A. T. Moorhouse, Virtual acoustic prototypes: listening to machines that don't exist, Acoustics Australia

G. Pavi´cpavi´c, Noise Sources and Virtual Noise Synthesis, Proc. of the International Congress and Exposition on Noise Control Engineering (Internoise)

Y. Bobrovnitskii and G. Pavi´cpavi´c, Modelling and characterization of air-borne noise sources, J. Sound Vib

D. Berckmans, B. Pluymers, P. Sas, and W. Desmet, Numerical Comparison of Diierent Equivalent Source Models and Source Quantiication Techniques for Use in Sound Synthesis Systems, Acta Acustica United Ac, pp.pp. -(((

A. T. Moorhouse and G. Seiiert, Characterisation of an airborne sound source for use in a virtual acoustical prototype, J. Sound Vib

A. T. Moorhouse, Simpliied calculation of structure-borne sound from an active machine component on a supporting substructure, J. Sound Vib

A. T. Moorhouse, In situ measurement of the blocked force of structure-borne sound sources, Journal of Sound and Vibration, vol.325, issue.4-5
DOI : 10.1016/j.jsv.2009.04.035

G. Pavi´cpavi´c, Air-borne sound source characterization by patch impedance coupling approach, J. Sound Vib

C. [. Vogt, J. Glandier, A. Morkholt, M. A. Omrani, and . Hamdi, Engine Source Identiication using an I-BEM technique, Proc. of the Euronoise, pp.pp. -((((

M. Weber, T. Kletschkowski, and B. Samtleben, Identiication of Noise Sources by Means of Inverse Finite Element Method, Proc. of the COMSOL Conference (((((

N. Frenne and Ö. Johansson, Acoustic time histories from vibrating surfaces of a diesel engine, Applied Acoustics, vol.67, issue.3
DOI : 10.1016/j.apacoust.2005.06.001

A. D. Pierce, Acoustics -An Introduction to Its Physical Principles and Applications

I. L. Vér and L. L. Beranek, Noise and Vibration Control Engineering
DOI : 10.1002/9780470172568

Y. I. Bobrovnitskii, K. I. Mal-'tsev, N. M. Ostapishin, S. N. Panov, and J. S. Wood, Acoustical model of a machine, Sov. Phys. Acoust

Y. I. Bobrovnitskii, Models of acoustic sources: a survey, Proc. of the International Congress on Noise Control Engineering (Internoise)

A. Pereira, Acoustic imaging in enclosed spaces
URL : https://hal.archives-ouvertes.fr/tel-00984347

A. Lindberg, G. Pavi´cpavi´c, and Q. Leclère, Characterisation of air-borne noise by a dummy source approach, the Proc. of Noise and Vibration -Emerging Technologies (NOVEM)
URL : https://hal.archives-ouvertes.fr/hal-01279945

U. P. Svensson and K. Wendlandt, The inuence of a loudspeaker cabinet's shape on the radiated power, J. Vibroeng

F. Zotter, A. Sontacchi, and R. Höldrich, Modeling a Spherical Loudspeaker System as Multipole Source Vibration and sound radiation of loudspeaker cones, the Proc. of Fortschritte der Akustik

A. Lindberg and G. Pavi´cpavi´c, Computation of sound radiation by a driver in a cabinet using a substitute source approach, The Journal of the Acoustical Society of America, vol.138, issue.2
DOI : 10.1121/1.4927691

G. Pavi´cpavi´c, An engineering technique for the computation of sound radiation by vibrating bodies using substitute sources, Acta Acustica United Ac

G. Pavi´cpavi´c, A Technique for the Computation of Sound Radiation by Vibrating Bodies Using Multipole Substitute Sources, Acta Acustica United Ac

D. A. Russell, J. P. Titlow, and Y. Bemmen, Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited, American Journal of Physics, vol.67, issue.8
DOI : 10.1119/1.19349

A. Lindberg and G. Pavi´cpavi´c, Measurement of volume velocity of a small sound source, Applied Acoustics, vol.91
DOI : 10.1016/j.apacoust.2014.12.001

