J. Abellán and S. Moral, A NON-SPECIFICITY MEASURE FOR CONVEX SETS OF PROBABILITY DISTRIBUTIONS, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.08, issue.03, pp.357-368, 2000.
DOI : 10.1142/S0218488500000253

S. S. Anand, D. A. Bell, and J. G. Hughes, Aspects of uncertainty handling for knowledge discovery in databases, 1996.

V. Antoine, B. Quost, M. Masson, and T. Denoeux, CECM: Adding pairwise constraints to evidential clustering, International Conference on Fuzzy Systems, pp.1-8, 2010.
DOI : 10.1109/FUZZY.2010.5584366

URL : https://hal.archives-ouvertes.fr/hal-00491424

V. Antoine, B. Quost, M. Masson, and T. Denoeux, CEVCLUS: Constrained evidential clustering of proximity data, Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011), pp.876-882, 2011.
DOI : 10.2991/eusflat.2011.80

URL : https://hal.archives-ouvertes.fr/hal-00651392

V. Antoine, B. Quost, M. Masson, and T. Denoeux, CECM: Constrained evidential -means algorithm, Computational Statistics & Data Analysis, vol.56, issue.4, pp.894-914, 2012.
DOI : 10.1016/j.csda.2010.09.021

URL : https://hal.archives-ouvertes.fr/hal-00554310

A. Aregui and T. Denoeux, Consonant Belief Function Induced by a Confidence Set of Pignistic Probabilities, Proceedings of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp.344-355, 2007.
DOI : 10.1002/int.4550010403

M. Bach-tobji, Frequent itemset mining and maintenance in imperfect databases, 2012.

M. Bach-tobji, B. Ben-yaghlane, and K. Mellouli, A new algorithm for mining frequent itemsets from evidential databases, Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp.1535-1542, 2008.

B. Hariz, S. Elouedi, and Z. , DK-BKM: Decremental K Belief K-Modes Method, Proceedings of the 4th International Conference on Scalable Uncertainty Management, pp.84-97, 2010.
DOI : 10.1007/978-3-642-15951-0_13

B. Hariz, S. Elouedi, and Z. , IK-BKM: An incremental clustering approach based on intra-cluster distance, Proceedings of ACS/IEEE International Conference on Computer Systems and Applications, pp.1-8, 2010.

B. Hariz, S. Elouedi, Z. Mellouli, and K. , Clustering Approach Using Belief Function Theory, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology, pp.162-171, 2006.
DOI : 10.1007/11861461_18

B. Hariz, S. Elouedi, Z. Mellouli, and K. , Selection initial modes for belief K-modes method, International Journal of Applied Science, Engineering and Technology, vol.4, issue.4, pp.233-242, 2007.

B. Yaghlane, A. Denoeux, T. Mellouli, and K. , Constructing Belief Functions from Qualitative Expert Opinions, 2006 2nd International Conference on Information & Communication Technologies, pp.1363-1368, 2006.
DOI : 10.1109/ICTTA.2006.1684579

B. Yaghlane, A. Denoeux, T. Mellouli, and K. , Elicitation of Expert Opinions for Constructing Belief Functions, Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledgebased Systems, pp.403-411, 2006.
DOI : 10.1142/9789812792358_0006

B. Yaghlane and B. , Uncertainty representation and reasoning in directed evidential networks, 2002.

B. Yaghlane, B. Smets, P. Mellouli, and K. , Independence Concepts for Belief Functions, Proceedings of the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp.357-364, 2000.
DOI : 10.1007/978-3-7908-1796-6_4

B. Yaghlane, B. Smets, P. Mellouli, and K. , Belief function independence: I. The marginal case, International Journal of Approximate Reasoning, vol.29, issue.1, pp.47-70, 2002.
DOI : 10.1016/S0888-613X(01)00055-X

B. Yaghlane, B. Smets, P. Mellouli, and K. , Belief function independence: II. The conditional case, International Journal of Approximate Reasoning, vol.31, issue.1-2, pp.31-75, 2002.
DOI : 10.1016/S0888-613X(02)00072-5

S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, 1999.

