is to bring an object from a starting agent to a target one. This work extends the human-robot

handover approach presented in the previous section, as it generalizes it to multiple humans and multiple

robots exchanging an object to achieve a goal. Figure2.29 illustrates this problem: di�erent agents are

distributed into various zones, separated by walls, where countersallow them to exchange objects in

order to ful�l the given goal. As the previous section, this one falls in the handover part concerning

the choice of the handover position and the reach out with the arm (Figure2.4), and it is presented by

Waldhart et al. (2015).

This work was done in the context of the SAPHARI project (http://www.saphari.eu/ ) where one

of the use cases is linked to the robot co-worker. For example, in a workshop, one or multiple robots

might be asked to help and support the human workers by bringing them the tools and objects they

need. To achieve such a task, we developed a kernel algorithm for task allocation taking into account

various criteria such as the humans' comfort and preferences, and theagents general availabilities.

The multiple agent handover problem involves computing which agentssequence to use and where

handovers should be performed, ensuring the plan is feasible while preserving humans' comfort. Various

criteria are taken into account such as the human e�orts, the time, the energy and so on. In Figure2.29(b)

even if a handover is possible between initial and target agents (both humans), the algorithm chooses to

use a robot to do most of the navigation, in order to reduce their e�ort.

This kind of problem can be solved using a combination of symbolic and geometric planning, Dornhege

et al. (2012), Kaelbling and Lozano-Perez(2011a), Karlsson et al. (2012): these approaches will solve the

problem, but does not enable to �nd, e�ciently, an optimal solution bas ed on the parameters cited earlier

(note that using a task planner alone will be under e�cient as the problem is geometrically complex as

demonstrated by Lagri�oul et al. (2013)). The problem is tightly linked to the more general pick-up

and delivery problem (PDP). Savelsbergh and Sol(1995) present a survey of the PDP with its di�erent

types, and solution methods. More recently the link between PDP and handovers has been stressed out

by Coltin and Veloso (2014) where they present an algorithm where robots transfer objects to optimize a

PDP plan. For Cohen et al. (2014) the problem is to �nd needed handovers between manipulators arms

(no base motion) to bring the object from a position to another one. They �nd a path for the object and

compute for each position of the object on the path, the inverse kinematic of at least one arm which is

grasping it and then deduce the trajectory of every arm involved. Their resolution is search-based in a

discretized environment, using a lazy variant of weighted A*.

The main contribution of this section is the elaboration of a planner able to solve a multiple agent

handover problem by �nding an optimal solution based on social rules and humans' comfort. This

planner is based on a graph using various models, from geometric computation to more abstract high

level reasoning. It has been implemented in simulation and in two PR2robots from Willow Garage

(2008).
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2.4.1 Problem de�nition and formalization

The problem tackled here, is to bring an object, held by a starting agent, to a target agent, by making

agents carry the object or hand it over to other agents. Note that more than thestart and target agent

can be involved in the task and the object can be carried by one agent at a time.

The problem inputs are the agent list, the starting and target agents, the initial state, consisting of

all agents and objects positions, and agents speci�c information about speedand availability. The last

input is a parameter to balance between the task urgency and care given to the humans' comfort. This

parameter is inspired from the mobility parameter of the previous section.

A solution to the problem is a scheduled sequence of actions (navigation and handovers), that brings

the object from the starting agent to the target agent.

The search space is the full con�guration space, as described byLaValle (2006), of the whole problem.

As it involves several agents, it can be written as the cross-product ofthe con�guration spaces of each

agent: Cspace= Cspace0 � Cspace1 � � � � � Cspacen . We assume the object is su�ciently small to not

inuence the problem (otherwise, its con�guration space should be added to the full one). The problem

high dimensionality results in an extremely high computational cost while using classical solutions and

algorithms: Figure 2.29(b) shows an example with 5 humans and 5 robots, which results in roughly

card(C) ' 300 degrees of freedom (37 for each human3 and 22 for each robot4) to plan for, which is not

suitable for on-line solution search.

2.4.1.1 Global approach and simpli�cations

The problem is decomposed into two distinct subsets of lower dimensionality: the navigation between

the handovers positions and the handovers themselves.

The navigation phase is based on a path �nding in a discrete 2D grid builtusing the input environment,

the agents, the objects geometries and the agents initial positions. Thegrid is computed o�-line in order

to not a�ect running-time.

Based on the assumption of a large environment with sparse obstacles and few narrow passages,

inter-agent collisions are ignored during this phase. Following thisstatement, the model considers only

one agent at a time for the navigation (Section2.4.2.3explains how the system deals with these collisions

when they occur).

A Handover involves two agents. The full dimensionality of their models and their positions is needed

to ensure the feasibility of the task (for example, to test if a handover through a window or above a

counter is feasible or not). As the computational cost of this test is high,fast speci�c tools are used to

prune out candidate solution with no chance of success.

3Each human has 2 arms and 2 legs with 7 degree of freedom each (DoFs) in addition to 3 DoFs for the head, 3 Dofs for
the torso and 3 navigation DoFs

4Each robot has 2 arms with 7 DoFs each, in addition to 2 DoFs for the h ead, 1 DoF for the torso and 3 Navigation
DoFs
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The search algorithm relies on other tools, at di�erent steps of the process: high level representation,

2D model for navigation, full geometric representation for handover posture search and check, collision

checking and motion planning. These models descriptions are presented here bellow, in a top down order.

High-level representation The problem is represented at the highest level of this model as a graph

able to guide the search through all possible handovers. It is referred to, in the rest of this section, as

agent graphGA (di�erent from graph G). In this graph, the nodes represent the agents and the edges,

the handovers between them. At the initialisation, all the edges arecreated, with the supposition that

any handover is possible, and each edge is weighted with an optimistic estimation of the cost (based on

the time needed to perform the handover and the optimal human-related cost expected), independently

of the environment. During the search, the costs will be adjusted with the real ones, and if a handover

is proven not feasible, the edge is removed. Note that during the search, this graph is used as a heuristic

to guide the search, and it does not allow an agent to get the object twice.We chose to not consider

this possibility as the cases where this might be pertinent is when big objects that change the topology

of the world are handled, which does not fall into the scope of this work.

2D navigation grid To plan the navigation tasks, the environment is discretized and projected in a

two dimensions grid. This grid can be transformed into a navigation graphGn (a node is a cell and each

cell is linked by edges to its neighbours) and used to �nd agents pathsfrom a position to another one

using classical graph search algorithm such as A*. Some nodes in this navigation graph are obstructed

with obstacles making them unreachable by the agents, and some of these obstacles surround some areas,

disconnecting them from the rest of the navigation graph which createsmultiple connected components.

This graph is used as the base for the graphG but the various connected components might be linked

together using the handover edges.

Geometric environment model Geometric algorithms (e.g. collision checking, inverse-kinematics,

motion planning) are used to �nd valid handover positions and to compute their costs, by taking into

account social rules, the humans' comfort, the motions legibility and so on. If the handover is feasible, the

computed cost is used to update the agent graphGA , otherwise the edge corresponding to this handover

is removed from GA . A handover is considered valid if a collision free position where both agents can

grasp the object at the same time exists and a motion linking the starting position of both agents to

the handover con�guration also exists (more details available in Subsection 2.3.1.2). All the process of

�nding and evaluating a handover will be referred to as the handoversearch tool.

The cost function de�ned to evaluate a solution considers three weighted parameters:

The agents involvement duration is the time each agent is involved during the task (letA be all the

agents in the environment), weighted with its level of availability (f av(a 2 A)). It can be expressed

as: Inv =
P

a2 A t inv (a) � f av(a).

The global execution time is the total time T ot between the moments when the �rst agent starts

moving until the one when the last agent stops its motion.
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The human comfort is related to the human-robot distances, the visibility of the robots by the humans

and the postures of the humans during the handovers (more details available in Section 2.3.1.3).

These parameters enable us to compute the comfort costcHO (i ) of the agents involved in the i th

handover of the plan (a plan with n handovers). The comfort cost can be expressed as:Confo =

F (cHO (0); :::; cHO (n)) where F is either a Maximum or a Sum function.

A solution cost can be expressed as follows:

cost = winv � Inv + wtime � T ot + wHRI � Confo

Where wmob, wtime and wHRI are the weight of the di�erent parts, and by increasing or decreasing

them, the priority can be given either to the global time execution or the humans' comfort or humans'

involvement during the task (Those are the parameters replacing themobility parameter from the previous

section).

2.4.2 Resolution

The most time-consuming search the planner needs to perform, in order to �nd a solution in these

models, concerns the graphG which represents a simpli�ed form of the problem. The search timeis

directly related to the connectivity of this graph which is itself related to the number of neighbours a

node can have. In therooms environment (Figure 2.29(b)) this value reaches 3000. This number can be

approximated as follows:

1
d2

X

p2 N

�
� � R(a; p)2 � � � r (a; p)2�

Where the elements are:

� d: the discretization step of the 2D navigation grid.

� a: the agent holding the object in a node ofG.

� p: a node ofGA (p represents also the agent this node is linked to).

� N : the neighbours in GA of the node linked to the agenta.

� R(X; Y ): the maximal distance for a handover between agentsX and Y

� r (X; Y ): the minimal distance for a handover between agentsX and Y

The rooms environment has multiple agents in the same zones, making the numberof possible actions

for each cell in this zone very high, and thus increasing the connectivity of G.

The algorithm implemented in order to perform the search in this graph is a Lazy weighted A*

(LWA*) introduced by Cohen et al. (2014) as it is able to postpone the most time consuming searches

(the handover feasibility) to the moment these handovers seem relevant. This algorithm has proven
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bounds of sub-optimality inherited of Weighted A*, Likhachev et al. (2004), and can perform faster

when it involves computationally expensive evaluations.

LWA* algorithm is based on A* algorithm, which searches for the shortest path using a heuristic to

guide the search. When a node is expanded, three values are given to children nodes: theg value is the

distance (cost) between the origin and the child node, theh value is the heuristic, i.e. the estimation of

the distance remaining to reach the target, and thef value is the sumg + h. In the next iteration, the

unexpanded node with the smallerf value will be expanded, until the target node is reached.

In the weighted variant, the h value is increased by a factor,f becomesg + �:h with � � 1, thus

adding a depth-�rst avour to the search, but decreasing the quality of the solution of at most � (the

path found is at most � times as long (expensive) as the optimal path).

The lazy variant uses a temporary g value attributed to expanded node children. This temporary

cost is optimistic and is faster to compute than the real cost. The real cost is computed only when the

node is selected to be expanded,i.e. is the one with the smaller f value. Its g and f values are updated

and it is put back in the list of nodes to be expanded. Figure2.31 shows an exploration example were

there are unexplored nodes, expanded ones, and a solution.

The choice of the search algorithm is open, any other graph search algorithm would work, but the

speci�cities of LWA* makes it a good candidate for this problem.

Figure 2.31: Pink is the actual object path, the grey is the cells to be extended (from the lazy part of
LWA*) and the coloured cells are the explored ones. The two indentationsof the pink path are due to
the sub-optimality of the weighted variant of A*, it is close to the heuri stic

Heuristic and cost The costs in the graph G are evaluated depending on the action they model: a

navigation or a handover. The navigation cost is computed from the distance related parameter such

as energy consumption and navigation time. The handover cost includes both agents motions, the
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interaction duration and the navigation cost of the receiver agent, who needs to navigate to the handover

position.

The heuristic function (algorithm 2) guides the search in the graphG and through the possible

handovers. It is based on the agent graph and the navigation grid: It �rst searches for an agent sequence

that can bring the object to the target agent. This search is made in the agent graph and takes into

account minimal handover costs with no navigation (line 2). Then, based on this sequence, it searches

the minimal cost related to the navigation. In this model, it is using the cheapest agent for the whole

distance (in Euclidean sense, line4). At this step, it is not known yet if the handover is possible or not,

but it guarantees that the heuristic is admissible. It then adds the estimation of handover costs, which

must be computed with an admissible heuristic too (line7).

Algorithm 2 Heuristic function for the main search algorithm
1: function Heuristic (N ,Ngoal) . current and goal nodes
2: path  ShortestPath (GA ,N ,Ngoal) . G A is the agent graph (task level)
3: for each agenta of path do
4: d  min (d; DistanceCost (a) ) . cost for a to go from N to Ngoal (Euclidean distance)
5: end for
6: for each handoverHO in path do
7: h  h+ HandoverHeuristic (HO) . estimation of each handover
8: end for
9: h  h + d

10: return h
11: end function

2.4.2.1 Handover tests

In order to further reduce the computation time, the system can postpone the usage of the handover

search tool (highly time consuming) and use simpler process to detect infeasible handover as early as

possible:

Distances test checking if the agents are within reach of each other (based on arm length)Fig-

ure 2.32(a).

Object collision test testing if a path exists for the object to go from an agent to the other one (just

the object) Figure 2.32(b) shows a test example where a straight path exists.

Inverse-kinematics test testing if the agents can both reach the object when this one is in between

them, Figure 2.32(c).

The inverse-kinematics test uses the same pre-de�ned con�guration and their costs as in Section2.3.2.1

and update the edge cost inG. Optionally, the full motion can be computed, but unless the environment

is highly cluttered, it is preferable to avoid it, as it is even more time-consuming and in most cases the

inverse-kinematics test is enough to ensure the feasibility of the handover (when not computed during

the search, the motion plan can be computed later, just before the execution).
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(a) (b)

(c) (d)

Figure 2.34: An example where the robot plan for a third agent (not involved in the handover) to move
in order to avoid collision and let him access the target agent

is an average of �ve possible agents by cell). In this environment, theA* algorithm is e�cient as the

heuristic is close to the real cost.

Synthesis: 18� 16m2, 10 agents, 64000 nodes, e�cient heuristic.

2.4.3.2 Example 2 - maze

Figure 2.35 is a maze where there is always a simple solution where the starting and targetagents can

meet to perform a single handover. But windows allow faster delivery if the object is handed over through

them between intermediary agents. The A* heuristic gets trapped inthis environment as a solution is

rarely close to the straight line. There are 102400 nodes (8 possible agentsper cell).

Synthesis: 18� 16m2, 8 agents, 102400 nodes, ine�cient heuristic.

2.4.3.3 Example 3 - big rooms

The environment in Figure 2.36 is the largest example environment (25� 25m2) where the 16 agents are

in rooms connected by doors or windows. In this example all (or nearly all) agents are in separated areas

(average of 1.5 agent per cell), causing the connectivity of the graphG to drop with the node number

(41500 nodes). The A* heuristic does not get trapped as in themaze, but solutions are usually not

straight lines.

Synthesis: 25� 25m2, 16 agents, 41500 nodes, normal e�ciency for heuristic.
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ratio of computation time for one true cost evaluation versus the one for thetemporary cost estimation

is almost of 200, with 67ms for the former and 0:334ms for the latter. Statistically, without lazy variant,

evaluating explored nodes would be more than 100 times longer. That factor reaches 400 in therooms

environments, while still providing exactly the same solutions. This enforces the relevance of the lazy A*

variant use in our case. Figure2.31 shows an example of a resolution in therooms environment, where

most of the cells are explored but the true cost is computed just for a small part of them.

� 10 4 1
mean time (s) 4.675 5.25 20.8

Table 2.1: The mean times computed over 160 run, in the four examples, with randomstarting and
target agents, using two di�erent cost priority (agent and time)

The connectivity of the environment does play a role in the computation time, but the most relevant

factor (as in any A* search) is the accuracy of the heuristic: as depictedin Table 2.2, even though the

connectivity of the rooms environment is very high, the heuristic is e�cient; hence, the computation time

is small.

rooms maze big rooms apartment
mean time (s)(� = 1) 11.2 17.9 40.7 13.4

Table 2.2: The mean computation time for each example for� = 1

2.4.4.2 Solution quality

Table 2.3 presents the values of the main cost components (the execution time,the number of involved

agents and the number of involved humans) for some algorithm solutions, running on Section 2.4.3

examples, with � = 1. The results show that when the priority is set to agent, no human is involved in

the task (whatever the number of involved agents) but this results ona loss of e�ciency as shown by

the execution times: when the priority is set to time, even thoughhumans are involved in the task, the

execution time is faster than the agent priority execution time (up to 2 times faster).

Priority Agent Time
Environment time (s) nb humans / nb agents time (s) nb humans / nb agents

Rooms 28.7 0 / 1 22.5 2 / 2
Maze 32.1 0 / 0 15.1 2 / 2
Big rooms 63.9 0 / 3 44.6 2 / 4
Apartment 17.6 0 / 0 8.4 1 / 1

Table 2.3: This table contains the main components used to compute the cost of a solution: the complete
execution time and the number of humans (resp. agents) involved in the task, excluding the starting and
target agents.

Adaptability This approach can �nd a solution for any kind of scenario, but the computation time will

grow exponentially with the environment size and the agents number.Even though, if the connectivity
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of the graph G is low or the heuristic e�cient, the approach would perform better. In larger and more

complex scenarios (than those presented in this section) the algorithm will still �nd a solution, but the

computational time would not allow on-line use for such situations. Though, such complex cases are

supposed to be rare and do not enter under the scope of this work.
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experimental context, results that could have been already exhibited, and the results tend to do so. In

addition, what could be credited to this work is the study of gaze behaviour for both the giver (Human

or Robot) and the receiver during a give action. The closest studies inthe �eld to our knowledge are

Boucher et al. (2012) and Moon et al. (2014). In the �rst one, the authors do a similar study over a

di�erent action, while the second does not study the receiver gaze.

The user study presented in this work tries to con�rm these hypotheses:

The giver gaze cues are important In order to achieve an understandable and e�cient handover,

the giver gaze cues should not only change (a static gaze is not good) but follows a speci�c pattern.

The receiver gaze cues should not change when the giver changes When changing the giver (hu-

man or robot), the receiver gaze cues should be similar.

The gesture speed is important A conventional speed should be preferred over a slower or a faster

one.

Related work

Gaze analysis allows the receiver to make hypothesis on the cognitive activity handled by the giver, and

a number of researchers tried to codify and implement these cueson robots.

Mutlu (2009) studies gaze cues communication on several robotics platforms, and showed its impor-

tance in HRI and how well-de�ned gaze patterns can enhance human-robot communication experience.

Boucher et al. (2012) observe that one of the current roadblocks in the elaboration of smooth and

natural human-robot cooperation is the coordination of robot gaze with the ongoing interaction and tried

to identify pertinent gaze cues in human-robot cooperation. When thegaze cues are well de�ned, the

cooperating human can reliably exploit it and anticipate actions in the cooperative task.

Interestingly, in a study oriented toward gaze cues in human-human interaction, Furlanetto et al.

(2013) show that eliminating gaze cues by blurring the actor's face did not reduce perspective-taking,

suggesting that in the absence of gaze information, observers rely entirely on the action. Intriguingly,

perspective-taking was higher when gaze and action did not signal the sameintention, suggesting that

in presence of ambiguous behavioural intention, people are more likelyto take the other's perspective to

try to understand the action.

Moon et al. (2014) exploited human-like gaze cues during human-robot handovers and found that

the subjects' reaction time is faster with the appropriate cue (looking toward the handover position) but

also that those subjects judge the handover more natural when accompanied with this cue.

These researches show the importance of gaze during human-robot interaction, the robot would be

able to achieve the task without the gaze, but the cooperation would su�er from it. In order to have a

better grasp on the importance of the gaze, let's situate this work in theglobal frame of joint action.

Vesper et al. (2010) established that a minimal architecture for joint action should be able to handle,

next to a goal, tasks representation (possibly shared), monitoring and prediction processes, and what

they call coordination smoothers. They argued that \where joint action requires precise coordination
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in time or space, there are often limits on how well X's actions can be predicted. One way to facilitate

coordination is for an agent to modify its own behaviour in such a way as to make it easier for others to

predict upcoming actions."

We suggest that gaze cues could hold the role of coordination smoother in helping the human in front

of the robot to better understand the robot behaviour and help it to achieve its movement in a more

natural way.

2.5.1 Devices and methods

In order to con�rm or deny the hypothesis, a user study has been designed where volunteers watched

videos of a human or a robot (Figure2.38) setting down an object in front of them, and were asked

to judge the naturalness of the task. Di�erent gaze cues were availablein the videos. This subsection

presents the participant and experimental set-up used to evaluatethe task.

2.5.1.1 Participants

Thirty three volunteers participated in the experiment (age range 22{38 with mean value of 27 and

a standard deviation of 3.5; 21 males, 12 females), among them, �fteen watched human videos and

eighteen watched robot videos. All participants had normal uncorrected vision but two volunteers had

to be excluded from subsequent analyses due to a technical problemthat damaged eye-tracking data

(unreliable calibration)

2.5.1.2 Experimental Set-up

The experimental situation implies watching a video where a giver(Human or Robot), seated behind a

table, takes the object with his right hand, and puts it on the table so that the receiver, behind the video

camera, can reach it. The choice of using videos instead of a real interaction is supported by the need of

isolating gaze cues and motions velocity to �nd some hints about the use ofthese factors in handovers.

Moreover, it has been proposed byKiesler et al. (2008) and Woods et al. (2006) that video-based scenario

can enable us to infer such valuable results

The experiment took place in a room where temperature and luminosity (19 lux) were kept constant

and the participants faced a computer screen where the video was presented. Eye movements were

recorded using an EyeLink 1000 remote eye tracker (SR Research Ltd., Mississauga, Ontario, Canada)

which possesses a spatial accuracy greater than 0.5� and a 0.01� spatial resolution with a sampling rate

of 1000 Hz. The camera was placed at a distance of 20 cm from the screen (DELL 1900, refresh rate of

75 Hz, resolution of 1024x768 pixels) and the eye-camera distance was 60 cm maintained by a forehead

rest. All eye tracking data were extracted using the SR Research default centroid algorithm.

