1. R. Cornell and U. Schwertmann, The iron oxides -Structure, Properties, Occurences and Uses, 2003.

T. Misawa, K. Hashimoto, and S. Shimodaira, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature, Corrosion Science, vol.14, issue.2, pp.131-149, 1974.
DOI : 10.1016/S0010-938X(74)80051-X

F. Kergourlay, Etude des mécanismes de déchloruration d'objets archéologiques ferreux corrodés en milieu marin. Cas des traitements en solutions alcalines aérée et désaérée, p.262, 2012.

P. Refait and J. R. Genin, The mechanisms of oxidation of ferrous hydroxychloride ??-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite, Corrosion Science, vol.39, issue.3, pp.539-553, 1997.
DOI : 10.1016/S0010-938X(97)86102-1

P. Refait, H. Drissi, J. Pytkiewicz, and J. R. Genin, The anionic species competition in iron aqueous corrosion: Role of various green rust compounds, Corrosion Science, vol.39, issue.9, pp.1699-1710, 1997.
DOI : 10.1016/S0010-938X(97)00076-0

P. Refait, M. Abdelmoula, and J. R. Génin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions, Corrosion Science, vol.40, issue.9, pp.1547-1560, 1998.
DOI : 10.1016/S0010-938X(98)00066-3

P. Refait, O. Benali, M. Abdelmoula, and J. R. Génin, Formation of ???ferric green rust??? and/or ferrihydrite by fast oxidation of iron(II???III) hydroxychloride green rust, Corrosion Science, vol.45, issue.11, pp.2435-2449, 2003.
DOI : 10.1016/S0010-938X(03)00073-8

C. Rémazeilles and P. Refait, Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides, Corrosion Science, vol.50, issue.3, pp.856-864, 2008.
DOI : 10.1016/j.corsci.2007.08.017

S. Grousset, F. Kergourlay, D. Neff, E. Foy, J. L. Gallias et al., In situ monitoring of corrosion processes by coupled micro-XRF/micro-XRD mapping to understand the degradation mechanisms of reinforcing bars in hydraulic binders from historic monuments, J. Anal. At. Spectrom., vol.14, issue.4, pp.721-729, 2015.
DOI : 10.1039/C4JA00370E

URL : https://hal.archives-ouvertes.fr/hal-01187814

J. Cai, J. Liu, Z. Gao, A. Navrotsky, and S. L. Suib, Synthesis and Anion Exchange of Tunnel Structure Akaganeite, Chemistry of Materials, vol.13, issue.12, pp.4595-4602, 2001.
DOI : 10.1021/cm010310w

T. Ishikawa, S. Miyamoto, K. Kandori, and T. Nakayama, Influence of anions on the formation of ??-FeOOH rusts, Corrosion Science, vol.47, issue.10, pp.2510-2520, 2005.
DOI : 10.1016/j.corsci.2004.10.016

M. Rimmer, Investigating the treatment of chloride-infested archaeological iron objects Cardiff University: Cardiff. p. 229. 15, Clays and Clay Minerals, vol.25, pp.49-56, 1977.

D. Thickett, S. Lambarth, P. Wyeth, R. Strauss, G. W. Brümmer et al., Determining the stability and durability of archaeological materials, 9th International Conference on NDT of Art, pp.87-99, 1997.

U. Schwertmann, Solubility and dissolution of iron oxides, Plant and Soil, vol.1, issue.1-2, pp.1-25, 1991.
DOI : 10.1007/BF00011851

D. Neff, S. Reguer, L. Bellot-gurlet, P. Dillmann, and R. Bertholon, Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms, Journal of Raman Spectroscopy, vol.35, issue.89, pp.739-745, 2004.
DOI : 10.1002/jrs.1130

D. Neff, Apport des analogues archéologiques à l'estimation des vitesses moyennes et à l'étude des mécanismes de corrosion à très long terme des aciers non alliés dans les sols, in Sciences Mécaniques pour l'Ingénieur Altération des objets ferreux archéologiques sur le site de Glinet (Seine-maritime, France, XVIe siècle). Caractérisation des produits de corrosion et étude des mécanismes, Studies in Conservation, pp.91-110, 1972.

