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Geometric reasoning and planning in the context of human robot interacti on

by Mamoun Gharbi

In the last few years, the Human Robot Interaction (HRI) eld has been in the spotlight of the robotics
community. One aspect of this eld is making robots act in the presene of humans, while keeping them
safe and comfortable. In order to achieve this, a robot needs to plan its @ons while explicitly taking
into account the humans and adapt its plans to their needs, capacities ah preferences.

The rst part of this thesis is about human-robot handover: where, when and how to perform them?
Depending on the human preferences, it may be better, or not, to shire the handover e ort between him
and the robot, while in other cases, a unique handover might not be enougto achieve the goal (bringing
the object to a target agent) and a sequence of handovers might be neededn any case, during the
handover, a number of cues should be used by both protagonists involveid one handover. One of the
most used cue is the gaze. When the giver reaches out with his arm, he @hid look at the object, and
when the motion is nished, he should look at the receiver's face todcilitate the transfer.

The handover can be considered as a basic action in a bigger plan. The sedopart of this thesis
reports about a formalization of these kind of \basic actions" and more complexones by the use of
conditions, search spaces and nal constraints. It also reports about a aimework and di erent algorithms
used to solve and compute these actions based on their description antigir interdependencies.

The last part of the thesis shows how the previously cited frameworkcan t in with a higher level
planner (such as a task planner) and a method to combine a symbolic and genetric planner. The task
planner uses external calls to the geometric planner to assess theafgbility of the current task, and in
case of success, retrieves the state of the world provided by the geetnic reasoner and uses it to continue
the planning. This part also shows di erent extensions enabling a &ster search. Some of these extensions
are \Geometric checks" where we test the infeasibility of multiple actions at once, \constraints" where
adding constraints at the symbolic level can drive the geometric seatt, and \cost driven search" where
the symbolic planner uses information form the geometric one to prune ducostly plans.



Version frarcaise

Au cours des derneres anrees, la communaue robotique s'est largment ineresee au domaine de
l'interaction homme-robot (HRI). Un des aspects de ce domaine est de fadr agir les robots en pesence
de I'nomme, tout en respectant sa fcurie ainsi que son confort. Bur atteindre cet objectif, un robot
doit plani er ses actions tout en prenant explicitement en compte les humains a n d'adapter le plana
leurs besoins, leurs capacies et leurs pekrences.

La premere partie de cette ttese concerne les transferts d'obgts entre humains et robots : a1, quand
et comment les e ectuer? Selon les peerences de I'Homme, il & parfois pegrable, ou pas, partager
I'e ort du transfert d'objet entre Iui et le robot. A certains moment s, un seul transfert d'objet n'est
pas su sant pour atteindre I'objectif (amener I'objeta un agent cibl e), le robot doit alors plani er une
f£quence de transferts d'objet entre plusieurs agents a n d'arrvera ses ns. Quel que soit le cas, pendant
le transfert d'objet, un certain nombre de signaux doivent étreechanges par les deux protagonistes a n
de eussir l'action. Un des signaux les plus utiliees est le regard Lorsque le donneur tend le bras a n de
transkrer I'objet, il doit regarder successivement le receveupuis l'objet a n de faciliter le transfert.

Le transfert d'objet peut étre consicee comme une action de base @ns un plan plus vaste, nous
amenanta la seconde partie de cette trese qui pesente une forralisation de ce type d'\actions de base"
et d'actions plus complexes utilisant des conditions, des espace® decherche et des contraintes. Cette
partie rend aussi compte de l'architecture et des dierents algorithmes utilies pour esoudre et calculer
ces actions en fonction de leur description.

La dernéere partie de la trese montre comment cette architecture peut s'adaptera un plani cateur de
plus haut niveau (un plani cateur de taches par exemple) et une nghode pour combiner la plani cation
symbolique et geonetrique. Le plani cateur de tAches utilise des appelsa des fonctions externes lui
permettant de \eri er la faisabilie de la tache courante, et en cas de suces, de ecuperer letat du
monde fourni par le raisonneur geonetrique et de l'utiliser an de poursuivre la plani cation. Cette
partie montreegalement dierentes extensions de cet algorithme, tels que les \validations geornetriques”
al nous testons l'infaisabilie de plusieurs actionsa la fois ou \l es contraintes" qui permettent au niveau
symbolique de diriger la recherche georretrique ou encore \rechiche dirigee par co0t" au le plani cateur
symbolique utilise les informations fournies par la partie geonetrique a n deviter le calcul de plans trop
colteux.
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This thesis enters into the so-called human-robot interaction (HRI) eld. As de ned by Goodrich
and Schultz (2007, HRI tries to understand and shape the interactions between one or mitiple humans
and one or multiple robots. In other words, how exactly an autonomous robot (or nultiple autonomous
robots) needs to behave when brought in the vicinity of humans, and mog speci cally when they need
to cooperate or help one (or more) of these humans.

One interesting part of this eld is to provide robots with enough autonomy to let them perform and
execute tasks and actions in this human environment. In order to achiee this, they need to \think" and
infer from the geometric properties of the real world. The main focus ofthis thesis is to equip robots
with geometric reasoning enabling them to plan their actions. This panning is done while taking into
account the environment properties but also the human preferenceand social rules.

In the beginning of this thesis we propose an approach to let a mobile mapulation robot (such as
the PR2 from Willow Garage (2008) handover small objects to a human, which is extended to a multipe
agent case, and where the interaction cues at the exchange moment are stad. A generalisation of this
kind of geometric reasoning is also proposed and then coupled with highdevel planning in order to
provide the robot with even more autonomy.

1.1 Human-Robot Interaction

Bringing autonomous robots into our houses and work places rises a number challenges that need to
be tackled in order to achieve this integration. Among these challengeswvo categories can be isolated:
hardware and software challenges. The hardware challenges cover the dgs of the robot shapes, such
as the skin, the face, or the eyes. Speci c actuators and sensors alsoltwegs to this category.

The software challenges, this work belongs to, cover a number of eldsugh as task planning, super-
vision, belief management, human-aware motion planning, situation assement and so on. Among these
challenges, the one interesting us concerns planning the geometictions needed by the robot to perform
tasks in a human environment. In other words, we want to endow the robotwith actions enabling it to
interact with its environment in general and with the humans in parti cular.

Integrating autonomous robots in human environments can serve multiplepurposes. For example, a
service robot can assist and help elderly people in their houses for enyday life. A guiding robot, can
detect and nd lost people and help them reach their destination. Another example is the robot co-
worker, as depicted in one of the SAPHARI project (ttp://www.saphari.eu/ ) use cases. The humans
interacting with this kind of robot are \experts", which means they sh ould be accustomed to work with
the robot in contradiction with the previous examples where the uses are more likely naive ones (not
accustomed to the robot). The robot co-worker can be used for multiple taks such as helping tidying a
workspace, delivering objects, lifting heavy objects or perforntig precision tasks.
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1.2 Geometric planning

Planning the motions of a robot in a human environment brings a number of §sues: the rst one concerns
the security of the human. When the robot plans its motions close to thehuman, it needs to take into
account the possibility of the human moving in an unexpected or expeted way. For example, when
walking, a human will most likely continue walking. Taking this motion i nto account helps to ensure his
safety. Another important issue concerns the comfort of the human, evenvhen insuring this safety, some
motions can create uncomfort or lead to a misunderstanding of the robots Heaviour. Planning while
taking this, and other social rules that humans use in a daily basis, ito account, is called Human-Aware
Planning.

The supervision asks geometric plans following the plan provided byhe task planner which (should)
deals with symbolic knowledge. A number of researches, such &hallab et al. (2004, focus on this
task planning while in others, such asLaValle (2006, the main interest lies in the motion planning area.
Between these two research topics, there is a gap where the symboknowledge should be transformed
into information usable by the motion planner. This is especially important in human-robot interaction,
as the information about the humans are both symbolic and geometric and needotbe dealt with at both
level successfully. This work tries to bridge the gap between thénigh level symbolic planning and the

low level motion planning.

The rst milestone in this path was to design and improve a unique tak which is the handover
(Chapter 2). A second contribution consisted in proposing a global framework able taommunicate with
both symbolic reasoning and motion planning where multiple actions sule as pick, place and navigate
where implemented (Chapter3). The last part consists on a tighter interleaving between the synbolic
layer and this framework (Chapter 4).

1.3 Contributions
The main contribution of my thesis are:

- Giving the robot the ability to choose where and how to perform a hanaver with a human while
taking into account his safety, comfort, capabilities and preference. When planning this handover,
the robot computes both its path and the human path in order to assess the dasibility of the
task using a combination of grid-based and sampling-based methods. Thigork is presented in
Section 2.3,

- Extending the previous work to a multi-agent task where the goal is tobring an object from an
agent to another one (agents can be either robots or humans) through a sequemof handovers.
This approach also takes into account the HRI constraint related to the posible humans in the
environments, and is graph-based using a Lazy Weighted A*. This work is pgsented in Sectior2.4.

- Studying the gaze behaviour of both givers and receivers during a hatover (or assimilated tasks),
in order to de ne gaze pattern allowing a more understandable and humaraware task execution.

This work is presented in Section2.5.
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- Proposing a framework (and its formalization) in order to create and plan adions at geometric
level. This framework, called Geometric Reasoner and Planner (GRP)is able to compute, based
on symbolic information (such as the agent performing the task, the objecto manipulate or the
support table), complex actions such as pick, place or navigate. This wdris presented in Chapter3.

- Developing the Symbolic Geometric Action Planner (SGAP) which interleaves task and geometric
planning and produces plans that contains, in addition to the classicalsymbolic plan, the geo-
metric information, such as the trajectories, relative placements grasps, and postures, needed to
execute the plan in the real word. This framework, by using facts compted at geometric level and
backtracks, is able to tackle the rami cation problem. This work is presented in Section4.3.

- Adding a number of powerful heuristics enabling SGAP to decreas¢he combinatorial explosion
resulting from the complexity of the geometric world, or the symbolic models. This heuristics use
constraints, di erent level of actions, cost computation and speci ¢ request to the GRP framework
to enhance the search e ciency. This work is presented in Sectiort.4.
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2.2 The dierent handover phases and their main contributions

Figure 2.1 shows the four di erent handover phases: taking the decision, apgraching the agent while
preparing the handover, giving/taking the object, and disengaging. Theg phases are composed of two
parts, a timeline of the di erent actions the agents need to perform,and a sequence of communication
cues to make the handover as uent as possible, the next subsectiongesent in more details these four
phases and their components.

2.2.1 Taking the decision

Three di erent reasons might support the decision of a robot to performa handover:

The other agent (a human or a robot) asks for an object, and the robot performs a andover to
give it to him.

As a proactive behaviour, the other agent needs a handover and the robot pposes it to him.

The robot needs an object and asks the other agent to give it to him.

This phase is related to the more generic eld of task planning (analysd in Ghallab et al. (2004)
which is more detailed in Chapter 4.

2.2.2 Approaching the other agent while preparing the handover

In this phase, the agent needs to perform three actions:

Getting the object  Optional for the giver as he may already have the object in hand, and doesh
exist for the receiver. This action is about fetching the object, andthe most important part here,
is the grasp: it may have a direct impact on the future handover. Varous studies have been done
in the eld of grasping with robots, part of them depicted by Bicchi and Kumar (2000 and some
of them, detailed in the next paragraph, focused on the particular probém of grasping in order to
handover the object.

Numerous contributions concern this particular topic, among them, Berenson et al.(2008, where
the authors choose the grasps for the objects accounting for the future #ions, for example, when
placing a glass in a dishwasher, some grasps will not work while others Wi Pandey et al. (2012
extended this idea to the handover, where a grasp is chosen in ordés leave enough space to allow
another grasp. Aleotti et al. (2012 and Aleotti et al. (2014 also choose the grasps accounting
for the receiver: they segment the object, nd the \handles" of this object (a hammer handle for
example), and perform the handover while presenting this part to he receiver. Kim et al. (2009
have a similar approach but introduce the notion of dangerous features carerning objects such
as a knife sharp edge, and plan a change of grasp, in case the robot needs to gralsp object

1An agent is someone or something able to act and change its enironment, it can be a human or a robot.
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with the rst hand, take it with the other hand and then give it to a hum an while presenting the
non-dangerous part.

While these papers focus on nding an algorithmic solution to this probdem, Chan et al. (20133
and Chan et al. (2014 propose a learning approach where the robot learns how to grasp the objext
that are exchanged by the surrounding humans.

Choosing a handover posture  We believe that this choice should be made while taking explicitlythe
human and the environment in general into account. The position should &vour the human comfort
while enabling a great latitude (for example, handovers above a counteor through a window should
be possible). In this phase, the choice concerns the general postuifethe agent is a human, but
the complete con guration if it is a robot.

Walters et al. (2007) show that humans with no prior interaction with a robot will prefer t o
receive an object from the sides if they are sitting or standing againsta wall, but will prefer a
frontal approach when standing in the middle of a room (the reason given ighat while sitting,
a robot might be intimidating and standing against a wall might restrain movements inducing an
uncomfortable situation). Koay et al. (2007 argue that the intimidation feeling disappears when
the human gets used to the robot, thus making the frontal approach the mostpreferred one in
all the cases. Sisbot et al. (20073 and Sisbot et al. (2010 base the robot placement on a list of
parameters such as the distances between the robot and the humaproxemicstheory, Hall (1969),
the visibility of the robot by the human (not going behind him or behind an obstacle) but also the
human arm comfort and the robot navigation distance.

On a slightly di erent direction, Shi et al. (2013 propose an approach where the robot performs a
handover with an already walking pedestrian, handing them yers. They propose a model based
on analysing humans distributing yers and implement this model to perform a user study on a
real robot.

Navigating to the handover position Human aware navigation is a widely studied eld and complex
as shown by the survey ofKruse et al. (2013. When navigating among humans, a robot needs
to take into account various parameters such as the humans' comfort and satig the dynamics of
the environment such as the humans' future movements and so on. Athte end of this action, the
agents need to be at the handover position (or in a close enough location) tbe ready to perform
the handover.

Communication cues

The communication cues (CC) for this phase (Approaching the other agent wile preparing the handover)
are depicted in Figure 2.2, it consists in the joint action signals. One of the agents signals to the dter
one his intention of performing a handover with him. If the other agent gets the signal, his attention will
focus on the agent and both of them should agree on this intention. If the otler agent does not get the
signal or does not agree to perform the handover, the rst agent will try agan until it seems clear that
no handover is possible, then he aborts the task. In the other case, blotagents establish the intention
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Yamane et al. (2013 adopt a di erent approach where they learn from a human motion database
how to perform a handover (either the nal position of the arms or the timing or the motion

legibility.)

The timing of the action Each agent needs to execute his motion at the right timing. Huber et al.
(2008 di erentiate between three time phases: the reaction time (the time the receiver takes to
begin its motion after the giver started his) the manipulation time (while both agents manipulate
the object) and the post-handover time (the disengagement phase). Téy nd that a handover
mean time is less than 2 seconds, the reaction time is around 0.35 seconalsd the manipulation
time is around 1.2 seconds. Koene et al. (2014 show through a user study the importance of
respecting the temporal precision over the spatial one: if the robots too fast, the human may
think the robot is upset, while if it is too slow he may feel bored orfrustrated.

The motion legibility As shown in a number of researches, such d3ragan et al. (2019, a legible
motion brings more comfort and safety feeling for the human, and the humarrobot handover also
follows this rule. Both Micelli et al. (2011 and Huber et al. (2008 show that a motion where the
end e ector executes straight lines is preferred over a motion in lhe joint space. Moreover,Dehais
et al. (2011 and Mainprice et al. (2010 assert that straight lines need to be combined with a higher
level motion planner taking into account the human comfort and safety. Palinko et al. (2014 go
as far as adapting the arm trajectory to the object weight in order to give to the receiver more
information about the object weight.

The arm control also plays an important role in human-robot interactions, the usage of motions
with limited jerk such as the one proposed byBrogiere et al. (2008 enables for a better comfort
while extending the arm. Di erent control strategies have been tested by di erent teams: Prada
et al. (2014 formalised and implemented a Dynamic Movement Primitives control strategy on a
robotic arm, Kajikawa et al. (2002 use the human-human handover analysis done b$hibata et al.
(1995 to de ne a control strategy and Erden et al. (2004 use a fuzzy controller to execute the
motion.

The second action during thegiving object phase is to release the object at a good timingMason
and MacKenzie (2005, Endo et al. (2012, Chan et al. (2013b, Jindai et al. (20195 and He and Sidobre
(2015 developed a force detection object in order to record data from humariuman handovers and
apply it to a controller when performing a human-robot handover. Cabibihan et al. (2013 achieve the
same detection with a glove like sensor worn by both participants. Thepurpose of all these approaches
is to make the robot release the object at the moment it detects the pairtcular forces, applied to the
object, corresponding to a rm grasp from both agents. This moment triggers the object release which
is an issue: it is often ambiguous (even for humans) and it can be done dung the agents motions.

Communication cues

During this phase, a number of signals need to be exchanged and the tone is the starting signal
for reaching out with the arm. Cakmak et al. (20110 claim that the robot reaching out with the arm
(moving the arm from a rest position to the handover position) is in itself the starting signal. Micelli
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work which incorporate the CC to the timeline. Inside a phase, the @ are not linked to the timeline,
but each phase needs its own signals to be achieved before its end. i§kchapter contributions can be
categorized following the di erent phases illustrated in the gure with the dark coloured parts.

Some contributions tackle the problem of executing handovers whildaking into account all or part
of these phases, for exampl&isbot et al. (2008 propose a state machine approach where they handle
interruptions and suspension when the robot already start reaching outwith the arm. In Fiore et al.
(2016 and in Karami (2014, they use a Partially observable Markov decision process (POMDP)to
choose which action to perform and when to perform it (for example, whe reaching out with the arm,
if the human attention is driven away from the robot, this one should erter in a stand by phase).
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2.3 Sharing the e ort with the human

The focus of this section is the particular problem of nding good object handover con gurations, which
is formulated as a special instance of the motion planning problem@hoset (1991, Choset et al. (2005,
LaValle (2006). We will consider mobile manipulators such as the PR2, exchanging olgct with a human
and introduce the notion of \shared e ort" in the handover plan. This wor k has been done in cooperation
with Jim Mainprice and presented by Mainprice et al. (2012).

In this work, both agents (involved in the handover, robots or humans) areconsidered, and both
their motions are computed, in a possibly cluttered workspace. Compting the human motion might
seem meaningless, as the human will not follow the computed trajectgr but the reason behind this
computation is to enable the system to nd solutions to problems whee the human cannot be reached
by the robot. Figure 2.5 illustrates this problem: the human is in a workspace not reachable bythe
robot who still wants to hand him over an object. By computing the human motions, the algorithm can
nd solutions to this problem and choose among them one compatible with he human preferences. For
example, in Figure 2.5(b), the robot proposes pro-actively a solution to the human which reducesis
displacement.

(a) Initial situation

(b) Final situation

Figure 2.5: The human cannot be handed directly the object, the robot needs to plara path for both
of them in order to achieve the task



Chapter 2. Handover 18

The human preferences may vary depending on the context: he may pfer not standing up, or not
moving from his actual location (as he may be buzzy) or, in contrast, he my be eager and in a hurry
to get the object and prefers moving toward the robot than waiting for it to come closer. One of the
criteria introduced and used here is themobility, which is a representation of this contrast (between the
least movements possible for the handover and the fastest possiblehdover) and enables the system to
balance between \shared e ort" and comfort.

(a) Initial situation (b) Final situation

(c) Initial situation (d) Final situation

Figure 2.6: A young person who is in a hurry to get his drink will express more corfort getting a glass
above the counter (a & b) while an older person may be more comfortable wite waiting for the robot to
navigate to him even if the task will take more time (c & d). The blue path is the robot navigation path,
and the green one is the human walking path.

We propose a formulation of the underlying planning problem and an e cient algorithmic solution.
Figure 2.6 presents an example of a handover task solved by our planner with di eent settings of the
mobility parameter.

This section is organized as follows: SubsectioP.3.1gives a formal de nition to the handover planning
problem. Subsection2.3.2 introduces a simple but yet computationally e cient algorithm based on a
combination of grid-based and sampling-based methods. Subsectidh3.4 presents the simulation and
experimental results obtained using this approach. Subsectio.3.5 shows an implementation on a real
robot of the algorithm and a user study done to test the relevance of thenobility parameter.
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2.3.1 The human-robot handover planning problem

In this subsection, a formal de nition of the handover planning problem is proposed. First, inputs
and outputs are presented, then the search space is de ned along witthe feasibility and interaction
constraints to be taken into account.

2.3.1.1 Inputs and outputs

The inputs of the problem can be summarized into: the initial con gurations of the givercignit and the
receiver g™t (q refer to the con guration), the kinematic model of both agents, and the environment
(and the position of every object in it).

In the rest of this section, as the robot and the human can both be either he giver or the receiver (It
is also possible to consider two robots or two humans), we will referd the two handover protagonists as
the giver (noted g) and the receiver (notedr). The human needs to be taken into account explicitly, two
paths (noted ) will be computed: the rst one, 4, the path taking the giver from its initial position to
the nal handover position, and the second one, [, that brings the receiver to his nal handover position.
Those paths are represented as parametric curves in their respegé con guration space.

2.3.1.2 The handover search space

Let's consider the con guration space Cspaceformed by the Cartesian product between the giver con-
guration space Cspacg and the receiver con guration spaceCspace:

Cspace= Cspacg Cspace

The con guration space of an agent consists on all the con gurations allowed by he kinematic of
said agent (more details are available in Sectior8.2). Thus Cspacecontains all con gurations allowed
for both agents involved in the handover. Finding the solution for this kind of problems implies to nd a
handover con guration Ghang = (gJ2"; @) 2 C (2™ is the giver con guration and g the receiver
one) which belongs to a subspac€spaceeasipe  Cspacerestricted by the constraints listed below:

Collision free  both agents con gurations, at the handover con guration thang, must be collision free
regarding self-collision, collision with obstacles and with each other This subspace is named
Cspacegree and is illustrated in Figure 2.7

Reachability both agents, at the handover con guration thang, must be able to reach the exchanged
object i.e. the gripper of the robot and the hand of the human must grasp theobject at the same
time. This subspace is namedCspacgeach and is illustrated in Figure 2.8.

Stability both agents, at the handover con guration thang, have to be stable regarding newton law of
mechanics. This subspace is hame@spacep and is illustrated in Figure 2.9.
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(a) Behind an obstacle (b) Behind the human

Figure 2.12: Two social uncomfortable positions where the robot is partially hiddento the human

Figure 2.13: The musculoskeletal comfort for a human in a handover con guration (as shan in Marler
et al. (2009)

Finally, the e ciency constraint that limits the total duration of the  handover and favours e cient
plans. This cost, cen, is computed based on the maximum value of the time taken by either agest to
reach the handover con guration thang -

Some of these desired constraints such as the human displacement andet action duration may
contradict one another (if both agents share the work load, the task will be @ne faster but if we minimize
the human displacement, the task will take longer as the robot must do masof the work). To balance
the impact of the di erent properties on the output plan, we use the mobility parameter re ecting the
human's physical capabilities and his eagerness to obtain the object.

Indeed, the handover duration may generate discomfort if it does not natch with the human possible
eagerness ourgency to get the object. High mobility values will balance motion and comfort constraints
to favour quicker plans, resulting in the nal cost de ned as:
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(a) With a standing human (b) With a sitting human (c) With a robot

Figure 2.14: Some handover con gurations for human-robot handovers and robot-robot handogrs
(these are just informative, more positions are available).

C=(Cmot * Ceont) (1 mobility )+ cen  mobility

Where mobility 2 [0;1]. As explained in next section, these interaction constraints and tleir corre-
sponding cost functions are evaluated during the planning process ahare combined together according
to the human preferences modelled by themobility parameter.

2.3.2 The proposed algorithm

This section presents the handover planner that was developed to copute human-robot handovers while
accounting for the interaction constraints introduced earlier. The approach relies on a combination of
grid-based and sampling-based algorithms that consider the workspace olmtles and the kinematics
models of both agents. After some grid based pre-processing, the metthaconsists of iteratively sam-
pling feasible handover con gurations, evaluating their cost and nally returning the minimal cost plan
obtained.

The main steps of the handover planner are sketched in Algorithml. The initialization phase, called
initGrids , consists on computing a planar grid where each cell contains informatiombout the agents
accessibility (if they can reach it or not) and the navigation distancesfrom each agent initial position to
this cell (Figure 2.15). In this phase, a set of preselected handover con gurations betweaethe two agents
is loaded (in some cases, multiple sets are loaded Figu14)

After the initialization, the algorithm enters a loop (from line 4 to 23), where each iteration consists
on nding a feasible handover con guration thang 2 CSpaceeasivie » Where the exact values of both agents
degrees of freedom are encoded. After the loop, the algorithm choosesettbest ghang according to the
cost presented in Sectiorn2.3.1.3

In order to nd a thang, the algorithm goes through 6 steps:

Sampling a random position,p = ( X;y; ), in the receiver accessible space (lin8)

Computing the navigation path | of the receiver from his initial position to this sampled position
(using a standard technique,Choset (1991), consisting of descending the distance gradient in the
pre-processed receiver grid) (lineb)
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Transforming p into a fully speci ed thang by iterating through the set of preselected handing over
con guration and choosing a collision free con guration. (line 7)

Extracting the givers position from ohang (line 11)

Computing the navigation path 4 of the giver from his initial position to this position (same
technique as ) (line 12)

Computing ghang COSt, as explained in the previous subsection. (lind.6)

If one of the steps fails (such as failing to nd a collision free con guation or a path) the algorithm
loops over the steps until a stopping criterion is satis ed (Line17to Line 21). When all the steps succeed,
the computed cost is compared to the stored handover con guration cost. flit is lower, the new thang
is stored and the loop continues. In the current implementation the stopping conditions combine two
criteria, and break out of the loop as soon as one of them is reached:

Maximum time  Set by the user, and checked after each loop, it stops once the maximurime is
reached.

A minimal improvement of the best current solution The user sets a threshold: if after a xed
number of iterations (also set by the user) the algorithm does not impove the cost with a di erence
bigger than the threshold, it breaks out of the loop.

The nal paths ¢ and  consist of a set of way points corresponding to the traversed cellseatres
interpolated by straight lines. The orientation along these paths is selected implicitly by facing the
agent to the next way point.

