R. I. Adan, J. Van-leeuwaarden, and K. , The Compensation Approach for Walks With Small Steps in the Quarter Plane, Bibliographie Publications présentées dans le document d'habilitation [, pp.161-183, 2013.
DOI : 10.1016/j.aam.2010.11.004

URL : https://hal.archives-ouvertes.fr/hal-00551472

O. Bernardi, M. Bousquet-mélou, and K. , Counting quadrant walks via Tutte's invariant method, Proc., AN. In: 28th International Conference on Formal Power Series and Algebraic Combinatorics, pp.203-214, 2016.

A. Bostan, I. Kurkova, and K. , A human proof of Gessel???s lattice path conjecture, Transactions of the American Mathematical Society, vol.369, issue.2, p.6804, 2016.
DOI : 10.1090/tran/6804

A. Bostan, K. Raschel, and B. Salvy, Non-D-finite excursions in the quarter plane, Journal of Combinatorial Theory, Series A, vol.121, pp.45-63, 2014.
DOI : 10.1016/j.jcta.2013.09.005

URL : https://hal.archives-ouvertes.fr/hal-00697386

C. Boutillier, B. De-tilière, and K. , The Z-invariant massive Laplacian on isoradial graphs, Inventiones mathematicae, vol.49, issue.8, pp.1504-00792, 2015.
DOI : 10.1007/s00222-016-0687-z

URL : https://hal.archives-ouvertes.fr/hal-01140329

R. Essifi, M. Peigné, and K. , Some aspects of fluctuations of random walks on R and applications to random walks on R+ with non-elastic reflection at 0. ALEA Lat, Am. J. Probab. Math. Stat, vol.10, pp.591-607, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00780453

G. Fayolle and K. , On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-plane. Markov Process, pp.485-496, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00559676

G. Fayolle and K. , Random walks in the quarter-plane with zero drift: an explicit criterion for the finiteness of the associated group. Markov Process, pp.619-636, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00572276

G. Fayolle and K. , Some exact asymptotics in the counting of walks in the quarter plane, Proc., AQ. In: 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms, pp.109-124, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00765851

G. Fayolle and K. , About a possible analytic approach for walks in the quarter plane with arbitrary big jumps, Comptes Rendus Mathematique, vol.353, issue.2, pp.89-94, 2015.
DOI : 10.1016/j.crma.2014.11.015

URL : https://hal.archives-ouvertes.fr/hal-01021327

R. Garbit and K. , On the exit time from a cone for brownian motion with drift, Electronic Journal of Probability, vol.19, issue.0, pp.1-27, 2014.
DOI : 10.1214/EJP.v19-3169

URL : https://hal.archives-ouvertes.fr/hal-00880523

R. Garbit and K. , On the exit time from a cone for random walks with drift, Revista Matem??tica Iberoamericana, vol.32, issue.2, pp.511-532, 2016.
DOI : 10.4171/RMI/893

URL : https://hal.archives-ouvertes.fr/hal-00838721

I. Kurkova and K. , On the functions counting walks with small steps in the quarter plane, Publications math??matiques de l'IH??S, vol.14, issue.1, pp.69-114, 2012.
DOI : 10.1007/s10240-012-0045-7

URL : https://hal.archives-ouvertes.fr/hal-00628424

I. Kurkova and K. , New Steps in Walks with Small Steps in the Quarter Plane: Series Expressions for the Generating Functions, Annals of Combinatorics, vol.45, issue.3, pp.461-511, 2015.
DOI : 10.1007/s00026-015-0279-4

P. Lafitte-godillon, K. Raschel, and V. Tran, Extinction Probabilities for a Distylous Plant Population Modeled by an Inhomogeneous Random Walk on the Positive Quadrant, SIAM Journal on Applied Mathematics, vol.73, issue.2, pp.700-722, 2013.
DOI : 10.1137/120864258

URL : https://hal.archives-ouvertes.fr/hal-00664536

C. Lecouvey and K. , t-Martin Boundary of Killed Random Walks in the Quadrant, Preprint, vol.26, 2015.
DOI : 10.1007/978-3-319-44465-9_11

URL : https://hal.archives-ouvertes.fr/hal-01199055

M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 1964.