P. Bosc, L. Duval, and O. Pivert, An initial approach to the evaluation of possibilistic queries addressed to possibilistic databases. Fuzzy Sets and Systems, pp.151-166, 2003.

P. Bosc and O. Pivert, SQLf: a relational database language for fuzzy querying, IEEE Transactions on Fuzzy Systems, vol.3, issue.1, pp.1-17, 1995.
DOI : 10.1109/91.366566

J. Boubaker, Z. Elouedi, and E. Lefèvre, Conflict management with dependent information sources in the belief function framework, 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), pp.393-398, 2013.
DOI : 10.1109/CINTI.2013.6705228

M. Bouchard, A. Jousselme, and P. Doré, A proof for the positive definiteness of the Jaccard index matrix, International Journal of Approximate Reasoning, vol.54, issue.5, pp.615-626, 2013.
DOI : 10.1016/j.ijar.2013.01.006

F. Bourgeois and J. Lassalle, An Extension of the Munkers Algorithm for the Assignement Problem to Rectangular Matrices, Communication of the ACM, vol.12, issue.14, pp.802-804, 1971.

N. Bryson and A. Mobolurin, A process for generating quantitative belief functions, European Journal of Operational Research, vol.115, issue.3, pp.624-633, 1999.
DOI : 10.1016/S0377-2217(98)00181-7

T. Burger and S. Destercke, Random Generation of Mass Functions: A Short Howto, Belief Functions: Theory and Applications, Proceedings of the 2nd International Conference on Belief Functions of Advances in Intelligent and Soft Computing, pp.145-152, 2012.
DOI : 10.1007/978-3-642-29461-7_17

URL : https://hal.archives-ouvertes.fr/hal-00664325

M. Chebbah, B. Ben-yaghlane, and A. Martin, Reliability estimation based on conflict for evidential database enrichment, Workshop on the theory of belief functions, 2010.

M. Chebbah, M. Kharoune, A. Martin, B. Yaghlane, and B. , Considérant la dépendance dans la théorie des fonctions de croyance, 2014.

M. Chebbah, A. Martin, B. Yaghlane, and B. , Modélisation du conflit dans les bases de donnéesdonnéesévidentielles, Atelier Extraction et Gestion des Connaissances " Fouille de données complexes: compléxité liée aux données multiples, pp.13-19, 2010.

M. Chebbah, A. Martin, B. Yaghlane, and B. , Estimation de la fiabilité des sources des bases de donnéesdonnéesévidentielles. Revue des Nouvelles Technologies de l'Information, Numéro spécial : Fouille de données complexes -Complexité liée aux données multiples, pp.21193-209, 2011.

M. Chebbah, A. Martin, B. Yaghlane, and B. , About Sources Dependence in the Theory of Belief Functions, Belief Functions: Theory and Applications, Proceedings of the 2nd International Conference on Belief Functions of Advances in Intelligent and Soft Computing, pp.239-246, 2012.
DOI : 10.1007/978-3-642-29461-7_28

M. Chebbah, A. Martin, B. Yaghlane, B. Greco, S. Bouchon-meunier et al., Positive and Negative Dependence for Evidential Database Enrichment, Advances in Computational Intelligence, Proceedings of the14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp.575-584, 2012.
DOI : 10.1007/978-3-642-31718-7_59

M. Chebbah, A. Martin, B. Yaghlane, and B. , Mesure de dépendance positive et négative de sources crédibilistes, Extraction et Gestion des Connaissances, 2013.

R. Cheng, D. V. Kalashnikov, and S. Prabhakar, Evaluating probabilistic queries over imprecise data, Proceedings of the 2003 ACM SIGMOD international conference on on Management of data , SIGMOD '03, pp.551-562, 2003.
DOI : 10.1145/872757.872823

F. Cuzzolin, A Geometric Approach to the Theory of Evidence, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.38, issue.4, pp.522-534, 2008.
DOI : 10.1109/TSMCC.2008.919174

URL : https://hal.archives-ouvertes.fr/inria-00590222

F. Cuzzolin, Consistent approximations of belief functions, 6th International Symposium on Imprecise Probability: Theories and Applications, 2009.

