R. A. Potyrailo, Adapting Selected Nucleic Acid Ligands (Aptamers) to Biosensors, Analytical Chemistry, vol.70, issue.16, pp.3419-3425, 1998.
DOI : 10.1021/ac9802325

A. K. Cheng, B. Ge, and H. Yu, Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme, Analytical Chemistry, vol.79, issue.14, pp.79-5158, 2007.
DOI : 10.1021/ac062214q

O. Sullivan and C. , Aptasensors ??? the future of biosensing?, Analytical and Bioanalytical Chemistry, vol.372, issue.1, pp.44-48, 2002.
DOI : 10.1007/s00216-001-1189-3

T. Hermann and D. J. Patel, Stitching together RNA tertiary architectures, Journal of Molecular Biology, vol.294, issue.4, pp.829-849, 1999.
DOI : 10.1006/jmbi.1999.3312

B. E. Eaton, L. Gold, and D. A. Zichi, Let's get specific: the relationship between specificity and affinity, Chemistry & Biology, vol.2, issue.10, pp.633-638, 1995.
DOI : 10.1016/1074-5521(95)90023-3

D. J. Patel, Structure, recognition and adaptive binding in RNA aptamer complexes, Journal of Molecular Biology, vol.272, issue.5, pp.645-664, 1997.
DOI : 10.1006/jmbi.1997.1281

S. D. Jayasena, Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics, Clinical Chemistry, vol.45, issue.9, pp.1628-1650, 1999.

M. Mckeague, M. C. Derosa, and L. , Challenges and Opportunities for Small Molecule Aptamer Development, Journal of Nucleic Acids, vol.419, issue.3, pp.763-797, 1995.
DOI : 10.1021/bi061613c

J. Toulmé, Les aptamères : du concept à l'outil. Médecine Nucléaire, pp.31-478, 2007.

E. Luzi, New trends in affinity sensing, TrAC Trends in Analytical Chemistry, vol.22, issue.11, pp.810-818, 2003.
DOI : 10.1016/S0165-9936(03)01208-1

S. Tombelli, M. Minunni, and M. Mascini, Analytical applications of aptamers, Biosensors and Bioelectronics, vol.20, issue.12, pp.2424-2434, 2005.
DOI : 10.1016/j.bios.2004.11.006

A. B. Iliuk, L. Hu, and W. A. Tao, Aptamer in Bioanalytical Applications, Analytical Chemistry, vol.83, issue.12, pp.4440-4452, 2011.
DOI : 10.1021/ac201057w

T. Mairal, Aptamers: molecular tools for analytical applications, Analytical and Bioanalytical Chemistry, vol.5, issue.9, pp.989-1007, 2008.
DOI : 10.1007/s00216-007-1346-4

I. Willner and M. Zayats, Electronic Aptamer-Based Sensors, Angewandte Chemie International Edition, vol.15, issue.34, pp.6408-6418, 2007.
DOI : 10.1002/anie.200604524

Y. Li, H. J. Lee, and R. M. Corn, Detection of Protein Biomarkers Using RNA Aptamer Microarrays and Enzymatically Amplified Surface Plasmon Resonance Imaging, Analytical Chemistry, vol.79, issue.3, pp.79-1082, 2007.
DOI : 10.1021/ac061849m

C. A. Savran, Micromechanical Detection of Proteins Using Aptamer-Based Receptor Molecules, Analytical Chemistry, vol.76, issue.11, pp.76-3194, 2004.
DOI : 10.1021/ac049859f

V. Pavlov, Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin, Journal of the American Chemical Society, vol.126, issue.38, pp.126-11768, 2004.
DOI : 10.1021/ja046970u

Y. Xiao, A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement, Journal of the American Chemical Society, vol.127, issue.51, pp.127-17990, 2005.
DOI : 10.1021/ja056555h

F. Li, Adenosine detection by using gold nanoparticles and designed aptamer sequences, The Analyst, vol.289, issue.7, pp.1355-1360, 2009.
DOI : 10.1039/b900900k

M. N. Stojanovic and D. M. Kolpashchikov, Modular Aptameric Sensors, Journal of the American Chemical Society, vol.126, issue.30, pp.9266-9270, 2004.
DOI : 10.1021/ja032013t

V. Guieu, Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules, Analytica Chimica Acta, vol.706, issue.2, pp.349-353, 2011.
DOI : 10.1016/j.aca.2011.08.047

J. Wang and H. S. Zhou, Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules, Analytical Chemistry, vol.80, issue.18, pp.80-7174, 2008.
DOI : 10.1021/ac801281c