F. Fahy, The Vibro-Acoustic Reciprocity Principle and Applications to Noise Control, Acustica

F. Fahy, Some applications of the reciprocity principle in experimental vibroacoustics, Acoustical Physics, vol.49, issue.2
DOI : 10.1134/1.1560385

T. Wolde, Reciprocity Measurements in Acoustical and Mechano-Acoustical Systems. Review of Theory and Applications, Acta Acoustica United Ac

T. Salava, Sources of the constant volume velocity and their use for acoustic measurements, J. Audio Eng. Soc

T. Salava, Acoustic load and transfer functions in rooms at low frequencies, J. Audio Eng. Soc

D. K. Anthony and S. J. Elliott, A comparison of three methods of measuring the volume velocity of an acoustic source, J. Audio Eng. Soc

A. Lindberg and G. Pavi´cpavi´c, Experimental characterisation of a small compression driver, Proc. of the Congrès Français d' Acoustique (CFA)

A. Lindberg and G. Pavi´cpavi´c, Experimental characterisation of a small compression driver using an internal microphone, Proc. of the International Conference on Noise and Vibration Engineering (ISMA)

H. Suzuki and J. Tichy, Sound radiation from convex and concave domes in an innite bae, J. Acoust. Soc. Am

P. A. Nelson and S. H. Yoon, ESTIMATION OF ACOUSTIC SOURCE STRENGTH BY INVERSE METHODS: PART I, CONDITIONING OF THE INVERSE PROBLEM, Journal of Sound and Vibration, vol.233, issue.4
DOI : 10.1006/jsvi.1999.2837

A. Rivola and M. Troncossi, Zebra tape identiication for the instantaneous angular speed computation and angular resampling of motorbike valve train measurements, Mech. Syst. Signal Pr

L. Yu, J. Antoni, and Q. Leclère, Recovering phase relationships between non-synchronous microphone array measurements, Proc. of the International Conference on Noise and Vibration Engineering (ISMA), pp.pp. -(((
URL : https://hal.archives-ouvertes.fr/hal-01121402

W. A. Gardner, A. Napolitano, and L. Paura, Cyclostationarity: Half a century of research, Signal Process
DOI : 10.1016/j.sigpro.2005.06.016

J. Antoni, Cyclostationarity by examples, Mechanical Systems and Signal Processing, vol.23, issue.4
DOI : 10.1016/j.ymssp.2008.10.010

Q. Leclère, L. Pruvost, and E. Parizet, Angular and temporal determinism of rotating machine signals: The diesel engine case, Mechanical Systems and Signal Processing, vol.24, issue.7
DOI : 10.1016/j.ymssp.2010.05.006

W. Kropp and K. Larsson, Force estimation in the time domain by applying an LMS algorithm, the Proc. of Noise and Vibration -Emerging Technologies (NOVEM)

P. C. Hansen and D. P. Leary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, vol.14, issue.6
DOI : 10.1137/0914086

R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. Leary, Regularization by Truncated Total Least Squares, SIAM Journal on Scientific Computing, vol.18, issue.4
DOI : 10.1137/S1064827594263837

S. Van-huuel and J. Vandewalle, The Total Least Squares Problem -Computational Aspects and Analysis

Y. Liu and W. S. Shephard-jr, Dynamic force identiication based on enhanced least squares and total least-squares schemes in the frequency domain, J. Sound Vib

W. Kropp and K. Larsson, Force estimation in the time domain by applying an LMS algorithm Unpublished document which contains force estimation examples with multiple excitation

C. L. Phillips, J. M. Parr, and E. A. , Riskin, Signals, Systems and Transforms

C. R. Shalizi, Advanced Data Analysis from an Elementary Point of View

V. [. Boulanger and . Lazzarini, The Audio Programming Book

L. Cremer, Die Synthese des Schallfeldes eines beliebigen festen Körpers in Luu mit beliebiger Schnelleverteilung aus Kugelschallfeldern " (Synthesis of the sound eld of an arbitrary rigid radiator in air with arbitrary particle velocity distribution by means of spherical sound elds)