In the experiment, we manipulated 3 variables: (1) the type of giver (Human or Robot), (2) the

speed of the movement (normal, fast, and slow) and (3) the gaze behaviour. The Robot was a PR2

and the Human was a white man (65 years old). The videos were shot to be as similar as possible (see

Figure 2.38) and were accelerated and decelerated to obtain di�erent speeds while keeping the same
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(gaze), presented in a randomized order. In a trial, the participant pressed a button to begin the video

and immediately after the video is �nished, he/she was asked to rate the perceived naturalness of the

movement on a 5 points Likert scale (5 for \perfectly natural", 1 for \not nat ural at all") presented on

the screen. Between each trial, participants had to complete a digital logical suite, to break the dullness

of the task. The session (18 trials) was repeated one time making each participant watching and judging

36 videos, in the rest of the section we will refer to each session as a video block.

Before the session started, the participants were told that their objective is to rate the naturalness of

the videos they are going to watch. For methodological reason, the instructions and questions were very

neutral (even though in the participant mother tongue {French{) in order not to inuence the judgement

of the subject. The judgement method is the same as one of the three that have been used byMoon

et al. (2014), whereasBoucher et al. (2012) do not look for subjective evaluation.

2.5.1.4 Occulometric measurement

Classical dependent variables in eye-tracking studies include the number and duration of �xations on areas

of interest. In this study, the areas of interest (AOIs) were (1) the giver face and (2) the object. Those

AOIs were �x, as depicted in �gure 2.40. As video duration changed between experimental conditions, we

computed the percentage of dwell time spent on AOIs to study the distribution of the visual attention.

Figure 2.40: The AOIs used in the occulometric measurement

2.5.2 Results

We performed a mixed-design analysis of variance to examine the e�ects of (1) the gaze behaviour, (2)

the speed movement, and (3) the type of giver on our subjective and oculometric dependent variables.
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Subjective and eye tracking data have been analysed with the software package Statistica 8.0 (Statsoft,

Tulsa, Ok, USA).

2.5.2.1 Subjective measurements

Gaze Behaviour

Results indicated a main e�ect of the gaze behaviour on the naturalnessratings, F(5, 145)=15.034,

p< .0018 (Figure 2.41). Post-hoc paired comparisons showed that OR and ROR gaze behaviour are

signi�cantly judged more natural than the four other conditions R, O, RO, ORO (highest p-value in the

post-hoc table equal to .003). No di�erence was found between (1) the twoconditions OR and ROR

(p=. 70) and (2) the three conditions R, O and RO (lowest p-value equal to0.48). Finally, the condition

ORO is signi�cantly judged more natural than the two gaze behaviours R andO (highest p-value equal

to .03).

Figure 2.41: Naturalness ratings as a function of the gaze behaviour and the speed movement

Movement speed

Results indicated a main e�ect of the movement speed on the naturalness ratings, F(2, 58)=10.354,

p< .001. Fisher's LSD post-hoc comparisons showed that the normal and the fastmotion conditions

are judged more natural than the slow one (highest p-value in the post-hoc table equal to .004). No

signi�cant di�erence was found between the normal and the fast motion speed conditions (p=.16).

Type of giver (Human vs. Robot)

Interestingly, there was no signi�cant di�erence in the results between the two types of givers (F(1,

29)=1.988, p=.16). Moreover, no interaction was found between the three main manipulated factors.

8F is the Fisher variable and combined with the p-value enable t o establish the signi�cance of a di�erence between two
variables: the di�erence is signi�cant when p < 0.05 and is not otherwise.
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This result suggests that the e�ects of movement speed and gaze behaviour described above are not

inuenced by the type of giver.

2.5.2.2 Eye tracking measurements

Two main interesting behaviours has been noticed thanks to the eyetracker: a di�erence in the pupil

size between human and robot giver, and a di�erent distribution of the attention between them.

Distribution of the visual attention between the face of the giver and t he object

Overall, results indicated a signi�cant di�erence between the mean percentage of dwell time spent

on the face of the giver and the mean percentage of dwell time spent on the object (F(1, 29)=59.848,

p< .001): the participants tended to focus mainly their visual attention on the face of the giver (the dwell

time spent on something means the time during which the eye focused solely on this something, and is

obtained thanks to the eye tracker).

However, the detailed analysis displayed in Figure2.42 shows an interesting correlation between the

type of giver and the gaze behaviour:

Human giver: There is no e�ect of the giver gaze behaviour on the mean percentage of dwell time

spent on the face of the giver (F(5, 65)=0.807, p=.54), nor on the mean percentage ofdwell time

spent on the object (F(5, 65)=1.004, p=.42).

Robot giver: Results indicated a main e�ect of the gaze behaviour on the mean percentage of dwell

time spent on the face of the giver (F(5, 80)=12,82, p=.001), and on the mean percentage of dwell

time spent on the object (F(5, 80)=6.264, p=.001).

When the giver is a human, the main conclusion is that participants focus mainly their visual attention

on the face of the giver to provide a judgement concerning the naturalness of the task, independently of

the giver gaze behaviour.

When the giver is a robot, Fishers LSD post-hoc comparisons shows that participants focus more

on the robot face for the three types of gaze behaviour ORO, OR and ROR than for the three other

conditions R, O, RO (highest p-value in the post-hoc table equal to .04). On the other hand, participants

focus less on the object for the same three types of gaze behaviour ORO,OR and ROR than for the two

other conditions R, O (highest p-value in the post-hoc table equal to .05). However, gaze behaviours OR

and ROR are not signi�cantly di�erent from the condition RO (lowest p- value equal to 0.26).

If we take the human giver as a reference, the occulometric pattern with a robot giver is identical to

the one of a human giver only for the ORO, OR and ROR conditions.

Finally, no e�ect of the movement speed was found (F(2, 58)=1.798, p=.43), and the reader may �nd

useful to know that there was no di�erence between the two blocks of video presentation (F(1, 29)=0.947,

p=.33).
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Figure 2.42: Distribution of the visual attention between AOIs as a function of the gaze behaviour and
the type of giver

Pupil size

Results indicated a strong main e�ect of the type of giver on pupil size variations, with larger pupil

diameters when the giver is a robot (F(1, 29)=12.803, p< .001).

Results also revealed a main e�ect of the gaze behaviour (F(5, 145)=3.050, p< .001), however, post-

hoc paired comparisons showed only one signi�cant di�erence, with smaller pupil size in the OR gaze

behaviour condition (highest p-value equal to .03 in the post-hoc table).

No e�ect of the motion speed was found on the pupil size (F(2, 58)=1.798, p=.17).

Finally, results indicated a signi�cant di�erence between the t wo blocks of video presentation (F(1,

29)=26.155, p< .001), with smaller pupil size during the last block, what could be reasonably considered

as a training e�ect.

2.5.3 Discussion

The �rst hypothesis (the giver gaze cues are important) is con�rmed by the results: subjective mea-

surement clearly shows the subjects did not like videos with static giver gaze/head. Moreover, the head

patterns are not to be neglected: the head �nal pattern OR 9 seems to be preferred over the rest of the

patterns, the subjective measurement shows that the subjects preferred the patterns OR 9 and ROR 9

over the others. This �nal head pattern could be an acknowledgement/turn-taking signal from the giver

to the receiver.

Note that the variable \type of giver (human or robot)" does not a�ect the subj ective naturalness

rating.
9refers to the type of patterns explained in Section 2.5.1.2
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Concerning the distribution of visual attention between the giver face and the object, results are

di�erent according to the type of giver. When the giver is a human, there is no e�ect of the giver gaze

behaviour on the distribution of the visual attention. The receiver focuses mainly its visual attention on

the face of the human. We believe this behaviour is normal for humans as the face is the most expressive

part of the body and humans are used to focus on the face to determine a number of features.

When the giver is a robot, we can distinguish two cases:

� O9, R 9 and RO 9 cases: The receiver visual attention is shared between the face and the object.

That means, receiver will not focus either on the face or on the object but may go from one to the

other. We interpret this as the receiver being lost in this kind of situations. Further analysis of eye

tracking data is needed to validate this interpretation.

� ORO 9, OR 9 and ROR 9 cases: The visual attention is mainly focused on the head of the robot.

In those cases, we found the same pattern of visual attention as in the human giver.

Taken together, the results on the perceived naturalness of the movement and the ones on the ocu-

lometric pattern of the receiver seem to put forward two main conditions: OR and ROR . Those two

conditions are not only perceived as more natural than the others (with a robot or a human giver) but

they present a similar occulometric pattern of the receiver (with a human or a robot giver). It seems

that the �nal OR is an important pattern. When the giver, at the end of the movement, moves the gaze

from the object to the receiver, it may mark the end of the exchange. The fact that the receiver looks

mainly at the face also in the ORO condition may be interpreted in the same sense: when the robot

ends its movement on the object, the receiver seeks an acknowledgement on the robot head (our �rst

look at more detailed eye-tracking results seems to corroborate this thought). These results partially

corroborate the second hypothesis: the receiver gaze are similar between the robot and the human giver

only when the perceived naturalness is high.

This study is more about the movement itself rather than its initiat ion, however, the preferred patterns

meet the ones found byStrabala et al. (2012a). That is at the beginning of the action, the robot is looking

at the object or at the receiver. We have also shown that the gaze patternat the end of the exchange

seems also to be important. Some patterns are considered as more natural than others, whereasMoon

et al. (2014) did not �nd any di�erence on that aspect which was con�rmed by objecti ve measurements.

These patterns tend to con�rm the �rst intuition and �ndings about han dover conditions: Moon et al.

(2014), Strabala et al. (2012a) or Boucher et al. (2012) (a cooperative task) stated that a human exploit

the gaze of the robot when it is present.

The di�erence in the pupil size between the two types of givers (human or robot) might have di�erent

explanations: more curiosity or cognitive load induced by the observationof non-familiar, unknown

machine. In the general eye-tracking literature, pupil diameters have been found to increase along

with cognitive demands Kahneman and Beatty (1966) and emotional load Bradley et al. (2008). In

this context, the di�erence in the pupil size between the two types of givers (human or robot) might

have di�erent explanations: more curiosity or cognitive load induced by the observation of non-familiar,

unknown machine.
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The objective results did not show any di�erence between the di�erent speeds, although the subjective

measurements show that the normal and fast speed is preferred over the slow one. Again, this partially

con�rms the third hypothesis.
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2.6 Future work

Several contributions have been presented in this chapter. We see potential improvements and perspec-

tives (they are categorized following the section they belong to):

Extending to multiple actions (Section 2.3) For now sharing the e�ort with the human is only

about handing over objects. The approach can be extended to di�erent actions such as taking a

picture, or talking.

Planning with the object (Section 2.3) It can also be more accurate if the real object form is con-

sidered for both manipulation and navigation (navigating with a big object will cause di�erent

problems).

Real time adaptation (Section 2.3) The fast convergence times of the results for a handover indi-

cates that the algorithm can be used to dynamically adapt the solution to the human while he is

moving.

Relaxed synchronisation constraint (Section 2.4) using a place then a pick (by di�erent agents)

sequence instead of a handover.

Agents involvement (Section 2.4) The planner, using STN knows the involvement duration of each

agent, the rest of the time, those agents can be used to perform other tasks, but in order to do that,

the task planner using the algorithms presented here must explicitly take the time into account

Dvorak et al. (2014).

2D grid discretization (Section 2.4) This grid can be replaced by another kind of grid such as a

quad-tree structure, Finkel and Bentley (1974), to reduce the number of nodes.

Further analyse the results (Section 2.5) More information are still available on the eye tracker

data, and they need to be retrieved and analysed.

Integrating the results on the robot (Section 2.5) The pattern found can be implemented as the

normal behaviour of the robot while doing a handover.

A real robot user study (Section 2.5) In order to compare the results with the �rst one and to

ensure their validity.
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2.7 Contribution to the human-robot handover in a nutshell

In this chapter three main contributions were presented for the human-robot handover problems:

Sharing the e�ort with the human for a handover An algorithm computing handover con�gura-

tions for both the giver and the receiver (humans or robots) while taking into account the human

comfort and preferences. We also presented a user-study concerning the sharing part where we

proved that a mobility parameter (either the human wants or not to share the e�ort with robot)

is relevant in the context.

Multi-agent handover An algorithm that computes an optimal sequence of handover to bring an

object from an agent (human or robot) source to an agent target. This algorithm is able to

compute, in addition to every motion plan, the exact schedule of everyagent involved in the task.

The handover gaze cues A user study where we have shown the importance of gaze cues during a

handover, and have shown the importance of the used pattern: the subjects preferred the two

patterns OR (the giver looks at the Object then at the R eceiver) andROR (the giver looks at

the R eceiver then at theObject and then at the R eceiver again)
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3.1 Introduction

The goal of this chapter is to create a link and �ll the gap between task planning and motion planning. In

the context of autonomous robots, task planning is used to take decisions about what action to perform

and when to perform it (as shown in the architecture presented byAlami et al. (1998)). Usually, task

planning manipulates symbols and concepts, and tries to �nd symbolicplans able to achieve a given goal.

In the same context, motion planning is used to compute the robot trajectories executable in the real

world, trajectories that enable it to achieve tasks. As explained inLaValle (2006), motion planning is

based on a geometric model of the world, and needs a full description of the initial and �nal position

of the robot model. This full description is usually expressed with the numerical values related to the

position of every part of the robot in the model.

To synthesize, task planning deals with symbols while motion planning requires speci�c numerical

values to compute the trajectories. The gap between these two planners is the problem we are trying

to solve in the context of manipulation and navigation planning, using fetch and carry examples in the

presence and in interaction with humans. Let's refer to this problem as the Geometric Reasoning and

Planning (GRP) problem.

The main goal of the GRP is to compute actions: based on symbols, the GRP should compute

trajectories that will achieve the goals speci�ed with the symbols. In other words, it should be possible

to plan for actions while specifying only the desired information: the desired property to achieve at a

level of abstraction su�ciently high to be usable by the task planner. For example, \giving an object

to this person" or \putting an additional object on the table". This is eve n more important when other

(human oriented) constraints have to be taken into account. The GRP can have another usage which

is to compute Facts, based on the world geometric model, it is able to compute symbols describing the

actual world state. We call these symbols facts. For example, it should be able to compute facts such as

an object is in another one, an object is on another one, or more human related ones such as an object

is reachable by an agent. These links between agents and objects are called a�ordances.

The a�ordances were �rst introduced by Gibson (1977) to explain how agents directly perceive the

inherent \values" and \meanings" of things, and how they can use this information to infer the possible

actions o�ered by the environment. Sahin et al. (2007) propose various formalizations of these a�ordances

in the domain of autonomous robotics. One of these formalizations, which will be used in this chapter,

is: \A�ordances, are relations between the abilities of organisms and features of the environment". In

order to compute these a�ordances we base ourselves on previous work such as Marin-Urias et al. (2008)

where they use perspective-taking to compute them.

A geometric reasoner and planner endow the robot with a number of abilities (such as pick, put,

show...). This is very close to the \task-level" planning problem, as de�ned in Lozano-Perez et al.

(1987), as it extends it to more possible actions and includes the multiple agents (humans or robots)

possibility. It is also close to the manipulation planning problem which was a focus on various work, such

as Simeon (2004), but lately more and more researchers began to work on the GRP problem.Fedrizzi

et al. (2009), for example, worked on �nding a placement for the robot base, where itis able to grasp an

object with an uncertain position. Cosgun et al. (2011) plan for placing an object on a cluttered table
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by pushing the objects already on the table. Fraisse and Simeon(2012) developed a framework based

on the \mightabilities maps" which are maps in the 3d model of the world where a�ordances for every

agent are computed for each cell in these maps. Based on this, the framework computes where an object

can be placed, and where it will be visible and reachable by a speci�cagent.

In this chapter, we de�ne a framework for specifying actions in a su� ciently formal and exible

manner enabling us to plan and compute their di�erent steps but also to build geometric plans: a

sequence of actions where there is interferences and interdependences between the several actions and

steps that compose this plan. For example, pick then place: the choices made during the pick might

interfere with the place or navigate to an object then pick it up: the position of the robot needs to be

close enough to pick the object, but far enough to enable the robot motions (no collisions)

Section 3.2, introduces the problem formalisation whereas, Section3.3, presents the framework de-

signed to handle this formalization with the simpli�cation done. Section 3.4 addresses the possible future

work while, the last section of this chapter, Section3.5, synthesizes its contents.
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3.2 Formalization

The Geometric reasoning and planning problem can be described with the 2-uplet f Dg; Eg where:

� Dg is the domain that contains all the available actions, and

� E is the set of entities known to the robot.

The problem consists on solving queries where the goal of each one of it is to make an agent (or

multiple agents) perform an action. The next subsections will present in details the actions, the entities,

and other models used to formalize the problem.

3.2.1 Entities

Each entity e is de�ned by an identi�er, a type and a description f ide; te; geg. te refers to the entity type,

which can be one (or more) of the followings: a human, a robot, a manipulableobject, a support object,

or a virtual object. The agents (robot and human) are considered in order tocompute their motions,

and, when needed, some social rules. The objects can be from di�erent types, such as manipulable and

support at the same time, and as their type indicates, manipulable object can be moved around by the

agents, and can be placed on the support objects. The virtual objects are special objects for which the

collision can be ignored in certain occasions.

The description ge follows the classical one in motion planning (see, for instance,LaValle (2006)), a

kinematic graph, where the nodes are the entity joints and the edges the links. In this context, the links

are the entity rigid bodies, which are de�ned by a frame and a representation of the geometric model

in this frame. The joints are de�ned by a parametrized transformation matrix, where the independent

parameters that characterize this transformation are the degree of freedoms (DoFs). Each DoF value

belongs to a setSe � R, which can be in�nite, or bounded by the entity geometry or by the worl d. If

the robot has n DoFs, the set of transformations is usually a manifold of dimensionn. This manifold is

called the con�guration space Cspacee, and an instance of thisCspacee is called a con�guration qe; in

other words, qe is the value of every degree of freedom of every joint in the entity kinematic graph.

In addition to this Cspacee, the kinematic graph is used to compute the entity forward kinematic,

which consists on computing the relative (to the entity) and the absolute position of every entity rigid

body. It is also used to compute the entity inverse kinematic: computing the DoFs values based on

the position of one of the entity end e�ectors. Finally, it is also used to compute trajectories, using

motion planners, which consists on computing a collision free path between a starting and a stopping

con�guration.

Let Cspacerefer to the con�guration space of all the entities and Cspacee1 the con�guration space

of the entity e1. In an environment where the entities aref e1; e2; :::; emg, the Cspaceis the Cartesian

product of all the Cspaceei :

Cspace= Cspacee1 � Cspacee2 � Cspacee3 � ::: � Cspaceem
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3.2.2 World States

A world state ( ws) is the state of each entity from E at a given time t i . The state of an entity e is de�ned

by f qe; te; posg where:

� qe is the entity con�guration at time t i . This con�guration can be fully known, or partially known

(in case of uncertainties) or not known at all (no information regarding the entity position).

� te is the entity trajectory at time t i . In other words, in addition to the position, it contains the

future and previous con�gurations of the entity, in addition to its dyn amic. The trajectory can

also be fully known, partially known or completely unknown.

� pos represents the position ofqe on the trajectory te at time t i .

3.2.3 Actions

An action a 2 Dg is de�ned by f aId; des; IN g:

� aId is the action identi�er which is unique. It can be Pick , Place , Give and so on.

� des is the action description, explained later in this subsection.

� IN is the list of required inputs, which varies from an action to the other.

We can consider the example of thePick action: the aId is Pick , the des will be de�ned later, and

IN contains the agent performing the task, the object which needs to be picked, and the initial world

state wsinit . Note that among the various possible inputs an action can have, it will always need an

initial world state.

Dg contains every action description mapped with its identi�er aId, and when a query is made to

such a system, only theaId and the IN are needed to solve the query. The result of a query links this

initial world state to a �nal one wsf inal corresponding to the end con�guration of every entity in the

world. Note that the link between these two world states is actually oneor multiple trajectories, and,

as for any trajectory, we can retrieve every entity con�guration at any point of it, and by extension a

corresponding world state.

In order to explain the action description deswe �rst explain the expected result. The computation of

an action consists on �nding a geometric action solution (GAS) which is composed by a set of geometric

sub-action solutions (GSAS) and a costc. A GSAS is de�ned by he; t; gsasNextsi where:

� e is an entity.

� t is the trajectory that should be performed by the entity.

� gsasNexts is the list of all the GSAS that need this GSAS to be �nished in order to begin (we are

going to refer to it as geometric causal link).
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To synthesise, an action description is built by smaller sub-actiondescriptions, linked between them

by temporal operators, and each one of these sub-action descriptions is formulated using a logical linked

geometric pre-conditions, search spaces, and �nal constraints.

3.2.3.1 Example

Let's take as an example the action \Pick ". In this action, the agent needs to grab an object then

disengage itself from the support object1. As some de�nitions are still missing, this example is not

complete, its complete version is available in Subsection3.3.2.1.

The Geometric pre-conditions used for aPick are:

� HF reeh : no object in arm h end e�ector.

� Reachh(o): target object o is reachable by arm h.

� HF ull h(o): target object o is in arm h end e�ector.

The Search spaces are:

� F ix h(): the subset of Cspacewhere all entities are �xed, apart from the DoFs corresponding to

the arm h of the agent.

� F ix h(o): the subset of Cspacewhere all entities are �xed, apart from the DoFs corresponding to

the arm h of the agent, and the object o.

The Final constraints are:

� HApph : arm h end e�ector in approach position2.

� HGrasph : arm h end e�ector grasping the object.

� F ree(o): object o disengaged from its support.

The description of the action \Pick object O" is:

Pick (o) = 9h 2 f r; l g; (HF reeh&Reachh(o); F ix h() ; HApph) � (; ; F ix h() ; HGrasph);

� (HF ull h(o); F ix h(o); F ree(o)) (3.1)

Where r is for right arm and l for left arm. In this example we consider that there is only one agent

(with two arms) who will perform the action. The list of inputs of thi s action contains only the object

O and the initial world state wsinit .

This action solution is a GAS where there are three GSAS: approach, grasp, and disengage.

The rest of this section presents a number of de�nitions that complement the formalization.
1 the support is the object or obstacle the target object is placed on or attached to at wsinit
2An approach position for an end e�ector is a position from where th e end e�ector can reach a grasping position through

a direct, straight line in the Cartesian space with a short motion .
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3.2.3.2 Language discussion

The set of rules needed to write an action description can be considered as a language. This language,

although very simple, can be used to describe more and more complex actions.