The next subsections describe in further details the processg done during the initialization phase
and the main steps of the algorithm. Some additional pre-processing thatan be done to speed-up the
sampling of constrained handover solutions are also described.

2.3.2.1 Distance propagation and initialization

In order to speed up the computation of feasible handover con gurations ad the cost evaluation of those
solutions, the method integrates a precomputing phase in which 2D gds are constructed and processed.
Two grids, depicted on Figure 2.15 one for the giver (referred to as thegiver grid) and one for the
receiver (referred to as thereceiver grid), provide an approximation of the free-space and the navigation
distance to the initial position. This enables to nd, at a very low c omputational cost, the regions of the
workplace accessible for each agent.

The free-space grids are computed using bounding cylinders of the agts in resting postures. The
resting postures, also depicted in Figure2.15 correspond to navigation con guration of the arms. A cell
is marked as free if when placed at its centre, the corresponding bouimg cylinder is not in collision
with the environment.

The accessible space and the navigation distance to the initial positin of a cell are simultaneously
computed with a standard wave propagation technique: for each cell, a clision free test is done with
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Algorithm 1 Computing handover plans
1: function ComputePlan (pg,pr,mobility ) . Giver and robot receiver position and the human
mobility
cost’est 1
G initGrids (pg; pr; Mobility )
while StopCondition ()do
p SampleReceiverPos
r  DescendOnReceiverGrid  (p)
Ohand BestFeasibleConf (p)
if Ghanda == NULL then
continue looping

10: end if

11: Ppgv  GetGiverPos  (thand)

12: g DescendOnGiverGrid  (prob)

13: if g== NULL then

14: continue

15: end if

16: cost ComputeCost (mobility, g, r,Chand)
17: if cost > cost?®st then

18: continue

19: else

20: cost®st  cost

21: StoreBest  (Ghand, g» r)

22: end if

23: end while

24: return  (Chand: g r) . agents handover con guration and their navigation path

25: end function

the bounding cylinder, then its distance to the initial positions is computed (not the Euclidean, the
navigation distance). Figure 2.15 shows the free space and the propagated distance of a robot and a
human from their initial position, where green cells are close to thenitial position and red cells are far.

As mentioned earlier, during the initialization phase, this method loads a set of prede ned handing
con gurations as illustrated in Figure 2.16. These handover con gurations are namedQyr in the rest of
the chapter. They are selected o ine and do not depend on the workspaceaior on the absolute position
of the agents. Thus, each con guration is de ned relatively to the recaver position and consists of the
receiver and the giver arm Degrees of freedom.

2.3.2.2 Sampling the receiver positions

The rst step of each iteration consists of sampling the receiver pogion and orientation p = (x;y; )
inside the accessible space stored in the pre-processed grigdeiver and giver grid). In order to sample
this triplet a cell is selected then a point is sampled inside tke cell and nally an orientation is randomly
sampled.

For each position p chosen, we nd only one handover plan, that we consider as the best giveaur
criteria, thus, it is important to sample the positions that yield be tter solutions. Subsection2.3.3provides
two enhancements of the pre-processing phase to bias both the sefion of the cell and the orientation
of the receiver.
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(a) Human distance grid ( receiver grid) (b) Robot distance grid ( giver grid)

Figure 2.15: The distance propagation (a) is human centred and (b) is robot centred. Tke green cells
correspond to nearest positions, and the red the farthest.

Figure 2.16: The preselected con gurations of a robot relative to a human standing andsitting.

2.3.2.3 Returning the best feasible con guration

The con gurations Qur illustrated in Figure 2.16 are sorted according to theceoms COSt (see Subsec-
tion 2.3.1.3. Here, this cost is computed independently from the environmentand is used as a heuristic.
Later, during the real cost computation, the obstacles are considered foa better estimation of the cost.
When searching for the best feasible handover con guration at the redger position p, the rst feasible
con guration is selected (i.e. collision free and accessible to the ger).

This process enables the method to nd solutions in constrained erironment (e.g. a handover through
a small windows connecting separated workspaces) while saving th@mputation time as the cost does
not need to be recomputed (due to the sorting).
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(a) Ring region (b) Solution on the side

Figure 2.18: The estimated handover positions of the robot, feasible (in blue) and losest feasiblecellnyin
(in red) for a given human position according to the reaching capabilites of the human and the robot.

Ceias = Cmot (1 m)+ gen mobility

This cost approximates the nal c presented in Subsectior2.3.1.3and is used to evaluate the quality
of the candidate handover solution.

In order to bias the human direction sampling, the valid cell that minimizes the robot motion from its
initial position to the ring region (in red in Figure 2.18) is stored in the combined grid When sampling
, directions facing this cell are favoured.

Next section provides simulation results of this algorithm with di e rent settings of the mobility
parameter.

2.3.4 Results

This section reports the algorithm ability to nd handover plans betw een a robot giver and a human
receiver in workspaces containing sparse obstacles, and the strategié produces using di erent values
of mobility , with it convergence rate when using di erent pre-processing driants and their sampling
schemes.

In order to assess its performance, the algorithm has been implementealong with test environments,
in Move3D Sineon et al. (2001 and simulations were performed on a computer equipped with a 2.26GHz
INTEL processor running on one core only.

2.3.4.1 The mobility parameter

Figure 2.19 shows three handover strategies that have been computed for the sanpgoblem using three
values of mobility . For low values of mobility , the human (receiver) is supposedly less involved, asked
as little e ort as possible, on the contrary high values of mobility require more e ort and participation
from him, resulting in faster handover strategies. This time enhamement results from the parallelisation
of the navigation (both agents navigate at the same time, making the global tine needed to achieve the
task smaller) and from the human navigation speed, which is higher than he one of the robot.
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(@ m=0 (b) m=0.35 (c)m=1

(dm=0 (e) m=0.35 fym=1

Figure 2.19: Three values of themobility parameters are used to generate three handover strategies.
The rst three pictures depict the resulting trajectories while the three bottom pictures show the nal
handover con guration that accounts for the 3D obstacles.

mobility = 0 : Generates a long path for the robot to reach the handover position but te human
does not move.

mobility = 0.35 : A shorter robot path to a feasible handover position over the table is dbwed by
a small displacement of the human.

mobility = 1 : Evenly shared e ort between the robot and the human enables a constraied handover
position through the shelves.

Note that depending onmobility the solution proposed by the planner can be radically di erent. The
resulting plan accounts for the feasibility of the handover position ard motion using the 3D models of
both agents even though planning of navigation motion is performed in 2D Cartsian space.

2.3.4.2 Performance of pre-processing variants

Figure 2.20shows the cost improvement over two seconds on a single run correapding to approximately
one thousand sampled positions and ve hundred fully tested handoverstrategies on the example of
Figure 2.19 The graphs illustrate the interest of the proposedcombined gridsand bias variants.

The simplest case obility =0) is not shown in the gure since all variants converge to the displayed
solution after a couple of iterations. However, for the two more complex ases, the basic pre-processing
shows di culty to nd handover above the table ( mobility =0.35) or through shelves (nobility =1). In
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Figure 2.23: The robot executes a handover of a can to the human, all these situationsave been tested
with success.

2.3.5.2 The user study

We ran a human-robot interaction experiment confronting the participants to choices of hand-over con-
gurations provided by our planner: the shortest-time feasible plan at the cost of substantial e ort asked
from the human, or the plan that minimizes the human e ort, at the cost of | ow global time performance.
Objective and subjective measures are discussed to validate our pgthesis.

Hypothesis

The mobility of the human receiver depends on the task and intrinsic parameters agsiated to the
receiver such as physical capacities or involvement in another task.

Accounting for the receiver mobility leads to more e cient hand-overs, especially when it matches
the context.

Experiment Design
We have designed an experiment consisting of collecting objectivand subjective data on human-robot
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eager to get the object while the second task should force the participarto pay less attention to the
handover.

Four types of interactions are then possible, referred to in the resof this section as:
: Shortest handover plan with chronometer

. Shortest handover plan with 'Sudoku'

: Less e ort handover plan with chronometer

(N @ I ve A

. Less e ort handover plan with 'Sudoku’

Figure 2.25and Figure 2.26illustrate type B and D scenarios.

(a) Init (b) Signal

(c) Handover (d) End

Figure 2.25: Type B scenario: the robot hands-over an object through the walls

Evaluation

In order to evaluate the uency and the e ciency of the interaction, t wo measures were extracted from the
videos recordings: the reaction time (time between the participant rst motion and the robot releasing
the ball) and the total time (between the robot starting motion, and the b all entering the tube). The
guality of the interaction is evaluated with a set of subjective criteria collected by compiling the survey's
answers.

The survey
The form combines three types of questionsppen closedand evaluation. Eight multiple choice questions
were asked, ve of which enable the participants to evaluate one of theriteraction criteria with a ve-point
Likert scale. The evaluation questions concern: the comfort of the handeer, the distance appropriateness,
the scariness of the robot, the surprising factor, the eagerness of thgarticipant to get the object and
the timing appropriateness. The closed questions aim to determingf the participants understood the
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(a) Init (b) Signal

(c) Handover (d) End

Figure 2.26: Type D scenario: the robot handover the object with a large detour

location where the object was going to be exchanged and if they found theotation natural or not.
Finally, participants were asked if they would have preferred to ke handed the object in one of the
alternative solution as depicted in Figure 2.24.

Results and discussion
In this part we compare the times measured on the video recordings andhe answers of the survey to
study the validity of our hypothesis. The results are reported in Figure 2.27 and Figure 2.28

Times

The total times of the task reported in Figure 2.27(a) indicate that the handover was realized faster
with motions of type A and B, which is normal as the handover chosen here fporitizes the handover
global time. It is actually faster in A than in B because of the reaction times reported in Figure2.27(b):
it is shorter for the participants given a time constraint and longer when they are given a game (for
both kinds of priority). This suggests that participants were more aware and prompt to accomplish the
handover when given a time constraint. We believe this particular olservation of the subjects' behaviour
corroborates the second part of our hypothesis that postulates that the cuent task modulates the
mobility of the human receiver.

Subjective measures
Concerning the subjective measures, they are summarized in Figar2.28 The scariness of the robot
a ects the users only in type D interaction, which is quite normal as they are focused on the Sudoku
and suddenly the robot reaches out near them with the object. The disances are felt less appropriate in
case A and B, the cases where the robot stand behind the wall. This can bexplained by the fact that
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(a) Total time (s) (b) Reaction time (s)

Figure 2.27: The total time and the human reaction time to ful | the goal

we couldn't give the subjects the eagerness feeling (also in the ge, the di erence between the cases
is not signi cantly interesting) and thus, they did not understand w hy the robot was so far. For the
same reason, the comfort was better appreciated in the two last cases. Hewer, nearly all the subjects
from case B would have preferred the other path for the robot, and while he subjects from D liked
unanimously the path, some in C would have preferred the other one. Tis shows that when the context

did not correspond to the robot actions, the subjects did not like it, which corroborates the rst part of
our hypothesis.

Figure 2.28

Conclusion on the user study
The user study con rms partially our hypothesis, but another one is needed where the eagerness param-

eter is handled more carefully. The videos of this user study are avhible at https://www.youtube.
com/playlist?list=PLJeAfn0C8Ci3DMyLG3Q1KzXgeCMIBglfw

This section was about how an agent can handover an object to another agent, irhe next section,
we address a more global problem of where and how to do a sequence of harglsvin order to bring an
object from an agent (robot or human) to another one.
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2.4 Multiple agent handover problem

This section presents the work done, in cooperation with Jules Waldhrt, concerning the computation of
a handover sequence, where multiple agents (humans and robots) arevimived in a task with a prede ned

goal which is to bring an object from a starting agent to a target one. This wok extends the human-robot
handover approach presented in the previous section, as it generaligé to multiple humans and multiple

robots exchanging an object to achieve a goal. Figur@.29illustrates this problem: di erent agents are

distributed into various zones, separated by walls, where countersllow them to exchange objects in
order to full the given goal. As the previous section, this one falls in the handover part concerning
the choice of the handover position and the reach out with the arm (Figure2.4), and it is presented by
Waldhart et al. (2015.

This work was done in the context of the SAPHARI project (http://www.saphari.eu/ ) where one
of the use cases is linked to the robot co-worker. For example, in a workep, one or multiple robots
might be asked to help and support the human workers by bringing them he tools and objects they
need. To achieve such a task, we developed a kernel algorithm for tasklatation taking into account
various criteria such as the humans' comfort and preferences, and thagents general availabilities.

The multiple agent handover problem involves computing which agentssequence to use and where
handovers should be performed, ensuring the plan is feasible whilpreserving humans' comfort. Various
criteria are taken into account such as the human e orts, the time, the energy and so on. In Figure2.29(b)
even if a handover is possible between initial and target agents (both tmans), the algorithm chooses to
use a robot to do most of the navigation, in order to reduce their e ort.

This kind of problem can be solved using a combination of symbolic and geontréc planning, Dornhege
et al. (2012, Kaelbling and Lozano-Perez(20119, Karlsson et al. (2012: these approaches will solve the
problem, but does not enable to nd, e ciently, an optimal solution bas ed on the parameters cited earlier
(note that using a task planner alone will be under e cient as the problem is geometrically complex as
demonstrated by Lagri oul et al. (2013). The problem is tightly linked to the more general pick-up
and delivery problem (PDP). Savelsbergh and So(1995 present a survey of the PDP with its di erent
types, and solution methods. More recently the link between PDP an handovers has been stressed out
by Coltin and Veloso (2014 where they present an algorithm where robots transfer objects to optnize a
PDP plan. For Cohen et al. (2014 the problem is to nd needed handovers between manipulators arms
(no base motion) to bring the object from a position to another one. They nd a path for the object and
compute for each position of the object on the path, the inverse kinemat of at least one arm which is
grasping it and then deduce the trajectory of every arm involved. Ther resolution is search-based in a
discretized environment, using a lazy variant of weighted A*.

The main contribution of this section is the elaboration of a planner able b solve a multiple agent
handover problem by nding an optimal solution based on social rules and bmans' comfort. This
planner is based on a graph using various models, from geometric computati to more abstract high
level reasoning. It has been implemented in simulation and in two PR2robots from Willow Garage
(2008.
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2.4.1 Problem de nition and formalization

The problem tackled here, is to bring an object, held by a starting aget, to a target agent, by making
agents carry the object or hand it over to other agents. Note that more than thestart and target agent
can be involved in the task and the object can be carried by one agent at a tim.

The problem inputs are the agent list, the starting and target agents, the initial state, consisting of
all agents and objects positions, and agents speci ¢ information about speednd availability. The last
input is a parameter to balance between the task urgency and care giverotthe humans' comfort. This
parameter is inspired from the mobility parameter of the previous section.

A solution to the problem is a scheduled sequence of actions (navigath and handovers), that brings
the object from the starting agent to the target agent.

The search space is the full con guration space, as described lyaValle (2006, of the whole problem.
As it involves several agents, it can be written as the cross-product ofhe con guration spaces of each
agent: Cspace= Cspacgy Cspaca Cspacg,. We assume the object is su ciently small to not
in uence the problem (otherwise, its con guration space should be ad&d to the full one). The problem
high dimensionality results in an extremely high computational cost whle using classical solutions and
algorithms: Figure 2.29(b) shows an example with 5 humans and 5 robots, which results in roughly
card(C) ' 300 degrees of freedom (37 for each hum#mnd 22 for each robot) to plan for, which is not
suitable for on-line solution search.

2.4.1.1 Global approach and simpli cations

The problem is decomposed into two distinct subsets of lower dimasionality: the navigation between
the handovers positions and the handovers themselves.

The navigation phase is based on a path nding in a discrete 2D grid builtusing the input environment,
the agents, the objects geometries and the agents initial positions. Thegrid is computed o -line in order
to not a ect running-time.

Based on the assumption of a large environment with sparse obstacles andwfenarrow passages,
inter-agent collisions are ignored during this phase. Following thisstatement, the model considers only
one agent at a time for the navigation (Section2.4.2.3explains how the system deals with these collisions
when they occur).

A Handover involves two agents. The full dimensionality of their modds and their positions is needed
to ensure the feasibility of the task (for example, to test if a handwer through a window or above a
counter is feasible or not). As the computational cost of this test is high,fast speci c tools are used to
prune out candidate solution with no chance of success.

8Each human has 2 arms and 2 legs with 7 degree of freedom each (DoFs)ni addition to 3 DoFs for the head, 3 Dofs for
the torso and 3 navigation DoFs

4Each robot has 2 arms with 7 DoFs each, in addition to 2 DoFs for the h ead, 1 DoF for the torso and 3 Navigation
DoFs
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The search algorithm relies on other tools, at di erent steps of the praess: high level representation,
2D model for navigation, full geometric representation for handover postre search and check, collision
checking and motion planning. These models descriptions are presea here bellow, in a top down order.

High-level representation The problem is represented at the highest level of this model as a grdp
able to guide the search through all possible handovers. It is referceto, in the rest of this section, as
agent graphGp (di erent from graph G). In this graph, the nodes represent the agents and the edges,
the handovers between them. At the initialisation, all the edges arecreated, with the supposition that
any handover is possible, and each edge is weighted with an optimisticsemation of the cost (based on
the time needed to perform the handover and the optimal human-relate cost expected), independently
of the environment. During the search, the costs will be adjusted \th the real ones, and if a handover
is proven not feasible, the edge is removed. Note that during the seah, this graph is used as a heuristic
to guide the search, and it does not allow an agent to get the object twice.We chose to not consider
this possibility as the cases where this might be pertinent is whe big objects that change the topology
of the world are handled, which does not fall into the scope of this work.

2D navigation grid To plan the navigation tasks, the environment is discretized and prgected in a
two dimensions grid. This grid can be transformed into a navigation graphG, (a node is a cell and each
cell is linked by edges to its neighbours) and used to nd agents pathgrom a position to another one
using classical graph search algorithm such as A*. Some nodes in this navigah graph are obstructed
with obstacles making them unreachable by the agents, and some of thesegibcles surround some areas,
disconnecting them from the rest of the navigation graph which createsnultiple connected components.
This graph is used as the base for the grapiG but the various connected components might be linked
together using the handover edges.

Geometric environment model Geometric algorithms (e.g. collision checking, inverse-kinematics
motion planning) are used to nd valid handover positions and to compute their costs, by taking into
account social rules, the humans' comfort, the motions legibility and ® on. If the handover is feasible, the
computed cost is used to update the agent grapla, otherwise the edge corresponding to this handover
is removed fromGa. A handover is considered valid if a collision free position where bdt agents can
grasp the object at the same time exists and a motion linking the startirg position of both agents to
the handover con guration also exists (more details available in Subsetion 2.3.1.9. All the process of
nding and evaluating a handover will be referred to as the handoversearch tool.

The cost function de ned to evaluate a solution considers three weigted parameters:

The agents involvement duration is the time each agent is involved during the task (letA be all the
agents in the environment), weighted with its level of availability (fay (a2 A)). It can be expressed
as:Ilnv = ,atinv(a) fav(a).

The global execution time is the total time Tot between the moments when the rst agent starts
moving until the one when the last agent stops its motion.
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The human comfort s related to the human-robot distances, the visibility of the robots by the humans
and the postures of the humans during the handovers (more details aviable in Section 2.3.1.3.
These parameters enable us to compute the comfort costyo (i) of the agents involved in the it
handover of the plan (a plan with n handovers). The comfort cost can be expressed a£onfo =
F (cHo (0); :::5cHo (N)) where F is either a Maximum or a Sum function.

A solution cost can be expressed as follows:

cost= Wiy InvV + Wgme Tot+ wpr Confo

Where Wmon, Wime and wygr, are the weight of the di erent parts, and by increasing or decreasing
them, the priority can be given either to the global time execution or the humans' comfort or humans'
involvement during the task (Those are the parameters replacing thenobility parameter from the previous
section).

2.4.2 Resolution

The most time-consuming search the planner needs to perform, in oet to nd a solution in these
models, concerns the graphG which represents a simpli ed form of the problem. The search timeis
directly related to the connectivity of this graph which is itself related to the number of neighbours a
node can have. In therooms environment (Figure 2.29(b)) this value reaches 3000. This number can be
approximated as follows:

1
— R(a; p)? r(a; p)?
Where the elements are:

d: the discretization step of the 2D navigation grid.

a: the agent holding the object in a node ofG.

p: a node of Ga (p represents also the agent this node is linked to).

N : the neighbours inGa of the node linked to the agenta.

R(X;Y ): the maximal distance for a handover between agentX and Y

r(X;Y): the minimal distance for a handover between agentsX and Y

The rooms environment has multiple agents in the same zones, making the numbeaf possible actions
for each cell in this zone very high, and thus increasing the conneatity of G.

The algorithm implemented in order to perform the search in this graphis a Lazy weighted A*
(LWA*) introduced by Cohen et al. (20149 as it is able to postpone the most time consuming searches
(the handover feasibility) to the moment these handovers seem tevant. This algorithm has proven
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bounds of sub-optimality inherited of Weighted A*, Likhachev et al. (2004, and can perform faster
when it involves computationally expensive evaluations.

LWA* algorithm is based on A* algorithm, which searches for the shortest path using a heuristic to
guide the search. When a node is expanded, three values are given tbildren nodes: theg value is the
distance (cost) between the origin and the child node, theh value is the heuristic, i.e. the estimation of
the distance remaining to reach the target, and thef value is the sumg+ h. In the next iteration, the
unexpanded node with the smallerf value will be expanded, until the target node is reached.

In the weighted variant, the h value is increased by a factor,f becomesg + :h with 1, thus
adding a depth- rst avour to the search, but decreasing the quality of the solution of at most (the
path found is at most times as long (expensive) as the optimal path).

The lazy variant uses a temporary g value attributed to expanded node children. This temporary
cost is optimistic and is faster to compute than the real cost. The real ost is computed only when the
node is selected to be expanded,e. is the one with the smallerf value. Its g and f values are updated
and it is put back in the list of nodes to be expanded. Figure2.31 shows an exploration example were
there are unexplored nodes, expanded ones, and a solution.

The choice of the search algorithm is open, any other graph search algorithm wdai work, but the
speci cities of LWA* makes it a good candidate for this problem.

Figure 2.31: Pink is the actual object path, the grey is the cells to be extended ffom the lazy part of
LWA*) and the coloured cells are the explored ones. The two indentationsof the pink path are due to
the sub-optimality of the weighted variant of A*, it is close to the heuri stic

Heuristic and cost The costs in the graph G are evaluated depending on the action they model: a
navigation or a handover. The navigation cost is computed from the distane related parameter such
as energy consumption and navigation time. The handover cost includes dih agents motions, the
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interaction duration and the navigation cost of the receiver agent, who neds to navigate to the handover
position.

The heuristic function (algorithm 2) guides the search in the graphG and through the possible
handovers. It is based on the agent graph and the navigation grid: It rst searches for an agent sequence
that can bring the object to the target agent. This search is made in the agat graph and takes into
account minimal handover costs with no navigation (line 2). Then, based on this sequence, it searches
the minimal cost related to the navigation. In this model, it is using the cheapest agent for the whole
distance (in Euclidean sense, linel). At this step, it is not known yet if the handover is possible or not,
but it guarantees that the heuristic is admissible. It then adds the estimation of handover costs, which
must be computed with an admissible heuristic too (line7).

Algorithm 2 Heuristic function for the main search algorithm

1: function Heuristic (N ,Ngoa) . current and goal nodes
2: path  ShortestPath  (Ga,N,Ngoal) . G a is the agent graph (task level)
3 for each agenta of path do

4: d min(d; DistanceCost (a) ) . cost for a to go from N to Ngoa (Euclidean distance)
5: end for

6: for each handoverHO in path do

7 h  h+ HandoverHeuristic  (HO) . estimation of each handover
8: end for

9 h h+d

10: return h
11: end function

2.4.2.1 Handover tests

In order to further reduce the computation time, the system can pospone the usage of the handover
search tool (highly time consuming) and use simpler process to det¢ infeasible handover as early as
possible:

Distances test checking if the agents are within reach of each other (based on arm lengthig-
ure 2.32(a).

Object collision test  testing if a path exists for the object to go from an agent to the other one just
the object) Figure 2.32(b) shows a test example where a straight path exists.

Inverse-kinematics test  testing if the agents can both reach the object when this one is in beteen
them, Figure 2.32(c).

The inverse-kinematics test uses the same pre-de ned con guratin and their costs as in Sectior2.3.2.1
and update the edge cost inG. Optionally, the full motion can be computed, but unless the envirorment
is highly cluttered, it is preferable to avoid it, as it is even more time-consuming and in most cases the
inverse-kinematics test is enough to ensure the feasibility of th handover (when not computed during
the search, the motion plan can be computed later, just before the exetion).
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@) (b)

(© (d)

Figure 2.34: An example where the robot plan for a third agent (not involved in the handover) to move
in order to avoid collision and let him access the target agent

is an average of ve possible agents by cell). In this environment, theA* algorithm is e cient as the
heuristic is close to the real cost.

Synthesis: 18 16m?2, 10 agents, 64000 nodes, e cient heuristic.

2.4.3.2 Example 2 - maze

Figure 2.35is a maze where there is always a simple solution where the starting and targeagents can
meet to perform a single handover. But windows allow faster delivey if the object is handed over through
them between intermediary agents. The A* heuristic gets trapped inthis environment as a solution is
rarely close to the straight line. There are 102400 nodes (8 possible agemsr cell).

Synthesis: 18 16m?2, 8 agents, 102400 nodes, ine cient heuristic.

2.4.3.3 Example 3 - big rooms

The environment in Figure 2.36is the largest example environment (25 25m?) where the 16 agents are
in rooms connected by doors or windows. In this example all (or nearly & agents are in separated areas
(average of 1.5 agent per cell), causing the connectivity of the grapl& to drop with the node number
(41500 nodes). The A* heuristic does not get trapped as in thenaze but solutions are usually not
straight lines.

Synthesis: 25 25m?2, 16 agents, 41500 nodes, normal e ciency for heuristic.
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ratio of computation time for one true cost evaluation versus the one for thetemporary cost estimation
is almost of 200, with 67/ns for the former and 0:334ms for the latter. Statistically, without lazy variant,
evaluating explored nodes would be more than 100 times longer. That factoreaches 400 in theooms
environments, while still providing exactly the same solutions. This enforces the relevance of the lazy A*
variant use in our case. Figure2.31shows an example of a resolution in theooms environment, where
most of the cells are explored but the true cost is computed just for amall part of them.

