R. Astorino, F. Chouly, and M. A. Fernández, Robin based semiimplicit coupling in fluid-structure interaction: Stability analysis and numerics, SIAM J. Sci. Comput, issue.6, pp.314041-4065, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00361284

M. Astorino and C. Grandmont, Convergence analysis of a projection semi-implicit coupling scheme for fluid???structure interaction problems, Numerische Mathematik, vol.96, issue.1, pp.721-767, 2010.
DOI : 10.1007/s00211-010-0311-x

URL : https://hal.archives-ouvertes.fr/hal-00860416

M. Astorino, J. Gerbeau, O. Pantz, and K. Traoré, Fluidstructure interaction and multi-body contact: Application to aortic valves, Comput. Methods Appl. Mech. Engrg, vol.198, pp.45-463603, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00542238

F. Alauzet, A changing-topology moving mesh technique for large displacements, Engineering with Computers, vol.222, issue.13, pp.175-200, 2014.
DOI : 10.1007/s00366-013-0340-z

URL : https://hal.archives-ouvertes.fr/hal-01114995

F. Alauzet and M. Mehrenberger, P1-conservative solution interpolation on unstructured triangular meshes, International Journal for Numerical Methods in Engineering, vol.27, issue.2, pp.1552-1588, 2010.
DOI : 10.1002/nme.2951

URL : https://hal.archives-ouvertes.fr/inria-00354509

A. [. Araya, F. Poza, and . Valentin, A low-order local projection method for the incompressible Navier???Stokes equations in two- and three-dimensions, IMA Journal of Numerical Analysis, 2015.
DOI : 10.1093/imanum/drv004

M. Astorino, Interaction fluide-structure dans le système cardiovasculaire Analyse numérique et simulation, 2010.

F. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.79, issue.7, pp.743-761, 2001.
DOI : 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A

S. Balay, M. F. Abhyankar, J. Adams, P. Brown, K. Brune et al., PETSc users manual, 2014.

T. Boiveau and E. Burman, A penalty free nitsche type method for the weak imposition of boundary conditions in compressible and incompressible elasticity, 2014.

C. Bertoglio, D. Barber, N. Gaddum, V. Valverde, M. Rutten et al., Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid???structure interaction model, Journal of Biomechanics, vol.47, issue.5, pp.471027-1034, 2014.
DOI : 10.1016/j.jbiomech.2013.12.029

URL : https://hal.archives-ouvertes.fr/hal-00925902

E. [. Becker, P. Burman, and . Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, pp.41-443352, 2009.
DOI : 10.1016/j.cma.2009.06.017

URL : https://hal.archives-ouvertes.fr/inria-00341737

E. [. Braack, V. Burman, G. John, and . Lube, Stabilized finite element methods for the generalized Oseen problem, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.4-6853, 2007.
DOI : 10.1016/j.cma.2006.07.011

M. Bischoff, K. Bletzinger, W. A. Wall, and E. Ramm, Models and Finite Elements for Thin-Walled Structures, chapter 3, 2004.

N. [. Boffi, L. Cavallini, and . Gastaldi, FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES, Mathematical Models and Methods in Applied Sciences, vol.21, issue.12, pp.2523-2550, 2011.
DOI : 10.1142/S0218202511005829

. Bcg-+-13-]-m, C. Bukac, R. Canic, T. Glowinski, A. Tambaca et al., Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comp. Phys, vol.235, issue.0, pp.515-541, 2013.

N. [. Boffi, L. Cavallini, and . Gastaldi, The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier, SIAM Journal on Numerical Analysis, vol.53, issue.6, pp.2584-2604, 2015.
DOI : 10.1137/140978399

. Bch-+-15-]-e, S. Burman, P. Claus, M. Hansbo, A. Larson et al., CutFEM: Discretizing geometry and partial differential equations, International Journal for Numerical Methods in Engineering, vol.104, issue.7, pp.472-501, 2015.

D. L. Brown, R. Cortez, and M. L. Minion, Accurate Projection Methods for the Incompressible Navier???Stokes Equations, Journal of Computational Physics, vol.168, issue.2, pp.464-499, 2001.
DOI : 10.1006/jcph.2001.6715

E. Burman and M. A. Fernández, Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis, SIAM Journal on Numerical Analysis, vol.47, issue.1, pp.409-43909, 2008.
DOI : 10.1137/070707403

URL : https://hal.archives-ouvertes.fr/inria-00178359

E. Burman and M. A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier???Stokes equations: space discretization and convergence, Numerische Mathematik, vol.33, issue.1, pp.39-77, 2007.
DOI : 10.1007/s00211-007-0070-5

URL : https://hal.archives-ouvertes.fr/hal-00715243

E. Burman and M. A. Fernández, Stabilization of explicit coupling in fluid???structure interaction involving fluid incompressibility, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.5-8766, 2009.
DOI : 10.1016/j.cma.2008.10.012

URL : https://hal.archives-ouvertes.fr/inria-00247409

]. E. Bf14a, M. A. Burman, and . Fernández, Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin?Robin coupling, Int. J. Num. Meth. Engrg, vol.97, issue.10, pp.739-758, 2014.

