N

N

Convex Optimization-based Static Analysis for Control
Systems

Pierre-Loic Garoche

» To cite this version:

Pierre-Loic Garoche. Convex Optimization-based Static Analysis for Control Systems. Computation
and Language [cs.CL]. INPT; Université de toulouse, 2016. tel-01371978

HAL Id: tel-01371978
https://theses.hal.science/tel-01371978
Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://theses.hal.science/tel-01371978
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Habilitation a diriger des recherches

de 'INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE

Pierre-Loic Garoche
September 19th 2016

Convex Optimization-based Static Analysis for Control Systems

Rapporteurs : Eric GouBauLT
Professeur au LIX a I'Ecole Polytechnique

Ilya KOLMANOVSKY
Professor of Aerospace Engineering at Michigan University, USA

David MONNIAUX

Directeur de recherches au CNRS, Laboratoire Vérimag

Examinateurs : Behcet ACIKMESE

Associate Professor of Aeronautics & Astronautics at University of Washington, USA
Eric FERON
Professor of Aerospace Engineering at Georgia Tech, USA

John HAUSER
Associate Professor, Dept. of Electrical and Computer Engineering at University of Colorado Boulder, USA

Didier HENRION
Directeur de recherches au LAAS-CNRS, Université de Toulouse

Matthieu MARTEL
Professeur a I’Université de Perpignan Via Domitia, Laboratoire de Mathématiques et de Physique (LAMPS)

Philippe QUEINNEC
Professeur a 'INPT/IRIT, Université de Toulouse
correspondant INPT

PUBLICATIONS & PROTOTYPES

Some ideas and figures have appeared previously in the following publications:

[RDG10]

[Cha+11]

[Her+12]

[Kah+12]

[Rou+12]

[Wie+12]

[Cha+13a]

[Cha+13b]

[GKT13]

[RG13a]

Pierre Roux, Rémi Delmas, and Pierre-Loic Garoche. “SMT-AIL: an Abstract Interpreter for a Syn-
chronous Extension of SMT-lib.” In: 1st International Workshop on Tools for Automatic Program AnalysiS
(TAPAS 2010), SAS’10 satellite event, Perpignan, France. Ed. by David Delmas and Xavier Rival. Vol. 267. 2.
Elsevier Electr. Notes Theor. Comput. Sci., Sept. 2010, pp. 55-68. DOI: 10.1016/j.entcs.2010.09.018.

Adrien Champion, Rémi Delmas, Pierre-Loic Garoche, and Pierre Roux. “Towards Cooperation of
Formal Methods for the Analysis of Critical Control Systems.” In: SAE International Journal of Aerospace
4.2 (Nov. 2011). Arch T. Colwell Merit Award, pp. 850-858. por: 10.4271/2011-01-2558.

Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Loic Garoche, Eric Féron, Gilberto
Perez, and Pablo Ascariz. “PVS Linear Algebra Libraries for Verification of Control Software Algo-
rithms in C/ACSL.” In: NASA Formal Methods - Forth International Symposium, NFM 2012, Norfolk, VA
USA, April 3-5, 2012. Proceedings. Ed. by Alwyn Goodloe and Suzette Person. Vol. 7226. Lecture Notes
in Computer Science. Springer, 2012, pp. 147-161. DOL: 10.1007/978-3-642-28891-3_15.

Temesghen Kahsai, Pierre-Loic Garoche, Cesare Tinelli, and Mike Whalen. “Incremental verification
with mode variable invariants in state machines.” In: NASA Formal Methods - Forth International Sym-
posium, NFM 2012, Norfolk, VA USA, April 3-5, 2012. Proceedings. Ed. by Alwyn Goodloe and Suzette
Person. Vol. 7226. Lecture Notes in Computer Science. Springer, 2012, pp. 388-402. poI: 10.1007/978-
3-642-28891-3_35.

Pierre Roux, Romain Jobredeaux, Pierre-Loic Garoche, and Eric Féron. “A Generic Ellipsoid Abstract
Domain for Linear Time Invariant Systems.” In: Proceedings of the 15th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2012, Beijing, China, April 17-19, 2012, ed. by Thao Dang
and Ian Mitchell. ACM, 2012, pp. 105-114. ISBN: 978-1-4503-1220-2. DOIL: 10.1145/2185632.2185651.
URL: doi.acm.org/10.1145/2185632.2185651.

Virginie Wiels, Rémi Delmas, David Doose, Pierre-Loic Garoche, Jacques Cazin, and Guy Durrieu.
“Formal Verification of Critical Aerospace Software.” In: Aerospace Lab Journal 4 (May 2012). URL: www .
aerospacelab-journal.org/al4/.

Adrien Champion, Rémi Delmas, Michael Dierkes, Pierre-Loic Garoche, Romain Jobredeaux, and
Pierre Roux. “Formal Methods for the Analysis of Critical Control Systems Models: Combining Non-
Linear and Linear Analyses.” In: Formal Methods for Industrial Critical Systems (FMICS’13). Ed. by
Charles Pecheur and Michael Dierkes. Vol. 8187. Lecture Notes in Computer Science. Best paper award.
Springer, 2013, pp. 1-16. ISBN: 978-3-642-41009-3. DOIL: 10.1007/978-3-642-41010-9_1.

Adrien Champion, Rémi Delmas, Michael Dierkes, Pierre-Loic Garoche, Romain Jobredeaux, and
Pierre Roux. “Formal Methods for the Analysis of Critical Control Systems Models: Combining Non-
Linear and Linear Analyses.” In: SAE International Journal of Aerospace 6.1 (2013), pp. 150—-160. DOI:
10.4271/2013-01-2109.

Pierre-Loic Garoche, Temesghen Kahsai, and Cesare Tinelli. “Incremental Invariant Generation Using
Logic-Based Automatic Abstract Transformers.” In: NASA Formal Methods - Fifth International Sympo-
sium, NFM 2013, Moffett Field, CA USA, May 14-16, 2013. Proceedings. Ed. by Guillaume Brat, Neha
Rungta, and Arnaud Venet. Vol. 7871. Lecture Notes in Computer Science. Springer, 2013, pp. 139-154.
ISBN: 978-3-642-38087-7. DOI: 10.1007/978-3-642-38088-4_10.

Pierre Roux and Pierre-Loic Garoche. “A Polynomial Template Abstract Domain based on Bernstein
Polynomials.” In: Numerical Software Verification. 2013.

iii

http://dx.doi.org/10.1016/j.entcs.2010.09.018
http://dx.doi.org/10.4271/2011-01-2558
http://dx.doi.org/10.1007/978-3-642-28891-3_15
http://dx.doi.org/10.1007/978-3-642-28891-3_35
http://dx.doi.org/10.1007/978-3-642-28891-3_35
http://dx.doi.org/10.1145/2185632.2185651
doi.acm.org/10.1145/2185632.2185651
www.aerospacelab-journal.org/al4/
www.aerospacelab-journal.org/al4/
http://dx.doi.org/10.1007/978-3-642-41010-9_1
http://dx.doi.org/10.4271/2013-01-2109
http://dx.doi.org/10.1007/978-3-642-38088-4_10

[RG13b]

[AGW14]

[GGK14]

[Gar+14]

[RG14]

[AG15a]

[AG15b]

[AGM15a]

[AGM15b]

[AGW15]

[Die+15]

[RG15]

iv

Pierre Roux and Pierre-Loic Garoche. “Integrating Policy Iterations in Abstract Interpreters.” In: Auto-
mated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam,
October 15-18, 2013. Proceedings. Ed. by Dang Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture Notes
in Computer Science. Springer, 2013, pp. 240—-254. ISBN: 978-3-319-02443-1. DOI: 10.1007/978-3-319-
02444-8_18.

Assalé Adjé, Pierre-Loic Garoche, and Alexis Werey. Quadratic Zonotopes: An extension of Zonotopes to
Quadratic Arithmetics. 2014. URL: arxiv.org/abs/1411.5847.

Pierre-Loic Garoche, Arie Gurfinkel, and Temesghen Kahsai. “Synthesizing Modular Invariants for
Synchronous Code.” In: Proceedings of the First Workshop on Horn Clauses for Verification and Synthesis,
HCVS 2014, Vienna, Austria, 17 July 2014. Ed. by Nikolaj Bjerner, Fabio Fioravanti, Andrey Rybalchenko,
and Valerio Senni. Vol. 169. EPTCS. 2014, pp. 19-30. DOL: 10.4204/EPTCS.169.4.

Pierre-Loic Garoche, Falk Howar, Temesghen Kahsai, and Xavier Thirioux. “Testing-Based Compiler
Validation for Synchronous Languages.” In: NASA Formal Methods - 6th International Symposium, NFM
2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings. Ed. by Julia M. Badger and Kristin Yvonne
Rozier. Vol. 8430. Lecture Notes in Computer Science. Short paper. Springer, 2014, pp. 246—251. ISBN:
978-3-319-06199-3. DOIL: 10.1007/978-3-319-06200-6_19.

Pierre Roux and Pierre-Loic Garoche. “Computing Quadratic Invariants with Min- and Max-Policy Iter-
ations: A Practical Comparison.” In: FM 2014: Formal Methods - 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings. Ed. by Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun. Vol. 8442. Lecture
Notes in Computer Science. Springer, 2014, pp. 563—578. ISBN: 978-3-319-06409-3. DOL: 10.1007/978-3-
319-06410-9_38.

Assalé Adjé and Pierre-Loic Garoche. “Automatic synthesis of k-inductive piecewise quadratic invari-
ants for switched affine control programs.” In: Computer Languages, Systems & Structures (COMLAN)
(2015). 15SN: 1477-8424. DOTL: 10.1016/j.c1.2015.12.002. URL: www . sciencedirect . com/science/
article/pii/S1477842415000937.

Assalé Adjé and Pierre-Loic Garoche. “Automatic Synthesis of Piecewise Linear Quadratic Invariants
for Programs.” In: Verification, Model Checking, and Abstract Interpretation - 16th International Conference,
VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings. 2015, pp. 99—116. DOI: 10.1007/978-3-
662-46081-8_6.

Assalé Adjé, Pierre-Loic Garoche, and Victor Magron. A Sums-of-Squares Extension of Policy Iterations.
2015. URL: arxiv.org/abs/1503.08090.

Assalé Adjé, Pierre-Loic Garoche, and Victor Magron. “Property-based Polynomial Invariant Genera-
tion using Sums-of-Squares Optimization.” In: Static Analysis - 22nd International Symposium, SAS 2015,
St Malo, France, 2015. Proceedings. Ed. by Sandrine Blazy and Thomas Jensen. Vol. 9291. Lecture Notes
in Computer Science. Springer, 2015, pp. 235-251. ISBN: 978-3-662-48287-2. poI: 10.1007/978-3-662-
48288-9_14.

Assalé Adjé, Pierre-Loic Garoche, and Alexis Werey. “Quadratic Zonotopes - An Extension of Zono-
topes to Quadratic Arithmetics.” In: Programming Languages and Systems - 13th Asian Symposium, APLAS
2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings. 2015, pp. 127-145. DOL: 10.1007/
978-3-319-26529-2_8.

Arnaud Dieumegard, Pierre-Loic Garoche, Temesghen Kahsai, Alice Tailliar, and Xavier Thirioux.
“Compilation Of Synchronous Observers As Code Contracts.” In: 30th ACM/SIGAPP Symposium on
Applied Computing, SAC 2015, Salamanca, Spain - April 13 - 17, 2015. Ed. by Roger L. Wainwright, Juan
Manuel Corchado, Alessio Bechini, and Jiman Hong. Short paper. ACM, 2015, pp. 1933-1939. ISBN:
978-1-4503-3196-8. DOIL: 10.1145/2695664.2695819. URL: doi.acm.org/10.1145/2695664.2695819.

Pierre Roux and Pierre-Loic Garoche. “Practical Policy Iterations A practical use of policy iterations for
static analysis - The quadratic case.” In: Formal Methods in System Design 46.2 (2015), pp. 163—196. DOL
10.1007/s10703-015-0230-7.

http://dx.doi.org/10.1007/978-3-319-02444-8_18
http://dx.doi.org/10.1007/978-3-319-02444-8_18
arxiv.org/abs/1411.5847
http://dx.doi.org/10.4204/EPTCS.169.4
http://dx.doi.org/10.1007/978-3-319-06200-6_19
http://dx.doi.org/10.1007/978-3-319-06410-9_38
http://dx.doi.org/10.1007/978-3-319-06410-9_38
http://dx.doi.org/10.1016/j.cl.2015.12.002
www.sciencedirect.com/science/article/pii/S1477842415000937
www.sciencedirect.com/science/article/pii/S1477842415000937
http://dx.doi.org/10.1007/978-3-662-46081-8_6
http://dx.doi.org/10.1007/978-3-662-46081-8_6
arxiv.org/abs/1503.08090
http://dx.doi.org/10.1007/978-3-662-48288-9_14
http://dx.doi.org/10.1007/978-3-662-48288-9_14
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1145/2695664.2695819
doi.acm.org/10.1145/2695664.2695819
http://dx.doi.org/10.1007/s10703-015-0230-7

[R]G15]

[KTG16]

[Wan+16a]

[Wan+16b]

[Wan+16c¢]

Pierre Roux, Romain Jobredeaux, and Pierre-Loic Garoche. “Closed Loop Analysis of Control Com-
mand Software.” In: 18th International Conference on Hybrid Systems: Computation and Control (part of
CPS Week), HSCC'15, Seattle, Washington, USA, April 14-16, 2015, ed. by Antoine Girard and Sriram
Sankaranarayanan. 2015, pp. 108-117. ISBN: 978-1-4503-3433-4. DOIL: 10.1145/2728606 . 2728623. URL:
doi.acm.org/10.1145/2728606.2728623.

Temesghen Kahsai, Xavier Thirioux, and Pierre-Loic Garoche. “Hierarchical state machines as modular
Horn clauses.” In: Proceedings of the Second Workshop on Horn Clauses for Verification and Synthesis, HCV'S
2016, Eindhoven, The Netherlands, April 3rd 2016. 2016.

Timothy Wang, Pierre-Loic Garoche, Pierre Roux, Romain Jobredeaux, and Eric Féron. “Formal Analy-
sis of Robustness at Model and Code Level.” In: 19th International Conference on Hybrid Systems: Compu-
tation and Control (part of CPS Week), HSCC'16, Vienna, Austria, April 12-14, 2015, to appear. 2016.

Timothy Wang, Romain Jobredeaux, Heber Herencia-Zapana, Pierre-Loic Garoche, Arnaud Dieumegard,
Eric Féron, and Marc Pantel. “From Design to Implementation: An Automated, Credible Autocoding
Chain for Control Systems.” In: Advances in Control System Technology for Aerospace Applications. Ed. by
Eric Féron. Vol. 460. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg,
2016, pp. 137-180. ISBN: 978-3-662-47693-2. DOIL: 10.1007/978-3-662-47694-9_5.

Timothy Wang, Romain Jobredeaux, Marc Pantel, Pierre-Loic Garoche, Eric Féron, and Didier Henrion.
“Credible Autocoding of Convex Optimization Algorithms.” In: Optimization and Engineering (2016).
Ed. by Springer. to appear. URL: arxiv.org/abs/1403.1861.

In the following prototypes:

[GT11]
[GR11]

[GKT12a]
[GKT12b]
[GTK12]

[RGW12]

[RG14]

Pierre-Loic Garoche and Xavier Thirioux. YASA: Yet Another Static Analyzer. 2006—2011.

Pierre-Loic Garoche and Pierre Roux. SMT-AI, abstract interpreter for a temporal extension of SMT-Iib.
2011-. URL: https://cavale.enseeiht.fr/smt-ai/.

Pierre-Loic Garoche, Temesghen Kasai, and Cesare Tinelli. Kind-Al, automatic abstract interpreter module
for Lustre model-checker Kind. 2012. URL: clc.cs.uiowa.edu/Kind/NFM13/.

Pierre-Loic Garoche, Temesghen Kasai, and Cesare Tinelli. Kind, a k-induction based model-checker. 2012—.
URL: clc.cs.uiowa.edu/Kind/.

Pierre-Loic Garoche, Xavier Thirioux, and Temesghen Kahsai. LustreC: a modular Lustre compiler. 2012—.
URL: https://github.com/coco-team/lustrec.

Pierre Roux, Pierre-Loic Garoche, and Alexis Werey. TINY: Simple Static Analyzer for Imperative Code and
Numerical precision analysis. 2012—. URL: https://cavale.enseeiht.fr/QuadZonotopes/.

Pierre Roux and Pierre-Loic Garoche. Osdp, an Ocaml library for Semi-Definite Programming (SDP, SOS).
2014—. URL: https://cavale.enseeiht.fr/osdp/.

And the following presentations:

[Gari12]

[AGM15]

[Gar1s]

[Wan+15]

[Gar+16]

Pierre-Loic Garoche. “Verification of aircraft controller: from process-based certification to product-
based certification.” In: Air Force Safe & Secure Systems & Software Symposium, S5 Conference, Dayton,
OH, USA. (abstract only). June 2012.

Assalé Adjé, Pierre-Loic Garoche, and Victor Magron. “Property-based polynomial invariant gener-
ation using sums-of-squares optimization.” In: 17th British-French-German Conference on Optimization
15-17 June 2015 London, United Kingdom. (abstract only). 2015.

Pierre-Loic Garoche. “Certificate-carrying modular compilation.” In: 1oémes Journées compilation du
GDR GPL. (abstract only). 2015.

Timothy Wang, Eric Féron, Romain Jobredeaux, Marc Pantel, Pierre-Loic Garoche, and Didier Henrion.
“Credible autocoding of convex optimization algorithms.” In: 17th British-French-German Conference on
Optimization 15-17 June 2015 London, United Kingdom. (abstract only). 2015.

Pierre-Loic Garoche, Didier Henrion, Victor Magron, and Xavier Thirioux. “Semidefinite Approxima-
tions of Reachability Sets for Discrete-time Polynomial Systems.” In: Journées MODE Mathématiques de
I"Optimisation et de la DEcision de la SMAI Société de Mathématiques Appliquées et Industrielles. 2016.

http://dx.doi.org/10.1145/2728606.2728623
doi.acm.org/10.1145/2728606.2728623
http://dx.doi.org/10.1007/978-3-662-47694-9_5
arxiv.org/abs/1403.1861
https://cavale.enseeiht.fr/smt-ai/
clc.cs.uiowa.edu/Kind/NFM13/
clc.cs.uiowa.edu/Kind/
https://github.com/coco-team/lustrec
https://cavale.enseeiht.fr/QuadZonotopes/
https://cavale.enseeiht.fr/osdp/

CONTENTS

Publications — Prototypes iii

—

II

IIT

MOTIVATION 1
CRITICAL EMBEDDED SOFTWARE 3
FORMAL METHODS 7

2.1 Semantics and properties 7

2.2 A formal methods overview 9
2.3 Deductive methods 12

2.4 SMT-based model checking 13
2.5 Abstract Interpretation 14

2.6 Need for inductive invariants 17
CONTROL SYSTEMS 19
3.1 Controllers Development process 19

3.2 Spring-Mass Damper example 21

INVARIANT SYNTHESIS 25

DEFINITIONS — BACKGROUND 27

4.1 Discrete Dynamical Systems 27

4.2 (applied) convex optimization 32

INVARIANTS AS SEMIALGEBRAIC SETS 37

5.1 Invariants, LyaApuNov functions and con-
vex optimization 37

5.2 Quadratic invariants 39

5.3 Piecewise Quadratic invariants 43

5.4 k-inductive Quadratic Invariants 49

5.5 Polynomial invariants 52

5.6 Related works 56

TEMPLATE BASED ANALYSES 57

6.1 Template based abstract domains 57

6.2 Fixpoint as an optimization prob-

lem 57
6.3 SOS-relaxed semantics 58
6.4 Example. 62
6.5 Related works 63

SYSTEM-LEVEL ANALYSIS AT MODEL AND
CODE LEVEL 65

SYSTEM PROPERTIES AS INVARIANTS 67

7.1 Open- and Closed-loop stability 67

7.2 Robustness with Vector Margin 72

7.3 Related work 75

VALIDATION AT CODE LEVEL 77

v

10

11

12

13

14

8.1 Axiomatic semantics for
properties 77

8.2 Generating code annotations 81

8.3 Discharging proof objectives 83

system-level

NUMERICAL ISSUES 87
FLOATING-POINT IN ANALYZED PRO-
GRAMS 89
9.1 Floating-point semantics 89
9.2 Inductiveness constraints 90
9.3 Bound floating-point errors 92

9.4 Related works 101

CONVEX OPTIMIZATION 103

10.1 Convex optimization algorithms 103

10.2 Guaranteed feasible solutions with
floats 105

10.3 Implementation as an Ocaml library:
OSDP 107

PERSPECTIVES 111

INTEGRATION IN SOFTWARE DEVELOPMENT

PROCESS 113

11.1 CocoSim and LustreC toolchain 113

11.2 OSDP: Ocaml Semi-Definite Program-
ming 116

11.3 SEAL: SystEm Analysis Library 116

EXTENSIONS 117

12.1 More systems 117

12.2 More properties 119

INVARIANTS OF DYNAMICAL SYSTEMS 121

13.1 Primal: maximizing measure sup-
port 121
13.2 Dual: minimizing positive func-

tions 122
13.3 Hierarchy of abstractions 122
13.4 Experiments 123
13.5 Issues/Future Directions 123
PROVING THE IMPLEMENTATION OF CON-
VEX OPTIMIZATION ALGORITHMS 127
14.1 Formal properties 127
14.2 Implementation 129

BIBLIOGRAPHY 131

vii

Part1

MOTIVATION

=

N

W

CRITICAL EMBEDDED SOFTWARE: CONTROL SOFTWARE DEVELOPMENT AND V&V

Cyber physical systems (CPS) is a kind of buzz word
capturing the set of physical devices controlled by an on-
board computer, an embedded system. Critical embed-
ded systems are a subset of these for which failure is not
acceptable. Typically this covers transportation systems
such as cars, aircraft, railway systems, space systems, or
even medical devices; all of them either for the expected
harmnessless for people, or for the huge cost associated
to their failure.

