Improved algorithms for linear stochastic bandits, Advances in Neural Information Processing Systems 24 th (NIPS), pp.2312-2320, 2011. ,
Learning to Optimally Schedule Internet Banner Advertisements, Proc. of the 16 th International Conference on Machine Learning (ICML), pp.12-21, 1999. ,
Low-rank matrix factorization with attributes, Inria tech Report, 2006. ,
Uniform approximation of Vapnik???Chervonenkis classes, Bernoulli, vol.18, issue.4, pp.1310-1319, 2012. ,
DOI : 10.3150/11-BEJ379
Kdd cup 2012 Kaggle criteo ad display challenge, 2012. ,
Exploration???exploitation tradeoff using variance estimates in multi-armed bandits, Theoretical Computer Science, vol.410, issue.19, pp.4101876-1902, 2009. ,
DOI : 10.1016/j.tcs.2009.01.016
URL : https://hal.archives-ouvertes.fr/hal-00711069
Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002. ,
DOI : 10.1023/A:1013689704352
Robust Reductions from Ranking to Classification, Lecture Notes in Computer Science, vol.4539, pp.604-619, 2007. ,
DOI : 10.1007/978-3-540-72927-3_43
Recommender systems survey, Knowledge-Based Systems, vol.46, pp.109-132, 2013. ,
DOI : 10.1016/j.knosys.2013.03.012
Stochastic gradient tricks, Neural Networks, Tricks of the Trade, Reloaded, Lecture Notes in Computer Science (LNCS 7700), pp.430-445, 2012. ,
Counterfactual reasoning and learning systems, 2012. ,
MODL: A Bayes optimal discretization method for continuous attributes, Machine Learning, pp.131-165, 2006. ,
DOI : 10.1007/s10994-006-8364-x
From ranknet to lambdarank to lambdamart: An overview, 2010. ,
Approximate reinforcement learning: An overview, 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp.1-8, 2011. ,
DOI : 10.1109/ADPRL.2011.5967353
A Singular Value Thresholding Algorithm for Matrix Completion, SIAM Journal on Optimization, vol.20, issue.4, pp.1956-1982, 2010. ,
DOI : 10.1137/080738970
Exact Matrix Completion via Convex Optimization, Foundations of Computational Mathematics, vol.170, issue.1, pp.717-772, 2009. ,
DOI : 10.1007/s10208-009-9045-5
Decoding by Linear Programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005. ,
DOI : 10.1109/TIT.2005.858979
The Power of Convex Relaxation: Near-Optimal Matrix Completion, IEEE Transactions on Information Theory, vol.56, issue.5, pp.2053-2080, 2010. ,
DOI : 10.1109/TIT.2010.2044061
Mortal Multi-Armed Bandits, 20 th Advances in Neural Information Processing Systems (NIPS), pp.273-280, 2008. ,
An empirical evaluation of thompson sampling, Advances in Neural Information Processing Systems 24: Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS-2011), pp.2249-2257, 2011. ,
Probabilistic models for incomplete multi-dimensional arrays, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS-09) Journal of Machine Learning Research -Proceedings Track, pp.89-96, 2009. ,
Orthogonal nonnegative matrix t-factorizations for clustering, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.126-135, 2006. ,
DOI : 10.1145/1150402.1150420
Adaptive subgradient methods for online learning and stochastic optimization, 2010. ,
Matrix Rank Minimization with Applications, 2002. ,
A mirex metaanalysis of hubness in audio music similarity, Proc. of the 13th Int. Soc. for Music Information Retrieval Conf. (ISMIR, 2012. ,
Un Test de type Kolmogorov-smirnov pour processus de diffusion ergodiques, 1992. ,
URL : https://hal.archives-ouvertes.fr/inria-00076932
An algorithm for quadratic programming, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.95-110, 1956. ,
DOI : 10.1002/nav.3800030109
machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2000. ,
DOI : 10.1214/aos/1013203451
Fast monte-carlo algorithms for finding low-rank approximations, 39th Annual Symposium on Foundations of Computer Science, FOCS '98, pp.370-378, 1998. ,
Extremely randomized trees, Machine Learning, vol.63, issue.1, pp.3-42, 2006. ,
