

Micromagnétismes des films minces

Salwa Soueid

▶ To cite this version:

Salwa Soueid. Micromagnétismes des films minces. Mathématiques générales [math.GM]. Université Paris-Est, 2015. Français. NNT: 2015PESC1037. tel-01366185

HAL Id: tel-01366185 https://theses.hal.science/tel-01366185

Submitted on 14 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ÉCOLE DOCTORALE — PARIS-EST Mathématiques et STIC

Thèse présentée en vue de l'obtention du grade de docteur de l'Université Paris-Est

Spécialité : Mathématiques

et soutenue publiquement par

Salwa SOUEID

10 Mars 2015

Micromagnétisme des films minces

Thèse dirigée par Rejeb HADIJI

Jury composé de

M.	TAHAR Z.BOULMEZAOUD	MC-HDR, Université de Versailles Saint Quentin	(Rapporteur)
M.	GILLES CARBOU	Professeur, Université de PAU	(Examinateur)
M.	Rejeb HADIJI	MC-HDR, Université de Paris Est Créteil	(Directeur de thèse)
Mme	Galina PERELMAN	Professeur, Université de Paris Est Créteil	(Examinateur)
M.	Feng ZHOU	Professeur, Université de Shanghai, ECNU	(Rapporteur)

Résumé

Les matériaux ferromagnétiques possèdent la propriété de devenir magnétiques, c'est à dire de s'aimanter, lorsqu'ils sont en présence d'un champ magnétique et de conserver une partie de leur magnétisation lorsque le champ est supprimé. C'est pour cette raison, ces matériaux sont devenus d'usage dans des nombreux applications industrielles. Le modéle mathématique du micromagnétisme a été introduit par W.F. Brown (voir [11]) pour décrire le comportement de l'aimantation dans les matériaux ferromagnétiques depuis les années 40.

Pour étudier ce phénomène, on le transforme en un système l'étude de ces équations donnent les informations physiques attendus dans des espaces appropriés. Dans cette thèse on est interessé à des structures minces de films ferromagnétiques. En pratique, une structure mince est un objet tridimentionnel ayant une ou deux directions prépondérantes comme par exemple une plaque, une barre ou un fil. Nous étudions le comportement de l'énergie quand l'épaisseur du film tend vers zéro.

Dans le premier travail, nous généralisons un résultat d \hat{u} à Gioia et James à des dimensions supérieures à 4. Plus précisement, on considère un domaine mince borné ferromagnétique dans \mathbb{R}^n , le but est d'étudier les comportements asymptotiques de l'énergie libre du domaine mince ferromagnétique.

Dans le deuxième travail, on s'interesse à une approche dynamique de problème micromagnétisme . On étudie le comportement asymptotique des solutions des équations Landau Lifshitz dans un multi-structure mince ferromagnétique composée de deux films minces orthogonaux d'épaisseur respectif h^a et h^b . On distingue différents régimes: lorsque $lim \frac{h_n^a}{h_n^b} \in]0, \infty[$. On identifie le problème limite et on montre que ce dernier est couplé par une condition de jonction sur l'axe vertical x_2 , pour tout $x_2 \in]-\frac{1}{2}, \frac{1}{2}[$.

La troisième partie est liée à ce dernier travail, nous complétons l'étude précèdente lorsque $lim \frac{h_n^a}{h^b} = 0$ et $+\infty$ (voir [2]).

Ensuite dans la quatrième chapitre, on a étudié des phénomènes de micromagnétisme dans un multi-structure mince: il s'agit d'un ouvert connexe de \mathbb{R}^3 composé de deux parties ayant un angle $\theta \in]0, \pi[$, le but est d'étudier les comportements asymptotiques de l'énergie libre dans ce domaine lorsque l'épaisseur tend vers zéro. Il s'agit d'un problème non convexe et non local. On identifie le problème limite, et on montre que l'aimantation $m^{(h)}$ converge vers une fonction $\mu = (\mu^a, \mu^b)$ qui minimise ce dernier. Le problème limite obtenue est local, couplé par une condition de jonction $\mu^a(x_2, 0) = \mu^b(0, x_2)$ pour $x_2 \in]-\frac{1}{2}, \frac{1}{2}[$. MOTS CLÉS : ferromagnétisme, micromagnétisme, film mince, multi-structure,

MOTS CLÉS : ferromagnétisme, micromagnétisme, film mince, multi-structure, junction, analyse asymptotique, équation Landau Lifschitz, énergie d'échange, énergie de Zeeman, énergie d'anisotropie, énergie de démagnétisante.

Abstrat

The ferromagnetic materials prossess the property of becoming magnetic when placed in a magnetic field and conserve a part of this magnetism when the field is removed. For this reason, these materials have become usual in many industrial applications. The model micromagnetism was introduce by W. F. Brown in the 40s (see [11]) to describe the behavior of the magnetization from ferromagnetics materials.

To study thin physical phenomenon, we transform it into a system of partial differential equation. The results obtained from the study of these equation give the physical information in this space. In this thesis, we are intersted in thin ferromagnetic structures. In practice, a thin structure is a three-dimensional object having one or two direction preponderant. For exemple a plate, a bar and a wire. We study the asymptotic behavior, as the thickness of the film tends to zero.

In the first work, We generalize a result due to Gioia and James to dimensions superior to 4. More precisely, we consider a thin bounded ferromagnetic domain in \mathbb{R}^n . The goal is to study the asymptotic behavior, where the free energy of this thin ferromagnetic domain.

In the second work, we are intersted in a dynamic approach to the problem micromagnetism. We study the asymptotic behavior of solution of equations Landau-Lifshitz in a thin multi-structure ferromagnetic, composed of two thin orthogonal films a thickness h_n^a and h_n^b respectively. We distinguish different regimes depending on the limit $\lim \frac{h_n^a}{h_n^b} \in]0, +\infty[$. We identify the limit problem and we prove that it is coupled by a junction condition on the vertical axis x_2 , for all $x_2 \in] -\frac{1}{2}, \frac{1}{2}[$.

The third part is linked to the second part. We complete the previous work by studying the cases when $\lim \frac{h_n^n}{h_n^n} = 0$ and $+\infty$ (see. [2]).

Then in the fourth chapter, we study the micromagnetism phenomenon in a thin multi-structure domain. This domain is an open connected in \mathbb{R}^3 composed of two parts forming an angle $\theta \in]0, \pi[$ between them. The goal is to study the asymptotic behavior of the free energy in this domain when the thickness tends to zero, this is non-convex and non-local problem. We identify the limit problem, and we prove that the magnetization $m^{(h)}$ converges to $\mu = (\mu^a, \mu^b)$, which minimizes our limit problem. the obtained limit problem is local, and coupled by the junction condition $\mu^a(x_2, 0) = \mu^b(0, x_2)$ pour $x_2 \in] -\frac{1}{2}, \frac{1}{2}[$.

KEYWORDS: Ferromagnetism, micromagnetism, thin film, multi-structure, junction, asymptotic analysis, Landau-Lifschitz equation, energy exchange, zeeman energy, anisotropy energy, demagnetizing energy.

6

Remerciements

Remercier toutes les personnes qui ont contribué de près comme de loin l'existence de ce rapport de thèse est un exercice très compliqué. J'ose espérer que les mots choisis rendront à peu près correctement ce que je ressens.

Recevez, Monsieur Rejeb HADIJI, mes plus sincères remerciements pour avoir dirigé cette thèse. Pour l'attention que vous m'avez porte, votre disponibilité, votre patience et votre soutien moral. Je vous exprime toute ma reconnaissance et mon profond respect. Votre grande expérience et votre rigueur mathématique ont permis l'accomplissement de ce travail.

Les professeurs Tahar Z. Boulmezaoud et Feng Zhou ont eu l'extrême gentillesse d'accepter de juger ce travail et d'en être les rapporteurs. Je les remercie vivement pour les efforts, la patience et l'intérêt qu'ils ont porté à ce travail.

Je tiens à remercier chaleureusement Monsieur Antonio Gaudiello pour ses conseils, les échanges enrichissants qui ont accompagné nos conversations. Je remercie également Galina Perelman et Gilles Carbou, pour l'honneur qu'ils me font, d'être parmi les membres de mon jury.

Merci à tous les membres du Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), qui m'ont permis de travailler dans de très bonnes conditions. Je remercie en particulier l'ancien directeur du laboratoire Raphael Danchin, et le nouveau directeur Stéphane Sabourau.

Je tiens à remercier les personnels du département et du laboratoire: Anaïs Delgado au secrétariat, Sylvie Cash responsable administrative et Laurent Marciniszyn au service informatique, pour leur disponibilité et leurs compétences professionnelles qui m'ont facilité beaucoup la vie au laboratoire.

Mes remerciements amicaux pour tous les doctorants: Zeina, Marwa, Rana, Victor, Khaled, Houda, Jean-Maxime, Rémy, Peng, Ali, Harry, Laurent, Xavier... Par ailleurs, je n'oublie pas les récents docteurs parmi lesquels Eduardo, Bertrand, Pierre, David, Fransesco, Sbastien, Antoine, Xian et Omar. Un grand merci à Johann le guide du laboratoire. Je voudrais remercier tous mes amis, mais il m'est impossible de les citer tous ici.

Je voudrais remercier mes parents et mes frères et soeurs qui ont toujours su m'offrir leur soutien, leur compréhensions, leurs encouragements, leur patience et leur affection.

La période la plus difficile de cette thèse a été partagée avec celles qui possèdent le coeur le plus tendre dans le monde. Alors mille mercis à Diaa et à mes enfants Jana et Ahmad pour tout le bonheur qu'ils m'apportent, pour leurs patiences, leurs soutiens. Ils méritent amplement que je leur dédie ce travail et même ma vie.

Je dédie cette thèse à Diaa Jana et Ahmad

Contents

Introduction 13				
	0.1	Propriétés des matériaux ferromagnétiques	13	
	0.2	Propriétés de base de l'aimantation	13	
	0.3	0.3 Energie libre du modèle classique en micromagnétisme		
		0.3.1 L'énergie d'échange	14	
		0.3.2 L'énergie d'anisotropie	14	
		0.3.3 L'énergie magnétostatique	15	
		0.3.4 L'énergie de Zeeman ou extérieure	15	
	0.4	nD-pD Réduction dimentionnelle des structures micromagnétiques	15	
		0.4.1 Présentation du problème	15	
		0.4.2 Les principaux résultats	16	
	0.5	Problème en présence de poids	19	
	0.6	Problem with weight	19	
	0.7	Jonction des films minces ferromagnétiques en micromagnétisme	21	
	0.8	Analyse asymptotique de deux films minces obliques ferromagnétique	es 24	
		0.8.1 Mise en équations du problème	24	
		0.8.2 Les principaux résultats	25	
1	nD	-nD Dimensional reduction of micromagnetic structures	29	
-	1.1	Introduction	29	
	1.2	Some preliminary results	32	
	1.3	The setting of the problem	33	
	1.4	The rescaled problem	34	
	1.5	The main results	35	
	1.6	The proof in the case $n - p \ge 2$	37	
		1.6.1 Proof of Theorem $1.5.1$	41	
	1.7	Case $n - p = 1$	42	
		1.7.1 A convegence result for the magnetostatic energy	42	
ი	T	ation of avoid stationary formania matic thin films	45	
4	Jun	Later desting	45	
	⊿.⊥ ეე	Introduction	40 40	
	2.2	2.2.1 Decliminant potentians and weak formulation of (2.1.6)	49 40	
		2.2.1 Fremmary notations and weak formulation of (2.1.6)	49 F 1	
		2.2.2 The rescaled problem	16	

CONTENTS

	2.3	The main results	54				
	2.4	Proof of main result	57				
3	Qua	si-stationary ferromagnetic thin films in degenerated cases	69				
	3.1	Introduction	69				
	3.2	The rescaled problem	71				
	3.3	The main results	74				
		3.3.1 <i>Case</i> $q = 0$	74				
		3.3.2 Case $q = +\infty$	75				
	3.4	The proof in the case $q = 0$	76				
		3.4.1 A priori estimates	76				
		3.4.2 A convergence result for the magnetostatic energy	77				
		3.4.3 Proof of theorem 3.3.1	79				
4	Asymptotic analysis for two joined thin slanting Ferromagnetic						
	film	S	81				
	4.1	Introduction	81				
		4.1.1 The setting of the problem	85				
		4.1.2 The rescaled problem	85				
		4.1.3 preliminary	88				
	4.2	The main results	89				
	4.3	If $a \in]0 + \infty[$	~~				
	-	$\Pi q \subset [0, +\infty]$	92				
	-	4.3.1 A convergence result for the magnetostatic energy \ldots	92 92				
	4.4	4.3.1 A convergence result for the magnetostatic energy A density result	92 92 102				
	4.4	4.3.1 A convergence result for the magnetostatic energy \ldots A density result \ldots	92 92 102 102				

Introduction

0.1 Propriétés des matériaux ferromagnétiques

Les matériaux ferromagnétiques ont la particularité de présenter une aimantation non nulle en l'absence de toute excitation extérieur, et ceci sera une de leurs importantes caractéristiques. Grâce à cette propriété les matériaux ferromagnétiques sont devenus d'usage dans de nombreux secteurs d'activités industrielles, par exemples (télécommunication, protection de radar, stockage informatique,...).

Cette théorie a été developpée par W.F. Brown dans les années 40 (voir [11]), a pour but d'identifier les principaux phénomènes intervenant dans la configuration de l'aimantation au sein d'un échantillon et leur associer une énergie. Les positions d'équilibre correspondent aux minima de l'énergie totale. Il est également possible d'utiliser un modéle dynamique, décrivant l'aimantation au cours du temps, en utilisant un système introduit par L.D. Landau et E.M. Lifschitz en 1935 (voir [50]).

0.2 Propriétés de base de l'aimantation

Dans la théorie classique du micromagnétisme, un matériau ferromagnétique est caractérisé par une aimantation spontannée representée par un moment magnétique m:

$$m: \Omega \subset \mathbb{R}^3 \longrightarrow S^2$$

où Ω est un ouvert borné de \mathbb{R}^3 , il représente d'échantillon dans lequel le matériau est confiné, S^2 est la sphère unité de \mathbb{R}^3 , le corps est toujours localement magnétisé à une aimantation saturée $|m(x)| = m_s(T)$, où T est la température locale. Soit T_c la température de Curie, $m_s > 0$ si $T \ge T_c$, et $m_s = 0$ sinon. En principe, l'aimantation m n'est pas définie dans l'espace entier \mathbb{R}^3 , mais uniquement dans l'échantillon Ω du matériau ferromagnétique. Dans toute la suite, on considérera \tilde{m} comme un champ défini sur tout \mathbb{R}^3 , \tilde{m} prolonge m par 0 à l'exterieur de Ω , ce qui permet de donner un sens aux diverses équations. Dans cette thèse, le moment magnétique \tilde{m} et le champ magnétique H sont liés par l'une des équations de Maxwell (sans charge, ni courant)

$$B = H + \tilde{m}, \quad dans \quad \mathbb{R}^3$$

où B et $H(\tilde{m})$ sont définis sur tout \mathbb{R}^3 , avec $H(\tilde{m}) \equiv -D\zeta$ (ζ est le potentiel magnetique).

0.3 Energie libre du modèle classique en micromagnétisme

Les moments magnétiques observés sont des minimiseurs (locaux) de l'énergie ferromagnétique

(0.3.1)
$$E(m) = \int_{\Omega} \left(\alpha |Dm|^2 + \varphi(m) + \frac{1}{2} D\zeta m - 2fm \right) dx$$

nous allons expliquer chaque terme.

0.3.1 L'énergie d'échange

L'énergie d'échange est due à l'existence d'une force responsable à aligner les spins voisins des deux atomes. Cette contribution est locale, elle dépend des propriétés microscopiques du matériaux, cette énergie s'écrit:

$$E_e(m) = \int_{\Omega} \alpha |Dm|^2 dx,$$

où α est le coéfficient d'échange.

0.3.2 L'énergie d'anisotropie

L'anisotropie magnéto-cristalline tient compte des effets d'anisotropie dus à la structure cristalline du matériau. On en tient compte grâce à une fonction paire et continue

$$\varphi: S^2 \longrightarrow \mathbb{R}^+$$

Nous observons principalement deux cas

• *l'anisotropie unixiale*: cette anisotropie se trouve dans les cristaux hexagonaux (*Co*). L 'expression de cette énergie est :

$$\varphi(m) = -K_1 m_z^2 + K_2 m_z^4$$

où m_z est la composante selon l'axe z du vecteur m, K_1 et K_2 sont les coefficients d'anisotropie dépendant de la température, les valeurs de ces coefficients sont tirées de l'expérience (dans les plupart de cas même K_2 est négligeable) par exemple dans le cas du matériel fer on a $K_1 = 4,81 \times 10^6 J.m^{-3}$ et $K_1 = 1,2 \times 10^4$.

• L'anisotropie cubique: Dans le cas des cristaux cubiques (Fe, Ni), les axes x, y et z étant choisis le long des axes du cristal, l'expression de l'énergie est la suivante:

$$\varphi(m) = K_1(m_x^2 m_y^2 + m_y^2 m_z^2 + m_z^2 m_x^2) + K_2 m_x^2 m_y^2 m_z^2$$

où K_1 et K_2 sont les coefficients d'anisotropie dépendant de la température et m_x , m_y et m_z les composantes du vecteur m. À température ambiante, voici les valeurs calculées pour certains matériaux ferromagnétique (voir [21])

Matériaux	Fe(cc)	Ni(cfc)	$Ni_{80}Fe_{20}$
$K_1(J.m^{-3})$	$4,81 \times 10^{6}$	$-5,48 \times 10^{5}$	0
$K_2(J.m^{-3})$	$1,2 imes 10^4$	$-2,47 imes10^5$	$-1,5 imes 10^3$

0.3.3 L'énergie magnétostatique

Le troisième terme de (0.3.1) représente l'énergie magnétostatique en présence d'un champ magnétique qu'elle produit par elle même. En partant des équations de Maxwell sans charge ni courant, on trouve que le champ magnétique est déterminé à partir de l'aimantation comme solution du problème suivant:

(0.3.2)
$$\begin{cases} div(H(\tilde{m}) + \tilde{m}) = 0, & \text{dans } \mathbb{R}^3, \\ rotH(\tilde{m}) = 0 & \text{dans } \mathbb{R}^3. \end{cases}$$

Par conséquent, on obtient

$$E_{mag}(m) = \frac{1}{2} \int_{\Omega} D\zeta m dx = \frac{1}{2} \int_{\mathbb{R}^3} |D\zeta|^2 dx$$

Remarquons que l'énergie magnétostatique exprime une interaction non locale.

0.3.4 L'énergie de Zeeman ou extérieure

L'énergie de Zeeman, ou l'énergie du champ externe, est l'énergie d'un corps aimanté dans un champ magnétique externe, elle est donnée par:

$$E_{ext}(m) = -2\int_{\Omega} fmdx,$$

où $f: \Omega \longrightarrow \mathbb{R}^3$ est le champ extérieur.

0.4 *nD-pD* Réduction dimentionnelle des structures micromagnétiques

0.4.1 Présentation du problème

Ce travail est publié dans Ricerche di Matematica (2014). Dans ce travail je géneralise un résultat d \hat{u} à Gioia et James (voir [39]). Ces auteurs ont étudié le comportement asymptotique d'un film mince ferromagnétique de \mathbb{R}^3 , d'épaisseur h, h est un paramétre positif qui tend vers zéro. Ce chapitre généralise leur

résultat, précisement je détermine via une analyse asymptotique l'énergie libre d'un domaine ferromagnétique p-dimensionnel dans \mathbb{R}^n , $1 \le p < n$.

On considère un domaine mince dans \mathbb{R}^n , défini par $\Omega_h = \Theta \times] - h, h[^{n-p} \subset \mathbb{R}^n$, où h est un paramètre qui tend vers zéro, Θ est un ouvert borné de \mathbb{R}^p . Le but de ce chapitre est d'étudier le comportement asymptotique, quand h tend vers zéro, du problème suivant:

(0.4.1)
$$\frac{1}{h^{n-p}} \int_{\Omega_h} \left(|Dm|^2 + \varphi(m) + \frac{1}{2}Dzm - 2F_hm \right) dx, m \in H^1(\Omega_h, S^{n-1})$$

avec

$$(0.4.2) \begin{cases} z \in \left\{ u \in L^1_{loc}(\mathbb{R}^n) : u \in L^2(B), \ Du \in (L^2(\mathbb{R}^n))^n, \ \int_B u dx = 0 \right\}, \\ \int_{\mathbb{R}^n} Dz D\zeta dx = \int_{\mathbb{R}^n} \tilde{m} D\zeta dx, \quad \forall \zeta \in \mathcal{U}, \end{cases}$$

où *B* est un ouvert contenant $\overline{\Omega_h}$, $\varphi: S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\} \to [0, +\infty[$ est une fonction paire continue, $F_h \in L^2(\Omega_h, \mathbb{R}^n)$, et m = 0 à l'exterieur de Ω_h et vérifie les propriétés de base de l'aimantation (voir paragraphe 0.2). La fonction $z: \mathbb{R}^n \to \mathbb{R}$ est le potentiel magnétique, il est lié à l'aimantation par (0.4.2). D'après Visintin (voir [57]), le problème (0.4.1) admet au moins une solution. Afin de travailler sur un domaine fixe, on utilise le changement d'échelle suivant

$$(x', x'') \in \Omega \to (x', hx'') \in \Omega_h,$$

où $(x^{'}, x^{''})$ est un point de \mathbb{R}^{n} , avec $x^{'} = (x_1, ..., x_p)$ et $x^{''} = (x_{p+1}, ..., x_n)$. Posons

$$f_h(x) = F_h(x', hx''), \qquad x \text{ p.p. dans } \Omega,$$

on va supposer que

(0.4.3)
$$f_h \rightharpoonup f$$
 faiblement dans $L^2(\Omega, \mathbb{R}^n)$

quand h tends vers zéro.

0.4.2 Les principaux résultats

En étudiant les comportements asymptotiques de l'énergie libre on trouve que nos résultats principaux dépendent de $n - p \in \mathbb{N}^*$.

Soit

$$(0.4.4) \quad M = \{\mu \in H^1(\Omega, S^{n-1}) : \mu \text{ est indépendant de } x^{''}\} \simeq H^1(\Theta, S^{n-1}).$$

Dans le cas $n - p \ge 2$, on y établit le résultat suivant:

Théorème 0.4.1. Soit $m^{(h)}$ est une solution minimisante de (0.4.1) et $\zeta^{(h)}$ est l'unique solution de (0.4.2) qui correspond à $m^{(h)}$. Alors, il existe une sous-suite notée aussi $(m^{(h)})_h$ et une fonction $\hat{\mu} \in M$ dépendant de la sous-suite, tels que

$$\begin{split} m^{(h)} &\longrightarrow \hat{\mu} \quad \textit{fortement dans } H^1(\Omega, S^{n-1}), \\ \frac{1}{h} D_{x''} m^{(h)} &\longrightarrow 0 \quad \textit{fortement dans } L^2(\Omega, S^{n-1}), \end{split}$$

et

$$\left\{ \begin{array}{ll} D_{x'}\zeta^{(h)} \longrightarrow 0 & \quad \textit{fortement dans } L^2(\mathbb{R}^n), \\ \\ \frac{1}{h}D_{x''}\zeta^{(h)} \longrightarrow \hat{\xi} & \quad \textit{fortement dans } L^2(\mathbb{R}^n), \end{array} \right.$$

où $\hat{\mu}$ est une solution de problème suivant:

$$E_0(\hat{\mu}) = \min \{ E_0(\mu), \mu \in M \},\$$

avec

$$\hat{\xi}(x) = \begin{cases} \sum_{i=p+1}^{n} \hat{\mu_i}(x') D_{x''} P_i(x^{''}) & p.p. \ dans \ \Theta \times \mathbb{R}^{n-p}, \\ 0 & p.p. \ dans \ \mathbb{R}^p \backslash \Theta \times \mathbb{R}^{n-p}, \end{cases}$$

de plus on a

$$\lim_{h \to 0} E_h^{(h)}(m^{(h)}) = E_0(\hat{\mu})$$

Avec

$$(0.4.5) \qquad E_0: \mu \in M \longrightarrow \int_{\Omega} (\alpha |D_{x'}\mu|^2 + \varphi(\mu) - 2f\mu) dx +$$

$$\frac{1}{2} \left(\sum_{i=p+1}^n \int_{\mathbb{R}^{n-p}} \left(|D_{x''}P_i|^2 \int_{\Theta} |\mu_i|^2 dx' \right) dx'' \right) +$$

$$\frac{1}{2} \left(\sum_{i,j_{i\neq j}=p+1}^n \int_{\mathbb{R}^{n-p}} \left(D_{x''}P_i D_{x''}P_j \int_{\Theta} \mu_i \mu_j dx' \right) dx'' \right).$$

où $\hat{\mu}_i$, $i \in \{p+1, ..., n\}$ est le $i^{\text{ème}}$ composante de $\hat{\mu}$, et P_i , $i \in \{p+1, ..., n\}$ est l'unique solution du problème suivant:

$$\begin{cases} (0.4.6) \\ \begin{cases} P_i \in BL_0(\mathbb{R}^{n-p}), \\ \int_{\mathbb{R}^{n-p}} D_{x''} P_i D_{x''} \phi dx^{''} = \int_{]-1,1[^{n-p}} D_{x_i} \phi dx^{''}, \quad \forall \phi \in BL_0(\mathbb{R}^{n-p}), \end{cases}$$

où $BL_0(\mathbb{R}^{n-p})$ est l'espace Beppo-Levi dans \mathbb{R}^{n-p} , voir [34] pour plus de detail en dimension 3.