]. E. Bf14b, M. A. Burman, and . Fernández, An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes, Comput. Methods Appl. Mech. Engrg, vol.279, pp.497-514, 2014.

E. Burman, M. A. Fernández, and P. Hansbo, Continuous Interior Penalty Finite Element Method for Oseen's Equations, SIAM Journal on Numerical Analysis, vol.44, issue.3, pp.1248-1274, 2006.
DOI : 10.1137/040617686

W. Bangerth, R. Geiger, and M. Rannacher, Adaptive Galerkin Finite Element Methods for the Wave Equation, Computational Methods in Applied Mathematics, vol.10, issue.1, pp.3-48, 2010.
DOI : 10.2478/cmam-2010-0001

Y. Bazilevs, J. R. Gohean, T. J. Hughes, R. D. Moser, and Y. Zhang, Patient-specific isogeometric fluid???structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.1983534-3550, 2009.
DOI : 10.1016/j.cma.2009.04.015

[. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

T. [. Brooks and . Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.1-3199, 1982.
DOI : 10.1016/0045-7825(82)90071-8

E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Applied Numerical Mathematics, vol.62, issue.4, pp.328-341, 2012.
DOI : 10.1016/j.apnum.2011.01.008

E. Burman and P. Hansbo, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes??? problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.3, pp.859-874
DOI : 10.1051/m2an/2013123

J. W. Banks, W. D. Henshaw, and D. W. Schwendeman, An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells, Journal of Computational Physics, vol.268, pp.399-416, 2014.
DOI : 10.1016/j.jcp.2014.03.004

H. Baek and G. E. Karniadakis, Sub-iteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navier???Stokes equations, Journal of Computational Physics, vol.230, issue.12, pp.4384-4402, 2011.
DOI : 10.1016/j.jcp.2011.01.011

H. Baek and G. E. Karniadakis, A convergence study of a new partitioned fluid???structure interaction algorithm based on fictitious mass and damping, Journal of Computational Physics, vol.231, issue.2, pp.629-652, 2012.
DOI : 10.1016/j.jcp.2011.09.025

C. Bertoglio, P. Moireau, and J. Gerbeau, Sequential parameter estimation for fluid-structure problems: Application to hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, vol.36, issue.1-2, pp.434-455, 2012.
DOI : 10.1002/cnm.1476

URL : https://hal.archives-ouvertes.fr/inria-00603399

F. [. Badia, C. Nobile, and . Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, pp.7027-7051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

J. [. Brezzi and . Pitkäranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, Efficient solutions of elliptic systems, pp.11-19, 1984.
DOI : 10.1007/978-3-663-14169-3_2

]. S. Bqq08a, A. Badia, A. Quaini, and . Quarteroni, Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg, vol.197, pp.49-504216, 2008.

]. S. Bqq08b, A. Badia, A. Quaini, and . Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput, vol.30, issue.4, pp.1778-1805, 2008.

M. Bischoff and E. Ramm, On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, International Journal of Solids and Structures, vol.37, issue.46-47, pp.6933-6960, 2000.
DOI : 10.1016/S0020-7683(99)00321-2

E. Burman, Ghost penalty, Comptes Rendus Mathematique, vol.348, issue.21-22, pp.21-221217, 2010.
DOI : 10.1016/j.crma.2010.10.006

URL : https://hal.archives-ouvertes.fr/inria-00543248

E. Burman, A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions, SIAM Journal on Numerical Analysis, vol.50, issue.4, pp.1959-1981, 2012.
DOI : 10.1137/10081784X

D. Chapelle and K. J. Bathe, The Finite Element Analysis of Shells -Fundamentals, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00839738

S. [. Crosetto, G. Deparis, A. Fourestey, and . Quarteroni, Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics, SIAM Journal on Scientific Computing, vol.33, issue.4, pp.1598-1622, 2011.
DOI : 10.1137/090772836

D. Chapelle and A. Ferent, MODELING OF THE INCLUSION OF A REINFORCING SHEET WITHIN A 3D MEDIUM, Mathematical Models and Methods in Applied Sciences, vol.13, issue.04, pp.573-595, 2003.
DOI : 10.1142/S0218202503002635

URL : https://hal.archives-ouvertes.fr/hal-00839241

M. [. Caiazzo, J. Fernández, V. Gerbeau, and . Martin, Projection Schemes for Fluid Flows through a Porous Interface, SIAM Journal on Scientific Computing, vol.33, issue.2, pp.541-564, 2011.
DOI : 10.1137/100788124

URL : https://hal.archives-ouvertes.fr/inria-00462103

J. [. Causin, F. Gerbeau, and . Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-444506, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, issue.104, pp.745-762, 1968.
DOI : 10.1090/S0025-5718-1968-0242392-2

P. Ciarlet, Handbook of numerical analysis, volume xii special volume: Computational models for the human body, 2004.

[. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.3, pp.471-492, 2008.
DOI : 10.1051/m2an:2008013

URL : https://hal.archives-ouvertes.fr/hal-00297711

]. R. Cod02 and . Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg, vol.191, pp.39-404295, 2002.