J. Wang, A. Munir, and H. S. Zhou, Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy, Talanta, vol.79, issue.1, pp.72-76, 2009.
DOI : 10.1016/j.talanta.2009.03.003

A. L. Chang, Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules using a Label-Free, Sensitive, and Scalable Platform, Analytical Chemistry, vol.86, issue.7, pp.86-3273, 2014.
DOI : 10.1021/ac5001527

C. Feng, S. Dai, and L. Wang, Optical aptasensors for quantitative detection of small biomolecules: A review, Biosensors and Bioelectronics, vol.59, issue.0, pp.59-64, 2014.
DOI : 10.1016/j.bios.2014.03.014

D. R. Shankaran, K. V. Gobi, and N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sensors and Actuators B: Chemical, vol.121, issue.1, pp.158-177, 2007.
DOI : 10.1016/j.snb.2006.09.014

J. Shen, Recent Development of Sandwich Assay Based on the Nanobiotechnologies for Proteins, Nucleic Acids, Small Molecules, and Ions Reusable Electrochemical Sensing Platform for Highly Sensitive Detection of Small Molecules Based on Structure-Switching Signaling Aptamers, Chemical Reviews Analytical Chemistry, vol.50, issue.7, pp.79-2933, 2007.

J. Mitchell, Small Molecule Immunosensing Using Surface Plasmon Resonance, Sensors, vol.10, issue.8, pp.7323-7346, 2010.
DOI : 10.3390/s100807323

S. M. John, W. Y. Cho, M. J. , and R. Juliano, Surface Plasmon Resonance Biosensors for Highly Sensitive Detection of Small Biomolecules Macromolecular versus smallmolecule therapeutics: drug discovery, development and clinical considerations, Biosensors. Trends in Biotechnology, vol.53, issue.5, pp.14-153, 1996.

P. D. Leeson and B. Springthorpe, The influence of drug-like concepts on decisionmaking in medicinal chemistry, Nat Rev Drug Discov, issue.611, pp.881-890, 2007.

C. A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, pp.337-341, 2004.

M. L. Ashour and M. Wink, : a review of its phytochemistry, pharmacology and modes of action, Journal of Pharmacy and Pharmacology, vol.61, issue.3, pp.305-321, 2011.
DOI : 10.1111/j.2042-7158.2010.01170.x

T. Roemer, Bugs, drugs and chemical genomics, Biochemical and Biophysical Research Communications Ciesiolka, J. and M. Yarus, Small RNA-divalent domains, pp.46-56, 1995.
DOI : 10.1038/nchembio.744

H. P. Hofmann, Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair, RNA, issue.311, pp.1289-1300, 1997.

M. Sassanfar and J. W. Szostak, An RNA motif that binds ATP, Nature, vol.364, issue.6437, pp.550-553, 1993.
DOI : 10.1038/364550a0

D. E. Huizenga and J. W. Szostak, A DNA Aptamer That Binds Adenosine and ATP, Biochemistry, vol.34, issue.2, pp.656-665, 1995.
DOI : 10.1021/bi00002a033

C. T. Lauhon, J. W. Szostak-fredholm, and B. B. , RNA aptamers that bind flavin and nicotinamide redox cofactors, Journal of the American Chemical Society, vol.117, issue.4, pp.1246-1257, 1995.
DOI : 10.1021/ja00109a008

V. Ralevic and G. Burnstock, Receptors for Purines and Pyrimidines, Pharmacological Reviews, vol.50, issue.3, pp.413-492, 1998.

A. Sollevi, Cardiovascular effects of adenosine in man; possible clinical implications, Progress in Neurobiology, vol.27, issue.4, pp.319-349, 1986.
DOI : 10.1016/0301-0082(86)90005-5

R. Yaar, Animal models for the study of adenosine receptor function, Journal of Cellular Physiology, vol.89, issue.1, pp.9-20, 2005.
DOI : 10.1002/jcp.20138

S. Holgate, Airway Inflammation and Remodeling in Asthma: Current Concepts, Molecular Biotechnology, vol.22, issue.2, pp.179-189, 2002.
DOI : 10.1385/MB:22:2:179

C. André, A. Xicluna, and Y. Guillaume, Aptamer-oligonucleotide binding studied by capillary electrophoresis: Cation effect and separation efficiency, ELECTROPHORESIS, vol.13, issue.17, pp.26-3247, 2005.
DOI : 10.1002/elps.200500170

D. Huang, Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes, Biosensors and Bioelectronics, vol.29, issue.1, pp.178-183, 2011.
DOI : 10.1016/j.bios.2011.08.014