G. H. Koopmann, L. Song, and J. B. Fahnline, A method for computing acoustic elds based on the principle of wave superposition, J. Acoust. Soc. Am

[. B. Fahnline and G. H. Koopmann, A numerical solution for the general radiation problem based on the combined methods of superposition and singular???value decomposition, The Journal of the Acoustical Society of America, vol.90, issue.5
DOI : 10.1121/1.401878

L. Song, G. H. Koopmann, and J. B. Fahnline, Numerical errors associated with the method of superposition for computing acoustic elds, J. Acoust. Soc. Am

P. [. Kropp and . Svensson, Application of the time domain formulation of the method of equivalent sources to radiation and scattering problems, Acta Acustica United Ac

M. J. Ochmann-]-y, R. E. Gounot, and . Musar, The source simulation technique for acoustic radiation problems On appropriate equivalent monopole sets for rigid body scattering problems, J. Acoust. Soc. Am, pp.pp. -((((

Y. J. Gounot and R. E. Musar, Genetic algorithms: A global search tool to find optimal equivalent source sets, Journal of Sound and Vibration, vol.322, issue.1-2
DOI : 10.1016/j.jsv.2008.11.001

Y. J. Gounot and R. E. Musar, Simulation of scattered elds: Some guidelines for the equivalent source method, J. Sound Vib

K. H. Baek and S. J. Elliott, Natural algorithms for choosing source locations in active control systems, Journal of Sound and Vibration, vol.186, issue.2
DOI : 10.1006/jsvi.1995.0447

J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks
DOI : 10.1109/ICNN.1995.488968

C. S. Obiekezie, D. W. Thomas, A. Nothofer, S. Greedy, L. R. Arnaut et al., Complex Locations of Equivalent Dipoles for Improved Characterization of Radiated Emissions, IEEE Transactions on Electromagnetic Compatibility, vol.56, issue.5, pp.pp. -(((
DOI : 10.1109/TEMC.2014.2313406

P. Courrieu, Fast computation of Moore-Penrose inverse matrices, Neural Information Processing -Letters and Reviews
URL : https://hal.archives-ouvertes.fr/hal-00276477

M. Greenspan, Piston radiator: Some extensions of the theory, The Journal of the Acoustical Society of America, vol.65, issue.3
DOI : 10.1121/1.382496

D. L. Dekker, R. L. Piziali, and E. Dong, EEect of boundary conditions on the ultrasonic beam characteristics of circular disks, J. Acoust. Soc. Am

N. Frenne and Ö. Johansson, Acoustic time histories from vibrating surfaces of a diesel engine, Applied Acoustics, vol.67, issue.3
DOI : 10.1016/j.apacoust.2005.06.001

T. S. Vogt, C. Y. Glandier, J. Morkholt, A. Omrani, and M. A. Hamdi, Engine source identiication using an I-BEM technique, Proc. of the Euronoise, pp.pp. -((((

A. Lindberg, G. Pavi´cpavi´c, and Q. Leclère, Characterisation of air-borne noise by a dummy-source approach, Proc. of Noise and Vibration -Emerging Technologies (NOVEM)
URL : https://hal.archives-ouvertes.fr/hal-01279945

A. Lindberg and G. Pavi´cpavi´c, Experimental characterisation of a small compression driver using an internal microphone, Proc. of the International Conference on Noise and Vibration Engineering (ISMA)

A. Lindberg and G. Pavi´cpavi´c, Measurement of volume velocity of a small sound source, Applied Acoustics, vol.91
DOI : 10.1016/j.apacoust.2014.12.001

Q. Leclère, G. Pavi´cpavi´c, and S. Greee, Quantiication of airborne and structureborne engine noise in a coach under real operating conditions, Proc. of the International Conference on Noise and Vibration Engineering (ISMA)

P. C. Hansen and D. P. Leary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, vol.14, issue.6
DOI : 10.1137/0914086

P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems, Computational Inverse Problems in Electrocardiology Advances in Computational Bioengineering

J. [. Van-huuel and . Vandewalle, The Total Least Squares Problem -Computational Aspects and Analysis

G. [. Fierro, P. C. Golub, D. P. Hansen, and . Leary, Regularization by Truncated Total Least Squares, SIAM Journal on Scientific Computing, vol.18, issue.4
DOI : 10.1137/S1064827594263837