10 4 1
4.675| 5.25| 20.8

mean time (s)

Table 2.1: The mean times computed over 160 run, in the four examples, with randomnstarting and
target agents, using two di erent cost priority (agent and time)

The connectivity of the environment does play a role in the computaton time, but the most relevant
factor (as in any A* search) is the accuracy of the heuristic: as depictedn Table 2.2, even though the
connectivity of the rooms environment is very high, the heuristic is e cient; hence, the computation time
is small.

rooms
11.2

maze
17.9

big rooms
40.7

apartment
13.4

mean time (s)( = 1)

Table 2.2: The mean computation time for each example for = 1

2.4.4.2 Solution quality

Table 2.3 presents the values of the main cost components (the execution timehe number of involved
agents and the number of involved humans) for some algorithm solutions, ruming on Section 2.4.3
examples, with = 1. The results show that when the priority is set to agent, no human is involved in
the task (whatever the number of involved agents) but this results ona loss of e ciency as shown by
the execution times: when the priority is set to time, even thoughhumans are involved in the task, the

execution time is faster than the agent priority execution time (up to 2 times faster).

Priority Agent Time

Environment || time (s) nb humans / nb agents | time (s) nb humans / nb agents
Rooms 28.7 0/1 22.5 212

Maze 32.1 0/0 15.1 212

Big rooms 63.9 0/3 44.6 2/4
Apartment 17.6 0/0 8.4 1/1

Table 2.3: This table contains the main components used to compute the cost of a sdiwn: the complete
execution time and the number of humans (resp. agents) involved in tk task, excluding the starting and
target agents.

Adaptability
grow exponentially with the environment size and the agents number.Even though, if the connectivity

This approach can nd a solution for any kind of scenario, but the computation time will
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of the graph G is low or the heuristic e cient, the approach would perform better. In larger and more
complex scenarios (than those presented in this section) the algorith will still nd a solution, but the
computational time would not allow on-line use for such situations. Though such complex cases are
supposed to be rare and do not enter under the scope of this work.
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experimental context, results that could have been already exhilied, and the results tend to do so. In
addition, what could be credited to this work is the study of gaze behavur for both the giver (Human
or Robot) and the receiver during a give action. The closest studies inhe eld to our knowledge are
Boucher et al. (2012 and Moon et al. (2014. In the rst one, the authors do a similar study over a
di erent action, while the second does not study the receiver gaze.

The user study presented in this work tries to con rm these hypotheses:

The giver gaze cues are important In order to achieve an understandable and e cient handover,
the giver gaze cues should not only change (a static gaze is not good) but folls a speci c pattern.

The receiver gaze cues should not change when the giver changes When changing the giver (hu-
man or robot), the receiver gaze cues should be similar.

The gesture speed is important A conventional speed should be preferred over a slower or a faster

one.

Related work

Gaze analysis allows the receiver to make hypothesis on the cognitive tagty handled by the giver, and
a number of researchers tried to codify and implement these cuesn robots.

Mutlu (2009 studies gaze cues communication on several robotics platforms, and shed its impor-
tance in HRI and how well-de ned gaze patterns can enhance human-robot comunication experience.

Boucher et al. (2012 observe that one of the current roadblocks in the elaboration of smooth and
natural human-robot cooperation is the coordination of robot gaze with the ongoirg interaction and tried
to identify pertinent gaze cues in human-robot cooperation. When thegaze cues are well de ned, the
cooperating human can reliably exploit it and anticipate actions in the cooperative task.

Interestingly, in a study oriented toward gaze cues in human-human mteraction, Furlanetto et al.
(2013 show that eliminating gaze cues by blurring the actor's face did not educe perspective-taking,
suggesting that in the absence of gaze information, observers rely engity on the action. Intriguingly,
perspective-taking was higher when gaze and action did not signal the samiatention, suggesting that
in presence of ambiguous behavioural intention, people are more likelyp take the other's perspective to
try to understand the action.

Moon et al. (2014 exploited human-like gaze cues during human-robot handovers and fouhthat
the subjects' reaction time is faster with the appropriate cue (lookng toward the handover position) but
also that those subjects judge the handover more natural when accompardewith this cue.

These researches show the importance of gaze during human-robot intetion, the robot would be
able to achieve the task without the gaze, but the cooperation would su & from it. In order to have a
better grasp on the importance of the gaze, let's situate this work in theglobal frame of joint action.

Vesper et al. (2010 established that a minimal architecture for joint action should be able to handle,
next to a goal, tasks representation (possibly shared), monitoring and pediction processes, and what
they call coordination smoothers. They argued that \where joint action requires precise coordination
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in time or space, there are often limits on how well X's actions can be prdicted. One way to facilitate
coordination is for an agent to modify its own behaviour in such a way as ® make it easier for others to
predict upcoming actions."

We suggest that gaze cues could hold the role of coordination smoother in h@hg the human in front
of the robot to better understand the robot behaviour and help it to achieve its movement in a more
natural way.

2.5.1 Devices and methods

In order to con rm or deny the hypothesis, a user study has been deghed where volunteers watched
videos of a human or a robot (Figure2.38 setting down an object in front of them, and were asked
to judge the naturalness of the task. Dierent gaze cues were availablén the videos. This subsection
presents the participant and experimental set-up used to evaluatghe task.

2.5.1.1 Participants

Thirty three volunteers participated in the experiment (age range 22{38 with mean value of 27 and
a standard deviation of 3.5; 21 males, 12 females), among them, fteen watcldehuman videos and
eighteen watched robot videos. All participants had normal uncorrected vsion but two volunteers had
to be excluded from subsequent analyses due to a technical problethat damaged eye-tracking data
(unreliable calibration)

2.5.1.2 Experimental Set-up

The experimental situation implies watching a video where a giver(Human or Robot), seated behind a
table, takes the object with his right hand, and puts it on the table so that the receiver, behind the video
camera, can reach it. The choice of using videos instead of a real interaot is supported by the need of
isolating gaze cues and motions velocity to nd some hints about the use othese factors in handovers.
Moreover, it has been proposed byKiesler et al. (2008 and Woods et al. (2006 that video-based scenario
can enable us to infer such valuable results

The experiment took place in a room where temperature and luminosit (19 lux) were kept constant
and the participants faced a computer screen where the video was pgented. Eye movements were
recorded using an EyeLink 1000 remote eye tracker (SR Research Ltd., Misssauga, Ontario, Canada)
which possesses a spatial accuracy greater than 0.and a 0.01 spatial resolution with a sampling rate
of 1000 Hz. The camera was placed at a distance of 20 cm from the screen (DELL %9efresh rate of
75 Hz, resolution of 1024x768 pixels) and the eye-camera distance was 60 cm mainied by a forehead
rest. All eye tracking data were extracted using the SR Research dault centroid algorithm.

In the experiment, we manipulated 3 variables: (1) the type of giver Human or Robot), (2) the
speed of the movement (normal, fast, and slow) and (3) the gaze behaviourThe Robot was a PR2
and the Human was a white man (65 years old). The videos were shot to be as siar as possible (see
Figure 2.38 and were accelerated and decelerated to obtain di erent speeds wla keeping the same
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(gaze), presented in a randomized order. In a trial, the participant pressed a button to begin the video
and immediately after the video is nished, he/she was asked to rate he perceived naturalness of the
movement on a 5 points Likert scale (5 for \perfectly natural”, 1 for \not nat ural at all*) presented on
the screen. Between each trial, participants had to complete a digil logical suite, to break the dullness
of the task. The session (18 trials) was repeated one time making each péaeipant watching and judging
36 videos, in the rest of the section we will refer to each session as @&o block.

Before the session started, the participants were told that their obgctive is to rate the naturalness of
the videos they are going to watch. For methodological reason, the instrutons and questions were very
neutral (even though in the participant mother tongue {French{) in order not to in uence the judgement
of the subject. The judgement method is the same as one of the three #t have been used byMoon
et al. (2014, whereasBoucher et al. (2012 do not look for subjective evaluation.

2.5.1.4 Occulometric measurement

Classical dependent variables in eye-tracking studies includene number and duration of xations on areas
of interest. In this study, the areas of interest (AOIs) were (1) the giver face and (2) the object. Those
AOls were X, as depicted in gure 2.40. As video duration changed between experimental conditions, we
computed the percentage of dwell time spent on AOIs to study the digibution of the visual attention.

Figure 2.40: The AOIs used in the occulometric measurement

2.5.2 Results

We performed a mixed-design analysis of variance to examine the e estof (1) the gaze behaviour, (2)
the speed movement, and (3) the type of giver on our subjective and odametric dependent variables.
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Subjective and eye tracking data have been analysed with the softwar package Statistica 8.0 (Statsoft,
Tulsa, Ok, USA).

2.5.2.1 Subjective measurements

Gaze Behaviour

Results indicated a main e ect of the gaze behaviour on the naturalnesgatings, F(5, 145)=15.034,
p<.002® (Figure 2.41). Post-hoc paired comparisons showed that OR and ROR gaze behaviour are
signi cantly judged more natural than the four other conditions R, O, RO, ORO (highest p-value in the
post-hoc table equal to .003). No di erence was found between (1) the twaconditions OR and ROR
(p=. 70) and (2) the three conditions R, O and RO (lowest p-value equal t00.48). Finally, the condition
ORO is signi cantly judged more natural than the two gaze behaviours R andO (highest p-value equal
to .03).

Figure 2.41: Naturalness ratings as a function of the gaze behaviour and the speed movemt

Movement speed

Results indicated a main e ect of the movement speed on the naturaless ratings, F(2, 58)=10.354,
p<.001. Fisher's LSD post-hoc comparisons showed that the normal and the faghotion conditions
are judged more natural than the slow one (highest p-value in the post-ho table equal to .004). No
signi cant di erence was found between the normal and the fast motion speed conditions (p=.16).

Type of giver (Human vs. Robot)
Interestingly, there was no signi cant di erence in the results between the two types of givers (F(1,
29)=1.988, p=.16). Moreover, no interaction was found between the three mai manipulated factors.

8F is the Fisher variable and combined with the p-value enable t o establish the signi cance of a di erence between two
variables: the di erence is signi cant when p < 0.05 and is not otherwise.
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This result suggests that the e ects of movement speed and gaze behiaur described above are not
in uenced by the type of giver.

2.5.2.2 Eye tracking measurements

Two main interesting behaviours has been noticed thanks to the eydracker: a di erence in the pupil
size between human and robot giver, and a di erent distribution of the attention between them.

Distribution of the visual attention between the face of the giver and t he object

Overall, results indicated a signi cant di erence between the mean percentage of dwell time spent
on the face of the giver and the mean percentage of dwell time spent on the @t (F(1, 29)=59.848,
p<.001): the participants tended to focus mainly their visual attention on the face of the giver (the dwell
time spent on something means the time during which the eye focusl solely on this something, and is
obtained thanks to the eye tracker).

However, the detailed analysis displayed in Figure2.42 shows an interesting correlation between the
type of giver and the gaze behaviour:

Human giver: There is no e ect of the giver gaze behaviour on the mean percentage of dildime
spent on the face of the giver (F(5, 65)=0.807, p=.54), nor on the mean percentage afwell time
spent on the object (F(5, 65)=1.004, p=.42).

Robot giver: Results indicated a main e ect of the gaze behaviour on the mean percéage of dwell
time spent on the face of the giver (F(5, 80)=12,82, p=.001), and on the mean peragage of dwell
time spent on the object (F(5, 80)=6.264, p=.001).

When the giver is a human, the main conclusion is that participants fows mainly their visual attention
on the face of the giver to provide a judgement concerning the naturalass of the task, independently of
the giver gaze behaviour.

When the giver is a robot, Fishers LSD post-hoc comparisons shows thatapticipants focus more
on the robot face for the three types of gaze behaviour ORO, OR and ROR thandr the three other
conditions R, O, RO (highest p-value in the post-hoc table equal to .04) On the other hand, participants
focus less on the object for the same three types of gaze behaviour OROR and ROR than for the two
other conditions R, O (highest p-value in the post-hoc table equal to 05). However, gaze behaviours OR
and ROR are not signi cantly di erent from the condition RO (lowest p- value equal to 0.26).

If we take the human giver as a reference, the occulometric pattern ith a robot giver is identical to
the one of a human giver only for the ORO, OR and ROR conditions.

Finally, no e ect of the movement speed was found (F(2, 58)=1.798, p=.43), am the reader may nd
useful to know that there was no di erence between the two blocls of video presentation (F(1, 29)=0.947,
p=.33).
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Figure 2.42: Distribution of the visual attention between AOIls as a function of the gaze behaviour and
the type of giver

Pupil size
Results indicated a strong main e ect of the type of giver on pupil siz variations, with larger pupil
diameters when the giver is a robot (F(1, 29)=12.803, g .001).

Results also revealed a main e ect of the gaze behaviour (F(5, 145)=3.050,9.001), however, post-
hoc paired comparisons showed only one signi cant di erence, with sraller pupil size in the OR gaze
behaviour condition (highest p-value equal to .03 in the post-hoc tabé).

No e ect of the motion speed was found on the pupil size (F(2, 58)=1.798, p=.17).

Finally, results indicated a signi cant di erence between the two blocks of video presentation (F(1,
29)=26.155, p<.001), with smaller pupil size during the last block, what could be reasonably considered
as a training e ect.

2.5.3 Discussion

The rst hypothesis (the giver gaze cues are important) is con rmed by the results: subjective mea-
surement clearly shows the subjects did not like videos with stat giver gaze/head. Moreover, the head
patterns are not to be neglected: the head nal pattern OR ® seems to be preferred over the rest of the
patterns, the subjective measurement shows that the subjects referred the patterns OR ° and ROR °
over the others. This nal head pattern could be an acknowledgement/tun-taking signal from the giver
to the receiver.

Note that the variable \type of giver (human or robot)" does not a ect the subj ective naturalness
rating.

°refers to the type of patterns explained in Section 2.5.1.2
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Concerning the distribution of visual attention between the giver face and the object, results are
di erent according to the type of giver. When the giver is a human, there is no e ect of the giver gaze
behaviour on the distribution of the visual attention. The receiver focuses mainly its visual attention on
the face of the human. We believe this behaviour is normal for humans ashe face is the most expressive
part of the body and humans are used to focus on the face to determine aumber of features.

When the giver is a robot, we can distinguish two cases:

0°, R? and RO ? cases: The receiver visual attention is shared between the face antid object.
That means, receiver will not focus either on the face or on the object bt may go from one to the
other. We interpret this as the receiver being lost in this kind of situations. Further analysis of eye
tracking data is needed to validate this interpretation.

ORO °, OR? and ROR ° cases: The visual attention is mainly focused on the head of the robot.
In those cases, we found the same pattern of visual attention as in the huan giver.

Taken together, the results on the perceived naturalness of the moweent and the ones on the ocu-
lometric pattern of the receiver seem to put forward two main conditions: OR and ROR . Those two
conditions are not only perceived as more natural than the others (with a obot or a human giver) but
they present a similar occulometric pattern of the receiver (with a human or a robot giver). It seems
that the nal OR is an important pattern. When the giver, at the end of the movement, moves the gaze
from the object to the receiver, it may mark the end of the exchange. The fact that the receiver looks
mainly at the face also in the ORO condition may be interpreted in the same sense: when the robot
ends its movement on the object, the receiver seeks an acknowledgent on the robot head (our rst
look at more detailed eye-tracking results seems to corroborate thishought). These results partially
corroborate the second hypothesis: the receiver gaze are similar beter the robot and the human giver
only when the perceived naturalness is high.

This study is more about the movement itself rather than its initiat ion, however, the preferred patterns
meet the ones found byStrabala et al. (20129. That is at the beginning of the action, the robot is looking
at the object or at the receiver. We have also shown that the gaze patterrat the end of the exchange
seems also to be important. Some patterns are considered as more naturddan others, whereasMoon
et al. (2014 did not nd any di erence on that aspect which was con rmed by objecti ve measurements.
These patterns tend to con rm the rst intuition and ndings about han dover conditions: Moon et al.
(20149, Strabala et al. (20129 or Boucher et al. (2012 (a cooperative task) stated that a human exploit
the gaze of the robot when it is present.

The di erence in the pupil size between the two types of givers fluman or robot) might have di erent
explanations: more curiosity or cognitive load induced by the observationof non-familiar, unknown
machine. In the general eye-tracking literature, pupil diameters have been found to increase along
with cognitive demands Kahneman and Beatty (1966 and emotional load Bradley et al. (2008. In
this context, the di erence in the pupil size between the two types of givers (human or robot) might
have di erent explanations: more curiosity or cognitive load induced Ly the observation of non-familiar,
unknown machine.
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The objective results did not show any di erence between the di erent speeds, although the subjective
measurements show that the normal and fast speed is preferred ovehe slow one. Again, this partially
con rms the third hypothesis.
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2.6 Future work

Several contributions have been presented in this chapter. We gepotential improvements and perspec-
tives (they are categorized following the section they belong to):

Extending to multiple actions (Section 2.3) For now sharing the e ort with the human is only
about handing over objects. The approach can be extended to di erent aitons such as taking a
picture, or talking.

Planning with the object (Section 2.3) It can also be more accurate if the real object form is con-
sidered for both manipulation and navigation (navigating with a big object will cause di erent
problems).

Real time adaptation (Section 2.3) The fast convergence times of the results for a handover indi-
cates that the algorithm can be used to dynamically adapt the solution to the human while he is
moving.

Relaxed synchronisation constraint (Section 2.4) using a place then a pick (by di erent agents)
sequence instead of a handover.

Agents involvement (Section 2.4) The planner, using STN knows the involvement duration of each
agent, the rest of the time, those agents can be used to perform other taskbut in order to do that,
the task planner using the algorithms presented here must explithy take the time into account
Dvorak et al. (2014.

2D grid discretization (Section 2.4) This grid can be replaced by another kind of grid such as a
guad-tree structure, Finkel and Bentley (1974, to reduce the number of nodes.

Further analyse the results (Section 2.5) More information are still available on the eye tracker
data, and they need to be retrieved and analysed.

Integrating the results on the robot (Section 2.5) The pattern found can be implemented as the
normal behaviour of the robot while doing a handover.

A real robot user study (Section 2.5) In order to compare the results with the rst one and to
ensure their validity.
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2.7 Contribution to the human-robot handover in a nutshell

In this chapter three main contributions were presented for the human-robot handover problems:

Sharing the e ort with the human for a handover An algorithm computing handover con gura-
tions for both the giver and the receiver (humans or robots) while takinginto account the human
comfort and preferences. We also presented a user-study concamngithe sharing part where we
proved that a mobility parameter (either the human wants or not to share the e ort with robot)
is relevant in the context.

Multi-agent handover An algorithm that computes an optimal sequence of handover to bring an
object from an agent (human or robot) source to an agent target. This algorithm is albe to
compute, in addition to every motion plan, the exact schedule of everyagent involved in the task.

The handover gaze cues A user study where we have shown the importance of gaze cues during a
handover, and have shown the importance of the used pattern: the sybcts preferred the two
patterns OR (the giver looks at the Object then at the Receiver) andROR (the giver looks at
the Receiver then at the Object and then at the R eceiver again)
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3.1 Introduction

The goal of this chapter is to create a link and |l the gap between task plaming and motion planning. In
the context of autonomous robots, task planning is used to take decisions aut what action to perform
and when to perform it (as shown in the architecture presented byAlami et al. (1998). Usually, task
planning manipulates symbols and concepts, and tries to nd symboligplans able to achieve a given goal.
In the same context, motion planning is used to compute the robot trajetories executable in the real
world, trajectories that enable it to achieve tasks. As explained inLaValle (2009, motion planning is
based on a geometric model of the world, and needs a full description ohe initial and nal position
of the robot model. This full description is usually expressed wih the numerical values related to the
position of every part of the robot in the model.

To synthesize, task planning deals with symbols while motion plannig requires speci ¢ numerical
values to compute the trajectories. The gap between these two plarers is the problem we are trying
to solve in the context of manipulation and navigation planning, using fetch and carry examples in the
presence and in interaction with humans. Let's refer to this problen as the Geometric Reasoning and
Planning (GRP) problem.

The main goal of the GRP is to compute actions: based on symbols, the GRP shddi compute
trajectories that will achieve the goals speci ed with the symbols. In other words, it should be possible
to plan for actions while specifying only the desired information: the desired property to achieve at a
level of abstraction su ciently high to be usable by the task planner. For example, \giving an object
to this person" or \putting an additional object on the table". This is eve n more important when other
(human oriented) constraints have to be taken into account. The GRP @n have another usage which
is to compute Facts, based on the world geometric model, it is able to copute symbols describing the
actual world state. We call these symbols facts. For example, it should & able to compute facts such as
an object is in another one, an object is on another one, or more human related oaesuch as an object
is reachable by an agent. These links between agents and objects are cdlle ordances.

The a ordances were rst introduced by Gibson (1977 to explain how agents directly perceive the
inherent \values" and \meanings" of things, and how they can use this information to infer the possible
actions o ered by the environment. Sahin et al. (2007 propose various formalizations of these a ordances
in the domain of autonomous robotics. One of these formalizations, which wlilbe used in this chapter,
is: \A ordances, are relations between the abilities of organisms and featves of the environment”. In
order to compute these a ordances we base ourselves on previous work suas Marin-Urias et al. (2008
where they use perspective-taking to compute them.

A geometric reasoner and planner endow the robot with a number of abilites (such as pick, put,
show...). This is very close to the \task-level" planning problem, as de ned in Lozano-Perez et al.
(1987, as it extends it to more possible actions and includes the multipt agents (humans or robots)
possibility. It is also close to the manipulation planning problem which was a focus on various work, such
as Simeon (2004, but lately more and more researchers began to work on the GRP problemFedrizzi
et al. (2009, for example, worked on nding a placement for the robot base, where itis able to grasp an
object with an uncertain position. Cosgun et al. (2011 plan for placing an object on a cluttered table
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by pushing the objects already on the table. Fraisse and Simeon(2012 developed a framework based
on the \mightabilities maps" which are maps in the 3d model of the world where a ordances for every
agent are computed for each cell in these maps. Based on this, the framevocomputes where an object
can be placed, and where it will be visible and reachable by a speci agent.

In this chapter, we de ne a framework for specifying actions in a su ciently formal and exible
manner enabling us to plan and compute their dierent steps but alsoto build geometric plans: a
sequence of actions where there is interferences and interdepiances between the several actions and
steps that compose this plan. For example, pick then place: the choisemade during the pick might
interfere with the place or navigate to an object then pick it up: the position of the robot needs to be
close enough to pick the object, but far enough to enable the robot motionsro collisions)

Section 3.2, introduces the problem formalisation whereas, SectiorB.3, presents the framework de-
signed to handle this formalization with the simpli cation done. Section 3.4 addresses the possible future
work while, the last section of this chapter, Section3.5, synthesizes its contents.



Chapter 3. GRP 68

3.2 Formalization

The Geometric reasoning and planning problem can be described withhie 2-uplet f D4; Eg where:

Dy is the domain that contains all the available actions, and

E is the set of entities known to the robot.

The problem consists on solving queries where the goal of each one of it is tnake an agent (or
multiple agents) perform an action. The next subsections will presat in details the actions, the entities,
and other models used to formalize the problem.

3.2.1 Entities

Each entity e is de ned by an identi er, a type and a description fide; te; geg. te refers to the entity type,
which can be one (or more) of the followings: a human, a robot, a manipulablebject, a support object,
or a virtual object. The agents (robot and human) are considered in order tocompute their motions,
and, when needed, some social rules. The objects can be from di eretypes, such as manipulable and
support at the same time, and as their type indicates, manipulable objet can be moved around by the
agents, and can be placed on the support objects. The virtual objects arepgcial objects for which the

collision can be ignored in certain occasions.

The description ge follows the classical one in motion planning (see, for instancd,aValle (2009), a
kinematic graph, where the nodes are the entity joints and the edgeshe links. In this context, the links
are the entity rigid bodies, which are de ned by a frame and a repreentation of the geometric model
in this frame. The joints are de ned by a parametrized transformation matrix, where the independent
parameters that characterize this transformation are the degree of freesins (DoFs). Each DoF value
belongs to a setSe R, which can be in nite, or bounded by the entity geometry or by the world. If
the robot has n DoFs, the set of transformations is usually a manifold of dimensionn. This manifold is
called the con guration space Cspacg, and an instance of thisCspace is called a con guration ¢; in
other words, ¢ is the value of every degree of freedom of every joint in the entity kiematic graph.

In addition to this Cspace, the kinematic graph is used to compute the entity forward kinematic,
which consists on computing the relative (to the entity) and the absolute position of every entity rigid
body. It is also used to compute the entity inverse kinematic: conputing the DoFs values based on
the position of one of the entity end e ectors. Finally, it is also used to compute trajectories, using
motion planners, which consists on computing a collision free path beteen a starting and a stopping

con guration.

Let Cspacerefer to the con guration space of all the entities and Cspace; the con guration space
of the entity el. In an environment where the entities aref el; €2; ::;; emg, the Cspaceis the Cartesian
product of all the Cspace;:

Cspace= Cspace; Cspacge; Cspaces :: Cspacenm
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3.2.2 World States

A world state (ws) is the state of each entity from E at a given time t;. The state of an entity e is de ned
by f ge; te; posy where:

O is the entity con guration at time t;. This con guration can be fully known, or partially known
(in case of uncertainties) or not known at all (no information regarding the entity position).

te is the entity trajectory at time t;. In other words, in addition to the position, it contains the
future and previous con gurations of the entity, in addition to its dyn amic. The trajectory can
also be fully known, partially known or completely unknown.

pos represents the position ofge on the trajectory te at time t;.

3.2.3 Actions

An action a2 Dy is de ned by fald; des;IN g:

ald is the action identi er which is unique. It can be Pick , Place, Give and so on.
desis the action description, explained later in this subsection.

IN is the list of required inputs, which varies from an action to the other.

We can consider the example of thePick action: the ald is Pick , the deswill be de ned later, and
IN contains the agent performing the task, the object which needs to be ipked, and the initial world
state wsinit . Note that among the various possible inputs an action can have, it will alwgs need an
initial world state.

Dy contains every action description mapped with its identi er ald, and when a query is made to
such a system, only theald and the IN are needed to solve the query. The result of a query links this
initial world state to a nal one Wwssng corresponding to the end con guration of every entity in the
world. Note that the link between these two world states is actually oneor multiple trajectories, and,
as for any trajectory, we can retrieve every entity con guration at any point of it, and by extension a
corresponding world state.