DOI : 10.1007/s10994-006-6226-1
URL : https://hal.archives-ouvertes.fr/hal-00341932
Managing advertising campaigns -an approximate planning approach, Frontiers of Computer Science, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00747722
Web-scale bayesian clickthrough rate prediction for sponsored search advertising in microsoftâs bing search engine, Proceedings of the 27th International Conference on Machine Learning ICML 2010, 2010. ,
A Bayesian Learning Automaton for Solving Two-Armed Bernoulli Bandit Problems, Proc. of the 7 th Internaitonal Conference on Machine Learning and Applications (ICML-A), pp.23-30, 2008. ,
User Engagement as Evaluation, Proceedings of the 2014 Recommender Systems Challenge on, RecSysChallenge '14, 2014. ,
DOI : 10.1145/2668067.2668073
URL : https://hal.archives-ouvertes.fr/hal-01077986
PARAFAC: Parallel factor analysis, Computational Statistics & Data Analysis, vol.18, issue.1, pp.39-72, 1994. ,
DOI : 10.1016/0167-9473(94)90132-5
Trueskill TM : A bayesian skill rating system, Advances in Neural Information Processing Systems 19, pp.569-576, 2007. ,
Collaborative Filtering for Implicit Feedback Datasets, 2008 Eighth IEEE International Conference on Data Mining, pp.263-272, 2008. ,
DOI : 10.1109/ICDM.2008.22
Provable tensor factorization with missing data, Advances in Neural Information Processing Systems 27, pp.1431-1439, 2014. ,
A latent factor model for highly multi-relational data, Advances in Neural Information Processing Systems 25, pp.3167-3175, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00776335
Local deep kernel learning for efficient non-linear svm prediction, Proceedings of the International Conference on Machine Learning, 2013. ,
Efficient bandit algorithms for online multiclass prediction, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.440-447, 2008. ,
DOI : 10.1145/1390156.1390212
Spectral algorithms. Foundations and Trends in Theoretical Computer Science, pp.3-4157, 2009. ,
On a function space in certain extremal problems, Dokl. Akad. Nauk USSR, vol.115, pp.1058-1061, 1957. ,
Recognizing Image Style, Proceedings of the British Machine Vision Conference 2014, 2013. ,
DOI : 10.5244/C.28.122
Online Clustering of Processes, AISTATS 2012, pp.601-609, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00765462
Detecting Change in Data Streams, Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp.180-191, 2004. ,
DOI : 10.1016/B978-012088469-8.50019-X
Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari, pp.83-91, 1933. ,
Tensor factorization via matrix factorization, Artificial Intelligence and Statistics (AISTATS), 2015. ,
Predicting conditional quantiles via reduction to classification, UAI '06, Proceedings of the 22nd Conference in Uncertainty in Artificial Intelligence, 2006. ,
Exploration scavenging, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008. ,
DOI : 10.1145/1390156.1390223
The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information, 20 th Advances in Neural Information Processing Systems (NIPS), pp.817-824, 2008. ,
A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1253-1278, 2000. ,
DOI : 10.1137/S0895479896305696
Temporal diversity in recommender systems, Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '10, pp.210-217, 2010. ,
DOI : 10.1145/1835449.1835486
Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998. ,
DOI : 10.1109/5.726791
Can movies and books collaborate?: Cross-domain collaborative filtering for sparsity reduction, Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI'09, pp.2052-2057, 2009. ,
A contextual-bandit approach to personalized news article recommendation, Proceedings of the 19th international conference on World wide web, WWW '10, pp.661-670, 2010. ,
DOI : 10.1145/1772690.1772758