M. Daniel, E. Hllermeier, R. Kruse, and F. Hoffmann, Conflicts within and between Belief Functions, Computational Intelligence for Knowledge- Based Systems Design, Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp.696-705, 2010.
DOI : 10.1007/978-3-642-14049-5_71

A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, vol.38, issue.2, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

Y. Deng, D. Wang, L. , and Q. , An improved combination rule in fault diagnosis based on dempster shafer theory, 2008 International Conference on Machine Learning and Cybernetics, pp.212-216, 2008.
DOI : 10.1109/ICMLC.2008.4620406

T. Denoeux, A neural network classifier based on Dempster-Shafer theory, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.30, issue.2, pp.131-150, 2000.
DOI : 10.1109/3468.833094

T. Denoeux, INNER AND OUTER APPROXIMATION OF BELIEF STRUCTURES USING A HIERARCHICAL CLUSTERING APPROACH, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.09, issue.04, pp.437-460, 2001.
DOI : 10.1142/S0218488501000880

T. Denoeux, The cautious rule of combination for belief functions and some extensions, 2006 9th International Conference on Information Fusion, pp.1-8, 2006.
DOI : 10.1109/ICIF.2006.301572

T. Denoeux, Constructing belief functions from sample data using multinomial confidence regions, International Journal of Approximate Reasoning, vol.42, issue.3, pp.228-252, 2006.
DOI : 10.1016/j.ijar.2006.01.001

T. Denoeux, Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence, Artificial Intelligence, vol.172, issue.2-3, pp.234-264, 2008.
DOI : 10.1016/j.artint.2007.05.008

T. Denoeux and M. Masson, Clustering of proximity data using belief functions, Intelligent Systems for Information Processing: From Representation to Application, pp.291-302, 2003.
DOI : 10.1016/B978-044451379-3/50024-8

T. Denoeux and M. Masson, EVCLUS: Evidential Clustering of Proximity Data, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.34, issue.1, pp.95-109, 2004.
DOI : 10.1109/TSMCB.2002.806496

S. Destercke and T. Burger, Revisiting the Notion of Conflicting Belief Functions, Belief Functions: Theory and Applications , Proceedings of the 2nd International Conference on Belief Functions of Advances in Intelligent and Soft Computing, pp.153-160, 2012.
DOI : 10.1007/978-3-642-29461-7_18

URL : https://hal.archives-ouvertes.fr/hal-00664322

J. Diaz, M. Rifqi, and B. Buchon-meunier, A Similarity Measure between Basic Belief Assignments, 2006 9th International Conference on Information Fusion, pp.1-6, 2006.
DOI : 10.1109/ICIF.2006.301730

URL : https://hal.archives-ouvertes.fr/insu-00367475

D. Dubois and H. Prade, A SET-THEORETIC VIEW OF BELIEF FUNCTIONS Logical operations and approximations by fuzzy sets???, International Journal of General Systems, vol.1, issue.3, pp.193-226, 1986.
DOI : 10.1016/0165-0114(78)90029-5

D. Dubois and H. Prade, Representation and combination of uncertainty with belief functions and possibility measures, Computational Intelligence, vol.5, issue.1, pp.244-264, 1988.
DOI : 10.1016/0165-0114(78)90029-5

D. Dubois and R. R. Yager, The principle of minimum specificity as a basis for evidential reasoning, Uncertainty in Knowledge-Based Systems, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp.75-84, 1987.
DOI : 10.1007/3-540-18579-8_6

Z. Elouedi, E. Lefèvre, and D. Mercier, Discountings of a Belief Function Using a Confusion Matrix, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, pp.287-294, 2010.
DOI : 10.1109/ICTAI.2010.49

Z. Elouedi, K. Mellouli, and P. Smets, Assessing Sensor Reliability for Multisensor Data Fusion Within the Transferable Belief Model, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.34, issue.1, pp.782-787, 2004.
DOI : 10.1109/TSMCB.2003.817056

M. C. Florea, Combinaison d'informations hétérogènes dans le cadre unificateur des ensembles aléatoires : Approximations et robustesse, 2007.

