H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin et al., Non-viral vectors for gene-based therapy, Nature Reviews Genetics, vol.2, issue.8, pp.15-541
DOI : 10.1016/j.coph.2012.05.004

D. Shier, J. Butler, and R. Lewis, Hole's Human Anatomy, 1996.

S. Macneil, Progress and opportunities for tissue-engineered skin, Nature, vol.54, issue.7130, pp.874-880, 2007.
DOI : 10.1038/nature05664

R. O. Hynes, The Extracellular Matrix: Not Just Pretty Fibrils, Science, vol.326, issue.5957, pp.1216-1219, 2009.
DOI : 10.1126/science.1176009

V. Falanga, Wound healing and its impairment in the diabetic foot. The Lancet, pp.1736-1743, 2005.

S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic?canic, PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing, Wound Repair and Regeneration, vol.119, issue.(P, pp.585-601, 2008.
DOI : 10.1111/j.1524-475X.2008.00410.x

R. A. Clark, K. Ghosh, and M. G. Tonnesen, Tissue Engineering for Cutaneous Wounds, Journal of Investigative Dermatology, vol.127, issue.5
DOI : 10.1038/sj.jid.5700715

D. Baltzis, I. Eleftheriadou, and A. Veves, Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights, Advances in Therapy, vol.62, issue.7, pp.31-817
DOI : 10.1007/s12325-014-0140-x

J. W. Costerton, P. S. Stewart, T. J. Koh, and L. A. Dipietro, Biofilms in chronic wounds Inflammation and wound healing: the role of the macrophage Expert reviews in molecular medicine Exploring the full spectrum of macrophage activation, Wound Repair Regen, vol.16, issue.13, pp.37-44, 2008.

R. Bonecchi, E. Galliera, E. M. Borroni, M. M. Corsi, M. Locati et al., Chemokines and chemokine receptors: an overview, Frontiers in Bioscience, vol.Volume, issue.14, pp.540-551, 2008.
DOI : 10.2741/3261

A. Meddahi-pellé and M. M. Giraud-guille, Concentrated Collagen Hydrogels as Dermal Substitutes, Biomaterials, vol.31, pp.481-490, 2010.

J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis, Biochemical Journal, vol.377, issue.1, pp.159-169, 2004.
DOI : 10.1042/bj20031253

E. Polyethyleneimine, Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs, ACS Nano, vol.3, pp.3273-3286, 2009.

W. T. Godbey, K. K. Wu, and A. G. Mikos, Poly(ethylenimine) and its role in gene delivery, Journal of Controlled Release, vol.60, issue.2-3, pp.149-160, 1999.
DOI : 10.1016/S0168-3659(99)00090-5

W. T. Godbey, K. K. Ku, G. J. Hirasaki, and A. G. Mikos, Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency, Gene Therapy, vol.6, issue.8, pp.1380-1388, 1999.
DOI : 10.1038/sj.gt.3300976

S. Quignard, G. Mosser, M. Boissière, and T. Coradin, Long-term fate of silica nanoparticles interacting with human dermal fibroblasts, Biomaterials, vol.33, issue.17, pp.4431-4442, 2012.
DOI : 10.1016/j.biomaterials.2012.03.004

URL : https://hal.archives-ouvertes.fr/hal-01461435

J. G. Powers, L. M. Morton, and T. J. Phillips, Dressings for chronic wounds, Dermatologic Therapy, vol.19, issue.4
DOI : 10.1111/dth.12055

F. Grinnell and W. M. Petroll, Cell Motility and Mechanics in Three-Dimensional Collagen Matrices, Annual Review of Cell and Developmental Biology, vol.26, issue.1, pp.335-361, 2010.
DOI : 10.1146/annurev.cellbio.042308.113318

K. H. Chen, J. X. Zhang, and H. C. Gu, Dissolution from inside: a unique degradation behaviour of core???shell magnetic mesoporous silica nanoparticles and the effect of polyethyleneimine coating, Journal of Materials Chemistry, vol.12, issue.41, pp.22005-22012, 2012.
DOI : 10.1039/c2jm34364a

M. Ferrari, Nanogeometry: Beyond drug delivery, Nature Nanotechnology, vol.104, issue.3, pp.131-132, 2008.
DOI : 10.1038/nnano.2008.46

H. Kettiger, A. Schipanski, P. Wick, and J. Huwyler, Engineered Nanomaterial Uptake and Tissue Distribution: from Cell to Organism, Int. J. Nanomed, vol.8, issue.17, pp.3255-3269, 2013.

