Development of a water vapor isotope ratio infrared spectrometer and application to measure atmospheric water in Antarctica

Abstract : In recent years, the measurement of water isotopologues has become increasingly important for atmospheric research. Due to the influence of climatic conditions on the isotope ratios, the isotopic composition of water stored in the ice in Antarctica and the Arctic can be used as paleothermometers to reconstruct past climate changes. The measurement of changes of the isotopic composition of water vapor in the atmosphere can be used to study the global hydrolocal cycle and to refine atmospheric circulation models.Whereas the conventional method for water isotope measurements, Isotope Ratio Mass Spectrometry (IRMS), is not adapted for in-situ continuous measurements of water vapor isotopes, the recent development of laser spectrometers offers a comparably easy and robust method to conduct in-the-field research with good time resolution. However, until now, most optical instruments require relative high humidity levels with water concentrations of at least several 1000 ppmv, which excludes measurements in some of the most interesting regions for water isotope research, such as the upper atmosphere and the central regions of Antarctica.In this work, we present a novel infrared laser spectrometer based on the technique OFCEAS, specifically designed to measure the four isotopologues H2_16O, H2_18O, H2_17O and HDO under very dry conditions, at water concentrations of some hundred to only tens of ppmv. The instrument developed during this thesis shows much higher measurement stability over time compared to previous OFCEAS instruments with optimum integration times of up to several hours and a very long effective path length of more than 30 km. At water concentrations around 80 ppmv, a precision of 0.8‰, 0.1‰ and 0.2‰ for d2H, d18O and d17O respectively could be achieved with an integration time of 30 to 60 min and at the optimum water concentration of ~650 ppmv, of 0.28‰, 0.02‰ and 0.07‰ respectively.An investigation of the overall performance of the instrument is presented and we specifically discuss the problem of a dependence of the isotope measurements on the water concentration at which a measurement is carried out. As main source of the concentration dependence, pattern noise is identified and a detailed analysis of the noise sources is given.Furthermore, a new calibration system for water vapor isotope measurements, the Syringe Nanoliter Injection Calibration System (SNICS), is introduced, which was developed in the framework of this thesis to offer a more reliable and stable means for the calibration of water vapor isotope measurements. This calibration system is based on the continuous injection of water into an evaporation chamber with two nanoliter syringe pumps and is able to generate standard water vapor in a range of 5 to 15 000 ppmv. A model simulation of the water injection is presented and shows a good agreement with experimental results.Subsequently, a first employment of the OFCEAS spectrometer at the Norwegian research station of Troll in Antarctica is discussed. Data from a three-week period from February and March 2011, during which the spectrometer continuously measured water vapor isotopologues in the atmosphere at the research station, is shown and problems and possibilities are discussed.Finally, the Isocloud project, an international project to study (super)saturation effects at the AIDA cloud chamber of the Karlsruhe Institute Technology in Germany, is introduced, in which we participated with both the spectrometer and the calibration instrument. Experimental data of the four measurement campaigns is presented, preliminary results are discussed. We conclude with a discussion of the optimum measurement protocol and give an outlook for the future.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01369376
Contributor : Abes Star <>
Submitted on : Tuesday, September 20, 2016 - 9:45:08 PM
Last modification on : Tuesday, September 11, 2018 - 9:24:02 AM

File

LANDSBERG_2014_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01369376, version 1

Collections

STAR | LIPHY | UGA

Citation

Janek Landsberg. Development of a water vapor isotope ratio infrared spectrometer and application to measure atmospheric water in Antarctica. Physics [physics]. Université de Grenoble, 2014. English. ⟨NNT : 2014GRENY052⟩. ⟨tel-01369376⟩

Share

Metrics

Record views

232

Files downloads

179