J. Kim, Label-free electrochemical detection of adenosine based on electron transfer from guanine bases in an adenosine-sensitive aptamer, Chemical Communications, vol.10, issue.31, pp.4747-4749, 2009.
DOI : 10.1039/b908344h

S. Chen, Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles, Biosensors and Bioelectronics, vol.23, issue.11, pp.1749-1753, 2008.
DOI : 10.1016/j.bios.2008.02.008

J. Liu, D. Mazumdar, Y. Lu, S. Simple, K. Tawa et al., Dipstick Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures Mismatching baseâ??pair dependence of the kinetics of DNAâ? " DNA hybridization studied by surface plasmon fluorescence spectroscopy Optical detection systems using immobilized aptamers, Angewandte Chemie International Edition Nucleic Acids Research Biosensors and Bioelectronics, vol.79, issue.809, pp.45-7955, 2004.

Q. Wang, Surface plasmon resonance detection of small molecule using split aptamer fragments, Sensors and Actuators B: Chemical, vol.156, issue.2, pp.893-898, 2011.
DOI : 10.1016/j.snb.2011.03.002

B. 1. Morrill, P. R. , R. B. Millington, and C. R. Lowe, Imaging surface plasmon resonance system for screening affinity ligands, Journal of Chromatography B, vol.793, issue.2, pp.229-251, 2003.
DOI : 10.1016/S1570-0232(03)00282-4

B. P. Nelson, Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays, Analytical Chemistry, vol.73, issue.1, pp.1-7, 2000.
DOI : 10.1021/ac0010431

T. Livache, Polypyrrole based DNA hybridization assays: study of label free detection processes versus fluorescence on microchips, Journal of Pharmaceutical and Biomedical Analysis, vol.32, issue.4-5, pp.32-687, 2003.
DOI : 10.1016/S0731-7085(03)00176-6

M. Piliarik and J. Í. Homola, Surface plasmon resonance (SPR) sensors: approaching their limits? Optics Express, pp.16505-16517, 2009.

V. E. Kochergin, Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications, Quantum Electronics, vol.28, issue.5, p.444, 1998.
DOI : 10.1070/QE1998v028n05ABEH001245

D. Nedelkov and R. W. Nelson, Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes, Biosensors and Bioelectronics, vol.16, issue.9-12, pp.9-12, 2001.
DOI : 10.1016/S0956-5663(01)00229-9

J. Mitchell, Small Molecule Immunosensing Using Surface Plasmon Resonance, Sensors, vol.10, issue.8, pp.7323-7346, 2010.
DOI : 10.3390/s100807323

G. Sakai, Highly selective and sensitive SPR immunosensor for detection of methamphetamine, Electrochimica Acta, vol.44, issue.21-22, pp.21-22, 1999.
DOI : 10.1016/S0013-4686(99)00092-4

Q. Yu, Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor, Sensors and Actuators B: Chemical, vol.107, issue.1, pp.193-201, 2005.
DOI : 10.1016/j.snb.2004.10.064

D. R. Shankaran, A novel surface plasmon resonance immunosensor for 2,4,6-trinitrotoluene (TNT) based on indirect competitive immunoreaction: a promising approach for on-site landmine detection, IEEE Sensors Journal, vol.5, issue.4, pp.616-621, 2005.
DOI : 10.1109/JSEN.2005.848150

D. R. Shankaran, K. V. Gobi, and N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sensors and Actuators B: Chemical, vol.121, issue.1, pp.158-177, 2007.
DOI : 10.1016/j.snb.2006.09.014

J. Yuan, Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles, Biosensors and Bioelectronics, vol.23, issue.1, pp.144-148, 2007.
DOI : 10.1016/j.bios.2007.03.025

S. Zeng, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chemical Society Reviews, vol.137, issue.10, pp.3426-3452, 2014.
DOI : 10.1039/c3cs60479a

M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.147, issue.0, pp.145-181, 1857.
DOI : 10.1098/rstl.1857.0011

C. Dahmen and G. Von-plessen, Optical Effects of Metallic Nanoparticles, Australian Journal of Chemistry, vol.60, issue.7, pp.447-456, 2007.
DOI : 10.1071/CH06473

K. L. Kelly, The Optical Properties of Metal Nanoparticles:?? The Influence of Size, Shape, and Dielectric Environment, The Journal of Physical Chemistry B, vol.107, issue.3, pp.668-677, 2002.
DOI : 10.1021/jp026731y

G. Mie, Beitr??ge zur Optik tr??ber Medien, speziell kolloidaler Metall??sungen, Annalen der Physik, vol.24, issue.3, pp.377-445, 1908.
DOI : 10.1002/andp.19083300302

S. L. Logunov, Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy, The Journal of Physical Chemistry B, vol.101, issue.19, pp.3713-3719, 1997.
DOI : 10.1021/jp962923f

A. J. Haes and R. P. Duyne, Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics, Expert Review of Molecular Diagnostics, vol.4, issue.4, pp.527-537, 2004.
DOI : 10.1586/14737159.4.4.527

K. A. Willets and R. P. Van-duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, vol.58, issue.1, pp.267-297, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104607

C. A. Mirkin, A DNA-based method for rationally assembling nanoparticles into macroscopic materials Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes, Nature Nat Biotech, vol.382, issue.227, pp.607-609, 1996.