V. Mamaeva, C. Sahlgren, and M. Linden, Mesoporous silica nanoparticles in medicine???Recent advances, Advanced Drug Delivery Reviews, vol.65, issue.5, pp.689-702, 2013.
DOI : 10.1016/j.addr.2012.07.018

R. Ryoo and D. Min, Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery, ACS Nano, vol.5, pp.3568-3576, 2011.

F. Gao, P. Botella, A. Corma, J. Blesa, and L. Dong, Monodispersed Mesoporous Silica Nanoparticles with Very Large Pores for Enhanced Adsorption and Release of DNA, The Journal of Physical Chemistry B, vol.113, issue.6
DOI : 10.1021/jp807956r

S. A. Eming, T. Krieg, and J. M. Davidson, Inflammation in Wound Repair: Molecular and Cellular Mechanisms, Journal of Investigative Dermatology, vol.127, issue.3, pp.514-525, 2007.
DOI : 10.1038/sj.jid.5700701

L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney, DNA Delivery From Polymer Matrices for Tissue Engineering, Nat. Biotechnol, vol.17, pp.551-554, 1999.

C. Holladay, M. Keeney, U. Greiser, M. Murphy, T. O-'brien et al., A matrix reservoir for improved control of non-viral gene delivery, Journal of Controlled Release, vol.136, issue.3, pp.220-225, 2009.
DOI : 10.1016/j.jconrel.2009.02.006

J. H. Jang, C. B. Rives, and L. Shea, Plasmid Delivery in Vivo from Porous Tissue-Engineering Scaffolds: Transgene Expression and Cellular Transfection, Molecular Therapy, vol.12, issue.3, pp.475-483, 2005.
DOI : 10.1016/j.ymthe.2005.03.036

C. Cam and T. Segura, Matrix-based gene delivery for tissue repair, Current Opinion in Biotechnology, vol.24, issue.5
DOI : 10.1016/j.copbio.2013.04.007

G. Mosser, M. M. Giraud-guille, J. Livage, A. Meddahi-pelle, T. Coradin et al., In vitro Studies and Preliminary In vivo Evaluation of Silicified Concentrated Collagen Hydrogels Controlling the nano? bio interface to build collagen?silica self-assembled networks, ACS Appl. REFERENCES Nanoscale, vol.4, issue.1, pp.7127-7134, 2012.

G. L. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, vol.82, issue.1, pp.70-73, 1959.
DOI : 10.1016/0003-9861(59)90090-6

C. Bonhomme, C. Coelho, N. Baccile, C. Gervais, T. Azaïs et al., Advanced solid state NMR techniques for the characterization of sol-gel derived materials, Acc. Chem

S. De-monredon-senani, C. Bonhomme, F. Ribot, and F. Babonneau, Covalent grafting of organoalkoxysilanes on silica surfaces in water-rich medium as evidenced by 29 SiNMR, J

P. Louette, F. Bodino, and J. Pireaux, Poly(ethylene imine) (PEI) XPS Reference Core Level and Energy Loss Spectra, Surface Science Spectra, vol.12, issue.1, pp.54-58, 2005.
DOI : 10.1116/11.20050911

A. Shchukarev and J. Rosenqvist, Sjöberg, S. XPS study of the silica?water interface, J

M. S. Islam, W. S. Choi, and H. Lee, Nanoparticles Using Hydrogen Bond of Polyelectrolytes, ACS Applied Materials & Interfaces, vol.6, issue.12, pp.9563-9571, 2014.
DOI : 10.1021/am501941c

N. N. Nasef, H. Saidi, H. M. Nor, and M. A. Yarmo, XPS studies of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, Journal of Applied Polymer Science, vol.94, issue.3, pp.336-349, 2000.
DOI : 10.1002/(SICI)1097-4628(20000418)76:3<336::AID-APP9>3.0.CO;2-E

D. Tsiourvas, A. Tsetsekou, M. Arkas, S. Diplas, and E. Mastrogianni, Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates, Journal of Materials Science: Materials in Medicine, vol.92, issue.1???2, pp.85-96, 2011.
DOI : 10.1007/s10856-010-4181-7

D. G. Cory and W. M. Ritchey, Inversion recovery cross-polarization NMR in solid semicrystalline polymers, Macromolecules, vol.22, issue.4, pp.1611-1615, 1989.
DOI : 10.1021/ma00194a018