A large part of these systems are controllers. They are
built as a large running loop which reads sensor values,
computes a feedback and applies it to the controlled sys-
tem through actuators. For most systems, at least in the
aerospace industry, the time schedule for controllers is so
tight that these systems have to be “real time”. The way
these systems have been designed requires the execution
of the loop body to be performed within some time to
maintain the system in a reasonable state. In the civil air-
craft industry, the controller itself is rather complex, but
is built as a composition of simpler controllers. Further-
more, the global system accounts for potential failures of
components: sensors, network, computers, actuators, etc,
and adapts the control to these discrepancies.

The increase of computer use in those systems has
lead to huge benefits but also an exponential growth
in complexity. Computer based systems compared to
analog circuits enable more efficient behaviors, size and
weight reductions. For example, aircraft manufacturers
are building control laws for their aircraft that maintain
them at the limit of instability, allowing more fuel ef-
ficient behavior'; Rockwell Collins implemented a con-
troller for a fighter aircraft able to recover controllabil-
ity when the aircraft looses, in flight, from 60 to 80% of
one of its wings®; United Technology has been able to
replace huge and heavy power electric systems by their
electronic counterpart, with a huge reduction in size and
weight3.

The drawback of this massive introduction of comput-
ers to control systems is the lack of predictability for com-
puter and software. While the industry has been used for
ages to have access to the precise characteristic of its com-
ponents, eg. a failure rate for a physical device running
in some specific conditions, these figures are hardly com-
putable for software, because of the intrinsic complexity
of computer programs.

Still, all of us are nowadays used to accept software
licenses where the software vendor assumes nothing re-
lated to the use of the software and its possible impact.
These kinds of licenses would be however unacceptable
for any other industry.

To conclude with this brief motivation, the aerospace
industry, and more generally critical embedded systems
industries, are now facing a huge increase in the software
size in their systems. This is motivated first by system
complexity increases because of safety or performance
objectives, but also the need to integrate even more ad-
vanced algorithms to sustain autonomy and energy effi-
ciency.

Guarantying the good behavior of those systems is
essential to enable their use.

Until now, classical means to guaranty good behavior
were mainly relying on tests. In the aerospace industry
the development process is strictly constrained by norms
such as the DO-178C [RTC11] specifying how to design
a software and perform its verification and validation
(V&V). This document shapes the V&V activities and
requires the verification to be specification-driven. For
each requirement expressed in the design phases, a set
of tests has to be produced to argue that the requirement
is satisfied. However, because of the increase in complex-
ity of the current and future systems, these test-based
verifications are reaching their limit. As a result the cost
of V&V for systems has exploded and the later a bug is
found the more expensive it is to be solved+.

In an A380, fuel is transferred between tanks to move the center of gravity to the aft (backward). This degrades natural stability but reduces the
need for lift surfaces and therefore improves fuel efficiency by minimizing total weight and drag. See the book “Airbus A380: Superjumbo of

the 21st Century” by Noris and WAGNER [NWos].

Search for Damage Tolerance Flight Test video, e.g. at https://www.youtube.com/watch?v=PTMpq_8SSCI

Eg. Active EMI filtering for inverters used at Pratt and Witney, Patent US20140043871

USA NIST released in 2002 an interesting survey “The Economic Impacts of Inadequate Infrastructure for Software Testing” detailing the various
costs of verification and bugs. Chapter 6 is focused on transportation industry.

https://www.youtube.com/watch?v=PTMpq_8SSCI

CRITICAL EMBEDDED SOFTWARE

Last, these certification documents such as DO178C
have been recently updated accounting for the recent ap-
plicability of formal methods to argue about the verifi-
cation of a requirement. Despite their possible lack of
results in a general setting, these techniques, in case of
success, provide an exhaustive result, ie. they guarantee
that the property considered is valid for all uses, includ-
ing systems admitting infinite behaviors.

All the works presented here are motivated by this con-
text. We aim at developing formal methods sustaining
the verification of controller properties at multiple stages
of their development. Our goal is to provide new means
of verification, specific to controller analysis.

CURRENT LIMITS & OBJECTIVES The objectives of
the presented works are restricted to the definition of for-
mal methods based analyzes to support the verification
of controller programs.

More specifically we can identify the following limits
in the current state of the art:

Need to compute invariants of dynamical systems
New advances in formal methods are often not special-
ized for a particular kind of programs. They rather
try to handle a large set of programming language con-
structs and deal with scalability issues. In specific cases,
such as the application of static analysis to Airbus pro-
grams [Cou+os], dedicated analyses, like the second-
order filter abstraction [Fero4], have been defined. But
these domains definition is tailored to the program for
which they are defined.

Lack of means to compute non linear invariants As
we will see in this document, the simplest properties of
controllers are often based on at least quadratic proper-
ties. Again, because of efficiency and scalability, most
analyzes are bound to linear properties. We claim that
more expressive yet more costly analyzes are required in
specific settings such as the analysis of control software.
The scalability issues have to be addressed by carefully
identifying the local part of the program on which to
apply these more costly analyses.

Expressivity of static analysis properties Formal meth-
ods applied at model or code level are hardly used to
express or analyze system-level properties. In practice,
static analysis is mainly bound to numerical invariants
while deductive methods or model-checking can manip-
ulate more expressive first order logic formulas. How-
ever, computer scientists are most of the time not aware
of the system-level properties satisfied or to be satisfied
by the control program they are analyzing. An important
research topic is therefore the use of these formalisms

(first order logic and numerical invariants) to express
and analyze system-level properties.

Scope of current analyses In the current state of the
practice, concerns are split and analyzed locally. For ex-
ample the control-level properties such as stability are
usually analyzed by linearizing the plant and the con-
troller description. At the code level this can be com-
pared to the analysis of a simplified program without if-
then-else or non linear computations. Similarly, the com-
plete fault-tolerant architecture, which is part of the im-
plemented embedded program, is abstracted away when
analyzing system-level properties. A last example of
such — potentially unsound - simplifications, is the as-
sumption of a real semantics when performing analyses,
while the actual implementation will be executed with
a floating-point semantics and the associated errors. We
think that more integrated analyzes should address the
study of the global system.

Our proposal is mainly developed in two complemen-
tary directions:

¢ non linear invariant synthesis mainly based on the
use of convex optimization techniques;

* consider system-level properties on discrete repre-
sentation, at code level, with a floating-point se-
mantics.

This document is structured in five parts:

Part I introduces formal methods and controller design.
It intends to be readable both by a control scientist
unaware of formal methods, and by a computer sci-
entist unaware of controller design. References are
provided for more scholastic presentations.

Part I focuses on invariant synthesis for discrete dynam-
ical systems, assuming a real semantics. All tech-
niques are based on the computation of an induc-
tive invariant as the resolution of a convex opti-
mization problem.

Part III revisits basic control-level properties as numer-
ical invariants. These properties are typically ex-
pressed on the so-called closed-loop representation. In
these chapters we assume that the system descrip-
tion is provided as a discrete dynamical system,
without considering its continuous representation
with ordinary differential equations (ODEs).

Part IV extends the previous contributions considering
floating-point computations. A first part con-
sider that the program analyzed is executed with
floating-point semantics and search for an induc-
tive invariant considering the numerical errors pro-
duced. A second part ensures that the use of con-

vex optimization, a numerical technique, does not
suffer from similar floating point errors.

Part V outlines possible research directions. They range
from the definition of new analyses, the integra-
tion of the analyses in a realistic development pro-

CRITICAL EMBEDDED SOFTWARE

cess, to the extension of the presented approaches
to more systems and more properties. A last per-
spective is the study of optimization algorithm per
se in order to enable their use in critical applica-
tions.

FORMAL METHODS: DIFFERENT APPROACHES FOR VERIFICATION

While testing is a common practice for a lot of engi-
neers as a way to evaluate whether the program they de-
veloped fulfill its needs, formal methods are less known
and may require a little introduction to the non-expert.
This chapter can be easily skipped by the formal verifi-
cation reader but should be a reasonable introduction to
the control expert engineer.

In this chapter we will try to give a brief overview of
some of these formal methods, and their use in the con-
text of critical embedded systems development. We will
first define the semantics of programs: their basic prop-
erties and their meaning. Then, we will outline different
formal verifications and explain how they reason on the
program artifact. A last part will address the soundness
of the analyses with respect to the actual semantics.

2.1 SEMANTICS AND PROPERTIES

Let us first consider a simple imperative program as we
could write in C code and use it to introduce basic no-
tions:

, O —

1 int £ (x) {
2 int y = 42;
3 while (x > 0) {
4 X = X - 2
5 y =y of4s
6 }
7 return y;
8
| J/

For a given input x, this program is deterministic: it
admits a single execution. Let us assume it is called with
x = 3. In that case the execution is finite and will stop
once x becomes non positive, here x = —1. This hap-
pens after two executions of the loop body. Therefore,
y =42+ (2%4) =50 when the program stops.

The semantics, ie. the meaning of this program can be
characterized in different ways. One approach is to see
it as a function that takes inputs — here x — and returns
the output value y. We speak of a denotational semantics:

[flden(3) = 50. We could characterize the output of the
program £ as a mathematical function f : Z — Z of x:

fu):4z+4*[§]

Another approach details the steps of the computation
and does not only focus on the result. This is the opera-
tional semantics. In operational semantics, one describes
the behavior of the program as a sequence of transitions
between states. A state denotes a current view of the pro-
gram. In this simple case, a state can be characterized by
a triple program point (pp), x, and y. In the following,
we denote by I such set of states. Let us look at the
simple execution of f with input 5:

state | o 1 2 3 4 5 6 7 8

pp 2 3 4 5 3 4 5 3 7
X 5 5 3 3 3 1 1 1 -1
y 42 42 42 46 46 46 50 50 50
The run of the program is here described by a se-
quence of states, a trace: so — s7 — ... — sg. In this
case of a deterministic function, each trace is only char-
acterized by its initial element sy. Initial elements are
a subset of states: let Init C X be such set. The set
of rules describing possible transitions from one state to
the other characterizes the operational semantics of the
program. Let us denote it by [f[op € Z x Z, the set of
transitions from state to state. One can also represent it
as a kind of automaton: the control flow graph.

Figure 2.1 Control flow graph

XxX=x—2
56—————F—-—74
y—y—i\ />0
2
y=42 3 x <0 7

~

x = input

By interpreting a program as a set of states ¥, an ini-
tial set of states Init C X and a transition relation [[-]]OP -
T x £, we defined a transition system (Z, Init, [-Jop).

FORMAL METHODS

In practice, one is not necessarily interested directly in
the program semantics in a denotational or operational
form but rather by the properties of the program when
executed.

The most precise definition of a program behavior is
to characterize exactly its set of traces, its trace semantics:

[[f]] trace —

{So—)...—)Sn

In case of non terminating programs, traces could be
infinite. While non terminating programs are usually
seen as bad programs in computer science, controllers
are supposed to be executed without time limit, in a
while true loop. We can extend the definition of trace
semantics for infinite traces:

vie 0,n—1],(si,si41) € [flop
SO c Init

[[f]]trace =
{so e T Y20, (st,si41) € [Mlop }
so € Init

To summarize, the trace semantics captures the pos-
sibly infinite set of possibly infinite traces. If provided
with such set, one can observe any properties related
to intermediate computed values, occurrence of states
within traces, infinite behavior, finite behavior such as
deadlocks,...These properties are usually defined as
temporal properties.

Another semantics of interest, with respect to the pro-
gram semantics, is the collecting semantics. This semantics
focuses only on reachable states in traces but not on their
specific sequences.

One can define it as follows:

Jsg = ... = sn € [ftrace i-e. such that

dsg, ..., 8n,... €EX

[[f]]collz Sn ,0 "
Vie [0,n—1],(si,5141) € [flop
so € Init

As such, collecting semantics is an abstraction of trace
semantics: it characterizes a set of reachable states but
loses information on their relationship. This semantics
is however extremely useful: it can capture all reachable
states and therefore guarantee that all such states verify
a given invariant, or avoid a given bad region.

A last way to express the behavior of a program is
the axiomatic semantics. First ideas were proposed by
TurING [Tur49], then this notion of axiomatic semantics
was introduced by HOARE in 1969 [Hoa6g]. In 1967
Froyp [Flo67] proposed to annotate a flowchart by its

local invariants. The following figure is extracted from
that paper.

Figure 2.2 Assigning meanings to programs by FLoyD

Xz0,Y>0
{(X.S]

{xgu.Y>0.Q=n
(X - @5
Xz20,Y>0,8=0R=X

(X -0,4
{Rga,X;U.Y>U,QzU.X=R+QY

(X - 6.3

HALT

| (0SR<Y,X20,X=R+QY
(X -2

_____ RzY>0,X20,Q20, X =R+ QY

hx-Qm

_____ {320.Y>0,XZO.QED,X=R+(Q+1)Y
(X-a1

_____ {RZO,Y>I}.X20.Q>D.X=R+QY
(X -4Q.4

Frauge 5. Algorithm to compuie quotient @ and remainder & of
XY, forintegers X 20, ¥ >0

In [Hoa69], “An Axiomatic Basis for Computer Pro-
gramming”, HOARE defines a deductive reasoning to val-
idate code level annotations. This paper introduces the
concept of HOARE triple {Prejcode{Post} as a way to ex-
press the semantics of a piece of code by specifying the
postconditions (Post) that are guaranteed after the exe-
cution of the code, assuming that a set of preconditions
(Pre) was satisfied. HOARE supports a vision in which
this axiomatic semantics is used as the “ultimately defini-
tive specification of the meaning of the language [...],
leaving certain aspects undefined. [..] Axioms enable
the language designer to express its general intentions
quite simply and directly, without the mass of detail
which usually accompanies algorithmic descriptions.”

Assuming the Euclidian division algorithm presented
in Fig. 2.2 is implemented in a C function div(x,y,*q, *
r), one can specify the contract as follows:

4 @

void div(x,y,*q,*r) {
// { x<0 A y>0 %}
*q = 0;

*xr =

x;
while (*r < y) { ... };
// { 0 <xr<y A x>0 /\ x=*r+*xqxy }

As envisioned by HoaRrg, this approach has been
largely developed and is used to specify formally the
intended behavior of a program as a set of HOARE
triples. Theoretically speaking, axiomatic semantics is a

further abstraction of operational or denotational seman-
tics since it only constrains valid implementations.

2.2 A FORMAL VERIFICATION METHODS OVERVIEW

We will now illustrate the basic principles behind main
verification methods: deductive methods (DM), SMT-
based model-checking (MC) and abstract interpretation
(Al). First, we sketch here how these techniques work
on simple loopless examples. Then, we elaborate more
on some details of their implementation or their use on
more realistic examples. The exhaustive presentation of
these techniques, developed since thirty to forty years,
cannot be done in a few pages. The presentation re-
flects the author’s view and understanding of these ap-
proaches.
First let us make a disappointing statement:

Theorem 2.1 (Rice’s theorem) It is undecidable to deter-
mine whether the language recognized by an arbitrary TURING
machine T lies in a non trivial set of languages S.

L(T) C S is undecidable

where L(T) denotes the language recognized by the Turing ma-
chine T.

Here the non trivial set of languages S denotes a valid
output of the program, ie. a property of its trace seman-
tics. This theorem, which may not be easily readable for
the theoretical computer science agnostic, states that any
property of interest is hardly analyzable on a program.
In other words: “it is undecidable to determine whether
an arbitrary program satisfies a non trivial property”.

Because of undecidability it is worthless to design
sound, complete and terminating techniques for arbi-
trary programs and properties. Let us denote by Prog
P the validity of property P for program Prog and by
Prog - P the fact that the analysis A stated that P was
valid for program Prog. We can define, for all program
Prog and property P:

ProgkaA P = Progk=P
ProgE=P = Proghka P
Prog A P terminates

(soundness)

(completeness)

Formal verification techniques usually address this is-
sue by focusing on sound and terminating methods, that
is without the completeness property. This amount to
compute an intermediate stronger property P’ such that

((Progta P')A(P' = P)) = Prog =P

Prog Fa P’ terminates

2.2 A FORMAL METHODS OVERVIEW

This is often referred to as over-approximation tech-
niques, or conservative techniques: showing the valid-
ity of P amounts to compute a less precise property P’
which may imply P. Even if the property P was actually
valid on the program, the lack of precision of P’/ may not
permit to prove P’ = P leading to a lack of conclusion:
P has a unknown status for program Prog, the analysis
has been unable to conclude with respect to P.

Remark 1 (Termination of analysis vs program) Note
that termination of analysis is unrelated to the existence of
infinite traces in the analyzed program. A non terminating
formal verification technique may fail to return a result on a
finite transition system admitting only finite traces, while a
terminating analysis will conclude even for systems admitting
infinite behaviors.

2.2.1 Basic principles illustrated on a loopless example

Let us first focus on a simple loopless example, for exam-
ple the infinity norm in R?:

@

N

1 real norminf (real x, y) {
2 real xm, ym, r;
3 if (x >= 0) // compute abs(x)
4 {zm = x;}
5 else
6 {xm = -x3};
7 if (y >= 0) // compute abs(y)
8 {ym = y;}
9 else
10 {ym = -y;};
11 if (xm >= ym) // compute max(xm, ym)
12 {r = xm;}
13 else
14 {r = ym;};
15 return r;
16}
\ N J/

We are interested in the following properties:
¢ null on zero: norminf(0,0) =0;
* positivity: V(x,y), norminf(x,y) > 0.

Note that, in that case, the formalization of the spec-
ification, that is the properties of interest, as formal ar-
tifacts was rather straightforward. It may be more diffi-
cult when considering natural language description with
ambiguous statements. This is another added value of
formal methods: disambiguation of specification by im-
posing the need of strict formalization.

Of course, a first classical approach could rely on tests
to evaluate the validity of these properties. We will see
how various formal method reason on that program, try-
ing to prove the desired properties:

* DM: use of predicate transformation, either for-
ward or backward reasoning;

10

FORMAL METHODS

* MC: propositional encoding and SMT-based rea-
soning;

e Al interpretation of each computation in an ab-
stract domain.

Deductive methods: predicate transformers

Deductive methods are the evolution of the ideas pro-
posed by HoarRe [Hoa6g]. Predicate transformation al-
lows to apply the semantics of the considered program
on the formal representation of the property. These ma-
nipulations can be either performed in a forward manner,
transforming the precondition through the code — we
speak about strongest postcondition —, or, in the opposite
direction, propagating back the postcondition through
the code — we speak about weakest precondition. While
both techniques should be equally sound, most imple-
mentations used in C code analysis [App11; Bau+o2;
Cuo+12; FMoy] rely on the weakest precondition algo-
rithm.