D. M. Sima and S. Van-huuel, Level choice in truncated total least squares, Computational Statistics & Data Analysis, vol.52, issue.2
DOI : 10.1016/j.csda.2007.05.015

Y. Liu and W. S. Shepard-jr, Dynamic force identiication based on enhanced least squares and total least-squares schemes in the frequency domain, J. Sound Vib

W. Kropp and K. Larsson, Force estimation in the time domain by applying an LMS algorithm, Proc. of Noise and Vibration -Emerging Technologies (NOVEM)

P. C. Hansen and D. P. Leary, Regularization algorithms based on total least squares, Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, p.pp

A. T. Moorhouse, Compensation for discarded singular values in vibro-acoustic inverse methods, Journal of Sound and Vibration, vol.267, issue.2
DOI : 10.1016/S0022-460X(02)01432-3

Q. Leclère, L. Pruvost, and E. Parizet, Angular and temporal determinism of rotating machine signals: The diesel engine case, Mechanical Systems and Signal Processing, vol.24, issue.7, pp.pp. -(((
DOI : 10.1016/j.ymssp.2010.05.006

W. A. Gardner, A. Napolitano, and L. Paura, Cyclostationarity: Half a century of research, Signal Process
DOI : 10.1016/j.sigpro.2005.06.016

J. Antoni, Cyclostationarity by examples, Mechanical Systems and Signal Processing, vol.23, issue.4
DOI : 10.1016/j.ymssp.2008.10.010

A. D. Pierce, Acoustics -An Introduction to Its Physical Principles and Applications

R. Boulanger and V. Lazzarini, The Audio Programming Book

M. Troncossi, Zebra tape identiication for the instantaneous angular speed computation and angular resampling of motorbike valve train measurements, Mech. Syst. Signal Pr

C. L. Phillips, J. M. Parr, and E. A. , Riskin, Signals, Systems and Transforms

D. Berckmans, B. Pluymers, P. Sas, and W. Desmet, Numerical comparison of diierent equivalent source models and source quantiication techniques for use in sound synthesis systems, Acta Acustica United Ac, pp.pp. -(((

A. T. Moorhouse and G. Seiiert, Characterisation of an airborne sound source for use in a virtual acoustical prototype, J. Sound Vib

A. T. Moorhouse, Simpliied calculation of structure-borne sound from an active machine component on a supporting substructure, J. Sound Vib

N. Frenne and Ö. Johansson, Acoustic time histories from vibrating surfaces of a diesel engine, Applied Acoustics, vol.67, issue.3
DOI : 10.1016/j.apacoust.2005.06.001

T. S. Vogt, C. Y. Glandier, J. Morkholt, A. Omrani, and M. A. Hamdi, Engine source identiication using an I-BEM technique, Proc. of the Euronoise, pp.pp. -((((

A. D. Pierce, Acoustics -An Introduction to Its Physical Principles and Applications

Y. Bobrovnitskii and G. Pavi´cpavi´c, Modelling and characterization of airborne noise sources, Journal of Sound and Vibration, vol.261, issue.3
DOI : 10.1016/S0022-460X(02)00981-1

G. Pavi´cpavi´c, Air-borne sound source characterization by patch impedance coupling approach, J. Sound Vib

D. P. Hansen and . Leary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, vol.14, issue.6
DOI : 10.1137/0914086

P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems, Computational Inverse Problems in Electrocardiology Advances in Computational Bioengineering

P. A. Nelson and S. H. Yoon, ESTIMATION OF ACOUSTIC SOURCE STRENGTH BY INVERSE METHODS: PART I, CONDITIONING OF THE INVERSE PROBLEM, Journal of Sound and Vibration, vol.233, issue.4
DOI : 10.1006/jsvi.1999.2837

J. Carrou, Q. Leclère, and F. Gautier, Some characteristics of the concert harp???s acoustic radiation, The Journal of the Acoustical Society of America, vol.127, issue.5
DOI : 10.1121/1.3377055