N. A. North, Studies in conservation, pp.75-83, 1982.

E. Angelini, S. Grassini, and S. Tusa, Underwater corrosion of metallic heritage artefacts, in Corrosion and conservation of cultural heritage metallic artefacts, pp.236-259, 2013.

Y. Fors, P. Neff, L. Dillmann, G. Bellot-gurlet, and . Beranger, Sulfur-Related Conservation Concerns fir Marine Archaeological Wood, in Department of Physical, Inorganic and Structural Chemistry, Corrosion Science, pp.47-515, 2005.

S. Reguer, P. Dillmann, and F. Mirambet, Phases chlorées sur les objets archéologiques ferreux corrodés dans les sols : caracterisation et mecanismes de formation, Corrosion Science, issue.6, pp.49-2726, 2005.

M. Saheb, D. Neff, P. Dillmann, H. Matthiesen, and E. Foy, Long-term corrosion behaviour of low-carbon steel in anoxic environment: Characterisation of archaeological artefacts, Journal of Nuclear Materials, vol.379, issue.1-3, pp.118-123, 2008.
DOI : 10.1016/j.jnucmat.2008.06.019

P. De-viviés, D. Cook, M. J. Drews, N. Gonzalez, P. Mardikian et al., Memet, presented at METAL 2007 Interim meeting of the ICOM-CC METAL Working Group, 2007.

F. Zucchi, G. Morigi, and V. Bertolasi, Corrosion and metal artifacts. a dialogue between conservators and archaelogists and corrosion scientists, pp.103-105, 1977.

S. Turgoose, Studies in conservation, pp.97-101, 1982.

C. Remazeilles and P. Refait, On the formation of ??-FeOOH (akagan??ite) in chloride-containing environments, Corrosion Science, vol.49, issue.2, pp.844-857, 2007.
DOI : 10.1016/j.corsci.2006.06.003

D. Watkinson, M. Rimmer, and F. Kergourlay, Alkaline desalination techniques for archaeological iron, in Corrosion and conservation of cultural heritage metallic artefacts, pp.407-433, 2013.

J. Chivot, Thermodynamique des produits de corrosion: Fonctions thermodynamiques, diagrammes de solubilité, diagrammes E-pH des systèmes Fe-H2O, FE-CO2-H2O, Fe-S-H2O, Cr-H2O et Ni-H2O en fonction de la température, 2004.

Q. Y. Wang, Studies in Conservation, pp.125-134, 2007.

P. A. Bland, S. P. Kelley, F. J. Berry, J. M. Cadogan, and C. T. Pillinger, Artificial weathering of the ordinary chondrite Allegan; implications for the presence of Cl (super -) as a structural component in akaganeite, American Mineralogist, vol.82, issue.11-12, pp.1187-1197, 1997.
DOI : 10.2138/am-1997-11-1215

K. Stahl, K. Nielsen, J. Jiang, B. Lebech, J. C. Hanson et al., On the akagan??ite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts, Corrosion Science, vol.45, issue.11, pp.2563-2575, 2003.
DOI : 10.1016/S0010-938X(03)00078-7

S. Reguer, F. Mirambet, E. Dooryhee, J. Hodeau, P. Dillmann et al., Structural evidence for the desalination of akaganeite in the preservation of iron archaeological objects, using synchrotron X-ray powder diffraction and absorption spectroscopy, Corrosion Science, vol.51, issue.12, pp.2795-2802, 2009.
DOI : 10.1016/j.corsci.2009.07.012

J. Zhao, W. Lin, Q. Chang, W. Li, and Y. Lai, Adsorptive characteristics of akaganeite and its environmental applications: a review, Environmental Technology Reviews, vol.407, issue.1, pp.114-126, 2012.
DOI : 10.1080/09593330.2012.701239

D. Watkinson, M. R. Lewis, P. B. Vandiver, J. L. Mass, and A. Murray, The role of beta FeOOH in the corrosion of archaeological iron, Materials Issues in Art and Archaeology VII, pp.103-114, 2005.