La preuve du théorème répose sur la proposition suivante:

Proposition 0.4.1. On suppose que $n \ge 3$, $p \ge 1$ et $n - p \ge 2$. Soit $(m_h)_h \subset L^2(\Omega, \mathbb{R}^n)$. Supposons qu'il existe $\mu \in L^2(\Omega, \mathbb{R}^n)$ qui ne dépend pas de x'' tel que

 $m_h \longrightarrow \mu$ fortement dans $L^2(\Omega, \mathbb{R}^n)$,

quand h tends vers zéro. Soit ζ_h est l'unique solution du problème (0.4.2) qui correspond à m_h . Alors, on a

$$\left\{ \begin{array}{ll} D_{x'}\zeta_h \longrightarrow 0 & \quad \text{fortement dans } (L^2(\mathbb{R}^n))^p, \\ \\ \frac{1}{h}D_{x''}\zeta_h \longrightarrow \xi & \quad \text{fortement dans } (L^2(\mathbb{R}^n))^{n-p}, \end{array} \right.$$

quand h tends vers zéro, où

$$\xi(x) = \begin{cases} \sum_{i=p+1}^{n} \mu_i(x^{'}) D_{x^{''}} P_i(x^{''}), & p.p. \ dans \ \Theta \times \mathbb{R}^{n-p}, \\ 0, & p.p. \ dans \ (\mathbb{R}^p \backslash \Theta) \times \mathbb{R}^{n-p}, \end{cases}$$

avec P_i , $i \in \{p+1, ..., n\}$, l'unique solution de (0.4.6). De plus,

$$\begin{split} \lim_{h \to 0} E_h^{mag}(m_h) &= \frac{1}{2} \sum_{i=p+1}^n \int_{\mathbb{R}^{n-p}} |D_{x''} P_i|^2 dx^{''} \int_{\Theta} |\mu_i|^2 dx^{'} + \\ \frac{1}{2} \sum_{\substack{i,j=p+1\\i \neq j}}^n \int_{\mathbb{R}^{n-p}} D_{x''} P_i D_{x''} P_j dx^{''} \int_{\Theta} \mu_i \mu_j dx^{'}. \end{split}$$

Si n - p = 1 on prouve le résultat suivant

Théorème 0.4.2. Soit $m^{(h)}$ est une solution minimisante de (0.4.1) et $\zeta^{(h)}$ est l'unique solution de (0.4.2) qui correspond à $m^{(h)}$. Alors, il existe une soussuite de $m^{(h)}$ notée aussi $(m^{(h)})_h$ et $\hat{\mu} \in M$, dépendant de la sous-suite tels que, pour tout j = 1, ..., n - 1

$$m^{(h)} \longrightarrow \hat{\mu}$$
 fortement dans $H^1(\Omega, S^{n-1})$,
 $\frac{1}{h} D_{x_n} m^{(h)} \longrightarrow 0$ fortement dans $L^2(\Omega, S^{n-1})$,

et

$$\begin{cases} D_{x_j}\zeta^{(h)} \longrightarrow 0 & \text{fortement dans } L^2(\mathbb{R}^n), \\ \frac{1}{h}D_{x_n}\zeta^{(h)} \longrightarrow \tilde{\mu}_n & \text{fortement dans } L^2(\mathbb{R}^n), \end{cases}$$

18

où $\hat{\mu}_n$ est le prolongement par zéro de $\hat{\mu}_n$ sur \mathbb{R}^n , et $\hat{\mu}$ est une solution du problème suivant:

$$E_1(\hat{\mu}) = \min \{ E_1(\mu), \mu \in M \}.$$

De plus, on a

$$\lim_{h \to 0} E_h^{(h)}(m^{(h)}) = E_1(\hat{\mu})$$

 $O\dot{u}$

$$E_1: \mu \in M \longrightarrow \int_{\Omega} (\alpha |D_{x'}\mu|^2 + \varphi(\mu) - 2f\mu) dx + \frac{1}{2} \int_{\Omega} |\mu_n|^2 dx.$$

Comme précédemment pour démontrer ce théorème on commence par prouver le résultat de convergence de l'énergie magnétostatique.

0.5 Problème en présence de poids

Je suis en train de généraliser ces résultats le même problème en présence de poids $\alpha^{(h)}(x)$, $\beta^{(h)}(x)$ and $\gamma^{(h)}(x)$ dépendant de h

0.6 Problem with weight

Dans ce travail, je reprends le problème précèdante en presence de poids. Plus précisément, on étudie les comportements asymptotiques du problème suivant: (0.6.1)

$$\min\left\{\frac{1}{h^{n-p}}\int_{\Omega_h}\left(\underline{\alpha}_h(x)|\underline{D\underline{m}}|^2+\varphi(\underline{m})+\frac{1}{2}\underline{\beta}_h(x)\underline{D\underline{\zeta}\underline{m}}-2F_h\underline{m}\right)dx, \underline{m}\in H^1(\Omega_h, S^{n-1})\right\}$$

à condition que

(0.6.2)
$$div\left(-\underline{\gamma}_{h}(x)D\underline{\zeta}+\underline{\beta}_{h}(x)\underline{m}\right)=0 \quad \text{dans } \mathbb{R}^{n},$$

où

$$(0.6.3) \qquad \underline{\alpha}_h \in L^{\infty}(\Omega_h), \quad \underline{\beta}_h \in L^{\infty}(\Omega_h), \quad \underline{\gamma}_h \in L^{\infty}(\mathbb{R}^n),$$

$$(0.6.4) 0 \leq \underline{\beta}_h(x), \quad x \text{ p.p. dans } \Omega_h, \quad \forall h,$$

il existe une constante $c_1 > 0$ tels que

$$(0.6.5) c_1 \leq \underline{\alpha}_h(x), \quad x \text{ p.p. dans } \Omega_h, \quad \forall h,$$

 et

(0.6.6)
$$c_1 \leq \underline{\gamma}_h(x), \quad x \text{ p.p. dans } \mathbb{R}^n, \quad \forall h.$$

Afin de travailler sur un domaine fixe, posons

$$\begin{split} \alpha_h(x) &= \underline{\alpha}_h(x^{'}, hx^{''}), \quad \beta_h(x) = \underline{\beta}_h(x^{'}, hx^{''}), \quad x \text{ p.p. dans } \Omega, \\ \gamma_h(x) &= \underline{\gamma}_h(x^{'}, hx^{''}), \quad x \text{ p.p dans } \mathbb{R}^n, \\ f_h(x) &= F_h(x^{'}, hx^{''}), \quad x \text{ p.p. dans } \Omega, \end{split}$$

et supposons que

(0.6.7)
$$\begin{cases} \alpha_h \to \alpha & \text{fortement dans } L^{\infty}(\Omega), \\ \beta_h \to \beta & \text{fortement dans } L^{\infty}(\Omega), \\ \gamma_h \to \gamma & \text{fortement dans } L^{\infty}(\mathbb{R}^n), \end{cases}$$

De même, notre résultat principal dépend de n-p. Précisément, si $n-p \ge 2$, je prouve que

Theorem 0.6.1. Soit $n \ge 3$, $p \ge 1$ et $n - p \ge 2$. Pour tout h, soit m_h est une solution minimisante de (0.6.1) et soit ζ_h est l'unique solution de (0.6.2)qui correspond à m_h . Supposons $(0.6.3) \div (0.6.7)$. Alors, il existe une sous-suite notée aussi $\{m_h\}_h$, et $\hat{\mu} \in M$, dépendant de la sous-suite, tels que

$$m_h \longrightarrow \hat{\mu}$$
 fortement dans $H^1(\Omega, S^{n-1})$,
 $\frac{1}{h} D_{x''} m_h \longrightarrow 0$ fortement dans $(L^2(\Omega))^{n-p}$,

et

$$\begin{cases} D_{x'}\zeta_h \longrightarrow 0 & \text{fortement dans } (L^2(\mathbb{R}^n))^p, \\\\ \frac{1}{h}D_{x''}\zeta_h \longrightarrow \hat{\xi} & \text{fortement dans } (L^2(\mathbb{R}^n))^{n-p}, \end{cases}$$

où $\hat{\mu}$ est une solution de problème suivant

$$E_0(\hat{\mu}) = \min \{ E_0(\mu), \quad \mu \in M \}$$

avec

$$\hat{\xi}(x) = \begin{cases} \sum_{i=p+1}^{n} \hat{\mu_i}(x^{'}) D_{x^{''}} P_i(x^{''}), & p.p. \ dans \ \Theta \times \mathbb{R}^{n-p}, \\ 0, & p.p. \ dans \ (\mathbb{R}^p \backslash \Theta) \times \mathbb{R}^{n-p}, \end{cases}$$

où P_i , $i \in \{p+1, ..., n\}$, est l'unique solution de (1.2.1). De plus

$$\lim_{h \to 0} E_h(m_h) = E_0(\hat{\mu}).$$

20

Avec

$$E_{0}: \mu \in M \longrightarrow \int_{\Omega} (\alpha |D_{x'}\mu|^{2} + \varphi(\mu) - 2f\mu) dx +$$

$$\frac{1}{2} \sum_{i=p+1}^{n} \int_{\mathbb{R}^{n-p}} \left(|D_{x''}P_{i}|^{2} \int_{\Theta} \gamma |\mu_{i}|^{2} dx' \right) dx'' +$$

$$\frac{1}{2} \sum_{i=p+1}^{n} \int_{\mathbb{R}^{n-p}} \int_{\Theta} \left(|D_{x''}P_{i}|^{2} \int_{\Theta} \gamma |\mu_{i}|^{2} dx' \right) dx'' +$$

((

$$\frac{1}{2} \sum_{\substack{i,j=p+1\\i\neq j}}^{n} \int_{\mathbb{R}^{n-p}} \left(D_{x^{\prime\prime}} P_i D_{x^{\prime\prime}} P_j \int_{\Theta} \gamma \mu_i \mu_j dx^{'} \right) dx^{\prime\prime}.$$

Si n - p = 1, on prouve le résultat suivant

Théorème 0.6.1. Soit $n \ge 2$ et n - p = 1. Pour tout h, soit m_h est une solution minimisante de (0.6.1) et ζ_h est l'unique solution de (0.6.2) correspond à m_h . Supposons (0.6.3)÷(0.6.7). Alors, il existe une sous-suite notée aussi $\{m_h\}_h$, et $\hat{\mu} \in M$, dépendant de la sous-suite, tels que

$$\begin{array}{ll} m_h \longrightarrow \hat{\mu} & \text{fortement dans } H^1(\Omega, S^{n-1}), \\ \frac{1}{h} D_{x_n} m_h \longrightarrow 0 & \text{fortement dans } L^2(\Omega), \end{array}$$

et, pour j = 1, ..., n - 1,

$$\begin{cases} D_{x_j}\zeta_h \longrightarrow 0 & \text{fortement dans } L^2(\mathbb{R}^n), \\\\ \frac{1}{h}D_{x_n}\zeta_h \longrightarrow \frac{\beta}{\gamma}\tilde{\tilde{\mu}}_n & \text{fortement dans } L^2(\mathbb{R}^n), \end{cases}$$

où $\hat{\mu}$ est une solution de problème suivant:

$$E_1(\hat{\mu}) = \min \{ E_1(\mu), \quad \mu \in M \}$$

et $\tilde{\hat{\mu}}_n$ est le prolongement par zero à l'extérieur de Ω . De plus on a

$$\lim_{h \to 0} E_h(m_h) = E_1(\hat{\mu})$$

Avec

$$E_1: \mu \in M \longrightarrow \int_{\Omega} (\alpha |D_{x'}\mu|^2 + \varphi(\mu) - 2f\mu) dx + \frac{1}{2} \int_{\Omega} \frac{\beta^2}{\gamma} |\mu_n|^2 dx.$$

Jonction des films minces ferromagnétiques 0.7 en micromagnétisme

Le deuxième et le troisième travail est en collaboration avec L. Faella sont consacrés à étudier le comportement asymptotique d'un modèle quasi-stationnaire ferromagnétique, composé de deux films minces perpendiculaires, et qui se joint par une condition de jonction sur $(h_n^a x_1, x_2, 0)$. D'un point de vue physique, ce modèle décrit les propagations d'ondes électromagétiques dans un milieu ferromagnétique. Plus précisement, pour $n \in \mathbb{N}$, on considère $\Omega_n = \Omega_n^a \cup \Omega_n^b$, avec

$$\Omega_n^a = \left(\left] -\frac{h_n^a}{2}, \frac{h_n^a}{2} \right[\times \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] 0, 1 \right[\right) \qquad \Omega_n^b = \left(\left] -\frac{1}{2}, \frac{1}{2} \right[^2 \times \left] -h_n^b, 0 \right[\right),$$

où $\{h_n^a\}_{n \in \mathbb{N}}, \{h_n^b\}_{n \in \mathbb{N}} \subset]0,1[$ tel que

(0.7.1)
$$\lim_{n} h_{n}^{a} = 0 = \lim_{n} h_{n}^{b}, \qquad \lim_{n} \frac{h_{n}^{b}}{h_{n}^{a}} = q \in [0, +\infty].$$

D'après les propriétés de base de l'aimantation le moment magnétique M induit un champ magnétique H(M) donnée par

(0.7.2)
$$\begin{cases} H(M) \in \left(L^2\left(\mathbb{R}^3\right)\right)^3 \\ curlH(M) = 0 \\ div\left(H\left(M\right) + \overline{M}\right) = 0 \\ dans D'\left(\mathbb{R}^3\right) \\ div\left(H\left(M\right) + \overline{M}\right) = 0 \\ dans D'\left(\mathbb{R}^3\right) \\ div\left(\mathbb{R}^3\right) \\ div\left(H\left(M\right) + \overline{M}\right) = 0 \\ dans D'\left(\mathbb{R}^3\right) \\ div\left(\mathbb{R}^3\right) \\ div\left(\mathbb{R}$$

Le but de ce travail est d'étudier le comportement asymptotique, quand n diverge, du problème quasi-stationnaire suivant

(0.7.3)
$$\begin{cases} \frac{\partial M}{\partial t} + M \wedge \frac{\partial M}{\partial t} = 2M \wedge (-\Delta M + DU_M) \quad \text{in }]0, T[\times \Omega_n] \\ avec \quad (0.7.2) \end{cases}$$

Dans ces chapitres l'aimantation M dépend du temps t, soit M_0 l'aimantation au temps t = 0. Pour $M_0(x) \in H^1(\Omega_n)$, $|M_0(X)| = 1$ p.p et $div(M_0) + M_0 = 0$ sous ces hypothèses initiales, problème (0.7.3) admet au moins une solution faible $M \in L^{\infty}(0,T; H^1(\Omega_n))$ de telle sorte que $\frac{\partial M}{\partial t} \in L^2(0,T; H^1(\Omega_n))$ (voir [14] et [57]). En étudiant le comportement asymptotique du problème (0.7.3), on remarque que notre résultat dépend de $q \in [0, +\infty]$. Dans le chapitre 2 on traite le cas $q \in]0, +\infty[$, nous obtenons deux problèmes 2D couplés par un condition de jonction sur $] -\frac{1}{2}, \frac{1}{2}[$. Soit

$$\mathcal{M} = \left\{ \begin{array}{c} \psi = (\psi^a, \psi^b) \in H^1\left(\Omega^a, S^2\right) \times H^1\left(\Omega^b, S^2\right) : \psi^a \text{ ne dépend pas de } x_1, \\ \psi^b \text{ ne dépend pas de } x_3, \ \psi^a(0, x_2, 0) = \psi^b(0, x_2, 0), \text{ pour } x_2 \text{ p.p. dans } \right] - \frac{1}{2}, \frac{1}{2} \left[\begin{array}{c} \end{array} \right\}$$

Dans ce chapitre on y établit le résultat suivant

Théorème 0.7.1. Soit
$$\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$$
 est une solution du notre problème

(0.7.3) avec ces hypothèses initiales:

$$\begin{split} \underline{\mu}_{0} &= \left(\underline{\mu}_{0}^{a}, \underline{\mu}_{0}^{b}\right) \in \mathcal{M}, \\ \underline{m}_{n_{0}}^{a} &\to \underline{\mu}_{0}^{a} \text{ fortement dans } H^{1}\left(\Omega^{a}, S^{2}\right), \\ \underline{m}_{n_{0}}^{b} &\to \mu_{0}^{b} \text{ fortement dans } H^{1}\left(\Omega^{b}, S^{2}\right), \\ \frac{1}{h_{n}^{a}} D_{x_{1}} \underline{m}_{n_{0}}^{a} &\to 0 \text{ fortement dans } L^{2}\left(\Omega^{a}, \mathbb{R}^{3}\right), \\ \frac{1}{h_{n}^{b}} D_{x_{3}} \underline{m}_{n_{0}}^{b} &\to 0 \text{ fortement dans } L^{2}\left(\Omega^{b}, \mathbb{R}^{3}\right). \end{split}$$

Notons $u_n = (u_n^a, u_n^b)$ l'unique solution du Problème (0.7.2) qui correspond à \underline{m}_n . Alors, il existe une sous-suite $(m_n)_n$ et $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b) = ((\underline{\mu}_1^a, \underline{\mu}_2^a, \underline{\mu}_3^a), (\underline{\mu}_1^b, \underline{\mu}_2^b, \underline{\mu}_3^b)) \in L^{\infty}(0, T; \mathcal{M})$, dépend de la sous-suite de telle sorte que

$$\underline{m}_{n} \rightharpoonup \underline{\mu} \text{ faible } ^{*} \text{ dans } L^{\infty} \left(0, T; \mathcal{M}; S^{2} \right)$$

$$\underline{m}_{n} \rightarrow \underline{\mu} \text{ fortement dans } L^{2} \left(0, T; L^{2} \left(\Omega^{a} \right) \times L^{2} \left(\Omega^{b} \right) \right) \text{ et } p. \text{ p. dans } [0, T] \times \left(\Omega^{a} \cup \Omega^{b} \right)$$

où μ est la solution du problème suivant:

$$\begin{cases} \begin{array}{l} \underbrace{\mu(t=0) = \mu_0 = (\mu_0^a, \underline{\mu}_0^b) \in \mathcal{M}}_{\substack{\mu = (\mu^a, \mu^b) \in L^{\infty}(0, T; \mathcal{M}) \\ \forall t \in [0, T] \quad |\underline{\mu}| = 1 \text{ pour } p. p. \ x \in \Omega^a \cup \Omega^b \\ \frac{\partial \mu}{\partial t} \in L^2\left(0, T; L^2\left(] - \frac{1}{2}, \frac{1}{2} [\times]0, 1[, S^2\right) \times L^2\left(\right] - \frac{1}{2}, \frac{1}{2} [^2, S^2\right)\right) \\ \forall \varphi \in D\left(0, T\right) \ et \ g = (g^a, g^b) \in \mathcal{M} \\ \int_{0}^{T} \int_{] - \frac{1}{2}, \frac{1}{2} [\times]0, 1[} \left(\frac{\partial \mu^a}{\partial t} + \underline{\mu}^a \wedge \frac{\partial \mu^a}{\partial t}\right) \varphi g^a dx dt + \int_{0}^{T} \int_{] - \frac{1}{2}, \frac{1}{2} [^2} \left(\frac{\partial \mu^b}{\partial t} + \underline{\mu}^b \wedge \frac{\partial \mu^b}{\partial t}\right) \varphi g^b dx dt = \\ -2 \int_{0}^{T} \int_{] - \frac{1}{2}, \frac{1}{2} [\times]0, 1[} \sum_{i=2}^{3} \underline{\mu}^a \wedge \frac{\partial \mu^a}{\partial x_i} \frac{\partial g^a}{\partial x_i} \varphi - 2q \int_{0}^{T} \int_{] - \frac{1}{2}, \frac{1}{2} [^2} \sum_{i=1}^{2} \underline{\mu}^b \wedge \frac{\partial \mu^b}{\partial x_i} \frac{\partial g^b}{\partial x_i} \varphi \\ -2 \int_{0}^{T} \int_{] - \frac{1}{2}, \frac{1}{2} [\times]0, 1[} \underline{\mu}^a \wedge (\underline{\mu}^a, e_1) e_1 g^a \varphi - 2q \int_{0}^{T} \int_{] - \frac{1}{2}, \frac{1}{2} [^2} \sum_{i=1}^{2} \underline{\mu}^b \wedge (\underline{\mu}^b, e_3) e_3 g^b \varphi. \\ \forall \ t \in [0, T] \\ \forall \ t \in [0, T] \\ E_q\left(\underline{\mu}(t, \cdot)\right) + \int_{0}^{t} \left\| \frac{\partial \mu^a}{\partial t} \right\|_{L^2(\Omega^a)}^2 dx dt + q \int_{0}^{t} \left\| \frac{\partial \mu^b}{\partial t} \right\|_{L^2(\Omega^b)}^2 dx dt \le E_q\left((\underline{\mu}(0, \cdot))\right) \end{array}$$

 $o \dot{u}$

$$E_q\left(\underline{\mu}\left(t,\cdot\right)\right) = \int_{\left[-\frac{1}{2},\frac{1}{2}\left[\times\right]0,1\right[} \left|D\underline{\mu}^a\right|^2 + q \int_{\left[-\frac{1}{2},\frac{1}{2}\left[^2\right]} \left|D\underline{\mu}^b\right|^2 + \frac{1}{2} \int_{\left[-\frac{1}{2},\frac{1}{2}\left[\times\right]0,1\right[} \left|\underline{\mu}^a_1\right|^2 dx_2 dx_3 + \frac{1}{2}q \int_{\left[-\frac{1}{2},\frac{1}{2}\left[^2\right]} \left|\underline{\mu}^b_3\right|^2 dx_1 dx_2.$$

Dans le troisième travail, on complète l'étude précédente dans les cas q = 0et $q = +\infty$, la structure se comporte comme un seul film. Plus précisement, lorsque q = 0 (c.à.d $h_n^b \ll h_n^a$) nous prouvons que le problème limite se réduit à un film mince verticale 2D et on perd la condition de jonction. Pareillement, pour $q = +\infty$ (c.à.d $h_n^a \ll h_n^b$) nous prouvons que le problème limite se réduit à un film mince horizontale 2D et on perd aussi la condition de jonction (voir Chapitre 2).

0.8 Analyse asymptotique de deux films minces obliques ferromagnétiques

Ce travail est écrit en collaboration avec R. Hadiji. Un multi-domaine mince est une structure de deux domaines minces qui sont liés par une condition de jonction, et qui sont très fins. Gaudiello et Hadiji ont beaucoup étudié sur ce type de multi-domaine (voir [31], [33],[34]).