J. Nagaya, M. Homma, A. Tanioka, and A. Minakata, Relationship between protonation and ion condensation for branched poly(ethylenimine), Biophysical Chemistry, vol.60, issue.1-2, pp.45-51, 1996.
DOI : 10.1016/0301-4622(95)00143-3

K. Leung, I. M. Nielsen, and L. J. Criscenti, Elucidating the Bimodal Acid???Base Behavior of the Water???Silica Interface from First Principles, Journal of the American Chemical Society, vol.131, issue.51, pp.18358-18365, 2009.
DOI : 10.1021/ja906190t

W. T. Godbey, K. K. Wu, and A. G. Mikos, Poly(ethylenimine) and its role in gene delivery, Journal of Controlled Release, vol.60, issue.2-3, pp.149-160, 1999.
DOI : 10.1016/S0168-3659(99)00090-5

R. Sharma and S. F. Konieczny, Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes, J. Controlled Release, vol.139, issue.15, pp.88-93, 2009.

Z. J. Wang, C. Tiruppathi, R. D. Minshall, A. Malik, and B. , Size and Dynamics of Caveolae Studied Using Nanoparticles in Living Endothelial Cells, ACS Nano, vol.3, issue.12, pp.4110-4116, 2009.
DOI : 10.1021/nn9012274

Z. Mao, X. Zhou, and C. Gao, Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions, Biomaterials Science, vol.25, issue.9, pp.896-911
DOI : 10.1039/c3bm00137g

I. Y. Park, I. Y. Kim, M. K. Yoo, Y. J. Choi, M. H. Cho et al., Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery, International Journal of Pharmaceutics, vol.359, issue.1-2, pp.280-287, 2008.
DOI : 10.1016/j.ijpharm.2008.04.010

G. Jiang, K. Park, J. Kim, E. J. Oh, H. Kang et al., Hyaluronic acid???polyethyleneimine conjugate for target specific intracellular delivery of siRNA, Biopolymers, vol.18, issue.7, pp.635-642, 2008.
DOI : 10.1002/bip.20978

Y. C. Huang, M. Connell, Y. Park, D. J. Mooney, and K. G. Rice, Fabrication andin vitro testing of polymeric delivery system for condensed DNA, Journal of Biomedical Materials Research, vol.5, issue.4, pp.1384-1392, 2003.
DOI : 10.1002/jbm.a.20036

D. Fischer, T. Bieber, Y. X. Li, H. P. Elsasser, and T. Kissel, A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity, pp.1273-1282, 1999.

J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis, Biochemical Journal, vol.377, issue.1, pp.159-169, 2004.
DOI : 10.1042/bj20031253

F. Grinnell and W. M. Petroll, Cell Motility and Mechanics in Three-Dimensional Collagen Matrices, Annual Review of Cell and Developmental Biology, vol.26, issue.1, pp.335-361, 2010.
DOI : 10.1146/annurev.cellbio.042308.113318

R. Sarber, B. Hull, C. Merrill, T. Soranno, and E. Bell, Regulation of proliferation of fibroblasts of low and high population doubling levels grown in collagen lattices, Mechanisms of Ageing and Development, vol.17, issue.2, pp.107-117, 1981.
DOI : 10.1016/0047-6374(81)90077-4

T. Hirai, T. Akase, K. Nagano, Y. Abe, Y. Yoshioka et al., Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes, Part Fibre Toxicol, vol.8, pp.10-1186, 2011.

L. M. Wilkins, S. R. Watson, S. J. Prosky, S. F. Meunier, and N. L. Parenteau, Development of a bilayered living skin construct for clinical applications, Biotechnology and Bioengineering, vol.15, issue.8, pp.747-756, 1994.
DOI : 10.1002/bit.260430809

. La-réponse-de, IL-10 produites par les fibroblastes a été démontrée par la mesure par PCR

. Dans-un-deuxième-temps, IL-10 par les cellules 3T3 co-immobilisées avec les complexes au sein des hydrogels de collagène a été démontrée Malgré les quantités élevées d'IL-10 produites au sein des nanocomposites, il n'a pas été possible d'observer l'impact de cette protéine sur les macrophages activés