C. S. Thaxton, D. G. Georganopoulou, and C. A. Mirkin, Gold nanoparticle probes for the detection of nucleic acid targets, Clinica Chimica Acta, vol.363, issue.1-2, pp.363-120, 2006.
DOI : 10.1016/j.cccn.2005.05.042

J. Liu and Y. Lu, Adenosine-Dependent Assembly of Aptazyme-Functionalized Gold Nanoparticles and Its Application as a Colorimetric Biosensor, Analytical Chemistry, vol.76, issue.6, pp.76-1627, 2004.
DOI : 10.1021/ac0351769

W. Zhao, Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation, ChemBioChem, vol.6, issue.7, pp.727-731, 2007.
DOI : 10.1002/cbic.200700014

J. L. Chavez, Theophylline detection using an aptamer and DNA???gold nanoparticle conjugates, Biosensors and Bioelectronics, vol.26, issue.1, pp.23-28, 2010.
DOI : 10.1016/j.bios.2010.04.049

F. Li, Adenosine detection by using gold nanoparticles and designed aptamer sequences, The Analyst, vol.289, issue.7, pp.1355-1360, 2009.
DOI : 10.1039/b900900k

V. Guieu, Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules, Analytica Chimica Acta, vol.706, issue.2, pp.349-353, 2011.
DOI : 10.1016/j.aca.2011.08.047

Y. Zheng, Y. Wang, and X. Yang, Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles, Sensors and Actuators B: Chemical, vol.156, issue.1, pp.95-99, 2011.
DOI : 10.1016/j.snb.2011.03.077

C. Yang, Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator, Biosensors and Bioelectronics, vol.26, issue.5, pp.2724-2727, 2011.
DOI : 10.1016/j.bios.2010.09.032

Y. S. Kim, A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline, Ghosh, S.K. and T. Pal, Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications, pp.1644-1649, 2007.
DOI : 10.1016/j.bios.2010.08.046

L. A. Lyon, D. J. Pena, and M. J. Natan, Surface Plasmon Resonance of Au Colloid-Modified Au Films:?? Particle Size Dependence, The Journal of Physical Chemistry B, vol.103, issue.28, pp.5826-5831, 1999.
DOI : 10.1021/jp984739v

S. Zeng, Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement, Sensors and Actuators B: Chemical, vol.176, issue.0, pp.176-1128, 2013.
DOI : 10.1016/j.snb.2012.09.073

X. Hong, E. A. Hall-golden, M. S. , A. C. Bjonnes, and R. M. Georgiadis, Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance Distance-and Wavelength- Dependent Dielectric Function of Au Nanoparticles by Angle-Resolved Surface Plasmon Resonance Imaging, Analyst The Journal of Physical Chemistry C, vol.137, issue.37, pp.4712-4719, 2010.

O. R. Bolduc and J. Masson, Advances in Surface Plasmon Resonance Sensing with Nanoparticles and Thin Films: Nanomaterials, Surface Chemistry, and Hybrid Plasmonic Techniques, Analytical Chemistry, vol.83, issue.21, pp.83-8057, 2011.
DOI : 10.1021/ac2012976

C. Feng, S. Dai, and L. Wang, Optical aptasensors for quantitative detection of small biomolecules: A review, Biosensors and Bioelectronics, vol.59, issue.0, pp.59-64, 2014.
DOI : 10.1016/j.bios.2014.03.014

J. Wang, A. Munir, and H. S. Zhou, Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy, Talanta, vol.79, issue.1, pp.72-76, 2009.
DOI : 10.1016/j.talanta.2009.03.003

J. Wang and H. S. Zhou, Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules, Analytical Chemistry, vol.80, issue.18, pp.80-7174, 2008.
DOI : 10.1021/ac801281c

E. Golub, Electrochemical, Photoelectrochemical, and Surface Plasmon Resonance Detection of Cocaine Using Supramolecular Aptamer Complexes and Metallic or Semiconductor Nanoparticles, Analytical Chemistry, vol.81, issue.22, pp.81-9291, 2009.
DOI : 10.1021/ac901551q

Q. Wang, Surface plasmon resonance detection of small molecule using split aptamer fragments, Sensors and Actuators B: Chemical, vol.156, issue.2, pp.893-898, 2011.
DOI : 10.1016/j.snb.2011.03.002

N. Ngoc and L. , Synthesis and optical properties of colloidal gold nanoparticles Journal of Physics: Conference Series Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra, Analytical Chemistry, vol.187, issue.111, pp.79-4215, 2007.