I. Adan, J. Wessels, and W. Zijm, A compensation approach for two-dimensional Markov processes, Advances in Applied Probability, vol.6, issue.04, pp.783-817, 1993.
DOI : 10.1214/aoms/1177728976

M. Albert and M. Bousquet-mélou, Permutations sortable by two stacks in parallel and quarter plane walks, European Journal of Combinatorics, vol.43, pp.131-164, 2015.
DOI : 10.1016/j.ejc.2014.08.024

URL : https://hal.archives-ouvertes.fr/hal-00918935

Y. André, Series Gevrey de Type Arithmetique, I. Theoremes de Purete et de Dualite, The Annals of Mathematics, vol.151, issue.2, pp.705-740, 2000.
DOI : 10.2307/121045

S. Aspandiiarov and R. Iasnogorodski, Tails of passage-times and an application to stochastic processes with boundary reflection in wedges, Stochastic Processes and their Applications, vol.66, issue.1, pp.115-145, 1997.
DOI : 10.1016/S0304-4149(96)00118-4

S. Aspandiiarov, R. Iasnogorodski, and M. Menshikov, Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant, The Annals of Probability, vol.24, issue.2, pp.932-960, 1997.
DOI : 10.1214/aop/1039639371

A. Ayyer, Towards a human proof of Gessel's conjecture, J. Integer Seq, vol.12, 2009.

F. Baccelli and G. Fayolle, Analysis of Models Reducible to a Class of Diffusion Processes in the Positive Quarter Plane, SIAM Journal on Applied Mathematics, vol.47, issue.6, pp.1367-1385, 1987.
DOI : 10.1137/0147090

R. Bañuelos and R. Smits, Brownian motion in cones, Probability Theory and Related Fields, vol.108, issue.3, pp.299-319, 1997.
DOI : 10.1007/s004400050111

G. Baxter, Combinatorial methods in fluctuation theory, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.82, issue.3, pp.263-270, 1962.
DOI : 10.1007/BF00532499

R. Baxter, Solvable Eight-Vertex Model on an Arbitrary Planar Lattice, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.289, issue.1359, pp.315-346, 1978.
DOI : 10.1098/rsta.1978.0062

R. Baxter, Exactly Solved Models in Statistical Mechanics, 1989.
DOI : 10.1142/9789814415255_0002

V. Beffara and H. Duminil-copin, Smirnov???s fermionic observable away from criticality, The Annals of Probability, vol.40, issue.6, pp.2667-2689, 2012.
DOI : 10.1214/11-AOP689

O. Bernardi and M. Bousquet-mélou, Counting colored planar maps: Algebraicity results, Journal of Combinatorial Theory, Series B, vol.101, issue.5, pp.315-377, 2011.
DOI : 10.1016/j.jctb.2011.02.003

URL : https://hal.archives-ouvertes.fr/hal-00414551

O. Bernardi and M. Bousquet-mélou, Counting coloured planar maps: differential equations, pp.1507-02391, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174130

DOI : 10.1142/9789814360203_0011

P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Related Fields, pp.117-129, 1991.

P. Biane, Frontiere de Martin du dual de SU(2), Lecture Notes in Math, vol.121, issue.4, p.1526, 1992.
DOI : 10.1090/S0002-9947-1966-0195151-8

P. Biane, Equation de Choquet-Deny sur le dual d'un groupe compact, Probability Theory and Related Fields, vol.89, issue.1, pp.39-51, 1992.
DOI : 10.1007/BF01222508

DOI : 10.1142/9789814354783_0004

P. Biane, Quelques propriétés du mouvement brownien dans un cône. Stochastic Process, Appl, vol.53, pp.233-240, 1994.

P. Biane, P. Bougerol, and N. O. Connell, Littelmann paths and Brownian paths, Duke Mathematical Journal, vol.130, issue.1, pp.127-167, 2005.
DOI : 10.1215/S0012-7094-05-13014-9

URL : https://hal.archives-ouvertes.fr/hal-00018663

S. Billiard and C. Tran, A general stochastic model for sporophytic self-incompatibility, Journal of Mathematical Biology, vol.24, issue.3, pp.163-210, 2012.
DOI : 10.1007/s00285-011-0410-z

URL : https://hal.archives-ouvertes.fr/hal-00526499

A. Bobenko, C. Mercat, and Y. Suris, Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green???s function, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2005, issue.583, pp.117-161, 2005.
DOI : 10.1515/crll.2005.2005.583.117