In order to explain the action description deswe rst explain the expected result. The computation of
an action consists on nding a geometric action solution (GAS) which is commsed by a set of geometric
sub-action solutions (GSAS) and a costt. A GSAS is de ned by he;t; gsasNextsi where:

e is an entity.
t is the trajectory that should be performed by the entity.

gsasNexts is the list of all the GSAS that need this GSAS to be nished in order to begin (we are
going to refer to it as geometric causal link).
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To synthesise, an action description is built by smaller sub-actiondescriptions, linked between them
by temporal operators, and each one of these sub-action descriptions is faulated using a logical linked
geometric pre-conditions, search spaces, and nal constraints.

3.2.3.1 Example

Let's take as an example the action Pick ". In this action, the agent needs to grab an object then
disengage itself from the support object. As some de nitions are still missing, this example is not
complete, its complete version is available in Subsectio8.3.2.1

The Geometric pre-conditions used for aPick are:
HF ree,: no object in arm h end e ector.
Reach,(0): target object o is reachable by arm h.

HF ull,(0): target object o is in arm h end e ector.
The Search spaces are:

Fixh(): the subset of Cspacewhere all entities are xed, apart from the DoFs corresponding to
the arm h of the agent.

Fix h(0): the subset of Cspacewhere all entities are xed, apart from the DoFs corresponding to
the arm h of the agent, and the object o.

The Final constraints are:

HApp,: arm h end e ector in approach position?.
HGraspy: arm h end e ector grasping the object.

Free(0): object o disengaged from its support.

The description of the action \Pick object O" is:

Pick (0) = 9h 2 fr;1g; (HF reen&Reach,(0); Fixnh(); HAppn) (;; Fixn(); HGraspy);
(HF ullh(0); Fixnh(o); Free(o)) (3.1)

Where r is for right arm and | for left arm. In this example we consider that there is only one agent
(with two arms) who will perform the action. The list of inputs of thi s action contains only the object
O and the initial world state wsjit .

This action solution is a GAS where there are three GSAS: approach, grasp, andisengage.

The rest of this section presents a number of de nitions that complenent the formalization.

the support is the object or obstacle the target object is placed on or attached to at Wsini
2 An approach position for an end e ector is a position from where th e end e ector can reach a grasping position through
a direct, straight line in the Cartesian space with a short motion .
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3.2.3.2 Language discussion

The set of rules needed to write an action description can be consided as a language. This language,
although very simple, can be used to describe more and more complex aatis.

The advantage of such a language is the simplicity of describing new acti@n the pre-conditions are
symbolic facts that are intuitively understood with basic three dimensional logic. The search space and
nal constraints are subsets of the agentsCspace that de nes how the action should be done and what
is its goal: the search space de nes globally what is going to move duringhe action, while the nal
con guration needs to de ne a subset of this space where a number of pperties should be true (such
as having the object in the hand or on the table).

The disadvantage of using such a language concerns the implementation: agoh action has di erent
pre-conditions, search spaces, and nal constraints, each action will@ed a di erent set of functions to test,
compute, and validate each part of the description. Although, as we work in amanipulation/navigation
domains, the functions used are quite close and can be reused (as seatet in this chapter) for other
actions too.

3.2.4 Facts & a ordances

As seen in Subsectior3.2.2 a world state is a precise geometric description of the model of the wiit
at a given time. In order to qualify this information and give it a symboli c meaning, to make it human
readable, and usable by other models, facts are computed in these worklates. A fact is a link between
two entities: for example, \object A is on object B" or \Object A is in Agent's X hand". A fact can
also be de ned as the relative con guration between two entities: ifthe polygon formed by the bottom
of object A is included in the polygon formed by the top of object B, then \object A is on object B".
This relative con guration can enable us to de ne a space, related to a peci ¢ world state, where a fact
is always valued to true.

A fact can be represented under the form:fel; type; €2; vg where type is the type and (if relevant)
the sub-type of the fact, el and e2 are the entities involved in the fact (in this order) and v can be
either a Boolean or a scalar, depending on theype, for example f Obj1; is in; Obj2; trueg means that
Obj1 is located insideObj2. The a ordances are considered as facts here, as they are, following the
de nition of Sahin et al. (2007 (cited in Section 3.1), links between an agent (an entity) and an object
(another entity). For example, \object o is reachable by agent X" or \object o is visible by agent
X" are example of a ordances that can be useful in a HRI context. Figure 3.2 shows examples of these
a ordances, in addition to two other facts (is on and is next to )

3.2.5 Additional de nitions

In this subsection, a number of additional de nitions linked to the previous formalization are presented.
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(@) fRedCube;is on; GreyBook; true g The poly- (b) fRedCubel; is nextto ; RedCube2; trueg
gon forming the bottom of RedCubeis inside the The minimal distance between RedCubel and
polygon forming the top surface of GreyBook RedCube? is smaller than a given threshold

(c) fRedCube; is reachable by ; Human; true g (d) fRedCube; is visible by ; Human; true g
The inverse kinematics of the Human model en- The RedCubeis in the eld of view of the Human

ables him to touch the RedCube

Figure 3.2: Various types of facts and a ordances in di erent situations.

3.2.5.1 Costs

The function f st cOmputes the cost of a GSAS based on its trajectories and its initial and nal world
states. This computation can be related to the geometry only (such as thdrajectory length) or to a
more complex notions such as human-aware considerations. Figu&3 shows an implemented example
were the cost changes depending on the human position (in this exampleéhe robot navigates to the
table). It is computed based on the costs presented bisbot et al. (20071, and taking into account the
human-robot distance and the robot visibility by the human (going behind and close to the human is to
be avoided).

3.2.5.2 Alternatives

The space de ned by theFinal constraints  for the nal world state in each sub-action description is
usually not a singleton, therefore multiple solutions for the same sukaction description (and by transition,
the same GAS) may exist and are called alternatives. If the nal constrants de ne a singleton, there
is only one alternative, the one corresponding to the unique solution.In other words, alternatives are
unigue, and cannot have the same nal world state. Figure3.4 shows various alternatives for thePick
action, where the nal constraints HGrasp, and HApp, have multiple solutions.
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(@ c=37 (b) c=6.4 (c) c=8.9
Figure 3.3: Three scenarios where the robot navigate in a human environment. The gth doesn't

change, but the cost does: it is low when the human is far awa.3(a), it gets higher when the human
comes close.3(b), and if he is not facing the path 3.3(c), it goes even higher.

(a) First alternative (b) Second alternative (c) Third alternative

Figure 3.4: Dierent alternatives for the Pick action

3.2.5.3 A geometric plan

A geometric plan is a set of GAS linked between themselves through georne causal links. These links
are created based on the initial and nal world state of each action: if the nal world state of a GAS gl
is the initial world state of a GAS g2, then, in the geometric plan, gl is the previous ofg2.

The geometric plan can be a simple sequence of GAS or a set of GAS assembéasdDirected Acyclic
Graph (for example in the case of multiple robot acting in parallel).

The GRP stores all the actions and their alternatives, and arrange them ina tree, where a path from
the root to the leave is a geometric plan.

3.2.5.4 Additional constraints

Constraints can be considered as spaces limiting the search spaces of artion. To be more precise, in
our case, constraints will be applied to a sub-action description, ¢her to the search space or to the nal
constraints. In other terms, to add a constraint we can simply add to the targeted search space or nal
constraints an intersection with the constraint space.

For example, the Pick action can be constrained by: the approach position should be strictly
above the object, which can be incorporated in the action description as
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Pick (0) = 9h 2fr;1g; (HFreehn&Reach,(O); Fixn(); HApph \ ) (;; Fixp(); HGraspy);
(HFull y; Fixp(0); Free(o) (3.2)

As they de ne spaces in specic world states, facts can also be used a®mstraints, by using the
intersection operator again. For example, for an action where the agenar needs to place objecb on the
table s, a constraint can be set asfo; is reachable by ; ar; true g. This constraint reduces the space
de ned by the nal constraints of the action description to itself in tersecting the space reachable by the
human.
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3.3 Framework

In order to put in practice this formalization, a framework was developeal, able to compute GASs, while
maintaining a plan and computing human-aware costs for each action. Thisection de nes in details this
framework by rst presenting the choices and the simpli cations made (Subsection3.3.1) then it presents
some examples of formal de nitions available in the framework (Subsedbn 3.3.2). Next it shows three
di erent algorithms able to nd GASs based on the action description (Subsection 3.3.3), later it shows
the results of this framework concerning one of these algorithms and nay, it states some possible future
works concerning the framework.

3.3.1 Simpli cations and choices

We assume that in this framework the entities states are fully known(the con gurations and the trajec-
tories are fully known and de ned at every moment). The second assumiion concerns the sequentiality:
only sequential actions are possible (no parallel actions) causing thelgn to be a sequence and not a
Directed Acyclic Graph.

Some simpli cations were also done to facilitate the computations: thg add to the models presented
in the previous section a number of parts on which reasoning at symbolitevel is easier than reasoning
on the basic models.

Wrist manipulation joint (WMJ) Every agent is equipped with a WMJ. It is a virtual point xed
{with a transformation matrix{ to the agent end e ectors (the hands or the grippers) and is
considered roughly at its centre when it is closed as shown in Figur8.5. (Zacharias et al. (2006,
among others, call it Tool Centre Point)

Figure 3.5: This is the PR2 robot, a two-arm (r and 1) mobile manipulator, the green and blue points
are respectively the WMJs of r and | end e ectors.
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Attachments  An attachment is a transformation matrix between the WMJ and an object. It enables
the system to keep track of the objects grasped by the agents and is staten the world states. In
the rest of this manuscript, an object attached to the end e ector of an aget arm means that this
transformation matrix is known.

Arms We consider that each agent is equipped with at least one arm, and at most twoWhen there
are two arms they are notedr and | for right and left. Let Hag be the set of agentag arms.
This is not a limitation of the system, adding robots with more arms is feasible, but for now, the
implementation handles only up to two arms.

In addition to these simpli cations, the framework needs a number ofadditional information. This
information such as the possible grasps can be computed on-line using ohe-shelf methods such as
Miller et al. (2003 for the grasps, but in this work, we have made the choice to pre-compte the
following information in order to speed up the on-line computation time:

Grasps The grasps used in the framework are precomputed for each di erent en@ ector, in the form
of a transformation matrix between the object and the WMJ, in addition to a direction from where
the grasp is feasible. Figure3.6 shows 3 di erent grasps for the grey book. If an object does not
have grasps, it is not considered as a manipulable object. LeG, ¢ be the set of precomputed
grasps of objecto by end e ector ee

(@) (b) (©

Figure 3.6: Di erent grasps for the grey book (this is just a sample from the availale grasps).

Supports An object support is a geometrical form attached to an object face (by a tranformation
matrix) where other objects can be placed. An object can have multiplesupports (such as a shelf)
and when an object does not have any supports, it is not considered as agport object. Figure 3.7
shows di erent supports on various tables. LetS, be the set of precomputed supports of objecb.

Stable con gurations These are rotations of a manipulable object that enable a stable placementhen
the object is on a horizontal support. An object without Stable con guration s cannot be placed in
any ways (but can, for example, be handed over). Figure8.8 illustrate these con gurations on the
grey book. Let P, be the set of precomputed Stable con gurations of the objecto.
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Figure 3.7: The supports of the tables are represented in green, each table has ongpport, which is a
rectangle covering its top face. The objects on the tables are not suppbobjects, hence, they don't have
any supports.

In addition to this, the de nition of a GAS was extended to include a unique GAS identi er ( gasNum)
that di erentiates GASs from each other, and a unique alternative identi er ( gasAltNum ) that di eren-
tiates, within the same GAS, alternatives from each other. The GAS de nition now contains the list of
all the GSAS linked together through geometric causal link, its cost, thegasNum, and the gasAltNum .

3.3.2 Actions description and examples

We have developed in this framework a number of actions. Some examplese described in details in
this subsection. Some descriptions used in the following are commdor di erent actions (in the rest of
this chapter, ag refers to the agent,h refers to one of its arms, andh:eerefer to arm h end e ector).

Geometric pre-conditions

HF reen(ag): no object in h:ee
HF ullh(ag;0: ois in h:ee
OReach,(ag; 0: object o reachable by armh of ag while the robot base is xed.
EEOpem,(ag): h:eeis open.
EECIlose,(ag): h:eeis closed.
Search spaces
Fix h(ag): the subset of Cspacewhere all entities DoFs are xed, apart from the DoFs of the
arm h of ag.

UpFix(ag): the subset of Cspacewhere only ag displacement DoFs are not xed.

OFixn(ag; 0: the subset of Cspacewhere all entities DoFs are xed, apart from DoFs of the
arm h, and the DoFs of objecto which is attached to h:ee
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@) (b)

(c) (d)

Figure 3.8: (@), (b) and (c) are di erent stable con gurations for the grey book (this is just a sample
from the available stable con gurations). (d) is not a stable con guration.

EEF ixh(ag): the subset of Cspacewhere all entities DoFs are xed, apart from the DoFs of
h:ee

Final constraints

EECh(ag): the subset of Cspacewhere h:ee is closed (This subset contains also the cases
when the end e ector is not completely closed because it is grasping aobject).

EEOn(ag): the subset of Cspacewhere h:eeis open.

The inputs are expressed between the parentheses while the nae ned variables (such as the arm
to use) are noted as subscripts. In the following descriptions, th inputs might be omitted when no
ambiguity is possible.

3.3.2.1 Pick

The Pick action description presented in Subsection3.2.3.1 was lacking some details de ned in this
section and is fully rede ned here. The nal constraints needed are
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HApp, g(ag;0: the subset of Cspacewhere WMJ of h:eeis at a given distancé from the position
de ned by grasp g 2 G, hee in the direction de ned by g. This position is an approach position
in order to grasp the object.

HGraspn g(ag;0: the subset of Cspacewhere WMJ of h:eeis at the position de ned by g (this
grasp must be the same as the one iMAppn 4(ag; 9).

OF ree(0): the subset of Cspacewhere the objecto is at a given distance€ above its initial support.
This position allows to disengage the objecto from the contact it has with its support.

The description of the action Pick is now:

Pick (ag;0 = 9h 2 Hag;99 2 Go aee; (HF reen(ag)& OReachy(ag; 0); Fixn(ag); HAppn ¢(ag;0)
(;; Fixn(ag); HGraspn g¢(ag;0) (;; EEFixn(ag); EECh(ag))
(HFullp(ag; 0; OFixh(ag;0; OFree(0)) (3.3)

The input list of a Pick contains also the initial world state (as this input is mandatory for every
action, it will be omitted in the rest of the action descriptions), th e manipulable objecto and the agent
ag performing the action. The dierent parts of the description are explained in the followings and
illustrated in Figure 3.9:

9h 2 Hag;99 2 Gy aee means that at least one pair (arm, grasp) exists where the next parts of the
description are ful lled.

(HF reen(ag)& OReach,(ag; 0; Fixnh(ag); HApp, ¢(ag;0) is the approaching sub-action descrip-
tion. The corresponding trajectory, should bring a free end e ecor from its initial position to a
position where the object can be reached easily (a given distanéeaway from the object), Fig-
ure 3.9(a)’.

(;; Fixn(ag); HGraspn g(ag;0) is the engaging sub-action description. The corresponding tra-
jectory should be a simple straight line of the end e ector from the previous position to a position
where closing it will result on grasping the object, Figure3.9(b).

(;; EEFixnh(ag); EECh(ag)) is the grasping sub-action description. The corresponding trajetory
closes the end e ector to grasp the object, Figure3.9(c).

(HFulln(ag;0; OFixn(ag;0; OFree(0)) is the disengaging sub-action description. The corre-
sponding trajectory disengage the object from the contact it has with its support, Figure 3.9(d).

%In our implementation and for the scenarios we are using, this distance is set to 10 cm.
“The gures (and the ones after) are generated in simulation within the environment provided by move3d Sineon et al.
(2001).
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(a) Approach (b) Engage

(c) Grasp (d) Disengage

Figure 3.9: The di erent GSAS of Pick , a trace of the trajectories is shown.

3.3.2.2 Place

In the Place action, the agent needs to approach the support with the object Figure3.10(a), Place it
Figure 3.10(b), release it Figure3.10(c), and then extracts its arm Figure 3.10(d). To describe thePlace
action, one more pre-condition is neededSReach,(ag; s0, support sois reachable byh, and some more
nal constraints:

HAppr.y) p(ag;0;sq: the subset of Cspacewhereo is at a given distancé above the supportso
at coordinate (x,y) {relative to the support{ with a stable con guration p2 P,.

HRely.y) p(ag;0;s9: the subset of Cspacewhere o is on the support so at coordinate (x,y) with
a stable con guration p 2 Pe.

EEF reep(ag; 0: the subset of Cspacewhere WMJ of h:eeis at a given distanceé away from o.

The description of the action Place is then:

Place (ag;0;59 = 9h 2 Hag; 95 2 Ss0, 9(X;Y) 2 S;9p 2 Py,
(HF ull(ag; 9& SReach,(ag; s9; OFixh(ag;9; HAppr.) p(ag;o;sqg)
(;; OFixp(ag;0; HRely.y) p(ag;0;89) (;; EEFixnp(ag); EEOn(ag))
(HF reen(ag); Fixn(ag); EEFreen(ag;0) (3.4)
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The inputs for the Place are the agentag, the manipulable object o, and the support objectso. The
framework chooses which support to use in the support object (in thecase of more than one support),
where exactly (x;y) to Place the manipulable object and which stable con guration p to use.

(a) Approach (b) Place

(c) release (d) Extract

Figure 3.10: The di erent GSAS of the Place action, a trace of the trajectories is shown.

3.3.2.3 Stack

The Stack action is very close to thePlace action, the only di erence is that in the Stack action the
exact position where to place the object is given as input (under the drm of the support, with the
position at its centre (¢, cy)):

Stack (ag;0;s9 = 9h 2 Hag;9p 2 Po;
(HF ullp(ag; 9& SReach (ag; s9; OFixn(ag;9; HAppr(,.,) p(ag;o;sq)
(;; OFixn(ag;0; HRelq, ) p(@g;0;89) (;; EEFixn(ag); EEOn(ag))
(HF reen(ag); Fixn(ag); EEFreen(ag;0) (3.5)

Figure 3.11 shows an example of &tack action.
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(a) Approach (b) Support approach

(c) Release (d) Extract

Figure 3.11: The di erent GSAS of the Place action, a trace of the trajectories is shown.

3.3.2.4 NavigateTo

In the NavigateTo action, the agent needs to go into a navigation con guration then navigates b the
target. One speci c search space is neededJpperBody(ag): the subset of Cspacewhere all entities
are xed apart from the agent upper body® and the object attached to his end e ectors. The specic
nal constraints of this action are: NavP os(ag), the subset of Cspacewhere the agent is in a navigation
con guration, and OnT arget(ag; e: the subset of Cspacewhere the robot reached the target entity e.
Reaching a target entity depends on the entity type, if it is an agent,the agents should be able to reach
each other extended arms, if the entity is an object or a support, it slould be reachable by the agent.
Its description is:

NavigateTo (ag;e = (;; UpperBody(ag); NavPos(ag)) (;; UpFix(ag);OnTarget(ag;e) (3.6)

The input is a 2d zone, which can be specied by providing an entity the zone will be the one

immediately around this entity. Figure 3.12 shows an example of eNavigateTo action where a robot
goes to a table.

5By upper body we mean all the DoFs not needed for the navigation
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(a) Initial con guration (b) Navigation con guration (c) Target con guration

Figure 3.12: The dierent steps of the NavigateTo action, the initial and nal world state of each
GSAS is shown (the blue line is the robot navigation path).

3.3.2.5 Handover

The Handover as de ned in the previous chapter is complex, as it involves two agentsWe are going to
di erentiate between them as ar for the receiver andag for the giver. Two speci ¢ nal constraints for
this action are: DistT arget, j(ar;ag) the subset of Cspacewhere the distance between the two agents
is smaller than the sum ofar arm h length and ag arm i length, and AgentReachy, j(ar;ag): the subset
of Cspacewhere h:ee can reachb:ee The action description is:

Handover (ag;ar;0) = 9(Xr;¥r; ) 2 (RIR;[ 5 1);9(XgiVg o) 2 (RIRI[ 5 1)9h 2 Har;9i 2 Hag
((HF reen(ar); UpperBody(ar); NavP os(ar))k(HF ull;(ag); UpperBody(ag); NavP os(ag)))
(;; UpFix(ar) [ UpFix(ag); DistTargety j(ar;ag))
(;; Fixp(ar) [ OFix;(ag;0;AgentReachy, i(ar;aqg)) (3.7)

The inputs are the agents and the object to exchange. This descriptioiis the one used in Sectior2.3to
nd handover positions, even if it was done outside of this framework, 1 is still covered by the description.
The rstpart, 9(Xr;yr; r) 2 (RIR;[ 5 1:9(Xgi Vg ¢) 2 (RIR;[ 5 DOH 2 Har; 9i 2 Hag means that
at least one pair (giver position, receiver position) exists where thegents, after moving to a navigation po-
sition ((HF reey(ar); UpperBody(ar); NavP os(ar))k(HF ulli(ag); UpperBody(ag); NavP os(ag))), can
navigate to (;; UpFix(ar) [ UpFix(ag); DistTargety i(ar;ag)), and that at least one pair (giver arm,
receiver arm) exists where in these positions, the agents arms canaeh each others one;(; Fix(ar) [
OFix(ag); AgentReachy, i(ar;ag)).

3.3.2.6 PlaceReachable

Following the formalization, we can add human-aware actions, for examplePlaceReachable is an action
where the agentag holding the object place the object in a place which is reachable by aarget agentara.
Let's consider the nal constraints AReachQ(at; 0), based on the factf o; is reachable by ; ar; true g,
it de nes the subset of Cspacewhere the objecto is reachable by agentar. The action description is
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then:

PlaceReachable (ag;ar;0;s0 = 9h 2 Hag;95 2 Ss; 9(X;y) 2 S;9p 2 Py,
(HF ully(ag; 0& SReach (ag; s0; OFixn(ag;0; HAppry.y) p(ag;o;s9 [ AReach((ar;0))
(;; OFixp(ag;0; HRely.y) p(ag;0;89) (;; EEFixnp(ag); EEOn(ag))
(HF reen(ag); Fixn(ag); EEFreen(ag;0) (3.8)

This description is the same as the Description3.4 with the additional AReachO(ar) as well as the
inputs with an additional target agent ar. Figure 3.13 shows an example of this action.

(a) Initial con guration (b) Object is reachable to the human

Figure 3.13: The initial and nal world state is shown for a PlaceReachable action. Note that the
object is reachable to the human in the second gure.

3.3.2.7 More possibilities

These actions are examples of what the framework o ers, but do not show alts possibilities. For example,
the Pick and Place actions are designed for a mobile manipulator using one arm. It is possibl® extend
it to multiple arms manipulation or to other kinds of robots such as humanoids robots (Figure 3.14shows
an example of a humanoid robotROMEO (http://projetromeo.com/en ) performing a Pick ). In this
particular context, one of the transformations we have made was switchig from Fix, to UpperBody®
to account for the stability constraint (if a humanoid robot moves his arm only, and extends it too
much, there is a risk of falling). The work concerning the humanoid rolots was done in cooperation with
Renaud Viry. In some cases, the inputs list can also be changed, withouthanging the description of
the action: for example, for aPlace, one can specify the object to place, an arm (retrieving the object
thanks to the attachments), or both (checking if the attached object is the same as the one speci ed).
The support, the stable con guration, or even the exact position on the sypport can also be given as
inputs to a Place action. When additional inputs are given to the actions, the framework replaces the
search it would do when nothing is speci ed by the direct selecton of the inputs.

5Reminder: UpperBody means that all entities are xed apart from the agent DoFs which are n ot needed for the
navigation.
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(a) Initial world state (b) Grasping the object

(c) Lifting the object

Figure 3.14: The dierent GSAS of the Pick action, performed by a humanoid robot. Note that all
the upper body is moving when performing the action to keep the rolot stability.

Some inputs can also be omitted, in which case the system needs to cider them as additional
variable to look for: in the Place, omitting the support object will result on checking the nearest
support object to the agent and use it.

3.3.3 The proposed Algorithms

This subsection presents di erent algorithms able to nd solutions for these actions. The general idea of
these algorithms is to nd the initial and nal world states of the GSAS and then to compute the corre-
sponding trajectories. In order to nd these world states, the sinpli cations and information described
in 3.3.1are used in addition to the inverse kinematic (IK) computation. For example, when computing a
Pick , a number of grasps are tested to nd a feasible one (collision free). Aen, the agent con guration
is computed (IK) resulting on a nal world state. For the Place, a number of placements on the table
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are tested with various stable con gurations, as shown in Figure3.15 When one of them is collision free,
the nal con guration is computed based on the grasp used to attach the objet to the end e ector in
the initial world state of the action.

(@) (b) (©

(d) (e) )

Figure 3.15: Various placements using di erent stable con guration of the object Grey book. Some of
those (c and d) are in collision.

The most basic algorithm is to nd a solution for each sub-action descripton separately, and then
to combine them with the geometric causal links (Subsection3.3.3.1). The second algorithm consists
on nding the nal world state of every sub-action description (using inverse kinematics for example),
and then computing the motion plans between the computed world stategSubsection3.3.3.2. The last
algorithm consists on nding all the possible nal world states and then choose between them the best
one (based on human aware costs) and compute the motion plan for it (Subsdon 3.3.3.3.

