Etude du passage d’un phospholipide structuré « AceDoPC » à travers une barrière hémato-encéphalique reconstituée in vitro et de sa biodisponibilité cérébrale in vivo chez le rat

Abstract : Docosahexaenoic acid (DHA, 22:6n-3) is the main essential omega-3 fatty acid in brain tissues required for normal brain development and function. A decrease in the cerebral concentration of DHA is observed in patients suffering from neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Targeted intake of DHA to the brain could compensate for these deficiencies. Blood DHA is transported across the blood-brain barrier (BBB) more efficiently when esterified at the sn-2 position of lysophosphatidylcholine (lysoPC). We produce in the laboratory a structured phosphatidylcholine to mimic 2-docosahexaenoyl-lysoPC (lysoPC-DHA), named AceDoPC (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that may be considered as a stabilized form of the physiological lysoPC-DHA and that is neuroprotective in experimental ischemic stroke. The first objective of this work was to compare the passage of either labeled unesterified DHA or DHA esterified in AceDoPC or in phosphatidylcholine (PC-DHA), bound to plasma, through an in vitro model of the BBB. This model is constituted of a co-culture of bovine brain capillary endothelial cells and glial cells from newborn rats. We show a preferential passage through the endothelial monolayer and a preferential uptake by glial cells of AceDoPC compared to unesterified DHA and PC-DHA. We also show that AceDoPC is hydrolyzed, partly, into lysoPC-DHA and that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most labeled lipid classes in endothelial cells and glial cells. AceDoPC is found, partly, as a whole molecule in the cells. The second objective of this work was to confirm whether this preference for AceDoPC was also observed in vivo. We studied, in 20 days old rats, the brain uptake of different forms of DHA previously used (DHA, AceDoPC, PC-DHA). We demonstrate that AceDoPC provided the brain with DHA more efficiently than the other forms of DHA and that this preference for AceDoPC is specific for the brain because it is not observed for other studied organs. AceDoPC is found, partly, intact in the brain. Ex vivo autoradiography of rat brain reveals that DHA provided from AceDoPC is localized in specific brain regions playing key roles in memory and cognitive functions. Finally, by using molecular modelling approaches, we demonstrate that electrostatic and hydrophobic potentials are distributed very similarly at the surfaces of AceDoPC and lysoPC-DHA. In conclusion, our studies demonstrate that AceDoPC is a privileged and specific carrier of DHA to the brain. Considering the essential roles of DHA for the brain, this new approach to target the brain with DHA offers promising perspectives in the development of preventive and therapeutic strategies for neurological diseases.
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01368259
Contributor : Abes Star <>
Submitted on : Monday, September 19, 2016 - 12:09:07 PM
Last modification on : Wednesday, April 10, 2019 - 5:10:18 AM

File

these.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01368259, version 1

Citation

Mayssa Hachem. Etude du passage d’un phospholipide structuré « AceDoPC » à travers une barrière hémato-encéphalique reconstituée in vitro et de sa biodisponibilité cérébrale in vivo chez le rat. Biologie moléculaire. INSA de Lyon, 2015. Français. ⟨NNT : 2015ISAL0044⟩. ⟨tel-01368259⟩

Share

Metrics

Record views

612

Files downloads

610