S. ?ani?, J. Tamba?a, G. Guidoboni, A. Mikeli?, C. J. Hartley et al., Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow, SIAM Journal on Applied Mathematics, vol.67, issue.1, pp.164-193, 2006.
DOI : 10.1137/060651562

E. N. Dvorkin and K. Bathe, A continuum mechanics based four???node shell element for general non???linear analysis, Engineering Computations, vol.1, issue.1, pp.77-88, 1984.
DOI : 10.1108/eb023562

J. Degroote, Partitioned Simulation of Fluid-Structure Interaction, Archives of Computational Methods in Engineering, vol.196, issue.8, pp.185-238, 2013.
DOI : 10.1007/s11831-013-9085-5

J. Donéa, S. Giuliani, and J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.689-723, 1982.
DOI : 10.1016/0045-7825(82)90128-1

Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst, vol.9, issue.3, pp.633-650, 2003.

J. [. Degroote, R. Bruggeman, J. Haelterman, and . Vierendeels, Stability of a coupling technique for partitioned solvers in FSI applications, Computers & Structures, vol.86, issue.23-24, pp.23-242224, 2008.
DOI : 10.1016/j.compstruc.2008.05.005

]. A. Dim04 and . Dimitrov, On singularities in the solution of three-dimensional Stokes flow and incompressible elasticity problems with corners, Internat . J. Numer. Methods Engrg, vol.60, issue.4, pp.773-801, 2004.

D. A. Di-pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, Mathematics & Applications, vol.69
DOI : 10.1007/978-3-642-22980-0

T. Dunne and R. Rannacher, Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation, Fluid-structure interaction, pp.110-145, 2006.
DOI : 10.1007/3-540-34596-5_6

[. Santos, J. Gerbeau, and J. Bourgat, A partitioned fluid???structure algorithm for elastic thin valves with contact, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1750-1761, 2008.
DOI : 10.1016/j.cma.2007.03.019

URL : https://hal.archives-ouvertes.fr/hal-00701780

]. T. Dun06 and . Dunne, An eulerian approach to fluid?structure interaction and goal-oriented mesh adaptation. International journal for numerical methods in fluids, pp.9-101017, 2006.

]. T. Dun07 and . Dunne, Adaptive finite element approximation of fluid-structure interaction based on eulerian and arbitrary lagrangian-eulerian variational formulations, 2007.

A. Embar, J. Dolbow, and I. Harari, Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements, International Journal for Numerical Methods in Engineering, vol.17, issue.2, pp.877-898, 2010.
DOI : 10.1002/nme.2863

J. [. Ern and . Guermond, Theory and practice of finite elements, 2004.
DOI : 10.1007/978-1-4757-4355-5

M. Eswaran, U. K. Saha, and D. Maity, Effect of baffles on a partially filled cubic tank: Numerical simulation and experimental validation, Computers & Structures, vol.87, issue.3-4, pp.3-4198, 2009.
DOI : 10.1016/j.compstruc.2008.10.008

L. C. Evans, Partial Differential Equations. Graduate studies in mathematics, 2010.

T. Fries and T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications, International Journal for Numerical Methods in Engineering, vol.76, issue.5, pp.253-304, 2010.
DOI : 10.1002/nme.2914

]. R. Fed02 and . Fedkiw, Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys, vol.175, issue.1, pp.200-224, 2002.

]. M. Fer11a and . Fernández, Coupling schemes for incompressible fluidstructure interaction: implicit, semi-implicit and explicit, S eMA J, vol.55, issue.1, pp.59-108, 2011.

M. A. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid, Comptes Rendus Mathematique, vol.349, issue.7-8, pp.473-477, 2011.
DOI : 10.1016/j.crma.2011.03.001

M. A. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numerische Mathematik, vol.17, issue.6, pp.21-65, 2013.
DOI : 10.1007/s00211-012-0481-9

M. A. Fernández, L. Formaggia, J. Gerbeau, and A. Quarteroni, The derivation of the equations for fluids and structure, Cardiovascular mathematics, pp.77-121, 2009.
DOI : 10.1007/978-88-470-1152-6_3

P. J. Frey and P. L. George, Mesh generation. Application to finite elements, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00073738

M. A. Fernández and J. Gerbeau, Algorithms for fluid-structure interaction problems, Cardiovascular mathematics, pp.307-346, 2009.
DOI : 10.1007/978-88-470-1152-6_9

M. A. Fernández, J. F. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1002/nme.1792

J. [. Formaggia, F. Gerbeau, A. Nobile, and . Quarteroni, Numerical Treatment of Defective Boundary Conditions for the Navier--Stokes Equations, SIAM Journal on Numerical Analysis, vol.40, issue.1, pp.376-401, 2002.
DOI : 10.1137/S003614290038296X