URL : https://hal.archives-ouvertes.fr/hal-00250195

A. Bostan and M. Kauers, The complete generating function for Gessel walks is algebraic. With an appendix by Mark van Hoeij, Proc. Amer, pp.3063-3078, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00780429

A. Bostan, M. Bousquet-mélou, M. Kauers, and S. Melczer, On 3-Dimensional Lattice Walks Confined to the Positive Octant, Annals of Combinatorics, vol.20, issue.2, pp.1-36, 2016.
DOI : 10.1007/s00026-016-0328-7

URL : https://hal.archives-ouvertes.fr/hal-01063886

A. Bostan and K. , Compter les excursions sur un échiquier, Pour la Science, vol.449, pp.40-46, 2015.

A. Bouaziz, S. Mustapha, and M. Sifi, Discrete harmonic functions on an orthant in Z d, Electron. Commun, vol.13, p.pp, 2015.

M. Bousquet-mélou, Counting Walks in the Quarter Plane, Mathematics and computer science, II, pp.49-67, 2002.
DOI : 10.1007/978-3-0348-8211-8_3

M. Bousquet-mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, Journal of Combinatorial Theory, Series B, vol.96, issue.5, pp.623-672, 2006.
DOI : 10.1016/j.jctb.2005.12.003

M. Bousquet-mélou and G. Schaeffer, Walks on the slit plane, Probability Theory and Related Fields, vol.124, issue.3, pp.305-344, 2002.
DOI : 10.1007/s004400200205

M. Bousquet-mélou, Walks in the quarter plane: Kreweras??? algebraic model, The Annals of Applied Probability, vol.15, issue.2, pp.1451-1491, 2005.
DOI : 10.1214/105051605000000052

M. Bousquet-mélou, An elementary solution of Gessel's walks in the quadrant, Advances in Mathematics, vol.303, pp.1503-08573, 2015.
DOI : 10.1016/j.aim.2016.08.038

M. Bousquet-mélou and M. Mishna, Walks with small steps in the quarter plane, Math, vol.520, 2010.
DOI : 10.1090/conm/520/10252

M. Bousquet-mélou and M. Petkov?ek, Linear recurrences with constant coefficients: the multivariate case. Discrete Math, pp.51-75, 2000.

M. Bousquet-mélou and M. Petkov?ek, Walks confined in a quadrant are not always D-finite, Theoretical Computer Science, vol.307, issue.2, pp.257-276, 2003.
DOI : 10.1016/S0304-3975(03)00219-6

C. Boutillier and B. De-tilière, The critical Z-invariant Ising model via dimers: the periodic case, Probability Theory and Related Fields, vol.17, issue.1, pp.379-413, 2010.
DOI : 10.1007/s00440-009-0210-1

URL : https://hal.archives-ouvertes.fr/hal-00494462

C. Boutillier and B. De-tilière, The Critical Z-Invariant Ising Model via Dimers: Locality Property, Communications in Mathematical Physics, vol.65, issue.3-4, pp.473-516, 2011.
DOI : 10.1007/s00220-010-1151-3

URL : https://hal.archives-ouvertes.fr/hal-00361365

D. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Mathematics, vol.26, issue.2, pp.182-205, 1977.
DOI : 10.1016/0001-8708(77)90029-9

R. Burton and R. Pemantle, Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances, The Annals of Probability, vol.21, issue.3, pp.1329-1371, 1993.
DOI : 10.1214/aop/1176989121

N. Champagnat, P. Diaconis, and L. Miclo, On Dirichlet eigenvectors for neutral two-dimensional Markov chains, Electronic Journal of Probability, vol.17, issue.0, p.pp, 2012.
DOI : 10.1214/EJP.v17-1830

URL : https://hal.archives-ouvertes.fr/hal-00672938

B. Chauvin, C. Mailler, and N. Pouyanne, Smoothing Equations for Large P??lya Urns, Journal of Theoretical Probability, vol.29, issue.1???2, pp.923-957, 2015.
DOI : 10.1007/s10959-013-0530-z

J. Cohen and O. Boxma, Boundary value problems in queueing system analysis, 1983.

E. Cont and A. De-larrard, Price Dynamics in a Markovian Limit Order Market, SIAM Journal on Financial Mathematics, vol.4, issue.1, pp.1-25, 2013.
DOI : 10.1137/110856605