This method computes wp(code, Post), the weakest
precondition such that, when executing the code, Post
is guaranteed. The rules are defined on the structure
on the imperative code, per statement kind and applied
iteratively. On naive imperative languages statements
can be either assignements or control structures such as
sequencing of statements, conditionals (if-then-else) or
loops:

The assignment rule amounts to substitute in the post-
condition B any occurrence of x by its definition e:

wp(x :=e,B) £ [e/x|B

Example 1 Let us illustrate this mechanism on the simplest
example. Assuming the postcondition requires y <0. The
weakest precondition of the instruction y = x+1; imposes
<-1

Weakest precondition composes well: once the compu-
tation of the impact of ¢, to B has been computed, it can
be used to propagate the impact of statement cg:

wp(cy;c2,B) = wp(cr, wp(cz, B))

Conditional statements (if-then-else) are encoded as a
disjunction: one obtains B after executing the statement,
either because b holds and c; gives B, or because —b
holds and ¢, gives B:

b = wp(cy,B)

wp(if b then ¢y else ¢y, B) £ A
pl(1 2,B) b = wp(ca, B)

In our example, we have two properties expressed as
the following HOARE triples:

{(x,y) = (0,0)} norminf {\result = 0} (1)
{True} norminf {\result > 0} (2)

The first HOARE triple states that when (x,y) = (0,0) the
result is 0, while the second one makes no assumption
on the input: it should be valid in any context.

Let us look, manually, at this computation on the first

property:
\result =0

is transformed through the last statement, a conditional
statement (ite) on line 11. We obtain the weakest precon-
dition of the statement line 11 guaranteeing \result = 0.
Each then and else block is analyzed with the wp al-
gorithm, producing the required predicate xm = 0 or
ym = 0. Then the weakest precondition of the condi-
tional statement is produced:

(xm>=2ym=xm=0)A\(xm<ym=ym=0)

This predicate is further transformed in the leaves of
the previous statement, at line 7. Then, block at line 8 is
associated to the weakest precondition:

(xmzy=xm=0A(xm<y=y=0)
while the else-block at line 10 gives
—y=xm=0)A

(xm > (xm<—y=-—y=0)

Combined with the conditional rule, this gives:

<y>0:> ((xm>y:>xm O))

ANxm<y=y=0

(xm>2—-y=xm=0

N y<0=
Axm<—y=—-y=0

Let us, again propagate this weakest precondition to the

previous statement at line 3. We obtain, for its then-block

the predicate

<y>0é< (x>y=x=0)
Nx<y=y=0)
—y:>x—0))

)

>y=>-—x=0

/\<y<0:>< x
ANx<—y=—-y=0
<y>0:><()
N—=x<y=y=0)
0)
)

)
)
)
)

and for its else-block:
> —y=—x=

AMy<o= (==
N—=x<—y=-—-y=0

)
)
)

Last the conditional rule is applied:

X >
<y>0:>< (x=2y=x=0)
Nx<y=y= O)
A<y<o:>((X>_y;$x_)
Nx<—y=—-y=0)

0= (3)
>y=—x=0)

/\(—x<y=y=0)
A

(x=2-y=-—x=0)
y<0=
N—x<—y=—-y=0)
This large predicate represents the weakest precondi-
tion, that, when satisfied, guarantee to obtain \result =

0 after executing the code. In this first property, the pre-
condition was (x,y) = (0,0). Therefore, we have to prove

(0,0) = (3)

This proof is sent to a satisfiabiliy modulo theory
solver (SMT) such as Alt-Ergo [Con+08], Z3 [MBo8§],
CVC4 [BToy; Det+14] or Yices [Dutig; DMo6]. These
solvers extend a SAT' core to predicates whose atoms
are expressed in other (numerical) theories.

In this specific case, the formula is easily analyzed —
can even be done by hand — and reduces to the predicate

)|
)
j

(x,y) =

True

The second property can be similarly analyzed and
will generate the following proof objective

True = {(3) in which v = 0 becomes v > 0}

SMT-based model-checking: propositional encoding and satis-
fiability

SMT-based model checking will perform similarly on
this specific example. The idea is to map all con-
structs as predicates. One can, for example, rename
variables to avoid multiple assignments to the same vari-
able. This amounts to embed the imperative program as
functional dependencies between input and output. Let
[norminf]apc(x,y,T) be such function.

The proof objectives become:

(x =0Ay =0) A [norminflpmc(x,y,r) A (r=0)
(4)

[norminf]apc(x,y,7) A(r = 0)
(5)

2.2 A FORMAL METHODS OVERVIEW

The difference with deductive methods is not really
visible in this oversimple example. The main one is that
no order is specified on the model-checking approach,
while weakest precondition rules do transform the pred-
icate statement after statement. One can also notice
that the expression of the functional representation of
[norminf]pmc(x,y, 1) is identical in both properties (4)
and (5). In deductive methods, the form of the predi-
cate representation of the code widely depends on the
property analyzed.

In both cases, the final validity of the propositional en-
coding of the property is delegated to external solvers
such as SMT-solvers.

Abstract interpretation (of collecting semantics):
approximating reachable states

over-

Abstract interpretation relies on different algorithms. We
will develop it in its general setting in the next section.
In contrast to previous methods which are able to rep-
resent complex properties through logical predicates but
rely on external solvers to determine the satisfiability of
these formulas, the abstract interpretation paradigm in-
tends to restrict a priori the form of the properties manip-
ulated, providing constructive means to analyze them.

These constrained properties are called abstract do-
mains and, since we are focused on the abstraction of
the collecting semantics, they represent set of states. One
can see an abstract domain D as a subset of set of states:
D C p(Z). A classical example — and a widely used
one — is the abstract domain of intervals M to represent
subsets of R and the use of interval arithmetic to manip-
ulate these abstract values. An abstract environment is
used to represent a set of states. Let us informally show
the computation of the abstract environment in our ex-
ample before providing more theoretical background.

The computations are performed on the control flow
graph. The following picture characterizes it for our ex-
ample:

Figure 2.3 Control flow graph for infinity norm.
22—

x/;o, \ / 8 ym=y ? 12‘\
X, y=input
xm,ym, declared xm = ym = —y
xm <y

One can associate to each program point, its abstract
collecting semantics equations. These equations define
the local abstract environment, depending on the prede-
cessor values:

1 A SAT(isfiability) solver aims at proving that a propositional formula (a formula composed of boolean variables, and logical operators A, \VV, —)
either admits a satisfiable assignment of the free variables that makes the formula true, or show that no such assignement exists.

11

12

FORMAL METHODS

S, = {any value}
X —] —o00,+00[
y] —o00,+oo|

S3 = S| xm —]—o0,+o0[
ym +—]—o0,+00[
T —] —o00,+00[

S4 = S3x=0]

S¢ = S3lx<0]

S; = S,USe

Ss = S;y=0

S10 = Srly<o0l

S11 = SsUSqo

S12 = Syibkm>ym]

S14 = Stibkm<ym]

S15 = S12US14

where S[e > 0] denotes the environment S in which
the abstract evaluation of e is constrained to be positive;
S[x — e] denotes the environment S in which variable x
is updated to the abstract value e; and S7 LS, denotes
the lift of interval join to maps: [x — S7(x) Ung S2(x)].
When entering in the function body, nothing is as-
sumed on x and y. The abstract environment is then
the map

X =]—oo,+0[Yy =]—o00,+o0l

Depending on the language semantics, the declaration
of local variables at line 2 can either assign them to a
default value, or, like in C, give an value. We have the
following updated abstract environment at line 3:

X —] —o00,+oo[y —] — 00,400l
xm — J]—oo,+o0o[ym —]—o00,+00[

The evaluation of the first statement constrains the val-
ues of x depending on the active branch:
At line 4, we have

x = [0,4o0] y =]—o00,+o0]
xm +]—o00,+o00[ym +—]—oo,+oo]
T — | —o0,+o0o]

while at line 6 we have:

X =]—00,0[y —]—o0,+oo]
xm +—]—oo,+oo[ym +—]—o0,+ool

After the assignment of line 4, we obtain for vari-
able xm the interval [0, +-oo[. Similarly, after the assign-
ment of line 6, we obtain for variable xm the interval

—] — 00, 0[=]0,4+00[. The computation of the join in the
definition of the abstract collecting semantics at program
point 7 returns the interval]0, +-00[Uy [0, +-00[= [0, +-o00]
for xm. However, the join of] — 0o, 0[and [0, +-oco[returns
the interval] — 0o, +o0o| for variable x.

The abstract evaluation of program points 8 to 15
follows comparable patterns. Note that the conditions
xm > ym does not provide any meaningful information
for this interval-based analysis. We eventually obtain the
following abstract environment:

X —] —o00,+00[Y —] —o00, 400
xm — [0, 4o0] ym +— [0, +oo[
T — [0, 400l

This analysis has been able to obtain the positivity of r
without any assumption on the input values. The same
analysis can be done by assuming that the initial abstract
environment is:

x — [0,0] y — [0,0]

In that case the final abstract environment obtained is:
X — [0,0] y —
xm — [0,0] ym

T — [0,0]

Note that abstract environments associated to pro-
gram points 6, 10 and 14 are associated to the empty
environment denoting unreachable program points.

2.3 DEDUCTIVE METHODS

Weakest precondition methods are typically designed for
imperative languages. A realistic application will reason
on the program as outlined in Section 2.2.1 but shall also
address the following items:

2.3.1 Loops and recursion in programs

While predicate transformation may seem natural in the
previous example, it is less obvious in presence of loops
in the control flow graph. A sufficient rule to validate
annotations, as defined by FLoyD or HOARE could be:

F{AAb}Jc{A}
F {A} while b do ¢{A A—b}

But it is not compatible with the automatic transforma-
tion of predicates as performed in weakest precondition
computation. Another way to address this issue is to
unroll the loop:

while b do ¢ = if b then ¢; while b do c else skip

Then

wp(while b do ¢, B)
wp(if b then c; while b do c else skip, B)
b = wp(c,wp(while b do ¢,B)) A—b =B

é

N

Let us denote by W = wp(while b do ¢, B). We can
use the loop unfolding to characterize recursively W:

W = (b = wp(c, W) A—b = B)

Thanks to TARsKI's fixpoint theorem, considering the
partial order induced by logical implication =, ie. x T
Yy 2y = x, and the monotonic definition of W, this fix-
point exists. But this formula is difficult to compute and
may not be representable with a finite set of atoms. If
characterizable it captures precisely the loop semantics:
the most precise loop invariant, the relationship between
input and output, preserved by the loop body.

The solution proposed by DijksTrA [Dij76] is to pro-
vide, manually, a weaker loop invariant I, ie. such that
I = W. The predicate transformation rule is then de-
fined as

wp(while b do ¢, B)

£ IA((IADB) =wp(c,) A((IAN—b) = B) ©

As a result, any occurrence of loop in programs re-
quires the definition of a loop invariant capturing the
loop semantics.

Similarly, in order to prove termination, one needs to
exhibit a loop variant, a decreasing sequence in a Noethe-
rian relation, also called a well-founded relation. Typical
implementations rely on a positive integer-valued func-
tion decreasing at each loop iteration.

2.3.2 Memory model and low-level representation

Until now all computations have been performed on a
naive imperative language with real datatypes, without
complex datastructure, memory allocation, or function
calls.

Serious tools such, as Frama-C, handle all those con-
structs. Memory issues are a large part of them. Multiple
choices could be made to represent the memory: from
the simplest being the HoARE model without pointers or
aliases, to a bit level representation. The more complex
the memory model, the bigger the generated predicate.

Dedicated analyses such as separation logic [ORYo1]
can be used to detect aliases or guarantee that pointers x
and y are separated, easing the later analyses. Tools such
as the Verified Software Toolchain (VST) [App11] rely on
such analysis.

2.4 SMT-BASED MODEL CHECKING

2.3.3 Underlying logic and automatic proof

A last difficulty in realistic implementations is the expres-
sivity and tools associated to the underlying logic. In
Frama-C, the annotation language ACSL [Bau+08] (ANSI
C Specification Language), is extremely rich and enables
the definition of predicates or internal data structures
in both functional or axiomatic ways. However, for the
same concept, e.g. a linked list or a tree like structure,
an integer valued function computing the size of a data
structure,. .., the generated predicate will widely differ
and so do the results of the automatic solver to prove the
final proof objective.

Efficient use of these techniques requires the under-
standing of solver capabilities and their efficiency on dif-
ferent kinds of modelings.

2.4 SMT-BASED MODEL CHECKING

While SMT-based model checking can be applied at code
level, eg. the SPACER tool [KGC14; Kom+13], most ap-
plications are performed on earlier representations of the
system, at model level.

In all cases, a logical representation of the denotational
semantics is extracted from the model/code f. It can be
as a single predicate associating outputs to inputs, or a
more axiomatic definition, for example relying on a set
of Horn clauses. In all cases, it characterizes a transition
system with inputs In and outputs Out: (£, Init C %, T)
where T(x,y) = [f]gen(X) =Y.

When considering functions with side effects, ie. de-
pending on memory and modifying it through execution,
the typical predicate is

T(in, out, mem_pre, mem_post)

We can also define the initial state of the memory with a
predicate:

Init(mem)

These predicates are valid only for values that satisfy
the program semantics. In the memoryless example of
Fig. 2.1, we have T(0,42), T(1,46), T(2,46) since these val-
ues are valid pairs of input/output, but T(1,2) is false.

For models without complex datastructures this en-
coding can be rather straightforward. In case of a variety
of datatypes, casts between values, complex control flow
structures, the encoding can be less easy to define.

Once the encoding is available, one can reason about it.
When relying on model-based development such as Mat-
lab Simulink, ANSYS Scade, or Lustre, it is possible to
extract such encoding. Since all those models denote syn-
chronous dataflow languages, the semantics of a model
is the infinite execution of the block semantics.

13

14 FORMAL METHODS

Let us consider a (possibly infinite) trace sp — ... —
si — ... of such a system. It corresponds to the sequence
of inputs ip — ... = 1; — ... and satisfies the following

constraints:
Init(so) 7)
Vi > 0,30y, s.t. T(ii,04,8i,Si4+1) (8)

generating the sequence of outputs op — ... -0y — ...
Most SMT-based model checking techniques are based
on the induction principle: a way to prove a property in-
variant over reachable states is to show it inductive over
such states. Let P(s) be the predicate encoding of this
property.
We recall that the induction principle requires:

Vs e L,
Init(s) = P(s)
Vsy,s2 € Z,
P(s1) AT(s1,s2) = P(s2)

(9)

(base case)

(inductive case) (10)

However, while the property is inductive over reach-
able states [f]con:

Vs e L,

Init(s) = P(s)
Vs1,52 € 20 [fleons
P(s1) AT(s1,s2) = P(s2)

(base case) (11)

(inductive case) (12)

The same property may not be inductive over some
states s € L\ [f]con- Such a state would correspond to
a spurious counter-example: a state s; unreachable but
satisfying P such that its successor s, by the transition
system semantics violates P:

(P(s1) AT(s1,s2)) # P(s2)

Different approaches exist to attempt to address this
issue, without guarantees of success since [[f]coy is not
computable:

1. replace [f].on by some other invariant I of reach-
able states. The inductive case becomes?:

Vs1,82 € L,
(P(s1) AT(s1,s2) AN1(s1) A1(s2)) = P(s3)
(13)

2. Improve the quality of the initial s as part of reach-
able states: impose it to be part of a path of length
k of the transition system. In that case, it is also
required to update the base case in order to guar-
antee property P for the first k reachable states:

2 Note that I may not be inductive with respect to T.

vVl <Xk, Vsg,...,s1 € L,

Imit(so)) A A\ Tlsisip1) = A Plsi)
o<igl—1 o<igt
(14)
VSo,...SkJr] ex,

A\ (P(si) AT(si,5041)) = Plsii1)
0<i<k

(15)

The second approach is known as k-induction and was
first proposed for pure propositional properties and sys-
tems [SSSoo] and then extended to more general systems
using SMT [KT11]. This is typically the algorithm used
in formal verifiers in ANSYS Scade or Matlab Simulink.

The first approach is quite natural: instead of look-
ing for a general inductive property we focus on a
restricted set of states. Multiple methods were pro-
posed to synthesize the invariant I: simple patterns
instantiation [KGT11], the use of abstract interpreta-
tion [GKT12], the use of quantifier elimination [CDD15],
or the dynamic synthesis of property specific invariants
in property-directed reachability (PDR/IC3) [Bra1z2].

As in deductive methods, the efficiency of the analysis
depends on the encoding of the properties and the SMT
solver abilities to prove the base and inductive cases.

2.5 ABSTRACT INTERPRETATION (OF COLLECTING
SEMANTICS)

The abstract interpretation framework proposed by
Cousor and Cousot [CC77] provides a methodology in
which analyses of semantics can be easily defined and
proved correct. An essential step of that methodology is
to characterize the semantics of interest as a fixpoint of
a monotonic operator over a complete lattice. We refer
the reader to MINE’s PhD manuscript for a very good
introduction to the theory [Mino4].
For the moment, let us give the following definition.

Definition 2.2 (Abstract Interpretation) Abstract Inter-
pretation is a constructive and sound theory for the approxima-
tion of semantics expressed as fixpoint of monotonic operators
in a complete lattice.

While this formulation may seem unnatural to the
newcomer, it is actually a simple step when it comes to
collecting semantics. Collecting semantics is the seman-
tics characterizing reachable states of a program or of a
dynamical system. We recall that X is the set of all states.
We are interested in characterizing all reachable states
s € L. All reachable states form a set of states S C L
and belongs to its powerset S € p(X). We would like to

compute the most precise element of p(X) denoting all
reachable states.

Any powerset is a complete lattice. It is fitted with
a partial order, the set inclusion C; any subset of ele-
ments admits a least upper bound, the set union U, and
a greatest lower bound, the set intersection N. It is fitted
with a lowest element () and a greatest one Z. Therefore,
our element of interest denoting all reachable states, let’s
call it €, is one specific element of the complete lattice
(p(X),S,u,N,0,L).

When one considers the underlying update function of
the analyzed system - the transition relation of a dynam-
ical system, or a function describing how each program
point value is computed from its predecessors - it can be
defined as an endomorphism of X. It maps a state to a
new state. Let f : Z — X be such a function. Note that
this function does not need to be monotonic in any sense.
In order to ease the later notations, we will indifferently
denote by f the isomorphism of I or its lift fT to sets of
states p(X): f1(S) = {f(s) | s € S}.

Using f, we can derive the monotonic transfer function
F of the collecting semantics. A classical definition of F
is the endomorphism of p(X) which accumulates states
starting from an initial set of states Init € p(%):

p(X)
S —

- p(Z)

6
Init U (S) al

When one applies recursively this function to the
empty set, the infimum L1 of the lattice (p(X), C
,U,N,0,%), we characterize the following sequence of
sets of states:

So = F(L) — Init
S = F(Init) — Init UF(Init)
S, = F(Init U f(Init)) — Init UF(Init) U F2(Init)

Theorem 2.3 (Tarski’s fixpoint theorem) Let D be a com-
plete lattice (D,C, 1,1, L, T) and f : D — D be an mono-
tonic function. Then the set of fixed points of f in D is also
a complete lattice, it admits a least (1fp) and a greatest (gfp)
fixpoints.

Ifpf = N{X | F(X) C X}
gfpf = U{X | X E F(X)}

Since F is a monotonic operator of (p(X),C,U,N,0, L), by
Tarsk1’s fixpoint theorem, a least fixpoint exists. It is de-
fined as the smallest postfixpoint. A postfixpoint is an
element X € p(X) such that F(X) C X.

2.5 ABSTRACT INTERPRETATION

Then our set of reachable states, the collecting seman-
tics, is exactly characterized by

¢C=1fpgF= inf {F(X)CX 1
Po Xep(z){() € X} (17)

Furthermore, the set of fixpoints is fitted with a com-
plete lattice structure: it is closed by join and meet; its
infimum is the least fixpoint; and its supremum the great-
est one.

Abstracting the fixpoint: fixpoint computation in ab-
stract domains

2.5.1

Soundness, incompleteness and alarms

Despite its proven existence, this exact set of reachable
states is very hard to compute in general. The framework
of abstract interpretation provides means to abstract it,
that is, to compute another value ¢* of p(L) bigger than
¢ for the set inclusion, ie. containing more states. Some
of those states are spurious, they are not reachable in
practice, but will be considered as such by the abstrac-
tion computed. The validity of a property P is checked
with respect to €. P is characterized by the set of states
satisfying it: P = {s | P(s)}. In case of success, we have all
states in ¢* satisfy the property, and therefore the subset

by inclusion ¢ C ¢*

The figure 2.4 illustrates such inclusions.