Unbiased offline evaluation of contextualbandit-based news article recommendation algorithms, Proc. Web Search and Data Mining (WSDM), pp.297-306, 2011. ,
Toward minimax off-policy value estimation, Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015 JMLR Proceedings. JMLR.org, 2015. ,
Allocating online advertisement space with unreliable estimates, Proceedings of the 8th ACM conference on Electronic commerce , EC '07, pp.288-294, 2007. ,
DOI : 10.1145/1250910.1250952
Bandits Warm-up Cold Recommender Systems, 2014. ,
URL : https://hal.archives-ouvertes.fr/hal-01022628
Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques, Proc. ICML, JMLR WCP, 2014. ,
URL : https://hal.archives-ouvertes.fr/hal-00990840
Optimistic bayesian sampling in contextual-bandit problems, J. Mach. Learn. Res, vol.13, pp.2069-2106, 2012. ,
Spectral regularization algorithms for learning large incomplete matrices, J. Mach. Learn. Res, vol.11, pp.2287-2322, 2010. ,
AdWords and generalized online matching, Proc. of the 46 th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.264-273, 2005. ,
DOI : 10.1145/1284320.1284321
WordNet: a lexical database for English, Communications of the ACM, vol.38, issue.11, pp.39-41, 1995. ,
DOI : 10.1145/219717.219748
TALMUD, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.425-434, 2012. ,
DOI : 10.1145/2396761.2396817
Introductory lectures on convex optimization : a basic course Applied optimization, 2004. ,
DOI : 10.1007/978-1-4419-8853-9
Data-driven evaluation of Contextual Bandit algorithms and applications to Dynamic Recommendation, 2014. ,
URL : https://hal.archives-ouvertes.fr/tel-01297407
Icml exploration and exploitation challenge: Keep it simple !, Journal of Machine Learning Research, 2012. ,
Transfer learning in collaborative filtering for sparsity reduction, AAAI, 2010. ,
Bandits for Taxonomies: A Model-based Approach, Proc. of the 7 th SIAM International Conference on Data Mining, 2007. ,
DOI : 10.1137/1.9781611972771.20
Handling Advertisements of Unknown Quality in Search Advertising, 18 th Advances in Neural Information Processing Systems (NIPS), pp.1065-1072, 2006. ,
Eligibility traces for off-policy policy evaluation, Proceedings of the Seventeenth International Conference on Machine Learning, pp.759-766, 2000. ,
Dataset Shift in Machine Learning, 2009. ,
Factorization Machines, 2010 IEEE International Conference on Data Mining, pp.14-17, 2010. ,
DOI : 10.1109/ICDM.2010.127
Factorization Machines with libFM, ACM Transactions on Intelligent Systems and Technology, vol.3, issue.3, pp.1-5722, 2012. ,
DOI : 10.1145/2168752.2168771
Factorizing personalized Markov chains for next-basket recommendation, Proceedings of the 19th international conference on World wide web, WWW '10, pp.811-820, 2010. ,
DOI : 10.1145/1772690.1772773
R6b -yahoo! front page today module user click log dataset, 2012. ,
Clustering processes, Proc. the 27th International Conference on Machine Learning, pp.919-926, 2010. ,
URL : https://hal.archives-ouvertes.fr/inria-00477238
Discrimination Between B-Processes is Impossible, Journal of Theoretical Probability, vol.44, issue.6, pp.565-575, 2010. ,
DOI : 10.1007/s10959-009-0263-1
URL : https://hal.archives-ouvertes.fr/hal-00639537
On the relation between realizable and non-realizable cases of the sequence prediction problem, Journal of Machine Learning Research, vol.12, pp.2161-2180, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00639474
Reducing statistical time-series problems to binary classification, Neural Information Processing Systems (NIPS), 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00675637
A binary-classification-based metric between time-series distributions and its use in statistical and learning problems, Journal of Machine Learning Research, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-00913240