URL : https://hal.archives-ouvertes.fr/inria-00072539

M. A. Fernández and M. Landajuela, A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid, Comptes Rendus Mathematique, vol.351, issue.3-4, pp.161-164, 2013.
DOI : 10.1016/j.crma.2013.02.015

M. A. Fernández and M. Moubachir, A Newton method using exact jacobians for solving fluid???structure coupling, Computers & Structures, vol.83, issue.2-3, pp.127-142, 2005.
DOI : 10.1016/j.compstruc.2004.04.021

M. A. Fernández, J. Mullaert, and M. Vidrascu, Explicit Robin???Neumann schemes for the coupling of incompressible fluids with thin-walled structures, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.566-593, 2013.
DOI : 10.1016/j.cma.2013.09.020

M. A. Fernández, J. Mullaert, and M. Vidrascu, Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: Stability analysis and numerics, International Journal for Numerical Methods in Engineering, vol.38, issue.6-7, pp.199-229, 2015.
DOI : 10.1002/nme.4785

L. Formaggia, K. Perktold, and A. Quarteroni, Basic mathematical models and motivations, Cardiovascular mathematics, pp.47-75, 2009.
DOI : 10.1007/978-88-470-1152-6_2

A. [. Formaggia, A. Quarteroni, and . Veneziani, of Modeling, Simulation and Applications, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, 2009.

T. Fries and A. Zilian, On time integration in the XFEM, International Journal for Numerical Methods in Engineering, vol.29, issue.3, pp.69-93, 2009.
DOI : 10.1002/fld.1901.2008

]. A. Gbd-+-94, A. Geist, J. Beguelin, W. Dongarra, R. Jiang et al., PVM?parallel virtual machine: a users' guide and tutorial for networked parallel computing, 1994.

P. L. George, H. Borouchaki, and E. Saltel, ?Ultimate? robustness in meshing an arbitrary polyhedron, International Journal for Numerical Methods in Engineering, vol.25, issue.7, pp.1061-1089, 2003.
DOI : 10.1002/nme.808

M. W. Gee, C. Förster, and W. A. Wall, A computational strategy for prestressing patient-specific biomechanical problems under finite deformation, International Journal for Numerical Methods in Biomedical Engineering, vol.74, issue.1, pp.52-72, 2010.
DOI : 10.1186/1475-925X-6-38

R. [. Guidoboni, N. Glowinski, S. Cavallini, and . Canic, Stable loosely-coupled-type algorithm for fluid???structure interaction in blood flow, Journal of Computational Physics, vol.228, issue.18, pp.6916-6937, 2009.
DOI : 10.1016/j.jcp.2009.06.007

M. W. Gee, U. Küttler, and W. Wall, Truly monolithic algebraic multigrid for fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.33, issue.2, pp.987-1016, 2011.
DOI : 10.1002/nme.3001

J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

. Gph-+-01-]-r, T. Glowinski, T. I. Pan, D. D. Hesla, J. Joseph et al., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.

]. R. Gphj99a, T. Glowinski, T. I. Pan, D. D. Hesla, and . Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.

]. R. Gphj99b, T. Glowinski, T. I. Pan, D. D. Hesla, and . Joseph, A distributed Lagrange mutiplier/fictitious domain method for particulate flows, Int. J. of Multiphase Flow, vol.25, pp.755-794, 1999.

T. [. Glowinski, J. Pan, and . Périaux, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, vol.111, issue.3-4, pp.3-4283, 1994.
DOI : 10.1016/0045-7825(94)90135-X

V. Girault and P. Raviart, Finite element methods for Navier- Stokes equations, 1986.
DOI : 10.1007/978-3-642-61623-5

M. Gee, E. Ramm, and W. Wal, Parallel multilevel solution of nonlinear shell structures, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.21-24, pp.21-242513, 2005.
DOI : 10.1016/j.cma.2004.07.043

[. Ganesan and L. Tobiska, Stabilization by Local Projection for??Convection???Diffusion and Incompressible Flow Problems, Journal of Scientific Computing, vol.33, issue.4, pp.326-342, 2010.
DOI : 10.1007/s10915-008-9259-8

J. Guermond, Some implementations of projection methods for Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.30, issue.5, pp.637-667, 1996.
DOI : 10.1051/m2an/1996300506371

M. E. Gurtin, An Introduction to Continuum Mechanics, Journal of Applied Mechanics, vol.51, issue.4, 1981.
DOI : 10.1115/1.3167763

J. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-648, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/hal-00694625

J. Gerbeau, M. Vidrascu, and P. Frey, Fluid???structure interaction in blood flows on geometries based on medical imaging, Computers & Structures, vol.83, issue.2-3, pp.2-3155, 2005.
DOI : 10.1016/j.compstruc.2004.03.083

A. Gerstenberger and W. A. Wall, An eXtended Finite Element Method/Lagrange multiplier based approach for fluid???structure interaction, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.19-201699, 2008.
DOI : 10.1016/j.cma.2007.07.002

]. P. Han05 and . Hansbo, Nitsche's method for interface problems in computational mechanics, GAMM-Mitt, vol.28, issue.2, pp.183-206, 2005.