Figure 2.4 Collecting semantics, abstraction and proper-
ties.

In case of failure, one cannot conclude since an erro-
neous state s € ¢#\ P could either be in € or in spuri-
ous states introduced by the abstraction. We speak of
an alarm. This characterizes the incompleteness of the
approach.

In some cases, such as the one presented in Section 9.3.2, a complete lattice structure is not available. Proofs of convergence are then more

complex to achieve.

15

16

FORMAL METHODS

Abstract domains

An abstraction is meant to approximate sets of states
9(X) and is defined by an abstract domain. An abstract
domain represents a set of abstract states D¥, fitted with
a complete lattice structure3: <D#, C,u,n, L, T) where L
and T denotes infimum and supremum values, respec-
tively.

It also provides means to abstract sets of states p(X)
to D* and to compute a sound representation as set of
states of its elements: those functions are called « and v,
the abstraction and the concretization functions:

o:p(L) - D* v:D¥ = (%)

In order to fulfill the abstract interpretation framework
methodology, in its most general setting, those abstrac-
tion and concretization functions should define a Galois
connection:
monotonic « :

Vs1,82 € 9(Z),81 Cs2 = afs1) C ofs2)
monotonic vy :

#oC c
VS]/SzeD ;81 &£ 82 :>V(S]) 7‘\/(52) (18)
reductivity of x o7y :
vst e D¥, xoy(s*) C s*
extensivity of yo «:

Vs € p(X),s Cyoafs)

An abstract domain is also fitted with means to com-
pute, in the abstract, the operations that were performed
in the concrete set of states L. This ranges from as-
signments of variables by a linear or polynomial expres-
sion, to comparison operations over values,.... We de-
note by f# : D¥ — D the sound abstract counterpart of
fip(X) — p(2).

Soundness in abstract domains

Soundness is guaranteed with respect to the abstraction
and concretization functions. We present here the classi-
cal definition on a unary operator fun.

VS € p(2),s* € D,

SCy(S%) = fun(S) C y(fun®(s*) (19

Soundness could also be expressed relying on «. In-
tuitively this soundness requirement guarantees that all
computations performed in the abstract will, at least,
contain the real reachable states and values.

When the abstract domain is defined by a computable
Galois connection («,y), one can derive automatically
these abstract operators such that they compute a sound,
yet most precise, solution:

op*(x) = xoop(y(x)) (20)

In case of programs analyzed on their control flow
graph representation, such as the ones of Figs. 2.1 and
2.3, (abstract) states of a node with multiple incoming
edge, such as a loop head, or an instruction following a
conditional statement, are the (abstract) join of the states
available in each predecessors.

Using TARrskI's theorem, one can associate to the con-
crete set of reachable states € the fixpoint of an abstract
function F#:

¢t =1fp 7 (21)
— inf {F#(X) C x} (22)
XeD*

where F#(S) = a(Init) U f#(S).

Fixpoint transfer

Thanks to the appropriate choice of « and vy functions,
for example with a GaLors connection, and with the ad-
ditional constraint that the abstraction & commutes with
F:

xoF=Fou (23)
We have:
Init C y(a(Init)) (ext. of yo)
= F(Init) C F(y(a(Init))) (mon. F)
= F(Init) C F(y(x(Init))) (mon. F)
= «aoF(Init) C oo F(y(a(Init))) (mon. «)
= aoF(Init) C Foxoy(a(Init)) (using 23)
= ooF(Init) C F(«(Init)) (red. of xovy
and mon. of
)
= yoaoF(Init) CyoF(x(Init)) (mon.y)

= F(Init) C vy o Ff(x(Init)) (ext. of y o &)
Iterating over F, we obtain

vn, F*(Init) C y o F*™ (a(Init))
LfpgF C y(1fp F")

(24)
(25)
and therefore

¢ Cy(eh

2.5.2 Effective computation: KLEENE iterations and widen-
ing

When the abstract domain is fitted with a complete lat-

tice structure4, this fixpoint could be accurately com-

puted by KLEENE iterations:
¢ =lfpyF = lim F"(L)

n—oo

(26)

In theory, it is only required to admit least upper bound for ascending chains. In addition, F# should be join complete on these chains, ie. upper

continuous, ie. for all chain wq, wy, . .., Ff (Uiwy)) Up Ff (wy).

In case of infinite ascending chains of iterates, one re-
lies on so-called widening operator to ensure convergence
in a finite number of iterations. This operator acts as a
rough join operator but has better convergence proper-
ties. It is however pessimistic since it introduces numer-
ous spurious states in the abstract representation.

Remark 2 (Relative performance) In general, SMT-based
methods such as MC and DM perform better on disjunctive or
integer based properties. SMT solvers are based on a SAT core
and a set of solvers for axiomatized theories. These solvers per-
form generally well on at most linear properties and systems.

Al typically performs better on the synthesis of numerical
invariants because disjunctions are computed within the ab-
stract representation, using the abstract join U, instead of be-
ing kept explicitly. Abstractions exist that postpone the in-
terpretation of these disjunctions such as partitioned analy-
ses [Ferosa; Garo8], disjunctive completion of domains [CC92;
CC79], or delayed join [Mino4] to regain precision but cost too
much to be used in a systematic manner .

To summarize, for the most common setting, the effec-
tive use of abstract interpretation is the following:

1. Express the (collecting) semantics as a fixpoint of
a monotonic function F over a lattice of properties.
In our case, properties are sets of states.

2. Exhibit an abstract domain for set of states, defin-
ing abstraction and concretization functions, lattice
operations such as join, and a sound abstract coun-
terpart ¥ of T.

3. Abstract initial states and compute with KLEENE it-
erations the least fixpoint in the abstract.

4. In case of convergence issue, rely on widening to
converge to a bigger fixpoint in the abstract.

5. The concretization of this abstract fixpoint is a
sound over-approximation of the concrete one.

In practice over-approximation is caused:

¢ by the set of properties represented or expressible
in the abstract domain (linear relationships, inter-
vals, ...); an abstract domain may be unable to
represent or capture some specific property while
another one will.

® by the abstraction function and the set of abstract
counterparts of concrete functions. For example
in case of difficult precise definitions of a func-
tion such as exp, one can approximate it soundly
by a function returning the T = R value. While
sound, this definition is largely imprecise and will
lead to more abstraction when this exp function
is used. Another issue appears in presence of

2.6 NEED FOR INDUCTIVE INVARIANTS

non linear expression analyzed with an abstract do-
main restricted to linear properties. In that case
the non linear expression has to be soundly over-
approximated, leading to additional imprecision.
This imprecision is caused by the abstract trans-
formers.

* by the use of widening introducing additional ab-
straction to the computed element.

2.6 NEED FOR INDUCTIVE INVARIANTS

Basically all formal methods rely on the expression of
the property of interest as an inductive invariant over the
system semantics. In practice all these techniques bene-
fit from additionally provided invariants. We summarize
the use of invariant in the different techniques.

2.6.1 Loop invariants for deductive methods

As mentioned in Section 2.3.1 the analysis of loop with
deductive methods requires invariants to be provided to
capture the loop semantics. While simple invariants may
be easily provided, they may be too weak to capture
precisely the loop semantics. For example the loop in-
variant expressed in Floyd euclidean division flowchart
in Fig. 2.2 is extremely precise: R, X,Q > 0,Y > 0,X =
R+ QY.

If one considers Dijkstra’s predicate transformer rule
for loops in Eq. 6, one can see that the remaining prop-
erty is essentially I, the invariant provided. Invariants
for loops act as the cut-rule in proofs. A sound yet weak
invariant will generate a weaker precondition that guar-
antees the post-condition, but not the weakest. The proof
that the provided pre-condition imply the weaker pre-
condition may be unfeasible.

These loop invariants are either manually pro-
vided [Wan+16a] or computed by other means such as
abstract interpretation [Moyo8].

2.6.2 Inductive invariants to reinforce transition relation in
SMT-based model-checking

Similarly, SMT-based model-checking is essentially
based on induction. As mentioned in Section 2.4 dif-
ferent approaches are used to address the lack of avail-
ability of the collecting semantics [f]con. While look-
ing different, k-induction, PDR or invariant injection all
amount to the characterization of invariants of [f].o.

17

18

FORMAL METHODS

2.6.3 Inductive invariants to strengthen abstract interpreta-
tion fixpoint computation

Abstract interpretation aims at computing inductive in-
variants. The definition of abstraction through sound ab-
stract domains enables their composition to improve the
analysis results. Since the Cartesian product of two com-
plete lattices is also a complete lattice and since Galois
connections can be similarly composed, one can easily
define as a sound analysis an analysis that rely on mul-
tiple abstractions at the same time. Another interesting
construct is the domain reduction: it enables multiple
domains to communicate and refine their own (sound)
properties. Let us illustrate that notion on a simple ex-
ample.

Example 2 Consider a set of integer values L = IN and the
three following abstractions: sign, interval, and parity.

Lsign when S =10
0 when S = {0}

+ whenVs € S, s
— when Vs € S, s

(Xsign(s) = >0
<0

Tsign otherwise

Qinterval(S) =(min$S, max>$)

Lparity when S =0
Odd when Vs € S, s
Even when Vs € S, s

mod 2=1

Kparity(S) =
party mod 2 =0

Tparity otherwise

Abstracting a set by the sign of its elements is always less
precise than representing more finely the set of values by its
lower and upper elements. But those two abstract representa-
tions are not comparable with the abstraction that determines
whether all values are even or odd.

Abstractions could be however combined. If both intervals
and parity are of interest to us, one can analyze the semantics
of the program with both abstractions in the same computation
and represent more precisely the interval and parity associated
to the abstract set of values. This could lead to further im-
provements. For example, an interval abstraction may have
identified a set [1,1000] of reachable values while the parity
abstraction guarantees that all values are odd. In that case the
interval representation can be refined into [1,9999].

One of the major application of abstract interpretation
is the tool Astrée that was designed specifically for the
analysis of the Airbus A3xx family control command
systems. It combines numerous abstract domains with
complex reductions [Cou+o07]. One of these domains is
specifically focused on second-order linear filters in or-
der to bound their reachable states [Fero4].

CONTROL SYSTEMS

All our analyses are focused on control systems.
We sketch here their typical development and refer
the reader to classical books such as ASTR('SM/ MURRAY
book [AMo8] or LEVINE’s control handbook [Levg6] for
more details on control system design.

Historically control design started in the continuous
world: a system had to be controlled, its dynamics was
captured by the equations of physics, for example using
ordinary differential equations (ODE). Then, control the-
ory provides means to build a controller: another system
that, was used in combination with the system to be con-
trolled, is able to move the system in the requested state.

The Figure 3.1 presents a typical process leading to the
development of a controller in the aerospace domain. We
now give an idea of each steps.

Figure 3.1 Current development process

Differential Equations (plant)

Continuous controller

Discrete version
Control theorists

Computer scientists
Safety architecture

Validation Test

Test

redundancy, validators, Simulation

COM/MON...

Integration Test
Code

Unit Test

Binary

3.1 CONTROLLERS DEVELOPMENT PROCESS
Let us give a naive yet representative process leading to
the definition of a control system.

SYSTEM DYNAMICS At first an identification phase is
required to obtain the plant dynamics. This identifica-
tion phase can be complex and rely on various means
to describe the system dynamics: a finite element struc-
tural model relying on a precise modeling of the aircraft
shape, or a rough point mass system with a given num-

ber of degrees of liberty. For example, for a system like
an aircraft able to move in a volume, one can character-
ize roughly its dynamics by 12 equations defining its po-
sition and velocity in a an orthogonal basis as well as its
angle and angular velocity along the three EULER angles
(Yaw, Pitch, Roll).

Typically, one characterizes the sum of forces applied
to the system (gravity, thrust, lift and drag in the case of
an aircraft) as we learn in high school. This set of con-
straints defines the differential equations capturing the
dynamics of the system.

LINEARIZATION — TRANSFER FUNCTIONS Control-
ling non linear dynamics is still an active area of research.
In practice, in the conservative aerospace industry, most
basic controllers are still defined with old-school linear
methods. For these methods the dynamics has to be
linear. Since linearized system are not fully representa-
tive far away from the linearization point, multiple such
points are defined, leading to multiple linearized ver-
sions of the dynamics. This can be done using TAYLOR
expansion for example. The general ODE can then be
expressed, locally, as linear differential equation (LDE)
expressed over a single input and a single output sig-
nals. The dynamics described by this LDE can be inter-
preted as a function mapping this input signal x(t) in the
output one y(t). In this continuous setting, one defines
this function as the linear mapping relating the LAPLACE
transforms of x(t) and y(t). The transfer function is ex-
pressed to map those two LAPLACE transforms.

Control design then provides tools to build a feedback
controller: another transfer function which, when asso-
ciated to the initial transfer function, provides the ex-
pected behavior. Various techniques exist to synthesize
such a controller: proportional, lead-lag, proportional-
integral-derivative (PID), ...

ANALYSIS The produced controller can be evaluated
with respect to control-level properties. A controller
drives the plant in the desired state by minimizing the
error between the controller command and the current
plant state. This feedback system, the closed-loop sys-
tem, is analyzed with respect to stability, robustness and

19

20

CONTROL SYSTEMS

performance. Stability and robustness capture the damp-
ing of the system, its ability to converge to goal even
in presence of noise in the feedback loop. Performance
evaluates the speed of convergence and the shape of
the feedback response (overshoot, number of oscillations,
settling time, ...).

DISCRETIZATION This controller is meant to be em-
bedded in an onboard computer and to interact with the
system sensors and actuators. Depending on the speed
of each of these devices, and the available computing re-
sources, an appropriate rate of discretization is chosen.
For example a typical control law for an aircraft runs at
100Hz. But a trajectory planning controller may run at a
much lower speed.

COMPLETE CONTROLLERS Once a discrete controller
has been obtained for a linearized version of the plant,
a more global one is obtained by combining local con-
trollers. One of the approaches is to synthesize a con-
troller for each linearization point while keeping the
same controller synthesis method. Since the previous
steps characterized single input single output (SISO) sub-
controllers, it is easy to switch the controller depending
on the input value. When considering an intermediate
value between two linearization, one can characterize the
linear interpolation of controller gains, the coefficients
synthesized for each local controller.

Moreover, additional constructs are introduced to ac-
count for divergence of integrators in case of a break in
the closed-loop system. Saturations or Anti-windups (cf.
§ 12) act as such and enable the output to remain within
given bounds.

INTEGRATION: SAFETY ARCHITECTURE In critical
applications the controller will not be directly embed-
ded on the target platform but rather used in conjunction
with a safety architecture used to obtain a fault tolerant
system.

This safety architecture is usually identified before the
design of the controller itself since it identifies early in
the process development the potential causes of failure
and their impact on the various systems. These failures
can range from faulty parts such as sensors generating
false data, a transient error such as a single event upset
(SEU) or a multiple bits upset (MBU), or a bug in soft-
ware.

This leads to local impacts at the control level with the
fusion of input data in case of redundancy in the sensors:
validators, alarm detection, voters, The alarm detec-
tion mechanisms typically check that the read value lies
in an expected range and emit different kinds of alarm
signals when a value outside the legal scope is detected.

Figure 3.2 presents an example of such architecture
with triplicated input sensors.

Figure 3.2 Example of a controller with two triplicated
inputs

inga —f Sat . .
‘ ing_d ing_d

. Triplex

l‘rlob —1 Sat . — i i
| mo

ingc —j Sat I ing_v u
! - Controller - T

in;a —j Sat iV !
‘ L] ol |

inib —j Sat I‘lp e :
. mq I
| |

injc —f Sat I 1
1 |
| |
| |
| |
| |
fffffffff System - - - - - -

At the system level, more complex safety patterns al-
low the execution of the controller in a distributed fash-
ion, on multiple computers. These different computers
may also run different implementations, to account for
hardware (CPU or RAM) and software errors. For exam-
ple, a first pattern can sequence redundant implemen-
tations with only a single one in control as shown on
Figure 3.3. Another one, called COM/MON for Com-
mand /Monitor is based on the notion of computer-local
observers that detect whether the current output is valid
or not. In case of local failure the primary computer
leaves the command to the secondary one.

Figure 3.3 Triplication of the controller

— safety logic

Ok]

out;
Okz \

Controller 2

Controller 1

outy

Ok3

Controller 3

outs

CODE GENERATION AND v&v Last, once the com-
plete design has been done, the final code is created.
As developed later in Chapter. 11 the code can be auto-
matically generated from model description, or directly
coded in C code, for example.

This code is very specific to control system. It consists
mainly of an endless loop, acquiring input data, perform-
ing one step of computation, propagating orders to actu-
ators and waiting the next clock tick.

C

while (true) {

read_sensors (); // read input data
ctl(*state, in);

actuators (*state); // send orders
wait_next_tick();

}

in =
*state =

At the verification level, in addition to functional re-
quirements such as the validity of the safety architec-
ture or the alarm mechanism, one needs to prove that
the generated code will satisfy the timing constraints
imposed by the discretization, as well as prove the ab-
sence of runtime errors, such as overflows, that will im-
pact drastically the global behavior of the controlled sys-
tem, as it happened in the failure of the first Ariane 5
flight [STAMg6].

3.2 A SIMPLE LINEAR SYSTEM:
DAMPER

SPRING-MASS

Figure 3.4 Motivating example: a spring-mass damper

u m
‘_p
Tkg
IN/m
y
Controller

Yd

When considering linear systems: plant and controller,
we reuse the running example of [Fério; FWPgo]. This
dynamical system is composed of a single mass and a
single spring.

1 This is explained with more details in Chapter. 7

3.2 SPRING-MASS DAMPER EXAMPLE

3.2.1 Continuous dynamics: plant and lead-lag controller

First the plant dynamics is characterized by the follow-
ing ODE:

a _fo
UL

where x,, denotes {z z} the position and velocity of the

0

e (27)

Xp +

mass with respect to the origin. The sensor of the plant
provides the position z.

The control is performed by a lead-lag controller ob-
tained through classical control recipes where the input
yc is defined as the saturation in the interval [—1,1] of
Yy —yq with y the measure of the mass position and
lyal < 0.5 a bounded command.

The transfer function of the synthesized controller is:

s+1 s/5+1

uls) = =128 =57 S50 1Y€

(s) (28)

The transfer can be expressed a continuous linear con-
troller using a realization® of the above transfer function:

100
Xe + SAT(yx —yi)

4 _[-501 50
at ¢

1.0 0.0

(29)
w=[564.48 0] xc — 1280

where SAT(x) denotes the saturation of signal x to 1:

—1 when x < —1
SAT(x) =< 1

X otherwise

when x > 1

3.2.2 Discrete plant dynamics

When producing the embedded controller, the continu-
ous model is discretized at a given rate of execution. This
leads to embedded runtime systems which are executed
on a platform at the given rate. The rate is chosen ac-
cording to both the requirements in terms of hardware
— one cannot run heavy computation at 1GHz — and in
terms of performance — a controller feedback every sec-
ond may be too slow to control an unstable system such
as an inverted pendulum. Typical rate to maintain an
aircraft stability is 100Hz.

In order to enable the later analyses, we also provide
a discretized version of the plant dynamics. Both con-
troller and plant have been discretized at an execution
rate of 100Hz.

21

22

CONTROL SYSTEMS

The plant is described by a linear system over the state
variables p = [xp1 Xp2|T € R?, characterized by the ma-
trices Ap € R?2*2, Bp € R'*2 and Cp € RZ*! where
u denotes the actuator command of the plant and y the
projection of the plant state p over the y sensor:

Pk+1 Appk + Bpuk (30)
Yk+1 = Cppitr
with
1 0.01 0.00005
Ap = Bp = Cpi= [1 0}
—0.01 1 0.01

3.2.3 Discrete controller dynamics

The controller without saturation is similarly described
by a linear system over the state variables ¢ =
[Xc1 xc2]T € R2, controlled by both the feedback from
the plant sensors y € R% and the user command
Yya € R, and parametrized by the four real matrices
Ac € R?*%2, Bc € R'%2, Cc € R?*! and D¢ € R:

ck+1 = Acck+Bclyk —yax) (31)
U1 = Ccexy1 +Del(Yk+1 —Yaks1)
with
Ac = 0.4990 —0.05 Beim 1
0.01 1 0
Cc = [56448 0] D = —1280

These numerical values have been obtained by a first-
order EULER discretization of the continuous controller.