The advantage of such a language is the simplicity of describing new actions: the pre-conditions are

symbolic facts that are intuitively understood with basic three dimensional logic. The search space and

�nal constraints are subsets of the agentsCspace that de�nes how the action should be done and what

is its goal: the search space de�nes globally what is going to move during the action, while the �nal

con�guration needs to de�ne a subset of this space where a number of properties should be true (such

as having the object in the hand or on the table).

The disadvantage of using such a language concerns the implementation: as each action has di�erent

pre-conditions, search spaces, and �nal constraints, each action will need a di�erent set of functions to test,

compute, and validate each part of the description. Although, as we work in amanipulation/navigation

domains, the functions used are quite close and can be reused (as seen later in this chapter) for other

actions too.

3.2.4 Facts & a�ordances

As seen in Subsection3.2.2 a world state is a precise geometric description of the model of the world

at a given time. In order to qualify this information and give it a symboli c meaning, to make it human

readable, and usable by other models, facts are computed in these worldstates. A fact is a link between

two entities: for example, \object A is on object B" or \Object A is in Agent's X hand". A fact can

also be de�ned as the relative con�guration between two entities: if the polygon formed by the bottom

of object A is included in the polygon formed by the top of object B, then \object A is on object B".

This relative con�guration can enable us to de�ne a space, related to a speci�c world state, where a fact

is always valued to true.

A fact can be represented under the form:f e1; type; e2; vg where type is the type and (if relevant)

the sub-type of the fact, e1 and e2 are the entities involved in the fact (in this order) and v can be

either a Boolean or a scalar, depending on thetype, for example f Obj1; is in ; Obj2; trueg means that

Obj1 is located insideObj2. The a�ordances are considered as facts here, as they are, following the

de�nition of Sahin et al. (2007) (cited in Section 3.1), links between an agent (an entity) and an object

(another entity). For example, \object o is reachable by agent X" or \object o is visible by agent

X" are example of a�ordances that can be useful in a HRI context. Figure3.2 shows examples of these

a�ordances, in addition to two other facts ( is on and is next to )

3.2.5 Additional de�nitions

In this subsection, a number of additional de�nitions linked to the previous formalization are presented.
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(a) f RedCube; is on ; GreyBook; true g The poly-
gon forming the bottom of RedCube is inside the
polygon forming the top surface of GreyBook

(b) f RedCube1; is next to ; RedCube2; true g
The minimal distance between RedCube1 and
RedCube2 is smaller than a given threshold

(c) f RedCube; is reachable by ; Human; true g
The inverse kinematics of the Human model en-
ables him to touch the RedCube

(d) f RedCube; is visible by ; Human; true g
The RedCubeis in the �eld of view of the Human

Figure 3.2: Various types of facts and a�ordances in di�erent situations.

3.2.5.1 Costs

The function f cost computes the cost of a GSAS based on its trajectories and its initial and �nal world

states. This computation can be related to the geometry only (such as thetrajectory length) or to a

more complex notions such as human-aware considerations. Figure3.3 shows an implemented example

were the cost changes depending on the human position (in this example, the robot navigates to the

table). It is computed based on the costs presented bySisbot et al. (2007b), and taking into account the

human-robot distance and the robot visibility by the human (going behind and close to the human is to

be avoided).

3.2.5.2 Alternatives

The space de�ned by the Final constraints for the �nal world state in each sub-action description is

usually not a singleton, therefore multiple solutions for the same sub-action description (and by transition,

the same GAS) may exist and are called alternatives. If the �nal constraints de�ne a singleton, there

is only one alternative, the one corresponding to the unique solution.In other words, alternatives are

unique, and cannot have the same �nal world state. Figure3.4 shows various alternatives for thePick

action, where the �nal constraints HGrasph and HApph have multiple solutions.
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(a) c = 3.7 (b) c = 6.4 (c) c = 8.9

Figure 3.3: Three scenarios where the robot navigate in a human environment. The path doesn't
change, but the cost does: it is low when the human is far away3.3(a), it gets higher when the human
comes closer3.3(b), and if he is not facing the path 3.3(c), it goes even higher.

(a) First alternative (b) Second alternative (c) Third alternative

Figure 3.4: Di�erent alternatives for the Pick action

3.2.5.3 A geometric plan

A geometric plan is a set of GAS linked between themselves through geometric causal links. These links

are created based on the initial and �nal world state of each action: if the �nal world state of a GAS g1

is the initial world state of a GAS g2, then, in the geometric plan, g1 is the previous ofg2.

The geometric plan can be a simple sequence of GAS or a set of GAS assembledas Directed Acyclic

Graph (for example in the case of multiple robot acting in parallel).

The GRP stores all the actions and their alternatives, and arrange them ina tree, where a path from

the root to the leave is a geometric plan.

3.2.5.4 Additional constraints

Constraints can be considered as spaces limiting the search spaces of anaction. To be more precise, in

our case, constraints will be applied to a sub-action description, either to the search space or to the �nal

constraints. In other terms, to add a constraint we can simply add to the targeted search space or �nal

constraints an intersection with the constraint space.

For example, thePick action can be constrained by:Hatoph the approach position should be strictly

above the object, which can be incorporated in the action description as:
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Pick (o) = 9h 2 f r; l g; (HF reeh&Reachh(O); F ix h() ; HApph \ Hatoph)) � (; ; F ix h() ; HGrasp h);

� (HF ull h ; F ix h(o); F ree(o)) (3.2)

As they de�ne spaces in speci�c world states, facts can also be used as constraints, by using the

intersection operator again. For example, for an action where the agentar needs to place objecto on the

table s, a constraint can be set asf o; is reachable by ; ar; true g. This constraint reduces the space

de�ned by the �nal constraints of the action description to itself in tersecting the space reachable by the

human.
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3.3 Framework

In order to put in practice this formalization, a framework was developed, able to compute GASs, while

maintaining a plan and computing human-aware costs for each action. This section de�nes in details this

framework by �rst presenting the choices and the simpli�cations made (Subsection3.3.1) then it presents

some examples of formal de�nitions available in the framework (Subsection 3.3.2). Next it shows three

di�erent algorithms able to �nd GASs based on the action description (Subsection 3.3.3), later it shows

the results of this framework concerning one of these algorithms and �nally, it states some possible future

works concerning the framework.

3.3.1 Simpli�cations and choices

We assume that in this framework the entities states are fully known(the con�gurations and the trajec-

tories are fully known and de�ned at every moment). The second assumption concerns the sequentiality:

only sequential actions are possible (no parallel actions) causing the plan to be a sequence and not a

Directed Acyclic Graph.

Some simpli�cations were also done to facilitate the computations: they add to the models presented

in the previous section a number of parts on which reasoning at symboliclevel is easier than reasoning

on the basic models.

Wrist manipulation joint (WMJ) Every agent is equipped with a WMJ. It is a virtual point �xed

{with a transformation matrix{ to the agent end e�ectors (the hands or the grippers) and is

considered roughly at its centre when it is closed as shown in Figure3.5. (Zacharias et al. (2006),

among others, call it Tool Centre Point)

Figure 3.5: This is the PR2 robot, a two-arm (r and l) mobile manipulator, the green and blue points
are respectively the WMJs of r and l end e�ectors.
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Attachments An attachment is a transformation matrix between the WMJ and an object. It enables

the system to keep track of the objects grasped by the agents and is stored in the world states. In

the rest of this manuscript, an object attached to the end e�ector of an agent arm means that this

transformation matrix is known.

Arms We consider that each agent is equipped with at least one arm, and at most two.When there

are two arms they are noted r and l for right and left. Let Hag be the set of agentag arms.

This is not a limitation of the system, adding robots with more arms is feasible, but for now, the

implementation handles only up to two arms.

In addition to these simpli�cations, the framework needs a number ofadditional information. This

information such as the possible grasps can be computed on-line using o�-the-shelf methods such as

Miller et al. (2003) for the grasps, but in this work, we have made the choice to pre-compute the

following information in order to speed up the on-line computation time:

Grasps The grasps used in the framework are precomputed for each di�erent ende�ector, in the form

of a transformation matrix between the object and the WMJ, in addition to a direction from where

the grasp is feasible. Figure3.6 shows 3 di�erent grasps for the grey book. If an object does not

have grasps, it is not considered as a manipulable object. LetGo� ee be the set of precomputed

grasps of objecto by end e�ector ee.

(a) (b) (c)

Figure 3.6: Di�erent grasps for the grey book (this is just a sample from the available grasps).

Supports An object support is a geometrical form attached to an object face (by a transformation

matrix) where other objects can be placed. An object can have multiplesupports (such as a shelf)

and when an object does not have any supports, it is not considered as a support object. Figure 3.7

shows di�erent supports on various tables. LetSo be the set of precomputed supports of objecto.

Stable con�gurations These are rotations of a manipulable object that enable a stable placementwhen

the object is on a horizontal support. An object without Stable con�guration s cannot be placed in

any ways (but can, for example, be handed over). Figure3.8 illustrate these con�gurations on the

grey book. Let Po be the set of precomputed Stable con�gurations of the objecto.
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Figure 3.7: The supports of the tables are represented in green, each table has one support, which is a
rectangle covering its top face. The objects on the tables are not support objects, hence, they don't have
any supports.

In addition to this, the de�nition of a GAS was extended to include a unique GAS identi�er ( gasNum)

that di�erentiates GASs from each other, and a unique alternative identi�er ( gasAltNum ) that di�eren-

tiates, within the same GAS, alternatives from each other. The GAS de�nition now contains the list of

all the GSAS linked together through geometric causal link, its cost, thegasNum, and the gasAltNum .

3.3.2 Actions description and examples

We have developed in this framework a number of actions. Some examplesare described in details in

this subsection. Some descriptions used in the following are commonfor di�erent actions (in the rest of

this chapter, ag refers to the agent,h refers to one of its arms, andh:ee refer to arm h end e�ector).

Geometric pre-conditions

� HF reeh(ag): no object in h:ee.

� HF ull h(ag; o): o is in h:ee.

� OReachh(ag; o): object o reachable by armh of ag while the robot base is �xed.

� EEOpenh(ag): h:ee is open.

� EEC loseh(ag): h:ee is closed.

Search spaces

� F ix h(ag): the subset ofCspacewhere all entities DoFs are �xed, apart from the DoFs of the

arm h of ag.

� UpF ix (ag): the subset of Cspacewhere only ag displacement DoFs are not �xed.

� OF ix h(ag; o): the subset ofCspacewhere all entities DoFs are �xed, apart from DoFs of the

arm h, and the DoFs of objecto which is attached to h:ee.
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(a) (b)

(c) (d)

Figure 3.8: (a), (b) and (c) are di�erent stable con�gurations for the grey book (this is just a sample
from the available stable con�gurations). (d) is not a stable con�guration.

� EEF ix h(ag): the subset of Cspacewhere all entities DoFs are �xed, apart from the DoFs of

h:ee.

Final constraints

� EEC h(ag): the subset of Cspace where h:ee is closed (This subset contains also the cases

when the end e�ector is not completely closed because it is grasping anobject).

� EEOh(ag): the subset of Cspacewhere h:ee is open.

The inputs are expressed between the parentheses while the non-de�ned variables (such as the arm

to use) are noted as subscripts. In the following descriptions, the inputs might be omitted when no

ambiguity is possible.

3.3.2.1 Pick

The Pick action description presented in Subsection3.2.3.1 was lacking some details de�ned in this

section and is fully rede�ned here. The �nal constraints needed are:
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� HApph� g(ag; o): the subset ofCspacewhere WMJ of h:ee is at a given distance3 from the position

de�ned by grasp g 2 Go� h:ee in the direction de�ned by g. This position is an approach position

in order to grasp the object.

� HGrasph� g(ag; o): the subset of Cspacewhere WMJ of h:ee is at the position de�ned by g (this

grasp must be the same as the one inHApph� g(ag; o)).

� OF ree(o): the subset ofCspacewhere the objecto is at a given distance3 above its initial support.

This position allows to disengage the objecto from the contact it has with its support.

The description of the action Pick is now:

Pick (ag; o) = 9h 2 Hag; 9g 2 Go� a:ee; (HF reeh(ag)& OReachh(ag; o); F ix h(ag); HApph� g(ag; o))

� (; ; F ix h(ag); HGrasph� g(ag; o)) � (; ; EEF ix h(ag); EEC h(ag))

� (HF ull h(ag; o); OF ix h(ag; o); OF ree(o)) (3.3)

The input list of a Pick contains also the initial world state (as this input is mandatory for every

action, it will be omitted in the rest of the action descriptions), th e manipulable objecto and the agent

ag performing the action. The di�erent parts of the description are explained in the followings and

illustrated in Figure 3.9:

� 9 h 2 Hag; 9g 2 Go� a:ee means that at least one pair (arm, grasp) exists where the next parts of the

description are ful�lled.

� (HF reeh(ag)& OReachh(ag; o); F ix h(ag); HApph� g(ag; o)) is the approaching sub-action descrip-

tion. The corresponding trajectory, should bring a free end e�ector from its initial position to a

position where the object can be reached easily (a given distance3 away from the object), Fig-

ure 3.9(a)4.

� (; ; F ix h(ag); HGrasph� g(ag; o)) is the engaging sub-action description. The corresponding tra-

jectory should be a simple straight line of the end e�ector from the previous position to a position

where closing it will result on grasping the object, Figure3.9(b).

� (; ; EEF ix h(ag); EEC h(ag)) is the grasping sub-action description. The corresponding trajectory

closes the end e�ector to grasp the object, Figure3.9(c).

� (HF ull h(ag; o); OF ix h(ag; o); OF ree(o)) is the disengaging sub-action description. The corre-

sponding trajectory disengage the object from the contact it has with its support, Figure 3.9(d).

3 In our implementation and for the scenarios we are using, this di stance is set to 10 cm.
4The �gures (and the ones after) are generated in simulation within the environment provided by move3d Sim�eon et al.

(2001).
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(a) Approach (b) Engage

(c) Grasp (d) Disengage

Figure 3.9: The di�erent GSAS of Pick , a trace of the trajectories is shown.

3.3.2.2 Place

In the Place action, the agent needs to approach the support with the object Figure3.10(a), Place it

Figure 3.10(b), release it Figure3.10(c), and then extracts its arm Figure 3.10(d). To describe thePlace

action, one more pre-condition is needed:SReachh(ag; so), support so is reachable byh, and some more

�nal constraints:

� HAppr(x;y )� p(ag; o; so): the subset of Cspacewhere o is at a given distance3 above the support so

at coordinate (x,y) {relative to the support{ with a stable con�guration p 2 Po.

� HRel(x;y )� p(ag; o; so): the subset of Cspacewhere o is on the support so at coordinate (x,y) with

a stable con�guration p 2 Po.

� EEF reeh(ag; o): the subset of Cspacewhere WMJ of h:ee is at a given distance3 away from o.

The description of the action Place is then:

Place (ag; o; so) = 9h 2 Hag; 9s 2 Sso; 9(x; y) 2 s;9p 2 Po;

(HF ull h(ag; o)& SReachh(ag; so); OF ix h(ag; o); HAppr(x;y )� p(ag; o; so))

� (; ; OF ix h(ag; o); HRel(x;y )� p(ag; o; so)) � (; ; EEF ix h(ag); EEOh(ag))

� (HF reeh(ag); F ix h(ag); EEF reeh(ag; o)) (3.4)
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The inputs for the Place are the agentag, the manipulable object o, and the support object so. The

framework chooses which support to use in the support object (in thecase of more than one support),

where exactly (x; y) to Place the manipulable object and which stable con�guration p to use.

(a) Approach (b) Place

(c) release (d) Extract

Figure 3.10: The di�erent GSAS of the Place action, a trace of the trajectories is shown.

3.3.2.3 Stack

The Stack action is very close to thePlace action, the only di�erence is that in the Stack action the

exact position where to place the object is given as input (under the form of the support, with the

position at its centre (cx , cy)):

Stack (ag; o; so) = 9h 2 Hag; 9p 2 Po;

(HF ull h(ag; o)& SReachh(ag; so); OF ix h(ag; o); HAppr(cx ;cy )� p(ag; o; so))

� (; ; OF ix h(ag; o); HRel(cx ;cy )� p(ag; o; so)) � (; ; EEF ix h(ag); EEOh(ag))

� (HF reeh(ag); F ix h(ag); EEF reeh(ag; o)) (3.5)

Figure 3.11 shows an example of aStack action.
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(a) Approach (b) Support approach

(c) Release (d) Extract

Figure 3.11: The di�erent GSAS of the Place action, a trace of the trajectories is shown.

3.3.2.4 NavigateTo

In the NavigateTo action, the agent needs to go into a navigation con�guration then navigates to the

target. One speci�c search space is needed:UpperBody(ag): the subset of Cspacewhere all entities

are �xed apart from the agent upper body5 and the object attached to his end e�ectors. The speci�c

�nal constraints of this action are: NavPos(ag), the subset ofCspacewhere the agent is in a navigation

con�guration, and OnT arget(ag; e): the subset of Cspacewhere the robot reached the target entity e.

Reaching a target entity depends on the entity type, if it is an agent, the agents should be able to reach

each other extended arms, if the entity is an object or a support, it should be reachable by the agent.

Its description is:

NavigateTo (ag; e) = ( ; ; UpperBody(ag); NavPos(ag)) � (; ; UpF ix (ag); OnT arget(ag; e)) (3.6)

The input is a 2d zone, which can be speci�ed by providing an entity: the zone will be the one

immediately around this entity. Figure 3.12 shows an example of aNavigateTo action where a robot

goes to a table.

5By upper body we mean all the DoFs not needed for the navigation
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(a) Initial con�guration (b) Navigation con�guration (c) Target con�guration

Figure 3.12: The di�erent steps of the NavigateTo action, the initial and �nal world state of each
GSAS is shown (the blue line is the robot navigation path).

3.3.2.5 Handover

The Handover as de�ned in the previous chapter is complex, as it involves two agents. We are going to

di�erentiate between them as ar for the receiver andag for the giver. Two speci�c �nal constraints for

this action are: DistT arget h� i (ar; ag) the subset of Cspacewhere the distance between the two agents

is smaller than the sum ofar arm h length and ag arm i length, and AgentReachh� i (ar; ag): the subset

of Cspacewhere h:ee can reachb:ee. The action description is:

Handover (ag; ar; o) = 9(xr ; yr ; � r ) 2 (R; R; [� �; � ]); 9(xg; yg; � g) 2 (R; R; [� �; � ])9h 2 Har ; 9i 2 Hag

((HF reeh(ar ); UpperBody(ar ); NavPos(ar ))k(HF ull i (ag); UpperBody(ag); NavPos(ag)))

� (; ; UpF ix (ar ) [ UpF ix (ag); DistT arget h� i (ar; ag))

� (; ; F ix h(ar ) [ OF ix i (ag; o); AgentReachh� i (ar; ag)) (3.7)

The inputs are the agents and the object to exchange. This descriptionis the one used in Section2.3 to

�nd handover positions, even if it was done outside of this framework, it is still covered by the description.

The �rst part, 9(xr ; yr ; � r ) 2 (R; R; [� �; � ]); 9(xg; yg; � g) 2 (R; R; [� �; � ])9H 2 Har ; 9i 2 Hag means that

at least one pair (giver position, receiver position) exists where theagents, after moving to a navigation po-

sition (( HF reeh(ar ); UpperBody(ar ); NavPos(ar ))k(HF ull i (ag); UpperBody(ag); NavPos(ag))), can

navigate to (; ; UpF ix (ar ) [ UpF ix (ag); DistT arget h� i (ar; ag)), and that at least one pair (giver arm,

receiver arm) exists where in these positions, the agents arms can reach each others one (; ; F ix h(ar ) [

OF ix i (ag); AgentReachh� i (ar; ag)).

3.3.2.6 PlaceReachable

Following the formalization, we can add human-aware actions, for example,PlaceReachable is an action

where the agentag holding the object place the object in a place which is reachable by a target agentara.

Let's consider the �nal constraints AReachO(at; o), based on the factf o; is reachable by ; ar; true g,

it de�nes the subset of Cspacewhere the object o is reachable by agentar . The action description is
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then:

PlaceReachable (ag; ar; o; so) = 9h 2 Hag; 9s 2 Sso; 9(x; y) 2 s;9p 2 Po;

(HF ull h(ag; o)& SReachh(ag; so); OF ix h(ag; o); HAppr(x;y )� p(ag; o; so) [ AReachO(ar; o))

� (; ; OF ix h(ag; o); HRel(x;y )� p(ag; o; so)) � (; ; EEF ix h(ag); EEOh(ag))

� (HF reeh(ag); F ix h(ag); EEF reeh(ag; o)) (3.8)

This description is the same as the Description3.4 with the additional AReachO(ar ) as well as the

inputs with an additional target agent ar . Figure 3.13 shows an example of this action.

(a) Initial con�guration (b) Object is reachable to the human

Figure 3.13: The initial and �nal world state is shown for a PlaceReachable action. Note that the
object is reachable to the human in the second �gure.

3.3.2.7 More possibilities

These actions are examples of what the framework o�ers, but do not show allits possibilities. For example,

the Pick and Place actions are designed for a mobile manipulator using one arm. It is possibleto extend

it to multiple arms manipulation or to other kinds of robots such as humanoids robots (Figure 3.14shows

an example of a humanoid robotROMEO (http://projetromeo.com/en ) performing a Pick ). In this

particular context, one of the transformations we have made was switching from F ix h to UpperBody6

to account for the stability constraint (if a humanoid robot moves his arm only, and extends it too

much, there is a risk of falling). The work concerning the humanoid robots was done in cooperation with

Renaud Viry. In some cases, the inputs list can also be changed, withoutchanging the description of

the action: for example, for a Place , one can specify the object to place, an arm (retrieving the object

thanks to the attachments), or both (checking if the attached object is the same as the one speci�ed).

The support, the stable con�guration, or even the exact position on the support can also be given as

inputs to a Place action. When additional inputs are given to the actions, the framework replaces the

search it would do when nothing is speci�ed by the direct selection of the inputs.