0.8.1 Mise en équations du problème

Dans ce chapitre on considère une multi-structure composé de deux films minces ferromagnétiques, formé de deux films minces ayant un angle $\theta \in]0, \pi[$ et sont liés par une condition de jonction sur l'axe $(h_n^a x_1, x_2, 0), \forall (x_1, x_2) \in]-\frac{1}{2}, \frac{1}{2}[\times]-\frac{1}{2}, \frac{1}{2}[$. Plus précisement, on considère $\Omega_n^{\theta_0} = \Omega_n^{a,\theta_0} \cup \Omega_n^b$, avec $n \in \mathbb{N}, \Omega_n^b =]-\frac{1}{2}, \frac{1}{2}[^2 \times]-h_n^b, 0[$ et

$$\Omega_n^{a,\theta_0} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : |x_1 - \cot \theta_0 x_3| < \frac{h_n^a}{2}, (x_2, x_3) \in \left] -\frac{1}{2}, \frac{1}{2} [\times [0, \sin \theta_0] \right\},$$

où h^a_n et h^b_n sont les épaisseurs de Ω^{a,θ_0}_n et Ω^b_n respectivement, tels que

(0.8.1)
$$\begin{cases} \lim_{n} h_{n}^{a} = 0 = \lim_{n} h_{n}^{b}, \\ \lim_{n} \frac{h_{n}^{b}}{h_{n}^{a}} = q \in [0, +\infty]. \end{cases}$$

Le but de ce chapitre est d'étudier le comportement asymptotique quand n diverge du problème suivant:

(0.8.2)
$$\min\left\{\int_{\Omega_n^{\theta_0}} (\alpha |\underline{D\underline{m}}|^2 + \varphi(\underline{m}) + \frac{1}{2}\underline{D\underline{\zeta}\underline{m}} - 2F_n\underline{m})dx, \underline{m} \in H^1(\Omega_n^{\theta_0}, S^2)\right\}$$

avec

$$(0.8.3) \begin{cases} z \in \left\{ u \in L^1_{loc}(\mathbb{R}^3) : u \in L^2(B), \ Du \in (L^2(\mathbb{R}^3))^3, \ \int_B u dx = 0 \right\}, \\ \int_{\mathbb{R}^3} Dz D\zeta dx = \int_{\Omega} m D\zeta dx, \quad \forall \zeta \in \mathcal{U}, \end{cases}$$

où B est un ouvert contenant $\overline{\Omega_n^{\theta}}$. Le probème (0.8.2) admet au moins une solution minimisante voir [57]. Afin de travailler sur un domaine fixe, on utilise le changement de variable suivant:

$$\begin{cases} (x_1, x_2, x_3) \in \Omega^{a, \theta_0} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : |x_1 - \cot \theta_0 x_3| < \frac{1}{2}, (x_2, x_3) \in] - \frac{1}{2}, \frac{1}{2} [\times] 0, \sin \theta_0 [\right\} \\ & \longrightarrow (h_n^a x_1 + \frac{\cos \theta_0}{\sin \theta_0} (1 - h_n^a) x_3, x_2, x_3) \in int(\Omega_n^{a, \theta_0}), \\ (x_1, x_2, x_3) \in \Omega^b =] - \frac{1}{2}, \frac{1}{2} [^2 \times] - 1, 0 [\longrightarrow (x_1, x_2, h_n^b x_3) \in \Omega_n^b. \end{cases}$$

Cette fois l'estimation de l'énergie libre du système est établie d'une part grâce au résultat de convergence de l'énergie magnétostatique et d'autre part en utilisant le résultat de densité suivant. Soit

$$\mathcal{M}_{reg} = \left\{ \mu = (\mu^a, \mu^b) \in C^1(\overline{\Omega^{a, \theta_0}}, S^2) \times C(\overline{\Omega^b}, S^2) : \right.$$

 μ^a ne dépend pas de x_1, μ^b ne dépend pas de x_3 ,

$$\mu^{b}/_{[-\frac{1}{2},0]\times[-\frac{1}{2},\frac{1}{2}]\times[-1,0]} \in C^{1}([-\frac{1}{2},0]\times[-\frac{1}{2},\frac{1}{2}]\times[-1,0],S^{2}),$$

$$\mu^{b}/_{[0,\frac{1}{2}]\times[-\frac{1}{2},\frac{1}{2}]\times[-1,0]} \in C^{1}([0,\frac{1}{2}]\times[-\frac{1}{2},\frac{1}{2}]\times[-1,0],S^{2}),$$

$$\mu^{a}(x_{2},0) = \mu^{b}(0,x_{2}) \text{ pour } x_{2} \in]-\frac{1}{2},\frac{1}{2}[\Biggr\},$$

 et

$$\mathcal{M} = \left\{ \mu = (\mu^a, \mu^b) \in H^1(\Omega^{a, \theta_0}, S^2) \times H^1(\Omega^b, S^2) : \right\}$$

 μ^a ne dépend pas x_1, μ^b ne dépend pas $x_3,$

$$\mu^{a}(x_{2},0) = \mu^{b}(0,x_{2}), \text{ pour } x_{2} \text{ p.p. dans }] -\frac{1}{2}, \frac{1}{2}[$$

Proposition 0.8.1. \mathcal{M}_{reg} dense dans M.

0.8.2 Les principaux résultats

En étudiant le comportement asymptotique de l'énergie libre on trouve que nos résultats dépendent de $\lim_n \frac{h_n^b}{h_n^a} = q \in [0, +\infty].$ Plus précisement, dans le cas $q \in]0, +\infty[$ on obtient le résultat suivant:

Théorème 0.8.1. Supposons (0.8.1) avec $q \in]0, +\infty[$. Pour tout $n \in \mathbb{N}$, soit $m_n = (m_n^a, m_n^b)$ est une solution minimisante de (0.8.2) et $\zeta_n = (\zeta_n^a, \zeta_n^b)$ est l'unique solution de (0.8.3) qui correspond à m_n , soit $\xi_n^{(1)}(x_2, x_3) = \int_{-\frac{1}{2}}^{\frac{1}{2}} m_n^a(x_1 + \cot \theta_0 x_3, x_2, x_3) dx_1$. Alors, il existe une sous-suite $(m_{n_i})_{i \in \mathbb{N}}$ et $(\hat{\mu}^a, \hat{\mu}^b, \hat{\xi}^a) \in \mathcal{M} \times \mathcal{F}$ dépendant de la sous-suite choisie, tel que

 $\begin{cases} m_{n_i}^a \to \hat{\mu}^a \text{ fortement } dans \ H^1(\Omega^{a,\theta_0}, S^2), m_{n_i}^b \to \hat{\mu}^b \text{ fortement } dans \ H^1(\Omega^b, S^2), \\ \frac{1}{h_{n_i}^a}(m_{n_i}^a - \xi_{n_i}^{(1)}) \to \hat{\xi}^a \text{ faiblement } dans \ \mathcal{F}, \\ \begin{cases} \frac{1}{h_n^a} D_{x_1} m_n^a \to D_{x_1} \hat{\xi}^a \text{ fortement } dans \ L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \\ \frac{1}{h_n^b} D_{x_3} m_n^b \to 0 \text{ fortement } dans \ L^2(\Omega^b, \mathbb{R}^3), \end{cases} \\ et \\ \begin{cases} \frac{1}{h_{n_i}^a} D_{x_1} \zeta_{n_i}^a \to \sin^2 \theta_0 \tilde{\mu}_1^a - \sin \theta_0 \cos \theta_0 \tilde{\mu}_3^a, \quad D_{x_2} \zeta_{n_i}^a \to 0, \ D_{x_3} \zeta_{n_i}^a \to 0 \text{ fort. } dans \ L^2(\mathbb{R}^3_+), \\ D_{x_1} \zeta_{n_i}^b \to 0, \quad D_{x_2} \zeta_{n_i}^b \to 0, \quad \frac{1}{h_{n_i}^b} D_{x_3} \zeta_{n_i}^b \to \tilde{\mu}_3^b \\ \end{cases} \end{cases}$

quand i et n divergent, où $\tilde{\hat{\mu}}_1^a$, $\tilde{\hat{\mu}}_3^a$ et $\tilde{\hat{\mu}}_3^b$ sont les prolongements par zéro de $\hat{\mu}_1^a$, $\hat{\mu}_3^a$ et $\hat{\mu}_3^b$ dans \mathbb{R}^3 respectivement, et $(\hat{\mu}, \hat{\xi}^a)$ est une solution de problème suivant

$$E_q(\hat{\mu}, \xi^a) = \min \left\{ E_q(\mu, \xi^a) : (\mu, \xi^a) \in \mathcal{M} \times \mathcal{F} \right\}.$$

De plus, on a

$$\lim_{n} E_n(m_n) = E_q(\hat{\mu}^a, \hat{\xi}^a),$$

оù

$$\begin{split} E_{q} &: (\mu^{a}, \mu^{b}, \xi^{a}) \in \mathcal{M} \times \mathcal{F} \longrightarrow \\ & \int_{\Omega^{a,\theta_{0}}} \left(\alpha |(D_{x_{1}}\xi^{a}, D_{x_{2}}\mu^{a}, D_{x_{3}}\mu^{a} - \cot\theta_{0}D_{x_{1}}\xi^{a})|^{2} + \varphi(\mu^{a}) + \frac{1}{2} |\sin\theta_{0}\mu_{1}^{a} - \cos\theta_{0}\mu_{3}^{a}|^{2} \right) dx - \\ & 2 \int_{\Omega^{a,\theta_{0}}} f^{a}(x_{1}, x_{2}, x_{3})\mu^{a} dx - 2q \int_{\Omega^{b}} f^{b}(x_{1}, x_{2}, x_{3})\mu^{b} dx + \\ & q \int_{|-\frac{1}{2}, \frac{1}{2}|^{2}} \left(\alpha |(D_{x_{1}}\mu^{b}, D_{x_{2}}\mu^{b})|^{2} + \varphi(\mu^{b}) + \frac{1}{2} |\mu_{3}^{b}|^{2} \right) dx_{1} dx_{2}, \\ avec \\ & = -(x_{1} - z^{2}) \cos\theta_{1} + z - z^{2} (\cos\theta_{1}) = z^{2} (\cos\theta_{1}) \\ \end{split}$$

 $\mathcal{F} = \left\{ f \in L^2(\Omega^{a,\theta_0}) : D_{x_1} f \in L^2(\Omega^{a,\theta_0}) \right\}.$

Pour q = 0 (i.e. $h_n^b \ll h_n^a$), le problème se réduit à un problème en 2D (un film mince vertical), et on perd la condition de jonction. De manière analogue, si $q = +\infty$ (i.e. $h_n^a \ll h_n^b$), le problème se réduit à un problème en 2D (un film mince horizontal), et on perd ainsi la condition de jonction.

INTRODUCTION

Chapter 1

nD - pD Dimensional reduction of micromagnetic structures

S. Soueid. n D - p D Dimensional reduction of micromagnetic structures, accepté pour publication Ricerchie Mat. Doi: 10.1007/s11587-014-0186-8.

Abstract. Starting from a nD, $n \ge 2$, non-convex and nonlocal micromagnetic energy, we determine, via an asymptotic analysis, the free energy of a pD ferromagnetic domain, $1 \le p < n$.

Mathematics Subject Classification (2000): 78A25, 74G65, 78M35.

Keywords: micromagnetics, variational problem, dimensional reduction.

1.1 Introduction

This paper is devoted to generalize a result due to G. Gioia and R. D. James in [39]. By starting from the classical micromagnetic energy for a bounded domain in \mathbb{R}^n , $n \geq 2$ (cf. L. D. Landau and E. M. Lifshitz in [50]), we determine via an asymptotic analysis, the free energy of a ferromagnetic *p*-dimensional domain in \mathbb{R}^n , $1 \leq p < n$.

Magnetic thin-film elements are used in many applications: inductive thin films heads, magnetic recording, megnetoresistive sensors, thin films memories, etc. (see [46]).

We consider a thin domain $\Omega_h = \Theta \times] - h, h[^{n-p} \subset \mathbb{R}^n$ with small thickness h, where h is a positive parameter tending to zero, and with cross-section Θ , where Θ is a smooth bounded open subset of \mathbb{R}^p . The aim of this paper is to study the asymptotic behavior, as h vanishes, of the following problem (1.1.1)

$$\min\left\{\frac{1}{h^{n-p}}\int_{\Omega_h}\left(|\underline{D\underline{m}}|^2+\varphi(\underline{m})+\frac{1}{2}\underline{D\underline{\zeta}\underline{m}}-2F_h\underline{m}\right)dx, \quad \underline{m}\in H^1(\Omega_h,S^{n-1})\right\}$$

subjected to

(1.1.2)
$$div \left(-D\zeta + \underline{m}\right) = 0 \quad \text{in } \mathbb{R}^n,$$

where $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}, \varphi : S^{n-1} \to [0, +\infty[$ is a continuous even function and $F_h \in L^2(\Omega_h, \mathbb{R}^n)$. In (1.1.2) it is understood $\underline{m} = 0$ in $\mathbb{R}^n \setminus \Omega_h$.

In the classical theory of micromagnetics, if n = 3, $\underline{m} : \Omega_h \to \mathbb{R}^3$ denotes the magnetization and the body is always locally magnetized to a saturation magnetization $|\underline{m}(x)| = m_s(T) > 0$ unless the local temperature T is greater or equal to Curie temperature depending on the body, in the latter case $m_s(T) = 0$. This model was proposed by Brown in [11]. We suppose that the temperature is constant and lower than Curie temperature and, without loss of generality, we assume that $|\underline{m}| = 1$, i.e. $\underline{m}(x) \in S^{n-1}$ a.e. in Ω_h . The function ζ : $\mathbb{R}^3 \to \mathbb{R}$ denotes the magnetic field potential. The magnetic field potential and the magnetization m are connected by equation (1.1.2). The energy in (1.1.1) consists of several contributions. The exchange energy $\int_{\Omega_h} |D\underline{m}|^2 dx$ penalizes the spatial variation of \underline{m} , driving the body to have large regions of uniform magnetization separated by thin transition layers. The magnetostatic energy $\int_{\Omega_h} D\underline{\zeta}\underline{m} dx = \int_{\mathbb{R}^n} |D\underline{\zeta}|^2 dx \text{ favors div} \underline{m} = 0 \text{ in } \Omega_h \text{ and } \underline{m} \cdot \nu = 0 \text{ on } \partial\Omega_h, \text{ where}$ ν denotes the exterior unit normal to $\partial \Omega_h$. The anisotropy energy $\int_{\Omega_h} \varphi(\underline{m}) dx$ models the existence of preferred directions of magnetization. The external (Zeemann) energy $\int_{\Omega_{+}} F_h \underline{m} dx$ favors magnetization parallel to an externally applied field.

In the sequel, following [17], we reformulate our problem on a fixed domain $\Omega = \Theta \times] -1, 1[^{n-p}]$. Precisely, for describing the limit problem, we set

(1.1.3)
$$f_h(x) = F_h(x', hx''), \quad x \text{ a.e. in } \Omega,$$

where x = (x', x'') denotes the generic point of \mathbb{R}^n , with $x' = (x_1, ..., x_p)$ and $x'' = (x_{p+1}, ..., x_n)$, and we assume

(1.1.4)
$$f_h \rightharpoonup f$$
 weakly in $L^2(\Omega, \mathbb{R}^n)$,

as h vanishes.

Our main results depend on n-p. Precisely, if $n-p \ge 2$, we prove that the limit problem is given by (1.1.5)

$$\begin{split} \min \left\{ \int_{\Omega} (|D_{x'}\mu|^2 + \varphi(\mu) - 2f(x)\mu) dx + \frac{1}{2} \sum_{i=p+1}^n \int_{\mathbb{R}^{n-p}} |D_{x''}P_i|^2 dx^{''} \int_{\Theta} |\mu_i|^2 dx^{'} + \\ \frac{1}{2} \sum_{\substack{i,j=p+1\\i\neq j}}^n \int_{\mathbb{R}^{n-p}} D_{x''}P_i D_{x''}P_j dx^{''} \int_{\Theta} \mu_i \mu_j dx^{'}, \quad \mu \in H^1(\Theta, S^{n-1}) \right\}, \end{split}$$

where $\mu_i, i \in \{p+1, ..., n\}$, is the i^{th} component of μ and $P_i, i \in \{p+1, ..., n\}$, is the unique solution of the following problem

$$\begin{cases} P_{i} \in BL_{0}(\mathbb{R}^{n-p}), \\ \int_{\mathbb{R}^{n-p}} D_{x''} P_{i} D_{x''} \phi dx^{''} = \int_{]-1,1[^{n-p}} D_{x_{i}} \phi dx^{''}, \quad \forall \phi \in BL_{0}(\mathbb{R}^{n-p}), \end{cases}$$

 $BL_0(\mathbb{R}^{n-p})$ denoting the Beppo-Levi space on \mathbb{R}^{n-p} (cf. Section 1.2) and (x_{p+1}, \cdots, x_n) the generic point of \mathbb{R}^{n-p} .

Remark 1.1.1. If $\varphi = 0$ and f = 0, the solutions of (1.1.5) are given by constant fields $(c_1, ..., c_p, 0, ..., 0)$ with $\sum_{i=1}^{p} c_i^2 = 1$. This last claim follows immediately from the fact that

$$\begin{split} &(1.1.6) \\ &\sum_{i=p+1}^{n} \int_{\mathbb{R}^{n-p}} |D_{x''} P_{i}|^{2} dx^{''} \int_{\Theta} |\mu_{i}|^{2} dx^{'} + \\ &\sum_{\substack{i,j=p+1\\i\neq j}}^{n} \int_{\mathbb{R}^{n-p}} D_{x''} P_{i} D_{x''} P_{j} dx^{''} \int_{\Theta} \mu_{i} \mu_{j} dx^{'} = \int_{\Theta \times \mathbb{R}^{n-p}} |\sum_{i=p+1}^{n} \mu_{i} D_{x''} P_{i}|^{2} dx^{''} dx^{''} dx^{''} dx^{''} = \int_{\Theta \times \mathbb{R}^{n-p}} |\sum_{i=p+1}^{n} \mu_{i} D_{x''} P_{i}|^{2} dx^{''} dx^{'''} dx^{''} dx^{''} dx^{''} dx^{''} dx^{''} dx^{''} dx^{''} dx^{''}$$

and that $D_{x''}P_i$, $i = p + 1, \dots, n$, are linearly independent.

In the case n - p = 1, we prove that the limit problem is given by

(1.1.7)
$$\min\Bigg\{\int_{\Omega} \Big(|D_{x'}\mu|^2 + \varphi(\mu) + \frac{1}{2}|\mu_n|^2 - 2f\mu\Big)dx, \quad \mu \in H^1(\Theta, S^{n-1})\Bigg\},$$

 μ_n denoting the last component of μ .

Remark 1.1.2. If $\varphi = 0$ and f = 0, the solutions of (1.1.7) are given by constant fields $(c_1, ..., c_{n-1}, 0)$ with $\sum_{i=1}^{n-1} c_i^2 = 1$.

Remark 1.1.3. We point out that the limit problem remains non-convex, but it becomes local and it depends on n - p. Roughly speaking, the limit problem behaves as a ferromagnetic thin film if n - p = 1, while it behaves as a thin wire if $n - p \ge 2$.

Several results regarding the study of a single ferromagnetic thin film via dimensional reduction appear in literature. In [39] the authors proved that the limit energy becomes local. In [19] and [49], the authors considered also others regimes. The time dependent case was treated in [5] and in [12]. In [41] and [42], the authors studied a micromagnetic thin film with degenerate exchange

energy. Other models of micromagnetic thin films were proposed in [2], [3] and [52]. For related problems, some interesting regularity theorems were obtained in [43]. A ferroelectric thin film was studied in [35].

For ferromagnetic thin wires we refer to [15], [53] and [55].

In what concerns the study of ferromagnetic multistructures, we refer to [33] for two joined thin films, to [34] for two joined thin wires and for a thin wire in junction with a thin film. We explicitly remark that formula (1.1.5) was obtained in [34] in the case n = 3 and p = 1. For junction 1D-2D we refer to [31] and [36]. For junction 1D-1D we refer to [32].

1.2 Some preliminary results

Let

$$BL(\mathbb{R}^{n-p}) = \left\{ u \in \mathcal{D}'(\mathbb{R}^{n-p}) : Du \in (L^2(\mathbb{R}^{n-p}))^{n-p} \right\}.$$

 $BL_0(\mathbb{R}^{n-p}) = BL(\mathbb{R}^{n-p})/\mathbb{R}$ endowed with the inner product

$$(u,v)_{BL} = \int_{\mathbb{R}^{n-p}} Du Dv dy.$$

is a Hilbert space (see [18]). Consequently, for every i in $\{p + 1, ..., n\}$ and for every $c = (c_{p+1}, ..., c_n) \in \mathbb{R}^{n-p}$, the following problems

$$\begin{cases} (1.2.1) \\ \begin{cases} P_i \in BL_0(\mathbb{R}^{n-p}), \\ \\ \int_{\mathbb{R}^{n-p}} D_{x''} P_i D_{x''} \phi dx^{''} = \int_{]-1,1[^{n-p}} D_{x_i} \phi dx^{''}, \quad \forall \phi \in BL_0(\mathbb{R}^{n-p}), \end{cases}$$

$$\begin{cases} (1.2.2) \\ P_{c} \in BL_{0}(\mathbb{R}^{n-p}), \\ \int_{\mathbb{R}^{n-p}} D_{x''} P_{c} D_{x''} \phi dx^{''} = \int_{]-1,1[^{n-p}} c D_{x''} \phi dx^{''}, \qquad \forall \phi \in BL_{0}(\mathbb{R}^{n-p}), \end{cases}$$

admit a unique solution. Moreover, it is evident that

(1.2.3)
$$P_c = \sum_{i=p+1}^n c_i P_i.$$

By using a result of Kryloff (cf. [54], Th. XV, page 181) one has **Proposition 1.2.1.** If $n - p \ge 3$, then

$$BL(\mathbb{R}^{n-p}) = \bigg\{ u \in L_{loc}^{\frac{2(n-p)}{(n-p)-2}}(\mathbb{R}^{n-p}) : Du \in (L^2(\mathbb{R}^{n-p}))^{n-p} \bigg\}.$$

If n - p = 2, then

$$BL(\mathbb{R}^2) = \left\{ u \in \bigcap_{1 \le q < +\infty} L^q_{loc}(\mathbb{R}^2) : Du \in (L^2(\mathbb{R}^2))^2 \right\}.$$

We conclude this section recalling the Poincaré's Lemma.

Lemma 1.2.2. Let $(\xi_i)_{i \in \{1,...,s\}} \in (L^2(\mathbb{R}^s))^s$, $s \ge 2$. Suppose that

(1.2.4)
$$\partial_i \xi_j = \partial_j \xi_i \quad in \ \mathcal{D}'(\mathbb{R}^s), \quad \forall i, j = 1, ..., s.$$

Then, there exists a unique $\varphi \in BL_0(\mathbb{R}^s)$ such that

$$(1.2.5) D\varphi = \xi.$$

Proof. The fact that $\partial_i \xi_j = \partial_j \xi_i$ in $\mathcal{D}'(\mathbb{R}^s)$ ensures the existence of $\varphi \in \mathcal{D}'(\mathbb{R}^s)$ such that $\xi = D\varphi$ (cf. [54], Th. VI, page 59). φ is unique up to a constant. On the other hand, since $D\varphi \in (L^2(\mathbb{R}^s))^s$, it results that $\varphi \in BL(\mathbb{R}^s)$.