Nonparametric Statistical Inference for Ergodic Processes, IEEE Transactions on Information Theory, vol.56, issue.3, pp.1430-1435, 2010. ,
DOI : 10.1109/TIT.2009.2039169
URL : https://hal.archives-ouvertes.fr/inria-00269249
Prediction of random sequences and universal coding. Problems of Information Transmission, pp.87-96, 1988. ,
Recommender systems challenge 2014, Proceedings of the 8th ACM Conference on Recommender systems, RecSys '14, 2014. ,
DOI : 10.1145/2645710.2645779
Recsys challenge, 2014. ,
Probabilistic matrix factorization, Advances in Neural Information Processing Systems Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, pp.1257-1264, 2007. ,
Learning with Kernels: Support Vector Machines, Regularization , Optimization, and Beyond. Adaptive computation and machine learning, 2002. ,
Yandex challenge, 2014. ,
Online learning with preference feedback, NIPS workshop on choice models and preference learning, 2011. ,
Complexity-based induction systems: Comparisons and convergence theorems. Information Theory, IEEE Transactions, vol.24, issue.4, pp.422-432, 1978. ,
Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning Series, 1998. ,
DOI : 10.1007/978-1-4615-3618-5
Finite-time analysis of kernelised contextual bandits, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-00826946
Bandit problems with side observations, IEEE Transactions on Automatic Control, vol.50, issue.3, pp.338-355, 2005. ,
DOI : 10.1109/TAC.2005.844079
Algorithms for infinitely many-armed bandits, Advances in Neural Information Processing Systems 21, pp.1729-1736, 2009. ,
Feature hashing for large scale multitask learning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.1113-1120, 2009. ,
DOI : 10.1145/1553374.1553516
Large-Scale Parallel Collaborative Filtering for the Netflix Prize, Proceedings of the 4th international conference on Algorithmic Aspects in Information and Management (AAIM), pp.337-348, 2008. ,
DOI : 10.1007/978-3-540-68880-8_32
Probability metrics. j-THEORY-PROBAB-APPL, pp.278-302, 1983. ,
Spatio-temporal models for estimating clickthrough rate, Proceedings of the 18th international conference on World wide web(WWW), pp. 21?30, 2009. ,
Exploration???exploitation tradeoff using variance estimates in multi-armed bandits, Theoretical Computer Science, vol.410, issue.19, pp.1876-1902, 2009. ,
DOI : 10.1016/j.tcs.2009.01.016
URL : https://hal.archives-ouvertes.fr/hal-00711069
Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002. ,
DOI : 10.1023/A:1013689704352
Neural Networks for Pattern Recognition Neural Networks for Pattern Recognition, 1995. ,
Doubly robust policy evaluation and learning. CoRR, abs/1103, 2011. ,
Bootstrap methods: Another look at the jackknife . The Annals of Statistics, pp.1-26, 1979. ,
The big data bootstrap, Proceedings of the 29th International Conference on Machine Learning (ICML- 12), ICML '12, pp.1759-1766, 2012. ,
Controlled experiments on the web: survey and practical guide, Data Mining and Knowledge Discovery, vol.33, issue.6, pp.140-181, 2009. ,
DOI : 10.1007/s10618-008-0114-1
Kernel regression and backpropagation training with noise, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks, pp.1033-1039, 1992. ,
DOI : 10.1109/IJCNN.1991.170429
The epoch-greedy algorithm for multi-armed bandits with side information, Proc. NIPS, 2007. ,
Exploration scavenging, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.528-535, 2008. ,
DOI : 10.1145/1390156.1390223
Notes from a lecture of van vu at university of california, san diego, 2005. ,
A contextual-bandit approach to personalized news article recommendation, Proceedings of the 19th international conference on World wide web, WWW '10, pp.661-670, 2010. ,
DOI : 10.1145/1772690.1772758
Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms, Proceedings of the fourth ACM international conference on Web search and data mining, WSDM '11, pp.297-306, 2011. ,