URL : https://hal.archives-ouvertes.fr/hal-00832155

R. Deblassie, Exit times from cones in ??? n of Brownian motion, Probability Theory and Related Fields, vol.26, issue.1, pp.1-29, 1987.
DOI : 10.1007/BF01845637

R. Deblassie, Remark on exit times from cones in $$\mathbb{R}^n $$ of Brownian motion, Probability Theory and Related Fields, vol.74, issue.1, pp.95-97, 1988.
DOI : 10.1007/BF00319106

D. Denisov and V. Wachtel, Conditional Limit Theorems for Ordered Random Walks, Electronic Journal of Probability, vol.15, issue.0, pp.292-322, 2010.
DOI : 10.1214/EJP.v15-752

D. Denisov and V. Wachtel, Random walks in cones, The Annals of Probability, vol.43, issue.3, pp.992-1044, 2015.
DOI : 10.1214/13-AOP867

Y. Doumerc and N. O. Connell, Exit problems associated with finite reflection groups, Probability Theory and Related Fields, vol.83, issue.4, pp.501-538, 2005.
DOI : 10.1007/s00440-004-0402-7

J. Dubédat, Exact bosonization of the Ising model Preprint arXiv, pp.1112-4399, 2011.

R. Duffin, Basic properties of discrete analytic functions. Duke Math, J, vol.23, pp.335-363, 1956.

R. Duffin, Potential theory on a rhombic lattice, Journal of Combinatorial Theory, vol.5, issue.3, pp.258-272, 1968.
DOI : 10.1016/S0021-9800(68)80072-9

J. Duraj, Random walks in cones: the case of nonzero drift. Stochastic Process, Appl, vol.124, pp.1503-1518, 2014.

D. Dyson, A Brownian???Motion Model for the Eigenvalues of a Random Matrix, Journal of Mathematical Physics, vol.3, issue.6, pp.1191-1198, 1962.
DOI : 10.1063/1.1703862

P. Eichelsbacher and W. König, Ordered Random Walks, Electronic Journal of Probability, vol.13, issue.0, pp.13-46, 2008.
DOI : 10.1214/EJP.v13-539

A. Elvey-price and A. Guttmann, Permutations sortable by deques and by two stacks in parallel, European Journal of Combinatorics, vol.59, pp.1508-02273, 2015.
DOI : 10.1016/j.ejc.2016.08.002

G. Fayolle and R. Iasnogorodski, Two coupled processors: The reduction to a Riemann-Hilbert problem, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.13, issue.No. 6, pp.325-351, 1979.
DOI : 10.1007/BF00535168

G. Fayolle and R. Iasnogorodski, Random Walks in the Quarter-Plane: Advances in Explicit Criterions for the Finiteness of the Associated Group in the Genus 1 Case. Markov Process, pp.1005-1033, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01086684

G. Fayolle, R. Iasnogorodski, and V. Malyshev, Random walks in the quarter-plane, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00572276

G. Fayolle, V. Malyshev, and M. Menshikov, Topics in the constructive theory of countable Markov chains, 1995.
DOI : 10.1017/CBO9780511984020

J. Ferrand, Fonctions préharmoniques et fonctions préholomorphes, Bull. Sci. Math, vol.68, pp.152-180, 1944.

P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

L. Flatto and S. Hahn, Two Parallel Queues Created by Arrivals with Two Demands I, SIAM Journal on Applied Mathematics, vol.44, issue.5, pp.1041-1053, 1984.
DOI : 10.1137/0144074

L. Flatto, Two Parallel Queues Created by Arrivals with Two Demands I, SIAM Journal on Applied Mathematics, vol.44, issue.5, pp.861-878, 1985.
DOI : 10.1137/0144074

S. Franceschi and I. Kurkova, Asymptotic expansion of stationary distribution for reflected brownian motion in the quarter plane via analytic approach, pp.1604-02918, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01295562

S. Franceschi and K. , Tutte's invariant approach for Brownian motion reflected in the quadrant, ESAIM: Probability and Statistics, pp.1602-03054, 2016.
DOI : 10.1051/ps/2017006

R. Garbit, Temps de sortie d'un c??ne pour une marche al??atoire centr??e, Comptes Rendus Mathematique, vol.345, issue.10, pp.587-591, 2007.
DOI : 10.1016/j.crma.2007.10.016