1.3 The setting of the problem

Let $B =]-a, a[^p \times]-2, 2[^{n-p},$ where a is a positive constant such that $\overline{\Theta} \subset]-a, a[^p, \text{ and set}$

$$\mathcal{U} = \left\{ u \in L^1_{loc}(\mathbb{R}^n) : u \in L^2(B), \ Du \in (L^2(\mathbb{R}^n))^n, \ \int_B U dx = 0 \right\}.$$

Remark that $\mathcal U$ is contained in $L^2_{loc}(\mathbb R^n)$ and it is a Hilbert space with the inner product

$$(u,v)=\int_{\mathbb{R}^n}DuDvdx+\int_Buvdx.$$

From the Poincaré-Wirtinger inequality it follows that a norm on \mathcal{U} is given by

$$(u,u)^{\frac{1}{2}} = \left(\int_{\mathbb{R}^n} |Du|^2 dx\right)^{\frac{1}{2}}.$$

Then, for $\underline{m} \in L^2(\Omega_h, \mathbb{R}^n)$, Lax-Milgram Theorem ensures that the following problem

(1.3.1)
$$\begin{cases} \underline{z} \in \mathcal{U}, \\ \int_{\mathbb{R}^n} D\underline{z}D\underline{\zeta}dx = \int_{\Omega_h} \underline{m}D\underline{\zeta}dx, \quad \forall \underline{\zeta} \in \mathcal{U}, \end{cases}$$

admits a unique solution \underline{z} and it is characterized as the unique minimiser of the following problem

(1.3.2)
$$\min\left\{\frac{1}{2}\int_{\mathbb{R}^n} |D\underline{\zeta} - \underline{m}|^2 dx : \underline{\zeta} \in \mathcal{U}\right\},\$$

where it is understood that $\underline{m} = 0$ in $\mathbb{R}^n \setminus \Omega_h$. Moreover, \underline{z} belong to $H^1(\mathbb{R}^n)$ up to additive constant (see. [48]).

Let us consider the following problem (1, 2, 2)

(1.3.3)

$$\min\left\{\frac{1}{h^{n-p}}\int_{\Omega_h}\left(|\underline{D}\underline{m}|^2 + \varphi(\underline{m}) + \frac{1}{2}\underline{D}\underline{z}\,\underline{m} - 2F_h\underline{m}\right)dx : \underline{m} \in H^1(\Omega_h, S^{n-1})\right\},$$

where \underline{m} and \underline{z} are linked by (1.3.1), and $F_h \in L^2(\Omega_h)$. This problem has at least one solution (compare [57]). In general, the solution of (1.3.3) is not unique. In fact, if \underline{m}_h is a solution of (1.3.3) with $F_h = 0$, then also $-\underline{m}_h$ is a solution.

The aim of this paper is to study the asymptotic behavior of problem (1.3.3), as h vanishes.

1.4 The rescaled problem

In this section, we reformulate problem (1.3.3) on a fixed domain, using the following rescaling

$$(x', x'') \in \Omega \to (x', hx'') \in \Omega_h,$$

where $x' = (x_1, ..., x_p)$, $x'' = (x_{p+1}, ..., x_n)$, and denoting with f_h the function defined in (1.1.3). Namely, \mathcal{U} defined in previous section is rescaled in the following one

(1.4.1)
$$\mathcal{U}_h = \left\{ \zeta \in L^1_{loc}(\mathbb{R}^n) : \zeta \in L^2(B_h), \ D\zeta \in (L^2(\mathbb{R}^n))^n, \ \int_{B_h} \zeta dx = 0 \right\},$$

where $B_h =]-a, a[^p \times] - \frac{2}{h}, \frac{2}{h}[^{n-p}]$. Then, for every $m \in L^2(\Omega, \mathbb{R}^n)$, the rescaling of equation (1.3.1)

$$\begin{cases} (1.4.2) \\ z \in \mathcal{U}_h, \\ \int_{\mathbb{R}^n} (D_{x'}z, \frac{1}{h}D_{x''}z)(D_{x'}\zeta, \frac{1}{h}D_{x''}\zeta)dx = \int_{\Omega} m(D_{x'}\zeta, \frac{1}{h}D_{x''}\zeta)dx, \quad \forall \zeta \in \mathcal{U}_h \end{cases}$$

admits a unique solution z, which is also the unique solution of the following problem

(1.4.3)
$$\min\{j_h(\zeta):\zeta\in\mathcal{U}_h\},\$$

where

(1.4.4)
$$j_h: \zeta \in \mathcal{U}_h \longmapsto \frac{1}{2} \int_{\mathbb{R}^n} \left| \left(D_{x'}\zeta, \frac{1}{h} D_{x''}\zeta \right) - m \right|^2 dx,$$

understanding m = 0 in $\mathbb{R}^n \setminus \Omega$. Remark that z belong to $H^1(\mathbb{R}^n)$ up to additive constant.

Let

$$E_h: m \in H^1(\Omega, S^{n-1}) \longmapsto \int_{\Omega} \left(|(D_{x'}m, \frac{1}{h}D_{x''}m)|^2 + \varphi(m) + \frac{1}{2}(D_{x'}z, \frac{1}{h}D_{x''}z)m - 2f_hm \right) dx,$$

where m and z are linked by (1.4.2). Then, the function defined by $\underline{m}_h(x^{'}, hx^{''})$, with \underline{m}_h solution of (1.3.3), solves the following problem

(1.4.5)
$$\min \left\{ E_h(m) : m \in H^1(\Omega, S^{n-1}) \right\}.$$

The goal of this paper becomes to study the asymptotic behavior, as h vanishes, of problem (1.4.5).

By setting

(1.4.6)
$$E_h^{mag}(m) = \frac{1}{2} \int_{\mathbb{R}^n} \left| \left(D_{x'} z, \frac{1}{h} D_{x''} z \right) \right|^2 dx,$$

from (1.4.2) it follows that

(1.4.7)

$$E_h(m) = \int_{\Omega} \left(\left| \left(D_{x'}m, \frac{1}{h} D_{x''}m \right) \right|^2 + \varphi(m) - 2f_hm \right) dx + E_h^{mag}(m), \quad \forall m \in H^1(\Omega, S^{n-1}).$$

1.5 The main results

Let

(1.5.1)
$$M = \left\{ \mu \in H^1(\Omega, S^{n-1}) : \mu \text{ is independent of } x^{''} \right\} \simeq H^1(\Theta, S^{n-1}).$$

For $n-p \ge 2$, let

(1.5.2)

$$E_{0}: \mu \in M \longrightarrow \int_{\Omega} (|D_{x'}\mu|^{2} + \varphi(\mu) - 2f\mu)dx + \frac{1}{2} \sum_{i=p+1}^{n} \int_{\mathbb{R}^{n-p}} |D_{x''}P_{i}|^{2}dx^{''} \int_{\Theta} |\mu_{i}|^{2}dx^{'} + \frac{1}{2} \sum_{\substack{i,j=p+1\\i\neq j}}^{n} \int_{\mathbb{R}^{n-p}} D_{x''}P_{i}D_{x''}P_{j}dx^{''} \int_{\Theta} \mu_{i}\mu_{j}dx^{'}.$$

The following theorem contains our first main result.
Theorem 1.5.1. Let $n \geq 3$, $p \geq 1$ and $n - p \geq 2$. For every h, let m_h be a solution of (1.4.5) and let ζ_h be the unique solution of (1.4.3) corresponding to m_h . Assume (1.1.4). Then, there exist a subsequence of $\{m_h\}_h$, still denoted by $\{m_h\}_h$, a subsequence of $\{\zeta_h\}_h$, still denoted by $\{\zeta_h\}_h$, and $\hat{\mu} \in M$, depending on the selected subsequence, such that

(1.5.3)
$$m_h \longrightarrow \hat{\mu} \quad strongly \ in \ H^1(\Omega, S^{n-1}),$$

(1.5.4)
$$\frac{1}{h}D_{x''}m_h \longrightarrow 0 \quad strongly \ in \ (L^2(\Omega))^{n-p}$$

and

(1.5.5)
$$\begin{cases} D_{x'}\zeta_h \longrightarrow 0 & strongly in (L^2(\mathbb{R}^n))^p, \\ \frac{1}{h}D_{x''}\zeta_h \longrightarrow \hat{\xi} & strongly in (L^2(\mathbb{R}^n))^{n-p}, \end{cases}$$

as h vanishes, where $\hat{\mu}$ solves

(1.5.6)
$$E_0(\hat{\mu}) = \min\{E_0(\mu), \quad \mu \in M\}$$

and

(1.5.7)
$$\hat{\xi}(x) = \begin{cases} \sum_{i=p+1}^{n} \hat{\mu}_i(x') D_{x''} P_i(x''), & a.e. \ in \ \Theta \times \mathbb{R}^{n-p}, \\ 0, & a.e. \ in \ (\mathbb{R}^p \backslash \Theta) \times \mathbb{R}^{n-p}, \end{cases}$$

with P_i , $i \in \{p+1, ..., n\}$, the unique solution of (1.2.1). Moreover, the convergence of the energies hold true for the whole sequence, i.e.

(1.5.8)
$$\lim_{h \to 0} E_h(m_h) = E_0(\hat{\mu}).$$

In the case n - p = 1, let

(1.5.9)
$$E_1: \mu \in M \longrightarrow \int_{\Omega} (|D_{x'}\mu|^2 + \varphi(\mu) - 2f\mu + \frac{1}{2}|\mu_n|^2) dx.$$

The following theorem contains our second main result.

Theorem 1.5.2. Let $n \ge 2$ and n - p = 1. For every h, let m_h be a solution of (1.4.5) and let ζ_h be the unique solution of (1.4.3) corresponding to m_h . Assume (1.1.4). Then, there exist a subsequence of $\{m_h\}_h$, still denoted by $\{m_h\}_h$, a subsequence of $\{\zeta_h\}_h$, still denoted by $\{\zeta_h\}_h$, and $\hat{\mu} \in M$, depending on the selected subsequence, such that

(1.5.10) $m_h \longrightarrow \hat{\mu} \quad strongly \ in \ H^1(\Omega, S^{n-1}),$

(1.5.11)
$$\frac{1}{h}D_{x_n}m_h \longrightarrow 0 \quad strongly \ in \ L^2(\Omega),$$

and

(1.5.12)
$$\begin{cases} D_{x_j}\zeta_h \longrightarrow 0 & strongly in \ L^2(\mathbb{R}^n), \quad \forall j = 1, ..., n-1 \\ \\ \frac{1}{h}D_{x_n}\zeta_h \longrightarrow \tilde{\hat{\mu}}_n & strongly in \ L^2(\mathbb{R}^n), \end{cases}$$

where $\hat{\mu}$ solves

(1.5.13)
$$E_1(\hat{\mu}) = \min\{E_1(\mu), \mu \in M\}$$

and $\tilde{\mu}_n$ denote the zero-extension of $\hat{\mu}_n$ to \mathbb{R}^n . Moreover, the convergence of the energies hold true for the whole sequence, i.e.

(1.5.14)
$$\lim_{h \to 0} E_h(m_h) = E_1(\hat{\mu}).$$

Remark 1.5.3. In previous theorems, in the cases where the limit is zero the convergences hold true for the whole sequence.

1.6 The proof in the case $n - p \ge 2$

We begin by proving a general convergence result for the magnetostatic energy.

Proposition 1.6.1. Let $n \geq 3$, $p \geq 1$ and $n - p \geq 2$. Let $\{m_h\}_h \subset L^2(\Omega, \mathbb{R}^n)$. Assume that there exists $\mu \in L^2(\Omega, \mathbb{R}^n)$ independent of x'' such that

(1.6.1)
$$m_h \longrightarrow \mu \quad strongly \ in \ L^2(\Omega, \mathbb{R}^n),$$

as h vanishes. Moreover, let ζ_h be the unique solution of (1.4.3) corresponding to m_h . Let E_h^{mag} be defined by (1.4.6). Then, it results

(1.6.2)
$$\begin{cases} D_{x'}\zeta_h \longrightarrow 0 & strongly in (L^2(\mathbb{R}^n))^p, \\ \\ \frac{1}{h}D_{x''}\zeta_h \longrightarrow \xi & strongly in (L^2(\mathbb{R}^n))^{n-p}, \end{cases}$$

as h vanishes, where

(1.6.3)
$$\xi(x) = \begin{cases} \sum_{i=p+1}^{n} \mu_i(x') D_{x''} P_i(x''), & a.e. \ in \ \Theta \times \mathbb{R}^{n-p}, \\ 0, & a.e. \ in \ (\mathbb{R}^p \backslash \Theta) \times \mathbb{R}^{n-p}, \end{cases}$$

with P_i , $i \in \{p + 1, ..., n\}$, the unique solution of (1.2.1). Furthermore,

$$\lim_{h \to 0} E_h^{mag}(m_h) = \frac{1}{2} \sum_{i=p+1}^n \int_{\mathbb{R}^{n-p}} |D_{x''} P_i|^2 dx'' \int_{\Theta} |\mu_i|^2 dx' +$$

(1.6.4)
$$\frac{1}{2} \sum_{\substack{i,j = p+1 \\ i \neq j}}^{n} \int_{\mathbb{R}^{n-p}} D_{x''} P_i D_{x''} P_j dx^{''} \int_{\Theta} \mu_i \mu_j dx^{'}.$$

Proof. The proof is developed in several steps and it is inspired by [34]. In the sequel, c denotes any positive constant independent of h.

By choosing $\zeta = 0$ as test function in (1.4.3) corresponding to m_h and using the fact that $|m_h| = 1$, one derives

(1.6.5)
$$\begin{cases} \|D_{x'}\zeta_h\|_{(L^2(\mathbb{R}^n))^p}^2 \leqslant c, \\ \|\frac{1}{h}D_{x''}\zeta_h\|_{(L^2(\mathbb{R}^n))^{n-p}}^2 \leqslant c, \end{cases} \quad \forall h$$

Since $\zeta_h \in H^1(\mathbb{R}^n)$ up to an additive constant and $n \geq 3$, the Sobolev-Gagliardo-Nirenberg inequality and (1.6.5) provide

(1.6.6)
$$\|\zeta_h + c_h\|_{L^{\frac{2n}{n-2}}(\mathbb{R}^n)} \leqslant c, \quad \forall h,$$

for a sequence $\{c_h\}_h \subset \mathbb{R}$. Estimates (1.6.5) and (1.6.6) ensure the existence of a function $\zeta \in L^{\frac{2n}{n-2}}(\mathbb{R}^n)$, with $D\zeta \in (L^2(\mathbb{R}^n))^n$ and ζ independent of x'', and a function $\xi = (\xi_{p+1}, ..., \xi_n) \in (L^2(\mathbb{R}^n))^{n-p}$ such that on extraction of a suitable subsequence (not relabelled)

(1.6.7)
$$\begin{cases} \zeta_h + c_h \rightharpoonup \zeta & \text{weakly in } L^{\frac{2n}{n-2}}(\mathbb{R}^n), \\ D\zeta_h \rightharpoonup D\zeta & \text{weakly in } (L^2(\mathbb{R}^n))^n, \end{cases}$$

(1.6.8)
$$\frac{1}{h} D_{x''} \zeta_h \rightharpoonup \xi \qquad \text{weakly in } (L^2(\mathbb{R}^n))^{n-p},$$

as h vanishes. Moreover, the fact that ζ is independent of x'' and $D\zeta \in (L^2(\mathbb{R}^n))^n$ provide

$$\begin{split} & \begin{pmatrix} & +\infty > \int_{\mathbb{R}^n} |D\zeta|^2 dx \ge \int_{]a,b[^{n-p}} \left(\int_{\mathbb{R}^p} |D_{x'}\zeta|^2 dx' \right) dx'' = (b-a)^{n-p} \int_{\mathbb{R}^p} |D_{x'}\zeta|^2 dx', \\ & \forall a,b \in \mathbb{R} \text{ with } a < b, \end{split}$$

which gives that ζ is independent of x', too. Then, $\zeta = 0$, since zero is the only constant in $L^{\frac{2n}{n-2}}(\mathbb{R}^n)$. Consequently, from (1.6.7) it follows that

(1.6.9)
$$D\zeta_h \to 0$$
 weakly in $(L^2(\mathbb{R}^n))^n$,

as h vanishes, and this convergence holds true for all the sequence.

The next step is devoted to identify ξ . To this aim, starting from

$$D_{x_j}\left(\frac{1}{h}D_{x_i}\zeta_h\right) = D_{x_i}\left(\frac{1}{h}D_{x_j}\zeta_h\right), \quad \text{in } D'(\mathbb{R}^n), \quad \forall i, j = p+1, ..., n,$$

and using (1.6.8), we derive (1.6.10)

$$\int_{\mathbb{R}^n} \xi_i D_{x_j} \varphi dx = \int_{\mathbb{R}^n} \xi_j D_{x_i} \varphi dx, \qquad \forall \varphi \in H^1(\mathbb{R}^n), \quad \forall i, j = p+1, ..., n.$$

If we choose $\varphi(x) = \phi(x'')\chi(x')$ in (1.6.10), with $\phi \in H^1(\mathbb{R}^{n-p})$ and $\chi \in C_0^{\infty}(\mathbb{R}^p)$, recalling that $H^1(\mathbb{R}^{n-p})$ is separable, we easily obtain (1.6.11)

$$\begin{cases} \text{for } x^{'} \text{ a.e in } \mathbb{R}^{p}, \\ \int_{\mathbb{R}^{n-p}} \xi_{i}(x^{'}, x^{''}) D_{x_{j}} \phi(x^{''}) dx^{''} = \int_{\mathbb{R}^{n-p}} \xi_{j}(x^{'}, x^{''}) D_{x_{i}} \phi(x^{''}) dx^{''}, \qquad \forall \phi \in H^{1}(\mathbb{R}^{n-p}). \end{cases}$$

Consequently, by virtue of Lemma 1.2.2, (1.6.12)

for
$$x'$$
 a.e. in \mathbb{R}^p , $\exists ! P(x', \cdot) \in BL_0(\mathbb{R}^{n-p}) : \xi(x', \cdot) = D_{x''}P(x', \cdot)$, a.e in \mathbb{R}^{n-p} .

Now, choosing $\zeta = -\frac{h}{|B_h|} \int_{B_h} \varphi dx + h\varphi$, with $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, as test function in (1.4.2) when $m = m_h$, we have (1.6.13) $\int_{\mathbb{R}^n} (D_{x'}\zeta_h, \frac{1}{h}D_{x''}\zeta_h)(hD_{x'}\varphi, D_{x''}\varphi)dx = \int_{\Omega} m_h(hD_{x'}\varphi, D_{x''}\varphi)dx, \quad \forall \varphi \in C_0^{\infty}(\mathbb{R}^n).$

Then, passing to the limit in (1.6.13) and using (1.6.1), (1.6.5) and (1.6.8), we obtain

$$\int_{\mathbb{R}^n} (\xi_{p+1}, ..., \xi_n) (D_{x_{p+1}}\varphi, ..., D_{x_n}\varphi) = \int_{\Omega} (\mu_{p+1}, ..., \mu_n) (D_{x_{p+1}}\varphi, ..., D_{x_n}\varphi) dx, \quad \forall \varphi \in C_0^{\infty}(\mathbb{R}^n) \ .$$

Consequently, using (1.6.12) and arguing as in the proof of (1.6.11), it follows that for x' a.e. in $\mathbb{R}^p \setminus \Theta$

$$\begin{cases} P(x^{'},.) \in BL_{0}(\mathbb{R}^{n-p}), \\ \int_{\mathbb{R}^{n-p}} \left(D_{x_{p+1}}P(x),...,D_{x_{n}}P(x) \right) \left(D_{x_{p+1}}\phi(x^{''}),...,D_{x_{n}}\phi(x^{''}) \right) dx^{''} = 0, \quad \forall \phi \in BL_{0}(\mathbb{R}^{n-p}); \end{cases}$$

while, for x' a.e. in Θ , (1.6.14) $\begin{cases}
P(x',.) \in BL_0(\mathbb{R}^{n-p}), \\
\int_{\mathbb{R}^{n-p}} \left(D_{x_{p+1}}P(x), ..., D_{x_n}P(x) \right) \left(D_{x_{p+1}}\phi(x''), ..., D_{x_n}\phi(x'') \right) dx'' = \\
(\mu_{p+1}(x'), ..., \mu_n(x')) \int_{]-1,1[^{n-p}} \left(D_{x_{p+1}}\phi(x''), ..., D_{x_n}\phi(x'') \right) dx'', \quad \forall \phi \in BL_0(\mathbb{R}^{n-p}).
\end{cases}$ Then, by virtue of (1.2.3), it results that, for x' a.e in \mathbb{R}^p ,

(1.6.15)
$$P(x^{'}, x^{''}) = \begin{cases} 0 & \text{a.e. in } \mathbb{R}^{n-p}, & \text{if } x^{'} \in \mathbb{R}^{p} \setminus \Theta, \\ \sum_{i=p+1}^{n} \mu_{i}(x^{'}) P_{i}(x^{''}), & \text{a.e. in } \mathbb{R}^{n-p}, & \text{if } x^{'} \in \Theta, \end{cases}$$

with P_i , $i \in \{p + 1, ..., n\}$, the unique solution of (1.2.1).

Finally, since Tonelli's Theorem ensures that ξ and $\sum_{i=p+1}^{n} \mu_i D_{x''} P_i$ belong to $(L^2(\mathbb{R}^n))^{n-p} \subset (L^1_{loc}(\mathbb{R}^n))^{n-p}$, using Fubini's Theorem with (1.6.12) and (1.6.15), it results that

$$\begin{split} &\int_{\mathbb{R}^n} \xi \varphi dx = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^{n-p}} D_{x''} P(x^{'}, x^{''}) \varphi dx^{''} \right) dx^{'} \\ &= \int_{\Theta \times \mathbb{R}^{n-p}} \sum_{i=p+1}^n \mu_i(x^{'}) D_{x''} P_i(x^{''}) \varphi dx, \qquad \forall \varphi \in C_0^\infty(\mathbb{R}^n), \end{split}$$

from which, it follows that

(1.6.16)
$$\xi(x) = \begin{cases} \sum_{i=p+1}^{n} \mu_i(x') D_{x''} P_i(x''), & \text{a.e. in } \Theta \times \mathbb{R}^{n-p}, \\ 0, & \text{a.e. in } (\mathbb{R}^p \backslash \Theta) \times \mathbb{R}^{n-p}, \end{cases}$$

with P_i , $i \in \{p + 1, ..., n\}$, the unique solution of (1.2.1). Consequently, convergence (1.6.8) holds true for the whole sequence.

The last step is devoted to obtain convergence (1.6.4) and to prove that convergences in (1.6.8) and (1.6.9) are strong. By passing to the limit in (1.4.6) with $m = m_h$, and using (1.4.2), (1.6.1), (1.6.8), (1.6.9), (1.6.16) and equation

1.6. THE PROOF IN THE CASE $N - P \ge 2$

(1.6.14) with test function $\sum_{i=p+1}^{n} \mu_i(x^{'}) P_i(x^{''})$, we obtain

$$\begin{split} \lim_{h \to 0} E_h^{mag}(m_h) &= \lim_{h \to 0} \frac{1}{2} \int_{\mathbb{R}^n} |(D_{x'}\zeta_h, \frac{1}{h} D_{x''}\zeta_h)|^2 dx \\ &= \lim_{h \to 0} \frac{1}{2} \int_{\Omega} m_h (D_{x'}\zeta_h, \frac{1}{h} D_{x''}\zeta_h) dx \\ &= \frac{1}{2} \int_{\Omega} (\mu_{p+1}, ..., \mu_n) \sum_{i=p+1}^n \mu_i D_{x''} P_i dx \\ &= \frac{1}{2} \int_{\Theta \times \mathbb{R}^{n-p}} |\sum_{i=p+1}^n \mu_i D_{x''} P_i|^2 dx \\ &= \frac{1}{2} \sum_{i=p+1}^n \int_{\mathbb{R}^{n-p}} |D_{x''} P_i|^2 dx'' \int_{\Theta} |\mu_i|^2 dx' \\ &+ \frac{1}{2} \sum_{\substack{i,j=p+1\\i \neq j}}^n \int_{\mathbb{R}^{n-p}} D_{x''} P_i D_{x''} P_j dx'' \int_{\Theta} \mu_i \mu_j dx'. \end{split}$$

Finally, combining this result with (1.6.8) and (1.6.9), we deduce (1.6.2).