A. P. Alivisatos, Organization of 'nanocrystal molecules' using DNA, Nature, vol.382, issue.6592, pp.609-611, 1996.
DOI : 10.1038/382609a0

R. A. Sperling and W. J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.128, issue.15, pp.368-1333, 1915.
DOI : 10.1021/ja060782h

L. He, Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization, Journal of the American Chemical Society, vol.122, issue.38, pp.122-9071, 2000.
DOI : 10.1021/ja001215b

J. Liu, J. H. Lee, and Y. Lu, Quantum Dot Encoding of Aptamer-Linked Nanostructures for One-Pot Simultaneous Detection of Multiple Analytes, Analytical Chemistry, vol.79, issue.11, pp.79-4120, 2007.
DOI : 10.1021/ac070055k

W. Zhao, DNA Aptamer Folding on Gold Nanoparticles:?? From Colloid Chemistry to Biosensors, Journal of the American Chemical Society, vol.130, issue.11, pp.130-3610, 2008.
DOI : 10.1021/ja710241b

R. L. Letsinger, Use of a Steroid Cyclic Disulfide Anchor in Constructing Gold Nanoparticle???Oligonucleotide Conjugates, Bioconjugate Chemistry, vol.11, issue.2, pp.289-291, 2000.
DOI : 10.1021/bc990152n

Z. Li, Multiple thiol-anchor capped DNA-gold nanoparticle conjugates, Nucleic Acids Research, vol.30, issue.7, pp.1558-1562, 2002.
DOI : 10.1093/nar/30.7.1558

S. A. Claridge, Isolation of Discrete Nanoparticle???DNA Conjugates for Plasmonic Applications, Nano Letters, vol.8, issue.4, pp.1202-1206, 2008.
DOI : 10.1021/nl0802032

T. Pellegrino, Gel Electrophoresis of Gold-DNA Nanoconjugates Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates, Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings, pp.32-35, 2000.

Q. Chen, 3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy, Nano Letters, vol.13, issue.9, pp.4556-4561, 2013.
DOI : 10.1021/nl402694n

A. J. Mastroianni, S. A. Claridge, and A. P. , Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds, Covalent DNA?Streptavidin Conjugates as Building Blocks for Novel Biometallic Nanostructures, pp.8455-8459, 1998.
DOI : 10.1021/ja808570g

C. Daniel, Real time monitoring of thrombin interactions with its aptamers: Insights into the sandwich complex formation, Biosensors and Bioelectronics, vol.40, issue.1, pp.186-192, 2013.
DOI : 10.1016/j.bios.2012.07.016

C. Daniel, Solution-Phase vs Surface-Phase Aptamer-Protein Affinity from a Label-Free Kinetic Biosensor Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, PLoS ONE Chemical Reviews, vol.8, issue.1054, pp.1103-1170, 2005.

M. J. Hostetler, A. C. Templeton, and R. W. Murray, Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules, Langmuir, vol.15, issue.11, pp.15-3782, 1999.
DOI : 10.1021/la981598f

C. Solliard and P. Buffat, VARIATION DE LA MAILLE CRISTALLINE DE PETITS CRISTAUX D'OR PAR EFFET DE TAILLE, Le Journal de Physique Colloques, vol.38, issue.C2, pp.2-167, 1977.
DOI : 10.1051/jphyscol:1977235

URL : https://hal.archives-ouvertes.fr/jpa-00217074

T. Laaksonen, Stability and Electrostatics of Mercaptoundecanoic Acid-Capped Gold Nanoparticles with Varying Counterion Size, ChemPhysChem, vol.239, issue.10, pp.2143-2149, 2006.
DOI : 10.1002/cphc.200600307

S. Lin, Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles, The Journal of Physical Chemistry B, vol.108, issue.7, pp.2134-2139, 2004.
DOI : 10.1021/jp036310w

H. Yao, Phase Transfer of Gold Nanoparticles across a Water/Oil Interface by Stoichiometric Ion-Pair Formation on Particle Surfaces, Bulletin of the Chemical Society of Japan, vol.73, issue.12, pp.73-2675, 2000.
DOI : 10.1246/bcsj.73.2675

A. Moores, Phosphinine stabilised gold nanoparticles; synthesis and immobilisation on mesoporous materials One-pot preparation of mono-dispersed and physiologically stabilized gold colloid, Chemical Communications Colloid and Polymer Science, vol.70, issue.2841, pp.2842-2843, 2004.