3.2.4 Closed-loop system

The closed-loop system can be characterized and evalu-
ated. Fig. 3.5 presents the impulse and step response of
the closed-loop system.

Figure 3.5 Impulse and Step response for the controlled
spring mass damper.

Impulse Response Step Response

P
Ampituge

5 0
0 01 0z 03 04 05 08 07 08 08 1 0 01 02 03 04 0s 06

Let us first consider a version of the closed-loop sys-
tem, without saturation:

Figure 3.6 Closed-loop system.

I
! c CcyC [
. + X = Ax{ + B€e
lle‘ O k+1 k k

€x U = CCX]C{-FDCek

|

1

|

‘ P _ P

! Xpp1 = APxp + BPuy Uk
- YKy = CPxR

|

|

System without saturation

The resulting closed-loop system is defined by consider-
ing Equations (30) and (31) at once. It can be expressed
over the state space x := [c p]T as

Xk41 = Axi +Byg x (32)
with
A | Ac B.Cp
|BpCc Ap +BpDcCp
0.499 —0.05 1 0
B 0.01 1 o 0
0.028224 0 0.936 0.01
| 5.6448 0 —12.81 1
—1
B:= —Bc = 0
—BpDc 0.064
12.8

From that formalization, it is possible to characterize
a virtual implementation of the closed system as a pro-
gram. Figure 3.7 displays such code. A control flow
graph analysis such as our KLEENE based graph recon-
struction abstract domains [RG13] can extract the associ-
ated system representation of Figure 3.8.

Figure 3.7 Analyzed code for the closed-loop system.

xcl = xc2 = xpl = xp2 = 0;
while (1) {
yd = acquire_input();
assert(yd >= -0.5 && yd <= 0.5);
oxcl = xcl; oxc2 = xc2; oxpl = xpl; oxp2 = xp2;
xcl = 0.499 * oxcl - 0.05 * oxc2 + (oxpl - yd);
xc2 = 0.01 * oxcl + oxc2;
xpl = 0.028224 * oxcl + oxpl + 0.01 * oxp2
- 0.064 * (oxpl - yd);
xp2 = 5.6448 * oxcl - 0.01 * oxpl + oxp2
- 12.8 * (oxpl - yd);
wait_next_clock_tick();

Remark 3 This corresponds to the system presented in Equa-
tion (32) with the input yq bounded by 0.5 (Jyqx| < 0.5 for
all k).

3.2 SPRING-MASS DAMPER EXAMPLE

Figure 3.8 Control flow graph for code of Figure 3.7.

Xe1:=0
0 Xe1 :=0.499%xc1 —0.05Xc2 +Xp1 —Ya
Xce2 1=
true - 2 Xce2 :=0.01x¢1 + Xc2
Xp1:=0 —05<yq <05

=0 Xp1 :=0.028224xc1 +xp1 +0.01xp2 —0.064 (xp1 —Yya)
< :> P2~ O Xp2 1= 5.6448xc1 — 0.01xp1 +Xp2 — 12.8 (xp1 —Ya)

Figure 3.9 Control flow graph for the system with a saturation.

Xc1 :=0499%:.17 —0.05%xc2 + 1
—05<yq <05 Xc2 :=0.01xc1 +Xc2

’

Xp1 —Ya > 1 Xp1:=0.028224xc1 +%xp1 +0.01xp2 —0.064 x 1
Xc1:=0 Xp2 :=5.6448%xc1 —0.01xp71 +xp2 —12.8 x 1
Xc2 =0
true
Xp1 =0

Xc1 :=0499%xc1 —0.05%c2 +Xp1 —Ya
(‘/\ xp2 =0 —05<yq <05 X2 i= 0.01Xe1 + Xe2
—1<xp1 —ya <1 ’ Xp1 1= 0.028224 %1 +xp1 +0.01xp2 —0.064 (xp1 —ya)
Xp2 :=5.6448%xc1 —0.01xp1 +xp2 —12.8 (xp1 —Ya)

Xc1 :=0499%xc7 —0.05%xc2 — 1
—0.5<yqa <05 Xe2 (= 0.01x¢7 +Xxc2

’

Xp1 —Ya < —1 Xp1 :=0.028224xc1 +Xxp1 +0.01 xp2 —0.064 x (—1)
Xp2 :=5.6448%xc1 —0.0Txp1 +Xxp2 —12.8 X (—1)

System with saturation

1 o]
T

Similarly, the more realistic setting integrating the satu- 5. Be | _ 0 C- 01 _ |0

ration over (y —yq) will be defined by the system: "~ |BpDc —0.064 e 1
—12.8 0

Xk+1 = Axy + BSAT(Cxx —yq k) (33) and SAT is defined as
where -1 ifx<—1
SAT(x) = if —
0499 005 0 0 () x H-lsxsl
A | Ac 0 0.01 1 o 0 b ifx>1
"~ |BpCc Ap 0.028224 0 1 0.0l

The control flow graph extracted by our analysis is pre-
5.6448 0 —0.01 1 sented in Figure 3.9.

23

PartII

INVARIANT SYNTHESIS: CONVEX-OPTIMIZATION BASED ABSTRACT
INTERPRETATION

DEFINITIONS - BACKGROUND

This part focuses on the computation of non linear nu-
merical invariants for discrete controllers. As mentioned
in the motivation part, controllers are usually designed
in a continuous setting and then discretized; in both
cases a semantics in the real field is assumed. The se-
mantics of interest, in this context, is then a discrete dy-
namical system with a real semantics. Then, those sim-
ple controllers are combined with simple mechanisms
such as switches, interpolation of gains, saturations, anti-
windups, etc. In order to be able to analyze systems as
complex as the ones embedded in aircraft, we extend the
considered semantics to account for piecewise behaviors.

Regarding the analysis of those semantics, we were
initially motivated by applying abstract interpretation
on controller programs. We then experimented a long
known result for control people: “stable linear con-
trollers admit quadratic Lyarunov functions”. However,
most state-of-the-art abstract domains were abstracting
states through linear properties. Furthermore, the cur-
rent trend was to compute even weaker abstractions,
such as octagons [Mino6], to control the complexity of
the analyses and obtain non trivial results in reasonable
time. When manipulating non linear abstractions, the
classical KLEENE based approach to fixpoint computation
does not seem to be very efficient or appropriate: non lin-
ear subspaces were not easily fitted with a lattice struc-
ture — in other words a least upper bound operator was
not as obvious as it is for finite sets of convex polyhe-
dra or intervals. Following the path of control scientists
we chose to rely on numerical tools, in our case convex
optimization, to solve the so-called Lyapunov equations.

The current chapter presents our formalisms to de-
scribe discrete dynamical systems and gives an overview
on the convex optimization tools and methods we used
to compute our analyses. The following chapters de-
velop our contributions.

4.1 DISCRETE DYNAMICAL SYSTEMS

A dynamical system is a typical object used in control
systems or in signal processing. In some cases, it is even-
tually implemented in a program to perform the desired
feedback control to a cyber physical system.

Definition 4.1 (State space) Let L be the state space, a set
of states. A dynamical system computes an infinite sequence
of states L starting from an initial state init € X!™t C £,
The dynamics of the system is defined by a function f : £ — L.
In some cases, the dynamics is also perturbed — or controlled,
depending on the point of view — by an external signal, ie. se-
quences of values. Let us call them inputs w € X'™. The
system map is then defined as f : £ x X'™ — Z. Let I be the
state-input space defined as £ x X'™.

Definition 4.2 (Trajectory) A trajectory of the system is de-
fined by an initial state init € X'™* and an infinite sequence
of inputs (uy)y>1 € xIm;
xp = init Xnt1 = f(xn, un)

Language-wise, model based languages such as Lus-
TRE [Hal+91], ANSys SCADE, or MATLAB SIMULINK pro-
vide primitives to build these dynamical systems or con-
trollers relying on simpler constructs. In terms of pro-
grams, such dynamical systems can easily be imple-
mented as a while true loop initialized by the initial state
and performing the update f. The simplest systems are
usually directly coded in the target language, eg. C
code, while more advanced systems are compiled through
autocoders: LUSTRE compilers, ScAbE KCG or MATLAB
ReaL TiMme WorksHOP (RTW).

Let us sketch a typical implementation: the variable u
is being read from an external source, eg. as a mutable
variable or an IO call.

C

x = i;
while true {
u read () ;
x f(x, in);

}

Most systems perform an action at each computation
step. In case of controllers, the action typically moves
some actuators in order to impact the controlled system.
This generates an output signal , a sequence of produced
values y € XOUt. This output is computed by a function
g: X x X xOut,

27

28

DEFINITIONS — BACKGROUND

X = 1i;

while true {
read () ;

f(x, u);

glx, u;

in =
X

y

}

A discrete dynamical system is then defined by the
following sets £, X"t XIn XOut and functions f, g.

In the following, we specialize this description depend-
ing on the considered sets and functions: linear systems,
piecewise linear systems, and polynomial ones.

Again, these descriptions are provided at the model
level or could be extracted from the implementation as
we did for linear systems [RG13]. In order to simplify
this extraction phase, or to understand it more easily,
we assume without loss of generality that the analyzed
programs are written in Static Single Assignment (SSA)
form, that is each variable is initialized at most once.

As a last remark, since we are first interested only in
the internal state x of the system, the output part is often
neglected.

4.1.1 Linear systems

This simplest systems are composed of a single loop and
a linear update. While they could seem over simple to
the non expert, most controllers are linear, from rocket
stabilization controllers, to aircraft controllers or satellite
attitude and orbital control systems (AOCS).

The basic control literature mentions proportional con-
trollers (P), proportional derivative (PD), or proportional-
integral-derivative (PID) ones. In all cases, these are lin-
ear controllers. In order to obtain more precision, the
order of the linear controller, ie. the size of its state space
L could be extended, considering a more complex sys-
tem.

A linear controller is typically implemented by the
following code, for a system with £ = R? and X" =
XxOut _ R.

4 &

xo = ig;

X1 = i3

while true {
in = read();
nxo = app * X0 * apl * x1 + bpoo * inj
nxj; = ajp * xo + ayj1 * x1 + bjp * in;
y = coo * X0 t cjp * x7 + doo * in;
X0 = nXg;
X1 = nXi;

}

\ J

In all systems, assignments of variables are performed
using only parallel assignments. At the implementation

level, this imposes to keep a copy of the variable values
before the final updates x; = nx;.

Definition

In this first setting, a linear system is defined over a sys-
tem state in £, represented as a vector of R¢, with inputs
in XI™, represented as a vector of R™, and by a pair of
matrices A € R4X4 B € R4X™, Its output in XOU, rep-
resented by a vector of R°, is computed similarly by a
pair of matrices C € R°*4 D € ROX™,

Such system is defined by the two functions:

f : RYxR™— R4
(x,u) = Ax + Bu
g : RExR™ = RO
(x,u) = Cx+Du

Linear Controller Example

Let us consider the following Linear Quadratic Gaussian
(LQG) Regulator:

CH—
(double x[3] = {0, 0, 0};

double nx[3];
double in;
while (1) {
in = acquire_input ();
nx[0] = 0.9379*x[0] - 0.0381*x[1] -
0.0414*x[2] + 0.0237*in;
nx[1] = -0.0404*x[0] + 0.968*xx[1] -
0.0179*x[2] + 0.0143*in;
nx[2] = 0.0142*xx[0] - 0.0197*x[1] +
0.9823*x[2] + 0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx
[2];
wait_next_clock_tick () ;
10 ms for instance

// a tick every

This characterizes the following dynamical system.

Example 3 (Linear system example) Let £ = R3,
XInit — 1(0,0,0)}, and X'™ = R, with the following ma-
trices A and B:

0.9379 —0.0381 —0.0414 0.0237
A= |-0.0404 0968 —0.0179 B:=10.0143
0.0142 —-0.0197 0.9823 0.0077

4.1.2 Switched linear systems: constrained piecewise affine
discrete-time systems

Most systems are not purely linear. The programs or
systems we consider here are composed of a single loop
with possibly a complicated switch-case type loop body.

Our switch-case loop body is supposed to be written as
a nested sequence of ite statements, or as a switch:

(— _ @

X = i
while true {
in = read();
switch
c1 — x = f1(x, in);
cy; — x = fy(x, in);
c3 — x = f3(x, in);
_ — x = f4(x, in);
}
\ J

Moreover, we suppose that the analyzed programs are
written in affine arithmetic, both the switch conditions
ci and the associated update functions f;. Consequently,
the programs analyzed here can be interpreted as con-
strained piecewise affine discrete-time systems.

Polyhedral Partitioning of &

The term piecewise affine means that there exists a poly-
hedral partition {X!,i € T} of the state-input space £ C
R4T™ such that for all i € I, the dynamic of the system
is affine and represented by the following relation for all
k € IN:

if (x1c, ux) € X5, Xkl = Alx, +Bluy +bh ke N (34)

where AT € R4%4, Bl € R¥*™ and b' € RY. As in
the linear case, the variable x € R9 refers to the state
variable and u € R™ refers to some input variable.

We define a partition of the state-input space as a fam-
ily of nonempty sets X' such that:

UX =L Vvijel i#jX'nX =0.
iel

(35)

In the current setting, since X' are convex polyhedra,
we characterize polyhedral partitions of the state-input
space. From now on, we call X* cells.

Affine conditions: strict and weak affine convex constraints

Cells {X'};cy are convex polyhedra which can contain
both strict and weak inequalities.

Definition 4.3 (Cells as convex polyhedra) Cells can be
represented by a ny x (d +m) matrix Tt and a vector ¢t €
R™:. We denote by Tt the set of indices which represent strict
inequalities for the cell X', denote by T¢ and cl the parts of Tt
and c* corresponding to strict inequalities and by T}, and ci,
the one corresponding to weak inequalities. Finally, we have
the matrix representation given by Formula (36).

Xt = { <X> e R4F™ T} (X) <ci, T, <X> < c';v}
u u u

(36)

4.1 DISCRETE DYNAMICAL SYSTEMS 29

We use the following notations: y < zis a partial order
built as the piecewise lift of the total order over reals to
vectors, meaning that for all coordinates 1, y; < z;. The
other relation y < z is the strict version, meaning that
for all coordinates 1, yy < z;.

While the approach we propose can consider arbitrary
partitioning of the system dynamics into convex cells, we
infer automatically the cell’s definition using the guards
of the switch case constructs.

Homogenization: encoding affine system as a linear one

In order to simplify the following analyses, it is easier to
consider a linear system rather than an affine one. There-
fore, we define a homogeneous flavor of the system dy-
namics: instead of considering a system state in R¢ with
inputs in R™, we manipulate system states in R'+d+m,
We will need homogeneous versions of update functions
and thus introduce the (1+d+m) x (14 d + m) matrices
F! defined as follows:

01><m

1 O]Xd
. B

Al (37)

0 Om><d Idmxm

where Id x m denotes the identity matrix of dimension
m X m.

The system defined in Equation (34) can be rewritten
as (1,xx41, Wk 1)T = FY(1,x11,u)T. Note that, in or-
der to obtain a square matrix, we introduce a "virtual"
dynamic law uy 1 = uy on the input variable in Equa-
tion (37). It will not be used in the following analyses.

Let p = card(I), the global system can be defined as:

(T, %1, W)T =F1H (T x,wi) T we (xg, wi) € X!

(1, %K1, W 1) T = F2 (1, x,wi) T we (%, wi) € X2

w. (x5, uk) € XP
(38)

(1/Xk+1/uk+])T = Fp(],Xk,Uk)T

Piecewise Linear Discrete Dynamical System Example

Let us consider the following program. It is consti-
tuted by a single while loop with two nested condi-
tional branches in the loop body, characterizing four
cells.

30 DEFINITIONS — BACKGROUND

2= (_
((x,y)€ [-9,9] x [-9,9]; O (2 7

while (true) ’
0X=X; C% -5
oy=y;
read(u); \\ue€ [-3,3] 4 8 5
if (-9*ox+7*y+6*xu<b){ T&v: 0 0 1
if (-4*ox+8*0y-8*u<4d){ 0 0 -1
x=0.4217%0x+0.1077*0y+0.5661%u;
y=0.1162%0x+0.2785%0y+0.2235*u-1;
} €2, = (—433)T
else { \\4*o0x-8*oy+8*xu<-4
x=0.4763*%0x+0.0145%0y+0.9033%*u;
, y=0.1315%0x+0.3291%0y+0.1459%u+9; 1 o 0 0
} B —4 0.2618 0.1177 0.0868
else { \\9*ox-7*y-6*u<-5 4 0.4014 0.4161 0.6320
if (-4*ox+8*oy-8*u<4){ 0 0 0 1
x=0.2618%0x+0.1107*0y+0.0868*u-4;
. y=0.4014%0x+0.4161%0y+0.6320%u+4; Ts3:(—4 3 —8>
else { \\4*ox-8*oy+8*xu<-4 ’
x=0.3874%0x+0.00771*0y+0.5153%u+10; 3 =4
y=0.2430%0x+0.4028%0y+0.4790%u+7; s
b 9 -7 —6
by To=10 0 1
| J/
0 0 —1
The initial condition of the piecewise affine system is c2, =(=533)7
(x,y) € [-9,9] x [=9,9] and the polytope where the input
variable u lives is U = [-3, 3]. : 0 0 0
d'We can revx:irlte th}S 1program as a piecewise affme o 10 0.3874 0.0771 05153
1scr'ete—t1me. ynamica systems using our notations. 7 0.2430 0.4028 0.4790
We give details on the matrices T and T, and vectors c§ o o o 1
and c;, (see Equation (36)) which characterize the cells
and on the matrices F' representing the homogeneous ? -7 —6
version (see Equation (37)) of affine laws in the cell X*. T = 4 -8 8
0 0 1
Example 4 (Piecewise linear system example) Let © = 0 0 -1
IRZ, XInlt - [—9, 9] X [_91 9}/ XIn - [_3/ 3]/ Card(][) = 4
with the following matrices and vectors: ch=(-5-433)7
1 0 0 0 . . .
4.1.3 Piecewise Polynomial Systems
Fl— 0 0.4217 0.1077 0.5661
-1 0112 0.2785 0.2235 A last flavor of considered systems is the further exten-
0 0 0 ! sion to polynomial constraints and update: piecewise
poly p p
R 7 6 polynomial discrete-time dynamical systems. Let us first
*o\4 3 -8 recall some definitions of polynomial functions in R9.
. e e . . d .
¢l = (54T Definition 4.4 (Polynomial functions of R%) A function

f from RY to R is a polynomial if and only if there exists
TJV_(O 0 1) K€ N, afamily (e | & = (&1,...,0q) € N9, |of =

o1 +...+ogq < k) such that for all x € RY, f(x) =
> al<k CaXy ' .. xgq%. By extension a function f : RY —

R¢ is polynomial if and only if all its coordinate functions are
polynomials. Let R[x] stands for the set of d-variate polynomi-
0 0 0 als.
0.4763 0.0145 0.9033
0.1315 0.3291 0.1459
0 0 1

P2 = We focus now on programs composed of a single loop

with a possibly complicated switch-case type loop body.

S 0 O =

@

rx c XInit;
while true {
case (r}(x)<#0 and and rL](x)<#O):
x = TH(x);
case
case (T‘g (x)<*0 and and Tll,l(x)<#0):
x = TH(x);
}
| J/

Basic semialgebraic set

In this setting, conditions are expressed as a conjunction
of weak polynomial inequalities r(x) < 0 or strict poly-
nomial inequalities r(x) < 0. These functions, describing
guards, are real-valued polynomials of the state-input
space: £ — R. Such conditions characterize a basic semi-
algebraic set. Recall that a set C C R4 is said to be a basic
semialgebraic set if there exist g1, ..., gm € R[x] such that
C={xeRd| gj(x) <# 0,vj = 1,...,m}, where <*is
used to encode either a strict < or a weak < inequality.

Semialgebraic Partitioning of £

These basic semialgebraic sets of £ = R4™™ act as the
cells we used in piecewise affine systems. They charac-
terize a partition of the state-input space L. Let I be the
set of cells X1, ie. basic semialgebraic sets.