DOI : 10.1145/1935826.1935878
Contextual multi-armed bandits, Proc. of the 13 th Artificial Intelligence and Statistics (AI & Stats), JMLR: W&CP 9, pp.13-15 ,
Some aspects of the sequential design of experiments, Bulletin of the American Mathematical Society, vol.58, issue.5, pp.527-535, 1952. ,
DOI : 10.1090/S0002-9904-1952-09620-8
Multivariate Density Estimation: Theory, Practice, and Visualization, 1992. ,
DOI : 10.1002/9781118575574
Evaluating Recommendation Systems, Recommender systems handbook, pp.257-297, 2011. ,
DOI : 10.1007/978-0-387-85820-3_8
Learning from logged implicit exploration data, Proc. NIPS, pp.2217-2225, 2010. ,
Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning Series, 1998. ,
DOI : 10.1007/978-1-4615-3618-5
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, Biometrika, vol.25, pp.3-4285, 1933. ,
Finite-time analysis of the multiarmed bandit problem, pp.235-256, 2002. ,
Advertising campaigns man- agement: Should we be greedy?, The 10th IEEE International Conference on Data Mining (ICDM-2010), pp.821-826, 2010. ,
Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine, Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp.13-20, 2010. ,
Trueskill tm : A bayesian skill rating system, Advances in Neural Information Processing Systems 19 (NIPS-2006), pp.569-576, 2007. ,
A contextual-bandit approach to personalized news article recommendation, Proceedings of the 19th international conference on World wide web, WWW '10, pp.661-670, 2010. ,
DOI : 10.1145/1772690.1772758
The EM Algorithm and Extensions, 1996. ,
Learning to predict by the methods of temporal differences, Machine Learning, vol.34, issue.1 ,
DOI : 10.1007/BF00115009
Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002. ,
DOI : 10.1023/A:1013689704352
Learning to optimally schedule Internet banner advertisements, Proceedings of the 16th International Conference on Machine Learning, pp.12-21, 1999. ,
A Bayesian learning automaton for solving two-armed Bernoulli bandit problems, Proceedings of the 7th International Conference on Machine Learning and Applications, pp.23-30, 2008. ,
Unintrusive customization techniques for Web advertising, Computer Networks, vol.31, issue.11-16, pp.31-42, 1999. ,
DOI : 10.1016/S1389-1286(99)00033-X
Improvements to the Linear Programming Based Scheduling of Web Advertisements, Electronic Commerce Research, vol.5, issue.1, pp.75-98, 2005. ,
DOI : 10.1023/B:ELEC.0000045974.88926.88
Bandits for Taxonomies: A Model-based Approach, Proceedings of the 7th SIAM International Conference on Data Mining, 2007. ,
DOI : 10.1137/1.9781611972771.20
The epoch-greedy algorithm for multi-armed bandits with side information, Proceedings of 20th Advances in Neural Information Processing Systems, pp.817-824, 2008. ,
Bandit problems with side observations, IEEE Transactions on Automatic Control, issue.3, pp.50-338, 2005. ,
Efficient bandit algorithms for online multiclass prediction, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.440-447, 2008. ,
DOI : 10.1145/1390156.1390212
Exploitation and exploration in a performance based contextual advertising system, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.27-36, 2010. ,
DOI : 10.1145/1835804.1835811
Handling advertisements of unknown quality in search advertising, Proceedings of 18th Advances in Neural Information Processing Systems, pp.1065-1072, 2006. ,
Explore/Exploit Schemes for Web Content Optimization, 2009 Ninth IEEE International Conference on Data Mining, pp.1-10, 2009. ,
DOI : 10.1109/ICDM.2009.52
A contextual-bandit approach to personalized news article recommendation, Proceedings of the 19th international conference on World wide web, WWW '10, pp.661-670, 2010. ,
DOI : 10.1145/1772690.1772758
Predicting clicks, Proceedings of the 16th international conference on World Wide Web , WWW '07, pp.521-530, 2007. ,