6Reminder: UpperBody means that all entities are �xed apart from the agent DoFs which are n ot needed for the
navigation.
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(a) Initial world state (b) Grasping the object

(c) Lifting the object

Figure 3.14: The di�erent GSAS of the Pick action, performed by a humanoid robot. Note that all
the upper body is moving when performing the action to keep the robot stability.

Some inputs can also be omitted, in which case the system needs to consider them as additional

variable to look for: in the Place , omitting the support object will result on checking the nearest

support object to the agent and use it.

3.3.3 The proposed Algorithms

This subsection presents di�erent algorithms able to �nd solutions for these actions. The general idea of

these algorithms is to �nd the initial and �nal world states of the GSAS and then to compute the corre-

sponding trajectories. In order to �nd these world states, the simpli�cations and information described

in 3.3.1are used in addition to the inverse kinematic (IK) computation. For example, when computing a

Pick , a number of grasps are tested to �nd a feasible one (collision free). Then, the agent con�guration

is computed (IK) resulting on a �nal world state. For the Place , a number of placements on the table
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are tested with various stable con�gurations, as shown in Figure3.15. When one of them is collision free,

the �nal con�guration is computed based on the grasp used to attach the object to the end e�ector in

the initial world state of the action.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Various placements using di�erent stable con�guration of the object Grey book. Some of
those (c and d) are in collision.

The most basic algorithm is to �nd a solution for each sub-action description separately, and then

to combine them with the geometric causal links (Subsection3.3.3.1). The second algorithm consists

on �nding the �nal world state of every sub-action description (using inverse kinematics for example),

and then computing the motion plans between the computed world states(Subsection3.3.3.2). The last

algorithm consists on �nding all the possible �nal world states and then choose between them the best

one (based on human aware costs) and compute the motion plan for it (Subsection 3.3.3.3).

3.3.3.1 Separated sub-action descriptions algorithm

In this version, the Algorithm 3 processes the sub-action descriptions one by one until �nding a solution

for all of them. The �rst lines of the algorithm initialize the di�eren t variables needed later, such as

CST D (Line 3) which is the current sub-action description, initialized to th e �rst sub-action described

in the action. Then, the algorithm enters a loop (from Line 8 to Line 30) where it �rst retrieves the

performing agent7 then, it checks if the conditions speci�ed by CST D are respected in the current

world state currW S (Line 10). In the case where the conditions are not met, the algorithm sets the

current variable to the one from the previous sub-action description(Line 11) and if no previous sub-

action description is found, it breaks out of the loop and fails to �nd a GAS for this action. When

the conditions are met, the algorithm enters another loop (Line 14 to Line 20) where it searches the

7 In the current framework, as speci�ed above, there is only one performi ng agent per GSAS, selected in the description
(Line 9)
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Algorithm 3 Resolving an action based on the algorithm separated sub-action descriptions
1: function ComputeAction (aId,IN )
2: descr  GetActionDescription (aId) . retrieving the action description from Dg

3: CST D  GetFirstSubActionDescr (descr) . CSTD is the current sub-action description
4: currW S  IN:ws init

5: prevST  ;
6: Clear (STList ) . ST List is the GAS
7: solLef t  true
8: while CST D 6= ; do
9: a  getAgent (CST D) . This is the performing agent (needed in every GSAS)

10: if not checkCond (CST D:conditions , currW S ) then
11: (CST D, prevST, currW S )  GoToPreviousST (CST D,descr,ST List )
12: continue
13: end if
14: while solLef t > 0 and traj = ; do
15: (wstmp ; solLef t )  FindWS (currW S , CST D:searchSpaces \

CST D:f inalConstraints , IN)
16: if wstmp = ; then
17: continue
18: end if
19: traj  ComputeTraj (currW S , wstmp , CST D:searchSpaces)
20: end while
21: if traj = ; then
22: (CST D, prevST, currW S )  GoToPreviousST (CST D,descr,ST List )
23: continue
24: end if
25: tmpST  (a; traj; ; )
26: SetNextSubAction (prevST, tmpST)
27: AddToList (STList , tmpST)
28: prevST  tmpST ; currW S  wstmp

29: CST D  getNextSubActionDescr (descr,CST D)
30: end while
31: return (ST List , ComputeCost (ST List ), CreateNewGasNum , CreateNewGasAltNum )
32: end function

solution for this sub-action description: it tries to �nd the agents an d objects con�gurations (Line 15

with F indW S function which will be detailed later in this subsection) and by extension the GSAS �nal

world state wstmp . Then, it computes a trajectory to link currW S and wstmp . If this trajectory is found,

the algorithm breaks out of the deepest loop, and continues by creating the new GSAS related to this

trajectory (Line 25), then adding the geometric causal link between this GSAS and its predecessor in

descr (Line 26) and �nally store it in the GSAS list (Line 27). Before the end of the loop, the current

sub-action description CST D is updated with the next one in descr (Line 29). The algorithm escapes

the loop when there is no more sub-action descriptions and returns the GAS, represented by the GSAS

list, its cost and the unique identi�ers for the GAS and the alternati ve {those are computed at the end

of the algorithm only if a solution was found, otherwise their value isnan{.

The F indW S function in Line 15 of Algorithm 3 is a function computing, based on the search space

and the �nal constraints of a sub-action description, the �nal world stat e wstmp for said description. It

uses inverse kinematic coupled with the WMJ of the arms to �nd con�gurations corresponding to the
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Algorithm 4 The procedure to apply before looping in Algorithm 3
1: function GoToPreviousST (CST D,descr,ST List )
2: CST D  getPreviousSubActionDescr (descr,CST D)
3: RemoveLast (ST List )
4: prevST  LastST (ST List )
5: currW S  GetEndWS (prevST)
6: return (CST D, prevST, currW S )
7: end function

description. This function, as it is action dependent usually needs to be implemented separately for each

action. As said before in Subsection3.2.5.2, the possible solutions available in the search space and the

�nal constraints are not unique, but can be false solutions: even if a solution is found, the trajectory

might not be feasible. F indW S returns in addition to the �nal con�gurations it found (under the form

of a world state) an integer solLef t indicating the number of solution left in the space de�ned by the

search space and the �nal constraints. Note that this exploration is storedand each time F indW S is

called for the same sub-action description, the already tested solutions are removed from this space. This

is true even when an alternative is computed, the information stored in this function are retrieved from

all the previous alternatives already computed. The number of possible solution in the search spaces

can be in�nite (continuous spaces), in which cases, we set a numerical limit for the possible number of

solutions (e.g. 200 for thePlace action).

3.3.3.2 Con�gurations �rst algorithm

The di�erence between this algorithm and the previous one is about when to compute the motion plan:

in the previous one, it was computed for each sub-action description, in this one, the motion plan is left

to the end, until all the world states are found.

These di�erences are shown in Algorithm5. Its main loop (Line 3 to Line 31) consists of two main

steps:

Computing the world state list (Line 7 to Line 18) this step consists on looping over the sequence

of sub-action descriptions, and for each one, checking the conditions (Line 8) and, if respected,

computing the corresponding world state (Line 10). This world state is then used to check the

pre-conditions for computing the next GSAS and to compute the next world state, and so on, until

all the start and �nal world states of every GSAS is computed and stored inW SList (Line 16)

Computing the motion plans (Line 20 to 30) As all the world states are computed and the corre-

sponding conditions checked, the second step consists on linking them by computing the trajectories.

For each start and �nal world state computed in the previous step and stored in W SList the algo-

rithm will compute the trajectory (Line 22) and will create the corresponding GSAS and add it to

the result. As soon as one trajectory cannot be computed (Line23), the solution cannot be found,

and the algorithm loops back to the �rst step.

The algorithm breaks out of the main loop on two conditions: (1) a solution is found, (2) no more

solutions are available in at least oneF indW S (Line 10).
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Algorithm 5 Resolving an action based on the algorithm with con�guration �rst
1: function ComputeActionConfs (aId,IN )
2: descr  GetActionDescription (aId)
3: while SolutionNotFound and solLef t > 0 do
4: Clear (ST List ) ; Clear (W SList )
5: CST D  GetFirstSubActionDescr (descr) ; currW S  IN:ws init

6: AddToList (W SList , currW S )
7: while CST D 6= ; do
8: if checkCond (CST D:conditions , currW S ) then
9: (wstmp ; solLef t )  

10: FindWS (currW S , CST D:searchSpaces\ CST D:f inalConstraints , IN )
11: end if
12: if not checkCond (CST D:conditions , currW S ) or wstmp = ; then
13: (CST D, prevST, currW S )  GoToPreviousST (CST D,descr,ST List )
14: continue
15: end if
16: AddToList (W SList , [currW S; ws tmp ; CST D])
17: CST D  getNextSubActionDescr (descr,CST D) ; currW S  wstmp

18: end while
19: prevST  ;
20: for i  0; i < Size(W SList ); i + + do
21: a  getAgent (W SList [i ][2])
22: traj  ComputeTraj (W SList [i ][0], W SList [i ][1], W SList [i ][2])
23: if traj = ; then
24: break
25: end if
26: tmpST  (a; traj; ; )
27: SetNextSubAction (prevST, tmpST)
28: AddToList (STList , tmpST)
29: prevST  tmpST
30: end for
31: end while
32: return (STList , ComputeCost (ST List ), CreateNewGasNum , CreateNewGasAltNum )
33: end function

3.3.3.3 Integration of Human aware constraint

This third algorithm di�ers from the two previous ones by taking expl icitly into account the human: in

order to achieve this, the algorithm computes, as the previous one, thesequence of world states, then

compute the trajectories. The di�erence lies in the following, the algorithm computes all the world states

corresponding to every available solution inF indW S and then, sorts them according to a human-aware

costs, and, �nally, computes the trajectories for the best one (if it fails, it computes the trajectories for

the second best one, and so on)

This algorithm can be divided into three main parts:

Computing the world states (Line 3 to Line 20) In this part, the algorithm computes all the pos-

sible sequences of world states. The limit is the one �xed bysolLef t computed by F indW S

(Line 10).
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Algorithm 6 Resolving an action based on the algorithm computing costs
1: function ComputeActionCosts (aId,IN )
2: descr  GetActionDescription (aId)
3: while solLef t > 0 do
4: Clear (W SList )
5: CST D  GetFirstSubActionDescr (descr) ; currW S  IN:ws init

6: AddToList (W SList , currW S )
7: while CST D 6= ; and solLef t > 0 do
8: if checkCond (CST D:conditions , currW S ) then
9: (wstmp ; solLef t )  

10: FindWS (currW S , CST D:searchSpaces\ CST D:f inalConstraints , IN )
11: end if
12: if not checkCond (CST D:conditions , currW S ) or wstmp = ; then
13: (CST D, prevST, currW S )  GoToPreviousST (CST D,descr,ST List )
14: continue
15: end if
16: AddToList (W SList , [currW S; ws tmp ; CST D])
17: CST D  getNextSubActionDescr (descr,CST D) ; currW S  wstmp

18: end while
19: AddToList (GlobalW SList , W SList )
20: end while
21: Sortlist (GlobalW SList )
22: . this sorting is done based on cost computing for con�gurations in world states
23: for j  0; j < Size(GlobalW SList ); j + + do
24: CWSList  GlobalW SList [j ] ; Clear (STList ) ; prevST  ;
25: for i  0; i < Size(CWSList ); i + + do
26: a  getAgent (CWSList [i ][2])
27: traj  ComputeTraj (CW SList [i ][0], CWSList [i ][1], CWSList [i ][2])
28: if traj = ; then
29: break
30: end if
31: tmpST  (a; traj; ; )
32: SetNextSubAction (prevST, tmpST)
33: AddToList (ST List , tmpST)
34: prevST  tmpST
35: end for
36: if AllTrajsAreFound then
37: break;
38: end if
39: end for
40: return (STList , ComputeCost (ST List ), CreateNewGasNum , CreateNewGasAltNum )
41: end function

Sorting the sequences of world states (Line 21) Once all the sequences of world states computed,

the algorithm sort them according to a cost. This cost is computed based onvarious parameters

related to the human safety and comfort depicted in the next subsection.

Computing the trajectories (Line 23 to Line 39) In this part, the algorithm tries to �nd the tra-

jectories for the �rst sequence in the sorted list of possible sequencesGlobalW SList , and if it fails,

it tests the second best sequence, then the third, and so on, until �nding a solution or testing all

the sequences.
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3.3.4 Additional implementations

In addition to the main algorithm. Some other implementations has been done:

3.3.4.1 Facts

The function GetFacts (ws) can be called upon a world state (ws) and computes the facts that hold in

it. The available facts are as follows:

Is On �rst object is over the second object

Is In �rst object is inside the second object

Is Next To both objects are next to each other

Is bigger than �rst object is bigger than the second one (Is smaller is also available)

Is reachable by object can be reached by the agent

Is visible by object is in the �eld of vision of the agent

This implementation is based on previous works on this domain, such asWarnier et al. (2012) and

Sisbot et al. (2011).

3.3.4.2 Cost

The cost function used to sort the world state sequence list is relevant only when the performing agent

is a robot and there are humans in the environment. It is linked, as in Subsection 2.3.1.3, to three

parameters: thedistance (this part of the cost is inversely related to the smallest distancebetween the

robot and every human in the environment) the visibility of the robot by the humans where we test if

some part of the robot is not hidden to the humans, and themusculoskeletal e�ort (when needed) related

to the Euclidean distance between the initial and �nal con�gurations d uring a GSAS, and the potential

energy in the �nal world state Marler et al. (2005). These three parameters enable us to compute the

human-aware GSAS and by extension human-aware GAS.

3.3.4.3 Alternatives

The framework also proposes the possibility of calling the functionFindAlternative (gasNum) which

retrieves, from the stored GASs, the corresponding one (with the same gasNum), the action aId and the

inputs IN , and call again the search algorithm. As said before, the functionFindWS stores the di�erent

failed and succeeded �nal world states it computed for each GSAS and proposes a new one each time it

is called again.
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3.3.4.4 Additional Constraints

As the constraints can be directly added in the action de�nition (as presented in Subsection3.2.5.4), they

are actually solved by the algorithms as it is. They are included in the inputs IN of the action under the

form of facts (as said before, facts de�ne search spaces that can be used inan action descriptions) in addi-

tion to their position in the action description. For example, when using a PlaceReachable (ag,ar,o,so)

action, we can add as a constraint the fact:f o; is visible by ; ar; true g when �nding the object place-

ment. This constraint will force the algorithm to �nd only objects posi tions that are visible by the agent

ar .

3.3.4.5 Geometric plan

The input world state in the search algorithms can be replaced by a reference to a previously computed

GAS (the reference must contain bothgasNum and gasAltNum ), in which case,wsinit can be retrieved

from the corresponding GAS as it �nal world state, and a geometric causal link is created between the

referenced GAS and the computed one (in this order). This is how thegeometric plans are stored.

In order to compute geometric plans, we developed an algorithm able to compute them based on a

list of actions and an initial world state. This algorithm is very simple: for each action in the list, it

computes the GAS. If the computation succeeds, it computes the nextaction GAS based on the computed

�nal world state, otherwise, it backtracks to the previous action it com puted, �nds an alternative for

this action and proceeds to compute the failed action GAS again with the new world state obtained. If,

during a backtrack, there is no more alternatives to the action, the algorithm backtracks one more step.

It repeats these steps until it �nds a geometric plan or until all the alternatives have been tried and have

failed. Figure 3.16 shows a plan where the robot performs three successivePick and Place on three

objects. This plan was written under the form represented in Algorithm 7 as a set of actions to perform.

Algorithm 7 Resolving an action based on the algorithm computing costs
1: SetInitialWorldState
2: Pick (r; RED CUBE )
3: Place (r; RED CUBE )
4: Pick (r; GREY BOOK )
5: Place (r; GREY BOOK )
6: Pick (r; ORANGE BOX )
7: Place (r; ORANGE BOX )

3.3.5 Results and discussion

This subsection presents, through Table3.1, the results obtained when running the second algorithm

(Subsection3.3.3.2) on the action Pick , Place and PlaceReachable as described in Subsection3.3.2.

These results have been evaluated in a scenario where a PR2 robot needs to Pick (or Place , or Plac-

eReachable to a human in the other side of the table) a green bottle, with one of its two 7 DoFs arms,

on a table in front of him. Some initial world states are depicted in Figure 3.17 (the robot arm and the

bottles initial con�guration have been randomized, the �gure shows only some examples of this initial
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in the right side and the mean calls number to the motion planner ist 2 with a variance t 2. During

the motion planning, most of the examples were very fast to compute (as shown by the low averages of

the computation times) but in very few examples, the motion planning took a long time, making the

variance and the standard deviation very high. One particular number to look for in the table is the

variance of the number of solutions explored in the case of aPlace : this high number can be explained

by the number of variable the Place action needs to instantiate in order to �nd a solution.

(a) (b)

(c) (d)

Figure 3.17: Various initial world state where the Pick has been evaluated

The framework can also handle multiple agents at the same time, performing di�erent actions (in

sequence) using di�erent motion planners. Figure3.18shows an environment where a PR2 robot and an

unmanned aerial vehicle (UAV) cooperate to bring an object to its �nal position: in the initial scenario,

the UAV cannot Pick the bar as there is an object obstructing it path, the PR2 removes thatobject in

order to let the UAV perform a Pick . One additional feature available in this framework is the possibility

to use di�erent motion planners and/or di�erent type of motions depend ing on the tasks. Here, The PR2

uses classical linear motion primitives de�ned in its Cspacewhile the UAV uses kinodynamic motion

primitives de�ned in its state space (i.e. integrating speed and acceleration) Boeuf et al. (2014).

In addition to that, it is also able to handle geometric plans (Subsection 3.3.4.5), to compute actions

alternatives (Subsection 3.2.5.2) and facts (Subsection3.2.4), and to add these facts as constraints to

any action (Subsection3.2.5.4).

This framework has been implemented on the PR2 robot using the architecture explained in Fiore

et al. (2016). In this architecture, a supervision module communicates witha task planner (HATP) and
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for one action without motion plan with motion plan

Pick average variance stand dev average variance stand dev
Time 0.026 0.0001 0.0108 2.8553 17.1426 4.1403
Sol tests 2.525 3.6193 1.9024 8.2130 124.558 11.1606
Inverse kinematic 4.61 4.5379 2.1302 11.4556 128.899 11.3534
Motion plan - - - 2.0532 2.1687 1.4726
Place
Time 0.0201 0.0007 0.0270 2.7153 22.8922 4.7845
Sol tests 4.4522 19.7352 4.4424 18.5033 1166.78 34.1582
Inverse kinematic 4.9296 7.3216 2.7058 11.7219 217.101 14.7344
Motion plan - - - 2.0463 2.4548 1.5667
PlaceReachable
Time 0.0477 0.0016 0.0403 3.0798 47.1862 6.8692
Sol tests 5.5577 78.4879 8.8593 12.2692 236.735 15.3862
Inverse kinematic 5.1658 10.5303 3.2450 9.4359 57.8741 7.6075
Motion plan - - - 1.8846 1.8969 1.3773

Table 3.1: Time means the computation time, Sol Tests means the number of solutions explored (by how
much solLef t decreased), Inverse kinematic means the number of inverse kinematic called, and Motion
plan means the number of calls to the motion planner. These averages, variance and standard deviation
(stand dev) are computed in over 150 successful action computation

obtains a plan (which is computed based on the information available in the knowledge base). This plan

is then used to ask, step by step, the human-aware motion and manipulation planners module to compute

the actions. In order to compute these actions, this module uses theworld state provided by SPARK

(the situation assessment moduleSisbot et al. (2011)) and the framework we developed to compute a

GAS. The trajectories computed in this GAS are then sent to the sensorimotor layer to execute them.

The robot can now Pick , Place , PlaceReachable and Stack with real objects. Figure 3.19 shows

it during a session of Pick and PlaceReachable (the video is available here: https://youtu.be/

85KiC35qkPE).

This framework enables us to solve a number of problems but is still limited, for example, it cannot

compute anything else then the action (or sequence of action) it has been commanded to compute: which

can be problematic in some cases, for instance, if the objectg obstructs the access to the objecto the

agent needs toPick , the framework will fail to �nd a solution as it would need �rst to remo ve or push

the object g to accesso. This limitation in particular is a choice: as we are going to see in the next

chapter the choice of action is let to the task planner, which can take into account more parameters.
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(a) Initial scenario (b) Pr2 Pick and place obstructing object

(c) UAV Pick the bar (d) UAV places the bar

Figure 3.18: A geometric plan where the PR2 and the drone cooperate to bring the bar to its �nal
location (it is planned in sequence)
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(a) Initial scenario (b) Pick approach

(c) Pick grasp (d) Pick extract

(e) Place approach (f) Place release

(g) Place extract

Figure 3.19: An example of the framework running on the PR2 robot and executing aPick and Place
sequence.
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3.4 Future work

This work can be enhanced in a number of ways, here are some of them:

Graph reuse each query to the motion planner (ComputeT raj in the algorithms) is done in the frame-

work as an RRT query (LaValle (1998)). One way to enhance the motion planning search is to

reuse the RRT graph (or any other motion planning graph). Some approachesFerguson et al.

(2006), Phillips et al. (2013) use one graph and make it evolve with time and queries but it does

not exactly match our needs as they usually replan in the same or nearly the same environments

as the previous queries. In this framework, we might need to replan in the nearly (or exactly) the

same scenarios, but it also might happen for two consecutive action computation to be in totally

di�erent environment. The idea of reusing graphs here is to �rst store each computed graph and

link it to an action, and then, when computing the motion plan for a new action, try to �nd {based

on information provided by the framework, such as the performing agent,the object manipulated,

the action type, and so on{ the closest action to the new one, and use the stored graph(s) linked

to this closest action.

Search space exploration The exploration in the search space is done randomly but can be enhanced

to take the geometry into account: for example, when placing an object on atable, if an object

placement fails because there is no inverse kinematic possible inthat case then testing an object

position close to this one will probably fail too. The idea is to explorethe space in the most e�cient

way to cover it as fast as possible.