D. Watkinson and M. T. Lewis, Studies in Conservation, pp.241-252, 2005.

M. G. Gonzalez, P. Mardikian, L. Nasanen, and M. Drews, The use of subcritical fluids for the stabilisation of archaeological iron: an overview, in Corrosion and conservation of cultural heritage metallic artefacts, pp.2013-434

L. Selwyn, National Museum of Australia, Canberra: National Museum of Australia, 2004.

D. Watkinson and A. Zahrani, The Conservator, pp.75-86, 2008.

E. Guilminot, N. Huet, D. Neff, P. Dillmann, C. Rémazeilles et al., Rebière, and F. Mirambet, presented at 15th triennal conference of ICOM-CC, 2008.

5. N. North and C. Pearson, Studies in conservation, pp.174-186, 1978.

C. Degrigny, Use of electrochemical techniques for the conservation of metal artefacts: a review, Journal of Solid State Electrochemistry, vol.327, issue.328, pp.353-361, 2010.
DOI : 10.1007/s10008-009-0896-0

J. C. Coelho, C. M. Oliveira, M. D. Carvalho, and I. T. Fonseca, The efficiency of electrochemical methods for the removal of chloride ions from iron marine archaeological objects: A comparative study, Materials and Corrosion, vol.14, issue.1992, pp.38-44, 2014.
DOI : 10.1002/maco.201206584

G. Batis, A. Zacharopoulou, E. Zacharopoulou, H. Siova, and V. Argyropoulos, Anti-corrosion methods and materials, pp.259-269, 2015.

P. Arnould-pernot, Traitement de déchloruration des objets archéologiques ferreux par plasma d'hydrogene Institut National Polytechnique de Lorraine, Ecole des mines de nancy, laboratoire de science et genie des surfaces: Nancy. p. 157. 62, Sciences et Genie des MateriauxOtt and P. Hug, presented at METAL 2007 Interim meeting of the ICOM-CC METAL Working Group, 1994.

J. Jolivet, M. Henry, J. Livage-linstrom, P. J. Mallard, and W. G. , De la solution à l'oxyde. Condensation des cations en solution aqueuse Chimie de surface des oxydes, Savoirs Actuels Chimie, ed. I.E.C. Editions. Gaitherburg MD, 1994.

G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, The Journal of Supercritical Fluids, vol.47, issue.3, pp.373-381, 2009.
DOI : 10.1016/j.supflu.2008.09.002

N. Akiya and P. E. Savage, Roles of Water for Chemical Reactions in High-Temperature Water, Chemical Reviews, vol.102, issue.8, pp.2725-2750, 2002.
DOI : 10.1021/cr000668w

M. Uematsu and E. U. Franck, Static Dielectric Constant of Water and Steam, Journal of Physical and Chemical Reference Data, vol.9, issue.4, pp.1291-1306, 1980.
DOI : 10.1063/1.555632

M. Rimmer and Q. Wang, The British Museum Technical Research Bulletin, pp.79-86, 2010.

L. S. Selwyn, W. R. Mckinnon, and V. Argyropoulos, Models for Chloride Ion Diffusion in Archaeological Iron, Studies in Conservation, vol.46, issue.2, pp.109-120, 2001.
DOI : 10.2307/1506841

L. M. Näsänen, N. G. Gonzalez-pereyra, and S. A. , Cretté, presented at Asia-Pacific Regional Conference on Underwater Cultural Heritage, 2011.

L. M. Näsänen, N. G. Gonzalez-pereyra, S. A. Cretté, and P. De-viviés, The journal of supercritical fluids, pp.289-298, 2013.

N. Gonzalez, D. Cook, P. Deviviés, and M. , Drews, and P. Mardikian, presented at METAL 07 Interim meeting of the ICOM-CC Metal Working Group, 2007.

M. Drews, N. G. Gonzalez-pereyra, P. Mardikian, and P. De-viviés, The application of subcritical fluids for the stabilization of marine archaeological iron, Studies in Conservation, vol.58, issue.4, pp.314-325, 2013.
DOI : 10.1179/sic.1985.30.1.13

D. Watkinson, M. Rimmer, and F. Kergourlay, Alkaline desalination techniques for archaeological iron, in Corrosion and conservation of cultural heritage metallic artefacts, pp.407-433, 2013.