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
DOI : 10.1515/jnum-2012-0013

T. J. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the babu??ka-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, vol.59, issue.1, pp.85-99, 1986.
DOI : 10.1016/0045-7825(86)90025-3

S. [. Hachem, R. Feghali, T. Codina, and . Coupez, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, International Journal for Numerical Methods in Engineering, vol.230, issue.4, pp.805-825, 2013.
DOI : 10.1002/nme.4481

URL : https://hal.archives-ouvertes.fr/hal-00815641

I. Harari and T. J. Hughes, What are C and h?: Inequalities for the analysis and design of finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.97, issue.2, pp.157-192, 1992.
DOI : 10.1016/0045-7825(92)90162-D

A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche???s method, for elliptic interface problems, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.47-48, pp.47-485537, 2002.
DOI : 10.1016/S0045-7825(02)00524-8

URL : https://hal.archives-ouvertes.fr/hal-01352903

A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.33-35, pp.33-353523, 2004.
DOI : 10.1016/j.cma.2003.12.041

M. Heil and A. L. Hazel, Fluid-Structure Interaction in Internal Physiological Flows, Annual Review of Fluid Mechanics, vol.43, issue.1, pp.141-162, 2011.
DOI : 10.1146/annurev-fluid-122109-160703

J. [. Hansbo, T. Hermansson, and . Svedberg, Nitsche's method combined with space???time finite elements for ALE fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.39-414195, 2004.
DOI : 10.1016/j.cma.2003.09.029

W. [. Hughes, T. K. Liu, and . Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.29, issue.3, pp.329-349, 1981.
DOI : 10.1016/0045-7825(81)90049-9

J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary Navier???Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, pp.353-384, 1990.
DOI : 10.1137/0727022

T. J. Hughes, The finite element method, 1987.

A. Hurwitz, Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Mathematische Annalen, vol.46, issue.2, pp.273-284
DOI : 10.1007/BF01446812

J. [. Hou, A. Wang, and . Layton, Abstract, Communications in Computational Physics, vol.19, issue.02, pp.337-377, 2012.
DOI : 10.1006/jcph.1999.6356

J. C. Hunt, A. Wray, and P. Moin, Eddies, stream, and convergence zones in turbulent flows. Center for turbulence research report CTR- S88, pp.193-208, 1988.

M. Juntunen and R. Stenberg, Nitsche???s method for general boundary conditions, Mathematics of Computation, vol.78, issue.267, pp.1353-1374, 2009.
DOI : 10.1090/S0025-5718-08-02183-2

U. Küttler, C. Förster, and W. A. Wall, A Solution for the Incompressibility Dilemma in Partitioned Fluid???Structure Interaction with Pure Dirichlet Fluid Domains, Computational Mechanics, vol.195, issue.11, pp.417-429, 2006.
DOI : 10.1007/s00466-006-0066-5

M. W. Gee, C. Förster, A. Comerford, and W. A. Wall, Coupling strategies for biomedical fluid-structure interaction problems, Int. J. Numer. Meth. Biomed. Engng, vol.26, pp.3-4305, 2009.

]. D. Khs-+-15, M. Kamensky, D. Hsu, J. A. Schillinger, A. Evans et al., An immersogeometric variational framework for fluid?structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg, vol.284, pp.1005-1053, 2015.

G. Kirchhoff, Vorlesungen über math, p.1876

P. Kalita and R. Schaefer, Mechanical Models of Artery Walls, Archives of Computational Methods in Engineering, vol.287, issue.3, pp.1-36, 2008.
DOI : 10.1007/s11831-007-9015-5

A. Legay, J. Chessa, and T. Belytschko, An Eulerian???Lagrangian method for fluid???structure interaction based on level sets, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.2070-2087, 2006.
DOI : 10.1016/j.cma.2005.02.025

R. Löhner, J. R. Cebral, C. Yang, J. D. Baum, E. L. Mestreau et al., Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations, Fluid-Structure Interaction, pp.82-100, 2006.
DOI : 10.1007/3-540-34596-5_4

. F. Ljgo-+-03-]-j, I. Ladisa-jr, L. E. Guler, D. A. Olson, J. R. Hettrick et al., Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation, Annals of biomedical engineering, issue.8, pp.31972-980, 2003.