Xt={xeRdm™ /\ r§j<0 /\ ringo

1<isns;

(39)

where ns; and nw; denote, respectively, the number of
strong and weak polynomial constraints in the semialge-
braic set X*.

Cells X' satisfy Eq. 35: they form a semialgebraic parti-
tion of £. As a result, any element of Z belong to exactly
one cell Xt

Polynomial updates

Assignments associated to each cell X' with i € T are
defined by polynomial functions T*.
if xic € XY, xgeq1 = THxa) - (40)
For systems_without input, we have Tt a d-variate
polynomial: T* € R[x]; in case of systems with input
in R™, T' is a polynomial function T* € R4+™ —
R¢, where each coordinate function is a polynomial
R4+mM _y R4,

4.1 DISCRETE DYNAMICAL SYSTEMS

Definition of a Piecewise Polynomial System (PPS)

We assume that I is finite and that the initial condition x
belongs to some compact basic semialgebraic set XI™it
satisfying Eq. (39). For the program, X!t is the set
where the variables are supposed to be initialized in.

Definition 4.5 (Piecewise Polynomial System) A con-
strained polynomial piecewise discrete-time dynamical system
(PPS) is the quadruple (X', X" T £) with:

o xInit ¢ ¥ C R4 js the compact basic semialgebraic set
of the possible initial conditions;

o XI™ C R™ is the basic semialgebraic set where the in-
put variable lives;

o £ = {X\,i € I} is a partition as defined in Equa-
tion (35);

o L :={TY,i € 3} is the family of the polynomials from
RA+™ to RY, w.rt. the partition T satisfying Equa-
tion (40).

Piecewise Polynomial System Example

From now on, we associate a PPS representation to each
program of the form described earlier.

Let us consider a concrete example. The program be-
low involves four variables and contains an infinite loop
with a conditional branch in the loop body. Each branch
update is defined by a polynomial function. The parame-
ters cyj (resp. di;) are given parameters. During the anal-
ysis, we only keep the variables x; and x, since oldx;
and oldx; are just memories.

&

p
x1,%2 € [ay, az] x [by, b2];

oldx; = x1;
oldxy; = x3;
while (-1 <= 0){
oldx; = x7;
Oldxz = X2
case : oldxy~2 + oldx,"2 <=1

X1 = ¢c11 * oldx;~2 + c¢y7 * oldx,"3;
X2 = €21 * oldx1~3 + cy» * oldx,"2;
case -oldx;~2 - oldx;"2 < -1
x1 = dj; * oldx1~3 + dj2 * oldx,"2;
x2 = dz; * oldx1~2 + dj; * oldx,"2;
}
4 J

Example 5 (Piecewise polynomial system example)

The associated PPS corresponds to the input-empty quadru-
ple (XMt 0, (X1, X2}, {T',T2}). In this case £ = Z. We have
the set of initial conditions:

XM = [aq,a;] x [by,ba],

31

32

DEFINITIONS — BACKGROUND

the partition verifying Equation (35) is:

X'={xeR?[x}+x3 <1},
X2 ={x e R?| —x% —x3 < -1},

and the polynomials relative to the partition {X',X?} are:

2 3
T (x) = < C11X7 +C12%3)

Cz]X? +C22X%
T2(x) = (

4.2 ELEMENTS OF (APPLIED) CONVEX OPTIMIZA-
TION

and

dqq X? + d]zX%
doq X% + dsz%

This section intends to provide elements to the computer
scientist to understand basic principles of convex opti-
mization and the typical approaches to manipulate such
optimization problems. We refer the interested reader to
the excellent book "Convex Optimization" by Boyp and
VANDENBERGHE [BVo4] for a more thorough introduction.
Other valuable references include Numerical Optimiza-
tion by NocepaL and WRiGHT [NWo6] and "Eléments
d’optimisation différentiable” by GiLBERT [Gil13].

In the following we focus on optimization problems of
the form

min fo(x)
, (41)
s.t. fi(x) < by forie 1, m]
Here x € R™ is the optimization variable. fy €

R™ — R denotes the objective function and the functions
fi € R™ — R, with associated bound bj, the constraints.
A solution x of (41) is feasible if it satisfies all con-
straints. It is optimal if it is smallest of all feasible ones.
An optimization algorithm is a numerical tool that
computes or approximate such feasible optimal solution.

4.2.1 Convex Conic optimization

In the case where the only part of the problem is the
objective function, i.e. no constraint is provided, then
classical methods such as gradient, conjugate gradient or
NewTON methods will iteratively approximate the solu-
tion. These algorithms compute a sequence of points of
R™ by updating the previous point with a local descent
direction dj obtained by considering the derivative of
the objective function (aka. the gradient).

X1 = Xk + e di

Here oy denotes the step size. Both oy and dy de-
pend on the current point xj and typically rely on f}(xy)
(aka. Vf(xy)). KanTorovicu’s theorem characterizes
conditions imposed on f(to guarantee the existence of a
unique solution and the convergence to it for NEWTON’s
method. These constraints amount to provide a bound
on the variation of the function, its LIPSCHITZ constant.

Solving a general case of optimization problems with
constraints is still an open question. However, a solution
to guarantee the existence of such bound is to constrain
the functions fy, and fi, Vi € [1, m] to be convex. We re-
call that a function f is convex when Vo, 3 > 0, + 3 =
1,f(ax + Py) < af(x) + Bf(y). In that case any local
optimal point is also a global optimal one. An even
stronger condition would be to require it to be linear,
ie. flax+ By) = af(x) + Bf(y).

Convex optimization is then a restriction of general op-
timization to the following problem:

fo(x)
s.t. fi(x) <O0forie[l,m]

aij =bj forj e [1,p]

min

(42)

where f,0, f; are convex functions. Note that equality
constraints have to be affine: they correspond to a con-
junction of two convex inequalities: f(x) < 0Af(x) > 0;
the only solution is to require f to be affine or linear.

A well known case of this convex optimization prob-
lem is linear optimization or linear programming, in
which a linear objective function fy is optimized while
satisfying the linear constraints f;.

This notion of convex optimization can be further
extended to more general convex sets: convex cones.
A cone X is a subset of R™ closed by positive scal-
ing: ¥x € X,0 > 0,0x € X. A convex cone satis-
fies: Vx,y € X,07,02 > 0,01x+ 02y € X. Such con-
vex cone can be fitted with partial order < such that
vx,y € X, (x 2 y) = (y—x € X). By extension a function
convex in the cone is K-convex.

In that setting a convex conic optimization problem is
defined as

min fo(x)
fi

s.t.

x) <g 0 forie [1,m] (43)
b

Ax =

where fo € R™ — R is convex, f; € R™ — X are X-
convex functions, and A € RP*™.

As a first specialization, we speak about linear prob-
lems when fy, f; are linear. Each function f can then
be described as a scalar product (-,-) when real valued,
or as a product by a matrix when 3m, X C R™. In the
following we denote the function fy by a constant vector

c: fo(x) = (c,x), and the functions f; by the pair Ai, b;
such that fi(X) = AiX — bi-

min (c,x)
s.t. Aix—bi g Oforie[l,m] (44)
Ax=D

Let us now focus on special cases depending on the
cone X considered.

Polytopes

When X = R™, a famous case is the optimization over
closed polyhedra. Each constraint characterizes a sub-
space of R™. The feasible set being the intersection of
these subspaces, a convex set. The goal is to optimize a
linear function over this bounded convex set. In case of
bounded feasible set, a finite number of vertices charac-
terize the polytope. Since the optimal solution is neces-
sarily on a vertex, the simplex method enumerates these
vertices and compute the optimal one.

Positive semidefinite cone

Let us consider the set S™ of symmetric matrices of
RTLXT‘L:
" ={Xe R M™IX=XT}

The set S™ of positive semi-definite matrices is the sub-
set of matrices of S™ admitting only positive eigenvalues.

St ={XeS"[X >0}
Equivalently, we have:
St ={XeS"|vx e R™,xTXx > 0}

This set is a convex cone: it is closed by addition and
external multiplication by a positive scalar. Optimizing
over this cone leads to problem of the form:

min (c,x)
.t Fi+G =<0
s PEEUSEE (45)
ie[1n]
Ax=D

Here x is a vector and matrices G, Fy,...,Fn € 5. The
inequality is known as a Linear Matrix Inequality (LMI).

Indeed, we can easily have unknown matrices
since a matrix A € R™™ can be expressed as
Z?;J,ji? Ai;EY, where EY is the matrix with zeros

4.2 (APPLIED) CONVEX OPTIMIZATION

everywhere except a one at line i and column j. Like-
wise, multiple LMIs can be grouped into one since A =

0B = 0 is equivalent to O] > 0.

B

Efficient solvers for semidefinite programming (SDP),

based on interior point method algorithms are available

such as Mosek [AAoo], SDPA [Yam+10] or CSDP [Borgg].

For more details about SDP, we refer the interested
reader to [VBg6].

Sum-of-square polynomials

Let R[x] be the set of multivariate polynomials of R™
and R[x],, its restriction to polynomials of degree at
most 2m. We denote by Z[x] C R[x] the cone of sums-of-
squares (SOS) polynomials, that is

Iix] = { Z q7, with q; € R[x] }

1

(46)

The existence of an SOS representation for a given
polynomial is an approach to Positivestellensatz witness,
a sufficient condition to prove its global nonnegativity, ie.
Vp(x) € Z[x], p(x) = 0. The SOS condition (46) is equiva-
lent to the existence of a positive semi-definite matrix Q
such that

p(x) = ZT(x)QZ(x)

where Z(x) is a vector of monomials of degree less than
or equal to deg(p)/2.

Searching for a positive polynomial of a given degree
d = 2m amounts to solve a semi-definite optimization
problem and synthesizing the matrix Q > 0 satisfying
the Eq. 47.

(47)

Example 6 Consider the bi-variate polynomial q(x) := 1+
x% —2x1%2 —i—x%. With Z(x) = (1,x1,x2), one looks for a
semi-definite positive matrix Q such that the polynomial equal-
ity q(x) = Z(x)T Q Z(x) holds for all x € R?.

The matrix

satisfies this equality and has three nonnegative eigenvalues,
which are o, 1, and 2, respectively associated to the three eigen-
vectors eg := (0,1,1)7, e7 :=(1,0,0)T and e, := (0,—1,1)T7.
(e1exey) = ((1) (1) ?) and
0—11
D = (é g §), one obtains the decomposition Q = LD !
and the equality q(x) = (LZ(x))D (L "Z(x) = o(x) =
14 (x2 —x7)z,for all x € R?. The polynomial o is called a
SOS certificate and guarantees that q is nonnegative.

Defining the matrices L :=

33

34

DEFINITIONS — BACKGROUND

A SOS optimization problem can be defined as
min (c,x)
s.t. pi(x)

e Xlx] forie[1,m]
Ax=D

(48)

SOS programming solvers provide a front-end easing
the translation of a SOS-based optimization problem into
SDP. Each sum-of-square polynomial constraint p; is as-
sociated to a symmetric positive semi-definite matrix Qj.
By identification, coefficients of the matrices Q; are asso-
ciated to equality constraints depending on the expres-
sion characterizing the polynomial p;. Once the SDP
problem is solved, its solution is used to rebuild the poly-
nomial problem and provides the positive certificate of
the SOS problem (48).

The Matlab toolbox Yalmip [Lofo4] provides such a
frontend.

More references regarding SOS based polynomial
optimization can be found in ParriLo [Paro3] and
LassERRE [Lasog] works.

4.2.2 Convex optimization tools

When manipulating optimization problems, there are
few standard operations that enable to relax a problem
into a solvable one. We present here of few of those tech-
niques.

Convexifying constraints: S-procedure, Lagrangian relaxation

When facing non convex constraints such as implication
between positive definite matrices

Pi >0 = P, >0

we can express a sufficient condition in a convex way.
The S-Procedure provides such as relaxation.

Theorem 4.6 (S-Procedure) For any P,Py,...,P €
R™ ™ and b, by,...,bx € Rand b,b’ € R, the following

HT],...,TkE]R,

(/\]f:l Ty = 0) A\ [_OP l(j —Z}<=1 Ti [_:i :1 =0

is a sufficient condition for

3
¥x € R™, (/\ xTPixgbi> = xTPx <b. (50)
i=1
More generally Lagrangian relaxation uses a similar
approach to express a constraint in the objective func-
tion. It consists in adding to the objective function the

inner product of the vector of constraints with a posi-
tive vector of the euclidean space whose dimension is
the number of constraints. Let us consider the following
simple linear problem

min (c,x)
xER (51)
s.t. ax <b

It is possible to express a second problem without con-
straints by introducing a nonnegative Lagrange multi-
plier A € R*:

max min{c, x) +A(ax —b) (52)

AeRt x€R

Since A is nonnegative, any x satisfying the constraint
ax < b renders the term A(ax — b) negative. Trying to
maximize the goal over variable A, the optimum is ob-
tained when A = 0. Fixing x, any A’ > A will generate a
solution (c,x) + A (ax —b) < (¢, x) + A(ax —b). However,
any x outside of the constraint will generate a positive
term A(ax —b) that will be made arbitrarily large when
trying to maximize it over A > 0.

Example 7 Figure 4.1 represents a simple Lagrangian relax-
ation in the linear case. The objective function is —x when
y = 0andy < 1 —x. The optimal solution is (x,y) = (1,0).
When maximizing over A in term Ay +x — 1), one obtain 0
when satisfying the constraint, and +oo otherwise.

Figure 4.1 Example of a Lagrangian relaxation

A
Y

Unreachable
Aly+x—1) >0
<& I
A |
AN |
+ |
Aly+x—1) <0 :
| > x
Reachabl%
|
opt Imin —x

Similarly, a maximization problem can be reformu-
lated as a infsup when using Lagrangian relaxation to
integrate a constraint in the objective.

inf f(x) < sup inf f(x) —A(ax—b) (53)
ax < b AR+ xER
x € R
sup f(x) > inf supf(x)—A(ax—Db) (54)
AER™ R
ax <b
xeR

In case of equality constraint, any sign before the
Alax —b) term is valid.

These notions are easily extended to LMI as long as the
constraint to integrate into the objective is conic convex
and can be expressed as Ajx —b; < 0.

SOS extensions: SOS reinforcement and relaxation

The SOS reinforcement of polynomial optimization prob-
lems consists of restricting polynomial nonnegativity to
being an element of X[x]. In case of polynomial max-
imization problems, the SOS reinforcement boils down
to computing an upper bound of the real optimal value.
For example let p € R[x] and consider the unconstrained
polynomial maximization problem sup {p(x) | x € R4}
Applying SOS reinforcement, we obtain:

sup{p(x) | x € R} =inffn | ¥x,n —p(x) > 0}

<inffn | n—peI}. O

Now, let p, q € R[x] and consider the constrained poly-
nomial maximization problem:

sup{p(x) | vx € R4, q(x) < 0}

We can perform a Lagrangian relaxation but require A
to be a positive (SOS) polynomial instead of a positive
scalar. Let A € X[x], then:

sup
q(x)<0, xeRd

p(x) < sup p(x)—A(x)-q(x) .
x€R4

Indeed, suppose q(x) < 0, then —A(x)q(x) > 0 and
p(x) < p(x) —A(x)q(x). Finally, taking the supremum
over {x € R4 | q(x) < 0} provides the above inequal-
ity. Since sup{p(x) —A(x) - q(x) | x € R4} is an uncon-
strained polynomial maximization problem then we ap-
ply an SOS reinforcement (as in Eq. (55)) and we obtain:
p(x) —Ax) - q(x)

sup plx) <

q(x)<0, xeR4

sup
x€R4

< infln[n—p—Aq € Zxl}.

4.2 (APPLIED) CONVEX OPTIMIZATION

Finally, note that this latter inequality is valid whatever
A € X[x] and so we can take the infimum over A € X[x]
which leads to:

sup p(x) < inf sup P(x) —AX) - q(x)
q(x)<0, xeR4 AEZx] cRa
< inf
n—p—AqeX(x]
AeX[x]
(56)

4.2.3 Duality

A last useful manipulation of optimization problems
relies on topological duality in Banach spaces (vector
spaces with good topological structures). We give here
an incomplete and informal overview of duality theory,
since it enables the characterization of the dual problem.
The interested reader could find more details in [BVog4,

§5.2].

Any vector space E over the field R can be associated
with its dual vector space Ef defined as the set of real-
valued linear functionals on E. That is the set of func-
tions ¢ : E — R. For any element of E we can associate
an element of its dual space. This is characterized by the
duality bracket (dx, %) g+ g-

Thanks to the Riesz representation theorem, this ele-
ment is unique in Hilbert space and can be represented
in the same space. Let consider for example the finite
dimensional Hilbert space R"™, and an element ¢ € R™.
The dual space is the set of linear functionals over R™,
that is the set of linear functions ¢ : R™ — R. Any
such linear function can be defined by a scalar product.
One can then build the linear functional associated to c:
¢c(x € R™) = (x,c) where (-,-) denotes the inner prod-
uct of the Hilbert space E, in that case the scalar product
of R™. Hilbert spaces are then auto-dual since a linear
functional can be characterized by an element of the ini-
tial space.

Let us consider the general case of two Banach spaces
E and F, Ef and F' their topological dual, respectively,
K C E a convex cone (and KT its dual), and the following
optimizing problem:

max (e, X)Et E
s.t. Ax=bwithA:E—F (57)
x € K

35

36

DEFINITIONS — BACKGROUND

In the following, let us denote this problem as the pri-
mal problem. This form is equivalent to the earlier version
of Eq. (44) (cf. [BVo4] for more explanation):

max (c,x)
s.t. Aix—bi g Oforie[l,m] (58)
Ax =D

The constraint Ax = b is equivalent to Ax —b = Or.
Then one can introduce a Lagrangian multiplier y € FT
to express the constraint. We have the duality bracket
(y,Ax —b)gt p. Using linearity of the linear form, one
has (y, Ax = b)gi p = (U, AX)Fi = (Y, D) Fi -

We can introduce the adjoint A’ : FI — Ef of A as
the unique linear application such that (y, Ax)gip =
<A/er>ET,E'

The constraint can then be expressed as (A'y,x)gt g —

<yr b> Fi,F-
Going back to the initial problem, we have

Yy € Ff,
rn;ax(c, X>ET,E
Ax=Db

s.t
x € K

Since y is free in the left hand part, one can build the
following inequality:

< max (o)
< ,
HAY, X)Et e
_<y/ b>FT,F

minmax (c+A’Y,X)g+E

m <
7le(C,x)Ef,E S minmg
<‘J/b>FAT,F

Ax=D>

s.t
x € K

The maximum with respect to x depends only on
(c+ A'y,x). Let us first define the dual cone of K as the
restriction of the topological dual of E to positive linear
forms on K:

KT ={f e Eflvx € K, (f,x) > 0}

Since x € K, we have to make sure that (c +A'y,x)g+ g
will not diverge and corrupt the maximum of x when
minimizing y. If we choose c + A’y € K, then the du-
ality bracket is positive and will impact badly the maxi-
mum over x. Therefore, we have to choose —c — A’y €
K.

We obtain the dual optimization problem:

miny - <yrb>FT,F

s.t. —c—A'ye Kf 59)

While this description is general and will be used later

in Chap. 13, a simpler version on Hilbert spaces will be
used in Chap. 6.

FEASIBILITY OF PRIMAL AND DUAL PROBLEMS A
last remark concerns the feasibility of the two primal
and dual problems. Thanks to the construction of the
dual problem and the use of Lagrangian relaxation, we
have the following inequality:

max (¢, X)Et g < miny —(Y, b)i ¢
. Y. T
st. AtE—=F s.t. c—A'ye K (60)
Ax=D>
x €K

In the case where both optimization problems admit
strict feasible solutions — we speak about primal and dual
feasibility and in case of convex constraints, the inequal-
ity of Eq. (60) becomes an equality, without any duality
gap. In other words solving any of the two problems
gives the optimum solution. The conditions required are
usually referred as the Slater’s conditions.

In practice one can easily obtain cases where one of the
problems has an empty interior and is not strictly feasi-
ble. In that case the numerical solutions of both prob-
lems are not the same; we speak about a duality gap
between these two solutions. We will come back to that
notion in Chapter 10.

INVARIANT SYNTHESIS VIA CONVEX OPTIMIZATION: POSTFIXPOINT
COMPUTATION AS SEMIALGEBRAIC CONSTRAINTS

INVARIANTS, LYAPUNOV FUNCTIONS AND CON-
VEX OPTIMIZATION

5.1

This chapter focuses on the computation of invariant for
a discrete dynamical system collecting semantics.