G. Fritz, Electrosteric Stabilization of Colloidal Dispersions, Langmuir, vol.18, issue.16, pp.6381-6390, 2002.
DOI : 10.1021/la015734j

V. S. Stenkamp, P. Mcguiggan, and J. C. Berg, Restabilization of Electrosterically Stabilized Colloids in High Salt Media, Langmuir, vol.17, issue.3, pp.637-651, 2001.
DOI : 10.1021/la001086c

T. Tamaki, Isolation of Gold Nanoparticle/Oligo-DNA Conjugates by the Number of Oligo-DNAs Attached and Their Formation of Self-assembly, Chemistry Letters, vol.39, issue.10, pp.39-1084, 2010.
DOI : 10.1246/cl.2010.1084

C. F. Bohren, D. R. Huffman, and A. B. , Absorption and Scattering by a Sphere, in Absorption and Scattering of Light by Small Particles Immobilization of Nucleic Acids at Solid Surfaces: Effect of Oligonucleotide Length on Layer Assembly, Biophysical Journal, issue.2, pp.82-129, 2000.

W. J. Parak, Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis, Nano Letters, vol.3, issue.1, pp.33-36, 2002.
DOI : 10.1021/nl025888z

S. R. Pena, Hybridization and Enzymatic Extension of Au Nanoparticle-Bound Oligonucleotides, Journal of the American Chemical Society, vol.124, issue.25, pp.7314-7323, 2002.
DOI : 10.1021/ja0177915

A. Ulman, Wetting studies of molecularly engineered surfaces. Thin Solid Films, pp.48-53, 1996.

Z. Wu, Reusable Electrochemical Sensing Platform for Highly Sensitive Detection of Small Molecules Based on Structure-Switching Signaling Aptamers, Analytical Chemistry, vol.79, issue.7, pp.79-2933, 2007.
DOI : 10.1021/ac0622936

A. L. Chang, Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules using a Label-Free, Sensitive, and Scalable Platform, Analytical Chemistry, vol.86, issue.7, pp.86-3273, 2014.
DOI : 10.1021/ac5001527

F. C. Chien, S. J. Chen-nenninger, and G. G. , A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosensors and Bioelectronics, vol.20, issue.3, pp.633-642, 2001.
DOI : 10.1016/j.bios.2004.03.014

L. He, The Distance-Dependence of Colloidal Au-Amplified Surface Plasmon Resonance, The Journal of Physical Chemistry B, vol.108, issue.30, pp.10973-10980, 2004.
DOI : 10.1021/jp048536k

B. 1. Wartell, R. M. , and A. S. Benight, Thermal denaturation of DNA molecules: A comparison of theory with experiment, Physics Reports, vol.126, issue.2, pp.67-107, 1985.
DOI : 10.1016/0370-1573(85)90060-2

M. L. Leung, B. Y. Tong, and F. Y. Wu, Thermal denaturation and renaturation of DNA molecules, Physics Letters A, vol.54, issue.5, pp.361-362, 1975.
DOI : 10.1016/0375-9601(75)90770-7

R. Thomas, Recherches sur la dénaturation des acides desoxyribonucléiques, Biochimica et Biophysica Acta, issue.0, pp.14-231, 1954.

N. Peyret, Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A, pp.38-3468, 1999.

H. T. Allawi and J. Santalucia, Nearest-Neighbor Thermodynamics of Internal A.C Mismatches in DNA: Sequence Dependence and pH Effects, Biochemistry, issue.26, pp.37-9435, 1998.

H. T. Allawi and J. Santalucia, NMR solution structure of a DNA dodecamer containing single G.T mismatches, Nucleic Acids Research, issue.21, pp.26-4925, 1998.