G. [. Lukacova-medvid-'ovaa, A. Rusnakovaa, and . Hundertmark-zauskovaa, Kinematic splitting algorithm for fluid???structure interaction in hemodynamics, Computer Methods in Applied Mechanics and Engineering, vol.265, issue.1, pp.83-106, 2013.
DOI : 10.1016/j.cma.2013.05.025

[. Love, The mathematical theory of elasticity, 1927.
URL : https://hal.archives-ouvertes.fr/hal-01307751

N. [. Lombardi, A. Parolini, G. Quarteroni, and . Rozza, Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization, Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, pp.339-377
DOI : 10.1007/978-1-4614-2435-2_15

C. Lehrenfeld and A. Reusken, Nitsche-XFEM with Streamline Diffusion Stabilization for a Two-Phase Mass Transport Problem, SIAM Journal on Scientific Computing, vol.34, issue.5, pp.2740-2759, 2012.
DOI : 10.1137/110855235

C. Lehrenfeld and A. Reusken, Analysis of a Nitsche XFEM-DG Discretization for a Class of Two-Phase Mass Transport Problems, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.958-983, 2013.
DOI : 10.1137/120875260

J. [. Libai and . Simmonds, The nonlinear theory of elastic shells, 2005.

P. and L. Tallec, Domain decomposition methods in computational mechanics, Computational Mechanics Advances, pp.121-220, 1994.

P. and L. Tallec, Numerical methods for nonlinear three-dimensional elasticity, Handbook of numerical analysis, pp.465-622, 1994.
DOI : 10.1016/S1570-8659(05)80018-3

[. Tallec and S. Mani, Numerical analysis of a linearised fluid-structure interaction problem, Numerische Mathematik, vol.87, issue.2, pp.317-354, 2000.
DOI : 10.1007/s002110000183

P. , L. Tallec, and M. Vidrascu, Solving large scale structural problems on parallel computers using domain decomposition techniques, pp.49-82, 1996.

]. L. Mal69 and . Malvern, Introduction to the Mechanics of a Continuous Medium. Number Monograph, 1969.

J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering, vol.13, issue.3, pp.233-241, 1993.
DOI : 10.1002/cnm.1640090307

Y. Bazilevs, . Tain-yen, I. E. Hsia, A. L. Vignon-clementel, and . Marsden, A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Computational Mechanics, vol.48, issue.113, pp.277-291, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650986

. Mbx-+-13-]-p, C. Moireau, N. Bertoglio, C. A. Xiao, C. A. Figueroa et al., Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data, Biomech. Model. Mechanobiol, vol.12, issue.3, pp.475-496, 2013.

A. [. Mayer, W. A. Gerstenberger, and . Wall, Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.22, issue.1, pp.846-869, 2009.
DOI : 10.1002/nme.2600

]. R. Min51 and . Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, 1951.

M. [. Massing, A. Larson, and . Logg, Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions, SIAM Journal on Scientific Computing, vol.35, issue.1, pp.23-47, 2013.
DOI : 10.1137/11085949X

M. [. Massing, A. Larson, M. E. Logg, and . Rognes, A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem, Journal of Scientific Computing, vol.207, issue.1, pp.604-628, 2014.
DOI : 10.1007/s10915-014-9838-9

R. L. Muddle, M. Mihajlovi?, and M. Heil, An efficient preconditioner for monolithically-coupled large-displacement fluid???structure interaction problems with pseudo-solid mesh updates, Journal of Computational Physics, vol.231, issue.21, pp.7315-7334, 2012.
DOI : 10.1016/j.jcp.2012.07.001

. Mxa-+-12-]-p, N. Moireau, M. Xiao, C. A. Astorino, D. Figueroa et al., External tissue support and fluidstructure simulation in blood flows, Biomech. Model. Mechanobiol, vol.11, pp.1-18, 2012.

N. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, vol.85, issue.3, pp.67-94, 1959.

E. P. Newren, A. L. Fogelson, R. D. Guy, and R. M. Kirby, Unconditionally stable discretizations of the immersed boundary equations, Journal of Computational Physics, vol.222, issue.2, pp.702-719, 2007.
DOI : 10.1016/j.jcp.2006.08.004

J. Nitsche, ??ber ein Variationsprinzip zur L??sung von Dirichlet-Problemen bei Verwendung von Teilr??umen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.12, issue.1, pp.9-15, 1971.
DOI : 10.1007/BF02995904

]. F. Nob01 and . Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics, 2001.

]. D. Nor15 and . Nordsletten, Benchmark experiment for validation of fluidstructure interaction algorithms, 4th International Conference on Computational & Mathematical Biomedical Engineering (CMBE15), 2015.

F. Nobile, M. Pozzoli, and C. Vergara, Time accurate partitioned algorithms for the solution of fluid???structure interaction problems in haemodynamics, Computers & Fluids, vol.86, issue.0, pp.470-482, 2013.
DOI : 10.1016/j.compfluid.2013.07.031

M. [. Nobile, C. Pozzoli, and . Vergara, Inexact accurate partitioned algorithms for fluid???structure interaction problems with finite elasticity in haemodynamics, Journal of Computational Physics, vol.273, pp.598-617, 2014.
DOI : 10.1016/j.jcp.2014.05.020

C. [. Nobile and . Vergara, An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions, SIAM Journal on Scientific Computing, vol.30, issue.2
DOI : 10.1137/060678439

]. S. Opr-+-97, E. M. Oyre, S. Pedersen, P. Ringgaard, W. P. Boesiger et al., In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta, Eur. J. Vasc. Endovasc . Surg, vol.13, pp.263-271, 1997.