1.6.1 Proof of Theorem 1.5.1

In the sequel, c denotes any positive constant independent of h.

Since m_h is a minimizer of E_h , choosing m = e (constant unit vector) as test function in (1.4.5) and taking into account decomposition (1.4.7), it follows that

(1.6.17)
$$E_h(m_h) \leqslant E_h(e) \leqslant |\Omega|\varphi(e) + 2|\Omega|^{\frac{1}{2}} ||f_h||_{L^2(\Omega)} + E_h^{mag}(e), \quad \forall h.$$

On the other side, taking into account equation (1.4.2) with m = e, it results

(1.6.18)
$$E_h^{mag}(e) \leqslant c, \quad \forall h.$$

Then, combining (1.6.17) with (1.6.18) and (1.1.4), one obtains

$$E_h(m_h) \leqslant c, \quad \forall h.$$

Consequently, by virtue of (1.1.4) and of the fact that $m_h = 1$, one derives

(1.6.19)
$$\begin{cases} \|D_{x'}m_h\|_{(L^2(\Omega))^p}^2 \leqslant c, \\ \|\frac{1}{h}D_{x''}m_h\|_{(L^2(\Omega))^{n-p}}^2 \leqslant c, \end{cases} \quad \forall h.$$

Thus, taking into account that $|m_h| = 1$, there exists a subsequence of $\{m_h\}_h$, still denoted by $\{m_h\}_h$, $\hat{\mu} \in M$ and $g \in (L^2(\Omega, \mathbb{R}^n))^{n-p}$, depending on the selected subsequence, such that

(1.6.20)
$$m_h \rightharpoonup \hat{\mu}$$
 weakly in $H^1(\Omega, \mathbb{R}^n)$,
(1.6.21) $\frac{1}{h} D_{x''} m_h \rightharpoonup g$ weakly in $(L^2(\Omega, \mathbb{R}^n))^{n-p}$.

as h vanishes. Consequently, by virtue of Proposition 1.6.1, convergences in (1.5.5) and identification (1.5.7) hold true. Moreover, it results that

(1.6.22)
$$\lim_{h \to 0} E_h^{mag}(m_h) = \frac{1}{2} \sum_{i=p+1}^n \int_{\mathbb{R}^{n-p}} |D_{x''} P_i|^2 dx^{''} \int_{\Theta} |\hat{\mu}_i|^2 dx^{'} + \frac{1}{2} \sum_{\substack{i,j=p+1\\i \neq j}}^n \int_{\mathbb{R}^{n-p}} D_{x''} P_i D_{x''} P_j dx^{''} \int_{\Theta} \gamma \hat{\mu}_i \hat{\mu}_j dx^{'}.$$

Now, the goal is to identify $\hat{\mu}$ and g, to prove convergence (1.5.8) and to obtain strong convergences in (1.6.20) and (1.6.21). To this aim, using a l.s.c. argument, (1.6.20), (1.6.21) and Proposition 1.6.1, we obtain that (1.6.23)

$$\int_{\Omega} |g|^2 dx + E_0(\hat{\mu}) \le \liminf_h E_h(m_h) \le \limsup_h E_h(m_h) \le \lim_h E_h(\mu) = E_0(\mu), \quad \forall \mu \in \mathcal{M}$$

Consequently, g = 0, $\hat{\mu}$ solve (1.5.6) and the convergence (1.5.8) holds true. Finally, combining (1.5.8) with (1.6.20) and (1.6.21), we obtain that convergences in (1.6.20) and (1.6.21) are strong.

1.7 Case n - p = 1

In this case, $x' = (x_1, ..., x_n)$ and $x'' = x_n$.

1.7.1 A convegence result for the magnetostatic energy

Proposition 1.7.1. Let $n \ge 2$ and n-p = 1. Let $\{m_h\}_h \in L^2(\Omega, \mathbb{R}^n)$. Assume that there exists $\mu \in L^2(\Omega, \mathbb{R}^n)$, independent of x_n , such that

(1.7.1)
$$m_h \longrightarrow \mu \quad strongly \ in \ L^2(\Omega, \mathbb{R}^n),$$

as h vanishes. Moreover, let ζ_h be the unique solution of (1.4.3) corresponding to m_h . Let E_h^{mag} be defined by (1.4.6). Then, it results

(1.7.2)
$$\begin{cases} D_{x'}\zeta_h \longrightarrow 0 & strongly in (L^2(\mathbb{R}^n))^{n-1}, \\ \frac{1}{h}D_{x_n}\zeta_h \longrightarrow \tilde{\mu}_n & strongly in L^2(\mathbb{R}^n), \end{cases}$$

1.7. CASE N - P = 1

as h vanishes, where $\tilde{\mu}_n$ denotes the zero-extension of μ_n to \mathbb{R}^n . Moreover,

(1.7.3)
$$\lim_{h \to 0} E_h^{mag}(m_h) = \frac{1}{2} \int_{\Omega} |\mu_n|^2 dx$$

Proof. By arguing as in the first part of the proof of Proposition 1.6.1, one obtains

(1.7.4)
$$D\zeta_h \rightharpoonup 0$$
 weakly in $(L^2(\mathbb{R}^n))^n$,

and the existance of a function $\xi \in L^2(\mathbb{R}^n)$ such that on extraction of a suitable subsequence (not relabelled)

(1.7.5)
$$\frac{1}{h}D_{x_n}\zeta_h \rightharpoonup \xi \qquad \text{weakly in } L^2(\mathbb{R}^n)$$

Now, choosing $\zeta = -\frac{h}{|B_h|} \int_{B_h} \varphi dx + h\varphi$, with $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, as test function in (1.4.2) when $m = m_h$, and passing to the limit as h vanishes, arguing as in the proof of Proposition 1.6.1 we obtain

$$\int_{\mathbb{R}^n} \xi D_{x_n} \varphi dx = \int_{\Omega} \mu_n D_{x_n} \varphi dx, \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n).$$

This relation provides that, for x' a.e. in \mathbb{R}^{n-1} , function $\xi(x', \cdot) - \tilde{\mu}_n(x', \cdot)$ is constant in \mathbb{R} , where $\tilde{\mu}_n$ denotes the zero extension of μ_n to \mathbb{R}^n . Moreover, since $\xi(x', \cdot) - \tilde{\mu}_n(x', \cdot) \in L^2(\mathbb{R})$ for x' a.e. in \mathbb{R}^{n-1} , one concludes

(1.7.6)
$$\xi(x', \cdot) = \tilde{\mu}_n(x', \cdot) \quad \text{a.e. in } \mathbb{R}.$$

Then, combining (1.7.5) and (1.7.6), one has

(1.7.7)
$$\frac{1}{h}D_{x_n}\zeta_h \rightharpoonup \tilde{\mu}_n \quad \text{weakly in } L^2(\mathbb{R}^n),$$

By passing to the limit in (1.4.6) with $m = m_h$, and using (1.7.4) and (1.7.7) one obtains

(1.7.8)
$$\lim_{h} E_{h}^{mag}(m_{h}) = \lim_{h} \left(\frac{1}{2} \int_{\mathbb{R}^{n}} |(D_{x'}\zeta_{h}, \frac{1}{h}D_{x_{n}}\zeta_{h})|^{2} dx \right)$$
$$= \lim_{h} \left(\frac{1}{2} \int_{\mathbb{R}^{n}} (D_{x'}\zeta_{h}, \frac{1}{h}D_{x_{n}}\zeta_{h})m_{h} dx \right)$$
$$= \frac{1}{2} \int_{\Omega} |\mu_{n}|^{2} dx.$$

So convergence (1.7.3) is proved. Finally, from (1.7.4), (1.7.7) and (1.7.8) one deduces (1.7.2).

By using Proposition 1.7.1 and arguing as in the proof of Theorem 1.5.1, one proves Theorem 1.5.2.

Chapter 2

Junction of quasi-stationary ferromagnetic thin films

U. De Maio, L. Faella, S. Soueid. Quasi-stationary ferromagnetic thin films in degenerated cases, à soumettre.

Abstract. In this paper we study the asymptotic behavior of the solutions of time dependent micromagnetism problem in a multi-domain consisting of two joined ferromagnetic thin films. We distinguish different regimes depending on the limit of the ratio between the small thickness of the two films.

Keywords: Micromagnetics, variational problem, thin films, Landau-Lifschitz equation.

AMS: 78A25, 74K35, 78M35.

2.1 Introduction

Ferromagnetic behavior, in particular the presence of spontaneous magnetization even in the absence of an applied magnetic field, can be examined by the theory started by Weiss in 1907 and perfectioned by Landau and Lifshitz in 1935 (see [50] and for a modern analisys see [11]). It is proposed that, under suitable conditions, in particular when the temperature is below a critical point (the so called Curie's temperature, characteristic of the material), a ferromagnetic body breaks up into uniformly magnetized region (Weiss domains) separated by thin transition layers (Bloch wall), even in the absence of any applied magnetic field. Then, the phenomena can be described by a magnetization field M, defined on the domain Ω in which the material is confined, which on a microscopic scale has a fixed modulus |M| = m = const and variable orientation, because of the presence of a strong molecolar field. So, the system can be studied through the functional representing its magnetic energy. This energy consists in several terms: the so called exchange energy, which contains the space derivative of M and is peculiar to ferromagnetic behavior, a term corresponding to magnetic anisotropy, and another one depending on the magnetic field H, which is related to M via the equations of magnetostatic.

More precisely, assume the body is homogeneous and has a uniform temperature. Then the magnetic induction B, the magnetic field H and the magnetization M are connected by: the relation $B = H(M) + \overline{M}$ where \overline{M} is the extension by zero of M outside Ω ; the static Maxwell equation and the magnetostatic equation (Faraday law):

(2.1.1)
$$\begin{cases} \nabla \times H(M) = 0, \\ div \left(H(M) + \overline{M} \right) = div \left(B \right) = 0 \end{cases}$$

So the steady state configuration of M corresponds to a minimum of the following functional E representing the magnetic energy:

(2.1.2)
$$\begin{cases} E = \int_{\Omega} \left(|DM|^2 + |H(M)|^2 + \varphi(M) \right) dx \\ \text{subject to conditions (2.1.1)}. \end{cases}$$

where *E* is obtained by summing up the exchange energy $E^{exc} = \int_{\Omega} |DM|^2 dx$, the magnetostatic energy $E^{mag} = \int_{\Omega} |H(M)|^2 dx$, which is related to M via equation of magnetostatic, and the anisotropy energy $E^{an} = \int_{\Omega} \varphi(M) dx$.

Existence of the minimizers of E is proved in [57]; here the author showed that the total magnetic energy as a functional of M is convex, coercive and lower-semycontinuous in Sobolev space H^1 , hence the corresponding minimization problem as at least one solution. Of course this is not unique, in general, because of the non-convexity of the constraint |M| = m. Regularity results about these minimizers are proved in [13], [45] and [57].

Gioia and James in [39] study the asymptotic behavior arbitrary-shaped very thin films of small thickness. They analyze "rescaled energies". So they prove that the thickness of the film imports an artificial anisotropy which disfavours out of plane magnetization. Moreover the limiting energy is completely local, that is to say the magnetostatic equation which contains the magnetization min the original problem, disappears from the limiting one.

Problems of dimension reduction in magnetostatic were treated by several authors. A pioneering work is the paper of Stoner and Wohlfarth (1948). A rigorous treatment in this case was given by De Simone [19]. Carbou treated the case of thin films again in [12]. Other regimes are considered in [19] and [20] in the case of the films.

In [33] and [34] Gaudiello and Hadiji studies the behavior of minimizers of problem 2.1.2 in a multidomain. More precisely, in [33] Gaudiello and Hadiji,

study the free energy of two joined ferromagnetic thin films distinguishing different regimes depending on the limit of the ratio between the small thickness of the two films. In what concerns the study of a ferroelectric materials see also [35]. See [36], [37], [31] for junction 3D-1D, and [32] for junction 1D-1D.

When the body is isotropic, one can assume $\phi(M) = 0$. In this case the quasy-stationary model situation is governed by Landau-Lifshitz's equation (see [50], [14])

(2.1.3)
$$\frac{\partial M}{\partial t} + M \wedge \frac{\partial M}{\partial t} = 2M \wedge (\Delta M + H(M))$$

subject to conditions (2.1.1).

The existence result for this problem is proved, in a more general case, in [57] (see Theorem 2) and in [14] (see Section 3 and Section 5). We observe (see [14] and [57]) that the corresponding configuration satisfies the following energy estimate:

$$E(t) \le E(0), \quad \forall t \in [0, T].$$

Then Carbou in [12], as Gioia and James [39] in the stationary case, studies the limit behavior of the isotropic ferromagnetic films when the thicknesses goes to zero, in the quasy stationary case. Other similar problems are studied by Ammari et al. [5].

In this work we study, as Gaudiello and Hadji in the stationary case (see [33]), the limit behavior of a system governed by Landau-Lifshitz equation, in a isotropic ferromagnetic multi-domain consisting of two joined thin films when the thicknesses goes to zero.

More precisely, for every $n \in N$, let (2.1.4)

$$\begin{split} \Omega_n^a &= \left(\left] -\frac{h_n^a}{2}, \frac{h_n^a}{2} \right[\times \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left[0, 1 \right[, \right) \qquad \Omega_n^b = \left(\left] -\frac{1}{2}, \frac{1}{2} \right[^2 \times \left] -h_n^b, 0 \right[, \right) \right] \\ \Omega_n &= \Omega_n^a \cup \Omega_n^b \end{split}$$

be a 3D ferromagnetic multidomain consisting of two orthogonal joined films, as in Figure 2.1, with small thicknesses $\{h_n^a\}_{n \in \mathbb{N}}, \{h_n^b\}_{n \in \mathbb{N}} \subset]0,1[$ such that

(2.1.5)
$$\lim_{n} h_{n}^{a} = 0 = \lim_{n} h_{n}^{b}, \qquad \lim_{n} \frac{h_{n}^{b}}{h_{n}^{a}} = q \in [0, +\infty].$$

(For instance, such structure appears as a component of a rotor of a permanent magnetic syncronous micro-machine, see Irudayarai and Emadi [47]).

Then, for any fixed T > 0, the aim of our paper is to study the asymptotic behavior, as $h_n^a \to 0$ and $h_n^b \to 0$, of the following problem:

Figure 2.1: Ω_n

(2.1.6)
$$\begin{cases} \frac{\partial M_n}{\partial t} + M_n \wedge \frac{\partial M_n}{\partial t} = 2M_n \wedge (\Delta M_n + H(M_n)) & \text{in } \Omega_n \times]0, T[, \\ M_n(0, x) = M_{0_n}(x) & \text{in } \Omega_n, \\ \text{subject to conditions (2.1.1).} \end{cases}$$

where $M_{0_n}(x) \in H^1(\Omega_n)$, $|M_{0_n}(x)| = 1$ a. e. in Ω_n and $div \left(H(M_{0_n}) + \overline{M}_{0_n}\right) = 0$ in \mathbb{R}^3 . After having reformulated our problem in a fixed domain $\Omega = \Omega^a \cup \Omega^b$, with $\Omega^a = \left] -\frac{1}{2}, \frac{1}{2} \right[^2 \times]0, 1[$ and $\Omega^b = \left] -\frac{1}{2}, \frac{1}{2} \right[^2 \times]-1, 0[$, through appropriate rescalings of the kind proposed by Ciarlet and Destuynder [17], using the main ideas of Γ - convergence method introduced by De Giorgi [40], we derive the limit problem which depends on the limit $\lim_n \frac{h_n^b}{h_n^a} = q \in [0, +\infty]$, that is the ratio between the thickness h_n^b and h_n^a .

If $q \in]0, +\infty[$ (i.e. $h_n^b \simeq h_n^a)$, we show the solutions of rescaled equation converge, in some sense, to the solutions of a limit problem "morally" defined only on two perpendicular sections.

Indeed, for any fixed T > 0, this problem is described by a coupled of

magnetic field μ^a and μ^b acting on a couple of perpendicular surface, i. e. (2.1.7)

$$\begin{cases} \frac{\partial \mu^{a}}{\partial t} + \mu^{a} \wedge \frac{\partial \mu^{a}}{\partial t} = 2\mu^{a} \wedge (\Delta \mu^{a} - (\mu^{a}, e_{1}) e_{1}) & \text{in }]0, T[\times] -\frac{1}{2}, \frac{1}{2}[\times]0, 1[\\ q\frac{\partial \mu^{b}}{\partial t} + q\left(\mu^{b} \wedge \frac{\partial \mu^{b}}{\partial t}\right) = 2q\mu^{b} \wedge (\Delta \mu^{b} - (\mu^{b}, e_{3}) e_{3}) & \text{in }]0, T[\times] -\frac{1}{2}, \frac{1}{2}[^{2}, \mu^{a}(0, x) = \mu^{a}_{0}, & \text{in }] -\frac{1}{2}, \frac{1}{2}[\times]0, 1[\\ \mu^{b}(0, x) = \mu^{b}_{0} & \text{in }] -\frac{1}{2}, \frac{1}{2}[^{2}\\ \mu^{a}(\cdot, x_{2}, 0) = \mu^{b}(\cdot, 0, x_{2}), \text{ for } x_{2} \text{ a.e. in }] -\frac{1}{2}, \frac{1}{2}[\\ |\mu^{a}| = 1 & \text{for a.e. x in } \Omega^{a}, |\mu^{b}| = 1 & \text{for a.e. x in } \Omega^{b}. \end{cases}$$

We explicitly observe that the couplage between the two 2D problems is given by the junction condition $\mu^a(x_2, 0) = \mu^b(0, x_2)$, for x_2 a.e. in $\left] -\frac{1}{2}, \frac{1}{2} \right[$. Moreover μ_0^a and μ_0^b in (2.1.7) are limits in some sense of the "rescaled" initial data M_{0_n} . We note that this problem is completely local. The cases q = 0 and $q = +\infty$ were studied in [24]. Here we proved that if q = 0 (i.e. $h_n^b \ll h_n^a$) the limit problem reduces to a 2D local problem in a vertical thin film losing the junction condition (see [24] Theorem 3.1). Analogously, if $q = +\infty$ (i.e. $h_n^a \ll h_n^b$) the limit problem reduces to a 2D local problem in an horizontal thin film (see [24] Theorem 3.2).

The paper is organized as follows. Section 2 is devoted to the statement of the problem. In Section 3, after some preliminaries, we give the main results. Section 4 consists of three steps. The first step is devoted to obtain some compactness properties which also provides some uniform a priori estimates for the rescaled magnetization M_n , in the second one we get the convergence results for the rescaled magnetostatic energies. The main result, Theorem 2.3.1, is proved, using appropriate test functions, in the third step. In particular here we consider a couple of test functions satisfying transmission conditions between the two films. Moreover the estimate for the limit energy is also proved.

2.2 Statement of the problem

2.2.1 Preliminary notations and weak formulation of (2.1.6)

Let $x = (x_1, x_2, x_3)$ denote the generic point of \mathbb{R}^3 . If $a, b, c \in \mathbb{R}^3$, then $(a \mid b \mid c)$ denotes the 3×3 real matrix having a^T as first column b^T as second column and c^T as third column. In according with this notation if $v : A \subset \mathbb{R}^3 \to \mathbb{R}^3$ then Dv denotes the 3×3 real matrix $(D_{x_1}v \mid D_{x_2}v \mid D_{x_3}v)$, where $D_{x_i}v \in \mathbb{R}^3$, i = 1, 2, 3, stands for the derivative of v with respect to x_i . Let S^2 be the unit

sphere of \mathbb{R}^3 .

Let $\Omega^a = \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] 0, 1 \right[, \Omega^b = \left] -\frac{1}{2}, \frac{1}{2} \right[^2 \times \left] -1, 0 \right[\text{ and } \Omega = \Omega^a \cup \Omega^b.$ Let *B* be a rectangle containing $\overline{\Omega}$, for instance let $B = \left] -1, 1 \right[^2 \times \left] -2, 2 \right].$

Let *B* be a rectangle containing Ω , for instance let $B = [-1, 1[\times]-2, 2[$. Let us consider the space

(2.2.1)
$$\mathcal{U} = \left\{ U \in L^{1}_{loc}\left(\mathbb{R}^{3}\right) : U \in L^{2}\left(B\right), \ DU \in \left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}, \ \int_{B} U dx = 0 \right\}.$$

It is easy to prove that \mathcal{U} is contained in $L^2_{loc}(\mathbb{R}^3)$ and it is an Hilbert space with the inner product $(U, V) = \int_{\mathbb{R}^3} DUDV dx + \int_B UV dx$. Moreover, from Poincaré -

Wirtinger inequality it follows that a norm on \mathcal{U} equivalent to $(U, U)^{\frac{1}{2}}$ is given by $\left(\int_{\mathbb{R}^3} |DU|^2 dx\right)^{\frac{1}{2}}$.

To reformulate conditions (2.1.1), related to the equation (2.1.3), as usual let us introduce U_M , the scalar magnetostatic potential, which satisfies the equation $div\left(-D_x U_M + \overline{M}\right) = 0$, where \overline{M} denotes the zero extension of M outside Ω_n . Posed $H = -DU_M$, obviously, we obtain $\nabla \times H(M) = 0$ and then conditions (2.1.1).

Let $M \in L^2(\Omega_n, \mathbb{R}^3)$ then the following problem

(2.2.2)
$$\begin{cases} U_M \in \mathcal{U} \\ \int DU_M DU = \int MDU dx \quad \forall U \in \mathcal{U}, \\ \mathbb{R}^3 \qquad \Omega_n \end{cases}$$

admits a unique solution $U_M \in \mathcal{U}$. This solution is characterized as the unique minimizer of the following problem:

(2.2.3)
$$\min\left\{\frac{1}{2}\int\limits_{\mathbb{R}^3} \left|DU - \overline{M}\right|^2 dx : U \in \mathcal{U}\right\},$$

where as usual \overline{M} denotes the zero extension of M in $\mathbb{R}^3 \setminus \Omega_n$. Moreover $U_M \in H^1(\mathbb{R}^3)$ up to an additive constant, see [48].

Then a weak formulation of the Landau-Lifschitz equation (2.1.6) in our case is the following.

Fixed $M_{0_n} \in H^1(\Omega_n, S^2)$, $U_{0,n} \in \mathcal{U}$ being the corresponding solution of problem (2.2.2), find M_n which satisfies

$$\begin{cases}
(2.2.4) \\
M_n \in L^{\infty} \left(0, T; H^1 \left(\Omega_n, S^2\right)\right) \\
\frac{\partial M_n}{\partial t} \in L^2 \left(0, T; L^2(\Omega_n, \mathbb{R}^3)\right) \\
\forall \phi \in D(]0, T[\times \overline{\Omega_n}, \mathbb{R}^3) \\
\int_{0}^{T} \int_{\Omega_n} \left(\frac{\partial M_n}{\partial t} + M_n \wedge \frac{\partial M_n}{\partial t}\right) \cdot \phi dx dt = -2 \int_{0}^{T} \int_{\Omega_n} \sum_{i=1}^{3} M_n \wedge D_{x_i} M_n \cdot (D_{x_i} \phi) - 2 \int_{0}^{T} \int_{\Omega_n} M_n \wedge DU_{M_n} \cdot \phi, \\
M_n(0, x) = M_{0_n}.
\end{cases}$$

where U_{M_n} and M_n are linked by (2.2.2) In [14] and [57] this problem has been solved. Moreover, it is proved the following energy estimate:

(2.2.5)
$$E(t) + \int_{0}^{t} \left\| \frac{\partial M_{n}}{\partial t} \right\|_{(L^{2}(\Omega_{n}))^{3}}^{2} ds \leq E(0), \quad \forall t \in [0,T]$$

where

$$E(t) = \int_{\Omega_n} |DM_n(t,x)|^2 \, dx + \int_{\mathbb{R}^3} |DU_{M_n}(t,x)|^2 \, dx,$$

is the magnetic energy.

Remark 2.2.1. By a density argument (for instance see [28]), problem (2.2.4) it is equivalent to that obtained choosing test functions $\phi = \chi g$ with $\chi \in D(]0, T[)$ and $g \in H^1(\Omega_n, \mathbb{R}^3)$.