H. T. Allawi and J. Santalucia, Thermodynamics and NMR of Internal G??T Mismatches in DNA, Biochemistry, vol.36, issue.34, pp.10581-10594, 1997.
DOI : 10.1021/bi962590c

R. Owczarzy, Predicting sequence-dependent melting stability of short duplex DNA oligomers, Biopolymers, vol.26, issue.3, pp.217-239, 1997.
DOI : 10.1002/(SICI)1097-0282(1997)44:3<217::AID-BIP3>3.0.CO;2-Y

R. Owczarzy, Thermodynamic treatment of oligonucleotide duplex-simplex equilibria, Proceedings of the National Academy of Sciences, pp.14840-14845, 2003.
DOI : 10.1073/pnas.2335948100

P. J. Mikulecky and A. L. Feig, Heat capacity changes associated with nucleic acid folding, Biopolymers, vol.39, issue.1, pp.38-58, 2006.
DOI : 10.1002/bip.20457

P. Doty, The physical chemistry of deoxyribonucleic acids, Journal of Cellular and Comparative Physiology, vol.171, issue.S1, pp.49-76, 1957.
DOI : 10.1002/jcp.1030490405

J. W. Nelson, F. H. Martin, and I. Tinoco, DNA and RNA oligomer thermodynamics: The effect of mismatched bases on double-helix stability, Biopolymers, vol.11, issue.12, pp.20-2509, 1981.
DOI : 10.1002/bip.1981.360201204

R. D. Blake and S. G. Delcourt, Thermodynamic effects of formamide on DNA stability, Nucleic Acids Research, vol.24, issue.11, pp.2095-2103, 1996.
DOI : 10.1093/nar/24.11.2095

C. Sadhu, S. Dutta, and K. P. Gopinathan, Influence of formamide on the thermal stability of DNA, Journal of Biosciences, vol.31, issue.6, pp.817-821, 1984.
DOI : 10.1007/BF02716841

C. H. Spink, S. E. Wellman, M. J. Jonathan, and . Chaires, Thermal denaturation as tool to study DNA-ligand interactions, Methods in Enzymology, pp.193-211, 2001.
DOI : 10.1016/S0076-6879(01)40423-X

C. H. Spink and J. B. Chaires, Effects of Hydration, Ion Release, and Excluded Volume on the Melting of Triplex and Duplex DNA Biochemistry, pp.496-508, 1998.

B. R. Persson, Analysis of Oligonucleotide Probe Affinities Using Surface Plasmon Resonance: A Means for Mutational Scanning, Analytical Biochemistry, vol.246, issue.1, pp.34-44, 1997.
DOI : 10.1006/abio.1996.9988

J. B. Fiche, Point Mutation Detection by Surface Plasmon Resonance Imaging Coupled with a Temperature Scan Method in a Model System, Analytical Chemistry, vol.80, issue.4, pp.1049-1057, 2008.
DOI : 10.1021/ac7019877

I. Belozerova and R. Levicky, Melting Thermodynamics of Reversible DNA/Ligand Complexes at Interfaces, Journal of the American Chemical Society, vol.134, issue.45, pp.18667-18676, 2012.
DOI : 10.1021/ja3066368

R. Levicky and A. Horgan, Physicochemical perspectives on DNA microarray and biosensor technologies, Trends in Biotechnology, vol.23, issue.3, pp.143-149, 2005.
DOI : 10.1016/j.tibtech.2005.01.004

D. Ge, Thermostable DNA Immobilization and Temperature Effects on Surface Hybridization Labelless electrochemical melting curve analysis for rapid mutation detection Electrochemical melting-curve analysis, Langmuir Analytical Methods Electrochemistry Communications, vol.22, issue.238, pp.28-8446, 2010.

J. Xu and S. L. Craig, Thermodynamics of DNA Hybridization on Gold Nanoparticles, Journal of the American Chemical Society, vol.127, issue.38, pp.13227-13231, 2005.
DOI : 10.1021/ja052352h

J. H. Watterson, Effects of Oligonucleotide Immobilization Density on Selectivity of Quantitative Transduction of Hybridization of Immobilized DNA Melting temperature of surface-tethered DNA, Langmuir Analytical Biochemistry, vol.16, issue.111, pp.4984-4992, 2000.

A. Russom, Rapid Melting Curve Analysis on Monolayered Beads for High-Throughput Genotyping of Single-Nucleotide Polymorphisms, Analytical Chemistry, vol.78, issue.7, pp.78-2220, 2006.
DOI : 10.1021/ac051771u

X. Wang and U. J. Krull, Synthesis and fluorescence studies of thiazole orange tethered onto oligonucleotide: development of a self-contained DNA biosensor on a fiber optic surface, Bioorganic & Medicinal Chemistry Letters, vol.15, issue.6, pp.15-1725, 2005.
DOI : 10.1016/j.bmcl.2005.01.030

A. B. Ozel, Target concentration dependence of DNA melting temperature on oligonucleotide microarrays, Biotechnology Progress, vol.51, issue.2, pp.556-566, 2012.
DOI : 10.1002/btpr.1505

J. Rampal, Predicting DNA Duplex Stability on Oligonucleotide Arrays, in Microarrays, pp.393-403, 2007.

E. Forman-jonathan, Thermodynamics of Duplex Formation and Mismatch Discrimination on Photolithographically Synthesized Oligonucleotide Arrays, in Molecular Modeling of Nucleic Acids, pp.206-228, 1997.