P. [. Piperno and . Bournet, Numerical simulations of wind effects on flexible civil engineering structures, Revue Europ??enne des ??l??ments Finis, vol.72, issue.4, pp.5-6659, 2001.
DOI : 10.1080/12506559.1999.10511401

URL : https://hal.archives-ouvertes.fr/hal-00607761

C. S. Peskin, The immersed boundary method, Acta Numer, vol.11, pp.479-517, 2002.

B. [. Pant, J. Fabrèges, I. E. Gerbeau, and . Vignon, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, International Journal for Numerical Methods in Biomedical Engineering, vol.35, issue.6, pp.301614-1648, 2014.
DOI : 10.1002/cnm.2692

URL : https://hal.archives-ouvertes.fr/hal-01093879

[. Gomes, S. Yigit, H. Lienhart, and M. Schäfer, Experimental and numerical study on a laminar fluid???structure interaction reference test case, Journal of Fluids and Structures, vol.27, issue.1, pp.43-61, 2011.
DOI : 10.1016/j.jfluidstructs.2010.09.004

]. C. Poz10 and . Pozrikidis, Computational hydrodynamics of capsules and biological cells, Chapman & Hall/CRC Mathematical and Computational Biology, 2010.

]. M. Ppdl11, S. J. Païdoussis, E. Price, and . De-langre, Fluid-structure interactions: cross-flow-induced instabilities, 2011.

]. A. Pro97 and . Prohl, Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Advances in Numerical Mathematics. B.G. Teubner, 1997.

M. Perego, A. Veneziani, and C. Vergara, A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem, SIAM Journal on Scientific Computing, vol.33, issue.3, pp.1181-1211, 2011.
DOI : 10.1137/100808277

A. Quaini and A. Quarteroni, A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, vol.17, issue.06, pp.957-983, 2007.
DOI : 10.1142/S0218202507002170

]. E. Rei45 and . Reissner, The effect of transverse shear deformation on the bending of elastic plates, 1945.

P. D. Roshchenko, A. Minev, and W. H. Finlay, A time splitting fictitious domain algorithm for fluid???structure interaction problems (A fictitious domain algorithm for FSI), Journal of Fluids and Structures, vol.58, issue.10, pp.109-126
DOI : 10.1016/j.jfluidstructs.2015.07.006

]. T. Ric13 and . Richter, A fully eulerian formulation for fluid-structureinteraction problems, J. Comput. Phys, vol.233, pp.227-240, 2013.

]. E. Rou77 and . Routh, A treatise on the stability of a given state of motion: particularly steady motion, p.1877

M. Ruess, D. Schillinger, and A. I. Özcan, Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Computer Methods in Applied Mechanics and Engineering, vol.269, pp.46-71, 2014.
DOI : 10.1016/j.cma.2013.10.009

. Th, . Richter, . Th, and . Wick, Finite elements for fluid?structure interaction in ALE and fully eulerian coordinates, Comput. Methods Appl. Mech. Engrg, vol.199, pp.41-442633, 2010.

B. Smith, W. Bjorstad, and . Gropp, Domain Decomposition, 1996.
DOI : 10.1007/978-3-540-70529-1_411

]. J. Sdhbvdv04, J. Stijnen, P. H. De-hart, F. N. Bovendeerd, and . Van-de-vosse, Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves, Journal of Fluids and Structures, vol.19, issue.6, pp.835-850, 2004.

S. Sy and C. M. Murea, A stable time advancing scheme for solving fluid???structure interaction problem at small structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.2, pp.210-222, 2008.
DOI : 10.1016/j.cma.2008.07.010

]. Y. Smdaw14, J. P. Sudhakar, W. A. Moitinho-de-almeida, and . Wall, An accurate , robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods, J. Comput. Phys, vol.273, pp.393-415, 2014.

G. Stuhne and D. A. Steinman, Finite-Element Modeling of the Hemodynamics of Stented Aneurysms, Journal of Biomechanical Engineering, vol.126, issue.3, pp.382-387, 2004.
DOI : 10.1115/1.1762900

E. W. Swim and P. Seshaiyer, A nonconforming finite element method for fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.17-182088, 2006.
DOI : 10.1016/j.cma.2005.01.017

[. Salsac, S. R. Sparks, J. M. Chomaz, and J. C. Lasheras, Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms, Journal of Fluid Mechanics, vol.560, pp.19-51, 2006.
DOI : 10.1017/S002211200600036X

URL : https://hal.archives-ouvertes.fr/hal-01023355

T. Sawada and A. Tezuka, LLM and X-FEM based interface modeling of fluid???thin structure interactions on a non-interface-fitted mesh, Computational Mechanics, vol.408, issue.EM3, pp.319-332, 2011.
DOI : 10.1007/s00466-011-0600-y

K. Stein, T. Tezduyar, and R. Benney, Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements, Journal of Applied Mechanics, vol.70, issue.1, pp.58-63, 2003.
DOI : 10.1115/1.1530635

K. Stein, T. E. Tezduyar, and R. Benney, Automatic mesh update with the solid-extension mesh moving technique, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.21-222019, 2004.
DOI : 10.1016/j.cma.2003.12.046

J. Hans and . Stetter, The defect correction principle and discretization methods, Numerische Mathematik, vol.29, issue.4, pp.425-443, 1978.