S. Reguer, D. Neff, L. Bellot-gurlet, and P. Dillmann, Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products, Journal of Raman Spectroscopy, vol.35, issue.4, pp.389-397, 2007.
DOI : 10.1002/jrs.1659

B. Lu, H. Guo, P. Li, H. Liu, Y. Wei et al., Comparison study on transformation of iron oxyhydroxides: Based on theoretical and experimental data, Journal of Solid State Chemistry, vol.184, issue.8, pp.2139-2144, 2011.
DOI : 10.1016/j.jssc.2011.06.008

P. Deviviés, D. Cook, M. J. Drews, N. Gonzalez, P. Mardikian et al., Memet, presented at METAL 2007 Interim meeting of the ICOM-CC METAL Working Group, 2007.

M. Drews and N. G. , Gonzalez-Pereyra, and D. Cook, presented at Interim meeting of the ICOM-CC Metal working group, 2013.

T. Glotch and M. D. Kraft, Thermal transformations of akagan??ite and lepidocrocite to hematite: assessment of possible precursors to Martian crystalline hematite, Physics and Chemistry of Minerals, vol.61, issue.10, pp.569-581, 2008.
DOI : 10.1007/s00269-008-0249-z

J. M. Gonzalez-calbet, M. A. Alario-franco, and M. Gayoso-andrade, The porous structure of synthetic akaganeite, Journal of Inorganic and Nuclear Chemistry, vol.43, issue.2, pp.257-264, 1981.
DOI : 10.1016/0022-1902(81)90006-3

J. E. Post, P. J. Heaney, R. B. Von-dreele, and J. C. Hanson, Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akagan??ite, American Mineralogist, vol.88, issue.5-6, pp.782-788, 2003.
DOI : 10.2138/am-2003-5-607

S. Goni-elizalde and M. E. Garcia, Thermal behaviour in air of iron oxyhydroxides obtained from the method of homogeneous precipitation, Thermochimica Acta, vol.129, issue.2, pp.325-334, 1988.
DOI : 10.1016/0040-6031(88)87348-9

S. Kesavan, T. A. Mozhi, and B. E. Wilde, O System at 25 to 150 C, CORROSION, vol.45, issue.3, pp.213-215
DOI : 10.5006/1.3577844

S. E. Ziemniak, M. E. Jones, and K. E. Combs, Magnetite solubility and phase stability in alkaline media at elevated temperatures, Journal of Solution Chemistry, vol.60, issue.9, pp.837-877, 1995.
DOI : 10.1007/BF00973442

W. G. Cook and R. P. Olive, Pourbaix diagrams for the iron???water system extended to high-subcritical and low-supercritical conditions, Corrosion Science, vol.55, pp.326-331, 2012.
DOI : 10.1016/j.corsci.2011.10.034

Y. Li, H. Liao, and Y. Qian, Hydrothermal Synthesis of Ultrafine ??-Fe2O3 and Fe3O4 Powders, Materials Research Bulletin, vol.33, issue.6, pp.841-844, 1998.
DOI : 10.1016/S0025-5408(98)00055-5

R. Cornell and R. Giovanoli, Transformation of Akagan??ite into Goethite and Hematite in the Presence of Mn, Clays and Clay Minerals, vol.39, issue.2, pp.144-150, 1991.
DOI : 10.1346/CCMN.1991.0390205

K. Ishikawa, T. Yoshioka, T. Sato, and A. Okuwaki, Solubility of hematite in LiOH, NaOH and KOH solutions, Hydrometallurgy, vol.45, issue.1-2, pp.129-135, 1997.
DOI : 10.1016/S0304-386X(96)00068-0

J. Murray, L. Kirwan, M. Loan, and B. K. Hodnett, In-situ synchrotron diffraction study of the hydrothermal transformation of goethite to hematite in sodium aluminate solutions, Hydrometallurgy, vol.95, issue.3-4, pp.239-246, 2009.
DOI : 10.1016/j.hydromet.2008.06.007

L. E. Davidson, S. Shaw, and L. G. Benning, The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions, American Mineralogist, vol.93, issue.8-9, pp.1326-1337, 2008.
DOI : 10.2138/am.2008.2761