2.2.2 The rescaled problem

We can reformulate problem (2.2.4) on a fixed domain through the following rescalings

$$\begin{cases} (x_1, x_2, x_3) \in \Omega^a = \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] 0, 1 \right[\to (h_n^a x_1, x_2, x_3) \in Int\left(\Omega_n^a\right) \\ (x_1, x_2, x_3) \in \Omega^b = \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left] -1, 0 \right[\to (x_1, x_2, h_n^b x_3) \in \Omega_n^b \end{cases}$$

where $Int(\Omega_n^a)$ denotes the interior of Ω_n^a .

For every $n \in \mathbb{N}$, the space \mathcal{U} , defined in (2.2.1), is rescaled in the following one: (2.2.6)

$$\mathcal{U}_{n} = \{ v = (v^{a}, v^{b}) \in L^{1}_{loc} \left(\overline{\mathbb{R}^{3}_{+}}\right) \times L^{1}_{loc} \left(\overline{\mathbb{R}^{3}_{-}}\right) : (v^{a}_{|B^{a}_{n}}, v^{b}_{|B^{b}_{n}}) \in L^{2} \left(B^{a}_{n}\right) \times L^{2} \left(B^{b}_{n}\right) \\ (Dv^{a}, Dv^{b}) \in \left(L^{2} \left(\mathbb{R}^{3}_{+}\right)\right)^{3} \times \left(L^{2} \left(\mathbb{R}^{3}_{-}\right)\right)^{3}, \int_{B^{a}_{n}} v^{a} dx + \frac{h^{b}_{n}}{h^{a}_{n}} \int_{B^{b}_{n}} v^{b} dx = 0, \\ v^{a}(x_{1}, x_{2}, 0) = v^{b}(h^{a}_{n}x_{1}, x_{2}, 0), \text{ for } (x_{1}, x_{2}) \text{ a.e. in } \mathbb{R}^{2} \},$$

,

where $\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}, \mathbb{R}^3_- = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 < 0\}, B^a_n = \left] -\frac{1}{h^a_n}, \frac{1}{h^a_n} \left[\times \left] -1, 1[\times \left] 0, 2[\text{ and } B^b_n = \left] -1, 1[^2 \times \right] -\frac{2}{h^b_n}, 0 \right[.$

For $\underline{m} \in L^2(\Omega, \mathbb{R}^3)$, the following equation (2.2.7)

$$\begin{cases} u_{\underline{m}} = \left(u_{\underline{m}}^{a}, u_{\underline{m}}^{b}\right) \in \mathcal{U}_{n}, \\ \int_{\mathbb{R}^{4}_{+}}^{\int} \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{\underline{m}}^{a}, D_{x_{2}} u_{\underline{m}}^{a}, D_{x_{3}} u_{\underline{m}}^{a}\right) \cdot \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u^{a}, D_{x_{2}} u^{a}, D_{x_{3}} u^{a}\right) dx + \\ \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}}^{\int} \left(D_{x_{1}} u_{\underline{m}}^{b}, D_{x_{2}} u_{\underline{m}}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m}}^{b}\right) \cdot \left(D_{x_{1}} u^{b}, D_{x_{2}} u^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u^{b}\right) dx = \\ \int_{\Omega_{a}}^{\int} \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u^{a}, D_{x_{2}} u^{a}, D_{x_{3}} u^{a}\right) \cdot \underline{m} \, dx + \\ \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega_{b}}^{\int} \left(D_{x_{1}} u^{b}, D_{x_{2}} u^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u^{b}\right) \cdot \underline{m} \, dx, \quad \forall u = (u^{a}, u^{b}) \in \mathcal{U}_{n}, \end{cases}$$

which rescales equation (2.2.2), admits a unique solution.

Its solution, $u_{\underline{m}} = \left(u_{\underline{m}}^{a}, u_{\underline{m}}^{b}\right) \in \mathcal{U}_{n}$ is characterized as the unique minimizer of the problem

(2.2.8)
$$\min\left\{\frac{1}{2}\int_{\mathbb{R}^{3}_{+}}\left|\left(\frac{1}{h_{n}^{a}}D_{x_{1}}u^{a},D_{x_{2}}u^{a},D_{x_{3}}u^{a}\right)-\underline{m}\right|^{2}dx\right.\\ \left.+\frac{1}{2}\frac{h_{n}^{b}}{h_{n}^{a}}\int_{\mathbb{R}^{3}_{-}}\left|\left(\frac{1}{h_{n}^{a}}D_{x_{1}}u^{b},D_{x_{2}}u^{b},D_{x_{3}}u^{b}\right)-\underline{m}\right|^{2}dx:u\in\mathcal{U}_{n}\right\},$$

understanding $\underline{m} = 0$ in $\mathbb{R}^3 \backslash \Omega$.

For every $n \in \mathbb{N}$, let us consider the following space

(2.2.9)
$$\mathcal{W}_n = \{ \underline{m} = (\underline{m}^a, \underline{m}^b) \in H^1(\Omega^a, \mathbb{R}^3) \times H^1(\Omega^b, \mathbb{R}^3) : \\ \underline{m}^a(x_1, x_2, 0) = \underline{m}^b(h_n^a x_1, x_2, 0), \text{ for } (x_1, x_2) \text{ a.e. in }] -\frac{1}{2}, \frac{1}{2} [^2 \}.$$

For simplicity of notation, let us introduce the space

(2.2.10)
$$\mathcal{M}_n = \mathcal{W}_n \cap \left(H^1\left(\Omega^a, S^2\right) \times H^1\left(\Omega^b, S^2\right) \right).$$

which explicitly takes into account the condition |m| = 1. Now, it is possible to study problem (2.2.4) on a fixed domain.

Let $\underline{m}_{0_n} = (\underline{m}_{0_n}^{\dot{a}}, \underline{m}_{0_n}^{\dot{b}}) \in \mathcal{M}_n$, then there exists at least a weak solution of problem (2.2.4) renormalized by the two thickness h_n^a and h_n^b . This solution

satisfies the following problem:
(2.2.11)

$$\left\{\begin{array}{l} \underline{m}_{n} = \left(\underline{m}_{n}^{a}, \underline{m}_{n}^{b}\right) \in L^{\infty}\left(0, T; \mathcal{M}_{n}\right) \\\\ \frac{\partial \underline{m}_{n}}{\partial t} = \left(\frac{\partial \underline{m}_{n}^{a}}{\partial t}, \frac{\partial \underline{m}_{n}^{b}}{\partial t}\right) \in L^{2}\left(0, T; L^{2}(\Omega^{a}, \mathbb{R}^{3}) \times L^{2}\left(0, T; L^{2}(\Omega^{b}, \mathbb{R}^{3})\right), \\\\ \forall \ \chi \in D\left(0, T\right) \ \text{and} \ g = \left(g^{a}, g^{b}\right) \in \mathcal{W}_{n} \\\\ \int_{0}^{T} \int_{\Omega^{a}} \left(\frac{\partial \underline{m}_{n}^{a}}{\partial t} + \underline{m}_{n}^{a} \wedge \frac{\partial \underline{m}_{n}^{a}}{\partial t}\right) \chi g^{a} dx dt + \frac{h_{n}^{b}}{h_{n}^{a}} \int_{0}^{T} \int_{\Omega^{b}} \left(\frac{\partial \underline{m}_{n}^{b}}{\partial t} + \underline{m}_{n}^{b} \wedge \frac{\partial \underline{m}_{n}^{b}}{\partial t}\right) \chi g^{b} dx dt = \\\\ -2 \int_{0}^{T} \int_{\Omega^{a}} \left[\underline{m}_{n}^{a} \wedge \frac{1}{h_{n}^{a}} D_{x_{1}} \underline{m}^{a} \cdot \frac{1}{h_{n}^{a}} \left(D_{x_{1}} g^{a}\right) \chi + \sum_{i=2}^{3} \underline{m}_{n}^{a} \wedge D_{x_{i}} \underline{m}_{n}^{a} \cdot \left(D_{x_{i}} g^{a}\right) \chi\right] dx dt \\\\ -2 \int_{0}^{T} \int_{\Omega^{a}} \underline{m}_{n}^{a} \wedge \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \underline{m}_{n}^{a}, D_{x_{2}} u_{\underline{m},n}^{a}, D_{x_{3}} u_{\underline{m},n}^{a}\right) \chi g^{a} dx dt \\\\ -2 \int_{0}^{H_{n}^{b}} \int_{\Omega^{b}} \int_{\Omega^{b}} \left[\underline{m}_{n}^{b} \wedge \frac{1}{h_{n}^{b}} D_{x_{3}} \underline{m}^{b} \cdot \frac{1}{h_{n}^{b}} \left(D_{x_{3}} g^{b}\right) \chi + \sum_{i=1}^{2} \underline{m}_{n}^{b} \wedge D_{x_{i}} \underline{m}_{n}^{b} \cdot \left(D_{x_{i}} g^{b}\right) \chi\right] dx dt \\\\ -2 \int_{0}^{H_{n}^{b}} \int_{\Omega^{b}} \frac{1}{\Omega^{b}} \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b}\right) \chi g^{b} dx dt \\\\ -2 \int_{0}^{J} \int_{\Omega^{b}} \underline{m}_{n}^{b} \wedge \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b}\right) \chi g^{b} dx dt \\\\ \frac{1}{2} \int_{0}^{J} \frac{M_{n}^{b}}{\Omega^{b}} \wedge \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b}\right) \chi g^{b} dx dt \\\\ \frac{1}{2} \int_{0}^{J} \frac{M_{n}^{b}}{\Omega^{b}} \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b}\right) \chi g^{b} dx dt \\\\ \frac{1}{2} \int_{0}^{J} \frac{M_{n}^{b}}{\Omega^{b}} \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b}\right) \chi g^{b} dx dt \\\\ \frac{1}{2} \int_{0}^{J} \frac{M_{n}^{b}}{\Omega^{b}} \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b}$$

(Let us point out that Problem (2.2.11) rescales Problem (2.2.4) and that $u_{\underline{m}}$ and \underline{m} are linked by (2.2.7.)

Moreover the following energy estimate holds true (2.2.12)

$$E_{n}\left(t\right)+\int_{0}^{t}\left\|\frac{\partial \underline{m}_{n}^{a}}{\partial t}\right\|_{\left(L^{2}\left(\Omega^{a}\right)\right)^{3}}^{2}ds+\frac{h_{n}^{b}}{h_{n}^{a}}\int_{0}^{t}\left\|\frac{\partial \underline{m}_{n}^{b}}{\partial t}\right\|_{\left(L^{2}\left(\Omega^{b}\right)\right)^{3}}^{2}ds\leq E_{n}\left(0\right),\forall\ t\in\left[0,T\right]$$

where

$$\begin{aligned} &(2.2.13)\\ E_n\left(t\right) = \int\limits_{\Omega^a} \left| \left(\frac{1}{h_n^a} D_{x_1} \underline{m}_n^a, D_{x_2} \underline{m}_n^a, D_{x_3} \underline{m}_n^a\right) \right|^2 dx + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \left(\frac{1}{h_n^a} D_{x_1} u_{\underline{m},n}^a, D_{x_2} u_{\underline{m},n}^a, D_{x_3} u_{\underline{m},n}^a\right) \right|^2 dx \\ &+ \frac{h_n^b}{h_n^a} \int\limits_{\Omega^b} \left| \left(D_{x_1} \underline{m}_n^b, D_{x_2} \underline{m}_n^b, \frac{1}{h_n^b} D_{x_3} \underline{m}_n^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{\underline{m},n}^b, D_{x_2} u_{\underline{m},n}^b, \frac{1}{h_n^b} D_{x_3} u_{\underline{m},n}^b\right) \right|^2 dx. \end{aligned}$$

Setting for every $n \in \mathbb{N}$ and for every $t \in [0, T]$ (2.2.14)

$$E_{n}^{mag}(t) = \frac{1}{2} \int_{\mathbb{R}^{3}_{+}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{\underline{m},n}^{a}, D_{x_{2}} u_{\underline{m},n}^{a}, D_{x_{3}} u_{\underline{m},n}^{a} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{b}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{b}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b}, D_{x_{2}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{b}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{b}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{b}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{b}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m},n}^{b} \right) \right|^{2} dx + \frac{1}$$

by virtue (3.2.8), $E_n(t)$ can be rewritten as

$$E_n\left(t\right) = \int_{\Omega^a} \left| \left(\frac{1}{h_n^a} D_{x_1} \underline{m}_n^a, D_{x_2} \underline{m}_n^a, D_{x_3} \underline{m}_n^a \right) \right|^2 dx$$

$$(2.2.15) \qquad \qquad +\frac{h_n^b}{h_n^a} \int_{\Omega^b} \left| \left(D_{x_1} \underline{m}_n^b, D_{x_2} \underline{m}_n^b, \frac{1}{h_n^b} D_{x_3} \underline{m}_n^b \right) \right|^2 dx \\ \qquad +E_n^{mag} \left(t \right).$$

At this point we can observe that, for every $t \in [0, T]$, the function defined by

 $M_n\left(t,h_n^ax_1,x_2,x_3
ight)$ for a.e. in Ω^a $M_n\left(t,x_1,x_2,h_n^bx_3
ight)$ for a.e. in Ω^b

with M_n solution of the Problem (2.2.4), is a solution of Problem (2.2.11) with the following initial data:

(2.2.16)
$$\begin{cases} \underline{m}_{0_n}^a(x_1, x_2, x_3) = M_{0_n}(h_n^a x_1, x_2, x_3) \text{ for a.e. in } \Omega^a \\ \underline{m}_{0_n}^b(x_1, x_2, x_3) = M_{0_n}(x_1, x_2, h_n^b x_3) \text{ for a.e. in } \Omega^b. \end{cases}$$

2.3 The main results

We state now the main results of this paper, which describe the asymptotic behavior of Problem (2.2.11).

Let us introduce the following spaces

$$\begin{aligned} &(2.3.1)\\ \mathcal{W} = \left\{ \begin{array}{c} \psi = (\psi^{a}, \psi^{b}) \in H^{1}\left(\Omega^{a}, \mathbb{R}^{3}\right) \times H^{1}\left(\Omega^{b}, \mathbb{R}^{3}\right) : \psi^{a} \text{ is independent of } x_{1}, \\ \psi^{b} \text{ is independent of } x_{3}, \ \psi^{a}(0, x_{2}, 0) = \psi^{b}(0, x_{2}, 0), \ \text{for } x_{2} \text{ a.e. in }] -\frac{1}{2}, \frac{1}{2} [\end{array} \right\} \\ &\simeq \left\{ \begin{array}{c} \psi = (\psi^{a}, \psi^{b}) \in H^{1}\left(] -\frac{1}{2}, \frac{1}{2} [\times]0, 1[, \mathbb{R}^{3}) \times H^{1}\left(] -\frac{1}{2}, \frac{1}{2} [^{2}, \mathbb{R}^{3}\right) : \\ \psi^{a}(x_{2}, 0) = \psi^{b}(0, x_{2}), \ \text{for } x_{2} \text{ a.e. in }] -\frac{1}{2}, \frac{1}{2} [\end{array} \right\}, \end{aligned}$$

and, for uniformity of notation

(2.3.2)
$$\mathcal{M} = \mathcal{W} \cap \left\{ \begin{array}{c} H^1\left(\Omega^a, S^2\right) \times H^1\left(\Omega^b, S^2\right) \end{array} \right\}$$
$$\simeq \mathcal{W} \cap \left\{ \begin{array}{c} H^1\left(\left] - \frac{1}{2}, \frac{1}{2}\right[\times \left]0, 1\right[, S^2\right) \times H^1\left(\left] - \frac{1}{2}, \frac{1}{2}\right[^2, S^2\right) \end{array} \right\},$$

To enunciate our theorem, we need some hypothesis on the initial data. At this aim, let us suppose that

$$\begin{cases} (2.3.3) \\ \left\{ \begin{array}{l} \underline{m}_{0_n} = (\underline{m}_{0_n}^a, \underline{m}_{0_n}^b) \in \mathcal{M}_n, \quad \underline{\mu}_0 = \left(\underline{\mu}_0^a, \underline{\mu}_0^b\right) \in \mathcal{M}, \\ \\ \underline{m}_{0_n}^a \to \underline{\mu}_0^a \text{ strongly in } H^1\left(\Omega^a, S^2\right), \quad \underline{m}_{0_n}^b \to \mu_0^b \text{ strongly in } H^1\left(\Omega^b, S^2\right), \\ \\ \\ \frac{1}{h_n^a} D_{x_1} \underline{m}_{0_n}^a \to 0 \text{ strongly in } L^2\left(\Omega^a, \mathbb{R}^3\right), \quad \frac{1}{h_n^b} D_{x_3} \underline{m}_{0_n}^b \to 0 \text{ strongly in } L^2\left(\Omega^b, \mathbb{R}^3\right). \end{cases}$$

For example, let $\mu_0^a(y,z) \in H^1\left(\left]-\frac{1}{2},\frac{1}{2}\right[\times]0,1[,S^2\right)$ and $\mu_0^b(x,y) \in H^1\left(\left]-\frac{1}{2},\frac{1}{2}\right[^2,S^2\right)$ such that there exist $\alpha < 0$ and $\beta > 0$ such that $\mu_0^a(y,0) = \mu_0^b(x,y) \ \forall \alpha < x < \beta$, $\forall y \in \left]-\frac{1}{2},\frac{1}{2}\right[$. If $m_n \in L^{\infty}(0,T;\mathcal{M}_n)$ is a weak solution of Problem (2.2.11) then assumptions (2.3.3) are satisfied with initial data

$$m_n^0(x, y, z) = \begin{cases} \mu_0^a(y, z) \text{ in } \left] -\frac{1}{2}, \frac{1}{2} \right[\times]0, 1[\\ \mu_0^b(x, y) \text{ in } \right] -\frac{1}{2}, \frac{1}{2} \left[^2, \right] \end{cases}$$

Theorem 2.3.1. Let \mathcal{M} be defined by (2.3.2). Assume (2.1.5) with $q \in [0, +\infty[$. For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be the solution of Problem (2.2.11) with assumptions (2.3.3) on the initial data. Then, there exists an increasing sequence of positive integer numbers $\{n_i\}_{i\in\mathbb{N}}$, still denoted by $\{n\}$, and $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b) = \left(\left(\underline{\mu}_1^a, \underline{\mu}_2^a, \underline{\mu}_3^a\right), \left(\underline{\mu}_1^b, \underline{\mu}_2^b, \underline{\mu}_3^b\right)\right) \in L^{\infty}(0, T; \mathcal{M})$, depending on the selected subsequence, such that

$$\begin{cases} (2.3.4) \\ \left\{ \begin{array}{l} \underline{m}_{n}^{a} \rightharpoonup \underline{\mu}^{a} \ weakly \ * \ in \ L^{\infty} \left(0, T; H^{1} \left(\Omega^{a}, \mathbb{R}^{3}\right)\right) \\ \underline{m}_{n}^{b} \rightharpoonup \underline{\mu}^{b} \ weakly \ * \ in \ L^{\infty} \left(0, T; H^{1} \left(\Omega^{b}, \mathbb{R}^{3}\right)\right) \\ \underline{m}_{n}^{a} \rightarrow \underline{\mu}^{a} \ strongly \ in \ L^{2} \left(0, T; L^{2} \left(\Omega^{a}, \mathbb{R}^{3}\right)\right) \ and \ a. \ e. \ in \]0, T[\times \Omega^{a} \\ \underline{m}_{n}^{b} \rightarrow \underline{\mu}^{b} \ strongly \ in \ L^{2} \left(0, T; L^{2} \left(\Omega^{b}, \mathbb{R}^{3}\right)\right) \ and \ a. \ e. \ in \]0, T[\times \Omega^{b} \\ \end{cases}$$

where $\underline{\mu}$ is the solution of the following problem: (2.3.5) $\begin{cases}
\underline{\mu}(0,x) = \underline{\mu}_{0} = (\underline{\mu}_{0}^{a}, \underline{\mu}_{0}^{b}) \in \mathcal{M} \\
\underline{\mu} = (\underline{\mu}^{a}, \underline{\mu}^{b}) \in L^{\infty}(0, T; \mathcal{M}) \\
\frac{\partial \mu}{\partial t} \in L^{2}(0, T; L^{2}(\Omega^{a}, \mathbb{R}^{3}) \times L^{2}(\Omega^{b}, \mathbb{R}^{3})) \\
\forall \varphi \in D(0, T) \text{ and } g = (g^{a}, g^{b}) \in \mathcal{W} \\
\begin{cases}
\int_{0}^{T} \int_{]-\frac{1}{2}, \frac{1}{2}[\times]0, 1[} \left(\frac{\partial \mu^{a}}{\partial t} + \underline{\mu}^{a} \wedge \frac{\partial \mu^{a}}{\partial t} \right) \varphi g^{a} dx dt + \int_{0}^{T} \int_{]-\frac{1}{2}, \frac{1}{2}[^{2}} \left(\frac{\partial \mu^{b}}{\partial t} + \underline{\mu}^{b} \wedge \frac{\partial \mu^{b}}{\partial t} \right) \varphi g^{b} dx dt = \\
-2 \int_{0}^{T} \int_{]-\frac{1}{2}, \frac{1}{2}[\times]0, 1[} \sum_{i=2}^{3} \underline{\mu}^{a} \wedge \frac{\partial \mu^{a}}{\partial x_{i}} \frac{\partial g^{a}}{\partial x_{i}} \varphi - 2q \int_{0}^{T} \int_{]-\frac{1}{2}, \frac{1}{2}[^{2}} \sum_{i=1}^{2} \underline{\mu}^{b} \wedge \frac{\partial \mu^{b}}{\partial x_{i}} \frac{\partial g^{b}}{\partial x_{i}} \varphi \\
-2 \int_{0}^{T} \int_{]-\frac{1}{2}, \frac{1}{2}[\times]0, 1[} \underline{\mu}^{a} \wedge (\underline{\mu}^{a}, e_{1}) e_{1}g^{a}\varphi - 2q \int_{0}^{T} \int_{]-\frac{1}{2}, \frac{1}{2}[^{2}} \underline{\mu}^{b} \wedge (\underline{\mu}^{b}, e_{3}) e_{3}g^{b}\varphi.
\end{cases}$

Moreover, the following energy estimate holds: (2.3.6)

$$E_{q}(t) + \int_{0}^{t} \left\| \frac{\partial \underline{\mu}^{a}}{\partial t} \right\|_{\left(L^{2}\left(\left] - \frac{1}{2}, \frac{1}{2} \left[\times \right] 0, 1 \right[\right) \right)^{3}}^{2} ds + q \int_{0}^{t} \left\| \frac{\partial \underline{\mu}^{b}}{\partial t} \right\|_{\left(L^{2}\left(\left] - \frac{1}{2}, \frac{1}{2} \left[\right]^{2} \right) \right)^{3}}^{2} ds \le E_{q}(0) \quad , \forall t \in [0, T]$$

where

$$E_{q}(t) = \int_{\left]-\frac{1}{2},\frac{1}{2}\right[\times]0,1\left[\right]} \left|D\underline{\mu}^{a}\right|^{2} + q \int_{\left]-\frac{1}{2},\frac{1}{2}\left[^{2}\right]} \left|D\underline{\mu}^{b}\right|^{2} + \frac{1}{2} \int_{\left]-\frac{1}{2},\frac{1}{2}\left[\times]0,1\left[\right]} \left|\underline{\mu}^{a}_{1}\right|^{2} dx_{2} dx_{3} + \frac{1}{2}q \int_{\left]-\frac{1}{2},\frac{1}{2}\left[^{2}\right]} \left|\underline{\mu}^{b}_{3}\right|^{2} dx_{1} dx_{2}.$$

We remark, again, that the solution $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b) \in L^{\infty}(0, T; \mathcal{M})$ of the limit Problem (2.3.5) is such that $\underline{\mu}^a$ and $\underline{\mu}^b$ does not depend on x_1 and x_3 respectively.