A. Lindberg and G. Pavi´cpavi´c, Experimental characterisation of a small compression driver, Proc. of the Congrés Français d' Acoustique (CFA)

D. L. Dekker, R. L. Piziali, and E. Dong, EEect of boundary conditions on the ultrasonic beam characteristics of circular disks, J. Acoust. Soc. Am

M. Greenspan, Piston radiator: Some extensions of the theory, The Journal of the Acoustical Society of America, vol.65, issue.3
DOI : 10.1121/1.382496

L. Song, G. H. Koopmann, and J. B. Fahnline, A method for computing acoustic elds based on the principle of wave superposition, J. Acoust. Soc. Am

M. Ochmann, The source simulation technique for acoustic radiation problems, Acustica

G. Pavi´cpavi´c, An engineering technique for the computation of sound radiation by vibrating bodies using substitute sources, Acta Acustica United Ac

G. Pavi´cpavi´c, A technique for the computation of sound radiation by vibrating bodies using multipole substitute sources, Acta Acustica United Ac

T. Salava, Sources of the constant volume velocity and their use for acoustic measurements, J. Audio Eng. Soc

T. Salava, Acoustic load and transfer functions in rooms at low frequencies, J. Audio Eng. Soc

D. K. Anthony and S. J. Elliott, A comparison of three methods of measuring the volume velocity of an acoustic source Experimental characterisation of a small compression driver using an internal microphone, Proc. of the International Conference on Noise and Vibration Engineering (ISMA), pp.pp. -(((

A. Lindberg and G. Pavi´cpavi´c, Measurement of volume velocity of a small sound source, Applied Acoustics, vol.91
DOI : 10.1016/j.apacoust.2014.12.001

[. S. Bendat and A. G. Piersol, Random Data-Analysis and Measurement Procedures, Journal of Vibration Acoustics Stress and Reliability in Design, vol.111, issue.3
DOI : 10.1115/1.3269865

Q. Leclère, G. Pavi´cpavi´c, and S. Greee, Quantiication of airborne and structureborne engine noise in a coach under real operating conditions, Proc. of the International Conference on Noise and Vibration Engineering (ISMA)

. [. Frankort, Vibration and sound radiation of loudspeaker cones

T. Salava, Sources of the constant volume velocity and their use for acoustic measurements, J. Audio Eng. Soc

T. Salava, Acoustic load and transfer functions in rooms at low frequencies, J. Audio Eng. Soc

D. K. Anthony and S. J. Elliott, A comparison of three methods of measuring the volume velocity of an acoustic source, J. Audio Eng. Soc

A. Lindberg and G. Pavi´cpavi´c, Experimental characterisation of a small compression driver using an internal microphone, Proc. of the International Conference on Noise and Vibration Engineering (ISMA)

L. Råde and B. Westergren, Mathematics Handbook for Science and Engineering
DOI : 10.1007/978-3-662-08549-3

J. S. Bendat and A. G. Piersol, Random Data-Analysis and Measurement Procedures, Journal of Vibration Acoustics Stress and Reliability in Design, vol.111, issue.3
DOI : 10.1115/1.3269865

E. Skudrzyk, The Foundations of Acoustics -Basic Mathematics and Basic Acoustics

T. Salava, Sources of the constant volume velocity and their use for acoustic measurements, J. Audio Eng. Soc

D. K. Anthony and S. J. Elliott, A comparison of three methods of measuring the volume velocity of an acoustic source, J. Audio Eng. Soc

J. S. Bendat and A. G. Piersol, Random Data-Analysis and Measurement Procedures, Journal of Vibration Acoustics Stress and Reliability in Design, vol.111, issue.3
DOI : 10.1115/1.3269865

. [. Pierce, Acoustics -An Introduction to its Physical Principles and Applications

R. M. Aarts and A. J. Janssen, Sound radiation from a resilient spherical cap on a rigid sphere, The Journal of the Acoustical Society of America, vol.127, issue.4
DOI : 10.1121/1.3303978

D. L. Dekker, R. L. Piziali, and E. Dong, EEect of boundary conditions on the ultrasonic beam characteristics of circular disks, J. Acoust. Soc. Am