A. Fernandez-martinez, V. Timon, G. Roman-ross, G. J. Cuello, J. E. Daniels et al., The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate, American Mineralogist, vol.95, issue.8-9, pp.1312-1322, 2010.
DOI : 10.2138/am.2010.3446

URL : https://hal.archives-ouvertes.fr/hal-00520600

D. Testemale, J. Brugger, W. Liu, B. Etschmann, and J. Hazemann, In-situ X-ray absorption study of Iron(II) speciation in brines up to supercritical conditions, Chemical Geology, vol.264, issue.1-4, pp.295-310, 2009.
DOI : 10.1016/j.chemgeo.2009.03.014

D. Neff, S. Reguer, and P. Dillmann, Analytical techniques for the study of corrosion of metallic heritage artefacts: from micrometer to nanometer scales, in Corrosion and conservation of cultural heritage metallic artefacts, pp.55-81, 2013.

J. Monnier, D. Neff, S. Reguer, P. Dillmann, L. Bellot-gurlet et al., A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques, Corrosion Science, vol.52, issue.3, pp.695-710, 2010.
DOI : 10.1016/j.corsci.2009.10.028

M. Saheb, D. Neff, J. Demory, E. Foy, and P. Dillmann, Characterisation of corrosion layers formed on ferrous archaeological artefacts buried in anoxic media, Corrosion Engineering, Science and Technology, vol.28, issue.4, pp.381-387, 2010.
DOI : 10.1038/246527a0

G. Pagès, P. Dillmann, P. Fluzin, and L. Long, A study of the Roman iron bars of Saintes-Maries-de-la-Mer (Bouches-du-Rh??ne, France). A proposal for a comprehensive metallographic approach, Journal of Archaeological Science, vol.38, issue.6, pp.1234-1252, 2011.
DOI : 10.1016/j.jas.2010.12.017

. Collectif, Arles-Rhône 3 Le naufrage d'un chaland antique dans le Rhône, enquête pluridisciplinaire. Coédition Musée Départemental Arles Antique ed, Actes Sud. 232, 2011.

B. Sra, Scientifique de la région Provence-Ales-Côte d'Azur. 2013: Ministère de la Culture et de la Communication Direction Régionale des Affaires Culturelles, pp.151-152

J. P. Eberhart, Analyse structurale et chimique des matériaux. Diffraction des rayons X, électrons et neutrons. Spectrométrie des rayons X, électrons et ions. Microscopie Electronique, Science Sup, p.614, 1989.

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2003.

P. Dillmann, F. Mazaudier, and S. Hoerle, Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corrosion Science, vol.46, issue.6, pp.1401-1429, 2004.
DOI : 10.1016/j.corsci.2003.09.027

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

C. Klett, Y. Cui, S. Denvineau, E. Foy, R. Dagnelie et al., H2 production through oxide irradiation: Comparison of gamma rays and vacuum ultraviolet excitation, International Journal of Hydrogen Energy, vol.38, issue.10, pp.3889-3897, 2013.
DOI : 10.1016/j.ijhydene.2012.12.035

R. Cornell and R. Giovanoli, Acid Dissolution of Akagani??ite and Lepidocrocite: The Effect on Crystal Morphology, Clays and Clay Minerals, vol.36, issue.5, pp.385-390, 1988.
DOI : 10.1346/CCMN.1988.0360501

B. Biscans, Techniques de l'ingénieur, 2013, pp.2788-2789

D. Thickett, Post Excavation Changes and Preventive Conservation of Archaeological Iron, School of Biological and Chemical Sciences, p.338, 2012.

Y. Xu, S. Yang, G. Zhang, Y. Sun, D. Gao et al., Uniform hematite ??-Fe2O3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism, Materials Letters, vol.65, issue.12, pp.1911-1914, 2011.
DOI : 10.1016/j.matlet.2011.03.085

. Les-Échantillons-d, akaganéite étudiés présentent des caractéristiques structurales différentes. La phase d'akaganéite archéologique, formée en surface d'un objet corrodé présente une structure monoclinique en I2

. De-cette-phase, Les paramètres de maille cristalline obtenus sont présentés ci-après et comparés