M. C. Florea and E. Bossé, Crisis management using Dempster Shafer theory: Using dissimilarity measures to characterize sources' reliability, C3I for Crisis, Emergency and Consequence Management, 2009.

M. C. Florea, E. Bossé, and A. Jousselme, Metrics, distances and dissimilarity measures within Dempster-Shafer theory to characterize sources' reliability, COGnitive systems with Interactive Sensors, 2009.

M. C. Florea, A. Jousselme, and E. Bossé, Dynamic estimation of evidence discounting rates based on information credibility, RAIRO - Operations Research, vol.44, issue.4, pp.285-306, 2010.
DOI : 10.1051/ro/2010022

M. C. Florea, A. Jousselme, E. Bossé, and D. Grenier, Robust combination rules for evidence theory, Information Fusion, vol.10, issue.2, pp.183-197, 2009.
DOI : 10.1016/j.inffus.2008.08.007

A. Frikha, On the use of a multi-criteria approach for reliability estimation in belief function theory, Information Fusion, vol.18, pp.20-32, 2014.
DOI : 10.1016/j.inffus.2013.04.010

P. Gançarski and C. Wemmert, Collaborative multi-strategy classification, Proceedings of the 6th international workshop on Multimedia data mining mining integrated media and complex data, MDM '05, pp.15-22, 2005.
DOI : 10.1145/1133890.1133892

P. Gärdenfors, Knowledge in flux: Modeling the dynamics of epistemic states, 1988.

X. Guan, X. Yi, and Y. He, Research on conflicting evidences combination strategies, Proceedings of the 7th International Conference on Machine Learning and Cybernetics, pp.110-114, 2008.

D. Harmanec, Faithful approximations of belief functions, Proceedings of the 15th conference on Uncertainty in Artificial Intelligence, pp.271-278, 1999.

K. Hewawasam, K. Premaratne, S. Subasingha, and M. Shyu, Rule mining and classification in imperfect databases, 2005 7th International Conference on Information Fusion, pp.661-668, 2005.
DOI : 10.1109/ICIF.2005.1591917

Y. Hsia, Characterizing belief with minimum commitment, Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp.1184-1189, 1991.

V. Huynh, Discounting and Combination Scheme in Evidence Theory for Dealing with Conflict in Information Fusion, Proceedings of 6th International Conference on Modeling Decisions for Artificial Intelligence, pp.217-230, 2009.
DOI : 10.1007/978-3-642-04820-3_20

A. Jousselme, D. Grenier, and E. Bossé, A new distance between two bodies of evidence, Information Fusion, vol.2, issue.2, pp.91-101, 2001.
DOI : 10.1016/S1566-2535(01)00026-4

A. Jousselme and P. Maupin, On some properties of distances in evidence theory, Workshop on the theory of belief functions, 2010.

A. Jousselme and P. Maupin, Distances in evidence theory: Comprehensive survey and generalizations, International Journal of Approximate Reasoning, vol.53, issue.2, pp.118-145, 2012.
DOI : 10.1016/j.ijar.2011.07.006

D. Kempe, J. Kleinberg, T. , and E. , Maximizing the spread of influence through a social network, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.137-146, 2003.
DOI : 10.1145/956750.956769

D. G. Kendall, Foundation of a theory of random sets. Stochastic Geometry, pp.322-376, 1974.

G. J. Klir and M. J. Wierman, Uncertainty-Based Information: Elements for Generalized Information Theory, 1999.
DOI : 10.1007/978-3-7908-1869-7

U. Kuter and J. Golbeck, SUNNY: A new algorithm for trust inference in social networks using probabilistic confidence models, Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp.1377-1382, 2007.