Invariants or collecting semantics properties are prop-
erties preserved along all executions of a system and ver-
ified in all reachable states. A subset of these invariants
are defined as inductive. Inductive invariants are prop-
erties, or relationships between variables, that are induc-
tively preserved by one transition of considered systems.
As used in induction proofs, it is not required to con-
sider a reachable state and all (or part of) its past while
arguing about the validity of the invariant, but only a
single state. Applying the induction principle we obtain
that any state satisfying the property is mapped to a next
state preserving that same property.

For example when one analyzes a geometric progres-
sion with a ratio r such that [r| < 1 then any invariant
expressed as an interval can be easily proved: if [a,b]
contains both the initial state and the value 0, any ele-
ment of the progression will belong to [a, b]. Note that,
here, we are only focused in the invariant but not inter-
ested in characterizing the decay or growth rate of the
progression.

Discrete dynamical systems admit an infinite behavior,
it is therefore of utmost importance to be able to char-
acterize their reachable states, for example proving the
boundedness of such set. In the control community [in-
gua a system is said stable if, without any input, it con-
vergences to zero. This idea is captured by Lyarunov
functions.

The current chapter proposes methods to compute dy-
namical systems invariants based on Lyarunov function
synthesis using convex optimization. In this section we
introduce these notions. The following sections develop
different encodings to compute these invariants for a
wide variety of settings and solve different kinds of opti-
mization problems.

Fixpoint characterization, Invariant and Inductive In-
variants

5.1.1

The motivation is to determine automatically if a given
property holds for the analyzed program, or to compute
precise bounds on reachable states. We are interested
in numerical properties and more precisely in properties
on the values taken by the d-uplet of the variables of the
program.

According to the abstract interpretation framework
outlined in Sec. 2.5, a semantics can be characterized by a
set of elements; for collecting semantics that is the set of
reachable states. Hence, in our point-of-view, as for the
semantics characterization, a property is characterized
by some set P C R¢ of values satisfying the property.

Let us first recall the fixpoint characterization and in-
stantiate it on our discrete dynamical system formaliza-
tion.

Collecting Semantics as postfixpoint characterization

In Sec. 2.5 we introduced the collecting semantics map in
Eq. 16 and the fixpoint characterization of the collecting
semantics in Eq. 17.

p(X) — p(X) (61)
S — TUf(S)
¢ =1Ufp, F=minxcos){F(X) € X} (62)

where f denotes the transition relation.

As a consequence any subset C of p(X) verifying the
condition {F(X) C X} is a sound over-approximation of €
since all reachable states verify C: ¢ C C.

Collecting Semantics of discrete dynamical systems

Let us consider now focus on a program of the forms
presented in Sec. 4.1.1, 4.1.2 or 4.1.3. In the most general
case, it is characterized by an initial set XNt and by a
list of update functions f; and associated conditions c;.

37

38

INVARIANTS AS SEMIALGEBRAIC SETS

In the following we assume that we are given with a set
representation X' of each condition c;. We recall that X*
are assumed to form a partition of X, ie. for each element
a unique update function is applicable.

Let C be set satisfying the previous equation, over-
approximating reachable states €. With F a piecewise
discrete dynamical system, we have the following con-
straints on P:

{F(C) C C}
- {xlnituf(C) c c}

XIT’Lit cC
foried,fi(Cnxy)ycC

(63)
_ {C

This equation can be further simplified in case of a sin-
gle update function, ie. not disjunction and conditions

Ci, Xt
{c

5.1.2 LyApuNov functions

(64)

XInit cC
f(C)C C

In 1890, Alexander Lyarunov published his well know
result stating that the differential equation %x = Ax(t)
is stable if and only if there exists a positive-definite ma-
trix P such that ATP + PA < 0. Here both A and P are
square matrices of R™*™ and P is positive definite P - 0,
ie. Vx € R™,xTPx > 0. Later this was formulated in a
discrete-time setting over discrete linear systems:

Xi 11 = Ax with A € R™*™

as

JP =0

(65)
ATPA—P <0

3P e R™™™, s.t. {

In both cases, P is the measure of energy of the system:
the LyapuNov function x — xTPx. When measuring the
energy of the image state Ax, we obtain (Ax)TP(Ax) =
xTATPAX.

Since P is positive definite, ¥x € R™,xTPx > 0, and
P denotes a norm over states. While, thanks to the
second constraint, its sublevel sets are inductive over
states: ¥x € R™,xTPx > xTATPAx. The inequality
ATPA —P < 0 encodes a kind of energy dissipation along
trajectories. When the energy reaches 0, the state of the
system is near 0. In this original setting, the considered
system is closed, ie. it does not admit input. In case of
linear systems with bounded inputs, one can rely on the

same argument not to motivate asymptotic stability but
to argue that the system will not diverge and remains
within some bounds.

Simpler arguments do exist for the specific case of lin-
ear systems, eg. one can compute the eigenvalues of the
matrix and check that the linear map A is contracting.
However, this notion of LyaAruNov function seems more
extensible and was widely developed in the control com-
munity.

Let us consider numerical systems with £ = R<. More
formally, a Lyapunov function V : R¢ — R* for a
discrete-time system is a positive real valued function
over system states that should satisfy:

¢ Null at origin, positive elsewhere

V(0) =0
Vx € RO0}, V(x) > 0 A LMy |00 VI(X) = 00
(66)

® Decreasing along trajectories

vx € R4, Vo f(x) —V(x) 0. (67)

Depending on the strictness of the < operator, the Lya-
PUNOV function guaranties asymptotic stability and ex-
ponential convergence, or just boundedness of states.

It is shown for example in [HCo8] that exhibiting such
a function proves the Lyarunov stability of the system,
meaning that its state variables will remain bounded
through time. Equation (67) expresses the fact that
the function k — V(xy) decreases, which, combined
with (66), shows that the state variables remain in the
bounded sublevel set {x € R™[V(x) < V(xp)} at all in-
stants k € IN.

5.1.3 LyAPUNoOV functions as problem specific abstractions:
semialgebraic template abstractions

We saw that LyaruNov functions characterizes induc-
tive sublevel sets for the considered discrete dynamical
system semantics. Therefore, instead of approximating
reachable states in the abstract interpretation framework
using predefined numerical abstractions, such as inter-
vals, octagons or convex polyhedra, we rather propose
to rely on the LyaruNov function as the main mean of
abstraction. This is a template abstraction [CS11; SGog].
A template is a real-valued function t: £ — R.

Example 8 A template is then a function over those state vari-
ables. For example, it can characterize the norm 2 of a state:

t1(s) = lIsll2 = 1/ (Zvevv?)

or just focus on the value of a single variable x € V

t2(s) = s(x) when s is a map or
to(s) = x4 when s is a vector
Templates allow to express intervals t1 = x,t; = —x, fixed

shape polyhedra such as octagons +x; £ x;.

For a given template t, a sublevel-set abstraction can
be defined by a given levelset A:

{s | tls) <A}

In case of multiple templates t1,1t5,...,tn and associ-
ated bounds Ay,Az,..., A, the interpretation of this ab-
stract representation is the intersection of sub-level sets.
In case of polynomial template functions t;, this is a ba-
sic semi algebraic set.

(s | tils) <A

1
5.1.4 Synthesis of templates using convex optimization

In the early definition of LyapunNov functions, with
quadratic properties and linear systems, the conditions
defining the Lyapunov function P where characterized
as a Linear Matrix Inequality (LMI):

—
P =0 (68)
ATPA—P <0
With the development of interior point algo-

rithms [NNg4] and convex optimization [BVo4], the nu-
merical resolution of these optimization problems be-
comes feasible in reasonable time.

Our approach is to guide the search for inductive in-
variants as Lyapunov-like constraints expressed as con-
vex optimization problems.

Once a LyaruNov function is synthesized, as a kind of
norm of a state, it can be used as a template abstraction
and denote a relevant abstraction of reachable states. De-
pending on the encoding of the constraints, the results of
the optimization step could either be a bound template,
eg. t(x) < 1, or just a relevant unbounded template t.

In that second case, the template t has to be bounded
by other means; for example using classical KLEENE iter-
ations, or even using randomly large values. Thanks to
the inductiveness property of the template with respect
to the system semantics, any bound A such that

t(f(x)) <A
characterizes a sound postfixpoint (invariant):

{xIt(x) <A}

5.2 QUADRATIC INVARIANTS

5.2 QUADRATIC INVARIANTS

5.2.1 Linear systems

As mentioned above, in the simplest case of linear sys-
tem the conditions over a quadratic LyaruNov function
P are given by the LMI of Equation (65).

FP >0

(69)
ATPA —P <0

JP ce R™*", s.t. {

One can directly solve this LMI and obtain a valid
quadratic template, relevant for the considered system.
However, while inductive over system semantics, a sub-
level set property characterized by such Lyarunov func-
tion P may not be the most precise with respect to the
collecting semantics € (c.f. §2.5):

¢ < {x c]Rd‘xTPx < ?\}

In order to synthesize a more precise invariant, one
can further constrain the LML

Minimizing Condition Number

Graphically, the condition number of a positive definite
matrix expresses a notion similar to that addressed by
eccentricity for ellipses in dimension 2. It measures how
“close’ to a circle (or its higher dimension equivalent) the
resulting ellipsoid will be. Multiples of the identity ma-
trix, which all represent a circle, have a condition number
of 1. Thus one idea of constraint we can impose on P is
to have its condition number as close to 1 as possible. A
rationale for this is that ‘flat” ellipsoids, i.e. having a large
condition number, can yield a very bad bound on one of
the variables, as illustrated on Figure 5.1.

Figure 5.1 'flat’ ellipsoids can yield very large bounds on

some variables.
X
%:1 X0

This is done [Boy+94] by minimizing a new variable, 7,
in the following matrix inequality

I<P=r1l

Indeed, if a point x is in the ellipsoid P, then xTPx < 1
which implies xTIx < 1, i.e. x is in the sphere of radius 1.
Thus, the ellipsoid P is included in the sphere of radius 1.

39

40

INVARIANTS AS SEMIALGEBRAIC SETS

Similarly, P contains the sphere of radius r~2. This way,
P is sandwiched between these two spheres and making
their radius as close as possible will make P as ‘round’
as possible, as depicted on Figure 5.2.

Figure 5.2 Making the ellipsoid P as 'round’ as possible

by sandwiching it between spheres of radius r~2 and 1:
I < P < rI and minimizing r.

X1

X0

This constraint, along with the others (LyaArunov equa-
tion, symmetry and positive definiteness of P), can be ex-
pressed as a LMI, which is solved using the semi-definite
programming techniques mentioned in Section 4.2.1:

Figure 5.3 Quadratic invariant for linear system minimiz-
ing the condition number of P.

minimize r

subjectto ATPA—P <0
I<P=<rl
PT =P.

(70)

Example 9 With the following matrix A of the running ex-
ample

0.9379 —0.0381 —0.0414
A= |-0.0404 0968 —0.0179
0.0142 —0.0197 0.9823

a semi-definite solver simply returns v = 1 and the identity
matrix

1.0 0

P=10 1 0

0 01

Preserving the Shape

Another approach [Yangz2] is to minimize v € (0, 1) in the
following inequality

Figure 5.4 Quadratic invariant preserving shape of the
ellipsoid P.

ATPA—1P <0. (71)

Intuitively, this corresponds to finding the shape of el-
lipsoid that gets ‘preserved’ the best when the update
Xk+1 = Axy is applied, as depicted on Figure 5.5. 1 can
be seen as the minimum contraction achieved by this up-
date in the norm defined by P, hence the name decay rate
given to this value by control theorists. This is the choice
implicitly made in [Fero4] for a particular case of matri-
ces A of order 2.

Figure 5.5 Choice of the ellipsoid whose shape is the best

preserved.
P
TP
1 D).

With this technique however, the presence of a
quadratic term 7P in the equation prevents the use of
usual LMI solving tools “as is’. To overcome this, the fol-
lowing property enables the choice of an approach where
the value for r is refined by dichotomy. Only a few steps
are then required to obtain a good approximation of the
optimal value.

Property 5.1 If Equation 71 admits as solution a positive def-

inite matrix P for a given v, then it is also the case for any

' >

Example 10 With the following matrix A of the running ex-
ample:

0.9379 —0.0381 —0.0414
A= 1-0.0404 0968 —0.0179|,
0.0142 —0.0197 0.9823

looking for a small v € (0,1), the first value tested is v = 0.5,
i.e. a solution to the following semi-definite program is looked

for
minimize 0
subject to ATPA —0.5P <0
P>~0
PT = P.
Since there is no solution, v is now looked for in interval
(0.5,1). r = 0.75 is tested, without more success, then
r = 0.875, r = 0.9375, r = 0.98675 and r = 0.984375 are

still unsuccessful. Finally, v = 0.9921875 yields the following
solution (all figures being rounded to four digits):

239.1338 37.5557 77.9203
37.5557 226.3640 65.8287
77.9203 65.8287 325.1628

P:

Stopping here leaves v € (0.984375,0.9921875) and the above
matrix P as solution for r = 0.9921875.

5.2.2 Consider linear systems with inputs

Most system trajectories are not purely characterized by
their initial state: they have inputs.

Xk+1 = Axx + Buy, [lukfleo < T. (72)

In case of unbounded input the system is guaran-
teed to diverge. We are therefore interested in showing
that, when the input values at bounded |juy |0 < 1 (ie.
maxy Uy < 1), then the system still has a bounded behav-
ior. This constraint over uy is reasonable: most inputs
come from sensor which themselves have physical limits.
We can also choose the bound 1 without loss of general-
ity since one can always alter the matrix B to account for
different bounds.

Considering the inputs requires a slight reinforcement
of Equation (65) into

ATPA—-P <0 (73)

We can still guarantee that the state variables of (72)
will remain in a sublevel set {x € R™ | xTPx < A} (for
some A > 0), which is an ellipsoid in this case.

5.2 QUADRATIC INVARIANTS

Quadpratic invariant for bounded-input linear systems

The two previous methods were based only on A, com-
pletely abstracting B away, which could lead to rather
coarse abstractions. We try here to take both A and B
into account by finding the ellipsoid P included in the
smallest possible sphere which is stable, i.e. such that

Vx, Y, Ul S TAXTPX < 1,
(Ax+BwTP(Ax+Bu) < 1.

This is illustrated in Figure 5.6.

Figure 5.6 Looking for an invariant ellipsoid included in
the smallest possible sphere by maximizing .

{Axic +Bu| [[uflo <1}

The previous condition can be rewritten as
Vx, Yu, (/\‘f;o] (e{u)2 < 1) AXTPx <

= (Ax+Bu)TP(Ax+Bu) <1

where e; is the i-th vector of the canonical basis (i.e. with

all coefficients equal to 0 except the i-th one which is 1).
This amounts to

(AT 210

.
A X P 0Of |x <1
u 0 0Of |u
x| [aTPA ATPB| x| _
u| |BTPA BTPB| |u|

41

42

INVARIANTS AS SEMIALGEBRAIC SETS

where EYJ is the matrix with 0 everywhere except the
coefficient at line i, column j which is 1. Using the S-
procedure (Theorem 4.6, page 34), this holds when there
are T and Ao, ..., Ap_1 all nonnegatives such that

—ATPA —ATPB 0 P 0 0
~BTPA —BTPB 0|—-7T|0 0 0
0 o 1 0 0 1 o0
0 0 0
~YP Ao —EU of =0
o 0 1

As in Section 5.2.1, this is not an LMI since T and P are
both variables. And again, there is a Tmin € (0,1) such
that this inequality admits as solution a positive definite
matrix P if and only if T € (Timin,1). This value Tmin
can by the way be approximated thanks to the exact same
procedure. Similarly to what was done in Section 5.2.1, P
is forced to be contained in the smallest possible sphere
by maximizing 1 in the additional constraint

Pl (75)

The function f is then defined as the function mapping
T € (Tmin, 1) to the optimal value of the following semi-
definite program.

Figure 5.7 Quadratic template for bounded-input linear
systems

maximize T

(74)

(75)
PT =P

p—1
A A=0
1=0

subject to

(76)

This function f can then be evaluated for a given in-
put T simply by solving the above semi-definite program.
f seems concave which could enable a smart optimiza-
tion procedure. However, in practice, it is enough to
just sample f for some equally spaced values in the in-
terval (Timin, 1) and just keep the matrix P obtained for
the value enabling the greatest 1.

Example 11 With the following matrices A and B of the run-
ning example:

0.9379 —0.0381 —0.0414 0.0237
A= 1-0.0404 0.968 —0.0179| B:=|0.0143|,
0.0142 —0.0197 0.9823 0.0077

according to Example 10, Tin = 0.9921875.
Then, f is evaluated on a few points between Tyin, and 1
(rounded figures):

T () T (1)
0.9928 | 1.6064 0.9967 | 0.7440
0.9935 | 1.4653 0.9974 | 0.5970
0.9941 | 1.3231 0.9980 | 0.4490
0.9948 | 1.1798 0.9987 | 0.3002
0.9954 | 1.0355 0.9993 | 0.1505
0.9961 | 0.8902

and the one giving the best value (T = 0.9928) is kept with the
corresponding

12.6465 —14.1109 —10.5402
P=1-141109 25.6819 3.06577
—10.5402 3.06577 29.5981

Optimize template for a given variable

If a tighter bound is required on one of the variables, the
identity matrix I in inequality (75) can be replaced by a
diagonal matrix with larger coefficients for variables of
interest. For instance, to get a smaller bound on the first

variable xg, the matrix I can be replace by [100 ﬂ .

This intuitively corresponds to minimize the radius
of an ellipsoid containing P flatter on the dimension of
interest instead of a sphere. This is illustrated on Fig-
ures 5.8 and 5.9.

Figure 5.8 Constraining ellipsoid P to lie in a sphere.

X1

X0

Figure 5.9 Constraining ellipsoid P to lie in an ellipsoid
flatter in a given direction.

X1

X0

Example 12 With the following matrices A and B of the run-
ning example:

0.9379 —0.0381 —0.0414 0.0237
A= 1-0.0404 0968 —0.0179| B:=|0.0143|,
0.0142 —0.0197 0.9823 0.0077

expressing a higher interest in the first variable as exposed
above gives

12.6465 —14.1109 —10.5402
P=1-141109 25.6819 3.06577
—10.5402 3.06577 29.5981

5.3 PIECEWISE QUADRATIC INVARIANTS

5.3.1 Piecewise affine systems
While strong results do exist for pure linear systems,
most of them vanish in presence of non linearity such
as switches between linear dynamics. As we saw in
previous section, stable linear systems were guaranteed
to admit a quadratic Lyapunov function and therefore
a quadratic invariant. In switched linear systems, this
property is undecidable [Blo+o1, Theorem. 2]. The pro-
posed methods are therefore meant to be understood as
heuristics; trying to synthesize a meaningfully invariant
for such systems.

As presented in Sec. 4.1.2 describing switched linear
systems, these systems are composed by a set of linear

5.3 PIECEWISE QUADRATIC INVARIANTS

updates A; associated to conditions ¢;. A common prac-
tice in control is to look for a common Lyarunov func-
tion: a quadratic Lyapunov function characterized by a
positive definite matrix P such that

ATTPAT —AT <0
A2TPAZ — A2 20
ATTPA™ — AT <0

This common LyaruNov function decreases along tra-
jectories regardless of the active cell (see Sec. 4.1.2). Note
that, in this encoding, all information about the condi-
tion satisfied in each cells are ignored.

The main difficulty in the switched case is related to
the change of dynamics: we must decrease whenever a
transition from one cell to another is fired. Moreover,
we only require the norm induced by the quadratic Lya-
puNov function P to be local i.e. positive only where the
law is used.

Therefore, our main goal is to synthesize a LyapuNnov
function V(x,u) and an associated bound « characteriz-
ing the invariant of reachable states as a sublevel-set S,
such that

Vie g, Vix,u) € XL, V(x,u) < « (77)
Vi,j € 9,V(x,u) € XLV(x/,u') € X, sit. 8
X' = Atx + B+ bt Vix,u) = V(x/,u) 7

5.3.2 Encode conditions and switches as quadratic con-
straints

In equations (77) and (78), the inequalities on V are local
on cells. In (77), the function has to decrease only on
feasible transitions from cell X' to cell XJ.