3.3.3.1 Separated sub-action descriptions algorithm

In this version, the Algorithm 3 processes the sub-action descriptions one by one until nding a sotion
for all of them. The rst lines of the algorithm initialize the dieren t variables needed later, such as
CSTD (Line 3) which is the current sub-action description, initialized to the rst sub-action described
in the action. Then, the algorithm enters a loop (from Line 8 to Line 30) where it rst retrieves the
performing agent’ then, it checks if the conditions specied by CSTD are respected in the current
world state currWS (Line 10). In the case where the conditions are not met, the algorithm sets the
current variable to the one from the previous sub-action description(Line 11) and if no previous sub-
action description is found, it breaks out of the loop and fails to nd a GAS for this action. When
the conditions are met, the algorithm enters another loop (Line 14 to Line 20) where it searches the

"In the current framework, as speci ed above, there is only one performi ng agent per GSAS, selected in the description
(Line 9)
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Algorithm 3 Resolving an action based on the algorithm separated sub-action descriths
1: function ComputeAction (ald,IN)
2: descr  GetActionDescription (ald) . retrieving the action description from Dy

3 CSTD  GetFirstSubActionDescr (descr) . CSTD is the current sub-action description

4: currw's IN:WS init

5: prevST ;

6: Clear (STList) . STList is the GAS

7 solLeft  true

8: while CSTD 6 ; do

9 a getAgent (CSTD) . This is the performing agent (needed in every GSAS)

10: if not checkCond (CST D:conditions, currWWS) then

11: (CSTD, prevST, currWs) GoToPreviousST (CSTD,descr,STList)

12: continue

13: end if

14: while solLeft> Oandtraj = ; do

15: (WStmp ; solLeft) FindWS (currWs, CSTD:searchSpaces \
CSTD:finalConstraints , IN)

16: if wsimp = ; then

17: continue

18: end if

19: traj ComputeTraj (currWS, wsymp, CST D:searchSpace$

20: end while

21: if traj = ; then

22: (CSTD, prevST, currWS)  GoToPreviousST (CSTD,descr,STList)

23: continue

24: end if

25: tmpST  (a;traj; ;)

26: SetNextSubAction  (prevST, tmpST)

27: AddToList (STList, tmpST)

28: prevST  tmpST ; currWS  wsymp

29: CSTD  getNextSubActionDescr (descr,CSTD)

30: end while
3L return (STList, ComputeCost (ST List), CreateNewGasNum , CreateNewGasAltNum )
32: end function

solution for this sub-action description: it tries to nd the agents and objects con gurations (Line 15
with FindW S function which will be detailed later in this subsection) and by extension the GSAS nal
world state wsymp . Then, it computes a trajectory to link currW'S and wsmp . If this trajectory is found,
the algorithm breaks out of the deepest loop, and continues by creatinghte new GSAS related to this
trajectory (Line 25), then adding the geometric causal link between this GSAS and its prédecessor in
descr (Line 26) and nally store it in the GSAS list (Line 27). Before the end of the loop, the current
sub-action description CSTD is updated with the next one in descr (Line 29). The algorithm escapes
the loop when there is no more sub-action descriptions and returnshie GAS, represented by the GSAS
list, its cost and the unique identi ers for the GAS and the alternati ve {those are computed at the end
of the algorithm only if a solution was found, otherwise their value isnan{.

The FindW S function in Line 15 of Algorithm 3 is a function computing, based on the search space
and the nal constraints of a sub-action description, the nal world stat e wsyy,, for said description. It
uses inverse kinematic coupled with the WMJ of the arms to nd con gurations corresponding to the
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Algorithm 4 The procedure to apply before looping in Algorithm 3
1: function GoToPreviousST (CSTD,descr,STList)

2: CSTD  getPreviousSubActionDescr (descr,CSTD)

3 RemovelLast (ST List)

4 prevST  LastST (ST List)
5: currWsS  GetEndWS (prevST)
6
7

return (CSTD, prevST, currWs)
end function

description. This function, as it is action dependent usually need to be implemented separately for each
action. As said before in SubsectiorB8.2.5.2 the possible solutions available in the search space and the
nal constraints are not unique, but can be false solutions: even if a saition is found, the trajectory
might not be feasible. FindW'S returns in addition to the nal con gurations it found (under the form

of a world state) an integer solLeft indicating the number of solution left in the space de ned by the
search space and the nal constraints. Note that this exploration is storedand each time FindWS is
called for the same sub-action description, the already tested solutins are removed from this space. This
is true even when an alternative is computed, the information stored m this function are retrieved from
all the previous alternatives already computed. The number of possil@ solution in the search spaces
can be in nite (continuous spaces), in which cases, we set a numeal limit for the possible number of
solutions (e.g. 200 for thePlace action).

3.3.3.2 Con gurations rst algorithm

The di erence between this algorithm and the previous one is about wha to compute the motion plan:
in the previous one, it was computed for each sub-action description i this one, the motion plan is left
to the end, until all the world states are found.

These di erences are shown in Algorithm5. Its main loop (Line 3 to Line 31) consists of two main
steps:

Computing the world state list (Line 7 to Line 18) this step consists on looping over the sequence
of sub-action descriptions, and for each one, checking the conditiond.ine 8) and, if respected,
computing the corresponding world state (Line 10). This world state is then used to check the
pre-conditions for computing the next GSAS and to compute the next wold state, and so on, until
all the start and nal world states of every GSAS is computed and stored inW SList (Line 16)

Computing the motion plans (Line 20 to 30) As all the world states are computed and the corre-
sponding conditions checked, the second step consists on linkingeém by computing the trajectories.
For each start and nal world state computed in the previous step and stored in W SList the algo-
rithm will compute the trajectory (Line 22) and will create the corresponding GSAS and add it to
the result. As soon as one trajectory cannot be computed (Lin&3), the solution cannot be found,
and the algorithm loops back to the rst step.

The algorithm breaks out of the main loop on two conditions: (1) a solution is bund, (2) no more
solutions are available in at least oneFindW S (Line 10).
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Algorithm 5  Resolving an action based on the algorithm with con guration rst

1: function ComputeActionConfs  (ald,IN)

2: descr  GetActionDescription (ald)

3 while SolutionNotFound and solLeft > 0do

4 Clear (STlList) ; Clear (WSList)

5: CSTD  GetFirstSubActionDescr (descn) ; currWs IN:WS init
6: AddToList (WSList, currWs)
7.
8
9

while CSTD 6 ; do
if checkCond (CSTD:conditions, currWWS) then
: (WStmp ; solLeft)
10: FindWS (currWS, CSTD:searchSpacess CSTD:finalConstraints , IN)

11: end if

12 if not checkCond (CST D:conditions, currWS) or Wsinp = ; then

13: (CSTD, prevST, currWS)  GoToPreviousST (CSTD,descr,STList)
14: continue

15: end if

16: AddToList (WSList, [currWS; wSimp; CSTD])

17: CSTD  getNextSubActionDescr (descr,CSTD) ; currWS  Wsimp
18: end while

19: prevST ;

20: for i 0;i< Size(WSList); i++ do

21: a getAgent (WSList[i][2])

22: traj ComputeTraj (W SList[i][0], WSList [i][1], W SList [i][2])

23: if traj = ; then

24: break

25: end if

26: tmpST  (a;traj; ;)

27: SetNextSubAction  (prevST, tmpST)

28: AddToList (STList, tmpST)

29: prevST  tmpST

30: end for

3L end while
32: return (STList, ComputeCost (STList), CreateNewGasNum , CreateNewGasAltNum )
33: end function

3.3.3.3 Integration of Human aware constraint

This third algorithm di ers from the two previous ones by taking expl icitly into account the human: in
order to achieve this, the algorithm computes, as the previous one, thaequence of world states, then
compute the trajectories. The di erence lies in the following, the algorithm computes all the world states
corresponding to every available solution inFindW S and then, sorts them according to a human-aware
costs, and, nally, computes the trajectories for the best one (if it fails, it computes the trajectories for
the second best one, and so on)

This algorithm can be divided into three main parts:

Computing the world states (Line 3 to Line 20) In this part, the algorithm computes all the pos-
sible sequences of world states. The limit is the one xed bysolLeft computed by FindW S
(Line 10).
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Algorithm 6  Resolving an action based on the algorithm computing costs
1: function ComputeActionCosts  (ald,IN)
2: descr  GetActionDescription (ald)

3 while solLeft> 0do

4: Clear (WSList)

5: CSTD  GetFirstSubActionDescr (descn) ; currWs IN:WS init

6: AddToList (WSList, currWs)

7: while CSTD 6 ; and solLeft> 0do

8: if checkCond (CSTD:conditions, currWWS) then

9: (WStmp ; solLeft)

10: FindWS (currWS, CSTD:searchSpacess CSTD:finalConstraints , IN)
11: end if

12 if not checkCond (CST D:conditions, currWS) or wsinp = ; then

13: (CSTD, prevST, currWS)  GoToPreviousST (CSTD,descr,STList)
14: continue

15: end if

16: AddToList (WSList, [currWS; wSimp; CSTD])

17: CSTD  getNextSubActionDescr (descr,CSTD) ; currWS  Wsimp
18: end while

19: AddToList (GlobalW SList, W SList)

20: end while
21: Sortlist (GlobalW SList)

22: . this sorting is done based on cost computing for con guratios in world states
23: for j 0;j< Size(GlobalWSList); j ++ do

24: CWSList  GlobalWSList[j] ; Clear (STList) ; prevST ;

25: for i 0;i< Size(CWSList); i++ do

26: a getAgent (CWSList[i][2])

27: traj ComputeTraj (CWSList[i][0], CW SList[i][1], CW SList[i][2])
28: if traj = ; then

29: break

30: end if

31: tmpST  (a;traj; ;)

32: SetNextSubAction  (prevST, tmpST)

33 AddToList (STList, tmpST)

34: prevST  tmpST

35: end for

36: if AllTrajsAreFound then

37 break;

38: end if

39 end for
40: return (STList, ComputeCost (STList), CreateNewGasNum , CreateNewGasAtNum )
41: end function

Sorting the sequences of world states (Line 21) Once all the sequences of world states computed,
the algorithm sort them according to a cost. This cost is computed based owvarious parameters
related to the human safety and comfort depicted in the next subsedon.

Computing the trajectories (Line 23 to Line 39) In this part, the algorithm tries to nd the tra-
jectories for the rst sequence in the sorted list of possible seqencesGlobalW SList, and if it fails,
it tests the second best sequence, then the third, and so on, urtinding a solution or testing all
the sequences.
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3.3.4 Additional implementations

In addition to the main algorithm. Some other implementations has been doe:

3.3.4.1 Facts

The function GetFacts (ws) can be called upon a world state (vs) and computes the facts that hold in
it. The available facts are as follows:

Is On rst object is over the second object

Is In rst object is inside the second object

Is Next To both objects are next to each other

Is bigger than rst object is bigger than the second one (s smaller is also available)
Is reachable by object can be reached by the agent

Is visible by object is in the eld of vision of the agent

This implementation is based on previous works on this domain, such as¥arnier et al. (2012 and
Sisbot et al. (2011).

3.3.4.2 Cost

The cost function used to sort the world state sequence list is relant only when the performing agent
is a robot and there are humans in the environment. It is linked, as in &ibsection 2.3.1.3 to three
parameters: thedistance (this part of the cost is inversely related to the smallest distancebetween the
robot and every human in the environment) the visibility of the robot by the humans where we test if
some part of the robot is not hidden to the humans, and themusculoskeletal e ort (when needed) related
to the Euclidean distance between the initial and nal con gurations d uring a GSAS, and the potential
energy in the nal world state Marler et al. (2005. These three parameters enable us to compute the
human-aware GSAS and by extension human-aware GAS.

3.3.4.3 Alternatives

The framework also proposes the possibility of calling the functionFindAlternative (gasNum) which
retrieves, from the stored GASs, the corresponding one (with the samgasNum), the action ald and the
inputs IN , and call again the search algorithm. As said before, the functiorFindWS stores the di erent
failed and succeeded nal world states it computed for each GSAS and propes a new one each time it
is called again.
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3.3.4.4 Additional Constraints

As the constraints can be directly added in the action de nition (as presented in Subsectior3.2.5.9, they
are actually solved by the algorithms as it is. They are included in the hputs IN of the action under the
form of facts (as said before, facts de ne search spaces that can be usedan action descriptions) in addi-
tion to their position in the action description. For example, when using a PlaceReachable (ag,ar,0,s0)
action, we can add as a constraint the fact:f o; is visible by ; ar; true g when nding the object place-
ment. This constraint will force the algorithm to nd only objects posi tions that are visible by the agent
ar.

3.3.4.5 Geometric plan

The input world state in the search algorithms can be replaced by a refeence to a previously computed
GAS (the reference must contain bothgasNum and gasAltNum ), in which case,ws;,; can be retrieved
from the corresponding GAS as it nal world state, and a geometric causal likk is created between the
referenced GAS and the computed one (in this order). This is how thegeometric plans are stored.

In order to compute geometric plans, we developed an algorithm able to compe them based on a
list of actions and an initial world state. This algorithm is very simple: for each action in the list, it
computes the GAS. If the computation succeeds, it computes the nexaction GAS based on the computed
nal world state, otherwise, it backtracks to the previous action it computed, nds an alternative for
this action and proceeds to compute the failed action GAS again with the ne world state obtained. If,
during a backtrack, there is no more alternatives to the action, the agorithm backtracks one more step.
It repeats these steps until it nds a geometric plan or until all the alternatives have been tried and have
failed. Figure 3.16 shows a plan where the robot performs three successiveick and Place on three
objects. This plan was written under the form represented in Algorithm 7 as a set of actions to perform.

Algorithm 7 Resolving an action based on the algorithm computing costs
1: SetlnitialWorldState

Pick (r; RED _CUBE)

Place (r;RED _CUBE)

Pick (r; GREY _BOOK )

Place (r; GREY _-BOOK)

Pick (r; ORANGE _BOX)

Place (r;ORANGE BOX)

N g ke

3.3.5 Results and discussion

This subsection presents, through Table3.1, the results obtained when running the second algorithm
(Subsection3.3.3.2 on the action Pick , Place and PlaceReachable as described in Subsectior8.3.2
These results have been evaluated in a scenario where a PR2 roboteus to Pick (or Place, or Plac-
eReachable to a human in the other side of the table) a green bottle, with one of its tvo 7 DoFs arms,
on a table in front of him. Some initial world states are depicted in Figure 3.17 (the robot arm and the
bottles initial con guration have been randomized, the gure shows only some examples of this initial
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in the right side and the mean calls number to the motion planner ist 2 with a variancet 2. During

the motion planning, most of the examples were very fast to compute (as sfwn by the low averages of
the computation times) but in very few examples, the motion planning took a long time, making the

variance and the standard deviation very high. One particular number to look for in the table is the

variance of the number of solutions explored in the case of lace : this high number can be explained
by the number of variable the Place action needs to instantiate in order to nd a solution.

(@) (b)

© (d)

Figure 3.17: Various initial world state where the Pick has been evaluated

The framework can also handle multiple agents at the same time, perfornmig di erent actions (in
sequence) using di erent motion planners. Figure3.18 shows an environment where a PR2 robot and an
unmanned aerial vehicle (UAV) cooperate to bring an object to its nal position: in the initial scenario,
the UAV cannot Pick the bar as there is an object obstructing it path, the PR2 removes thatobject in
order to let the UAV perform a Pick . One additional feature available in this framework is the possibility
to use di erent motion planners and/or di erent type of motions depend ing on the tasks. Here, The PR2
uses classical linear motion primitives de ned in its Cspacewhile the UAV uses kinodynamic motion
primitives de ned in its state space (i.e. integrating speed and aceleration) Boeuf et al. (2014).

In addition to that, it is also able to handle geometric plans (Subsecton 3.3.4.5, to compute actions
alternatives (Subsection3.2.5.2 and facts (Subsection3.2.4), and to add these facts as constraints to
any action (Subsection3.2.5.4.

This framework has been implemented on the PR2 robot using the archécture explained in Fiore
et al. (2019. In this architecture, a supervision module communicates witha task planner (HATP) and
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| for one action || without motion plan \ with motion plan \
Pick average variance stand dev average variance stand dev
Time 0.026 0.0001 0.0108 | 2.8553 17.1426 4.1403
Sol tests 2.525 3.6193 1.9024 | 8.2130 124558 11.1606
Inverse kinematic 4.61 4.5379 2.1302 | 11.4556 128.899 11.3534
Motion plan - - - 2.0532  2.1687 1.4726
Place
Time 0.0201  0.0007 0.0270 | 2.7153 22.8922 4.7845
Sol tests 44522 19.7352 4.4424 | 18.5033 1166.78  34.1582
Inverse kinematic || 4.9296  7.3216 2.7058 | 11.7219 217.101  14.7344
Motion plan - - - 2.0463 2.4548 1.5667
PlaceReachable
Time 0.0477  0.0016 0.0403 | 3.0798 47.1862 6.8692
Sol tests 5.5577 78.4879 8.8593 | 12.2692 236.735  15.3862
Inverse kinematic || 5.1658 10.5303 3.2450 | 9.4359 57.8741 7.6075
Motion plan - - - 1.8846 1.8969 1.3773

Table 3.1: Time means the computation time, Sol Tests means the number of solutiamexplored (by how
much solLeft decreased), Inverse kinematic means the number of inverse kinextic called, and Motion
plan means the number of calls to the motion planner. These averages, vance and standard deviation
(stand dev) are computed in over 150 successful action computation

obtains a plan (which is computed based on the information available in tle knowledge base). This plan
is then used to ask, step by step, the human-aware motion and manipul&n planners module to compute
the actions. In order to compute these actions, this module uses thevorld state provided by SPARK
(the situation assessment moduleSisbot et al. (2011) and the framework we developed to compute a
GAS. The trajectories computed in this GAS are then sent to the sengrimotor layer to execute them.

The robot can now Pick , Place, PlaceReachable and Stack with real objects. Figure 3.19 shows
it during a session of Pick and PlaceReachable (the video is available here: https://youtu.be/
85KiC35gkPE

This framework enables us to solve a number of problems but is stillilnited, for example, it cannot
compute anything else then the action (or sequence of action) it has beecommanded to compute: which
can be problematic in some cases, for instance, if the objeg obstructs the access to the objec the
agent needs toPick , the framework will fail to nd a solution as it would need rst to remo ve or push
the object g to accesso. This limitation in particular is a choice: as we are going to see in the ext
chapter the choice of action is let to the task planner, which can take ito account more parameters.
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(a) Initial scenario (b) Pr2 Pick and place obstructing object

(c) UAV Pick the bar (d) UAV places the bar

Figure 3.18: A geometric plan where the PR2 and the drone cooperate to bring the bard its nal
location (it is planned in sequence)
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Figure 3.19:
sequence.

(a) Initial scenario (b) Pick approach
(c) Pick grasp (d) Pick extract
(e) Place approach (f) Place release

(g) Place extract

An example of the framework running on the PR2 robot and executing aPick and Place
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3.4 FRuture work

This work can be enhanced in a number of ways, here are some of them:

Graph reuse each query to the motion planner ComputeTraj in the algorithms) is done in the frame-
work as an RRT query (LaValle (1998). One way to enhance the motion planning search is to
reuse the RRT graph (or any other motion planning graph). Some approacheserguson et al.
(20006, Phillips et al. (2013 use one graph and make it evolve with time and queries but it does
not exactly match our needs as they usually replan in the same or nearly th same environments
as the previous queries. In this framework, we might need to replann the nearly (or exactly) the
same scenarios, but it also might happen for two consecutive action compation to be in totally
di erent environment. The idea of reusing graphs here is to rst store each computed graph and
link it to an action, and then, when computing the motion plan for a new action, try to nd {based
on information provided by the framework, such as the performing agentthe object manipulated,
the action type, and so on{ the closest action to the new one, and use thet@ed graph(s) linked
to this closest action.

Search space exploration  The exploration in the search space is done randomly but can be enhanced
to take the geometry into account: for example, when placing an object on dable, if an object
placement fails because there is no inverse kinematic possible that case then testing an object
position close to this one will probably fail too. The idea is to explorethe space in the most e cient
way to cover it as fast as possible.

Combining actions  based on the formalism, it is possible to concatenate actions and solve thewith
the same (or nearly) algorithms as the one presented in Subsectio.3.3

Multi-robot & parallelism as presented before, the framework can handle only one robot moving
at the time, although the formalism enables us to have multi-robot and parllelism by using the
geometric causal links. The framework can be extended to take this it account.
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3.5 Contribution to the geometric planning and reasoning in a nut-
shell

This chapter contains two main contributions:

Geometric actions formalization The actions are described as a sequence of sub-action descriptions,
linked to each other with geometric causal links. The actions can have &rnatives and can be
linked between themselves to form a geometric plan.

A framework using this formalization The framework proposes di erent algorithms enabling the
use of the previous formalization, while integrating a human-aware pararater. It shows also the
results obtained by implementing one of these algorithms on a simulatin and a real robot.
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4.1 Introduction

In the previous chapter, a geometric planner able to plan fetch and carr actions for an autonomous
robot was presented. The scope of this planner enables it to nd solutins for simple problems such as
to pick an object or to place it on a table. For more complex scenarios wheréhe robot would need to
perform a number of actions, which order is not known in advance, this @anner is clearly not enough. On
another hand, task planning methods enable a system to plan ahead for miiphle actions and sequence
of actions. The idea of this chapter is to combine these two planning rthods into one by using both
planners strengths: geometric planning strength lies in its capabity of handling the continuous 3D space
where humans and robots coexist, while taking into account their repective positions and preferences,
the objects, and the environment in general, but it uses very speaiized algorithms to nd solutions in
speci ¢ cases. Task planning strength lies on its ability to handle &rge discrete domains with a great
semantic variety and to nd an optimal way to achieve a given goal in these @mains, but it lacks the
speci ¢ knowledge to deal with the geometric description of the wordl.

The usual approach consisted on rst computing a symbolic plan, and then testing its feasibility at
geometric level. This approach rises various issues, such as the rarnation, the computation time, or the
completeness. The rami cation problem occurs when the e ects of an aton are unknown or only partially
known, which is the case when performing actions in the real world: dr example, moving an object might
result in a chain of actions (removing an object from a pile of objects nght result on the whole pile to
collapse) which was not expected. This rami cation leads the geometridevel computation to often fail,
leading to a higher computation time (the rami cation problem is more detailed in Subsection 4.3.5).
It also a ects the completeness, as some geometric choices might not bedted, before switching to a
di erent symbolic plan. In the rest of this chapter, we will be referring to the geometric level as the
geometric reasoner, or the geometric planner, as it reasons about the geomietspace and is able to re ne
the symbolic plan into trajectories.

This work was held in cooperation with Lavindra De Silva and Raphael Lallement, and was based
on previous work, such asDe Silva et al. (2013. Part of this work was published in De Silva et al.
(2014 and the other part is published in Gharbi et al. (20159. This chapter is structured as follows:
Section 4.2 presents the actual state of the art in this eld, Section 4.3 depicts a formalization of the
problem alongside an algorithm to solve it, Section4.4 shows di erent possible enhancements enabling
a computation time speed up, Sectiord.5 discusses our solutions and enhancements and proposes clues
on the future possibilities, and nally, Section 4.6 summarizes the contributions of this chapter.
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4.2 State of the art

Combining task and motion planning has been of great interest in a numbepf studies during the few last
decades. One of the rst works concerning this particular topic was doe in aSyMov by Cambon et al.
(2003 and extended later in Gravot et al. (2005, where the authors essentially propose a principled way
to link the two planners thanks to a geometric level able to tackle the so-called \manipulation planning
problem” Choset(1991]) and that allows to explicitly take into account the topological changes ocurring
in the con guration space, when a robot grabs or releases an object. aSyMov pvided a well-founded
translation of pick and place actions (and similar actions) into ‘transit' and 'transfer’ motion planning
requests even in multi-object and multi-robot contexts.

In this section, we rst identify the various names given to this problem and then we propose a
categorisation of the work done in this eld, using and extending the anaysis presented byErdem et al.
(2016.

The problem was given various names and appellations, such as hybrid plaimg Guitton and Farges
(2009H, CPMP Choi and Amir (2009 for combining planning and motion planning or TAMP Lozano-
Perez and Kaelbling (2014 for Task And Motion Planning and its variants: ITMP in Nedunuri et al.
(2014 and Hauser and Latombe(2009 for Integrated TAMP, STAMP in  Sucan and Kavraki (2012 for
Simultaneous TAMP or CTAMP in Lagrioul et al. (2014 for Combined TAMP. In this chapter, we will
refer to this problem as the Symbolic Geometric Planning (SGP) protlem.

Di erent approaches were proposed,Erdem et al. (2016 distinguish four di erent strategies among
them: \(i) low-level checks are done for all possible cases in advance drthen this information is used
during plan generation, (ii) low-level checks are done exactly whenhey are needed during the search
for a plan, (iii) rst all plans are computed and then infeasible ones are Itered, and (iv) by means of
replanning, after nding a plan, low-level checks identify whether the plan is infeasible or not; if it is
infeasible, a new plan is computed considering the results of présus low-level checks". We propose
another categorisation which keeps the same di erences as these onesitladd some other categories and
sub-categories:

Symbolic calls geometric reasoner In this case, the symbolic planner performs the plan search as
usual, but veri es the feasibility of the plans produced at geometric level. This category groups
(i), (iii) and (iv) as sub-categories.

Geometric reasoner uses symbolic level In this case, the geometric planner knows all the possi-
ble solutions and uses the symbolic planner to determine which one® explore and choose. It
corresponds to (i).

Search in both levels simultaneously The search space is a compound space between the geometric
and the symbolic spaces, the search is done in this compound space witto distinctions between
the levels. This category does not exist inErdem et al. (2016.

The next subsections, propose a state of the art categorisation followinghese points.
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4.2.1 Symbolic calls geometric reasoner

This category can be divided into three sub-categories: compute all sgbolic plans then computing the
geometric plan (Subsectiord.2.1.1), nd one symbolic plan then the geometric plan (Subsection4.2.1.2),
and compute the geometric plan during the symbolic plan search (Subs¢ion 4.2.1.3.

4.2.1.1 Compute all symbolic plans then computing the geometric plan

In this sub-category the symbolic planner computes all the possibledsk plans, and knowing this, the
geometric planner tries to nd one plan among them that is geometrically easible. Qucan and Kavraki

(2011 present an approach where, provided a list of possible plans (whicltan be interleaved), they
are able to nd a feasible set of motions that ful | the given symbolic goal. Qucan and Kavraki (2012

extend this approach by introducing uncertainties, and using a Makov Decision Process to guide the
search. Lagrioul (2013 proposes a dierent way to solve the problem: they argue that part of the

geometric reasoning may be endowed to the task planning level. Theyse a Hierarchical Task Network
(HTN, explained in more details in Subsection4.3.2), where they broke the geometric actions into basic
primitives, to nd all the possible plans, then, they use a geometic reasoner to test the geometric
feasibility of the plan, using what is called geometric backtrack.

We have seen in the previous chapter that a geometric action might havenultiple alternatives (Sub-
section 3.2.5.2. A geometric backtrack occurs when the geometric reasoner fails to d a solution for an
action, and tries, without notifying the symbolic planner, di eren t alternatives of previously succeeded
actions, until it nds a feasible set of actions (including the current one) or it reaches a limit. This limit
can be the maximum number of geometric alternatives for a speci ¢ actioror the branching factor which
is the maximum number of alternatives allowed by the symbolic planne.