U. Kuter and J. Golbeck, Using probabilistic confidence models for trust inference in webbased social networks, ACM Transactions on Internet Technology, vol.10, issue.8, 2010.

E. Lefèvre, O. Colot, and P. Vannoorenberghe, Belief function combination and conflict management, Information Fusion, vol.3, issue.2, pp.149-162, 2002.
DOI : 10.1016/S1566-2535(02)00053-2

E. Lefèvre, O. Colot, and P. Vannoorenberghe, Reply to the Comments of R. Haenni on the paper ???Belief functions combination and conflict management???, Information Fusion, vol.4, issue.1, pp.63-65, 2003.
DOI : 10.1016/S1566-2535(02)00103-3

E. Lefèvre and Z. Elouedi, How to preserve the conflict as an alarm in the combination of belief functions? Decision Support Systems, pp.326-333, 2013.

E. Lefèvre, Z. Elouedi, and D. Mercier, Towards an Alarm for Opposition Conflict in a Conjunctive Combination of Belief Functions, Proceedings of the 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp.314-325, 2011.
DOI : 10.1016/j.ins.2003.03.018

R. Levien, Computing with Social Trust, chapter Attack-Resistant Trust Metrics Human-Computer Interaction Series, pp.121-132, 2002.

W. Liu, Analyzing the degree of conflict among belief functions, Artificial Intelligence, vol.170, issue.11, pp.909-924, 2006.
DOI : 10.1016/j.artint.2006.05.002

W. Liu, J. G. Hughes, and M. F. Mctear, Representing Heuristic Knowledge in D-S Theory, Proceedings of the Eighth Annual Conference on Uncertainty in Artificial Intelligence (UAI'92), pp.182-190, 1992.
DOI : 10.1016/B978-1-4832-8287-9.50030-X

Z. Liu, J. Dezert, Q. Pan, and G. Mercier, Combination of sources of evidence with different discounting factors based on a new dissimilarity measure, Decision Support Systems, vol.52, issue.1, pp.133-141, 2011.
DOI : 10.1016/j.dss.2011.06.002

A. Martin, Advances and Applications of DSmT for Information Fusion chapter Implementing general belief function framework with a practical codification for low complexity, pp.217-274, 2009.

A. Martin, About Conflict in the Theory of Belief Functions, Belief Functions: Theory and Applications, Proceedings of the 2nd International Conference on Belief Functions of Advances in Intelligent and Soft Computing, pp.161-168, 2012.
DOI : 10.1007/978-3-642-29461-7_19

A. Martin, A. Jousselme, and C. Osswald, Conflict measure for the discounting operation on belief functions, Proceedings of the 11th International Conference on Information Fusion, pp.1-8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00518580

A. Martin and C. Osswald, Advances and Applications of DSmT for Information Fusion (Collected works), volume 2, chapter A new generalization of the proportional conflict redistribution rule stable in terms of decision, pp.69-88, 2006.

A. Martin and C. Osswald, Human experts fusion for image classification. Information & Security, An International Journal, Special issue on Fusing Uncertain , Imprecise and Paradoxist Information (DSmT), vol.20, pp.122-143, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00518656

A. Martin and C. Osswald, Toward a combination rule to deal with partial conflict and specificity in belief functions theory, 2007 10th International Conference on Information Fusion, pp.1-8, 2007.
DOI : 10.1109/ICIF.2007.4408007

URL : https://hal.archives-ouvertes.fr/hal-00281897

A. Martin and C. Osswald, Une nouvelle r` egle de combinaison répartissant le conflit -applications en imagerie sonar et classification de cibles radar, Traitement du Signal, vol.24, issue.2, pp.71-82, 2007.