In order to encode the problem as a set of linear matrix
inequalities, we need to express conditions associated to
each cell in suitable form. For SDP, encoding constraints
requires to be able to express cell membership or feasible
transitions as quadratic constraints.

Quadratization of cells

We recall that for us local means that true on a cell and
thus true on a polyhedron. Using the homogeneous ver-
sion of a cell, we can define local positiveness on a poly-
hedral cone. Let Q be a d x d symmetric matrix and M
be a n x d matrix. Local positivity in our case means that
My > 0 = yTQu > 0. The problem will be to write
the local positivity as a constraint without implication.
The problem is not new (e.g. the survey paper [ISoo]).
[M]81] proves that local positivity is equivalent, when M
has a full row rank, to Q — MTCM = 0 where C is a

43

44

INVARIANTS AS SEMIALGEBRAIC SETS

copositive matrix i.e. xTCx > 0 if x > 0. First in general
(when the rank of M is not necessarily equal to its num-
ber of rows), note that if Q — MTCM = 0 for some copos-
itive matrix C then Q satisfies My > 0 = yTQy > 0.
Secondly every matrix C with nonnegative entries is
copositive. Since copositivity seems to be as difficult
as local positivity to handle, we will restrict copositive
matrices to be matrices which nonnegative entries. The
idea is instead of using cells as polyhedral cones, we use
a quadratization of cells by introducing nonnegative en-
tries and we will define the quadratization of a cell X*

by:

% _ X c]Rd+m
u
where Wt is a (14+n4) x (1 +n;4) symmetric matrix

i .
<Eis> with E} =
EW

—Ti > . Recall

T
1 1

EiTWiEi X 2 0 (79)

with nonnegative entries and E' =

1 01 (d+m) i -
(i X_Tim and By, = (Ctv

CS S
that n; is the number of rows of T'. The matrix E! is
thus of the size ni +1 x (1 + d 4+ m). The goal of adding
the row (1,014 (g4 m)) is to avoid adding the opposite of

a vector of X! in X'. Indeed without this latter vector
Xt would be symmetric. We illustrate this fact at Exam-
ple 13. Note that during optimization process, matrices
W' will be decision variables.

Example 13 (Homogenization) Let us take the polyhedron
X ={x € R | x < 1} Using our notations, we have
X ={&|MOx)T > 0} with M = (1 —1). Let us con-
sider two cases, the first one without adding the row and the
second one using it.

Without any modification, the quadratization of X relative to
a nonnegative real W is X' = {x | (1 x) MTWM(1 x)T > 0}.
But (1 x)MTWM(1I x)T =W x)(1 —=DT(1 —=1(1x)T =
2W(1 —x)2. Hence, X" = R for all nonnegative real W.

1 0

Now let us take E = defined as M with the addi-

tional row 1. The quadratization as defined by Equation (79)
relative to a 2 x 2 symmetric matrix W with nonnegative co-
efficients is X = {x | (1 x)ETWE(1 x)T > 0}. We have:

())
0 —1 w3 W) 1 -1
:w1+ZW3(1—x)+w2(1—x)2

To take a matrix W such that wo = wy = 0 and w3 > 0
implies that X = X.

Now we introduce an example of the quadratization
of the cell X! for our running example, cf. §4.

Example 14 Let us consider the running example and the cell
X1. We recall that X" is characterized by the matrices and vec-
tors:

¢l =547
0 0 1
T =
v (o 0 1)
ch =337
1T 0 0 0
5 9 7 -6
amdE' =4 4 _g 8
30 0 1
30 0 1

As suggested we have added the row (1,07x3). Take for
example the matrix:

63.0218 0.0163 0.0217 12.1557 8.8835
0.0163 0.0000 0.0000 0.0267 0.0031
W' =1 00217 00000 0.0000 0.0094 0.006]
12.1557 0.0267 0.0094 4.2011 59.5733
8.8835 0.0031 0.0061 59.5733 3.0416
We have

XT'= {xywl(,xywWE'W'E'(1,x,y,wT >0}
> X '

Local positivity of quadratic forms will also be used
when a transition from a cell to an other is fired . For the
moment, we are interested in the set of (x,u) such that
(x,u) € X' and whose the image is in XJ and we denote
by XY the set:

X .
(x) c RA+m <u> € X" and

(A'x+B'u+btu) e X

for all pairs 1,j € J. Note that in [MFMoo], the authors
take into account all pairs (i,j) such that there exists a
state xj at moment k in X' and the image of xy that is
X417 is in X). We will discuss in Subsection 5.3.2 the
computation or a reduction to possible switches using
linear programming as suggested in [Bis+o5]. To con-
struct a quadratization of X!, we use the same approach

than before by introducing a (1+n;+mn;) x (1+n;+n;)
symmetric matrix UY with nonnegative entries to get a
set XU defined as:

T
1 1
XU = <X>e;Rd+m x| EUTUYEY [| =0
u
u
(80)
. Ly
where EY = | % | with
EW
1 01><(d+m)
el S -
0 dem Idm><m
and
Chy —T5
U — | .) i) i i
w C%__T%)<b) 1 (A B)
0 Od><m Idmxm
(81)
Switching cells

We have to manage another constraint which comes from
the cell switches. After applying the available law in cell
X', we have to specify the reachable cells i.e. the cells XJ
such that there exists (x,u) satisfying:

(x,u) € X' and (A'x +Blu+bt,u) € X)

We say that a switch from 1 to j is fireable iff:

Tix,wWT < cl

Tg (A +Blu+ b, u)T < st

T (x,w)T < cd,

ijv(Aix +Blu+ bi,u)"' < ci\,
#0
(82)

(x,u) € R&F™

We will denote by i — j if the switch from i to j is
fireable. Recall that the symbol < means that we can
deal with both strict inequalities and inequalities. Prob-
lem (82) is a linear programming feasibility problem
with both strict and weak inequalities. However, we
only check whether the system is solvable and we can
detect infeasibility by using MoTzKIN transposition theo-
rem [Mot51]. MOTzKIN’s theorem is an alternative type
theorem, that is we oppose two linear systems such that

5.3 PIECEWISE QUADRATIC INVARIANTS

exactly one of the two is feasible. To describe the alterna-
tive system, we have to separate strict and weak inequal-
ities and use the matrices E? and E},é, defined at Equa-
tion (81). Problem (82) is equivalent to check whether
the set {y = (z,x,u) € R1+d+m | Ei\j,y >0, E?y > 0}is
empty or not. To detect feasibility we test the infeasibility
of the alternative system defined as:

(E9)Tps + (EX)Tp =0
Zkell plsc =1

(83)
ps >0, Vkel

pi=0, Vigl

From MoT1zKIN’s transposition theorem [Mot51], we get
the following proposition.

Proposition 1 Problem (82) is feasible iff Problem (83) is not.

However, reasoning directly on the matrices can allow
unfireable switches. For certain initial conditions, for all
k € N, the condition (xj,ux) € X' and (Atxy + Blu+
bl,u) € XJ does not hold whereas Problem (82) is fea-
sible. To avoid it, we must know all the possible trajec-
tories of the system (which we want to compute) and
remove all inactivated switches. A sound way to under-
approximate unfireable transitions is to identify unsatis-
fiable sets of linear constraints.

Example 15 We continue to detail our running example.
More precisely, we consider the possible switches. We take
for example the cell X?. To switch from cell X? to cell X!
is possible if the following system of linear inequalities has a
solution:

—9x+7y+6u < 5
—0.8532x +2.5748y — 10.4460 < —68
—3.3662x +2.1732y — 1.1084u < —58 (84)
4x—8y+8u < —
u <
u <

The two first consists in constraining the image of (x,y,u) to
belong to X' and the four last constraints correspond to the
definition of X?. The representation of these two sets (X and
the preimage of X' by the law defined in X?) is given at Fig-
ure 5.10.

45

46 INVARIANTS AS SEMIALGEBRAIC SETS

Figure 5.10 The truncated representation of X? in red
and the preimage of X! by the law inside X? in blue

We see at Figure 5.10 that the system of inequalities defined
at Equation (84) seems to not have solutions. We check that
using Equation (83) and Proposition 1. The matrices EY and
EY of Equation (83) are in this example:

5 9 —7 —6
E2T = | 68 08532 —25748 10446
58 33662 —2.1732 1.1084
4 4 8 —8
and B2 = | 3 0 0 —1

3 0 0 1

We thus solve the linear program defined in Equa-
tion (83) (with Matlab and Linprog) and we found
p = (0.8735,0.0983,0.0282)T and q = (0.3325,14.2500,
7.8461)7. This means that the alternative system is feasible
and consequently the initial is not from Proposition 1. Finally,
the transition from X2 to X1 is not possible.

5.3.3 Local invariants with coupling conditions

As in the linear case, we are relying here in SDP solver
and LMI encoding, the unknowns of the optimization
problems have to be at most quadratic.

Piecewise quadratic LYAPUNOV function

The LyaruNov function V is piecewise defined, relying
on the partition of cells provided by the analyzed piece-
wise affine system. This V is defined as:

V(x,u) = Vix,u), if ext

u

()) Qe e

The function V* is thus a local function only defined on
X,

A sublevel set S, of V of level « € R is represented as:

Sa = UieJ Si,oc T
u u u
T
1 T 1
_ x i —x q
= Uies <u>€X| X (qi P’L) x| <0
u u

The set S; « is thus the local sublevel set of V1 associated
to the level «.

So we are looking a family of pairs of a matrix and
a vector {(P},q')}icg and a real « € R such that Sy is
invariant by the piecewise affine system. To obtain in-
variance property, we have to constraint S« to contain
the initial conditions of the system. Finally, to prove that
the reachable set is bounded, we have to constraint S, to
be bounded.

Before deriving the semi-definite constraints, let us
first state a useful result in Proposition 2. This result,
which is a special case of the S-Procedure 4.6, allows
to encode implications into semi-definite constraints in
a safe way. The implication must involve quadratic in-
equalities on both sides.

Proposition 2 Let A,B,C be d x d matrices. Then, C +
A+ B > 0 holds implies that the implication (yTAy <
0N yTBy < 0) = yTCy > 0 holds.

Writing invariance as semi-definite constraints

We assume that (x,u) € XN Si,« (this index i is unique).
Invariance means that if we apply the available law to
(x,u) and suppose that the image of (x,u) belongs to
some cell X) (notation i — j), then the image of (x,)
belongs to Sj«. Note that (x,u) € X' and its image is
supposed to be in X then (x,u) € XY. Let (i,j) € 92
such that i — j, invariance translated in inequalities and
implication gives :

extin ¥ € Six
u u

.) _ (85)
(Alx +Biu+ b‘)
> € Sj’“

We can use the relaxation of Subsection 5.3.2 as repre-
sentation of cells and use matrix variables W' and UY to

encode their quadratization. We get, for (i,j) € 3% such
thati — j:

T

20

e =

(86)

-7

X
u

where EY is the matrix defined at Equation (80) and Fi
is defined at Equation (37).

Finally, we obtain a stronger condition by considering
semi-definite constraints such as Equation (87). Propo-
sition 2 proves that if (Pi,Pj,qi,qj,Uij) is a solution
of Equation (87) then (PL,PI, qt, g, UY) satisfies Equa-
tion (86). For (i,j) € 7% such that i — j:

3T iT
T (0], qu > Fit (Oi qli) —EYTUYEY » 0 .
9 P gt P

(87)

Note that the symbol —« is canceled during the compu-
tation.

5.3.4 Initialization and boundedness

Integrating initial conditions

To complete the invariance property, the invariant set
must contain initial conditions. Suppose that initial con-
dition is a polyhedron X0 ={(x,u) € R&+m | Tvov(x,u) <
¢S, To(x,u) < c%). We must have X° C S,. But X°
is contained in the union of X*. Hence, X° is the union
over i € J of the sets X N X, If, for all i € J, the set
X% N X! is contained in Si,« then X0 C S«. We can use
the same method as before to express that all sets S;
such that X° N X* # () must contain X° N X!, In term of
implications, it can be rewritten as for all i € J such that
X0 N Xt £

(x,u) € XONXt = (x,u)P’.‘(x,u)T—i—Z(x,u)qi < « (88)

Since X° N X! is a polyhedron, it admits some quadra-
X0NXt = {(xu) e RITM |

tization that is:

5.3 PIECEWISE QUADRATIC INVARIANTS

iT7ipoi _ 0i
(1,% WECTZEECY (1, x,w)T > 0} where E0 = <E>
O

with:

R . T O1x(a+m)
ES\} = (w ‘f"> and Egl =0 _TS
W —Tw ol _Ti
S S

and Z' is some symmetric matrix whose coefficients are
nonnegative.

For alli € J such that X° N X' # (), we obtain a stronger
notion by introducing semi-definite constraints:

_ iT S
o < OC q)) _E01TZLE01 = 0 (89)

ql Pl

Proposition 2 proves that if (P, q%, Z') is a solution of
Equation (89) then (P}, qt, Z1) satisfies Equation (88).

Note since X° N X" is a polyhedron then its emptiness
can be decided by checking the feasibility of the linear
problem (90) and by using of same argument than Propo-
sition 1.

(ESH)Tp* + (E33)Tp =0

2 xerPy =1
(90)
pL >0, Vkel

pi=0, Vigl

Linear program (9o) is feasible iff X° N X! = §).

Writing boundedness as semi-definite constraints

The sublevel S is bounded if and only if for all i € J, the
sublevel S; is bounded. The boundedness constraint in
term of implications is, for all i € J, there exists 3 > 0:

X

u

(x,u) € XiA() €Sia = [[xW|3<B (91)

where || - ||, denotes the Euclidean norm of R4+ ™.

47

48 INVARIANTS AS SEMIALGEBRAIC SETS

As invariance, we use the quadratization of X' and Figure 5.12 Summary of generated SDP problem for
the definition of S; . We use the fact that ||(x,u)\|% = piecewise affine discrete systems

T
(3) Id(g4m)x(d+m) (i) and we get for all i € J:

minimize «+ 3
stvied, (i,j) e L,

T
1 1 (0 @™\ (0 ¢\ irooe
. L. _FiT q i q _EYTEY
| BETWIEL [[=0 F (qi PJ')F +<qi Pi> EYV'UYEY =0 .
1# " I qt’ _EOiTZip0l v
1 AT 1 qi Pi -
_(X« q .
x <qi Pi) x| <0 = (92) CEiTwigh gy [ql.T
u u q1 pi
T
1 1
* T Ota+m)x1 —Id(atm)x(d+m)
u O(d+m)><1 Id(d+m)><(d+m) u m m m

(94)

where E! is defined in Equation (79).

Finally, as invariance we obtain a stronger condition
by considering semi-definite constraints such as Equa-
tion (93). Proposition 2 proves that (Pt,q', W) is a so-]))]
lution of Equation (93) the (Pi,q', W) satisfies Equa- The method applied to our piecewise affine system de-

5.3.6 Example

tion (92). For all i € J: fined in Sec. 4.1.2 computes the following values:
CETWAELL <—cx qiT> Kopt = 242.0155
gt Pt Bopt =2173.8501
(93)
N (B 01x (d+m)) - This means that ||(X,y,u)||% =x?+y? +u? < Bopt. We
Otatm)x1 —Idarmix(@asrm)/ can conclude, for example, that the values taken by the

variables x are between [—46.6154,46.6154].

Note that this specific example does not admit a com-
mon Lyarunov function.

The value pt gives the level of the invariant sublevel
of our piecewise quadratic LyapuNov function where the
local quadratic functions are characterized by the follow-
ing matrices and vectors:

5.3.5 Owerall method

The following algorithm summarizes the method.

Figure 5.11 Algorithm to compute piecewise quadratic
invariant for piecewise affine dynamical systems.

input :Piecewice affine system defined by 1.0181 —0.0040 —1.1332
T Cspw A% BY DY VEE T Pl = | —0.0040 1.0268 —0.5340
local :EYLEY,EOLVi,jed
output: «, ﬁ/ Pi.’ qi, Zi’ Wi’ ul) ,Vi,j cg —1.1332 —0.5340 —13.7623
1 Compute quadratization of cells El using Equation (79), q1 — (0.1252,1.3836,—29.6791)T
viel;

2 Over-approximate feasible switches: compute possible

switches L € J? using Equation (82); 9.1540 —7.0159 —2.6659

5 Compute quadratization of switches EY using P2 = —7.0159 9.5054 —2.4016
Equation (80), vi,j € L , ~2.6659 —2.4016 —8.9741
4 Compute quadratization of initialization E°* using)
5 Solve the SDP problem of Equation(94)
¢ Invariants: 1.1555 —0.3599 —2.6224
. . : 3
7 U {(x, WPLpt (% WT +2(x, 1) qgpt < Xopt ’(x, u) € X‘} P° = —0.3599 24558 —2.8236
ey —2.6224 —2.8236 —2.3852

s e)l < Bope ,
q° = (—5.3138,6.7894, —40.5537)T

37314 34179 —3.1427
PY= | —34179 61955 0.9499

31427 0.9499 —10.6767
q* = (28.5011, —73.5421,48.2153)7

Finally, for conciseness reason, we do not provide here
the matrix certificates W' for each cell X, nor the matri-
ces UY encoding quadratization matrices of polyhedron
Xij. These matrices are computed by the analysis but do
not provide useful information with respect to bounds.

5.4 K-INDUCTIVE QUADRATIC INVARIANTS

5.4.1 K-induction principle

The principle behind all compute invariants up to now
was the inductiveness of computed Lyapunov function
V(x) with respect to the system transition function f.

However, as mentioned in Sect. 5.1.1 a property could
be valid, ie. an invariant, without being directly in-
ductive. In SMT-based model-checking, a trade-off to
prove the validity of a property for a given transition
system (£,1 C L, T € Zz) is to search for a k-induction
proof [KT11; SSSoo] instead of a 1-induction one.

In k-induction, the base step addresses the property
verification on all traces of length up to k, rooted in an
initial state, while the inductive step intends to show that
any trace suffix of length k validating the property, pre-
serves it in the k + 1-th step.

Definition 5.2 (k-induction) Let (X,1,T) be a transition
system over states L with initial states 1 C X and transition
relation T C X x X. A safety property Prop C X is said
k-inductive with respect to the transition system iff

* for all system traces of length less than k, all reachable
states verify Prop

Vi<ke N,on,...,xj €z,

xo eI A /\
i€l0,j—1]

= x; € Prop

(xi,xi11) €T (95)

* for all system subtraces of length k satisfying Prop then
the next state satisfies Prop as well

VX0,..., Xk € L,

/\ Xi € PYOp/\(Xi,XiJr]) eT

6
ie[0,k—1] (96)

= xi € Prop

In our fixpoint characterization, this amounts to sub-
stitute

5.4 K-INDUCTIVE QUADRATIC INVARIANTS

{F(C)c C) = {X“‘“ utc)ccl
by

{F*(c) c ¢}
{XI“” UlUr<icr FHInit) UFE(C) © C}
XInit cC
f(xIntty C ¢
fz(XInit) ccC
LRI C
f(C)cC

5.4.2 k-inductive LyAPUNOV function

We recall that we consider a piecewise system composed
of cells X! indexed by a set {nd of partition labels, such
that £ = (J;cy X!, and which transition relation is piece-
wise defined with transitions Tt. The k-inductive prop-
erty Prop denotes here a boundedness property repre-
sented by a sublevel set Si, of a LyapuNov function V.
Then, a k-induction proof amounts to find this function
V such that:

V] <k€N,Vi0,...ij EJ,VX(),...,X]' €z,

xo € (INXOA A
1€[0,j—1]

Xi € Xi/\ (xi,xiﬂ) S Ti

= Xj € S«
(97)

Vio,...ik € j,VXo,...,Xk €,

, /\ Xi € (Ximsoc)/\ (xi,xi41) € T (98)
iel[0,k—1]
= Xy € S«

Let I* be the set of finite words of the letters in I, and
[} its restriction to words of length exactly k. In the fol-
lowing, we denote by [w]| the length of word w, by a-b
the concatenation of the words a and b into ab and by
tl(w) the tail of a non empty word w, i.e. w without its
first letter. For example tl(i-w) = w.

Following LEe and DULLERUD approach [LD11; LDoy;
LDKoy], we reinforce the equations (97)-(98) and search
for a quadratic Lyapunov function V* for each non
empty sequence of switches w =1ig-...-1x_7 € J:

(-0 ()

Let S,y.1,« be the local quadratic sublevel set associated
to the non empty path w - i and the level o

49

50 INVARIANTS