DOI : 10.1145/1242572.1242643
Spatio-temporal models for estimating click-through rate, Proceedings of the 18th international conference on World wide web, WWW '09, pp.21-30, 2009. ,
DOI : 10.1145/1526709.1526713
Estimating rates of rare events at multiple resolutions, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.16-25, 2007. ,
DOI : 10.1145/1281192.1281198
Clickthrough rate estimation for rare events in online advertising, Online Multimedia Advertising: Techniques and Technologies. Hershey: IGI Global, 2010. ,
Sentiment-oriented contextual advertising, Knowledge and Information Systems, vol.20, issue.3, pp.321-344, 2010. ,
DOI : 10.1007/s10115-009-0222-2
AdWords and Generalized On-line Matching, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), pp.264-273, 2005. ,
DOI : 10.1109/SFCS.2005.12
Allocating online advertisement space with unreliable estimates, Proceedings of the 8th ACM conference on Electronic commerce , EC '07, pp.288-294, 2007. ,
DOI : 10.1145/1250910.1250952
Exploration scavenging, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.528-535, 2008. ,
DOI : 10.1145/1390156.1390223
Learning Graphical Models for Stationary Time Series, IEEE Transactions on Signal Processing, vol.52, issue.8, pp.2189-2199, 2004. ,
DOI : 10.1109/TSP.2004.831032
A discriminative framework for clustering via similarity functions, Proceedings of the fourtieth annual ACM symposium on Theory of computing, STOC 08, 2008. ,
DOI : 10.1145/1374376.1374474
Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.7, pp.719-725, 2000. ,
Statistical Methods in Markov Chains, The Annals of Mathematical Statistics, vol.32, issue.1, pp.12-40, 1961. ,
DOI : 10.1214/aoms/1177705136
Convergence of probability measures, 1999. ,
DOI : 10.1002/9780470316962
Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, 1996. ,
Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions, Probability Surveys, pp.107-144, 2005. ,
DOI : 10.1214/154957805100000104
Nonparametric Change-Point Estimation for Data from an Ergodic Sequence, Theory of Probability & Its Applications, vol.38, issue.4, pp.910-917, 1993. ,
DOI : 10.1137/1138073
Clustering by Compression, IEEE Transactions on Information Theory, vol.51, issue.4, pp.1523-1545, 2005. ,
DOI : 10.1109/TIT.2005.844059
Donatas Surgailis, and GillesTeyssì ere. Dependence in Probability and Statistics, 2010. ,
Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching, SIAM Journal on Computing, vol.35, issue.2, pp.378-407, 2005. ,
DOI : 10.1137/S0097539702402354
Asymptotically optimal classification for multiple tests with empirically observed statistics, IEEE Transactions on Information Theory, vol.35, issue.2, pp.402-408, 1989. ,
DOI : 10.1109/18.32134
Spectral Clustering and Embedding with Hidden Markov Models, Machine Learning: ECML 2007, pp.164-175, 2007. ,
DOI : 10.1007/978-3-540-74958-5_18
A new initialization technique for generalized Lloyd iteration, IEEE Signal Processing Letters, vol.1, issue.10, pp.144-146, 1994. ,
DOI : 10.1109/97.329844
Locating changes in highly-dependent data with unknown number of change points, Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, United States, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00765436
Online clustering of processes, AISTATS, JMLR W&CP 22, pp.601-609, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00765462
Asymptotically consistent estimation of the number of change points in highly dependent time series, ICML, JMLR W&CP, pp.539-547, 2014. ,
URL : https://hal.archives-ouvertes.fr/hal-01026583
An impossibility theorem for clustering, 15th Conf. Neiral Information Processing Systems (NIPS'02), pp.446-453, 2002. ,
Prefixes and the entropy rate for long-range sources, Proceedings of 1994 IEEE International Symposium on Information Theory, pp.194-194, 1994. ,