M. Masson and T. Denoeux, Clustering interval-valued proximity data using belief functions, Pattern Recognition Letters, vol.25, issue.2, pp.163-171, 2004.
DOI : 10.1016/j.patrec.2003.09.008

M. Masson and T. Denoeux, ECM: An evidential version of the fuzzy c-means algorithm, Pattern Recognition, vol.41, issue.4, pp.1384-1397, 2008.
DOI : 10.1016/j.patcog.2007.08.014

D. Mercier, Fusion d'informations pour la reconnaissance automatique d'adresses postales dans le cadre de la théorie des fonctions de croyance, 2006.

D. Mercier, T. Denoeux, and M. Masson, Refined sensor tuning in the belief function framework using contextual discounting, Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp.1443-1450, 2006.

D. Mercier, B. Quost, and T. Denoeux, Contextual Discounting of Belief Functions, Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp.552-562, 2005.
DOI : 10.1007/11518655_47

D. Mercier, B. Quost, and T. Denoeux, Refined modeling of sensor reliability in the belief function framework using contextual discounting, Information Fusion, vol.9, issue.2, pp.246-258, 2008.
DOI : 10.1016/j.inffus.2006.08.001

J. Munkres, Algorithms for the Assignment and Transportation Problems, Journal of the Society for Industrial and Applied Mathematics, vol.5, issue.1, pp.32-38, 1957.
DOI : 10.1137/0105003

C. K. Murphy, Combining belief functions when evidence conflicts, Decision Support Systems, vol.29, issue.1, pp.1-9, 2000.
DOI : 10.1016/S0167-9236(99)00084-6

C. Osswald and A. Martin, Understanding the large family of Dempster-Shafer theory's fusion operators ?? a decision-based measure, 2006 9th International Conference on Information Fusion, pp.1-7, 2006.
DOI : 10.1109/ICIF.2006.301631

URL : https://hal.archives-ouvertes.fr/hal-00518673

W. L. Perry and H. E. Stephanou, Belief function divergence as a classifier, Proceedings of the 1991 IEEE International Symposium on Intelligent Control, pp.280-285, 1991.
DOI : 10.1109/ISIC.1991.187371

F. Pichon, D. Dubois, and T. Denoeux, Relevance and truthfulness in information correction and fusion, International Journal of Approximate Reasoning, vol.53, issue.2, pp.159-175, 2012.
DOI : 10.1016/j.ijar.2011.02.006

URL : https://hal.archives-ouvertes.fr/hal-00656775

B. Ristic and P. Smets, The TBM global distance measure for the association of uncertain combat ID declarations, Information Fusion, vol.7, issue.3, pp.276-284, 2006.
DOI : 10.1016/j.inffus.2005.04.004

J. Schubert, Clustering belief functions based on attracting and conflicting metalevel evidence, Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp.571-578, 2003.
DOI : 10.1016/B978-044451379-3/50029-7

J. Schubert, Clustering belief functions based on attracting and conflicting metalevel evidence using Potts spin mean field theory, Information Fusion, vol.5, issue.4, pp.309-318, 2004.
DOI : 10.1016/j.inffus.2003.12.002

J. Schubert, Conflict management in Dempster-Shafer theory by sequential discounting using the degree of falsity, Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp.298-305, 2008.

J. Schubert, Conflict management in Dempster???Shafer theory using the degree of falsity, International Journal of Approximate Reasoning, vol.52, issue.3, pp.449-460, 2011.
DOI : 10.1016/j.ijar.2010.10.004

G. Shafer, A mathematical theory of evidence, 1976.

F. Smarandache and J. Dezert, Information fusion based on new proportional conflict redistribution rules, 2005 7th International Conference on Information Fusion, pp.907-914, 2005.
DOI : 10.1109/ICIF.2005.1591955

P. Smets, Belief functions, Non standard logics for automated reasoning, pp.253-286, 1988.

P. Smets, The combination of evidence in the transferable belief model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.447-458, 1990.
DOI : 10.1109/34.55104

P. B. Smets, L. Valverde, Y. , and R. R. , The concept of distinct evidence, Advanced Methods in Artificial Intelligence, Proceedings 4th International Conference on Processing and Management of Uncertainty in Knowledge-Based Systems, pp.789-794, 1992.