R. Garbit, Brownian motion conditioned to stay in a cone, Journal of Mathematics of Kyoto University, vol.49, issue.3, pp.573-592, 2009.
DOI : 10.1215/kjm/1260975039

URL : https://hal.archives-ouvertes.fr/hal-00341032

R. Garbit, A central limit theorem for two-dimensional random walks in a cone, Bulletin de la Société mathématique de France, vol.139, issue.2, pp.271-286, 2011.
DOI : 10.24033/bsmf.2608

URL : https://hal.archives-ouvertes.fr/hal-00435499

S. Garoufalidis, G-functions and multisum versus holonomic sequences, Advances in Mathematics, vol.220, issue.6, pp.1945-1955, 2009.
DOI : 10.1016/j.aim.2008.11.012

S. Garrabrant and I. Pak, Words in Linear Groups, Random Walks, Automata and P-Recursiveness, pp.1502-06565, 2015.

I. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc. Amer, pp.27-31, 1992.
DOI : 10.1090/S0002-9939-1992-1092920-8

D. Gouyou-beauchamps, Chemins sous-diagonaux et tableaux de Young, Lecture Notes in Math, vol.14, pp.112-125, 1234.
DOI : 10.4153/CJM-1962-032-x

D. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.35, issue.2, pp.177-204, 1999.
DOI : 10.1016/S0246-0203(99)80010-7

R. Guy, C. Krattenthaler, and B. Sagan, Lattice paths, reflections, & dimension-changing bijections, Ars Combin, vol.34, pp.3-15, 1992.

H. Hauser and C. Koutschan, Multivariate linear recurrences and power series division. Discrete Math, pp.3553-3560, 2012.

P. Hennequin, Processus de Markoff en cascade, Ann. Inst. H. Poincaré, vol.18, pp.109-195, 1963.

D. Iglehart, Random walks with negative drift conditioned to stay positive, Journal of Applied Probability, vol.234, issue.04, pp.742-751, 1974.
DOI : 10.1007/BF02795339

I. Ignatiouk-robert, Martin Boundary of a Killed Random Walk on a Half-Space, Journal of Theoretical Probability, vol.121, issue.4, pp.35-68, 2008.
DOI : 10.1007/s10959-007-0100-3

I. Ignatiouk-robert, Martin boundary of a killed random walk on Z d, pp.909-3921, 2009.

I. Ignatiouk-robert, Martin boundary of a reflected random walk on a half-space. Probab. Theory Related Fields, pp.197-245, 2010.

I. Ignatiouk-robert, $t$-Martin boundary of reflected random walks on a half-space, Electronic Communications in Probability, vol.15, issue.0, pp.149-161, 2010.
DOI : 10.1214/ECP.v15-1541

I. Ignatiouk-robert and C. Loree, Martin boundary of a killed random walk on a quadrant, The Annals of Probability, vol.38, issue.3, pp.1106-1142, 2010.
DOI : 10.1214/09-AOP506

S. Johnson, M. Mishna, and K. Yeats, Towards a Combinatorial Understanding of Lattice Path Asymptotics, pp.1305-7418, 2013.

G. Jones and D. Singerman, Complex functions. An algebraic and geometric viewpoint, 1987.

M. Kauers, C. Koutschan, and D. Zeilberger, Proof of Ira Gessel's lattice path conjecture, P. Natl. Acad. Sci. USA, pp.11502-11505, 2009.
DOI : 10.1073/pnas.0901678106

M. Kauers and R. Yatchak, Walks in the Quarter Plane with Multiple Steps, Proc., AN. In: 27th International Conference on Formal Power Series and Algebraic Combinatorics, pp.25-36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01337843

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs, Inventiones mathematicae, vol.150, issue.2, pp.409-439, 2002.
DOI : 10.1007/s00222-002-0249-4

R. Kenyon, J. Miller, S. Sheffield, and D. Wilson, Bipolar orientations on planar maps and SLE12, pp.1511-04068

R. Kenyon and A. Okounkov, Planar dimers and Harnack curves. Duke Math, J, vol.131, pp.499-524, 2006.

R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, Annals of Mathematics, vol.163, issue.3, pp.1019-1056, 2006.
DOI : 10.4007/annals.2006.163.1019

C. Krattenthaler, Asymptotics for random walks in alcoves of affine Weyl groups, Sém. Lothar. Combin, p.52, 2007.

C. Krattenthaler, Lattice Path Enumeration, 2015.
DOI : 10.1201/b18255-13

G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du B.U.R.O, vol.6, pp.5-105, 1965.