4.2.1.2 Find one symbolic plan then the geometric plan

Approaches in this sub-category are the closest to the classical approachs they rst compute the whole
symbolic plan, and then test it at geometric level. The di erence isthat here, the geometric level is
taken into account directly by the symbolic planner, and they interact together to nd a feasible plan.
The idea is to prune out impossible symbolic plans right from the stat of the planning process.

Lozano-Perez and Kaelbling(2014) build a plan skeleton based on task planning, containing geomet-
rical constraints and formulate the problem as aConstraint Satisfaction Problem then they use a general
solver to test the plan geometrical feasibility. In Srivastava et al. (2013b case, once they found a task
plan, they try to plan the geometric actions, and if they fail, an error is returned to update the symbolic
state, and a new task plan is created. Caldiran et al. (20099 and Caldiran et al. (20098 present a
di erent approach where they use an action description languageC+ to provide a robot with high-level
reasoner able to nd complete symbolic plan, and, based on this plan, theg extract the collision free
trajectories. In case of problem {collisions{ they report it to the reasoner, and a new plan is computed
where they try to extract trajectories again. They provide an example of two robots maoving object in
a 2D grid, and propose another example inHaspalamutgil et al. (2010: the tower of Hanoi problem.
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Erdem et al. (2011 keeps nearly the same framework but uses in place of the action desption lan-
guage, aCausal Reasonerto nd the symbolic plans, and if the geometric resolution fails, it changes the
planning problem, by adding constraints to the causal reasoner in ordeto take the cause of failure into
account. As before, they used a two robot moving object as an example andavur et al. (2013 add
another example: the tower of Hanoi.

In this sub-category, some approaches are also based on a geometric backtrackrivastava et al.
(2014 and Srivastava et al. (20139 present an interface between a task planner and a geometric planner
where, once a symbolic plan is computed, they use geometric backtrath test it feasibility. If no collision
free trajectory is found, the geometric reasoner informs the symbati planner about the infeasible action
and the reason for its failure, information used by the task planner to clange the part of the plan coming
after the last feasible action. Lagri oul et al. (2012 also use geometric backtrack on a complete plan, but
they introduce the notion of constraints on interval bounds to speed yp the search. Once they get the
symbolic plan, they use it to de ne constraints on the robot con guration s, at each step, starting from
the last step. These constraints reduce the search space of each actioraking the number of geometric
backtracks drops. Lagrioul et al. (2014 extend this approach by adding constraints concerning more
degree of freedom at once and expose a study of the time complexity of thedlgorithm. Dearden and
Burbridge (2013 also compute the complete symbolic plan before computing the geomeyy then they
map the symbolic states with geometric ones, starting from the nal states, and nally they try to nd
trajectories between the states. If a trajectory does not exist,the geometric backtrack is triggered in
order to change the symbolic geometric state mapping. This mapping is Ernt through a set of training
data in the form of geometric states labelled with the predicates whib are true in them.

4.2.1.3 Compute the geometric plan during the symbolic plan search

This sub-category contains approaches where the geometric reasoner isledl each time a feasibility test
is needed, during the symbolic plan search. The idea is to not expte infeasible symbolic plans if we
already test their infeasibility at geometric level.

Dornhege et al. (2009 introduce the notion of semantic attachments, in the context of SGP, which
are external procedures able either to evaluate if a condition is tre or false, or compute the numerical
value of a state variable. The condition validation is used as action prediate, and computes if a motion
plan is feasible or not. The state variable computation is used to retrige the new world state from
the geometry. Dornhege et al. (2010 present a soundness and completeness study on this approach in
addition to multiple examples and relevant results using this mehod. Dornhege et al. (2012 introduce
the possibility of using heuristics during the search by enablilg the semantic attachments to only return
an evaluation of their computation and propose the use of di erent o -the-shelf task planner able to use
these heuristics such as Fast ForwardHo mann and Nebel (2001) or Temporal Fast Downward Eyerich
et al. (2012. Hertle et al. (2012 propose a new planning language: Object-oriented Planning Language,
where the task description is written in an easy object like form (skh as C++ or java), and which can
handle semantic attachments. The latest extension added bypornhege et al.(2013 to this work consists
on caching the external procedures return values and states in ordeto use them later, in case of the
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same or similar request to the external procedure is needed. Theslso use relaxed external procedures as
heuristics to prune out part of the infeasible solutions before compting the complete external procedure.

Other approaches are also based on calls to external procedures, suchfsrer-mestres et al.(2015
who worked on adapting a rst order planning language named Functional STRPS by adding requests
to external function (geometric tests for feasibility) as a componentof a symbolic action. Guitton and
Farges (20099 also modify the symbolic action description: they add geometric coniaints to the action
pre-conditions, which are passed to the geometric reasoner who usdsetm to compute a new geometric
state, and then, nds a path from the previous geometric state to the nav computed one. Gaschler
et al. (20139 and Gaschler et al. (2013b also uses external calls at symbolic level combined with a
detailed symbolic state of the world {they are able to represent the sate of a variable (known, unknown,
incomplete, or will be known at run time){ to compute feasible plans. Gaschler et al. (2015 extend this
approach by adding speci ¢ geometric predicates to their actions, ending a search speed enhancement.
Kaelbling and Lozano-Perez(201139 use an aggressively hierarchical planner which embed in the action
description primitives to compute and execute the action. They ug uents to transform the geometric
state to symbolic states and assess if the pre-conditions of the next ons holds or not. Kaelbling and
Lozano-Perez(2011b extend this approach by adding uncertainties, the planning is donen a hierarchical
belief-space: the world is not known but is observable. When perfoning an action, a previously unknown
parameter might become known or partially known (looking inside a cufpoard might end with knowing
the position of a certain object or knowing that said object is not in the cupboard). Kaelbling and
Lozano-Perez(2013 extend even more the approach by adding domain models used as heuilist to
guide and speed up the search in the robot's belief-space.

Wolfe et al. (2010 present an approach where they use high level action primitives as a@ns in a
Hierarchical Task Network (HTN) planner. These actions can be re ned to primitives such as navigate
to somewhere, move arm to grasp, or close gripperShivashankar et al. (2014 propose a formalism
which is goal directed and based on HTN, and they link it with the geometric reasoning. They achieve
this by computing, at each step of the symbolic search, a symbolic stateised to nd a corresponding
geometric state. Then, they compute the trajectories linking these geometric states. In case of failure,
a new geometric state is produced, until the branching factor is redeed (maximum number of allowed
geometric states corresponding to the same symbolic state), in whicbase, the planner backtracks to the
previous action. Once a trajectory is found, they compute its cost inorder to let it aside if its quality is
not satisfying compared to the rest of the plan (it is not removed, thecomputation of the corresponding
plan is just postponed).

Some researchers also propose approaches including a geometric backtraalili et al. (2009 propose
a combination of an HTN planner with a geometric reasoner, where the symbat actions and descriptions
embed a call to a geometric re nement of the actions. Before the geometr reasoner informs the symbolic
planner about the infeasibility of an action, it triggers a geometric backtrack. They also keep the symbolic
state updated by computing facts after each geometric computation and hanithg them to the symbolic
level. De Silva et al. (2013 extend this work by adding the ground literal protection: in the pre vious
work, geometric backtrack did not check if the newly created plan respcts the symbolic pre-conditions
set before each action. In this one, the ground literals (which are factpassed to the symbolic level
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to assess some pre-conditions) are cached by the system for each task gmutected when an action
alternative is computed. Karlsson et al. (2012 depict a solution where, by using geometric backtrack
with external calls and geometric predicates (predicates computed ageometric level and used at the
symbolic level), they nd feasible plans for a two-arm humanoid robot. Bidot et al. (2015 extend this

approach, by rst proposing a formal de nition of the problem and then by ad ding geometric constraints
able to guide the geometric backtrack in order to stress out the most inéresting/constrained actions.

4.2.2 Geometric reasoner uses symbolic level

This category corresponds to the approaches where a geometric search ildhand uses the symbolic level
to guide this search in order to reach the desired goalZickler and Veloso (2009 for example perform
their search in the geometric state space of the agents, where they com, for each state, symbolic
information enabling the search to be guided toward the goal.Choi and Amir (2009 propose to explore
the model of the world with a motion planner algorithm (such as RRT) and use the generated graph to
automatically create feasible actions: if the motion generated by an edge (oa group of edges) of the
graph, changes the state of an object, then it is considered as an action. Thea symbolic planner is
used to nd a plan using these actions. Nedunuri et al. (2014 base their work on an extended version
of a manipulation graph (LaValle (2009) which contains information about the robot base placement
and arm placement to manipulate objects. They use a given plan outline @ guide the search through
the possible sequence of actions available in the graptGarrett et al. (20149 and Garrett et al. (2014b
also use a graph capturing the possible manipulation actions in the envdnment and use a Fast Forward
(Ho mann and Nebel (2001)) task planner to nd the best plan based on these actions. The graph is
constructed by sampling the objects positions and computing one or mtiple robots inverse kinematic
for each one, and then linking this con gurations between themselveshrough trajectories.

Plaku and Hager (2010 have a di erent approach where they sample the continuous space guet
by the symbolic level, until reaching a state which satis es the goal(this state is given to the geometric
planner). In order to achieve this, they create a tree, and at each iteation of a loop, expand it by choosing
the more relevant node (based on a utility function) and explore the pace from there. Plaku (2012h
and Plaku (20129 extend this approach by replacing the symbolic planner by an automata escribed by
a Linear Temporal logic (LTL).

4.2.3 Search in both levels simultaneously

In this last category, the search for plans is done at the same time at geométr and symbolic levels.
Hauser and Latombe (2009 consider that the robots can move inside a feasible space only, and can
switch between \feasible spaces" through transitions: inside a \feaible space" the robot cannot change
his contacts with the outside world (if he is moving an object for examge) but can do it through a
\transition space" (for example placing the object on a table). They create a Probabilistic Road Map
(PRM) (Kavraki et al. (1996) in each \feasible space" and aggregate them through milestones in the
\transition spaces". During the search for a solution (speci ed as a goal sate) they are able to begin the
search in a direction, stop it, and postpone it (in case it is taking toolong, to explore other directions).
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Hauser (2010 extend this work by creating a symbolic language able to make request® their previous
system and by doing so, obtain a larger range of possible actions. This last pap enters in the sub-
category of Subsectior4.2.1.3 as it makes requests to the geometric planner during the symbolicesarch.
Ficuciello et al. (2013 and Barry et al. (2013 use a similar method (asHauser and Latombe (2009)
but using a RRT algorithm in place of the PRM.

Cambon et al. (20049 and Cambon et al. (2009 describe the aSyMov planner presented in the
beginning of this section and which is also part of this category.

4.2.4 Synthesis, discussion, and contributions

Table 4.2 shows the di erent works cited in this section organised by authors,with some characteristics
stressed out. Interestingly,Lagri oul et al. (2013 argue that, as it is the case in some of these approaches,
completely combining task and motion planning might not be e cient all t he time: they are e cient to
solve geometrically complex problems but their performance might bedss interesting than the classical
approach when the problem is geometrically simple.

Our contribution with their speci cities are noted at the end of Tabl e 4.2 and it belongs to the sub
category depicted in Subsectior4.2.1.3
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1 - Symbolic calls geometric reasoner
2 - Geometric reasoner uses symbolic level
3 - Search in both levels simultaneously
4 - Find one symbolic plan then the geometric plan
5 - Compute the geometric plan during the symbolic plan search
6 - Compute all symbolic plans then computing the geometric plan
7 - Call to external procedures
8 - Compute geometric states from symbolic states
9 - Create symbolic knowledge from geometry
10 - Geometric alternatives
11 - Geometric backtrack
12 - Uses constraints
13 - Account for uncertainties
14 - Using a graph covering the entire space
11234 |5|6]|7 9]110|11|12| 13| 14
Sucan and Kavraki (2011 | X X
Sucan and Kavraki (2012 | X X X
Nedunuri et al. (20149 X X
Lagrioul et al. (2012 | X X X | X | X
Karlsson et al. (2012 | X X X| X | X
Lagrioul (2013 | X X
Lagrioul et al. (2014 | X X X | X | X
Bidot et al. (2015 | X X X X | X | X|X
Kaelbling and Lozano-Perez(20119 | X X X
Kaelbling and Lozano-Perez(2011b | X X X X
Kaelbling and Lozano-Perez(2013 | X X X X
Ficuciello et al. (2013 X X
Barry et al. (2013 X X
Lozano-Perez and Kaelbling(2014 | X X X
Garrett et al. (20143 X X | X X
Garrett et al. (20140 X X | X X
Srivastava et al. (20139 | X X X X
Srivastava et al. (2013H | X X X
Srivastava et al. (20149 | X X X| X | X
Caldiran et al. (20099 | X X X
Caldiran et al. (2009H | X X X
Haspalamutgil et al. (2010 | X X X
Erdem et al. (2017 | X X X X
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Havur et al. (2013
Gaschler et al. (20133
Gaschler et al.(2013b

Gaschler et al. (2019
Dornhege et al. (2009
Eyerich et al. (2009
Dornhege et al. (2010
Dornhege et al. (2012
Dornhege et al. (2013
Plaku and Hager (2010 X
Plaku (2012bH

Plaku (20123 X

Guitton and Farges (20099 | X X
Zickler and Veloso (2009 X
Choi and Amir (2009 X
Wolfe et al. (2010
Shivashankar et al. (20149

Dearden and Burbridge (2013

>

XXX XX | X|X|X]|| X
XXX X[ X[ X]|X]|X
XXX X[ X|[X|X]X

x
x
X

X
X | X | X | X
X

XA XXX X | X X | X | X | X]| X
X

X X X || X

Ferrer-mestres et al.(2015

Hauser and Latombe (2009 X X X X
Hauser (2010 | X X X X

Cambon et al. (2003
Cambon et al. (2009
Gravot et al. (2005
Cambon et al. (2009
Alili et al. (2009
De Silva et al. (2013
Silva et al. (2013

De Silva et al. (2014
Gharbi et al. (20159

X | X | X|X
X | X | X|X
X | X | X|X

X | X[ X|X|X]|X

X | X[ X|X|X
X | X[ X| XX
X | X[ X|X|X
X | X[ X|X[X

X

Table 4.2: a synthetic reorganisation of the state of the art, coupled with some charateristics, where
works are regrouped by authors. Our recent contributions are in the lastrows of the table.
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4.2.4.1 Discussion

Each one of the di erent approaches described in this section has some wahtages and disadvantages.
We have tried to nd some of them, but the list is not exhaustive and it is based on the analyses of these
approaches.

The advantages of computing all the symbolic plans rst and then to compute the geometric plan
(Subsection4.2.1.7) are the possibility to rule out the plan parts which will not achieve a complete plan
and the possibility to choose among all the plans the \best" one. When corputing the symbolic plans,
the algorithms might nd the beginning of a plan which has no chance to acleve a complete plan because
of a not respected symbolic pre-condition. In this approach, we do not & ne geometrically this plan
part which might take some time. In order to choose the \best" plan, heuistics might be used (such as
the shortest plan). One disadvantage of using this method is that we nght lose time computing all the
plans and choosing among them.

One advantage of rst nding one symbolic plan and then re ne it, (Subsection 4.2.1.2 is, as for the
previous approach, the ability to rule out the plan parts which will not achieve a complete plan. This
approach also contains geometric backtrack, which has the advantage of beinggly enhanced and tuned
for the domains used. The disadvantage of using this approach is the inalify to change the symbolic
choices once they are taken: the algorithm needs to exhaust all the geormigt possibilities before changing
the symbolic plan (and it can be time consuming as the spaces can be bigConcerning the geometric
backtrack, the algorithm needs to take into account the pre-conditions which might introduce some
undesirable latencies.

The advantage of computing the geometric plan during the symbolic searcl{Subsection4.2.1.3 is
the ability to change the symbolic choices based on geometric problemsAlso, this approach does not
need to handle explicitly the action pre-conditions. The disadvantge of this approach is the possibility
to compute some geometric actions (with their motion plans) that might not be needed because the plan
part is infeasible due to a symbolic pre-condition not holding.

The advantage of having a geometric reasoner that uses the symbolic levEbubsection4.2.2) is the
possibility to use the motion planning state of the art algorithms (which are now very e cient) to solve
the problems. The disadvantage of such an approach is the scope of the probieit might solve: it
is usually limited to simple problems (with low number of DoFs and/or small environments) and the
algorithms are usually very domain speci c.

The advantages of the last approach where the search is held at both levels #te same time (Sub-
section 4.2.3) are the completeness of the approach and the ability to optimize the @ns depending on
the needs. The disadvantages are the huge search space generated by tleenbination of both spaces
and the di culty to implement such approaches in a generic way.



Chapter 4. SGP 112

4.3 Formalism and algorithms

The SGP problem consists in computing a valid symbolic plan while esauring its feasibility at the geo-
metric level. Assessing the plan validity implies to take into acount the action direct and indirect e ects
(the indirect e ects that the geometry can compute).

In order to tackle this problem, we propose a method combining an exteded version of a Hierarchical
Task Network (HTN) planner and the GRP framework presented in the previous chapter. In this section,
we rst present a brief description of the HTN planner, then we present our extended version, named
Hierarchical Agent-based Task Planner (HATP) and nally, we present the Symbolic and geometric
action planner (SGAP) that combines both levels of planning.

4.3.1 HTN Planning

An HTN planner (as presented in Ghallab et al. (20049) is a task planner able to transform a domain,
an initial situation, and a goal (provided under the form of a task’ to achieve) into a series of actions
bringing the system from this initial situation to the requested goal.

The planning process consists in two di erent activities: (1) decomposing the goal task down to
operator level, (2) binding the tasks parameters left free (e.g. choasactors). The planning process
iteratively builds a tree by decomposing the tasks, starting with the goal task, following the rules: if
the task is a method, a decomposition is explored and the other possibldecompositions are added as
backtrack points. If the task is an operator its pre-conditions are testel, then the instantiated operator is
added to the current plan, otherwise the planner goes back to the lasbacktrack point and tries another
decomposition. When an instantiated operator is added to the current p&n, its e ects are applied to the
current state to obtain the next state, and its cost is added to the curent plan cost. If a decomposition
of the goal allows to reach down to the operator level, then a plan is found.If one wants to keep the
completeness or nd the best plan, it is possible to explore all decomositions. In the case where all the
decompositions are explored but no plan was found, the planning stops i a failure, the goal cannot
be achieved from the initial state.

This is a very succinct explanation of the algorithm. In the next secion we present HATP, which is
an implementation of the HTN algorithm and in Subsection 4.3.2.6we highlight the di erences between
this implementation and the classical algorithm.

4.3.2 Hierarchical Agent-based Task Planner

Hierarchical Agent-based Task Planner or HATP is an implementation of the HTN algorithm which
integrates some enhancements, as presented lrallement et al. (2014. HATP is based on SHOP Nau
et al. (1999 and is designed to be used by roboticist: the domain representationsi user-friendly and
the agents (humans and robots) are considered as \rst order" entities inthe language. Also, HATP
uses a total order representation: all the actions in the current (partal) plan are ordered, enabling it to

las presented later, a task can be either a method or an operator.
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compute, at any given time, the complete context of the world. HATP is basd on a number of basic
notions, some of them contained in the following list and the rest presnted later in this subsection.

Predicates: Boolean-valued function which capture the symbolic state of a parametein the world,
such as object Xis reachable byagent A. It is written under the form: X.isReachable = A.

Context: A context is a set of predicates that captures the whole state of the wod at a speci c moment.
It is under the closed-world assumption (if the predicates does noappear in the list, it is supposed
to be false).

Entity An element from the environment, for instance, a robot, a table, or a book

Entity description: Contains the entity id, and the predicates that can be applied to them. For
example a manipulable object X accepts the predicateisReachable isOn, isin, and so on.

Operators: 2 An operator is a parametrized executable primitive. It is represened by a 2-uplethpre; e i
wherepre is the list of pre-conditions and e the list of e ects. Both of them are a set of predicates,
the pre-conditions are the predicates that should hold in the contextwhere the operators needs to
be applied, and applying an operator means instantiating it and adding itse ects to the context
it was applied to. It can take parameters such as an entity, or a set of entiies as inputs. A cost
function can be linked to an operator, enabling the planner to assessstquality.

Methods: A method can also be applied to a context, but cannot be directly exeated, it needs to
be \decomposed" into other methods and/or operators. Decomposing a meths means trying to
apply its components following the order it speci es.

Tasks: A task is a denomination that refers to either an operator or a method.

A method can be decomposed into other tasks (methods and operators) conmed through one of
three di erent links, depicted in Figure 4.1 The rst link Figure 4.1(a), is where all the tasks composing
the method needs to be applied, in the speci ed order (in the gure the order is given by the thick arrow)
we call this case thecausal link The second link, Figure4.1(b), is the Exclusive disjunction, which mean
that one and only one task of the decompaosition needs to be applied. The ladink, Figure 4.1(c), is
Asynchronous where all the tasks needs to be applied but no connexion exists bseen them.

It is possible to de ne a number of operators, here is some of them whiicare going to be used in the
rest of this chapter:

Pick(A,0) 3: A is an agent {omitted when obvious{ and O an object (those holds the same meaning
for all the operators). The pre-conditions areA.hasinHand = NULL and O.isReachable = A The
e ect is A.haslnHand = O.

2In order to avoid confusions, operator will be used for the symbolic actions (in an HTN planner, both action and
operator can usually be used), while the geometric actions will keep the name actions.

%In order to di erentiate between task level symbols and geomet ric level symbols, task level symbols will be written in
italic in the rest of this thesis
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The next step of the algorithm is to retrieve the applicable methodsand operators in the current
world state: the T variable stores all the not explored operators and methods and a loop (from lde 9 to
Line 13) checks if they are applicable or not in the current context. If they are applicable, they are added
to the applicable task list App. Otherwise, they stay in T until they become applicable, as the current
context change. For an operator to be applicable, it needs its predecess (following the causal links)
to be already applied and its pre-conditions to be valid in the curren context. For a method, having all
its predecessors applied is enough to add it to the list. One last clu, is the task locking: when a task
is locked, it cannot be applied to any context, unless it gets unlockd: this system is used to tackle the
asynchronous tasks problem, as explained later in this subsection.

The last part of the algorithm (Line 14to Line 27) uses the previous lists to choose and apply tasks,
depending on di erent variables:

No applicable task in  App and no task in T, Line 14 This means that a plan was found then the
algorithm backtracks to the last cached BP.

No applicable task in  App, tasks exist in T and all tasks in T are locked, Line 17 Inthis case
the algorithm create BPs for each one of the locked task: in each BP, only ontask is unlocked,
the rest stay locked.

No applicable task in  App, tasks exist in T and some task in T are not locked, Line 20 This
means that, within the rest of the actions still not explored, no one isapplicable in the current
context, forcing the algorithm to backtrack to the previous BP.

There is one and only one applicable task in App, Line 22 In this case, the task is directly ap-
plied, through the Algorithm 10.

There is more than one applicable task in App, Line 25 This case arise when faced with the asyn-
chronous decomposition, the algorithm creates as many BPs as there are apgdible tasks, where
only one task is not locked. When the unlocked task is applied, the algathm goes back to the
second case of this enumeration (all tasks locked).

A backtrack point (BP) is composed by the current states of the main variables in the algorithm: the
list of yet to be explored tasksT (and if they are locked or not), the current context c., and the current
plan plancyr . The creation of such a point, as done in Linel9 and Line 26 is depicted in Algorithm 9.
When a backtrack is triggered, it retrieves the last BP saved (and renoves it from the saved list of
backtrack points, this is a stack: last in, rst out) and instantiate it as the current state of the algorithm.
If no BP is left in the list, all the decompositions have been testd and no more plan will be found.

The case of the asynchronous tasks is tricky: in order to test all the pasible task orders, the algorithm
uses the locking process. Locking an action means that the action is napplicable yet, later it will be
unlocked to allow the search to continue. The process consists orreating as many BPs as there are
tasks. In each BP all the tasks are locked but one, which is the rst tag to be tried. If the task can
be applied, then all the current tasks (in T) are locked which correspond to the second case of the list
above. In this case, we create as many BPs as there are tasks left, with erunlocked task in each one
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of the BPs (as we just did). This process goes on until there is only amtask left. At each step of this
process, we unlock only one task, making the algorithm tries all the pasble orders.

Algorithm 8 HATP implementation of the Classical HTN algorithm
1: function SolveHTN (D;co; m(p); StopAtFirstPlan; MaxTime )
2: T m(p) ; Ceurr Co

3 while (: FirstPlanFound or : StopAtFirstPlan ) and : Reach (MaxTime)and T 6 ; do

4 if GetCost (plancur) > GetBestPlanCost then

5 (T; plancyr ; Ceurr ) BacktrackToLast (backtrackList)

6: continue

7 end if

8 App ;

9: for tjt2 T, IsUnlocked (t) do

10: if ((ValidPredecessor (t) and IsOperator (t) and ValidPreconditions (Ceurr » 1))
or (ValidPredecessor (t) and IsMethod (t))) then

11 App t

12: end if

13: end for

14: if App=; andT = ; then

15: P plancyrr

16: (T;plancyrr ;Ceurr)  BacktrackTolLast (backtrackList)

17: elseif App=; andT 6 ; and 8t 2 T, IsLocked (t) then

18: VijVv T;8t2V,IsLocked (t)

19: CreateBacktrackPoints (V, T, plancyr , Ceurr , backtrackList)

20: elseif App=; andT 6 ; and9t 2 T, IsUnlocked (t) then

21: (T; plancyr ; Ceurr ) BacktrackToLast (backtrackList)

22: else if jAppj =1 then . size of Appis 1

23: ajaz2 App

24: Apply (a, backtrackList, T, plancysr, Ceurr )

25: else if jAppj > 1 then

26: CreateBacktrackPoints (App, T, plancyrr , Ccurr » backtrackList)

27: end if

28: end while

29: return P

30: end function

Algorithm 9 depicts how to create backtrack points out of a subsel of the yet to explore task list
T. For each task inV it creates a backtrack point where every other task inV is locked.