P. Smets, The Nature of the unnormalized Beliefs encountered in the Transferable Belief Model, Proceedings of the 8th international conference on Uncertainty in Artificial Intelligence, pp.292-297, 1992.
DOI : 10.1016/B978-1-4832-8287-9.50044-X

P. Smets, Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem, International Journal of Approximate Reasoning, vol.9, issue.1, pp.1-35, 1993.
DOI : 10.1016/0888-613X(93)90005-X

P. Smets, The canonical decomposition of a weighted belief, Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp.1896-1901, 1995.

P. Smets, Uncertainty Management in Information Systems, chapter Imperfect Information: Imprecision and Uncertainty, pp.225-254, 1997.

P. Smets, Decision making in the TBM: the necessity of the pignistic transformation, International Journal of Approximate Reasoning, vol.38, issue.2, pp.133-147, 2005.
DOI : 10.1016/j.ijar.2004.05.003

P. Smets, Analyzing the combination of conflicting belief functions, Information Fusion, vol.8, issue.4, pp.387-412, 2007.
DOI : 10.1016/j.inffus.2006.04.003

P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence, vol.66, issue.2, pp.191-234, 1994.
DOI : 10.1016/0004-3702(94)90026-4

URL : https://hal.archives-ouvertes.fr/hal-01185821

P. Smets and R. Kruse, Uncertainty Management in Information Systems: From Needs to Solutions, chapter The Transferable Belief Model for Belief Representation, pp.343-368, 1997.

M. Smithson, Ignorance and uncertainty: Emerging paradigms, 1989.
DOI : 10.1007/978-1-4612-3628-3

H. E. Stephanou and S. Lu, Measuring consensus effectiveness by a generalized entropy criterion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.4, pp.544-554, 1988.
DOI : 10.1109/34.3916

B. Tessem, Approximations for efficient computation in the theory of evidence, Artificial Intelligence, vol.61, issue.2, pp.315-329, 1993.
DOI : 10.1016/0004-3702(93)90072-J

P. Walley, Statistical Reasoning with Imprecise Probabilities, 1991.
DOI : 10.1007/978-1-4899-3472-7

C. Wemmert and P. Gançarski, A multi-view voting method to combine unsupervised classifications, Proceedings of the 2nd IASTED International Conference on Artificial Intelligence and Applications, pp.447-453, 2002.

S. K. Wong and P. Lingras, Representation of qualitative user preference by quantitative belief functions, IEEE Transactions on Knowledge and Data Engineering, vol.6, issue.1, pp.72-78, 1994.
DOI : 10.1109/69.273027

R. R. Yager, ENTROPY AND SPECIFICITY IN A MATHEMATICAL THEORY OF EVIDENCE, International Journal of General Systems, vol.9, issue.1, pp.249-260, 1983.
DOI : 10.1080/03081078308960825

R. R. Yager, The entailment principle for dempster???shafer granules, International Journal of Intelligent Systems, vol.9, issue.4, pp.247-262, 1986.
DOI : 10.1002/int.4550010403

R. R. Yager, On the dempster-shafer framework and new combination rules, Information Sciences, vol.41, issue.2, pp.93-137, 1987.
DOI : 10.1016/0020-0255(87)90007-7

Y. Yang, D. Han, and C. Han, Discounted combination of unreliable evidence using degree of disagreement, International Journal of Approximate Reasoning, vol.54, issue.8, pp.1197-1216, 2013.
DOI : 10.1016/j.ijar.2013.04.002

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

L. A. Zadeh, A mathematical theory of evidence (book review). AI magazine, pp.81-83, 1984.

L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, pp.9-34, 1999.

C. Zeng and P. Wu, A reliability discounting strategy based on plausibility function of evidence, Proceedings 10th International Conference on Information Fusion, pp.1-6, 2007.

L. M. Zouhal and T. Denoeux, An evidence-theoretic k-NN rule with parameter optimization, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.28, issue.2, pp.263-271, 1998.
DOI : 10.1109/5326.669565