K. A. Peterlinz, Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy, Journal of the American Chemical Society, vol.119, issue.14, pp.119-3401, 1997.
DOI : 10.1021/ja964326c

J. B. Fiche, Temperature Effects on DNA Chip Experiments from Surface Plasmon Resonance Imaging: Isotherms and Melting Curves, Biophysical Journal, vol.92, issue.3, pp.92-935, 2007.
DOI : 10.1529/biophysj.106.097790

J. Fuchs, Effects of formamide on the thermal stability of DNA duplexes on biochips, Analytical Biochemistry, vol.397, issue.1, pp.132-134, 2010.
DOI : 10.1016/j.ab.2009.09.044

K. M. Aly and E. Esmail, Refractive index of salt water: effect of temperature, Optical Materials, vol.2, issue.3, pp.195-199, 1993.
DOI : 10.1016/0925-3467(93)90013-Q

L. S. Jung, Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films, Langmuir, vol.14, issue.19, pp.14-5636, 1998.
DOI : 10.1021/la971228b

A. J. Thiel, In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces, Analytical Chemistry, vol.69, issue.24, pp.69-4948, 1997.
DOI : 10.1021/ac9708001

C. Daniel, Solution-Phase vs Surface-Phase Aptamer-Protein Affinity from a Label-Free Kinetic Biosensor Melting Transitions of DNA-Capped Gold Nanoparticle Assemblies, Reviews in Plasmonics, pp.269-282, 2010.

Y. Sun, N. Harris, and C. Kiang, Phase Transition and Optical Properties of DNA???Gold Nanoparticle Assemblies, Plasmonics, vol.110, issue.4, pp.193-199, 2007.
DOI : 10.1007/s11468-007-9034-y

A. V. Fotin, Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips, Nucleic Acids Research, vol.26, issue.6, pp.1515-1521, 1998.
DOI : 10.1093/nar/26.6.1515

B. P. Nelson, Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays, Analytical Chemistry, vol.73, issue.1, pp.1-7, 2000.
DOI : 10.1021/ac0010431

R. Mckendry, Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array, Proceedings of the National Academy of Sciences, pp.99-9783, 2002.
DOI : 10.1073/pnas.152330199

K. Tawa and W. Knoll, Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy, Nucleic Acids Research, vol.32, issue.8, pp.32-2372, 2004.
DOI : 10.1093/nar/gkh572

A. Halperin, A. Buhot, E. B. Zhulina, D. J. , and D. J. Winzor, On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions Journal of Physics: Condensed Matter Interpretation of Deviations from Pseudo-First- Order Kinetic Behavior in the Characterization of Ligand Binding by Biosensor Technology, Analytical Biochemistry, vol.18, issue.182, pp.236-275, 1996.

A. N. Rao, C. K. Rodesch, D. W. Grainger, and A. B. , Real-Time Fluorescent Image Analysis of DNA Spot Hybridization Kinetics To Assess Microarray Spot Heterogeneity Immobilization of Nucleic Acids at Solid Surfaces: Effect of Oligonucleotide Length on Layer Assembly, Analytical Chemistry Biophysical Journal, vol.84, issue.212, pp.79-975, 2000.

A. Halperin, A. Buhot, and E. B. Zhulina, Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines, Biophysical Journal, vol.89, issue.2, pp.796-811, 2005.
DOI : 10.1529/biophysj.105.063479

A. Halperin, A. Buhot, and E. B. Zhulina, Sensitivity, Specificity, and the Hybridization Isotherms of DNA Chips, Biophysical Journal, vol.86, issue.2, pp.718-730, 2004.
DOI : 10.1016/S0006-3495(04)74150-8

C. André, A. Xicluna, and Y. Guillaume, Aptamer-oligonucleotide binding studied by capillary electrophoresis: Cation effect and separation efficiency, ELECTROPHORESIS, vol.13, issue.17, pp.3247-3255, 1984.
DOI : 10.1002/elps.200500170

D. E. Huizenga and J. W. Szostak, A DNA Aptamer That Binds Adenosine and ATP, Biochemistry, vol.34, issue.2, pp.656-665, 1995.
DOI : 10.1021/bi00002a033

. Ho-, CH 2 ) 11 -PEG-SH

N. Spectrophotomètre, 1000 Nanodrop ; Labtech International (UK) Robot piézoélectrique sans contact