DOI : 10.1109/ISIT.1994.394774
Clustering seasonality patterns in the presence of errors, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.557-563, 2002. ,
DOI : 10.1145/775047.775129
Testing Statistical Hypotheses, 1986. ,
Time series clustering: Complex is simpler!, 2011. ,
The Planar k-Means Problem is NP-Hard, WALCOM '09: Proceedings of the 3rd International Workshop on Algorithms and Computation, pp.274-285, 2009. ,
DOI : 10.1109/TC.1981.6312176
On classifying processes, Bernoulli, vol.11, issue.3, pp.523-532, 2005. ,
DOI : 10.3150/bj/1120591187
A note on prediction for discrete time series, Kybernetika, vol.48, issue.4, pp.809-823, 2012. ,
How Sampling Reveals a Process, The Annals of Probability, vol.18, issue.3, pp.905-930, 1990. ,
DOI : 10.1214/aop/1176990729
Théorie asymptotique des processus aléatoires faiblement dépendants, 1999. ,
Prediction of random sequences and universal coding. Problems of Information Transmission, pp.87-96, 1988. ,
Universal codes as a basis for time series testing, Statistical Methodology, vol.3, issue.4, pp.375-397, 2006. ,
DOI : 10.1016/j.stamet.2005.10.004
Applications of universal source coding to statistical analysis of time series. Selected Topics in Information and Coding Theory, pp.289-338, 2010. ,
Clustering processes, Proc. the 27th International Conference on Machine Learning (ICML 2010), pp.919-926, 2010. ,
URL : https://hal.archives-ouvertes.fr/inria-00477238
Discrimination Between B-Processes is Impossible, Journal of Theoretical Probability, vol.44, issue.6, pp.565-575, 2010. ,
DOI : 10.1007/s10959-009-0263-1
URL : https://hal.archives-ouvertes.fr/hal-00639537
Testing composite hypotheses about discrete ergodic processes, TEST, vol.56, issue.3, pp.317-329, 2012. ,
DOI : 10.1007/s11749-011-0245-3
URL : https://hal.archives-ouvertes.fr/hal-00639477
Uniform hypothesis testing for finite-valued stationary processes, Statistics, vol.22, issue.1, pp.121-128, 2014. ,
DOI : 10.1007/s10959-009-0263-1
URL : https://hal.archives-ouvertes.fr/inria-00610009
Nonparametric Statistical Inference for Ergodic Processes, IEEE Transactions on Information Theory, vol.56, issue.3, pp.1430-1435, 2010. ,
DOI : 10.1109/TIT.2009.2039169
URL : https://hal.archives-ouvertes.fr/inria-00269249
Reducing statistical time-series problems to binary classification, Advances in Neural Information Processing Systems 25, pp.2069-2077, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00675637
The Ergodic Theory of Discrete Sample Paths, 1996. ,
DOI : 10.1090/gsm/013
Clustering sequences with hidden Markov models, Advances in Neural Information Processing Systems, pp.648-654, 1997. ,
On-line construction of suffix trees, Algorithmica, vol.10, issue.3, pp.249-260, 1995. ,
DOI : 10.1007/BF01206331
A unified framework for model-based clustering, Journal of Machine Learning Research, vol.4, pp.1001-1037, 2003. ,
Uniform approximation of Vapnik???Chervonenkis classes, Bernoulli, vol.18, issue.4, pp.1310-1319, 2012. ,
DOI : 10.3150/11-BEJ379
Robust Reductions from Ranking to Classification, Learning Theory, pp.604-619, 2007. ,
DOI : 10.1007/978-3-540-72927-3_43
A discriminative framework for clustering via similarity functions, Proceedings of the fourtieth annual ACM symposium on Theory of computing, STOC 08, pp.671-680, 2008. ,
DOI : 10.1145/1374376.1374474
Ergodic Theory and Information, 1965. ,
Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, 1996. ,
LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, vol.2, pp.27-28, 2011. ,
Support-vector networks, Machine Learning, pp.273-297, 1995. ,
DOI : 10.1007/BF00994018
Convergence de la répartition empirique vers la répartition théoretique, Ann. Sci. Ec. Norm. Super., III. Ser, vol.70, issue.3, pp.267-285, 1953. ,