2.4 Proof of main result

The proof is developed in several steps. Step 1: A priori estimates

Let us introduce the following compactness results:

 $\begin{array}{l} \text{Theorem 2.4.1.} \quad Let \ \{\underline{m}_n\}_{n\in\mathbb{N}} \ be \ a \ sequence \ such \ that \\ (2.4.1) \\ \left\{ \begin{array}{l} i) \quad \underline{m}_n = \left(\underline{m}_n^a, \underline{m}_n^b\right) \in L^{\infty}\left(0, T; \mathcal{M}_n\right), \\ ii) \quad \|D_{x_1}\underline{m}_n^a\|_{L^{\infty}(0,T;L^2(\Omega^a))} \le Ch_n^a, \ \|D_{x_2}\underline{m}_n^a\|_{L^{\infty}(0,T;L^2(\Omega^a))} \le C, \ \|D_{x_3}\underline{m}_n^a\|_{L^{\infty}(0,T;L^2(\Omega^a))} \le C, \\ iii) \quad \|D_{x_1}\underline{m}_n^b\|_{L^{\infty}(0,T;L^2(\Omega^b))} \le C, \ \|D_{x_2}m_n^b\|_{L^{\infty}(0,T;L^2(\Omega^b))} \le C, \ \|D_{x_3}m_n^b\|_{L^{\infty}(0,T;L^2(\Omega^b))} \le Ch_n^b, \\ iv) \quad \left\|\frac{\partial \underline{m}_n^a}{\partial t}\right\|_{L^2(0,T;L^2(\Omega^a))} \le C, \ \left\|\frac{\partial \underline{m}_n^b}{\partial t}\right\|_{L^2(0,T;L^2(\Omega^b))} \le C, \end{array} \right.$

for every $n \in \mathbb{N}$, where C is a constant independent on n. Then there exists an increasing sequence of positive integer numbers $\{n_i\}_{i\in\mathbb{N}}$, still denoted by $\{n\}$, and $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b) = \left(\left(\underline{\mu}^a_1, \underline{\mu}^a_2, \underline{\mu}^a_3\right), \left(\underline{\mu}^b_1, \underline{\mu}^b_2, \underline{\mu}^b_3\right)\right) \in L^{\infty}(0, T; \mathcal{M})$, depending on the selected subsequence, such that

$$(2.4.2) \begin{cases} i) & \underline{m}_{n}^{a} \rightharpoonup \underline{\mu}^{a} \ weakly \ast \ in \ L^{\infty}(0,T; H^{1}\left(\Omega^{a}, \mathbb{R}^{3}\right)), \\ strongly \ L^{2}(0,T; L^{2}\left(\Omega^{a}, \mathbb{R}^{3}\right)) \ and \ a. \ e. \ in \]0, T[\times \Omega^{a}, \\ ii) & \underline{m}_{n}^{b} \rightharpoonup \underline{\mu}^{b} \ weakly \ast \ in \ L^{\infty}(0,T; H^{1}\left(\Omega^{b}, \mathbb{R}^{3}\right)), \\ strongly \ L^{2}(0,T; L^{2}\left(\Omega^{b}\right)) \ and \ a. \ e. \ in \]0, T[\times \Omega^{b}, \\ iii) & \frac{\partial \underline{m}_{n}^{a}}{\partial t} \rightharpoonup \frac{\partial \underline{\mu}^{a}}{\partial t} \ weakly \ in \ L^{2}(0,T; L^{2}\left(\Omega^{a}, \mathbb{R}^{3}\right)), \\ iv) & \frac{\partial \underline{m}_{n}^{b}}{\partial t} \rightharpoonup \frac{\partial \underline{\mu}^{b}}{\partial t} \ weakly \ in \ L^{2}(0,T; L^{2}\left(\Omega^{b}, \mathbb{R}^{3}\right)). \end{cases}$$

Proof. From (2.4.1), it follows that there exist $\underline{\mu}^a \in L^{\infty}(0,T; H^1(\Omega^a)), \underline{\mu}^b \in L^{\infty}(0,T; H^1(\Omega^b)) \frac{\partial \underline{\mu}^a}{\partial t} \in L^2(0,T; L^2(\Omega^a))$ and $\frac{\partial \underline{\mu}^b}{\partial t} \in L^2(0,T; L^2(\Omega^b))$ such that convergences (2.4.2) hold true. Moreover, since $m_n^a \to \underline{\mu}^a$ and $\underline{m}_n^b \to \underline{\mu}^b$ almost everywhere we have that $|\underline{\mu}^a| = 1$ a.e. in $(0,T) \times \Omega^a$ and $|\underline{\mu}^b| = 1$ a.e. in $(0,T) \times \Omega^b$. In order to prove that the limit function $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b)$ belongs to $L^{\infty}(0,T; \mathcal{M})$ we need to prove that

(2.4.3)
$$\underline{\mu}^{a}(t, x_{2}, 0) = \underline{\mu}^{b}(t, 0, x_{2}) \text{ a.e. in }]0, T[\times] -\frac{1}{2}, \frac{1}{2} \bigg[.$$

The proof of (2.4.3) will be developed in several steps. To this aim, we have (2.4.4) $\lim_{i} \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}|^2} \left(\underline{m}^a_{n_i}(t,x_1,x_2,0) - \underline{\mu}^a(t,x_2,0)\right) \varphi(x_2)\chi(t) \, dx_1 dx_2 dt = 0,$

$$\forall \varphi \in C_0^{\infty}(] - \frac{1}{2}, \frac{1}{2}[), \ \forall \chi \in C_0^{\infty}([0, T]).$$

 Set

From Fatou's Lemma, (2.4.1)iii and the fact that $|m_{n_i}^b| = 1$ a.e. in Ω^b , it follows that

$$\int_{-1}^{0} \liminf_{i} \rho_i(x_3) dx_3 \le \liminf_{i} \int_{-1}^{0} \rho_i(x_3) dx_3 < +\infty$$

Consequently, there exists two constants $c \in]0, +\infty[$ and $\bar{x}_3 \in]-1, 0[$, and a subsequence $(\rho_{i_k})_{k\in\mathbb{N}}$ such that

$$\rho_{i_k}(\bar{x}_3) < c, \forall k \in \mathbb{N}.$$

Then, by (2.4.2) ii), it results that

(2.4.5)
$$\underline{m}_{n_{i_k}}^b(.,.,.,\bar{x}_3) \rightharpoonup \underline{\mu}^b \quad * \text{ weak in } L^\infty([0,T], H^1(] - \frac{1}{2}, \frac{1}{2}[^2, \mathbb{R}^3)),$$

as k diverges.

The second step is devoted to prove that

(2.4.6)

$$\begin{split} \lim_{i} \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[^{2}} \left(\underline{\mu}^{b}_{n_{i_{k}}}(t,h^{a}_{n_{i_{k}}}x_{1},x_{2},0) - \underline{\mu}^{b}(t,0,x_{2})\right)\varphi(x_{2})\chi(t)\,dx_{1}dx_{2}dt = 0, \\ \forall \varphi \in C_{0}^{\infty}(]-\frac{1}{2},\frac{1}{2}[) \ , \ \forall \chi \in C_{0}^{\infty}([0,T]). \end{split}$$

Moreover, for $\varphi \in C_0^{\infty}(] - \frac{1}{2}, \frac{1}{2}[)$ and $\chi \in C_0^{\infty}([0,T])$, one has

$$\begin{array}{l} (2.4.7) \\ \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}|^2} \left(\underline{m}^b_{n_{i_k}}(t,h^a_{n_{i_k}}x_1,x_2,0) - \underline{\mu}^b(t,0,x_2) \right) \varphi(x_2)\chi(t) \, dx_1 dx_2 dt = \\ \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}|^2} \left(\underline{m}^b_{n_{i_k}}(t,h^a_{n_{i_k}}x_1,x_2,0) - \underline{m}^b_{n_{i_k}}(t,h^a_{n_{i_k}}x_1,x_2,\bar{x_3}) \right) \varphi(x_2)\chi(t) \, dx_1 dx_2 dt + \\ \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}|^2} \left(\underline{m}^b_{n_{i_k}}(t,h^a_{n_{i_k}}x_1,x_2,\bar{x_3}) - \underline{m}^b_{n_{i_k}}(t,0,x_2,\bar{x_3}) \right) \varphi(x_2)\chi(t) \, dx_1 dx_2 dt + \\ \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}|^2} \left(\underline{m}^b_{n_{i_k}}(t,0,x_2,\bar{x_3}) - \underline{\mu}^b(t,0,x_2) \right) \varphi(x_2)\chi(t) \, dx_1 dx_2 dt + \\ \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}|^2} \left(\underline{m}^b_{n_{i_k}}(t,0,x_2,\bar{x_3}) - \underline{\mu}^b(t,0,x_2) \right) \varphi(x_2)\chi(t) \, dx_1 dx_2 dt , \quad \forall k \in \mathbb{N}. \end{array}$$

Now will pass to the limit, as k diverges, in each term of this decomposition. By (2.4.1) *iii*) and (2.1.5) with $q \neq +\infty$, there exists $C \in]0, +\infty[$ such that (2.4.8) $\limsup_{k} \left| \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[^{2}} \left(\underline{m}_{n_{i_{k}}}^{b}(t, h_{n_{i_{k}}}^{a}x_{1}, x_{2}, 0) - \underline{m}_{n_{i_{k}}}^{b}(t, h_{n_{i_{k}}}^{a}x_{1}, x_{2}, \bar{x_{3}}) \right) \varphi(x_{2})\chi(t) dx_{1}dx_{2}dt \right| =$ $\limsup_{k} \left| \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[^{2}} \left(\int_{\bar{x}_{3}}^{0} D_{x_{1}} \underline{m}_{n_{i_{k}}}^{b}(t, h_{n_{i_{k}}}^{a}x_{1}, x_{2}, s) ds \right) \varphi(x_{2})\chi(t) dx_{1}dx_{2}dt \right| \leq$ $\|\varphi\|_{L^{\infty}(]-\frac{1}{2},\frac{1}{2}[)} \|\chi\|_{L^{\infty}([0,T])}, T^{\frac{1}{2}} |\Omega^{b}|^{\frac{1}{2}} \limsup_{k} \left(\int_{[0,T]\times\Omega^{b}} |D_{x_{3}}\underline{m}_{n_{i_{k}}}^{b}(t, h_{n_{i_{k}}}^{a}x_{1}, x_{2}, x_{3})|^{2}dxdt \right)^{\frac{1}{2}} \leq$ $\|\varphi\|_{L^{\infty}(]-\frac{1}{2},\frac{1}{2}[)} \|\chi\|_{L^{\infty}([0,T])}, T^{\frac{1}{2}} |\Omega^{b}|^{\frac{1}{2}} \limsup_{k} \left(\frac{1}{h_{n_{i_{k}}}^{a}} \|D_{x_{3}}\underline{m}_{n_{i_{k}}}^{b}\|_{L^{2}([0,T]\times\Omega^{b})} \right) \leq$ $\|\varphi\|_{L^{\infty}(]-\frac{1}{2},\frac{1}{2}[)} \|\chi\|_{L^{\infty}([0,T])}, T^{\frac{1}{2}} |\Omega^{b}|^{\frac{1}{2}} C \limsup_{k} \frac{h_{n_{i_{k}}}^{b}}{\sqrt{h_{n_{i_{k}}}^{a}}} = 0$

On the other side, from (2.4.5), there exists
$$C \in]0, +\infty[$$
 such that
(2.4.9)

$$\lim \sup_{k} \left| \int_{[0,T]\times] -\frac{1}{2}, \frac{1}{2}|^{2}} \left(\underline{m}_{n_{i_{k}}}^{b}(t, h_{n_{i_{k}}}^{a}x_{1}, x_{2}, \bar{x_{3}}) - \underline{m}_{n_{i_{k}}}^{b}(t, 0, x_{2}, \bar{x_{3}}) \right) \varphi(x_{2})\chi(t) \, dx_{1} dx_{2} dt \Big| =$$

$$\lim \sup_{k} \left| \int_{[0,T]\times] -\frac{1}{2}, \frac{1}{2}|^{2}} \left(\int_{0}^{h_{n_{i_{k}}}^{a}x_{1}} D_{s} \underline{m}_{n_{i_{k}}}^{b}(t, s, x_{2}, \bar{x_{3}}) ds \right) \varphi(x_{2})\chi(t) \, dx_{1} dx_{2} dt \Big| \leq$$

$$\frac{1}{2} \|\varphi\|_{L^{\infty}(] -\frac{1}{2}, \frac{1}{2}[)} \|\chi\|_{L^{\infty}([0,T])} \limsup_{k} \int_{[0,T]\times] -\frac{1}{2}, \frac{1}{2}[} \left(\int_{0}^{h_{n_{i_{k}}}^{a}} |D_{s} \underline{m}_{n_{i_{k}}}^{b}(t, s, x_{2}, \bar{x_{3}})| ds \right) dx_{2} dt +$$

$$\frac{1}{2} \|\varphi\|_{L^{\infty}(] -\frac{1}{2}, \frac{1}{2}[)} \|\chi\|_{L^{\infty}([0,T])} \limsup_{k} \int_{[0,T]\times] -\frac{1}{2}, \frac{1}{2}[} \left(\int_{-\frac{h_{n_{i_{k}}}^{a}}{2}} |D_{s} \underline{m}_{n_{i_{k}}}^{b}(t, s, x_{2}, \bar{x_{3}})| ds \right) dx_{2} dt \leq$$

$$\frac{1}{2} \|\varphi\|_{L^{\infty}(] -\frac{1}{2}, \frac{1}{2}[)} \|\chi\|_{L^{\infty}([0,T])} T^{\frac{1}{2}} \limsup_{k} \left(\frac{h_{n_{i_{k}}}^{a}}{2} \int_{[0,T]\times] -\frac{1}{2}, \frac{1}{2}[^{2}} |D_{x_{1}} \underline{m}_{n_{i_{k}}}^{b}(t, x_{1}, x_{2}, \bar{x_{3}})|^{2} dx_{1} dx_{2} dt \right)^{\frac{1}{2}} \leq$$

$$\frac{C}{\sqrt{2}} \|\varphi\|_{L^{\infty}(] -\frac{1}{2}, \frac{1}{2}[]} \|\chi\|_{L^{\infty}([0,T])} T^{\frac{1}{2}} \lim_{k} \sqrt{h_{n_{i_{k}}}}^{a} = 0$$

In virtue of (2.4.5) it follows that

$$\underline{m}^{b}_{n_{i_{k}}}(.,.,.,\bar{x}_{3}) \to \underline{\mu}^{b} \quad strongly \text{ in } L^{2}([0,T],L^{2}(]-\frac{1}{2},\frac{1}{2}[^{2},\mathbb{R}^{3})) \text{ and } a.e.$$

Consequently, we obtain that

$$(2.4.10) \lim_{k} \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[^{2}} \left(\underline{m}_{n_{i_{k}}}^{b}(t,0,x_{2},\bar{x_{3}}) - \underline{\mu}^{b}(t,0,x_{2})\right) \varphi(t)\chi(x_{2}) dx_{1} dx_{2} dt = \\ \lim_{k} \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[} \left(\underline{m}_{n_{i_{k}}}^{b}(t,0,x_{2},\bar{x_{3}}) - \underline{\mu}^{b}(t,0,x_{2})\right) \varphi(t)\chi(x_{2}) dx_{2} dt = 0 \\ \forall \varphi \in C_{0}^{\infty}[0,T] \ \forall \chi \in C_{0}^{\infty}(]-\frac{1}{2},\frac{1}{2}[)$$

Then, by passing to the limit in (2.4.7), as k diverges, and taking into account (2.4.8) - (2.4.10), one obtains (2.4.6).

Taking into account the following junction condition

(2.4.11)
$$\begin{aligned} \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[^{2}} \underline{m}^{a}_{n_{i_{k}}}(t,x_{1},x_{2},0)\varphi(t)\chi(x_{2})\,dx_{1}dx_{2}dt \\ \int_{[0,T]\times]-\frac{1}{2},\frac{1}{2}[^{2}} \underline{m}^{b}_{n_{i_{k}}}(t,h^{a}_{n_{i_{k}}}x_{1},x_{2},0)\varphi(t)\chi(x_{2})\,dx_{1}dx_{2}dt \end{aligned}$$

 $\forall k \in \mathbb{N}, \forall \varphi \in C_0^{\infty}[0,T] \; \forall \chi \in C_0^{\infty}(]-\frac{1}{2},\frac{1}{2}[),$

By using (2.4.4) and (2.4.6) to pass to the limit in (2.4.11) we get (2.4.3).

Let us obtain a priori estimates for the sequence of the solutions of the Problem (2.2.11).

Proposition 2.4.2. Assume (2.1.5) with $q \in [0, +\infty[$. For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be the solution of Problem (2.2.11). Then it results that

$$(2.4.12) \qquad \exists c \in \left] 0, +\infty \right[: E_n \left(\underline{m}_n \left(t, \cdot \right) \right) \le c, \quad , \forall t \in \left[0, T \right] \quad \forall n \in \mathbb{N}.$$

Proof. Taking into account (2.2.14) and (2.2.15), we have

$$E_{n}\left(\underline{m}_{n}\left(0,\cdot\right)\right) = \int_{\Omega^{a}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \underline{m}_{0_{n}}^{a}, D_{x_{2}} \underline{m}_{0_{n}}^{a}, D_{x_{3}} \underline{m}_{0_{n}}^{a}\right) \right|^{2} dx + \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left| \left(D_{x_{1}} \underline{m}_{0_{n}}^{b}, D_{x_{2}} \underline{m}_{0_{n}}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \underline{m}_{0_{n}}^{b}\right) \right|^{2} dx + E_{n}^{mag}\left(\underline{m}_{n}\left(0,\cdot\right)\right)$$

since $\underline{m}_{0,n} = (\underline{m}_{0,n}^a, \underline{m}_{0,n}^b)$ is such that $\underline{m}_{0,n}^a$ does not depend on x_1 and $\underline{m}_{0,n}^b$ does not depend on x_3 .

By choosing $\underline{m}_{0,n} = ((0, 1, 0), (0, 1, 0))$ as test function in (2.2.11) for t = 0, it follows that:

$$E_{n}\left(\underline{m}_{n}\left(0,\cdot\right)\right) \leq E_{n,\left(\left(0,1,0\right),\left(0,1,0\right)\right)}^{mag}\left(\underline{m}_{n}\left(0,\cdot\right)\right) \quad \forall n \in \mathbb{N}.$$

Consequently it remains to prove that

 $\forall t \in [0,T] \quad \exists c \in \left]0, +\infty\right[: E_{n,\left((0,1,0), (0,1,0)\right)}^{mag}\left(\underline{m}_n\left(0,\cdot\right)\right) \leq c, \quad \forall n \in \mathbb{N}.$

By choosing $u = \left(u_{n,(0,1,0),(0,1,0)}^{a}, u_{n,(0,1,0),(0,1,0)}^{b}\right)$ as test function in (2.2.8) and using Cauchy-Schwarz inequality, one derives that

$$2E_{n,((0,1,0),(0,1,0))}^{mag}\left(\underline{m}_{n}\left(0,\cdot\right)\right) \leq \left(1 + \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}}\right) \left(2E_{n,((0,1,0),(0,1,0))}^{mag}\left(\underline{m}_{n}\left(0,\cdot\right)\right)\right)^{\frac{1}{2}} \quad \forall n \in \mathbb{N}$$

which gives (2.4.12) since $q \neq +\infty$.

which gives (2.4.12) since $q \neq +\infty$.

The following results are an immediate consequence of Theorem 2.4.1, Proposition 2.4.2.

Corollary 2.4.3. Let \mathcal{M} be defined by (2.3.2). Assume (2.1.5) with $q \in [0, +\infty[$. For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be the solution of problem (2.2.11).

Then, there exist an increasing sequence of positive integer numbers $\{n_i\}_{i\in\mathbb{N}}$, still denoted by $\{n\}$, and $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b) = \left(\left(\underline{\mu}^a_1, \underline{\mu}^a_2, \underline{\mu}^a_3\right), \left(\underline{\mu}^b_1, \underline{\mu}^b_2, \underline{\mu}^b_3\right)\right) \in L^{\infty}(0, T; \mathcal{M})$, depending on the selected subsequence, such that: (2.4.14)

 $\begin{cases} \underline{\underline{m}}_{n}^{a} \rightarrow \underline{\mu}^{a} \ weakly * \ in \ L^{\infty}(0,T; H^{1}\left(\Omega^{a}, S^{2}\right)) \ , \ strongly \ in \ L^{2}(0,T; L^{2}\left(\Omega^{a}, S^{2}\right)) \ and \ a. \ e., \\ \underline{\underline{m}}_{n}^{b} \rightarrow \underline{\underline{\mu}}^{b} \ weakly * \ in \ L^{\infty}(0,T; H^{1}\left(\Omega^{b}, S^{2}\right)), \ strongly \ in \ L^{2}(0,T; L^{2}\left(\Omega^{b}, S^{2}\right)) \ and \ a. \ e., \\ \underline{\frac{\partial \underline{m}_{n}^{a}}{\partial t}} \rightarrow \underline{\frac{\partial \underline{\mu}^{a}}{\partial t}} \ weakly \ in \ L^{2}(0,T; L^{2}\left(\Omega^{a}, \mathbb{R}^{3}\right)), \\ \underline{\frac{\partial \underline{m}_{n}^{b}}{\partial t}} \rightarrow \underline{\frac{\partial \underline{\mu}^{b}}{\partial t}} \ weakly \ in \ L^{2}(0,T; L^{2}\left(\Omega^{b}, \mathbb{R}^{3}\right)) \end{cases}$

Step 2: A convergence result for the magnetostatic energy, limit identification

Let us identify the limit function for the magnetostatic energy and its potential.