Combining actions based on the formalism, it is possible to concatenate actions and solve them with

the same (or nearly) algorithms as the one presented in Subsection3.3.3

Multi-robot & parallelism as presented before, the framework can handle only one robot moving

at the time, although the formalism enables us to have multi-robot and parallelism by using the

geometric causal links. The framework can be extended to take this into account.
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3.5 Contribution to the geometric planning and reasoning in a nut-

shell

This chapter contains two main contributions:

Geometric actions formalization The actions are described as a sequence of sub-action descriptions,

linked to each other with geometric causal links. The actions can have alternatives and can be

linked between themselves to form a geometric plan.

A framework using this formalization The framework proposes di�erent algorithms enabling the

use of the previous formalization, while integrating a human-aware parameter. It shows also the

results obtained by implementing one of these algorithms on a simulation and a real robot.
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4.1 Introduction

In the previous chapter, a geometric planner able to plan fetch and carry actions for an autonomous

robot was presented. The scope of this planner enables it to �nd solutions for simple problems such as

to pick an object or to place it on a table. For more complex scenarios wherethe robot would need to

perform a number of actions, which order is not known in advance, this planner is clearly not enough. On

another hand, task planning methods enable a system to plan ahead for multiple actions and sequence

of actions. The idea of this chapter is to combine these two planning methods into one by using both

planners strengths: geometric planning strength lies in its capability of handling the continuous 3D space

where humans and robots coexist, while taking into account their respective positions and preferences,

the objects, and the environment in general, but it uses very specialized algorithms to �nd solutions in

speci�c cases. Task planning strength lies on its ability to handle large discrete domains with a great

semantic variety and to �nd an optimal way to achieve a given goal in these domains, but it lacks the

speci�c knowledge to deal with the geometric description of the world.

The usual approach consisted on �rst computing a symbolic plan, and then, testing its feasibility at

geometric level. This approach rises various issues, such as the rami�cation, the computation time, or the

completeness. The rami�cation problem occurs when the e�ects of an action are unknown or only partially

known, which is the case when performing actions in the real world: for example, moving an object might

result in a chain of actions (removing an object from a pile of objects might result on the whole pile to

collapse) which was not expected. This rami�cation leads the geometriclevel computation to often fail,

leading to a higher computation time (the rami�cation problem is more detailed in Subsection 4.3.5).

It also a�ects the completeness, as some geometric choices might not be tested, before switching to a

di�erent symbolic plan. In the rest of this chapter, we will be ref erring to the geometric level as the

geometric reasoner, or the geometric planner, as it reasons about the geometric space and is able to re�ne

the symbolic plan into trajectories.

This work was held in cooperation with Lavindra De Silva and Rapha•el Lallement, and was based

on previous work, such asDe Silva et al. (2013). Part of this work was published in De Silva et al.

(2014) and the other part is published in Gharbi et al. (2015a). This chapter is structured as follows:

Section 4.2 presents the actual state of the art in this �eld, Section 4.3 depicts a formalization of the

problem alongside an algorithm to solve it, Section4.4 shows di�erent possible enhancements enabling

a computation time speed up, Section4.5 discusses our solutions and enhancements and proposes clues

on the future possibilities, and �nally, Section 4.6 summarizes the contributions of this chapter.



Chapter 4. SGP 103

4.2 State of the art

Combining task and motion planning has been of great interest in a numberof studies during the few last

decades. One of the �rst works concerning this particular topic was done in aSyMov by Cambon et al.

(2003) and extended later in Gravot et al. (2005), where the authors essentially propose a principled way

to link the two planners thanks to a geometric level able to tackle the so-called \manipulation planning

problem" Choset (1991) and that allows to explicitly take into account the topological changes occurring

in the con�guration space, when a robot grabs or releases an object. aSyMov provided a well-founded

translation of pick and place actions (and similar actions) into 'transit' and 'transfer' motion planning

requests even in multi-object and multi-robot contexts.

In this section, we �rst identify the various names given to this problem and then we propose a

categorisation of the work done in this �eld, using and extending the analysis presented byErdem et al.

(2016).

The problem was given various names and appellations, such as hybrid planning Guitton and Farges

(2009b), CPMP Choi and Amir (2009) for combining planning and motion planning or TAMP Lozano-

Perez and Kaelbling (2014) for Task And Motion Planning and its variants: ITMP in Nedunuri et al.

(2014) and Hauser and Latombe(2009) for Integrated TAMP, STAMP in S�ucan and Kavraki (2012) for

Simultaneous TAMP or CTAMP in Lagri�oul et al. (2014) for Combined TAMP. In this chapter, we will

refer to this problem as the Symbolic Geometric Planning (SGP) problem.

Di�erent approaches were proposed,Erdem et al. (2016) distinguish four di�erent strategies among

them: \(i) low-level checks are done for all possible cases in advance and then this information is used

during plan generation, (ii) low-level checks are done exactly whenthey are needed during the search

for a plan, (iii) �rst all plans are computed and then infeasible ones are�ltered, and (iv) by means of

replanning, after �nding a plan, low-level checks identify whether the plan is infeasible or not; if it is

infeasible, a new plan is computed considering the results of previous low-level checks". We propose

another categorisation which keeps the same di�erences as these ones, but add some other categories and

sub-categories:

Symbolic calls geometric reasoner In this case, the symbolic planner performs the plan search as

usual, but veri�es the feasibility of the plans produced at geometric level. This category groups

(ii), (iii) and (iv) as sub-categories.

Geometric reasoner uses symbolic level In this case, the geometric planner knows all the possi-

ble solutions and uses the symbolic planner to determine which onesto explore and choose. It

corresponds to (i).

Search in both levels simultaneously The search space is a compound space between the geometric

and the symbolic spaces, the search is done in this compound space withno distinctions between

the levels. This category does not exist inErdem et al. (2016).

The next subsections, propose a state of the art categorisation followingthese points.



Chapter 4. SGP 104

4.2.1 Symbolic calls geometric reasoner

This category can be divided into three sub-categories: compute all symbolic plans then computing the

geometric plan (Subsection4.2.1.1), �nd one symbolic plan then the geometric plan (Subsection4.2.1.2),

and compute the geometric plan during the symbolic plan search (Subsection 4.2.1.3).

4.2.1.1 Compute all symbolic plans then computing the geometric plan

In this sub-category the symbolic planner computes all the possible task plans, and knowing this, the

geometric planner tries to �nd one plan among them that is geometrically feasible. S�ucan and Kavraki

(2011) present an approach where, provided a list of possible plans (whichcan be interleaved), they

are able to �nd a feasible set of motions that ful�l the given symbolic goal. S�ucan and Kavraki (2012)

extend this approach by introducing uncertainties, and using a Markov Decision Process to guide the

search. Lagri�oul (2013) proposes a di�erent way to solve the problem: they argue that part of the

geometric reasoning may be endowed to the task planning level. Theyuse a Hierarchical Task Network

(HTN, explained in more details in Subsection4.3.2), where they broke the geometric actions into basic

primitives, to �nd all the possible plans, then, they use a geometric reasoner to test the geometric

feasibility of the plan, using what is called geometric backtrack.

We have seen in the previous chapter that a geometric action might havemultiple alternatives (Sub-

section3.2.5.2). A geometric backtrack occurs when the geometric reasoner fails to �nd a solution for an

action, and tries, without notifying the symbolic planner, di�eren t alternatives of previously succeeded

actions, until it �nds a feasible set of actions (including the current one) or it reaches a limit. This limit

can be the maximum number of geometric alternatives for a speci�c actionor the branching factor which

is the maximum number of alternatives allowed by the symbolic planner.

4.2.1.2 Find one symbolic plan then the geometric plan

Approaches in this sub-category are the closest to the classical approach,as they �rst compute the whole

symbolic plan, and then test it at geometric level. The di�erence is that here, the geometric level is

taken into account directly by the symbolic planner, and they interact together to �nd a feasible plan.

The idea is to prune out impossible symbolic plans right from the start of the planning process.

Lozano-Perez and Kaelbling(2014) build a plan skeleton based on task planning, containing geomet-

rical constraints and formulate the problem as aConstraint Satisfaction Problem then they use a general

solver to test the plan geometrical feasibility. In Srivastava et al. (2013b) case, once they found a task

plan, they try to plan the geometric actions, and if they fail, an error is returned to update the symbolic

state, and a new task plan is created. Caldiran et al. (2009a) and Caldiran et al. (2009b) present a

di�erent approach where they use an action description languageC+ to provide a robot with high-level

reasoner able to �nd complete symbolic plan, and, based on this plan, they extract the collision free

trajectories. In case of problem {collisions{ they report it to the reasoner, and a new plan is computed

where they try to extract trajectories again. They provide an example of two robots moving object in

a 2D grid, and propose another example inHaspalamutgil et al. (2010): the tower of Hanoi problem.
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Erdem et al. (2011) keeps nearly the same framework but uses in place of the action description lan-

guage, aCausal Reasonerto �nd the symbolic plans, and if the geometric resolution fails, it changes the

planning problem, by adding constraints to the causal reasoner in orderto take the cause of failure into

account. As before, they used a two robot moving object as an example andHavur et al. (2013) add

another example: the tower of Hanoi.

In this sub-category, some approaches are also based on a geometric backtrack. Srivastava et al.

(2014) and Srivastava et al. (2013a) present an interface between a task planner and a geometric planner

where, once a symbolic plan is computed, they use geometric backtrackto test it feasibility. If no collision

free trajectory is found, the geometric reasoner informs the symbolic planner about the infeasible action

and the reason for its failure, information used by the task planner to change the part of the plan coming

after the last feasible action. Lagri�oul et al. (2012) also use geometric backtrack on a complete plan, but

they introduce the notion of constraints on interval bounds to speed up the search. Once they get the

symbolic plan, they use it to de�ne constraints on the robot con�guration s, at each step, starting from

the last step. These constraints reduce the search space of each actionmaking the number of geometric

backtracks drops. Lagri�oul et al. (2014) extend this approach by adding constraints concerning more

degree of freedom at once and expose a study of the time complexity of their algorithm. Dearden and

Burbridge (2013) also compute the complete symbolic plan before computing the geometry, then they

map the symbolic states with geometric ones, starting from the �nal states, and �nally they try to �nd

trajectories between the states. If a trajectory does not exist,the geometric backtrack is triggered in

order to change the symbolic geometric state mapping. This mapping is learnt through a set of training

data in the form of geometric states labelled with the predicates which are true in them.

4.2.1.3 Compute the geometric plan during the symbolic plan search

This sub-category contains approaches where the geometric reasoner is called each time a feasibility test

is needed, during the symbolic plan search. The idea is to not explore infeasible symbolic plans if we

already test their infeasibility at geometric level.

Dornhege et al. (2009) introduce the notion of semantic attachments, in the context of SGP, which

are external procedures able either to evaluate if a condition is true or false, or compute the numerical

value of a state variable. The condition validation is used as action predicate, and computes if a motion

plan is feasible or not. The state variable computation is used to retrieve the new world state from

the geometry. Dornhege et al. (2010) present a soundness and completeness study on this approach in

addition to multiple examples and relevant results using this method. Dornhege et al. (2012) introduce

the possibility of using heuristics during the search by enabling the semantic attachments to only return

an evaluation of their computation and propose the use of di�erent o�-the-shelf task planner able to use

these heuristics such as Fast ForwardHo�mann and Nebel (2001) or Temporal Fast Downward Eyerich

et al. (2012). Hertle et al. (2012) propose a new planning language: Object-oriented Planning Language,

where the task description is written in an easy object like form (such as C++ or java), and which can

handle semantic attachments. The latest extension added byDornhege et al.(2013) to this work consists

on caching the external procedures return values and states in orderto use them later, in case of the
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same or similar request to the external procedure is needed. Theyalso use relaxed external procedures as

heuristics to prune out part of the infeasible solutions before computing the complete external procedure.

Other approaches are also based on calls to external procedures, such asFerrer-mestres et al.(2015)

who worked on adapting a �rst order planning language named Functional STRIPS by adding requests

to external function (geometric tests for feasibility) as a componentof a symbolic action. Guitton and

Farges(2009a) also modify the symbolic action description: they add geometric constraints to the action

pre-conditions, which are passed to the geometric reasoner who uses them to compute a new geometric

state, and then, �nds a path from the previous geometric state to the new computed one. Gaschler

et al. (2013a) and Gaschler et al. (2013b) also uses external calls at symbolic level combined with a

detailed symbolic state of the world {they are able to represent the state of a variable (known, unknown,

incomplete, or will be known at run time){ to compute feasible plans. Gaschler et al. (2015) extend this

approach by adding speci�c geometric predicates to their actions, enabling a search speed enhancement.

Kaelbling and Lozano-Perez(2011a) use an aggressively hierarchical planner which embed in the action

description primitives to compute and execute the action. They use uents to transform the geometric

state to symbolic states and assess if the pre-conditions of the next actions holds or not. Kaelbling and

Lozano-Perez(2011b) extend this approach by adding uncertainties, the planning is donein a hierarchical

belief-space: the world is not known but is observable. When performing an action, a previously unknown

parameter might become known or partially known (looking inside a cupboard might end with knowing

the position of a certain object or knowing that said object is not in the cupboard). Kaelbling and

Lozano-Perez(2013) extend even more the approach by adding domain models used as heuristics to

guide and speed up the search in the robot's belief-space.

Wolfe et al. (2010) present an approach where they use high level action primitives as actions in a

Hierarchical Task Network (HTN) planner. These actions can be re�ned to primitives such as navigate

to somewhere, move arm to grasp, or close gripper.Shivashankar et al. (2014) propose a formalism

which is goal directed and based on HTN, and they link it with the geometric reasoning. They achieve

this by computing, at each step of the symbolic search, a symbolic stateused to �nd a corresponding

geometric state. Then, they compute the trajectories linking these geometric states. In case of failure,

a new geometric state is produced, until the branching factor is reached (maximum number of allowed

geometric states corresponding to the same symbolic state), in whichcase, the planner backtracks to the

previous action. Once a trajectory is found, they compute its cost inorder to let it aside if its quality is

not satisfying compared to the rest of the plan (it is not removed, thecomputation of the corresponding

plan is just postponed).

Some researchers also propose approaches including a geometric backtrack. Alili et al. (2009) propose

a combination of an HTN planner with a geometric reasoner, where the symbolic actions and descriptions

embed a call to a geometric re�nement of the actions. Before the geometric reasoner informs the symbolic

planner about the infeasibility of an action, it triggers a geometric backtrack. They also keep the symbolic

state updated by computing facts after each geometric computation and handing them to the symbolic

level. De Silva et al. (2013) extend this work by adding the ground literal protection: in the pre vious

work, geometric backtrack did not check if the newly created plan respects the symbolic pre-conditions

set before each action. In this one, the ground literals (which are factspassed to the symbolic level
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to assess some pre-conditions) are cached by the system for each task andprotected when an action

alternative is computed. Karlsson et al. (2012) depict a solution where, by using geometric backtrack

with external calls and geometric predicates (predicates computed atgeometric level and used at the

symbolic level), they �nd feasible plans for a two-arm humanoid robot. Bidot et al. (2015) extend this

approach, by �rst proposing a formal de�nition of the problem and then by ad ding geometric constraints

able to guide the geometric backtrack in order to stress out the most interesting/constrained actions.

4.2.2 Geometric reasoner uses symbolic level

This category corresponds to the approaches where a geometric search is held and uses the symbolic level

to guide this search in order to reach the desired goal.Zickler and Veloso (2009) for example perform

their search in the geometric state space of the agents, where they compute, for each state, symbolic

information enabling the search to be guided toward the goal.Choi and Amir (2009) propose to explore

the model of the world with a motion planner algorithm (such as RRT) and use the generated graph to

automatically create feasible actions: if the motion generated by an edge (ora group of edges) of the

graph, changes the state of an object, then it is considered as an action. Then a symbolic planner is

used to �nd a plan using these actions. Nedunuri et al. (2014) base their work on an extended version

of a manipulation graph (LaValle (2006)) which contains information about the robot base placement

and arm placement to manipulate objects. They use a given plan outline to guide the search through

the possible sequence of actions available in the graph.Garrett et al. (2014a) and Garrett et al. (2014b)

also use a graph capturing the possible manipulation actions in the environment and use a Fast Forward

(Ho�mann and Nebel (2001)) task planner to �nd the best plan based on these actions. The graph is

constructed by sampling the objects positions and computing one or multiple robots inverse kinematic

for each one, and then linking this con�gurations between themselvesthrough trajectories.

Plaku and Hager (2010) have a di�erent approach where they sample the continuous space guided

by the symbolic level, until reaching a state which satis�es the goal(this state is given to the geometric

planner). In order to achieve this, they create a tree, and at each iteration of a loop, expand it by choosing

the more relevant node (based on a utility function) and explore the space from there. Plaku (2012b)

and Plaku (2012a) extend this approach by replacing the symbolic planner by an automata described by

a Linear Temporal logic (LTL).

4.2.3 Search in both levels simultaneously

In this last category, the search for plans is done at the same time at geometric and symbolic levels.

Hauser and Latombe (2009) consider that the robots can move inside a feasible space only, and can

switch between \feasible spaces" through transitions: inside a \feasible space" the robot cannot change

his contacts with the outside world (if he is moving an object for example) but can do it through a

\transition space" (for example placing the object on a table). They create a Probabilistic Road Map

(PRM) ( Kavraki et al. (1996)) in each \feasible space" and aggregate them through milestones in the

\transition spaces". During the search for a solution (speci�ed as a goal state) they are able to begin the

search in a direction, stop it, and postpone it (in case it is taking toolong, to explore other directions).
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Hauser (2010) extend this work by creating a symbolic language able to make requeststo their previous

system and by doing so, obtain a larger range of possible actions. This last paper enters in the sub-

category of Subsection4.2.1.3, as it makes requests to the geometric planner during the symbolic search.

Ficuciello et al. (2013) and Barry et al. (2013) use a similar method (asHauser and Latombe(2009))

but using a RRT algorithm in place of the PRM.

Cambon et al. (2004) and Cambon et al. (2009) describe the aSyMov planner presented in the

beginning of this section and which is also part of this category.

4.2.4 Synthesis, discussion, and contributions

Table 4.2 shows the di�erent works cited in this section organised by authors,with some characteristics

stressed out. Interestingly,Lagri�oul et al. (2013) argue that, as it is the case in some of these approaches,

completely combining task and motion planning might not be e�cient all t he time: they are e�cient to

solve geometrically complex problems but their performance might be less interesting than the classical

approach when the problem is geometrically simple.

Our contribution with their speci�cities are noted at the end of Tabl e 4.2 and it belongs to the sub

category depicted in Subsection4.2.1.3.
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1 - Symbolic calls geometric reasoner

2 - Geometric reasoner uses symbolic level

3 - Search in both levels simultaneously

4 - Find one symbolic plan then the geometric plan

5 - Compute the geometric plan during the symbolic plan search

6 - Compute all symbolic plans then computing the geometric plan

7 - Call to external procedures

8 - Compute geometric states from symbolic states

9 - Create symbolic knowledge from geometry

10 - Geometric alternatives

11 - Geometric backtrack

12 - Uses constraints

13 - Account for uncertainties

14 - Using a graph covering the entire space

1 2 3 4 5 6 7 8 9 10 11 12 13 14

S�ucan and Kavraki (2011) X X

S�ucan and Kavraki (2012) X X X

Nedunuri et al. (2014) X X X

Lagri�oul et al. (2012) X X X X X

Karlsson et al. (2012) X X X X X

Lagri�oul (2013) X X

Lagri�oul et al. (2014) X X X X X

Bidot et al. (2015) X X X X X X X

Kaelbling and Lozano-Perez(2011a) X X X

Kaelbling and Lozano-Perez(2011b) X X X X

Kaelbling and Lozano-Perez(2013) X X X X

Ficuciello et al. (2013) X X X

Barry et al. (2013) X X X

Lozano-Perez and Kaelbling(2014) X X X

Garrett et al. (2014a) X X X X

Garrett et al. (2014b) X X X X

Srivastava et al. (2013a) X X X X X X

Srivastava et al. (2013b) X X X

Srivastava et al. (2014) X X X X X X

Caldiran et al. (2009a) X X X

Caldiran et al. (2009b) X X X

Haspalamutgil et al. (2010) X X X

Erdem et al. (2011) X X X X
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Havur et al. (2013) X X X X

Gaschler et al. (2013a) X X X X

Gaschler et al. (2013b) X X X X

Gaschler et al. (2015) X X X X

Dornhege et al.(2009) X X X X

Eyerich et al. (2009) X X X X

Dornhege et al.(2010) X X X X

Dornhege et al.(2012) X X X X

Dornhege et al.(2013) X X X X

Plaku and Hager (2010) X X X X X

Plaku (2012b) X X X X X

Plaku (2012a) X X X X X

Guitton and Farges (2009a) X X X X

Zickler and Veloso(2009) X X X

Choi and Amir (2009) X X X X

Wolfe et al. (2010) X X X

Shivashankar et al. (2014) X X X

Dearden and Burbridge (2013) X X X X X

Ferrer-mestres et al.(2015) X X X X

Hauser and Latombe(2009) X X X X

Hauser (2010) X X X X

Cambon et al. (2003) X X X X

Cambon et al. (2004) X X X X

Gravot et al. (2005) X X X X

Cambon et al. (2009) X X X X

Alili et al. (2009) X X X X X X

De Silva et al. (2013) X X X X X X

Silva et al. (2013) X X X X

De Silva et al. (2014) X X X X

Gharbi et al. (2015a) X X X X X

Table 4.2: a synthetic reorganisation of the state of the art, coupled with some characteristics, where
works are regrouped by authors. Our recent contributions are in the lastrows of the table.
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4.2.4.1 Discussion

Each one of the di�erent approaches described in this section has some advantages and disadvantages.

We have tried to �nd some of them, but the list is not exhaustive and it is based on the analyses of these

approaches.

The advantages of computing all the symbolic plans �rst and then to compute the geometric plan

(Subsection4.2.1.1) are the possibility to rule out the plan parts which will not achieve a complete plan

and the possibility to choose among all the plans the \best" one. When computing the symbolic plans,

the algorithms might �nd the beginning of a plan which has no chance to achieve a complete plan because

of a not respected symbolic pre-condition. In this approach, we do not re�ne geometrically this plan

part which might take some time. In order to choose the \best" plan, heuristics might be used (such as

the shortest plan). One disadvantage of using this method is that we might lose time computing all the

plans and choosing among them.