I. Kurkova and V. Malyshev, Martin boundary and elliptic curves, Markov Process. Related Fields, vol.4, pp.203-272, 1998.

I. Kurkova and K. , Explicit expression for the generating function counting Gessel??s walks, Advances in Applied Mathematics, vol.47, issue.3, pp.414-433, 2011.
DOI : 10.1016/j.aam.2010.11.004

I. Kurkova and K. , Random walks in $(\mathbb{Z}_{+})^{2}$ with non-zero drift absorbed at the axes, Bulletin de la Société mathématique de France, vol.139, issue.3, 2011.
DOI : 10.24033/bsmf.2611

URL : https://hal.archives-ouvertes.fr/hal-00696352

I. Kurkova and K. , Passage time from four to two blocks of opinions in the voter model and walks in the quarter plane. Queueing Syst, pp.219-234, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00838681

I. Kurkova and Y. Suhov, Malyshev's theory and JS-queues. Asymptotics of stationary probabilities, Ann. Appl. Probab, vol.13, pp.1313-1354, 2003.

S. Lalley, Return probabilities for random walk on a half-line, Journal of Theoretical Probability, vol.42, issue.3, pp.571-599, 1995.
DOI : 10.1007/BF02218045

D. Lawden, Elliptic functions and applications, 1989.
DOI : 10.1007/978-1-4757-3980-0

C. Lecouvey, E. Lesigne, and M. Peigné, Random walks in Weyl chambers and crystals, Proc. Lond, pp.323-358, 2012.
DOI : 10.1112/plms/pdr033

URL : https://hal.archives-ouvertes.fr/hal-00525592

C. Lecouvey, E. Lesigne, and M. Peigné, Conditioned one-way simple random walk and combinatorial representation theory, Sém. Lothar. Combin. 70 Article B70b, p.pp, 2013.

J. Van-leeuwaarden and K. , Random Walks Reaching Against all Odds the other Side of the Quarter Plane, Journal of Applied Probability, vol.17, issue.01, pp.85-102, 2013.
DOI : 10.1214/aop/1039639371

URL : https://hal.archives-ouvertes.fr/hal-00586295

L. Page and M. Peigné, A local limit theorem on the semi-direct product of R * + and R d, 1997.

L. Lipshitz, D-finite power series, Journal of Algebra, vol.122, issue.2, pp.353-373, 1989.
DOI : 10.1016/0021-8693(89)90222-6

Z. Li, Critical Temperature of Periodic Ising Models, Communications in Mathematical Physics, vol.21, issue.2, pp.337-381, 2012.
DOI : 10.1007/s00220-012-1571-3

G. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, 2000.
DOI : 10.1007/978-94-011-4363-9

V. Malyshev, The solution of the discrete Wiener-Hopf equations in a quarter-plane, Dokl. Akad. Nauk SSSR, vol.187, pp.1243-1246, 1969.

V. Malyshev, Wiener-Hopf equations in the quarter-plane, discrete groups and automorphic functions, Mat. Sb, vol.84, pp.499-525, 1971.

V. Malyshev, Positive random walks and Galois theory, Uspehi Mat. Nauk, vol.26, pp.227-228, 1971.

V. Malyshev, Positive random walks and generalized elliptic integrals, Dokl. Akad. Nauk SSSR, vol.196, pp.516-519, 1971.

V. Malyshev, An analytic method in the theory of two-dimensional positive random walks, Sibirsk. Mat. ?, vol.13, pp.1314-1329, 1972.

V. Malyshev, Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks, Siberian Mathematical Journal, vol.15, issue.5, pp.156-169, 1973.
DOI : 10.1007/BF00967270

S. Melczer and M. Mishna, Singularity Analysis Via the Iterated Kernel Method, Combinatorics, Probability and Computing, vol.17, issue.05, pp.861-888, 2014.
DOI : 10.1016/S0304-3975(02)00007-5

URL : https://hal.archives-ouvertes.fr/hal-01229731

C. Mercat, Discrete Riemann Surfaces and the Ising Model, Communications in Mathematical Physics, vol.218, issue.1, pp.177-216, 2001.
DOI : 10.1007/s002200000348