D. Altavilla, It has been shown in Chapter II that PEI 25 was toxic for doses equal or higher than 5-10 µg.mL -1 on 3T3 cells In contrast, PEI 25 and PEI 10 were not toxic at 100 µg.mL -1 when they were associated with SiNPs. Hence, it should be possible to counterbalance the lower ability of PEI 10 -SiNP to produce IL-10 by using higher doses than PEI 25 REFERENCES (1) Deodato, B.; Arsic, N.; Zentilin, L

D. Valdembri, F. Bussolino, and F. Squadrito, Recombinant AAV vector encoding human VEGF165 enhances wound healing, Gene Ther, vol.2002, issue.912, pp.777-785

G. Saillant, D. Klatzmann, J. Salvetat, and C. Pichon, Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles, Biomaterials, issue.19, pp.31-5237, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00529475

P. Lee, S. Chesnoy, and L. Huang, Electroporatic Delivery of TGF-??1 Gene Works Synergistically with Electric Therapy to Enhance Diabetic Wound Healing in db/db Mice, Journal of Investigative Dermatology, vol.123, issue.4
DOI : 10.1111/j.0022-202X.2004.23309.x

D. R. Moezzi, E. Limanovich, J. A. Wallace, and E. D. Milligan, Improvement of spinal nonviral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain, Journal of Neuroinflammation J, issue.11, 2014.

J. D. Peduzzi, D. C. Ansardi, and C. D. Morrow, Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10, Virology, vol.336, issue.2, pp.173-183, 2005.

I. L. Lowell, IL-10 delivery by AAV5 vector attenuates inflammation in mice with pseudomonas pneumonia, Gene Ther, vol.17, issue.5, pp.567-576, 2010.

S. Jain, T. Tran, and M. Amiji, Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis, Biomaterials, vol.61, pp.162-77, 2015.
DOI : 10.1016/j.biomaterials.2015.05.028

B. Hutchins and L. L. Moldawer, Influence of recombinant adenovirus on liver injury in endotoxicosis and its modulation by IL-10 expression, J. Endotoxin Res, vol.10, issue.6, pp.393-401, 2004.

A. Cheung, Successful treatment of experimental colitis by a nanoparticle gene delivery system that localizes expression of interleukin-10 (IL-10) to the colon, Inflamm. Bowel Dis, vol.17, pp.3-3, 2011.

C. Fu, Y. Chuang, L. Chau, and B. Chiang, Effects of adenovirus-expressing IL-10 in alleviating airway inflammation in asthma, The Journal of Gene Medicine, vol.288, issue.12, pp.1393-1399, 2006.
DOI : 10.1002/jgm.974

R. M. Boehler, R. Kuo, S. Shin, A. G. Goodman, M. A. Pilecki et al., Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype, Biotechnology and Bioengineering, vol.531, issue.12, pp.111-1210
DOI : 10.1002/bit.25175

C. A. Holladay, A. M. Duffy, X. Chen, M. V. Sefton, T. D. O-'brien et al., Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold, Biomaterials, vol.33, issue.5, pp.1303-1314
DOI : 10.1016/j.biomaterials.2011.10.019

G. Inflammatory-cytokine, Interleukin-10 (IL-10) for Chronic Pain Control: Taking Advantage of Nuclear Scaffold, Matrix Attachment Regions. Mol. Ther, vol.13, pp.99-99, 2006.

L. Li, J. F. Elliott, and T. R. Mosmann, IL-10 inhibits cytokine production, vascular leakage, and swelling during T helper 1 cell-induced delayed-type hypersensitivity, The Journal of Immunology, vol.153, issue.9, pp.3967-3978, 1994.

G. Kenis, C. Teunissen, R. De-jongh, E. Bosmans, H. Steinbusch et al., STABILITY OF INTERLEUKIN 6, SOLUBLE INTERLEUKIN 6 RECEPTOR, INTERLEUKIN 10 AND CC16 IN HUMAN SERUM, Cytokine, vol.19, issue.5, pp.228-235, 2002.
DOI : 10.1016/S1043-4666(02)91961-7

A. King, S. Balaji, D. L. Le, T. M. Crombleholme, and S. G. Keswani, Regenerative Wound Healing: The Role of Interleukin-10, Advances in Wound Care, vol.3, issue.4, pp.315-322
DOI : 10.1089/wound.2013.0461

S. A. Eming, J. Kaufmann, R. Lohrer, and T. Krieg, Chronic wounds: Novel approaches in research and therapy, Hautarzt, issue.11, pp.58939-944, 2007.