One advantage of �rst �nding one symbolic plan and then re�ne it, (Subsection 4.2.1.2) is, as for the

previous approach, the ability to rule out the plan parts which will not achieve a complete plan. This

approach also contains geometric backtrack, which has the advantage of being easily enhanced and tuned

for the domains used. The disadvantage of using this approach is the inability to change the symbolic

choices once they are taken: the algorithm needs to exhaust all the geometric possibilities before changing

the symbolic plan (and it can be time consuming as the spaces can be big).Concerning the geometric

backtrack, the algorithm needs to take into account the pre-conditions, which might introduce some

undesirable latencies.

The advantage of computing the geometric plan during the symbolic search(Subsection 4.2.1.3) is

the ability to change the symbolic choices based on geometric problems.Also, this approach does not

need to handle explicitly the action pre-conditions. The disadvantage of this approach is the possibility

to compute some geometric actions (with their motion plans) that might not be needed because the plan

part is infeasible due to a symbolic pre-condition not holding.

The advantage of having a geometric reasoner that uses the symbolic level(Subsection4.2.2) is the

possibility to use the motion planning state of the art algorithms (which are now very e�cient) to solve

the problems. The disadvantage of such an approach is the scope of the problem it might solve: it

is usually limited to simple problems (with low number of DoFs and/or small environments) and the

algorithms are usually very domain speci�c.

The advantages of the last approach where the search is held at both levels atthe same time (Sub-

section 4.2.3) are the completeness of the approach and the ability to optimize the plans depending on

the needs. The disadvantages are the huge search space generated by the combination of both spaces

and the di�culty to implement such approaches in a generic way.
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4.3 Formalism and algorithms

The SGP problem consists in computing a valid symbolic plan while ensuring its feasibility at the geo-

metric level. Assessing the plan validity implies to take into account the action direct and indirect e�ects

(the indirect e�ects that the geometry can compute).

In order to tackle this problem, we propose a method combining an extended version of a Hierarchical

Task Network (HTN) planner and the GRP framework presented in the previous chapter. In this section,

we �rst present a brief description of the HTN planner, then we present our extended version, named

Hierarchical Agent-based Task Planner (HATP) and �nally, we present the Symbolic and geometric

action planner (SGAP) that combines both levels of planning.

4.3.1 HTN Planning

An HTN planner (as presented in Ghallab et al. (2004)) is a task planner able to transform a domain,

an initial situation, and a goal (provided under the form of a task1 to achieve) into a series of actions

bringing the system from this initial situation to the requested goal.

The planning process consists in two di�erent activities: (1) decomposing the goal task down to

operator level, (2) binding the tasks parameters left free (e.g. choose actors). The planning process

iteratively builds a tree by decomposing the tasks, starting with the goal task, following the rules: if

the task is a method, a decomposition is explored and the other possible decompositions are added as

backtrack points. If the task is an operator its pre-conditions are tested, then the instantiated operator is

added to the current plan, otherwise the planner goes back to the lastbacktrack point and tries another

decomposition. When an instantiated operator is added to the current plan, its e�ects are applied to the

current state to obtain the next state, and its cost is added to the current plan cost. If a decomposition

of the goal allows to reach down to the operator level, then a plan is found.If one wants to keep the

completeness or �nd the best plan, it is possible to explore all decompositions. In the case where all the

decompositions are explored but no plan was found, the planning stops with a failure, the goal cannot

be achieved from the initial state.

This is a very succinct explanation of the algorithm. In the next section we present HATP, which is

an implementation of the HTN algorithm and in Subsection 4.3.2.6we highlight the di�erences between

this implementation and the classical algorithm.

4.3.2 Hierarchical Agent-based Task Planner

Hierarchical Agent-based Task Planner or HATP is an implementation of the HTN algorithm which

integrates some enhancements, as presented inLallement et al. (2014). HATP is based on SHOP Nau

et al. (1999) and is designed to be used by roboticist: the domain representation is user-friendly and

the agents (humans and robots) are considered as \�rst order" entities in the language. Also, HATP

uses a total order representation: all the actions in the current (partial) plan are ordered, enabling it to

1as presented later, a task can be either a method or an operator.
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compute, at any given time, the complete context of the world. HATP is based on a number of basic

notions, some of them contained in the following list and the rest presented later in this subsection.

Predicates: Boolean-valued function which capture the symbolic state of a parameter in the world,

such as object Xis reachable byagent A. It is written under the form: X.isReachable = A.

Context: A context is a set of predicates that captures the whole state of the world at a speci�c moment.

It is under the closed-world assumption (if the predicates does notappear in the list, it is supposed

to be false).

Entity An element from the environment, for instance, a robot, a table, or a book.

Entity description: Contains the entity id, and the predicates that can be applied to them. For

example a manipulable object X accepts the predicate:isReachable, isOn, isIn, and so on.

Operators: 2 An operator is a parametrized executable primitive. It is represented by a 2-uplethpre; e� i

wherepre is the list of pre-conditions and e� the list of e�ects. Both of them are a set of predicates,

the pre-conditions are the predicates that should hold in the contextwhere the operators needs to

be applied, and applying an operator means instantiating it and adding itse�ects to the context

it was applied to. It can take parameters such as an entity, or a set of entities as inputs. A cost

function can be linked to an operator, enabling the planner to assess its quality.

Methods: A method can also be applied to a context, but cannot be directly executed, it needs to

be \decomposed" into other methods and/or operators. Decomposing a method means trying to

apply its components following the order it speci�es.

Tasks: A task is a denomination that refers to either an operator or a method.

A method can be decomposed into other tasks (methods and operators) combined through one of

three di�erent links, depicted in Figure 4.1. The �rst link Figure 4.1(a), is where all the tasks composing

the method needs to be applied, in the speci�ed order (in the �gure the order is given by the thick arrow)

we call this case thecausal link. The second link, Figure4.1(b), is the Exclusive disjunction, which mean

that one and only one task of the decomposition needs to be applied. The lastlink, Figure 4.1(c), is

Asynchronous, where all the tasks needs to be applied but no connexion exists between them.

It is possible to de�ne a number of operators, here is some of them which are going to be used in the

rest of this chapter:

Pick(A,O) 3: A is an agent {omitted when obvious{ and O an object (those holds the same meaning

for all the operators). The pre-conditions areA.hasInHand = NULL and O.isReachable = A. The

e�ect is A.hasInHand = O .
2 In order to avoid confusions, operator will be used for the symbol ic actions (in an HTN planner, both action and

operator can usually be used), while the geometric actions will keep the name actions.
3 In order to di�erentiate between task level symbols and geomet ric level symbols, task level symbols will be written in

italic in the rest of this thesis
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The next step of the algorithm is to retrieve the applicable methodsand operators in the current

world state: the T variable stores all the not explored operators and methods and a loop (from Line 9 to

Line 13) checks if they are applicable or not in the current context. If they are applicable, they are added

to the applicable task list App. Otherwise, they stay in T until they become applicable, as the current

context change. For an operator to be applicable, it needs its predecessors (following the causal links)

to be already applied and its pre-conditions to be valid in the current context. For a method, having all

its predecessors applied is enough to add it to the list. One last check, is the task locking: when a task

is locked, it cannot be applied to any context, unless it gets unlocked: this system is used to tackle the

asynchronous tasks problem, as explained later in this subsection.

The last part of the algorithm (Line 14 to Line 27) uses the previous lists to choose and apply tasks,

depending on di�erent variables:

No applicable task in App and no task in T, Line 14 This means that a plan was found then the

algorithm backtracks to the last cached BP.

No applicable task in App, tasks exist in T and all tasks in T are locked, Line 17 In this case

the algorithm create BPs for each one of the locked task: in each BP, only onetask is unlocked,

the rest stay locked.

No applicable task in App, tasks exist in T and some task in T are not locked, Line 20 This

means that, within the rest of the actions still not explored, no one isapplicable in the current

context, forcing the algorithm to backtrack to the previous BP.

There is one and only one applicable task in App, Line 22 In this case, the task is directly ap-

plied, through the Algorithm 10.

There is more than one applicable task in App, Line 25 This case arise when faced with the asyn-

chronous decomposition, the algorithm creates as many BPs as there are applicable tasks, where

only one task is not locked. When the unlocked task is applied, the algorithm goes back to the

second case of this enumeration (all tasks locked).

A backtrack point (BP) is composed by the current states of the main variables in the algorithm: the

list of yet to be explored tasksT (and if they are locked or not), the current context ccurr and the current

plan plancurr . The creation of such a point, as done in Line19 and Line 26 is depicted in Algorithm 9.

When a backtrack is triggered, it retrieves the last BP saved (and removes it from the saved list of

backtrack points, this is a stack: last in, �rst out) and instantiate it as the current state of the algorithm.

If no BP is left in the list, all the decompositions have been tested and no more plan will be found.

The case of the asynchronous tasks is tricky: in order to test all the possible task orders, the algorithm

uses the locking process. Locking an action means that the action is notapplicable yet, later it will be

unlocked to allow the search to continue. The process consists on creating as many BPs as there are

tasks. In each BP all the tasks are locked but one, which is the �rst task to be tried. If the task can

be applied, then all the current tasks (in T) are locked which correspond to the second case of the list

above. In this case, we create as many BPs as there are tasks left, with one unlocked task in each one
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of the BPs (as we just did). This process goes on until there is only one task left. At each step of this

process, we unlock only one task, making the algorithm tries all the possible orders.

Algorithm 8 HATP implementation of the Classical HTN algorithm
1: function SolveHTN (D; c0; m(p); StopAtF irstP lan; MaxT ime )
2: T  m(p) ; ccurr  c0

3: while (: FirstPlanFound or : StopAtF irstP lan ) and : Reach (MaxT ime ) and T 6= ; do
4: if GetCost (plancurr ) > GetBestPlanCost then
5: (T; plancurr ; ccurr )  BacktrackToLast (backtrackList )
6: continue
7: end if
8: App  ;
9: for t j t 2 T, IsUnlocked (t) do

10: if ((ValidPredecessor (t) and IsOperator (t) and ValidPreconditions (ccurr , t)))
or (ValidPredecessor (t) and IsMethod (t))) then

11: App  t
12: end if
13: end for
14: if App = ; and T = ; then
15: P  plancurr

16: (T; plancurr ; ccurr )  BacktrackToLast (backtrackList )
17: else if App = ; and T 6= ; and 8t 2 T, IsLocked (t) then
18: V j V � T; 8t 2 V , IsLocked (t)
19: CreateBacktrackPoints (V , T, plancurr , ccurr , backtrackList )
20: else if App = ; and T 6= ; and 9t 2 T, IsUnlocked (t) then
21: (T; plancurr ; ccurr )  BacktrackToLast (backtrackList )
22: else if jAppj = 1 then . size of App is 1
23: a j a 2 App
24: Apply (a, backtrackList , T , plancurr , ccurr )
25: else if jAppj > 1 then
26: CreateBacktrackPoints (App, T, plancurr , ccurr , backtrackList )
27: end if
28: end while
29: return P
30: end function

Algorithm 9 depicts how to create backtrack points out of a subsetV of the yet to explore task list

T. For each task in V it creates a backtrack point where every other task inV is locked.

Algorithm 9 The function to create the backtrack points
1: function CreateBacktrackPoints (V , T, plancurr , ccurr , backtrackList )
2: for a j a 2 V do
3: UnLock (a)
4: for tmp j tmp 2 V; tmp 6= a do
5: Lock (tmp)
6: end for
7: backtrackPoint  (T; plancurr ; ccurr )
8: backtrackList  backtrackPoint
9: end for

10: end function
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Algorithm 10 shows the way a task is applied. Whatever the kind of the task, as it isgoing to

be applied, it is removed from T. When the task is an operator (Line 24) its e�ects are added to the

current context to create a new one, and the operator is added at the end ofthe current plan. When

adding an operator to the plan, its causal links are also updated, from the domain, but also using

logic: if a tested predicate of this operator has been changed by the e�ect of another operator, the

algorithm links them through a causal link. If the task is a method (Line 3), �rst we check the applicable

decompositions by testing their pre-conditions (in case of an exclusive disjunction). Once we retrieved

the list of all applicable decompositionsvalidD three cases arise: no applicable decomposition, (Line10),

in which case, the algorithm triggers a backtrack, only one decomposition is applicable (Line 13), the

algorithm adds its corresponding tasks toT, and the last case is when multiple decompositions are

possible (Line 16). This last case arise only when the decomposition is an exclusive disjunction, and

more than one decomposition has valid pre-conditions in the current context. In this case, for each valid

decomposition a BP is created, and one among them is chosen to continue the algorithm.

Algorithm 10 Implementation of the apply function
1: function Apply (a, backtrackList , T , plancurr , ccurr )
2: T  T n a . remove a from T
3: if IsMethod (a) then
4: D  GetAlldecompositions (a)
5: for d 2 D do
6: if ValidPreconditions (ccurr , d) then
7: V alidD  d
8: end if
9: end for

10: if V alidD = ; then
11: (T; plancurr ; ccurr )  BacktrackToLast (backtrackList )
12: return
13: else if jV alidD j = 1 then
14: d j d 2 V alidD
15: T  GetAllTasks (d)
16: else
17: for d j d 2 V alidD do
18: Ttmp  T [ GetsAllTasks (d)
19: backtrackPoint  (Ttmp ; plancurr ; ccurr )
20: backtrackList  backtrackPoint
21: end for
22: (T; plancurr ; ccurr )  BacktrackToLast (backtrackList )
23: end if
24: else . a is an operator
25: ccurr  ApplyOperatorEffects (ccurr , a)
26: plancurr  a . adding the operator and its causal links to the plan.
27: end if
28: end function

These algorithms are not included in the contributions of this thesis, but are needed to understand

the combination between the symbolic and the geometric layers whichis part of the contributions.
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operator PlaceR ( Agent A, Object O, Support S , Agent AT) f
preconditions f

A. hasInHand == O;
g;
e f fec ts f

A. hasInHand = NULL ;
O. IsOn = S ;
O. IsReachable = AT;

g;
cost f cos tFc t (A,O, S ,AT) g;
duration f durat ionFn (3 , 5 ) g;

g

method MoveObj ( Agent A, Object O, Support From , Support S , Agent AT ) f
f

preconditions f
A. type == "ROBOT" ;
AT. type == "HUMAN" ;
O. isOn == From ;

g;
subtasks f

1 : Pick (A, O) ;
2 : PlaceR (A, O, S , AT) a f t e r 1 ;

g;
g

g

Listing 4.1: HATP code example

4.3.2.5 HATP example

Listing 4.1 shows an extract of a HATP domain, illustrating the operator PlaceR which makes the agent

A place the objectO on the support S reachable by the agent AT. It has as a pre-condition: the object

should be in the robot hand, and the e�ects are: the object is not in the agent hand anymore, it is on

the support S and is reachable byAT . It is the same description as the one presented in the beginning

of this section. The example also contains the cost of the operator computed by an external procedure

(costF ct) which take all the operator parameters as inputs. It also contains the duration of the solution

(here from 3 to 5 seconds).

The second part of the example shows the methodMoveR which can be decomposed into two operators

Pick and PlaceR in this order. Its pre-conditions are that A is a robot, AT a human and the object O

is on the support F rom.

This example shows the simplicity of creating domains with HATP, one of its main features as

presented inde Silva et al. (2015).

4.3.2.6 HTN-HATP di�erences

The principal di�erences between HATP and the most known HTN planners (such as SHOP2Batista

(2011)) are:
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User-friendly language: as seen in the previous section, the description language is easy to learn and

use. It is based on a close world assumption which ease the domain design.

Control over variable binding: in classical HTN, the choices (for variable binding) are made ran-

domly, in HATP these choices can be made following rules (or directlyset by the domain expert).

Totally ordered: in HATP, all the actions are ordered by the causal links, as opposed to the HTN

algorithm where the actions are partially ordered.

Agents based: HATP considers the agents as \�rst order" entities, for which actions are computed. It

computes for each agent a stream of actions, linked between themselvesthrough causal links.

Real robot use: HATP was implemented in the robot and used with a complete architecture to plan

and execute its plans. Even if slower than SHOP2, HATP still enables real time use.

Cost based: HATP aborts plans with a cost that exceeds the current best plan.

C++ structures: HATP is coded in C++ which enables an easy integration with other C++ mo dules,

as seen in the next section.

4.3.3 Symbolic Geometric Action Planner

The Symbolic Geometric Action Planner or SGAP is the framework we devolved to tackle the SGP

problem. In this framework, we use HATP for the symbolic layer and GRP for the geometric layer

(presented in the previous chapter).

This framework can use any kind of forward task planner, but using an HTN planner brings some

bene�ts: as di�erent level of actions are available in the GRP, having a hierarchical domain enables

the programmer to choose which level of operators he needs/wants to use.For example, if an operator

PickThenPlace is available in addition to the operators Pick and Place, using the �rst one might speed

up the search, while using the decomposed version might enable the system to choose another operator

after Pick (such asGive or Throw depending on the context). Moreover, an HTN planner enables its

programmer to add constraints to the lower level operator, for example, he can use the operatorPlaceR

but if it is not available, he can use the operatorPlace with a reachability constraint.

In our particular case, we chose to use HATP because of its ability to managemultiple agent plans

(let us remember that this framework was developed in the context of human-robot interaction), its

simple domain language, and also its ability to use external C++ calls. These calls can be of di�erent

kinds, such as cost computation, geometric tests, and so on. In the restof this chapter, we will discuss

a number of these external calls.

The approach we are going to explain in more details in this section is based on the following:

HATP begins the search in the given symbolic domain, and when an operator needs to be applied, if the

operator has a geometric counterpart (such asPick or Place) an external call is made to the GRP with

the aId of the geometric action corresponding to the current operator in order totest its feasibility in

the current world state. This call is named Projection or Geometric re�nement and is about �nding

the geometric action solution (GAS) of said action. When the GRP computes this GAS, meaning that
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the action is feasible, the current world state is updated with the new information, then, the relevant

facts are computed and sent back to HATP.

When GRP sends back these facts, they are transformed into predicates and used to update the

symbolic context of HATP. We call these predicatesShared predicates as they are computed in the

geometry but used in the symbolic search as the usual predicates (to test the tasks pre-conditions).

As shown in the previous chapter, facts are computed by GRP (Subsection 3.2.4) under the form of

f X; is reachable by ; A; true g. When HATP receives these facts, a mapping enables it to transform

them from this form to the one used in the algorithm: X:isReachable = A. Theseshared predicates

are used to tackle a number of problems such as the rami�cation, as explained in Subsection4.3.5.

As shown in the previous chapter, the GRP framework is able to �nd multiple alternatives for the

same action, starting from the same initial world state. GRP is also able to compute, in any world state,

shared predicates. Using these properties, we combined HATP and GRPinto the SGAP framework,

giving it the ability to assess actions feasibility at geometric level, to request actions alternatives when

needed, and to integrate the shared predicate into the planning process.

In the next subsection, we are going to present the di�erences between SGAP and HATP.

4.3.3.1 The basic notions

For the formalization, some additional information were added to the basic elements:

Predicates: The predicates can have two sources: purely symbolic predicates,and shared predicates.

Context: In addition to all the predicates it contains, each context is linked to a geometric world state

(Subsection3.2.2) from where the shared predicates can be computed.

Entity description: It is the same as for the HATP algorithm, with the constraint that the enti ties id

should be the same at symbolic and geometric level (Subsection3.2.1).

Operators: The operator description is transformed to hpre; act;e� i where pre and e� are the same as

before, andact is the action identi�er, in the GRP framework. act can be empty, in which case

the action is purely symbolic and does not need a geometric counterpart. Once this operator is

\projected" into the geometric level, the action is recognized through a number act:gasNum 2 N

at the GRP framework level.

Methods: The methods and their possible decompositions are the same as for the HATP algorithm.

Tasks: The tasks are the same as for the HATP algorithm either Operators or Methods.

The previously de�ned operators can now be rede�ned within the SGAPframework, but as the pre-

conditions and the e�ects does not change (although some of them would be computed directly from the

geometric level as shared predicates) the main link to be added is thegeometric action aIds as it was

de�ned in Subsection 3.3.2:

Pick(A,O) : geometric action: Pick .
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Place(A,O,S): geometric action: Place .

PlaceR(A,O,S,AT) : geometric action: PlaceReachable .

Navigate(A,E) : geometric action: NavigateTo .

PaintGreen(A,O) : geometric action: ; (purely symbolic action).

The other parts of the HATP de�nition also go under the following transf ormations.

4.3.3.2 SGAP Domain

A SGAP domain Dsgp can be de�ned by the 5-uplet hM ; Op; Dg; E; E i where:

� M is all the available methods in the domain with their decomposition, asbefore,

� O p is all the available operators with their representation (pre-conditions, action aIds and e�ects),

� Dg is the domain that contains all the available geometric actions with their aIds, and their

descriptions,

� E contains the available entities with their ids and symbolic description, and

� E contains the available entities with their ids and geometric information, the ids are the same as

for E.

4.3.3.3 SGAP Problem

A SGAP Problem is de�ned by hDsgp; c0; wsinit ; m(p)i where:

� D sgp is the domain,

� c0 the initial context,

� wsinit the initial world state, and

� m(p) the method or operator to apply to this initial context and world state.

Note that c0 initially contains only symbolic predicates, the initial shared predicates are computed

from wsinit .

4.3.3.4 Solution plan

The solution computed by SGAP is a sequenced list of Action Solutions (AS) called a plan. An Action

Solution is de�ned by ho; gas; tNextsi where o is the operator, gas the corresponding Geometric Action

Solution (GAS) and tNexts the causal links. An Action solution is a combination of a SAS and a GAS!

In parallel to the plan, the GRP framework build at the same time a geometric plan linked to this plan

as depicted in Figure4.3.
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Algorithm 11 Implementation of the project action function
1: function ProjectAction (t, plancurr )
2: if IsNotProjected then
3: predessessor GetPredessessor (t,plancurr )
4: IN  GetParameters (t)
5: IN  GetWorldState (predessessor)
6: aId  GetActionId (t)
7: gas  ComputeActionConfs (aId,IN)
8: else
9: gasNum  getGasNum (t)

10: gas  FindAlternative (gasNum)
11: end if
12: if gas6= Null then
13: SetGas (t,gas)
14: return T rue
15: end if
16: return F alse
17: end function

new BPs as their branching factor6 allows and in each BP a decomposition with the same operator is

added. If the algorithm backtracks to this BP, as the operator has already been projected, an alternative

will be requested (Algorithm 11). The second added step is about retrieving the geometric part of the

current context ccurr (Line 36 and Line 37): as said before, part of the context is retrieved from the

corresponding world state under the form of shared predicates.