URL : https://hal.archives-ouvertes.fr/hal-00418532

C. Mercat, Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact, Bulletin de la Société mathématique de France, vol.132, issue.2, pp.305-326, 2004.
DOI : 10.24033/bsmf.2467

URL : https://hal.archives-ouvertes.fr/hal-00249146

G. Mikhalkin and H. Rullgård, Amoebas of maximal area, Internat. Math. Res. Notices, pp.441-451, 2001.

M. Mishna and A. Rechnitzer, Two non-holonomic lattice walks in the quarter plane, Theoretical Computer Science, vol.410, issue.38-40, pp.3616-3630, 2009.
DOI : 10.1016/j.tcs.2009.04.008

M. Mishna, Classifying lattice walks restricted to the quarter plane, Journal of Combinatorial Theory, Series A, vol.116, issue.2, pp.460-477, 2009.
DOI : 10.1016/j.jcta.2008.06.011

S. Mustapha, Gaussian estimates for spatially inhomogeneous random walks on Z d, The Annals of Probability, vol.34, issue.1, pp.264-283, 2006.
DOI : 10.1214/009117905000000440

S. Mustapha, Gambler???s ruin estimates for random walks with symmetric spatially inhomogeneous increments, Bernoulli, vol.13, issue.1, pp.131-147, 2007.
DOI : 10.3150/07-BEJ5135

M. Peigné and W. Woess, Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity, Colloquium Mathematicum, vol.125, issue.1, pp.31-54, 2011.
DOI : 10.4064/cm125-1-4

M. Peigné and W. Woess, Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings, Colloquium Mathematicum, vol.125, issue.1, pp.55-81, 2011.
DOI : 10.4064/cm125-1-5

R. Pemantle and M. Wilson, Analytic combinatorics in several variables, 2013.
DOI : 10.1017/CBO9781139381864

M. Picardello and W. Woess, Martin boundaries of cartesian products of markov chains, Nagoya Mathematical Journal, vol.33, issue.51, pp.153-169, 1992.
DOI : 10.1214/aoms/1177700401

W. Pruitt, Eigenvalues of Non-Negative Matrices, The Annals of Mathematical Statistics, vol.35, issue.4, pp.1797-1800, 1964.
DOI : 10.1214/aoms/1177700401

Z. Pucha?a and T. Rolski, The exact asymptotic of the collision time tail distribution for independent Brownian particles with different drifts, Probability Theory and Related Fields, vol.10, issue.3-4, pp.595-617, 2008.
DOI : 10.1007/s00440-007-0116-8

S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. of Math, vol.172, pp.1435-1467, 2010.

F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer. Math. Soc, vol.87, pp.187-197, 1958.

F. Spitzer, Principles of random walk, 1976.

P. Sun, Proof of two conjectures of Petkov?ek and Wilf on Gessel walks. Discrete Math, pp.3649-3655, 2012.

W. Tutte, Chromatic sums for rooted planar triangulations. V. Special equations. Canad, J. Math, vol.26, pp.893-907, 1974.

W. Tutte, Chromatic sums revisited. Aequationes Math, pp.95-134, 1995.

N. Varopoulos, Potential theory in conical domains I. Math, Proc. Cambridge Philos. Soc, pp.335-384, 1999.

N. Varopoulos, Potential theory in conical domains. II, Mathematical Proceedings of the Cambridge Philosophical Society, vol.129, issue.2, pp.301-319, 2000.
DOI : 10.1017/S0305004100004503

N. Varopoulos, Potential theory in conical domains (III), Mathematical Proceedings of the Cambridge Philosophical Society, vol.131, issue.02, pp.327-361, 2001.
DOI : 10.1017/S0305004101004972

N. Varopoulos, The Discrete and Classical Dirichlet Problem, Milan Journal of Mathematics, vol.21, issue.2, pp.397-436, 2009.
DOI : 10.1007/s00032-009-0109-4

R. Vidunas, Algebraic Transformations of Gauss Hypergeometric Functions, Funkcialaj Ekvacioj, vol.52, issue.2, pp.807-4808, 2008.
DOI : 10.1619/fesi.52.139

T. Tate and S. Zelditch, Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers, Journal of Functional Analysis, vol.217, issue.2, pp.402-447, 2004.
DOI : 10.1016/j.jfa.2004.01.004

W. Woess, Random walks on infinite graphs and groups Denumerable Markov chains. Generating functions, boundary theory, random walks on trees, 2000.