Asymptotically optimal classification for multiple tests with empirically observed statistics, IEEE Transactions on Information Theory, vol.35, issue.2, pp.402-408, 1989. ,
DOI : 10.1109/18.32134
Kernel change-point analysis, Advances in Neural Information Processing Systems 21, pp.609-616, 2008. ,
On a function space in certain extremal problems, Dokl. Akad. Nauk USSR, vol.115, issue.6, pp.1058-1061, 1957. ,
Rates of uniform convergence of empirical means with mixing processes, Statistics & Probability Letters, vol.58, issue.3, pp.297-307, 2002. ,
DOI : 10.1016/S0167-7152(02)00124-4
Online clustering of processes, AISTATS, JMLR W&CP 22, pp.601-609, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00765462
Locating changes in highly dependent data with unknown number of change points, Advances in Neural Information Processing Systems 25, pp.3095-3103, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00765436
Nonparametric multiple change point estimation in highly dependent time series, Proc. 24th International Conf. on Algorithmic Learning Theory (ALT'13), Singapre, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-00913250
Detecting Change in Data Streams, Proc. the Thirtieth International Conference on Very Large Data Bases, pp.180-191, 2004. ,
DOI : 10.1016/B978-012088469-8.50019-X
Sulla determinazione empirica di una legge di distribuzione, G. Inst. Ital. Attuari, pp.83-91, 1933. ,
Predicting conditional quantiles via reduction to classification, Proc. of the 22th Conference on Uncertainty in Artificial Intelligence (UAI), 2006. ,
On the need for on-line learning in brain-computer interfaces, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), 2004. ,
DOI : 10.1109/IJCNN.2004.1381116
How Sampling Reveals a Process, The Annals of Probability, vol.18, issue.3, pp.905-930, 1990. ,
DOI : 10.1214/aop/1176990729
Convergence of Stochastic Processes, 1984. ,
DOI : 10.1007/978-1-4612-5254-2
Prediction of random sequences and universal coding. Problems of Information Transmission, pp.87-96, 1988. ,
Compression-Based Methods for Nonparametric Prediction and Estimation of Some Characteristics of Time Series, IEEE Transactions on Information Theory, vol.55, issue.9, pp.4309-4315, 2009. ,
DOI : 10.1109/TIT.2009.2025546
Clustering processes, Proc. the 27th International Conference on Machine Learning (ICML 2010), pp.919-926, 2010. ,
URL : https://hal.archives-ouvertes.fr/inria-00477238
Discrimination Between B-Processes is Impossible, Journal of Theoretical Probability, vol.44, issue.6, pp.565-575, 2010. ,
DOI : 10.1007/s10959-009-0263-1
URL : https://hal.archives-ouvertes.fr/hal-00639537
On the relation between realizable and non-realizable cases of the sequence prediction problem, Journal of Machine Learning Research, vol.12, pp.2161-2180, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00639474
Testing composite hypotheses about discrete ergodic processes, TEST, vol.56, issue.3, pp.317-329, 2012. ,
DOI : 10.1007/s11749-011-0245-3
URL : https://hal.archives-ouvertes.fr/hal-00639477
Nonparametric Statistical Inference for Ergodic Processes, IEEE Transactions on Information Theory, vol.56, issue.3, pp.1430-1435, 2010. ,
DOI : 10.1109/TIT.2009.2039169
URL : https://hal.archives-ouvertes.fr/inria-00269249
Reducing statistical time-series problems to binary classification, Advances in Neural Information Processing Systems 25, pp.2069-2077, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00675637
Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.43-49, 1978. ,
DOI : 10.1109/TASSP.1978.1163055
The Ergodic Theory of Discrete Sample Paths, 1996. ,
DOI : 10.1090/gsm/013
Complexity-based induction systems: Comparisons and convergence theorems, IEEE Transactions on Information Theory, vol.24, issue.4, pp.24422-432, 1978. ,
DOI : 10.1109/TIT.1978.1055913
Probability metrics. Theory of Probability and Its Applications, pp.264-287, 1983. ,