Algorithm 12 Implementation of the apply function concerning the SGAP framework
1: function Apply (t, backtrackList , T , plancurr , ccurr )
2: T  T n t . remove t from T
3: if IsMethod (t) then

::: . Omitted, the same as Algorithm10
24: else . t is an operator
25: if HasActionId (t) then
26: SetProjected (t)
27: b  GetBranchingFactor (t)
28: for i j i 2 N; i 2 [0; b] do
29: Ttmp  T  t
30: backtrackPoint  (Ttmp ; plancurr ; ccurr )
31: backtrackList  backtrackPoint
32: end for
33: end if
34: ccurr  ApplyOperatorEffects (ccurr , t)
35: if HasActionId (t) then
36: ws  GetEndingWorldState (t)
37: ccurr  GetFacts (ws) . adding the shared predicates to the state
38: end if
39: plancurr  t
40: end if
41: end function

6The number of possible geometric alternative allowed by the symbolic level
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operator PlaceR ( Agent A, Object O, Support S , Agent AT) f
preconditions f

A. hasInHand == O;
g;
projects f placeR (A, O, S , AT) g;
e f fec ts f

A. hasInHand = NULL ;
O. IsOn = S ;
O. IsReachable = AT;

g;
cost f GetGRPCost ( ) g ;
duration f durat ionFn (1 , 1 ) g;

g

method MoveObj ( Agent A, Object O, Support From , Support S , Agent AT ) f
f

preconditions f
A. type == "ROBOT" ;
AT. type == "HUMAN" ;
O. isOn == From ;

g;
subtasks f

1 : Pick (A, O) ;
2 : PlaceR (A, O, S , AT) a f t e r 1 ;

g;
g

g

Listing 4.2: SGAP code example

4.3.4.2 Results

We run the algorithm on this example7 and Table 4.3 represents the results obtained over 30 runs for

each branching factor. The plan length is 6 actions, consisting on 3 successivePick and Place. The

success rate is nearly perfect starting from a branching factor of 3 but the Computation time also grows

accordingly. Note that the success rate of the algorithm when the branching factor is 5 drops. Failing

with this many possible alternative is possible as the search space isnot complete: for completeness, the

branching factor should be in�nite.

Branching factor 1 2 3 4 5 6
Computation time (s) 5 19 19 27 31 31
Success rate (%) 10 80 100 100 96.6 100
Nb alternatives 0 9.4 14.5 24.7 32.7 36.6
Nb actions computed 5.6 31.6 41 62.8 78.7 85.8

Table 4.3: For a plan length of 6 actions, the system is able to compute with a success rate approaching
the 100% a solution for the example in Figure4.5, starting a branching factor of 3. These values are
averaged on 30 runs.

7The runs on this section were all made on a computer with an i7-3720QM CPU @ 2.60GHz processors an a memory of
8Go
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4.3.5 The rami�cation problem

The rami�cation problem is the problem of characterizing the indirect e�ects of an action (more details

are available in McIlraith (2000)). In other words, it means computing the consequences of an action in

addition to its direct e�ects (are the e�ects described in the act ion model).

Usually, in task planning, the problems are simpli�ed to handle the direct e�ects only, and the

rami�cation problem is not addressed. One way to compute indirect e�ects is to use Truth Maintenance

systemsDoyle (1979) which use inferences and assumptions to compute them. Nowadays, in robotics,

these inferences and assumptions are made by the Ontologies systems,such asTenorth and Beetz (2009),

but it is not used to tackle the rami�cation problem.

When addressing the problem of symbolic geometric planning, it is possible to compute at geometric

level a number of properties that correspond to facts (the shared predicates), and, therefore compute

in a more valid way the actions consequences. This is even more important when humans are present,

as the action consequences (shared predicate and cost) can allow the planner to �nd better or preferred

plans.

Figure 4.6 shows an example of this problem: the robot needs to place three objects on the table in

front of it in order for the human to be able to reach the three of them at the same time (The same

as the previous example, with di�erent objects and environment). In Figure 4.6-C the robot places the

third object reachable, but the �rst object is no longer reachable (this example is further detailed in

Subsection4.4.2).

In order to (partially) tackle this problem, we use the shared predicates: after a geometric action

is planned, we compute those predicates for the new context based on the �nal world state found at

geometric level. If some predicates prevent a further action pre-conditions to apply, a backtrack is

triggered and an alternative geometric solution is requested. This process goes on until a valid plan is

found, the branching factor (for now this number is given by the domainexpert) is reached, or no other

geometric solution is available.

The problem is only partially tackled due to the discrete set of shared predicates the system is able

to compute: if a shared predicate does not exist, the problem will not be tackled.
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4.4 Enhancing the search e�ciency

The examples presented in the previous sections show that SGAP can compute interleaved symbolic

and geometric plans in the context of human-robot interaction. Although, these plans are short (10-15

actions) with a small number of objects, in a not too constrained environment, but the use of well-

informed motion planning and geometric reasoning allow us to deal with notso trivial problems.

However, when confronted with more constrained challenges (with greater number of objects or longer

plans), a combinatorial explosion occurs, making the planning process very long. In order to enhance

the search e�ciency, we propose a number of features able to better inform both planners with relevant

information and heuristics to guide the search even if we might lose completeness.

4.4.1 Geometric requests

A geometric request is made by the symbolic planner to the geometric one in order to test a property

in the geometric world. This request is usually very fast (less than50ms) and is used as a pre-condition

of a task. The only function that changes in the algorithm is V alidP reconditions () (in Algorithm 8

and Algorithm 10) which takes as additional parameter the current world state, and, whenfaced to a

geometric requests, computes it on that world state.

The geometric parameter tested can be of various types such as testing if there is enough space for

the robot to stand near the human in a constrained area, or if there is enoughspace to use a hammer on

a particular object in a cluttered space. These requests are generally domain speci�c, which works well

with the HTN algorithm where they are used as heuristics to guide the search toward the most promising

plans. In order to test the pertinence of these requests, we havedeveloped a \virtualPlace(O,S)" which

tests if there is enough space on the supportS to place the object O with no collision with any other

object. One more addition to this test is the virtual objects: theseobjects are tools used to test collisions

only within the virtualPlace request, otherwise, the geometry ignores them.

In order to use these virtual objects, we formulate an assumption:

Assumption. If the virtual object V can contain object O1, O2, and O3, and it can be placed on the

table T, then the objects can also be placed on the table. It can be considered as a heuristic.

Note that if the virtual object cannot be placed on a table, it does not mean that the objects cannot.

The virtual objects are given to the system as independent entities with the same properties as the

other ones, in addition to the virtual part. In this implementation th ey are tuned by hand for every

environment, but it is possible to design algorithms to compute themon-line depending on the number

and geometry of the objects they should contain.

The virtualPlace request is used as follows: it tests if a valid placement (collisionfree) for a virtual

object, which can contain smaller objects, on a support exists. If it does exist, the small objects can be

placed on this support.

Figure 4.7 shows an environment with di�erent world states that illustrates w hen this request might

be useful, and Figure4.8 shows the same world states with the virtual object that does not �t on the
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(a) (b)

(c) (d)

Figure 4.7: Examples of scenarios where the geometric requests enable an enhancement in speed.

table. Note that in the state shown in Figure 4.7(b) and Figure 4.8(b) the virtual object does not �t on

the table, however, there is enough room to place the small objects. In this particular case the heuristic

fails and the solution plan is not the best one as shown later in the results.

The domain used to illustrate this enhancement, is depicted in Figure 4.9. The main method given

to the SGP problem is TestAndMove in Figure 4.9(d). This method has two possible decompositions: in

the �rst one it tries directly to place the objects on the target table (Figure 4.9(a) and Figure 4.9(b)),

and in the second one it �rst tries to remove obstacles from the target table, by placing them on another

surface, before placing the objects on the target table. Removing theobstacles can be performed by

either the robot or the human, depending on the feasibility of the task. For example in Figure 4.7(a)

even if the robot has enough space to place the object on the table at his right, it cannot grasp the object,

in Figure 4.7(d) it can Pick the objects but does not have enough space toPlace it anywhere. The choice

of which decomposition to apply is done by testing the geometric request virtualPlace(VirtualO) on the

starting world state, with VirtualO a virtual object that can contain the three books O1, O2, and O3.

In this example, the robot and the human can only manipulate the objects,they cannot navigate.

Figure 4.10 shows a solution plan found for the example in Figure4.7(a) where, �rst, the human

cleans the table by moving out the obstacle,Ob, then the robot places the three books. In order to assess

the interest of this enhancement, we built a similar domain where the decomposition ofTestAndMove

tries �rst to place the three object on the table, and only if it fails t ries to empty the table. This

complementary domain enables us to determine the speed up when using the virtualPlace request.
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(a) (b)

(c) (d)

Figure 4.8: The same states as in Figure4.7 with a placed virtual object. The virtual object is drawn
in yellow and does not �t in any of the tables.

Table 4.4 shows the results of this experiment. The left side of the table shows clearly the interest of

having this heuristic when the table is cluttered: the computation time is nearly divided by 10. When

the table is empty, as the request is not time consuming, both domains have similar results. The second

half of the table shows an interesting behaviour: in Figure4.7(b) there is enough space to place the three

books, but not enough to place the virtual object (Figure 4.8(b)). In this case, the heuristic misguide

the search as it indicates that an object should be removed before placing the three books while directly

placing them would succeed. A slight performance drop can be noticed,but is still acceptable for this

kind of tasks.

4.4.2 High level actions and Constraints

As seen in Subsection3.3.5, the most computationally expensive step is motion planning. The ideaof

these enhancements is to avoid the calls to the motion planner as muchas possible. The motion planner

calls occur when an action needs to be projected, or an alternative to analready projected action is

needed. Requesting an action alternative means that a backtrack has been triggered. One way to reduce

the number of motion planner calls is to reduce the number of backtracks. In order to achieve this, we

propose to \protect" some predicates {or, more precisely, shared predicates{ that the domain expert

knows might be broken by some future actions.
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example Figure 4.7(a) example Figure 4.7(b) example
type without with without with
plan length 8 8 6 8
Computation time 191.2 21.7 16.9 20.2
! standard deviation 8.6 1.45 1.64 1.34
Nb alternatives 62.9 0.3 0.2 0.2
Nb actions computed 162.6 12.6 6.4 8.6

Table 4.4: The results are averaged on 30 runs on both the examples in Figure4.7(a) and Figure 4.7(b)
with a branching factor of 3 and the �rst plan found mode. The advantage of using the geometric requests
(with) is clear when the table is cluttered (Figure 4.7(a)). In Figure 4.7(b) the geometric request fails as
there is not enough space to place the virtual object on the table even ifthere is enough space to place
the three books, which can be seen in the results. The examples inFigure 4.7(c) and Figure 4.7(d) give
very similar results to Figure 4.7(a) results.

constraints to the action linked to a speci�c operator. In order to achieve this, we need to transform the

operator de�nition to: hpre; act; const;e� i where const is a list of constraints under the form de�ned in

Subsection3.3.4.4, and adding the following line between Line4 and Line 5 of Algorithm 11:

IN  GetConstraints (t)

If no constraints are speci�ed (const = ; ), the above line does not add anything to the inputs.

In order to illustrate and assess this enhancement, we used the environment depicted in Figure 4.11(d),

and designed a domain, described in Figure4.11(a), Figure 4.11(b), and Figure 4.11(c). In this domain,

there are three new operators:

PlaceRC(R, O, S, Ap, AlreadyPlace): pre-condition, action and e�ects are the same as forPlaceR(R,O,S,Ap)

and it has one additional constraint, placed in the �nal constraint of the �r st sub-action description

in the Place action: 8Oi 2 AlreadyP lacef Oi; is reachable by ; Ap; true g. AlreadyPlace is the

list of object that are already placed on the destination table.

TestReach(O,Ap): has only a pre-condition: O.isReachable = Ap (no action, constraints, nor e�ects).

TestGoal: has only a pre-condition: 8O 2 AlreadyP laced O.isReachable = Ap where AlreadyP laced

is the group of object that has already been placed reachable to the human.

In the �gures, the \operator" PlaceX appears. It is not really an operator as it is replaced by one of

the three operatorsPlace, PlaceR or PlaceRC: by doing so, we create three di�erent domains, one where

no enhancement is used, one where a higher level action is used (PlaceR) and �nally one with a high level

action and a constraint speci�ed (PlaceRC). The method MoveObjs is recursive, and, when decomposed,

tries to apply the method MoveObj(O) with one of the objects available on the storing table. When

no more object is on this table, the method goes out of the recursive behaviour. In this domain, the

robot needs to place the three objects next to him (the red cube, the grey book, and the orange box, in

that order) reachable for the human, all at the same time. The di�culty h ere is that when placing the

orange box, it can hide and make unreachable one or both objects already placedon the table as seen
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4.4.2.1 Real robot implementation

The SGAP Framework and its enhancements were implemented on the PR2robot. Figure 4.12 shows

a scenario where the robot needed to place three objects on the table in front of the human, and the

human, once he saw all the objects, needed to choose one of them and take it. In order to achieve

this, the three objects needed to be reachable at the same time. Thetable was cluttered with two

boxes that the robot is not able to move, the human needs to participatein the tasks in order to

achieve the goal. The corresponding video combined with di�erent simulation cases is available here:

https://youtu.be/KUF4Gdhc2Do

(a) Initial world state (b) The human remove the grey box

(c) The three objects are accessible (d) The human takes one object

Figure 4.12: The implementation of the SGAP framework on a PR2 robot. The task is to place the
three objects in front of the human, in order to let him choose one of them. The table is cluttered and
need �rst to be emptied.

4.4.3 Cost driven search

The algorithm presented in Subsection4.3.2 enables HATP to prune out plans when the cost of their

�rst part is greater than the best plan already found (Line 4 to Line 7 of Algorithm 8). The cost used in

this algorithm is provided by the domain expert as input of the problem, the idea of this enhancement

is to compute the cost automatically at geometric level. The GRP framework computes this cost at the

same time as computing the GAS and return it alongside, it is then storedin the Action Solution (AS)

until the function GetCost (plancurr ) is used (it can be a sum or a maximum of all the tasks the current

plan contains).

Computing the cost at geometric level, where social rules can be takeninto account, enables the

system to explicitly take into account the human preferences. Inorder to illustrate this, we implemented

two scenarios depicted in the followings where we run the SGAP framework with the option of �nding all
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the possible plans (and returning the best one). In these scenarios, the interesting operator is Navigate

as the cost computation in its linked action, navigateTo , is based on the work ofSisbot et al. (2007b)

as it maximizes the cost when the robot navigates out of the human's �eld ofvision (behind the human

for example) or too close to him.

4.4.3.1 The \Book scenario"

In this scenario, a human asks the robot to bring him a book, but two copies of this book are available

in the environment. In order to choose the best book to bring to thehuman, the robot uses the costs

computed by the geometric reasoner. Figure4.13(a) and Figure 4.13(b) show the domain for this envi-

ronment, the higher method BringObj needs to choose either the bookO1 or O2 to bring to the green

human. Figure 4.13(c) and Figure 4.13(d) depict two world states where this domain has been used. In

the �rst one, the robot fetches the closest book, where the navigationdistance is the smallest. In the

second one the algorithm chooses the other book as, by taking the same path asthe previous example,

the robot would pass close and behind the blue human which increases the cost (without human = 7.9,

with human = 15.5).

With no information from the geometric level, the symbolic level would make a random choice on

which decomposition to apply. Adding these costs computation enable the symbolic planner to make

informed choices during its search for the best plan.

4.4.3.2 The \Paint scenario"

This second scenario is more complex than the �rst one as it involves more actions and agents: Figure4.14

and Figure 4.15show the symbolic domain used, where the top method isBringAll , and the robot needs

to bring to the client two green cubes. In the environment, there is one green cube, and two red cubes

that need to be painted (Figure 4.16 shows the starting world state). The blue agent can paint the

objects in green if needed. The client is the green human (A) and the red human is a co-worker occupied

in another task.

The main di�culty in this example is to choose which object to brin g to the client: the green cube

is easily accessible and does not need to be painted, the �rst red cube (top right) is also easily accessible

but makes the robot navigate behind the red human, and �nally the last cube (bottom right) is hard to

access, the robot needs to �rst remove the box obstructing his pathand then he becomes able to take

the object. This last possibility (removing the box) is depicted by the method PickObj (Figure 4.15(b))

where the robot check if the object is reachable. If it is not reachable, it tries to move any reachable

object (O" ) which in this case is the orange box.

The plan produced by our algorithm chooses to go fetch �rst the green cube (O1), then the red cube

(O3) at the bottom of the environment: even if more tasks are needed to getthis object (moving the

orange boxOB), it does not disturb the red human (by passing and manipulating behind him). These

examples and some others are shown and explained in the video availablehere: https://youtu.be/

mxDRQEGqQK4
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(a) Navigate(R,O1) (b) Pick(R,O1) (c) Navigate(R,A)

(d) PlaceR(R,O1,S1,A) (e) Navigate(R,O3) (f) Pick(R,Ob)

(g) Place(R,Ob,S') (h) Pick(R,O3) (i) Navigate(R,Ap)

(j) Place(R,O3,S2) (k) PaintGreen(Ap,O3) (l) Pick(R,O3)

(m) Navigate(R,A) (n) PlaceR(R,O3,S1,A)

Figure 4.17: The di�erent plan steps for the \paint scenario"
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4.5 Future work

As seen in the state of the art, this work falls into the category of a \Symbolic planner calling the

geometric reasoner", and more speci�cally in the sub-category of \in searchcalls". We proposed three

main enhancements of this algorithm linked to the features providedby the GRP framework presented in

Chapter 3. Even if these enhancements enable a faster computation in some domains, the main problem

remains, the exponential growth of the backtracking number when thebranching factor is big. In order

to tackle this problem we propose some possible line of works:

Choosing the backtrack point For now, when the backtrack is triggered, the last saved backtrack

point (BP) is loaded and the search continues from there. The idea is to change this behaviour by

introducing a weight on the BPs, and prioritizing the more promising ones. A criterion to determine

those interesting BPs can be provided by the geometry: for the BP created from a geometric action

projection, the size and shape of this action search space might be a goodindicator: a small convex

search space may not give as many opportunities as a large one.

The branching factor For now, it is set by the SGAP domain expert, but can be also provided by the

geometry or computed on-line. It can be computed based on the search spacesizes, or the current

needs of the algorithm, by extending some of them if no solution was found.

Postponing the motion planning Lagri�oul et al. (2013) argue that systematically computing the

geometric part alongside the symbolic part may not be always e�cient. A possible approach may

be to partially link the planners by enabling the geometric level to compute partially the actions

(just the world states, without the trajectories) and calling the m otion plan at the end. The GRP

framework already enables computing actions without motion plans, the challenge is to choose

when to call the motion plan or not, and the behaviour in case a postponed motion plan call fails.
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4.6 Contributions to the symbolic geometric planning in a nutshell

In this chapter, we propose two main contributions:

A symbolic geometric planning algorithm named Symbolic Geometric Action Planner (SGAP) which

combines HATP with the GRP framework from the previous chapter, by linking symbolic operators

to geometric actions and computing the shared predicates from the resulting world states. This

enables the planner to tackle challenges such as the rami�cation problem.

Enhancement of search in SGAP We also proposed some speci�c enhancements based on a tighter

communication between the layers. The �rst enhancement consisted on providing the symbolic

planner with possible requests to the geometric reasoner enabling it to check the potential feasibility

of an action (Subsection4.4.1). The second one was about providing the geometry with more

information to avoid future backtracks (Subsection 4.4.2). The last one consisted on making the

geometric level give to the symbolic planner the exact cost of an action based on social rules taking

explicitly the human into account to choose the best possible plan (Subsection4.4.3).

Table 4.6 summarizes the di�erences between the HATP algorithm and SGAP.
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Type HATP SGAP

Predicates Entirely given by the domain Partially computed from the
geometry

Operators hpre; e� i hpre; act; const;e� i

Methods Similar Similar

Entity description Symbolic Same identi�er as symbolic

Domain hM ; Op;Ei hM ; Op; Dg; E; E i

Problem hD; c0; m(p)i hDsgp; c0; wsinit ; m(p)i

Action Solution ho; stNextsi ho; gas; tNextsi

Cost Entirely given by the domain Computed by the geometry

Constraints None Possible to add

Rami�cation problem Not handled Partially handled

Applying operators Adds the e�ects to the current
context

Adds the e�ects to the cur-
rent context and computes
the shared predicates from the
world state

Pre-condition check Checks pre-conditions in con-
text

Checks pre-conditions in con-
text and test actions feasibil-
ity in world states

Projecting actions None Tests the feasibility and create
backtrack points for future al-
ternatives

Table 4.6: The di�erences between the HATP and SGAP algorithms
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Planning in the vicinity of humans rises a number of challenges and oneof them concerns the geometric

planning and reasoning problems. These problems relate to the link between the high level reasoning,

usually represented by the task planner but also by the supervision system, and the low level motion

planning, which computes actual trajectories that the robot can execute.

The idea behind the work of this thesis is to incorporate some symbolic knowledge into the geometric

reasoning in order to give both symbolic and geometric levels more leeway in their interactions. The

�rst example depicted in this dissertation is about a speci�c action, that requires symbolic knowledge at

geometric level, the handover (Chapter2). The knowledge acquired while designing this task helped to

build a framework generalizing the geometric reasoning and planning while providing di�erent actions

besides the handover (Chapter3). The last part concerns how this framework has been interleaved with

the higher level task planning (Chapter 4). These contributions are depicted in the followings:

Sharing the e�ort with the human for a handover, Section 2.3 This part presents an algorithm

that computes a handover con�guration (the position and arm placement of both the giver and

the receiver during a handover) using a grid based approach, where the position of the receiver is

sampled and the position of the giver inferred from it. The algorithm samples a large variety of

possible handover con�gurations and chooses the best one based on a human aware cost including

the human comfort (such as posture and displacement), the distance between the giver and the

receiver, the visibility of the giver by the receiver, and themobility parameter, which is an expression

of the task urgency. A user study was also held to determine the interest of this last parameter.