R. Stenberg, On some techniques for approximating boundary conditions in the finite element method, Journal of Computational and Applied Mathematics, vol.63, issue.1-3, pp.139-148, 1995.
DOI : 10.1016/0377-0427(95)00057-7

B. Schott and W. A. Wall, A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.276, pp.233-265, 2014.
DOI : 10.1016/j.cma.2014.02.014

. Tdk-+-99-]-c, M. Taylor, J. Draney, D. Ku, B. Parker et al., Predictive medicine: computational techniques in therapeutic decision-making, Computer aided surgery, vol.4, issue.5, pp.231-247, 1999.

R. Temam, Une m??thode d'approximation de la solution des ??quations de Navier-Stokes, Bulletin de la Soci&#233;t&#233; math&#233;matique de France, vol.79, pp.115-152, 1968.
DOI : 10.24033/bsmf.1662

T. E. Tezduyar, Stabilized Finite Element Formulations for Incompressible Flow Computations, Advances in applied mechanics, pp.1-44, 1992.
DOI : 10.1016/S0065-2156(08)70153-4

M. Thiriet, Biology and Mechanics of Blood Flows. Part II: Mechanics and Medical Aspects, CRM Series in Mathematical Physics, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01113077

]. S. Thr-+-10, J. Turek, M. Hron, H. Razzaq, M. Wobker et al., Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches, Fluid Structure Interaction II, pp.413-424, 2010.

K. Takizawa and T. E. Tezduyar, Computational Methods for Parachute Fluid???Structure Interactions, Archives of Computational Methods in Engineering, vol.20, issue.1, pp.125-169, 2012.
DOI : 10.1007/s11831-012-9070-4

T. [. Takizawa, A. Tezduyar, S. Buscher, and . Asada, Space???time interface-tracking with topology change (ST-TC), Computational Mechanics, vol.43, issue.4, pp.955-971, 2014.
DOI : 10.1007/s00466-013-0935-7

E. H. Van-brummelen, Partitioned iterative solution methods for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.193, issue.2, pp.3-27, 2011.
DOI : 10.1002/fld.2465

]. D. Vjbh-+-09, H. T. Valdez-jasso, M. A. Banks, D. Haider, Y. Bia et al., Viscoelastic models for passive arterial wall dynamics, Adv. Appl. Math. Mech, vol.1, issue.2, pp.151-165, 2009.

J. [. Wang, A. Grétarsson, C. Main, and . Farhat, Computational algorithms for tracking dynamic fluid-structure interfaces in embedded boundary methods, International Journal for Numerical Methods in Fluids, vol.195, issue.4, pp.515-535, 2012.
DOI : 10.1002/fld.3659

]. T. Wic11 and . Wick, Fluid-structure interactions using different mesh motion techniques, Comp. & Struct, vol.89, pp.13-141456, 2011.

]. T. Wic13 and . Wick, Fully eulerian fluid?structure interaction for timedependent problems, Computer Methods in Applied Mechanics and Engineering, vol.255, pp.14-26, 2013.

J. Young and S. Mitran, A numerical model of cellular blebbing: A volume-conserving, fluid???structure interaction model of the entire cell, Journal of Biomechanics, vol.43, issue.2, pp.210-220, 2010.
DOI : 10.1016/j.jbiomech.2009.09.025

M. [. Yigit, M. Schäfer, and . Heck, Grid movement techniques and their influence on laminar fluid???structure interaction computations, Journal of Fluids and Structures, vol.24, issue.6, pp.819-832, 2008.
DOI : 10.1016/j.jfluidstructs.2007.12.002

]. Z. Yu05 and . Yu, A dlm/fd method for fluid/flexible-body interactions, Journal of computational physics, vol.207, issue.1, pp.1-27, 2005.

A. [. Zhang, X. Gerstenberger, W. K. Wang, and . Liu, Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.21-222051, 2004.
DOI : 10.1016/j.cma.2003.12.044

A. Zilian and A. Legay, The enriched space???time finite element method (EST) for simultaneous solution of fluid???structure interaction, International Journal for Numerical Methods in Engineering, vol.90, issue.3, pp.305-334, 2008.
DOI : 10.1002/nme.2258

URL : https://hal.archives-ouvertes.fr/hal-01371129

]. P. Zun13 and . Zunino, Analysis of backward Euler/extended finite element discretization of parabolic problems with moving interfaces, Comput. Methods Appl. Mech. Engrg, vol.258, pp.152-165, 2013.