Algorithm 9  The function to create the backtrack points

1: function CreateBacktrackPoints (V, T, plancurr , Ceurr , backtrackList)
2: for aja2V do

3 UnLock (a)

4: for tmpjtmp 2 V;tmp 6 a do

5: Lock (tmp)

6: end for

7: backtrackPoint  (T; plancur ; Ceurr )

8: backtrackList backtrackP oint

9: end for
10: end function
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Algorithm 10 shows the way a task is applied. Whatever the kind of the task, as it isgoing to
be applied, it is removed fromT. When the task is an operator (Line 24) its e ects are added to the
current context to create a new one, and the operator is added at the end ahe current plan. When
adding an operator to the plan, its causal links are also updated, from the dmain, but also using
logic: if a tested predicate of this operator has been changed by the e écof another operator, the
algorithm links them through a causal link. If the task is a method (Line 3), rst we check the applicable
decompositions by testing their pre-conditions (in case of an excluge disjunction). Once we retrieved
the list of all applicable decompositionsvalidD three cases arise: no applicable decomposition, (LinE0),
in which case, the algorithm triggers a backtrack, only one decompositions applicable (Line 13), the
algorithm adds its corresponding tasks toT, and the last case is when multiple decompositions are
possible (Line 16). This last case arise only when the decomposition is an exclusive gisction, and
more than one decomposition has valid pre-conditions in the current corgxt. In this case, for each valid
decomposition a BP is created, and one among them is chosen to continuedtalgorithm.

Algorithm 10 Implementation of the apply function

1: function Apply (a, backtrackList, T, plancyrr, Courr)
2: T Tna . remove a from T

3 if IsMethod (a) then

4 D GetAlldecompositions (a)

5 for d2 D do

6: if ValidPreconditions (Ceurr , d) then

7: ValidD d

8 end if

9: end for

10: if ValidD = ; then

11: (T; plancyrr ; Ceurr ) BacktrackToLast (backtrackList)
12: return

13: else if jValidDj=1 then

14: djd2 ValidD

15: T  GetAllTasks (d)

16: else

17: for djd2 ValidD do

18: Timp T [ GetsAllTasks (d)

19: backtrackPoint  (Timp ; Plancurr ; Ceurr )

20: backtrackList backtrackP oint

21: end for

22: (T; plancyrr ; Ceurr ) BacktrackToLast (backtrackList)
23: end if

24: else . ais an operator
25: Ceurr ApplyOperatorEffects (Ceurr » @)

26: plancyrr a . adding the operator and its causal links to the plan.
27: end if

28: end function

These algorithms are not included in the contributions of this thesis but are needed to understand
the combination between the symbolic and the geometric layers whiclis part of the contributions.
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operator PlaceR(Agent A, Object O, Support S, Agent AT)f
preconditions f
A.haslnHand = O;

g;

effects f
A.haslnHand = NUL ;
O.1sOn = S;
O.IsReachable = AT;

g,

costf costFct(A,O,S,AT) g;
duration f durationFn(3, 5)g;

g

method MoveObj(Agent A, Object O, Support From, Support S, Agent AT) f
f
preconditions f
A.type = "ROBOT";
AT.type — "HUMAN"';
0.isOn = From;

g;
subtasks f

1: Pick(A, 0O);

2: PlaceR(A, O, S, AT) after 1;
g;

Listing 4.1: HATP code example

4.3.2.5 HATP example

Listing 4.1 shows an extract of a HATP domain, illustrating the operator PlaceR which makes the agent
A place the objectO on the support S reachable by the agent AT. It has as a pre-condition: the object
should be in the robot hand, and the e ects are: the object is not in the aget hand anymore, it is on
the support S and is reachable byAT . It is the same description as the one presented in the beginning
of this section. The example also contains the cost of the operator computeby an external procedure
(costF ct) which take all the operator parameters as inputs. It also contains the dwation of the solution
(here from 3 to 5 seconds).

The second part of the example shows the methooveR which can be decomposed into two operators
Pick and PlaceR in this order. Its pre-conditions are that A is a robot, AT a human and the objectO
is on the support From.

This example shows the simplicity of creating domains with HATP, one of its main features as
presented inde Silva et al. (2015.

4.3.2.6 HTN-HATP dierences

The principal di erences between HATP and the most known HTN planners (such as SHOP2Batista
(201D) are:
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User-friendly language: as seen in the previous section, the description language is easy to leaand
use. It is based on a close world assumption which ease the domain design.

Control over variable binding: in classical HTN, the choices (for variable binding) are made ran-
domly, in HATP these choices can be made following rules (or directlyset by the domain expert).

Totally ordered:  in HATP, all the actions are ordered by the causal links, as opposed to the HN
algorithm where the actions are partially ordered.

Agents based: HATP considers the agents as \ rst order" entities, for which actions are computed. It
computes for each agent a stream of actions, linked between themselvdgough causal links.

Real robot use: HATP was implemented in the robot and used with a complete architectue to plan
and execute its plans. Even if slower than SHOP2, HATP still enables eal time use.

Cost based: HATP aborts plans with a cost that exceeds the current best plan.

C++ structures: HATP is coded in C++ which enables an easy integration with other C++ mo dules,

as seen in the next section.

4.3.3 Symbolic Geometric Action Planner

The Symbolic Geometric Action Planner or SGAP is the framework we devoled to tackle the SGP
problem. In this framework, we use HATP for the symbolic layer and GRP for the geometric layer
(presented in the previous chapter).

This framework can use any kind of forward task planner, but using an HTN phnner brings some
bene ts: as dierent level of actions are available in the GRP, having a hierarchical domain enables
the programmer to choose which level of operators he needs/wants to uséor example, if an operator
PickThenPlace is available in addition to the operators Pick and Place, using the rst one might speed
up the search, while using the decomposed version might enable thgstem to choose another operator
after Pick (such asGive or Throw depending on the context). Moreover, an HTN planner enables its
programmer to add constraints to the lower level operator, for example, B can use the operatoPlaceR
but if it is not available, he can use the operatorPlace with a reachability constraint.

In our particular case, we chose to use HATP because of its ability to manageultiple agent plans
(let us remember that this framework was developed in the context of iman-robot interaction), its
simple domain language, and also its ability to use external C++ calls. These calls can be of di erent
kinds, such as cost computation, geometric tests, and so on. In the resif this chapter, we will discuss
a number of these external calls.

The approach we are going to explain in more details in this section is baseon the following:
HATP begins the search in the given symbolic domain, and when an operator resls to be applied, if the
operator has a geometric counterpart (such a®ick or Place) an external call is made to the GRP with
the ald of the geometric action corresponding to the current operator in order totest its feasibility in
the current world state. This call is named Projection or Geometric re nement  and is about nding
the geometric action solution (GAS) of said action. When the GRP computes his GAS, meaning that



Chapter 4. SGP 121

the action is feasible, the current world state is updated with the rew information, then, the relevant
facts are computed and sent back to HATP.

When GRP sends back these facts, they are transformed into predicas and used to update the
symbolic context of HATP. We call these predicatesShared predicates as they are computed in the
geometry but used in the symbolic search as the usual predicates (toest the tasks pre-conditions).
As shown in the previous chapter, facts are computed by GRP (Subseiin 3.2.4) under the form of
fX; is reachable by ; A; trueg. When HATP receives these facts, a mapping enables it to transform
them from this form to the one used in the algorithm: X:isReachable = A. Theseshared predicates
are used to tackle a number of problems such as the rami cation, as explaed in Subsection4.3.5

As shown in the previous chapter, the GRP framework is able to nd mutiple alternatives for the
same action, starting from the same initial world state. GRP is also able b compute, in any world state,
shared predicates. Using these properties, we combined HATP and GRhto the SGAP framework,
giving it the ability to assess actions feasibility at geometric leve] to request actions alternatives when
needed, and to integrate the shared predicate into the planning proess.

In the next subsection, we are going to present the di erences beteen SGAP and HATP.

4.3.3.1 The basic notions

For the formalization, some additional information were added to the basic &ements:

Predicates: The predicates can have two sources: purely symbolic predicateand shared predicates

Context: In addition to all the predicates it contains, each context is linked to a geometric world state
(Subsection3.2.2) from where the shared predicates can be computed.

Entity description: It is the same as for the HATP algorithm, with the constraint that the enti ties id
should be the same at symbolic and geometric level (Subsectioh2.1).

Operators: The operator description is transformed tohpre; act;e i wherepre and e are the same as
before, andact is the action identi er, in the GRP framework. act can be empty, in which case
the action is purely symbolic and does not need a geometric counterpart Once this operator is
\projected" into the geometric level, the action is recognized through a number act:gasNum 2 N
at the GRP framework level.

Methods: The methods and their possible decompositions are the same as for the HA&RTalgorithm.

Tasks: The tasks are the same as for the HATP algorithm either Operators or Methods
The previously de ned operators can now be rede ned within the SGAP framework, but as the pre-
conditions and the e ects does not change (although some of them would be cquated directly from the

geometric level as shared predicates) the main link to be added is thgeometric actionalds as it was
de ned in Subsection 3.3.2

Pick(A,O) : geometric action: Pick .
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Place(A,0,S): geometric action: Place .
PlaceR(A,0,S,AT) : geometric action: PlaceReachable .
Navigate(A,E) : geometric action: NavigateTo

PaintGreen(A,O) : geometric action: ; (purely symbolic action).

The other parts of the HATP de nition also go under the following transf ormations.

4.3.3.2 SGAP Domain
A SGAP domain Dggp can be de ned by the 5-uplethM ; Op; Dg; E; Ei where:

M is all the available methods in the domain with their decomposition, asbefore,
O pis all the available operators with their representation (pre-conditions, action alds and e ects),

Dy is the domain that contains all the available geometric actions with their alds, and their
descriptions,

E contains the available entities with their ids and symbolic description, and

E contains the available entities with their ids and geometric information, theids are the same as
for E.

4.3.3.3 SGAP Problem
A SGAP Problem is de ned by hDsgp; Co; Wsinit ; m(p)i where:

D sgp is the domain,
Co the initial context,
wsinit the initial world state, and

m(p) the method or operator to apply to this initial context and world state.

Note that ¢y initially contains only symbolic predicates, the initial shared predicates are computed
from wsinit .

4.3.3.4 Solution plan

The solution computed by SGAP is a sequenced list of Action Solutions (Apcalled a plan. An Action
Solution is de ned by ho; gas; tNextsi where o is the operator, gas the corresponding Geometric Action
Solution (GAS) and tNexts the causal links. An Action solution is a combination of a SAS and a GAS!
In parallel to the plan, the GRP framework build at the same time a geometic plan linked to this plan
as depicted in Figure4.3.
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Algorithm 11  Implementation of the project action function
1: function ProjectAction (t, plancyrr )
2: if IsNotProjected then

3: predessessor GetPredessessor (t,plancyr)
4: IN GetParameters  (t)

5: IN  GetWorldState (predessesso)
6: ald GetActionld (t)

7: gas ComputeActionConfs  (ald,IN)
8: else

9 gasNum  getGasNum (t)

10: gas FindAlternative (gasNum)
11: end if

12: if gas6 Null then

13: SetGas (t,gas)

14: return True

15: end if

16: return False
17: end function

new BPs as their branching factof allows and in each BP a decomposition with the same operator is
added. If the algorithm backtracks to this BP, as the operator has already ben projected, an alternative

will be requested (Algorithm 11). The second added step is about retrieving the geometric part of the
current context cqyr (Line 36 and Line 37):. as said before, part of the context is retrieved from the

corresponding world state under the form of shared predicates.

Algorithm 12  Implementation of the apply function concerning the SGAP framework
1: function Apply (t, backtrackList, T, plancusr , Ceurr )
2: T Tnt . remove t from T
3 if IsMethod (t) then

. Omitted, the same as Algorithm10
24: else . tis an operator

25: if HasActionld (t) then

26: SetProjected  (t)

27: b  GetBranchingFactor (Y

28: for iji 2 N;i2[0;b] do

29: Ttmp T t

30: backtrackPoint  (Timp; Plancurr ; Ceurr )
3L backtrackList backtrackP oint

32: end for

33 end if

34: Ceurr ApplyOperatorEffects (Ceurr» 1)
35: if HasActionld (t) then

36: ws  GetEndingWorldState (Y

37 Ceurr GetFacts (ws) . adding the shared predicates to the state
38: end if

39: plancyrr t

40: end if

41: end function

®The number of possible geometric alternative allowed by the symbolic level
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operator PlaceR(Agent A, Object O, Support S, Agent AT)f
preconditions f
A.haslnHand = O;
g,
projects fplaceR(A, O, S, AT)g;
effects f
A.haslnHand = NUL ;
O.IsOn = S;
O.IsReachable = AT;
g,
cost f GetGRPCost () g;
duration fdurationFn(1, 1)g;

g
method MoveObj(Agent A, Object O, Support From, Support S, Agent AT) f
f
preconditions f
A.type = "ROBOT";
AT.type = "HUVAN';
0.isOn = From;
g
subtasks f
1: Pick(A, 0O);
2: PlaceR(A, O, S, AT) after 1;
g;
g
g

Listing 4.2: SGAP code example

4.3.4.2 Results

We run the algorithm on this example’ and Table 4.3 represents the results obtained over 30 runs for
each branching factor. The plan length is 6 actions, consisting on 3 suessivePick and Place. The
success rate is nearly perfect starting from a branching factor of 3 buthe Computation time also grows
accordingly. Note that the success rate of the algorithm when the branchig factor is 5 drops. Failing
with this many possible alternative is possible as the search space ot complete: for completeness, the

branching factor should be in nite.

Branching factor 1 2 3 4 5 6
Computation time (s) | 5 19 19 27 31 31
Success rate (%) 10 80 100 100 96.6 10¢
Nb alternatives 0 94 145 247 327 36.6
Nb actions computed | 5.6 31.6 41 62.8 787 85.8

Table 4.3: For a plan length of 6 actions, the system is able to compute with a suces rate approaching
the 100% a solution for the example in Figure4.5, starting a branching factor of 3. These values are

averaged on 30 runs.

"The runs on this section were all made on a computer with an i7-3720QM CPU @ 2.60GHz processors an a memory of
8Go
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4.3.5 The rami cation problem

The rami cation problem is the problem of characterizing the indirect e ects of an action (more details
are available in Mcllraith (2000). In other words, it means computing the consequences of an action in
addition to its direct e ects (are the e ects described in the action model).

Usually, in task planning, the problems are simplied to handle the direct e ects only, and the
rami cation problem is not addressed. One way to compute indirect e ects is to use Truth Maintenance
systemsDoyle (1979 which use inferences and assumptions to compute them. Nowadays; robotics,
these inferences and assumptions are made by the Ontologies systeragch asTenorth and Beetz (2009,
but it is not used to tackle the rami cation problem.

When addressing the problem of symbolic geometric planning, it is podisle to compute at geometric
level a number of properties that correspond to facts (the shared prdicates), and, therefore compute
in a more valid way the actions consequences. This is even more imparit when humans are present,
as the action consequences (shared predicate and cost) can allow the ptear to nd better or preferred
plans.

Figure 4.6 shows an example of this problem: the robot needs to place three objexbn the table in
front of it in order for the human to be able to reach the three of them at the same time (The same
as the previous example, with di erent objects and environment). In Figure 4.6-C the robot places the
third object reachable, but the rst object is no longer reachable (this example is further detailed in
Subsection4.4.2).

In order to (partially) tackle this problem, we use the shared predicates: after a geometric action
is planned, we compute those predicates for the new context based on éhnal world state found at
geometric level. If some predicates prevent a further action pre<enditions to apply, a backtrack is
triggered and an alternative geometric solution is requested. This proess goes on until a valid plan is
found, the branching factor (for now this number is given by the domainexpert) is reached, or no other
geometric solution is available.

The problem is only partially tackled due to the discrete set of share predicates the system is able
to compute: if a shared predicate does not exist, the problem will pt be tackled.
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4.4 Enhancing the search e ciency

The examples presented in the previous sections show that SGAP cammpute interleaved symbolic

and geometric plans in the context of human-robot interaction. Although, these plans are short (10-15
actions) with a small number of objects, in a not too constrained envionment, but the use of well-

informed motion planning and geometric reasoning allow us to deal with notso trivial problems.

However, when confronted with more constrained challenges (with grear number of objects or longer
plans), a combinatorial explosion occurs, making the planning procesvery long. In order to enhance
the search e ciency, we propose a number of features able to betternform both planners with relevant
information and heuristics to guide the search even if we might lose copieteness.

4.4.1 Geometric requests

A geometric request is made by the symbolic planner to the geometric anin order to test a property
in the geometric world. This request is usually very fast (less than50ms) and is used as a pre-condition
of a task. The only function that changes in the algorithm is V alidP reconditions () (in Algorithm 8
and Algorithm 10) which takes as additional parameter the current world state, and, whenfaced to a
geometric requests, computes it on that world state.

The geometric parameter tested can be of various types such as testinfjthere is enough space for
the robot to stand near the human in a constrained area, or if there is enouglspace to use a hammer on
a particular object in a cluttered space. These requests are genetgldomain speci ¢, which works well
with the HTN algorithm where they are used as heuristics to guide the sarch toward the most promising
plans. In order to test the pertinence of these requests, we haveeveloped a VirtualPlace(O,S)" which
tests if there is enough space on the suppor§ to place the object O with no collision with any other
object. One more addition to this test is the virtual objects: theseobjects are tools used to test collisions
only within the virtualPlace request, otherwise, the geometry ignores them.

In order to use these virtual objects, we formulate an assumption:

Assumption. If the virtual object V can contain object O1, O2, and O3, and it can ke placed on the
table T, then the objects can also be placed on the table. It can be emtered as a heuristic.

Note that if the virtual object cannot be placed on a table, it does not mean tat the objects cannot.
The virtual objects are given to the system as independent entitis with the same properties as the
other ones, in addition to the virtual part. In this implementation th ey are tuned by hand for every
environment, but it is possible to design algorithms to compute themon-line depending on the number
and geometry of the objects they should contain.

The virtualPlace request is used as follows: it tests if a valid placement (collisioriree) for a virtual
object, which can contain smaller objects, on a support exists. If it des exist, the small objects can be
placed on this support.

Figure 4.7 shows an environment with di erent world states that illustrates w hen this request might
be useful, and Figure4.8 shows the same world states with the virtual object that does not t on the
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(a) (b)

(© (d

Figure 4.7: Examples of scenarios where the geometric requests enable an enhaneeinin speed.

table. Note that in the state shown in Figure 4.7(b) and Figure 4.8(b) the virtual object does not t on
the table, however, there is enough room to place the small objects.nlthis particular case the heuristic
fails and the solution plan is not the best one as shown later in the rests.

The domain used to illustrate this enhancement, is depicted in Fgure 4.9. The main method given
to the SGP problem is TestAndMove in Figure 4.9(d). This method has two possible decompositions: in
the rst one it tries directly to place the objects on the target table (Figure 4.9(a) and Figure 4.9(b)),
and in the second one it rst tries to remove obstacles from the target fible, by placing them on another
surface, before placing the objects on the target table. Removing th@bstacles can be performed by
either the robot or the human, depending on the feasibility of the task For example in Figure 4.7(a)
even if the robot has enough space to place the object on the table at his righit cannot grasp the object,
in Figure 4.7(d) it can Pick the objects but does not have enough space tBlace it anywhere. The choice
of which decomposition to apply is done by testing the geometric requs virtualPlace(VirtualO) on the
starting world state, with VirtualO a virtual object that can contain the three books O1, 02, and O3.
In this example, the robot and the human can only manipulate the objects,they cannot navigate.

Figure 4.10 shows a solution plan found for the example in Figure4.7(a) where, rst, the human
cleans the table by moving out the obstacle Ob, then the robot places the three books. In order to assess
the interest of this enhancement, we built a similar domain where he decomposition ofTestAndMove
tries rst to place the three object on the table, and only if it fails t ries to empty the table. This
complementary domain enables us to determine the speed up when ugi the virtualPlace request.
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(a) (b)

(© (d

Figure 4.8: The same states as in Figuret.7 with a placed virtual object. The virtual object is drawn
in yellow and does not t in any of the tables.

Table 4.4 shows the results of this experiment. The left side of the table lsows clearly the interest of
having this heuristic when the table is cluttered: the computation time is nearly divided by 10. When
the table is empty, as the request is not time consuming, both domains &ve similar results. The second
half of the table shows an interesting behaviour: in Figured.7(b) there is enough space to place the three
books, but not enough to place the virtual object (Figure 4.8(b)). In this case, the heuristic misguide
the search as it indicates that an object should be removed before plawy the three books while directly
placing them would succeed. A slight performance drop can be noticedyut is still acceptable for this
kind of tasks.

4.4.2 High level actions and Constraints

As seen in Subsectior3.3.5 the most computationally expensive step is motion planning. The ideaof
these enhancements is to avoid the calls to the motion planner as muchs possible. The motion planner
calls occur when an action needs to be projected, or an alternative to amlready projected action is
needed. Reguesting an action alternative means that a backtrack has bedriggered. One way to reduce
the number of motion planner calls is to reduce the number of backtrack. In order to achieve this, we
propose to \protect" some predicates {or, more precisely, shared predates{ that the domain expert
knows might be broken by some future actions.
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example Figure 4.7(a) example | Figure 4.7(b) example
type without with without with

plan length 8 8 6 8
Computation time 191.2 21.7 16.9 20.2

I standard deviation 8.6 1.45 1.64 1.34
Nb alternatives 62.9 0.3 0.2 0.2

Nb actions computed | 162.6 12.6 6.4 8.6

Table 4.4: The results are averaged on 30 runs on both the examples in Figur&7(a) and Figure 4.7(b)
with a branching factor of 3 and the rst plan found mode. The advantage of using the geometric requests
(with) is clear when the table is cluttered (Figure 4.7(a)). In Figure 4.7(b) the geometric request fails as
there is not enough space to place the virtual object on the table even ithere is enough space to place
the three books, which can be seen in the results. The examples Figure 4.7(c) and Figure 4.7(d) give
very similar results to Figure 4.7(a) results.

constraints to the action linked to a speci c operator. In order to achieve this, we need to transform the
operator de nition to: hpre;act; const;e i where const is a list of constraints under the form de ned in
Subsection3.3.4.4 and adding the following line between Line4 and Line 5 of Algorithm 11:

IN  GetConstraints  (t)

If no constraints are speci ed (const = ;), the above line does not add anything to the inputs.

In order to illustrate and assess this enhancement, we used the eingnment depicted in Figure 4.11(d),
and designed a domain, described in Figurd.11(a), Figure 4.11(b), and Figure 4.11(c). In this domain,
there are three new operators:

PlaceRC(R, O, S, Ap, AlreadyPlace): pre-condition, action and e ects are the same as foPlaceR(R,0,S,Ap)
and it has one additional constraint, placed in the nal constraint of the r st sub-action description
in the Place action: 80i 2 AlreadyP lacef Oi; is reachable by ; Ap; trueg. AlreadyPlace is the
list of object that are already placed on the destination table.

TestReach(O,Ap): has only a pre-condition: O.isReachable = Ap (no action, constraints, nor e ects).

TestGoal: has only a pre-condition: 80 2 AlreadyP laced O.isReachable = Ap where AlreadyP laced
is the group of object that has already been placed reachable to the human.

In the gures, the \operator" PlaceX appears. It is not really an operator as it is replaced by one of
the three operatorsPlace, PlaceR or PlaceRC: by doing so, we create three di erent domains, one where
no enhancement is used, one where a higher level action is usddlg§ceR) and nally one with a high level
action and a constraint speci ed (PlaceRC). The method MoveObjsis recursive, and, when decomposed,
tries to apply the method MoveObj(O) with one of the objects available on the storing table. When
no more object is on this table, the method goes out of the recursive taviour. In this domain, the
robot needs to place the three objects next to him (the red cube, te grey book, and the orange box, in
that order) reachable for the human, all at the same time. The di culty h ere is that when placing the
orange box, it can hide and make unreachable one or both objects already placexh the table as seen
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4.4.2.1 Real robot implementation

The SGAP Framework and its enhancements were implemented on the PR2obot. Figure 4.12 shows
a scenario where the robot needed to place three objects on the table front of the human, and the

human, once he saw all the objects, needed to choose one of them and take In order to achieve

this, the three objects needed to be reachable at the same time. Th&able was cluttered with two

boxes that the robot is not able to move, the human needs to participatein the tasks in order to

achieve the goal. The corresponding video combined with di erent shulation cases is available here:
https://youtu.be/KUF4Gdhc2Do

(a) Initial world state (b) The human remove the grey box

(c) The three objects are accessible (d) The human takes one object

Figure 4.12: The implementation of the SGAP framework on a PR2 robot. The task is to plae the
three objects in front of the human, in order to let him choose one of then. The table is cluttered and
need rst to be emptied.

4.4.3 Cost driven search

The algorithm presented in Subsection4.3.2 enables HATP to prune out plans when the cost of their
rst part is greater than the best plan already found (Line 4 to Line 7 of Algorithm 8). The cost used in
this algorithm is provided by the domain expert as input of the problem, the idea of this enhancement
is to compute the cost automatically at geometric level. The GRP framewok computes this cost at the
same time as computing the GAS and return it alongside, it is then storedin the Action Solution (AS)
until the function GetCost (planc ) is used (it can be a sum or a maximum of all the tasks the current
plan contains).

Computing the cost at geometric level, where social rules can be takemto account, enables the
system to explicitly take into account the human preferences. Inorder to illustrate this, we implemented
two scenarios depicted in the followings where we run the SGAP framegork with the option of nding all
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the possible plans (and returning the best one). In these scenaripshe interesting operator is Navigate
as the cost computation in its linked action, navigateTo , is based on the work ofSisbot et al. (2007H
as it maximizes the cost when the robot navigates out of the human's eld ofvision (behind the human
for example) or too close to him.

4.4.3.1 The \Book scenario"

In this scenario, a human asks the robot to bring him a book, but two copés of this book are available
in the environment. In order to choose the best book to bring to thehuman, the robot uses the costs
computed by the geometric reasoner. Figuret.13(a) and Figure 4.13(b) show the domain for this envi-
ronment, the higher method BringObj needs to choose either the bookd1 or O2 to bring to the green
human. Figure 4.13(c) and Figure 4.13(d) depict two world states where this domain has been used. In
the rst one, the robot fetches the closest book, where the navigationdistance is the smallest. In the
second one the algorithm chooses the other book as, by taking the same path #s previous example,
the robot would pass close and behind the blue human which increaseséhcost (without human = 7.9,
with human = 15.5).

With no information from the geometric level, the symbolic level would make a random choice on
which decomposition to apply. Adding these costs computation enable tb symbolic planner to make
informed choices during its search for the best plan.