Multi-agent handover, Section 2.4 As one handover did not seem enough in some occasions, an al-

gorithm able to compute a solution where multiple agents are involved into a sequence of handovers

was designed. The algorithm is based on a lazy weighted A� , searching a path in a graph where

each node represents an agent holding the object and the edges represent the possible transitions:

either a navigation action, or a handover action. After a solution is found apost process is triggered

in order to optimize the schedule and avoid all possible collisions.

The handover gaze cues, Section 2.5 We propose a user study where the gaze cues during the ob-

ject exchange are considered in details. In the user study, the subjects were asked to assess the

naturalness of videos while equipped with an eye tracker enabling usto track their eye pattern

during the action. In the videos, the giver (which was, for half of the subjects, a human and for

the other half, a robot) placed an object in front of the subject while following one of the patterns:

looking only at the Object (O), looking only at the R eceiver (R ), looking �rst at the Object, then

at the R eceiver (OR ), looking �rst at the R eceiver, then at theObject (RO ), looking �rst at the

Object, then at the R eceiver, and �nally back to the Object (ORO ), looking �rst at the R eceiver,

then at the Object, and �nally back to the R eceiver (ROR ). Two patterns emerge from both the

subjective and objective measurements:OR and ROR .

Geometric actions formalization, Section 3.2 In this section, a proper formalization of an action,

as de�ned at the geometric level is given. An action can be characterized asa sequence (or a

parallelized sequence) of sub-actions which can be described by pre-conditions, search spaces, and

�nal constraints. An action needs a world state (a snapshot of the currentstate of every entity) to



Conclusion 147

be de�ned. In order to compute an action, its pre-conditions need to be true in this world state,

and a trajectory must be found in its search spaces between this world state and a �nal world state

computed based on its �nal constraints. The result is a geometric task which is a sequence (or a

parallelized sequence) of trajectories coupled with geometric causal links (ensuring the precedence

of each trajectory).

A framework using this formalization, Section 3.3 The formalization described in the previous

contribution was used to design a framework able to compute a number of basic actions such as

pick, place, placeReachable, navigateTo. Three algorithms are proposed,where the �rst one goes

over all the sub-actions one by one and tries to �nd a solution for each one.The second algorithm,

the one implemented, �nds all the transition world states between all the sub-actions of an action

and then computes the trajectories between them. The third algorithm computes all the possible

sequences of world states and, based on a human aware cost, computes the trajectories for the best

feasible one.

A symbolic geometric planning algorithm, Section 4.3 An algorithm which combines a Hierar-

chical Task Network planner with the previously de�ned framework is depicted. The planner

de�nes its basic operators as pre-conditions and e�ects. In order to apply an operator, the pre-

conditions are tested in the current context and the e�ects are addedto it in order to obtain the

new context where the next operator can be applied. In order to achievethe combination, we added

an action to the operator description, which is evaluated at the same timeas the pre-conditions.

To evaluate it, an external call to the geometric framework is done. Oncean operator's action is

computed, the resulting world state is used to retrieve the shared predicates (predicates computed

at geometric level and used by the symbolic level) which are added to the resulting context along-

side the operator's e�ects. These additions enable a combination between the two levels and enable

us to tackle partially the rami�cation problem.

Enhancement of the SGP algorithm, Section 4.4 We also proposed some speci�c enhancements

based on a tighter communication between the symbolic and the geometriclayers. The �rst en-

hancement consisted on providing the symbolic planner with possible requests to the geometric

reasoner enabling it to validate the feasibility of an action/operator. The second one was about

providing the geometry with more information to avoid future backtrac ks by using higher level

actions such as placeReachable rather than place and using constraints tolimit the search space

and �nal constraint of speci�c action's operator. The last one consisted on making the geometric

level give to the symbolic planner the exact cost of an action based on social rules taking explicitly

the human into account to choose the best possible plan among all the feasible ones.
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Cette th�ese porte sur le raisonnement et la plani�cation g�eom�etr ique dans le contexte de l'interaction

homme robot. Dans ce cadre, nous avons d'abord explor�e la tâche particuli�ere de transfert d'objet entre

un robot et un humain, puis, nous avons d�evelopp�e une approche qui permet de plani�er des actions

et de raisonner au sujet des informations g�eom�etriques disponibles. Finalement, nous avons combin�e

cette approche avec un plani�cateur de tâche permettant ainsi de traiter des probl�emes complexes et

int�eressants.

A.1 Transfert d'objet

L'action du transfert d'objet, comme son nom l'indique, est l'action o�u un agent (humain ou robot)

donne un objet �a un autre agent. Ma contribution dans ce domaine peut être divis�ee en trois parties.

La premi�ere partie concerne l'�echange d'objets entre un robot et un humain : sachant que l'endroit de

l'�echange n'est pas d�e�ni �a l'avance, le robot doit proposer une solution o�u il plani�e le mouvement de

l'humain pour s'assurer de la faisabilit�e de l'�echange. La deuxi�eme contribution �etend la premi�ere �a des

probl�emes incluant plusieurs robots et/ou plusieurs humains. La troisi�eme contribution concerne deux

�etudes utilisateurs qui nous ont permis de mieux comprendre certains comportements durant le transfert

d'objet.

A.1.1 Partage d'e�ort durant le transfert d'objet

La �gure A.1 montre un exemple o�u l'humain ne peut pas être atteint directement par le robot; celui-ci

choisi donc une solution \intelligente" en se rapprochant au plus pr�es de l'humain avant de lui tendre

l'objet. Nous avons pouss�e ce raisonnement plus loin en prenant en compte les envies/besoins de l'humain

a�n de choisir la meilleure solution. La �gure A.2 montre deux situations : dans la premi�ere, la personne

pr�ef�ere aller chercher l'objet au bar même si le robot pourrait venir le lui apporter �a sa table comme

montr�e dans la seconde situation.

(a) Situation initiale (b) Situation �nale

Figure A.1: Le robot ne peut pas atteindre l'humain directement, mais il lui propose une solution
acceptable pour e�ectuer le transfert d'objet.

A�n de trouver cet emplacement o�u les agents pourront e�ectuer le tr ansfert d'objet, nous nous

basons sur deux crit�eres : la faisabilit�e et la qualit�e.

La faisabilit�e : a�n que le transfert d'objet soit faisable, les deux agents doivent être dans une position

stable lors de l'�echange et pouvoir acc�eder �a l'objet en même temps; la position doit être sans
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(a) Situation initiale (b) Situation �nale

(c) Situation initiale (d) Situation �nale

Figure A.2: Une personne press�ee de r�ecup�erer sa boisson, se sentira plus�a l'aise d'aller chercher sa
boisson au bar, mais une personne un peu moins mobile, ou un peu moins impatiente, pr�ef�erera attendre
que le serveur (le robot) ram�ene la boisson �a sa table.

collision et, �nalement, les deux agents doivent pouvoir atteindre laposition d'�echange �a partir de

leur positions initiales respectives.

La qualit�e : a�n d'�evaluer la qualit�e d'un transfert d'objet, nous allons nous bas er sur les crit�eres

suivants :

- la notion de\prox�emie" Hall (1966)

- la visibilit�e du donneur par le receveur

- le confort de la position de transfert bas�e sur un coût \musculo-squelettique"

- l'e�ort de d�eplacement fourni par l'humain

En plus de ces crit�eres, nous voulons r�ealiser la tâche en un minimum de temps, et pour faire cela,

la m�ethode suppos�ee la plus rapide est de partager la navigation entre les deux agents. Ceci dit, ce

partage est antagoniste �a l'id�ee de minimiser l'e�ort de d�eplacement que l'humain doit fournir. Dans le

but d'�equilibrer ces deux crit�eres, nous utilisons un param�e tre nomm�e \mobilit�e". La mobilit�e est �elev�ee

pour l'exemple A.2(a), A.2(b) et elle est basse pour l'exempleA.2(c), A.2(d) .
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L'algorithme utilis�e pour trouver une solution �a ce probl�eme corres pond �a une boucle qui se d�eroule

en 4 �etapes: d'abord, d�e�nir al�eatoirement une position pour le rec eveur; ensuite, en se basant sur un

ensemble de positions relatives des agents d�ej�a en position de transfert d'objet, nous pouvons d�eduire la

position du donneur. Ensuite, nous calculons la trajectoire des deux agents et, �nalement, nous calculons

un coût en prenant en compte la qualit�e du transfert et la pr�ef�erence de l'humain concernant la mobilit�e.

A�n d'am�eliorer les performances de cet algorithme, nous avons adapt�e le tirage al�eatoire de la

position du receveur a�n de la biaiser vers les positions les plus prometteuses. Pour cela, nous avons

utilis�e une partie des crit�eres de qualit�e (li�es uniqueme nt �a la navigation) pour �evaluer les zones les plus

int�eressantes de l'espace, et y diriger nos recherches.

La �gure A.3 montre le même sc�enario avec di��erentes valeurs pour la mobilit�e, et la �gure A.4

montre les r�esultats obtenus.

(a) m = 0 (b) m = 0.35 (c) m = 1

(d) m = 0 (e) m = 0.35 (f) m = 1

Figure A.3: Trois valeurs de la mobilit�e utilis�ees pour g�en�erer trois di� �erentes strat�egies de transfert
d'objet. Les trois images du haut montrent les trajectoires, alors que les trois du bas montrent la position
�nale.

A.1.2 Transfert d'objet entre divers agents

Dans le but d'�etendre le travail sur le transfert d'objet, nous avons int�egr�e la possibilit�e de transfert

d'objet entre plusieurs agents: a partir d'un agent source, on atteint l'agent but en passant par un

nombre ind�e�ni d'agents, tout en prenant en compte leur confort et leurs occupations du moment ainsi

que tous les d�eplacements n�ecessaires.
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trouvent trop �eloign�es les un des autres, l'�echange est consid�er�e infaisable). Dans un second temps, ce

graphe est mis �a jour r�eguli�erement avec les informations du graphed'�etat o�u un calcul plus �n permet

de savoir si un �echange d'objet entre 2 agents est possible ou non.

Le graphe d'�etat est constitu�e :

� de n�uds qui correspondent �a une position associ�ee �a un agent: en d'autre terme, chaque n�ud

repr�esente un agent qui tient l'objet �a une position donn�ee. Notez qu'il est donc possible que

di��erents agents puissent tenir l'objet �a une même position (p as en même temps bien sûr).

� d'arrêtes qui peuvent être de deux types: soit un simple d�eplacement de l'agent avec l'objet, soit

un transfert d'objet.

A�n de trouver une solution, le graphe est explor�e �a l'aide d'une vari ante paresseuse et pond�er�ee du

A* Cohen et al. (2014). L'heuristique utilis�ee dans cette variante, comprend bien sûr une estimation de

la distance au but, mais aussi les di��erents transferts d'objet possibles (grâce au graphe d'agent).

A.1.2.2 Le post processing

Apr�es avoir trouv�e une solution bas�ee sur le graphe d'�etat, un cert ain nombre d'informations n�ecessite

encore d'être calcul�e:

Synchronisation Une �etape de synchronisation (bas�ees sur des r�egles simples) permet de trouver

l'enchainement d'actions le plus e�cace a�n d'atteindre le but.

Trajectoire de retour Bien que les trajectoires soient calcul�ees pour tous les agents quitiennent

l'objet, nous consid�erons que ceux-ci doivent revenir �a leur position de d�epart. Ces trajectoires

de retour sont donc calcul�ees et ajout�ees dans le plan.

Collision entre agents Durant le calcul du plan �a l'aide du graphe d'�etat, les collisions ent re agents

sont ignor�ees. Durant cette phase, l'algorithme v�eri�e qu'il n'y a e�ectivement pas de collision, et

si il en trouve, il essaie de trouver d'autres trajectoires pour lesagents cr�eant la collision a�n de

d�egager le passage.

A.1.2.3 R�esultats

Nous avons test�e l'algorithme dans plusieurs cas, repr�esent�es dans les �gures A.5(b) , A.6, A.7 et A.8.

Cela a permis de trouver le temps de calcul moyen (20,8s) ainsi que dev�eri�er que ce temps est tr�es

d�ependant de l'environnement et de la qualit�e de l'heuristiq ue:

premier exemple labyrinthe grande salle robots r�eels
mean time (s) 11.2 17.9 40.7 13.4

Table A.1: le temps de calcul moyen pour chaque environnement
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Les sujets ont regard�e chacune des vid�eos 2 fois et apr�es la visualisation de chaque vid�eo ils devaient

remplir un questionnaire leur demandant d'�evaluer le caract�ere naturel du mouvement. Les vid�eos �etaient

montr�ees au participant dans un ordre al�eatoire et une vid�eo d'entr ainement leur �etait montr�ee avant les

tests.

Durant les �evaluations, les sujets �etaient �equip�es d'un eye t racker permettant de savoir o�u ils regar-

daient �a tout moment.

A.1.3.2 R�esultats

L'analyse des donn�ees subjectives (�gureA.10) montre que les patternsOR et ROR sont signi�cative-

ment mis en avant par les sujets.

Figure A.10: Evaluation de la naturalit�e par rapport aux patterns et �a la vitesse du mouvement

D'autre part, au niveau des r�esultats occulom�etriques, nous pouvons remarquer (�gure A.11) que

dans le cas d'un �echange entre humain, le regard du receveur se porte principalement sur le visage du

donneur alors que pour un �echange robot-humain, le regard de l'humain receveur sera moins d�etermin�e.

Nous supposons que plus le mouvement semble naturel plus les donn�ees entre l'humain et le robot seront

identiques. Nous remarquons donc que pour les patternOR et ROR chez le robot les donn�ees sont plus

proches de celles relev�ees pour l'humain que pour le reste des patterns. A noter que le pattern ORO fait

exception: il est tr�es proche des donn�ees relev�ees pour l'humain; nous supposons que ce comportement

chez le receveur est dû �a une attente d'une con�rmation visuelle du robot apr�es le dernier regard vers

l'objet, et ne correspond pas exactement �a ce qui est recherch�e.
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Figure A.11: La distribution visuelle de l'attention entre les centres d'int �erêt par rapport aux di��erents
\patterns" et au type du donneur.
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A.2 Raisonnement et plani�cation g�eom�etrique

Dans le cadre de la plani�cation et du raisonnement dans l'entourage d'unhumain, nous avons d�evelopp�e

un framework. Sur la base de donn�ees symboliques simples telle que robot R1 attrape l'objet O2, ce

framework est capable de calculer, non seulement les trajectoires qui permettront d'atteindre ce but,

mais aussi de trouver les con�gurations �nales de tous les agents et objetspr�esents dans la sc�ene et ceci

en prenant en compte, au besoin, les di��erents placements, saisies et rotations.

Pour atteindre ce but, chaque action a �et�e d�e�nie de mani�ere auton ome, avec des entr�ees et un

comportement sp�eci�que. Par exemple, pour plani�er une action o�u le robot attrape un objet, les entr�ees

sont l'identi�ant du robot, et l'identi�ant de l'objet. Comme le lec teur peut s'en douter �a pr�esent, il n'y

a pas besoin de d�e�nition num�erique du but �a atteindre (pas de con �guration d�e�nie �a atteindre) ce qui

sort du domaine de la plani�cation de mouvement, et se trouve au niveau dela plani�cation g�eom�etrique

en g�en�eral.

�Etant donn�e le caract�ere continu (même si il est discr�etis�e) du domaine dans lequel la plani�cation

g�eom�etrique a lieu, la con�guration �nale est rarement unique, cr �eant ce que nous appelons des alter-

natives: pour une seule action sp�eci��ee, un certain nombre (d�ependant de l'espace de recherche) de

con�gurations but peut être trouv�e et utilis�e.

A�n de trouver des solutions aux di��erentes actions disponibles (Pi ck, Place, PlaceReachable, Stack,

navigateTo, Drop) deux algorithmes ont �et�e d�evelopp�es. Le premier peut être d�ecrit ainsi:

� Trouver l'espace de recherche dont la tâche a besoin. Par exemple,pour un Pick, l'espace sera

constitu�e des di��erentes saisies disponibles, pour un Place, il s'agirait de la surface de pose de

l'objet en question.

� Dans une boucle avec une condition d'arrêt au nombre d'essais:

{ Tirer au hasard un point dans l'espace de recherche (pour un pick, un grasp est tir�e)

{ Calculer, utilisant les techniques de cin�ematique inverse, les con�gurations utilisant ce point

(pour un pick, la position du bras est calcul�ee)

{ La chemin liant la con�guration initiale et la con�guration ainsi calcul�e e est plani��ee.

Si une �etape de la boucle �echoue (la premi�ere car toutes les possibilit�es ont �et�e explor�ees, la deuxi�eme

car il n'existe pas de position respectant les contraintes et la troisi�eme car il n'existe pas de chemin

sans collision) l'algorithme retourne au d�ebut de la boucle jusqu'�a trouver une solution ou atteindre un

nombre maximum de tests.

Le deuxi�eme algorithme propos�e fait intervenir une composante li�ee �a l'homme: a�n de le prendre

explicitement en compte, la premi�ere �etape de l'algorithme est remplac�ee par un choix d�eterministe du

point pr�esentant la meilleure possibilit�e. En utilisant une ap proche bas�ee sur des coûts, repr�esentant des

r�egles sociales (tel que respecter une distance de confort/s�ecurit�e de l'homme, la visibilit�e du robot par

l'humain et ainsi de suite), il est possible de trier les points, d'un point de vue acceptable pour l'humain,

du meilleur au moins bon. Ainsi, le choix des points devient d�eterministe.
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Le reste de cette section sera d�edi�e aux r�esultats d'une part, et aux di��erents rôles et fonctionnalit�es

d'autre part de ce framework.

A.2.1 R�esultats et discussion

A�n de tester le plani�cateur, trois actions di��erentes ont �et�e t est�ees: le Pick, le Place et le Place

Reachable. Pour cela, une con�guration est tir�ee au hasard (comme repr�esent�e dans la �gure A.12) et

�a partir de cette position, on demande au plani�cateur de calculer l'action (150 requêtes pour chaque

action). Le Tableau A.2 montre les r�esultats obtenus, divis�es en deux parties: �a gauchesans plani�cation

de mouvement et �a droite avec. La raison de cette division est de montrer la vitesse du plani�cateur

g�eom�etrique de mani�ere ind�ependante de la plani�cation de mouv ement.

Une des premi�eres remarques est que la plani�cation de mouvement prend presque tout le temps.

D'autre part, l'action PlaceReachable prend plus de temps que le place due au calcul additionnelle

obligatoire pour assurer l'atteignabilit�e de l'objet par l'autre agent (p laceReachable tente de placer l'objet

de telle fa�con �a ce qu'un autre agent puisse l'atteindre). On peut aussi noter que le nombre de solutions

explor�ees dans la partie sans plani�cation de mouvement est signi�cativement inf�erieur �a celui avec la

plani�cation de mouvement: l'algorithme �echoue souvent �a trouver un e trajectoire. Chose qui est aussi

visible dans les deux derniers param�etres, le nombre d'appels �ala cin�ematique inverse est plus grand

du côt�e droit du tableau et le nombre d'appels moyen au plani�cateur de mouvement estt 2 avec une

variance t 2.

(a) (b)

(c) (d)

Figure A.12: Di��erents �etats initiaux o�u l'action Pick a �et�e test�ee
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pour une action sans plani�cation avec plani�cation

Pick moyenne variance �ecart type moyenne variance �ecart type
Temps 0.026 0.0001 0.0108 2.8553 17.1426 4.1403
Nb Sol test�e 2.525 3.6193 1.9024 8.2130 124.558 11.1606
Cin�ematique inverse 4.61 4.5379 2.1302 11.4556 128.899 11.3534
Plani�cation de mouvement - - - 2.0532 2.1687 1.4726
Place
Temps 0.0201 0.0007 0.0270 2.7153 22.8922 4.7845
Nb Sol test�e 4.4522 19.7352 4.4424 18.5033 1166.78 34.1582
Cin�ematique inverse 4.9296 7.3216 2.7058 11.7219 217.101 14.7344
Plani�cation de mouvement - - - 2.0463 2.4548 1.5667
Place Reachable
Temps 0.0477 0.0016 0.0403 3.0798 47.1862 6.8692
Nb Sol test�e 5.5577 78.4879 8.8593 12.2692 236.735 15.3862
Cin�ematique inverse 5.1658 10.5303 3.2450 9.4359 57.8741 7.6075
Plani�cation de mouvement - - - 1.8846 1.8969 1.3773

Table A.2: Temps signi�e le temps de calcul, Nb Sol test�e signi�e le nombre de solution test�ees.
Cin�ematique inverse et plani�cation de mouvement r�ef�ere au nomb re d'appels respectifs aux algorithmes
correspondant. Ces chi�res sont calcul�es sur 150 actions r�eussies.

A.2.2 Alternatives

Comme signal�e auparavant, le plani�cateur g�eom�etrique est capable de calculer non seulement une solu-

tion pour l'action, mais aussi, au besoin, di��erentes alternatives pour cette même action: le choix �etant

laiss�e au plani�cateur g�eom�etrique, il doit être aussi capable de les changer quand le besoin s'en fait

sentir. La �gure A.13 montre di��erentes alternatives de l'action Pick

(a) Premi�ere alternative (b) Deuxi�eme alternative (c) Troisi�eme alternative

Figure A.13: Di��erentes alternatives pour l'action Pick

A.2.3 Faits

Le plani�cateur et raisonneur g�eom�etrique est aussi capable de calculer di��erents faits tel que \un objet

est sur un autre objet", ou \un objet est dans un autre objet". Ces capacit�es de raisonnement englobent

aussi certaines capacit�es des agents tels qu'\un agent peut atteindretel objet" ou \peut voir tel autre

objet". La �gure A.14 montre di��erents types de faits.
