M. Greenspan, Piston radiator: Some extensions of the theory, The Journal of the Acoustical Society of America, vol.65, issue.3
DOI : 10.1121/1.382496

L. Cremer, Die Synthese des Schallfeldes eines beliebigen festen Körpers in Luu mit beliebiger Schnelleverteilung aus Kugelschallfeldern " (Synthesis of the sound eld of an arbitrary rigid radiator in air with arbitrary particle velocity distribution by means of spherical sound elds)

G. H. Koopmann, L. Song, and J. B. Fahnline, A method for computing acoustic elds based on the principle of wave superposition, J. Acoust. Soc. Am

M. Ochmann, The source simulation technique for acoustic radiation problems, Acustica

G. Pavi´cpavi´c, An engineering technique for the computation of sound radiation by vibrating bodies using substitute sources, Acta Acustica United Ac

L. Song, G. H. Koopmann, and J. B. Fahnline, Numerical errors associated with the method of superposition for computing acoustic elds, J. Acoust. Soc. Am

Y. J. Gounot and R. E. Musar, Genetic algorithms: A global search tool to find optimal equivalent source sets, Journal of Sound and Vibration, vol.322, issue.1-2
DOI : 10.1016/j.jsv.2008.11.001

C. S. Obiekezie, D. W. Thomas, A. Nothofer, S. Greedy, L. R. Arnaut et al., Complex Locations of Equivalent Dipoles for Improved Characterization of Radiated Emissions, IEEE Transactions on Electromagnetic Compatibility, vol.56, issue.5, pp.pp. -(((
DOI : 10.1109/TEMC.2014.2313406

W. Kropp and P. U. Svensson, Application of the time domain formulation of the method of equivalent sources to radiation and scattering problems, Acta Acustica United Ac

D. Berckmans, B. Pluymers, P. Sas, and W. Desmet, Numerical comparison of diierent equivalent source models and source quantiication techniques for use in sound synthesis systems, Acta Acustica United Ac, pp.pp. -(((

A. T. Moorhouse and G. Seiiert, Characterisation of an airborne sound source for use in a virtual acoustical prototype, J. Sound Vib

A. Lindberg, G. Pavi´cpavi´c, and Q. Leclère, Characterisation of air-borne noise by a dummy source approach, the Proceedings of Noise and Vibration -Emerging Technologies (NOVEM)
URL : https://hal.archives-ouvertes.fr/hal-01279945

A. D. Pierce, Acoustics -An Introduction to its Physical Principles and Applications

P. Courrieu, Fast computation of Moore-Penrose inverse matrices, Neural Information Processing -Letters and Reviews
URL : https://hal.archives-ouvertes.fr/hal-00276477

F. J. Frankort, Vibration and sound radiation of loudspeaker cones

A. Lindberg and G. Pavi´cpavi´c, Measurement of volume velocity of a small sound source, Applied Acoustics, vol.91, pp.pp. -(((
DOI : 10.1016/j.apacoust.2014.12.001

T. Salava, Sources of the constant volume velocity and their use for acoustic measurements, J. Audio Eng. Soc

T. Salava, Acoustic load and transfer functions in rooms at low frequencies, J. Audio Eng. Soc

D. K. Anthony and S. J. Elliott, A comparison of three methods of measuring the volume velocity of an acoustic source, J. Audio Eng. Soc

. Ecole and . Spécialité, Acoustique RESUME : La caractérisation des sources sonores dues aux vibrations est un défi

. Dans-cette-thèse, Pour caractériser de manière appropriée la source sonore placée dans un environnement quelconque, il a été indispensable de prendre en compte les phénomènes de rayonnement et de diffraction Cela permet de prédire une pression acoustique Une technique particulière, appelée source mannequin, a été développée pour répondre à cette problématique. Le mannequin est une enceinte fermée de taille similaire mais qui a une forme simplifiée par rapport à la machine complexe, et sert de modèle de diffraction sonore. Le mannequin est équipé d'une série de haut-parleurs alignés dans le prolongement de la surface de l'enceinte