4.4.3.2 The \Paint scenario"

This second scenario is more complex than the rst one as it involves maractions and agents: Figuret.14
and Figure 4.15 show the symbolic domain used, where the top method i8ringAll , and the robot needs
to bring to the client two green cubes. In the environment, there is one green cube, and two red cubes
that need to be painted (Figure 4.16 shows the starting world state). The blue agent can paint the
objects in green if needed. The client is the green human (A) and theed human is a co-worker occupied
in another task.

The main di culty in this example is to choose which object to brin g to the client: the green cube
is easily accessible and does not need to be painted, the rst red be (top right) is also easily accessible
but makes the robot navigate behind the red human, and nally the last cube (bottom right) is hard to
access, the robot needs to rst remove the box obstructing his pathand then he becomes able to take
the object. This last possibility (removing the box) is depicted by the method PickObj (Figure 4.15(b))
where the robot check if the object is reachable. If it is not reachablgit tries to move any reachable
object (O") which in this case is the orange box.

The plan produced by our algorithm chooses to go fetch rst the green che (O1), then the red cube
(O3) at the bottom of the environment: even if more tasks are needed to gethis object (moving the
orange boxOB), it does not disturb the red human (by passing and manipulating behnd him). These
examples and some others are shown and explained in the video availabtere: https://youtu.be/
mxDRQEGqQK4
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(a) Navigate(R,01)

(d) PlaceR(R,01,S1,A)

(g9) Place(R,0b,S"

() Place(R,03,52)

(m) Navigate(R,A)

Figure 4.17:

(b) Pick(R,01)

(e) Navigate(R,03)

(h) Pick(R,03)

(k) PaintGreen(Ap,03)

(c) Navigate(R,A)

(f) Pick(R,Ob)

(i) Navigate(R,Ap)

() Pick(R,03)

(n) PlaceR(R,03,S1,A)

The di erent plan steps for the \paint scenario"
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45 Future work

As seen in the state of the art, this work falls into the category of a \Symbolc planner calling the
geometric reasoner”, and more speci cally in the sub-category of \in searclcalls". We proposed three
main enhancements of this algorithm linked to the features providedoy the GRP framework presented in
Chapter 3. Even if these enhancements enable a faster computation in some domairnthe main problem
remains, the exponential growth of the backtracking number when thebranching factor is big. In order
to tackle this problem we propose some possible line of works:

Choosing the backtrack point For now, when the backtrack is triggered, the last saved backtrack
point (BP) is loaded and the search continues from there. The idea isd change this behaviour by
introducing a weight on the BPs, and prioritizing the more promising ones. A criterion to determine
those interesting BPs can be provided by the geometry: for the BP aeated from a geometric action
projection, the size and shape of this action search space might be a goadlicator: a small convex
search space may not give as many opportunities as a large one.

The branching factor  For now, it is set by the SGAP domain expert, but can be also provided ly the
geometry or computed on-line. It can be computed based on the search spasizes, or the current
needs of the algorithm, by extending some of them if no solution was found

Postponing the motion planning Lagrioul et al. (2013 argue that systematically computing the
geometric part alongside the symbolic part may not be always e cient. A possible approach may
be to partially link the planners by enabling the geometric level to compute partially the actions
(just the world states, without the trajectories) and calling the m otion plan at the end. The GRP
framework already enables computing actions without motion plans, the chllenge is to choose
when to call the motion plan or not, and the behaviour in case a postponed mabn plan call fails.
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4.6 Contributions to the symbolic geometric planning in a nutshell

In this chapter, we propose two main contributions:

A symbolic geometric planning algorithm named Symbolic Geometric Action Planner (SGAP) which
combines HATP with the GRP framework from the previous chapter, by linking symbolic operators
to geometric actions and computing the shared predicates from the regdiing world states. This
enables the planner to tackle challenges such as the rami cation probla.

Enhancement of search in SGAP We also proposed some speci ¢ enhancements based on a tighter
communication between the layers. The rst enhancement consistg on providing the symbolic
planner with possible requests to the geometric reasoner enablingto check the potential feasibility
of an action (Subsection4.4.1). The second one was about providing the geometry with more
information to avoid future backtracks (Subsection 4.4.2). The last one consisted on making the
geometric level give to the symbolic planner the exact cost of an action b&sl on social rules taking
explicitly the human into account to choose the best possible plan $ubsection4.4.3).

Table 4.6 summarizes the di erences between the HATP algorithm and SGAP.
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Cost
Constraints
Rami cation problem

Applying operators

Pre-condition check

Projecting actions

Entirely given by the domain
None
Not handled

Adds the e ects to the current
context

Checks pre-conditions in con-
text

None

Type HATP SGAP

Predicates Entirely given by the domain | Partially computed from the
geometry

Operators hpre;e i hpre; act; const;e i

Methods Similar Similar

Entity description Symbolic Same identi er as symbolic

Domain hM ; Op;Ei hM;Op; Dg; E; Ei

Problem hD; co; m(p)i hDsgp; Co; WSinit ; M(p)i

Action Solution ho; stN extsi ho; gas; tN extsi

Computed by the geometry
Possible to add
Partially handled

Adds the e ects to the cur-
rent context and computes
the shared predicates from the
world state

Checks pre-conditions in con-
text and test actions feasibil-
ity in world states

Tests the feasibility and create
backtrack points for future al-
ternatives

Table 4.6:

The di erences between the HATP and SGAP algorithms



Chapter 5

Conclusion

145



Conclusion 146

Planning in the vicinity of humans rises a number of challenges and onef them concerns the geometric
planning and reasoning problems. These problems relate to the link étween the high level reasoning,
usually represented by the task planner but also by the supervigin system, and the low level motion
planning, which computes actual trajectories that the robot can execue.

The idea behind the work of this thesis is to incorporate some symbati knowledge into the geometric
reasoning in order to give both symbolic and geometric levels more leewan their interactions. The
rst example depicted in this dissertation is about a speci ¢ action, that requires symbolic knowledge at
geometric level, the handover (Chapter2). The knowledge acquired while designing this task helped to
build a framework generalizing the geometric reasoning and planning wike providing di erent actions
besides the handover (Chapter3). The last part concerns how this framework has been interleaved W
the higher level task planning (Chapter 4). These contributions are depicted in the followings:

Sharing the e ort with the human for a handover, Section 2.3 This part presents an algorithm
that computes a handover con guration (the position and arm placement of both the giver and
the receiver during a handover) using a grid based approach, wheréhé position of the receiver is
sampled and the position of the giver inferred from it. The algorithm samges a large variety of
possible handover con gurations and chooses the best one based on a humanaase cost including
the human comfort (such as posture and displacement), the distance lween the giver and the
receiver, the visibility of the giver by the receiver, and themobility parameter, which is an expression
of the task urgency. A user study was also held to determine the inteest of this last parameter.

Multi-agent handover, Section 2.4 As one handover did not seem enough in some occasions, an al-
gorithm able to compute a solution where multiple agents are involved ito a sequence of handovers
was designed. The algorithm is based on a lazy weighted A searching a path in a graph where
each node represents an agent holding the object and the edges repneatsthe possible transitions:
either a navigation action, or a handover action. After a solution is found apost process is triggered
in order to optimize the schedule and avoid all possible collisions.

The handover gaze cues, Section 2.5 We propose a user study where the gaze cues during the ob-
ject exchange are considered in details. In the user study, the siyécts were asked to assess the
naturalness of videos while equipped with an eye tracker enabling uto track their eye pattern
during the action. In the videos, the giver (which was, for half of the sibjects, a human and for
the other half, a robot) placed an object in front of the subject while following one of the patterns:
looking only at the Object (O), looking only at the Receiver R), looking rst at the Object, then
at the Receiver OR ), looking rst at the Receiver, then at the Object (RO ), looking rst at the
Object, then at the Receiver, and nally back to the Object (ORO ), looking rst at the Receiver,
then at the Object, and nally back to the Receiver ROR ). Two patterns emerge from both the
subjective and objective measurementsOR and ROR .

Geometric actions formalization, Section 3.2 In this section, a proper formalization of an action,
as de ned at the geometric level is given. An action can be characterized aa sequence (or a
parallelized sequence) of sub-actions which can be described bygsconditions, search spaces, and
nal constraints. An action needs a world state (a snapshot of the currentstate of every entity) to



Conclusion 147

be de ned. In order to compute an action, its pre-conditions need to ke true in this world state,
and a trajectory must be found in its search spaces between this watlstate and a nal world state
computed based on its nal constraints. The result is a geometric task which is a sequence (or a
parallelized sequence) of trajectories coupled with geometric caatlinks (ensuring the precedence

of each trajectory).

A framework using this formalization, Section 3.3 The formalization described in the previous
contribution was used to design a framework able to compute a number of dsic actions such as
pick, place, placeReachable, navigateTo. Three algorithms are proposethere the rst one goes
over all the sub-actions one by one and tries to nd a solution for each oneThe second algorithm,
the one implemented, nds all the transition world states between al the sub-actions of an action
and then computes the trajectories between them. The third algorihm computes all the possible
sequences of world states and, based on a human aware cost, computes thegjectories for the best

feasible one.

A symbolic geometric planning algorithm, Section 4.3 An algorithm which combines a Hierar-
chical Task Network planner with the previously de ned framework is depicted. The planner
de nes its basic operators as pre-conditions and e ects. In order to aply an operator, the pre-
conditions are tested in the current context and the e ects are addedto it in order to obtain the
new context where the next operator can be applied. In order to achievéhe combination, we added
an action to the operator description, which is evaluated at the same timeas the pre-conditions.
To evaluate it, an external call to the geometric framework is done. Oncean operator's action is
computed, the resulting world state is used to retrieve the shard predicates (predicates computed
at geometric level and used by the symbolic level) which are added tohie resulting context along-
side the operator's e ects. These additions enable a combination beteen the two levels and enable

us to tackle partially the rami cation problem.

Enhancement of the SGP algorithm, Section 4.4 We also proposed some speci ¢ enhancements
based on a tighter communication between the symbolic and the geometritayers. The rst en-
hancement consisted on providing the symbolic planner with possile requests to the geometric
reasoner enabling it to validate the feasibility of an action/operator. The second one was about
providing the geometry with more information to avoid future backtrac ks by using higher level
actions such as placeReachable rather than place and using constraints tonit the search space
and nal constraint of speci ¢ action's operator. The last one consisted on nmaking the geometric
level give to the symbolic planner the exact cost of an action based on satirules taking explicitly
the human into account to choose the best possible plan among all the feilde ones.
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Cette these porte sur le raisonnement et la plani cation geonetr ique dans le contexte de l'interaction
homme robot. Dans ce cadre, nous avons d'abord exploe la tAche particere de transfert d'objet entre
un robot et un humain, puis, nous avons develope une approche qui prmet de plani er des actions
et de raisonner au sujet des informations geonetriques disponible. Finalement, nous avons combire

cette approche avec un plani cateur de tache permettant ainsi de taiter des probemes complexes et
ineressants.

A.1 Transfert d'objet

L'action du transfert d'objet, comme son nom l'indique, est l'action ou un agent (humain ou robot)
donne un objeta un autre agent. Ma contribution dans ce domaine peut ete divie en trois parties.
La premere partie concerne lechange d'objets entre un robot et un humain : sachant que I'endroit de
lechange n'est pas & nia l'avance, le robot doit proposer une solution ai il plani e le mouvement de
I'humain pour s'assurer de la faisabilie de lechange. La deuxeme contributionetend la premerea des
probemes incluant plusieurs robots et/ou plusieurs humains. La troiseme contribution concerne deux

etudes utilisateurs qui nous ont permis de mieux comprendre ceains comportements durant le transfert
d'objet.

A.1.1 Partage d'e ort durant le transfert d'objet

La gure A.1 montre un exemple au 'humain ne peut pas étre atteint directement par le robot; celui-Ci

choisi donc une solution \intelligente" en se rapprochant au plus pes de I'humain avant de lui tendre

l'objet. Nous avons pouss ce raisonnement plus loin en prenant en congles envies/besoins de I'humain
a n de choisir la meilleure solution. La gure A.2 montre deux situations : dans la premere, la personne
pekre aller chercher l'objet au bar méme si le robot pourrait venir le lui apportera sa table comme

monte dans la seconde situation.

(a) Situation initiale (b) Situation nale

Figure A.1: Le robot ne peut pas atteindre I'numain directement, mais il lui propose une solution
acceptable pour e ectuer le transfert d'objet.

A n de trouver cet emplacement ai les agents pourront e ectuer le transfert d'objet, nous nous
basons sur deux crieres : la faisabilie et la qualie.

La faisabilie :  an que le transfert d'objet soit faisable, les deux agents doivent &te dans une position
stable lors de lechange et pouvoir acedera I'objet en méme temgs; la position doit étre sans



Appendix 163

(a) Situation initiale (b) Situation nale

(c) Situation initiale (d) Situation nale

Figure A.2:  Une personne presee de ecuperer sa boisson, se sentira plad'aise d'aller chercher sa
boisson au bar, mais une personne un peu moins mobile, ou un peu moins imjette, petrera attendre
gue le serveur (le robot) ramene la boissona sa table.

collision et, nalement, les deux agents doivent pouvoir atteindre laposition dechangea partir de
leur positions initiales respectives.

La qualie : an devaluer la qualie d'un transfert d'objet, nous allons nous bas er sur les crieres
suivants :

la notion de\proxemie" Hall (1969

la visibilie du donneur par le receveur

le confort de la position de transfert base sur un cott \musculo-saquelettique”

I'e ort de deplacement fourni par I'humain

En plus de ces crieres, nous voulons ealiser la tAche en un mimum de temps, et pour faire cela,
la methode suppose la plus rapide est de partager la navigation ene les deux agents. Ceci dit, ce
partage est antagonistea l'icee de minimiser I'e ort de ceplaceme nt que I'humain doit fournir. Dans le
but dequilibrer ces deux crieres, nous utilisons un parane tre nomme \mobilie". La mobilie estelewee
pour I'exemple A.2(a), A.2(b) et elle est basse pour I'exemplé.2(c), A.2(d).
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L'algorithme utiliee pour trouver une solutiona ce probeme corres ponda une boucle qui se ceroule
en 4etapes: d'abord, ¢k nir akatoirement une position pour le rec eveur; ensuite, en se basant sur un
ensemble de positions relatives des agents dep en position de tragfert d'objet, nous pouvons ceduire la
position du donneur. Ensuite, nous calculons la trajectoire des deuagents et, nalement, nous calculons
un colt en prenant en compte la qualie du transfert et la pef erence de I'humain concernant la mobilie.

A n d'aneliorer les performances de cet algorithme, nous avons adape E tirage akatoire de la
position du receveur an de la biaiser vers les positions les plus pmetteuses. Pour cela, nous avons
utilise une partie des crieres de qualie (les unigueme nta la navigation) pourevaluer les zones les plus
ineressantes de l'espace, et y diriger nos recherches.

La gure A.3 montre le méme s@nario avec dierentes valeurs pour la mobilie, et la gure A4
montre les esultats obtenus.

@m=0 (b) m=0.35 c)m=1

(dm=0 (e) m=0.35 flm=1

Figure A.3: Trois valeurs de la mobilie utilisses pour gererer trois di  erentes straegies de transfert
d'objet. Les trois images du haut montrent les trajectoires, alors queds trois du bas montrent la position
nale.

A.1.2 Transfert d'objet entre divers agents

Dans le but detendre le travail sur le transfert d'objet, nous avons inege la possibilie de transfert
d'objet entre plusieurs agents: a partir d'un agent source, on atteintl'agent but en passant par un
nombre ince ni d'agents, tout en prenant en compte leur confort et leurs occupations du moment ainsi
gue tous les deplacements recessaires.
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trouvent trop eloigres les un des autres, lechange est consicee infaisable). Dans un second temps, ce
graphe est misa jour egulerement avec les informations du graphedétat a1 un calcul plus n permet
de savoir si unechange d'objet entre 2 agents est possible ou non.

Le graphe détat est constitie :

de nuds qui correspondenta une position assoceea un agent. en dautre terme, chaque nud
repesente un agent qui tient I'objeta une position donree. Notez qu'il est donc possible que
dierents agents puissent tenir I'objeta une méme position (p as en méme temps bien sor).

d'arrétes qui peuvent étre de deux types: soit un simple cepacement de I'agent avec l'objet, soit
un transfert d'objet.

A n de trouver une solution, le graphe est exploea l'aide d'une vari ante paresseuse et ponctee du
A* Cohen et al. (2014. L'heuristique utilisee dans cette variante, comprend bien air une estimation de
la distance au but, mais aussi les dierents transferts d'objet possibles (grace au graphe d'agent).

A.1.2.2 Le post processing

Apes avoir trouve une solution base sur le graphe detat, un cert ain nombre d'informations recessite
encore d'étre calcuk:

Synchronisation  Une etape de synchronisation (bases sur des egles simples) peret de trouver
I'enchainement d'actions le plus e cace a n d'atteindre le but.

Trajectoire de retour Bien que les trajectoires soient calcuees pour tous les agents quiennent
l'objet, nous consicerons que ceux-ci doivent revenira leur pod#tion de cepart. Ces trajectoires
de retour sont donc calcukes et ajouees dans le plan.

Collision entre agents  Durant le calcul du plana l'aide du graphe detat, les collisions entre agents
sont ignoees. Durant cette phase, I'algorithme \eri e gu'il n'y a e ectivement pas de collision, et
si il en trouve, il essaie de trouver d'autres trajectoires pour lesagents ceant la collision an de
degager le passage.

A.1.2.3 PResultats

Nous avons tese l'algorithme dans plusieurs cas, repesenes das les gures A.5(b), A.6, A.7 et A.8.
Cela a permis de trouver le temps de calcul moyen (20,8s) ainsi que deri er que ce temps est tes
tependant de I'environnement et de la qualie de I'heuristiq ue:

premier exemple| labyrinthe | grande salle| robots eels
mean time (s) 11.2 17.9 40.7 13.4

Table A.1: le temps de calcul moyen pour chague environnement
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Les sujets ont regarce chacune des viceos 2 fois et apes la visualiion de chaque vico ils devaient
remplir un questionnaire leur demandant devaluer le caracere naturel du mouvement. Les videosetaient

montees au participant dans un ordre akatoire et une viceo d'entr ainement leuretait montee avant les
tests.

Durant lesevaluations, les sujetsetaientequipes d'un eye t racker permettant de savoir a ils regar-
daienta tout moment.

A.1.3.2 PResultats

L'analyse des donrees subjectives ( gureA.10) montre que les patternsOR et ROR sont signi cative-
ment mis en avant par les sujets.

Figure A.10: Evaluation de la naturalie par rapport aux patterns eta la vitesse du mouvement

D'autre part, au niveau des esultats occulonetriques, nous pouvors remarquer ( gure A.11) que
dans le cas d'unechange entre humain, le regard du receveur se portegipcipalement sur le visage du
donneur alors que pour unechange robot-humain, le regard de I'humain reeveur sera moins determire.
Nous supposons que plus le mouvement semble naturel plus les dongeentre I'humain et le robot seront
identiques. Nous remarquons donc que pour les patter®@R et ROR chez le robot les donrees sont plus
proches de celles relevees pour I'humain que pour le reste degafperns. A noter que le pattern ORO fait
exception: il est tes proche des donrees relevees pour I'hmain; nous supposons que ce comportement
chez le receveur est dita une attente d'une con rmation visuele du robot apes le dernier regard vers
l'objet, et ne correspond pas exactementa ce qui est rechercle.
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Figure A.11: La distribution visuelle de l'attention entre les centres d'interét par rapport aux dierents
\patterns" et au type du donneur.
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A.2 Raisonnement et plani cation gonetrique

Dans le cadre de la plani cation et du raisonnement dans I'entourage d'urhumain, nous avons ceveloppe
un framework. Sur la base de donrees symboliques simples telle guobot R1 attrape l'objet O2, ce
framework est capable de calculer, non seulement les trajectoiresugpermettront d'atteindre ce but,
mais aussi de trouver les con gurations nales de tous les agents et objetfgsesents dans la se&ne et ceci
en prenant en compte, au besoin, les dierents placements, saisget rotations.

Pour atteindre ce but, chaque action aet ¢ nie de manere auton ome, avec des entees et un
comportement sgeci que. Par exemple, pour plani er une action ai le robot attrape un objet, les entees
sont l'identi ant du robot, et l'identi ant de I'objet. Comme le lec teur peut s'en doutera pesent, il n'y
a pas besoin de ¢ nition nurrerique du buta atteindre (pas de con guration ¢k niea atteindre) ce qui
sort du domaine de la plani cation de mouvement, et se trouve au niveau dda plani cation geonetrique
en cereral.

Etant donre le caracere continu (méme si il est disceti®) du domaine dans lequel la plani cation
geonetrique a lieu, la con guration nale est rarement unique, creant ce que nous appelons des alter-
natives: pour une seule action speciee, un certain nombre (cependant de I'espace de recherche) de
con gurations but peut &tre trouwe et utilie.

A n de trouver des solutions aux dierentes actions disponibles (Pick, Place, PlaceReachable, Stack,
navigateTo, Drop) deux algorithmes ontee ceveloppes. Le premier peut etre decrit ainsi:

Trouver l'espace de recherche dont la tAche a besoin. Par exempleour un Pick, I'espace sera
constitte des dierentes saisies disponibles, pour un Place, li s'agirait de la surface de pose de
l'objet en guestion.

Dans une boucle avec une condition d'arrét au nombre d'essais:

{ Tirer au hasard un point dans I'espace de recherche (pour un pick, un @sp est tie)

{ Calculer, utilisant les technigues de cirematique inverse, és con gurations utilisant ce point
(pour un pick, la position du bras est calcuke)

{ La chemin liant la con guration initiale et la con guration ainsi calcue e est planiee.

Si uneetape de la boucleechoue (la premere car toutes les poskilies ontee exploees, la deuxeme
car il n'existe pas de position respectant les contraintes et la trolme car il n'existe pas de chemin
sans collision) l'algorithme retourne au cebut de la boucle jusqua trouver une solution ou atteindre un
nombre maximum de tests.

Le deuxeme algorithme propo< fait intervenir une composante leea 'homme: an de le prendre
explicitement en compte, la premereetape de l'algorithme est remplaee par un choix ceterministe du
point pesentant la meilleure possibilie. En utilisant une ap proche base sur des codts, repesentant des
egles sociales (tel que respecter une distance de confort/scie de I'homme, la visibilie du robot par
I'hnumain et ainsi de suite), il est possible de trier les points, ¢un point de vue acceptable pour I'humain,
du meilleur au moins bon. Ainsi, le choix des points devient cetermniste.
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Le reste de cette section sera cede aux esultats d'une part, & aux dierents réles et fonctionnalies
d'autre part de ce framework.

A.2.1 Resultats et discussion

An de tester le planicateur, trois actions dierentes ontee t esees: le Pick, le Place et le Place
Reachable. Pour cela, une con guration est tiee au hasard (comme repsene dans la gure A.12) et
a partir de cette position, on demande au plani cateur de calculer I'action (150 requétes pour chaque
action). Le Tableau A.2 montre les esultats obtenus, diviees en deux parties: a gauchesans plani cation
de mouvement eta droite avec. La raison de cette division est de momer la vitesse du plani cateur
cgeonretrique de manere incependante de la plani cation de mouv ement.

Une des premeres remarques est que la plani cation de mouvementnend presque tout le temps.
D'autre part, l'action PlaceReachable prend plus de temps que le place due au calcul additionnelle
obligatoire pour assurer l'atteignabilie de I'objet par I'autre agent (p laceReachable tente de placer I'objet
de telle facona ce qu'un autre agent puisse l'atteindre). On peutaussi noter que le nombre de solutions
exploees dans la partie sans plani cation de mouvement est signi catvement inerieura celui avec la
plani cation de mouvement: l'algorithme echoue souventa trouver un e trajectoire. Chose qui est aussi
visible dans les deux derniers paranetres, le nombre d'appelsda cirematique inverse est plus grand
du cot droit du tableau et le nombre d'appels moyen au plani cateur de mouvement estt 2 avec une
variancet 2.

(@) (b)

(© (d)

Figure A.12: Dierentsetats initiaux ai lI'action  Pick aek tesee
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pour une action I sans plani cation \ avec plani cation \

Pick moyenne variance ecart type | moyenne variance ecart type
Temps 0.026 0.0001 0.0108 | 2.8553 17.1426 4.1403

Nb Sol tese 2.525 3.6193 1.9024 | 8.2130 124.558 11.1606
Cirematique inverse 4.61 4.5379 2.1302 | 11.4556 128.899 11.3534
Plani cation de mouvement - - - 2.0532 2.1687 1.4726

Place

Temps 0.0201 0.0007 0.0270 | 2.7153 22.8922 4.7845

Nb Sol tese 4.4522 19.7352 4,4424 | 18.5033 1166.78 34.1582
Cirematique inverse 4.9296 7.3216 2.7058 | 11.7219 217.101 14.7344
Plani cation de mouvement - - - 2.0463 2.4548 1.5667

Place Reachable

Temps 0.0477 0.0016 0.0403 | 3.0798 47.1862 6.8692

Nb Sol tese 5.5577 78.4879 8.8593 | 12.2692 236.735 15.3862
Cirematique inverse 5.1658 10.5303 3.2450 | 9.4359 57.8741 7.6075

Plani cation de mouvement - - - 1.8846 1.8969 1.3773

Table A.2:

Temps signi e le temps de calcul, Nb Sol tese signi e le nombre de slution tesees.

Cirematique inverse et plani cation de mouvement etre au nomb re d'appels respectifs aux algorithmes
correspondant. Ces chires sont calcues sur 150 actions eussies.

A.2.2 Alternatives

Comme signak auparavant, le plani cateur geonetrique est capable de calculer non seulement une solu-
tion pour l'action, mais aussi, au besoin, dierentes alternatives pour cette méme action: le choixetant
laise au plani cateur geonetrique, il doit eétre aussi capable de les changer quand le besoin s'en fait
sentir. La gure A.13 montre dierentes alternatives de l'action Pick

(a) Premere alternative (b) Deuxeme alternative (c) Troiseme alternative

Figure A.13: Dierentes alternatives pour l'action Pick

A.2.3 Faits

Le plani cateur et raisonneur geornretrique est aussi capable de calcler dierents faits tel que \un objet
est sur un autre objet", ou \un objet est dans un autre objet". Ces capacies de raisonnement englobent
aussi certaines capacies des agents tels qu'\un agent peut atteindreéel objet" ou \peut voir tel autre
objet". La gure A.14 montre dierents types de faits.
