Proposition 2.4.4. Assume (2.1.5) with $q \in [0, +\infty[$. Let $\{\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)\}_{n \in \mathbb{N}} \in \mathbb{N}$ $L^{\infty}(0,T;\mathcal{M}_n), and \mu = (\mu^a,\mu^b) = ((\mu_1^a,\mu_2^a,\mu_3^a), (\mu_1^b,\mu_2^b,\mu_3^b)) \in L^{\infty}(0,T;\mathcal{M}) be$ such that (2.4.15) $(\underline{m}_n^a, \underline{m}_n^b) \rightharpoonup (\mu^a, \mu^b)$ weakly * in $L^{\infty}(0, T; H^1(\Omega^a, \mathbb{R}^3)) \times L^{\infty}(0, T; H^1(\Omega^b, \mathbb{R}^3))$

 $(m_n^a, m_n^b) \rightarrow (\mu^a, \mu^b)$ strongly in $L^2(0, T; L^2(\Omega^a, \mathbb{R}^3)) \times L^2(0, T; L^2(\Omega^b, \mathbb{R}^3))$

as n diverges. Let $u_n = (u_n^a, u_n^b)$ be the unique solution of (2.2.7) corresponding to \underline{m}_n . Then it result that (2.4.16)

$$\begin{cases} \frac{1}{h_n^a} D_{x_1} u_n^a \rightharpoonup \mu_1^a & D_{x_2} u_n^a \rightharpoonup 0 & D_{x_3} u_n^a \rightharpoonup 0 & weakly * in \ L^{\infty}(0,T; L^2(\mathbb{R}^3_+)) \\ D_{x_1} u_n^b \rightharpoonup 0 & D_{x_2} u_n^b \rightharpoonup 0 & \frac{1}{h_n^b} D_{x_3} u_n^b \rightharpoonup \mu_3^b & weakly * in \ L^{\infty}(0,T; L^2(\mathbb{R}^3_-)) \end{cases}$$

as n diverges, and for $t \in [0, T]$

(2.4.17)
$$\lim_{n} E_{n}^{mag}\left(\underline{m}_{n}\left(t,\cdot\right)\right) = \frac{1}{2}\left(\int_{\Omega^{a}} |\mu_{1}^{a}|^{2} dx + q \int_{\Omega^{b}} |\mu_{3}^{b}|^{2} dx\right).$$

Proof. For a given $u_{\underline{m},n}$ be a solution of (2.2.7), in paricular, that potentiel takes a larger value for $u_{\underline{m},n} = (0,0)$, it results that

$$(2.4.18) \qquad \exists c \in]0, +\infty[: \int_{\mathbb{R}^3_+} \left| \left(\frac{1}{h_n^a} D_{x_1} u_n^a, D_{x_2} u_n^a, D_{x_3} u_n^a \right) - m_n^a \right|^2 dx + \frac{h_n^b}{h_n^a} \int_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_n^b, D_{x_2} u_n^b, \frac{1}{h_n^b} D_{x_3} u_n^b \right) - m_n^b \right|^2 dx \leqslant c, \forall n \in \mathbb{N}.$$

Consequently, by applying the triangle inequality and recalling that $|m_n| = 1$ and by taking into account (2.1.5) with $q \neq +\infty$, and for all $t \in [0,T]$, we obtains

$$(2.4.19) \quad \begin{cases} \exists c \in]0, +\infty[, \\ \|\frac{1}{h_n^a} D_{x_1} u_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \|D_{x_2} u_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \|D_{x_3} u_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \\ \|D_{x_1} u_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \|D_{x_2} u_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \|\frac{1}{h_n^b} D_{x_3} u_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \end{cases}$$

From the Sobolev-Gagliardo-Niremberg inequality and (2.4.19), we obtains

$$(2.4.20) \qquad \exists c \in]0 + \infty[: \|u_{\underline{m},n}\|_{L^6(\mathbb{R}^3)} \leqslant c, \quad \forall n \in \mathbb{N}, \forall t \ge 0.$$

Moreover, estimates (2.4.18) and (2.4.19) guarantee, for all $t \in [0, T]$, the existence of a function $u = (u^a, u^b) \in L^6(\mathbb{R}^3_+) \times L^6(\mathbb{R}^3_-)$ and $Du = (Du^a, Du^b) \in (L^2(\mathbb{R}^3_+))^3 \times (L^2(\mathbb{R}^3_-))^3$, u^a is independent of x_1 and u^b is independent of x_3 such that

$$\begin{cases} (2.4.21) \\ \begin{cases} u_n^a \rightharpoonup u^a & \text{weak in } L^6(\mathbb{R}^3_+), \\ u_n^b \rightharpoonup u^b & \text{weak in } L^6(\mathbb{R}^3_-), \\ \end{cases} Du_n^a \rightharpoonup Du^a & \text{weak in } (L^2(\mathbb{R}^3_+))^3, \\ Du_n^b \rightharpoonup Du^b & \text{weak in } (L^2(\mathbb{R}^3_-))^3, \\ \end{cases}$$

as n diverges. Moreover, for all $t \in [0, T]$ and the fact that u^a is independent of

 x_1 and $Du^a \in (L^2(\mathbb{R}^3))^3$, we have

$$+\infty > \int_{\mathbb{R}^3_+} |Du^a(t,x)|^2 dx \ge \int_{]a,b[} \left(\int_{\mathbb{R}^2_+} \left(|D_{x_2}u^a(t,x_2,x_3)|^2 + |D_{x_3}u^a(t,x_2,x_3)|^2 \right) d(x_2,x_3) \right) dx_1 = (b-a) \int_{\mathbb{R}^2_+} \left(|D_{x_2}u^a(t,x_2,x_3)|^2 + |D_{x_3}u^a(t,x_2,x_3)|^2 \right) d(x_2,x_3), \forall a,b \in \mathbb{R} \text{ where } a < b.$$

In particular, (b-a) can be any arbitrarily large positive number, hence for all t in [0, T], u^a is independent of x_2 and x_3 , then $u^a(t, .) = 0$ in $L^6(\mathbb{R}^3_+)$. Similarly, for all $t \in [0, T]$ we obtains $u^b(t, .) = 0$ in $L^6(\mathbb{R}^3_-)$. we concludes that

(2.4.22)
$$\begin{cases} Du_n^a \rightharpoonup 0 \quad weak * \text{ in } L^{\infty}(0,T;(L^2(\mathbb{R}^3_+))^3), \\ Du_n^b \rightharpoonup 0 \quad weak * \text{ in } L^{\infty}(0,T;(L^2(\mathbb{R}^3_-))^3), \end{cases}$$

and that there exist $\xi^a \in L^2(\mathbb{R}^3_+)$ and $\xi^b \in L^2(\mathbb{R}^3_-)$ such that

$$(2.4.23) \qquad \begin{cases} \frac{1}{h_n^a} D_{x_1} u_n^a \rightharpoonup \xi^a \quad weak * \text{ in } L^{\infty}(0,T;(L^2(\mathbb{R}^3_+))), \\ \\ \frac{1}{h_n^b} D_{x_3} u_n^b \rightharpoonup \xi^b \quad weak * \text{ in } L^{\infty}(0,T;(L^2(\mathbb{R}^3_-))), \end{cases}$$

as n diverges. The following step is devoted to identify ξ^a and ξ^b . Let us fix $t \in [0, T]$. In equation (2.2.7), choose

(2.4.24)
$$\begin{cases} m = m_n, \\ u^a = c_n^a + \varphi \quad \text{where} \quad \varphi \in C_0^\infty(\mathbb{R}^3_+), \\ u^b = c_n^a, \end{cases}$$

where $c_n^a = -(|B_n^a| + \frac{h_n^b}{h_n^a}|B_n^b|)^{-1} \int_{B_n^a} \varphi dx$. After having multiplied this equation by h_n^a , we have:

$$\int_{\mathbb{R}^3_+} \left(\frac{1}{h_n^a} D_{x_1} u_n^a, D_{x_2} u_n^a, D_{x_3} u_n^a\right) (D_{x_1} \varphi, h_n^a D_{x_2} \varphi, h_n^a D_{x_3} \varphi) dx =$$
$$\int_{\Omega^a} (D_{x_1} \varphi, h_n^a D_{x_2} \varphi, h_n^a D_{x_3} \varphi) m_n^a dx, \forall \varphi \in C_0^\infty(\mathbb{R}^3_+)$$

Then passing to the limit as n diverges, we obtains

(2.4.25)
$$\int_{\mathbb{R}^3_+} \xi^a D_{x_1} \varphi dx = \int_{\mathbb{R}^3_+} \tilde{\mu}^a_1 D_{x_1} \varphi dx$$

where $\tilde{\mu}_1^a$ denotes the zero extension of μ_1^a on \mathbb{R}^3/Ω^a . This proves that the function $\xi^a(t,\cdot) - \tilde{\mu}_1^a(t,\cdot)$ is constant with respect to x_1 . Consequently, since

 $\xi^a(t,\cdot)-\tilde{\mu}^a_1(t,\cdot)\in L^2(\mathbb{R}^3),$ it results that

(2.4.26)
$$\xi^{a}(t,x) = \begin{cases} \mu_{1}^{a}(t,x_{2},x_{3}) & a.e. \text{ in } [0,T] \times \Omega^{a}, \\ 0 & \text{ also.} \end{cases}$$

Similarly, now, in equation (2.2.7), we choose

$$\left\{ \begin{array}{ll} m=m_n,\\ u^b=c^b_n+\varphi \quad {\rm where} \quad \varphi\in C_0^\infty([0,T],C_0^\infty(\mathbb{R}^3_-)),\\ u^a=c^b_n, \end{array} \right.$$

where $c_n^b = -(|B_n^a| + \frac{h_n^b}{h_n^a}|B_n^b|)^{-1}\frac{h_n^b}{h_n^a}\int_{B_n^b}\varphi dx$, one obtains

(2.4.27)
$$\xi^{b}(t,x) = \begin{cases} \mu_{3}^{b}(t,x_{1},x_{2}) & a.e.\text{in } [0,T] \times \Omega^{b}, \\ 0 & \text{also.} \end{cases}$$

The last step is devoted to prove the convergence of the magnetostatic energies. To this aim, remark that from (2.4.23), and for t a.e. in $[0, T], \forall T \ge 0$ we have

(2.4.28)
$$\begin{cases} \frac{1}{h_n^a} D_{x_1} u_n^a \rightharpoonup \mu_1^a & \text{weak in } L^2(\mathbb{R}^3_+), \\ \\ \frac{1}{h_n^b} D_{x_3} u_n^b \rightharpoonup \mu_3^b & \text{weak in } L^2(\mathbb{R}^3_-), \end{cases}$$

Then by passing to the limit in (2.2.14), and by taking into account (2.4.26), (2.4.27) and (2.4.28) we obtains (2.4.29)

$$\begin{split} \lim_{n} E_{n}^{mag}\left(\underline{m}_{n}\left(t,\cdot\right)\right) &= \lim_{n} \left[\frac{1}{2}\int_{\mathbb{R}^{3}_{+}}\left|\left(\frac{1}{h_{n}^{a}}D_{x_{1}}u_{n}^{a},D_{x_{2}}u_{n}^{a},D_{x_{3}}u_{n}^{a}\right)\right|^{2}dx + \\ &\frac{1}{2}\frac{h_{n}^{b}}{h_{n}^{a}}\int_{\mathbb{R}^{3}_{-}}\left|\left(D_{x_{1}}u_{n}^{b},D_{x_{2}}u_{n}^{b},\frac{1}{h_{n}^{b}}D_{x_{3}}u_{n}^{b}\right)\right|^{2}dx\right] = \\ &\lim_{n} \left[\frac{1}{2}\int_{\Omega^{a}}\left(\left(\frac{1}{h_{n}^{a}}D_{x_{1}}u_{n}^{a},D_{x_{2}}u_{n}^{a},D_{x_{3}}u_{n}^{a}\right)m_{n}^{a}\right)dx + \\ &\frac{1}{2}\frac{h_{n}^{b}}{h_{n}^{a}}\int_{\Omega^{b}}\left(\left(D_{x_{1}}u_{n}^{b},D_{x_{2}}u_{n}^{b},\frac{1}{h_{n}^{b}}D_{x_{3}}u_{n}^{b}\right)m_{n}^{b}\right)dx\right] = \\ &= \frac{1}{2}\left(\int_{\Omega^{a}}|\mu_{1}^{a}|^{2}dx + q\int_{\Omega^{b}}|\mu_{3}^{b}|^{2}dx\right). \end{split}$$

Let

$$\mathcal{M}_{reg} = \begin{cases} \psi = (\psi^a, \psi^b) \in C^1\left(\left] - \frac{1}{2}, \frac{1}{2} \right[\times [0, 1], \mathbb{R}^3 \right) \times C\left(\left[-\frac{1}{2}, \frac{1}{2} \right]^2, \mathbb{R}^3 \right); \\ \psi^b|_{\left[-\frac{1}{2}, 0 \right] \times \left[-\frac{1}{2}, \frac{1}{2} \right]} \in C^1\left(\left] - \frac{1}{2}, 0 \right[\times \left[-\frac{1}{2}, \frac{1}{2} \right], \mathbb{R}^3 \right), \\ \psi^b|_{\left[0, \frac{1}{2} \right] \times \left[-\frac{1}{2}, \frac{1}{2} \right]} \in C^1\left(\left[0, \frac{1}{2} \right] \times \left[-\frac{1}{2}, \frac{1}{2} \right], \mathbb{R}^3 \right), \\ \psi^a(x_2, 0) = \psi^b(0, x_2), \text{ for } x_2 \text{ a.e. in } \left] -\frac{1}{2}, \frac{1}{2} \right[. \end{cases}$$

Remark 2.4.5. $\mathcal{M}_{reg} \subset W^{1,\infty}\left(\left]-\frac{1}{2},\frac{1}{2}\right[\times [0,1],\mathbb{R}^3\right) \times W^{1,\infty}\left(\left]-\frac{1}{2},\frac{1}{2}\right[^2,\mathbb{R}^3\right)$. Moreover \mathcal{M}_{reg} is dense in \mathcal{M} , as proved in Proposition 5.5 in [33], but, in this case with more simple consideration.

At first we recall a result which is proved in Proposition 5.4 in [33].

Lemma 2.4.6. Let us consider a function $\psi = (\psi^a, \psi^b) \in \mathcal{M}_{reg}$. Then there exists a sequence $\{g_n\}_{n \in \mathbb{N}} \subset H^1(\Omega^a, \mathbb{R}^3)$ such that (2.4.30)

$$\begin{cases} g_n \to \psi^a \text{ strongly in } L^2\left(\Omega^a, \mathbb{R}^3\right) \text{ as } n \to +\infty \\ \left(\frac{1}{h_n^a} D_{x_1} g_n | D_{x_2} g_n | D_{x_3} g_n\right) \to (0 | D_{x_2} \psi^a | D_{x_3} \psi^a) \text{ strongly in } L^2\left(\Omega^a, \mathbb{R}^9\right) \text{ as } n \to +\infty \\ g_n\left(x_1, x_2, 0\right) = \psi^b\left(h_n^a x_1, x_2\right) \text{ for } x_2 \in \left] -\frac{1}{2}, \frac{1}{2} \right[^2, \quad \forall n \in \mathbb{N}. \end{cases}$$

Step 3: Proof of Theorem 2.3.1

Now we are able to prove Theorem 2.3.1.

a) Identification of $\underline{\mu}$ as solution of Problem (2.3.5)

Let choose (g_n, ψ^b) , the coupled function given in (2.4.30), as test function in (2.2.11) (2.4.31)

$$\begin{split} & \int_{0}^{T} \int_{\Omega^{a}}^{T} \left(\frac{\partial \underline{m}_{n}^{a}}{\partial t} + \underline{m}_{n}^{a} \wedge \frac{\partial \underline{m}_{n}^{a}}{\partial t} \right) \chi g_{n} dx dt + \frac{h_{n}^{b}}{h_{n}^{a}} \int_{0}^{T} \int_{\Omega^{b}}^{T} \left(\frac{\partial \underline{m}_{n}^{b}}{\partial t} + \underline{m}_{n}^{b} \wedge \frac{\partial \underline{m}_{n}^{b}}{\partial t} \right) \chi \psi^{b} dx dt = \\ & -2 \int_{0}^{T} \int_{\Omega^{a}}^{T} \left[\underline{m}_{n}^{a} \wedge \frac{1}{h_{n}^{a}} D_{x_{1}} \underline{m}_{n}^{a} \cdot \frac{1}{h_{n}^{a}} (D_{x_{1}}g_{n}) \chi + \sum_{i=2}^{3} \underline{m}_{n}^{a} \wedge D_{x_{i}} \underline{m}_{n}^{a} \cdot (D_{x_{i}}g_{n}) \chi \right] dx dt \\ & -2 \int_{0}^{T} \int_{\Omega^{a}}^{T} \underline{m}_{n}^{a} \wedge \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{n}^{a}, D_{x_{2}} u_{n}^{a}, D_{x_{3}} u_{n}^{a} \right) \chi g_{n} dx dt \\ & -2 \frac{h_{n}^{b}}{h_{n}^{a}} \int_{0}^{T} \int_{\Omega^{b}}^{T} \left[\underline{m}_{n}^{b} \wedge \frac{1}{h_{n}^{b}} D_{x_{3}} \underline{m}_{n}^{b} \cdot \frac{1}{h_{n}^{b}} (D_{x_{3}} \psi^{b}) \chi + \sum_{i=1}^{2} \underline{m}_{n}^{b} \wedge D_{x_{i}} \underline{m}_{n}^{b} \cdot (D_{x_{i}} \psi^{b}) \chi \right] dx dt \\ & -2 \int_{0}^{T} \int_{\Omega^{b}}^{T} \underline{m}_{n}^{b} \wedge \left(D_{x_{1}} u_{n}^{b}, D_{x_{2}} u_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{n}^{b} \right) \chi \psi^{b} dx dt. \\ & +2 \int_{0}^{T} \int_{\Omega^{b}} \underline{m}_{n}^{b} \wedge \left(D_{x_{1}} u_{n}^{b}, D_{x_{2}} u_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{n}^{b} \right) \chi \psi^{b} dx dt. \\ & \forall \chi \in D \left(0, T \right) \end{split}$$

Since \underline{m}_n converges to $\underline{\mu}$ almost everywhere in $[0, T] \times \Omega$, we can deduce that $|\mu| \equiv 1 \ \forall t \in [0, T]$. Passing to the limit as n diverges, we obtain that there exists $\underline{\mu} = (\underline{\mu}^a, \underline{\mu}^b) \in L^{\infty}(0, T; \mathcal{M})$ which satisfies: (2.4.32)

$$\begin{split} &\int_{0}^{T}\int_{\left[-\frac{1}{2},\frac{1}{2}\right]\times\left[1\right]}\left(\frac{\partial\underline{\mu}^{a}}{\partial t}+\underline{\mu}^{a}\wedge\frac{\partial\underline{\mu}^{a}}{\partial t}\right)\chi\psi^{a}dxdt+q\int_{0}^{T}\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{2}}\left(\frac{\partial\underline{\mu}^{b}}{\partial t}+\underline{\mu}^{b}\wedge\frac{\partial\underline{\mu}^{b}}{\partial t}\right)\chi\psi^{b}dxdt=\\ &-2\int_{0}^{T}\int_{\left[-\frac{1}{2},\frac{1}{2}\right]\times\left[1\right]}\int_{i=2}^{3}\underline{\mu}^{a}\wedge\frac{\partial\underline{\mu}^{a}}{\partial x_{i}}\frac{\partial\psi^{a}}{\partial x_{i}}\chi-2q\int_{0}^{T}\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{2}}\underline{\mu}^{b}\wedge\sum_{i=1}^{2}\frac{\partial\underline{\mu}^{b}}{\partial x_{i}}\frac{\partial\psi^{b}}{\partial x_{i}}\chi+\\ &-2\int_{0}^{T}\int_{\left[-\frac{1}{2},\frac{1}{2}\right]\times\left[1\right]}\underline{\mu}^{a}\wedge\left(\underline{\mu}_{1}^{a},0,0\right)\chi\psi^{a}-2q\int_{0}^{T}\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{2}}\underline{\mu}^{b}\wedge\left(0,0,\underline{\mu}_{3}^{b}\right)\chi\psi^{b}\\ &\forall\chi\in D(0,T), \ \forall\left(\psi^{a},\psi^{b}\right)\in\mathcal{M}_{reg}. \end{split}$$

Let us observe that (ψ^a, ψ^b) can be any arbitrarily element of \mathcal{M}_{reg} . Being \mathcal{M}_{reg} dense in \mathcal{M} , we obtain that (2.4.32) holds true with $(\psi^a, \psi^b) \in \mathcal{M}$. Consequently, we derive the weak formulation Problem (2.3.5) (2.4.33)

$$\begin{cases} \frac{\partial \underline{\mu}^{a}}{\partial t} + \underline{\mu}^{a} \wedge \frac{\partial \underline{\mu}^{a}}{\partial t} = 2\underline{\mu}^{a} \wedge \left(\Delta \underline{\mu}^{a} - \left(\underline{\mu}^{a}, e_{1}\right)e_{1}\right) & \text{in }]0, T[\times] - \frac{1}{2}, \frac{1}{2}[\times]0, 1[\\ q\frac{\partial \underline{\mu}^{b}}{\partial t} + q\left(\underline{\mu}^{b} \wedge \frac{\partial \underline{\mu}^{b}}{\partial t}\right) = 2q\underline{\mu}^{b} \wedge \left(\Delta \underline{\mu}u^{b} - \left(\underline{\mu}^{b}, e_{3}\right)e_{3}\right) & \text{in }]0, T[\times] - \frac{1}{2}, \frac{1}{2}[^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^{2}, \frac{1}{2}[^{2}, \frac{1}{2}]^{2}, \frac{1}{2}]^$$

Remark 2.4.7. Let us observe that the integrand of the limit does not depend on x_1 on Ω^a and does not depend on x_3 on Ω^b .

b) Energy estimates

JUNCTION OF QUASY-STATIONARY FERROMAGNETIC THIN FILMS67

It remains to prove that μ satisfies the energy inequality.

By lower semicontinuity of the norm for the weak topology, we obtain

$$E_{q}\left(\underline{\mu}\left(t,\cdot\right)\right) + \int_{0}^{t} \left\|\frac{\partial\underline{\mu}^{a}}{\partial t}\right\|_{L^{2}(\Omega^{a})}^{2} dx dt + q \int_{0}^{t} \left\|\frac{\partial\underline{\mu}^{b}}{\partial t}\right\|_{L^{2}(\Omega^{b})}^{2} \leq \liminf E_{n}\left(\underline{m}_{n}\left(0,\cdot\right)\right)$$

with

$$E_q\left(\underline{\mu}\left(t,\cdot\right)\right) = \int_{\left]-\frac{1}{2},\frac{1}{2}\left[\times\right]0,1\left[\right]} \left|D\underline{\mu}^a\right|^2 + q \int_{\left]-\frac{1}{2},\frac{1}{2}\left[^2\right]} \left|D\underline{\mu}^b\right|^2 + \frac{1}{2} \int_{\left]-\frac{1}{2},\frac{1}{2}\left[\times\right]0,1\left[\right]} \left|\underline{\mu}^a_1\right|^2 dx_2 dx_3 + \frac{1}{2}q \int_{\left]-\frac{1}{2},\frac{1}{2}\left[^2\right]} \left|\underline{\mu}^b_3\right|^2 dx_1 dx_2.$$

Let us compute $E_{n}\left(\underline{m}_{n}\left(0,\cdot\right)\right)$. We have

$$\begin{aligned} (2.4.34) \\ E_n\left(\underline{m}_n\left(0,\cdot\right)\right) &= \int\limits_{\Omega^a} \left| \left(\frac{1}{h_n^a} D_{x_1} \underline{m}_{0_n}^a, D_{x_2} \underline{m}_{0_n}^a, D_{x_3} \underline{m}_{0_n}^a\right) \right|^2 dx + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \left(\frac{1}{h_n^a} D_{x_1} u_{0_n}^a, D_{x_2} u_{0_n}^a, D_{x_3} u_{0_n}^a\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\Omega^b} \left| \left(D_{x_1} \underline{m}_{0_n}^b, D_{x_2} \underline{m}_{0_n}^b, \frac{1}{h_n^b} D_{x_3} \underline{m}_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} \underline{m}_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^a} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b, \frac{1}{h_n^b} D_{x_3} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2} \frac{h_n^b}{h_n^b} \int\limits_{\mathbb{R}^3_-} \left| \left(D_{x_1} u_{0_n}^b, D_{x_2} u_{0_n}^b\right) \right|^2 dx + \frac{1}{2}$$

Under the hypotheses (2.3.3), by using the stationary result given in Theorem 4.1 in [33], we have that (2.4.35)

$$\begin{array}{l} \stackrel{1}{\underline{h}_{n}^{a}} D_{x_{1}} \underline{u}_{0_{n}}^{a} \to \underline{\mu}_{1_{0}}^{a} \quad D_{x_{2}} \underline{u}_{0_{n}}^{a} \to 0 \quad D_{x_{3}} \underline{u}_{0_{n}}^{a} \to 0 \text{ strongly in } L^{2}\left(\mathbb{R}^{3}_{+}\right) \\ D_{x_{1}} \underline{u}_{0_{n}}^{a} \to 0 \quad D_{x_{2}} \underline{u}_{0_{n}}^{a} \to 0 \quad \frac{1}{h_{n}^{b}} D_{x_{3}} \underline{u}_{0_{n}}^{b} \to \underline{\mu}_{3_{0}}^{a} \text{ strongly in } L^{2}\left(\mathbb{R}^{3}_{-}\right). \end{array}$$

Passing to the limit in the (2.4.34) by (2.3.3) and (2.4.35) we get

(2.4.36)

$$\lim E_n \left(\underline{m}_n \left(0, \cdot\right)\right) = \int_{\Omega^a} \left| \left(D_{x_2}^a \mu_0^a, D_{x_3} \mu_0^a \right) \right|^2 dx + q \int_{\Omega^b} \left| \left(D_{x_1}^b \underline{\mu}_0^b, D_{x_2} \underline{\mu}_0^b \right) \right|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3_+} \left| \underline{\mu}_{1_0}^a \right|^2 dx + \frac{1}{2} q \int_{\mathbb{R}^3_-} \left| \left(\underline{\mu}_{3_0}^b \right) \right|^2 = E_q \left(\underline{\mu} \left(0, \cdot\right) \right)$$

which concludes the proof.

Chapter 3

Quasi-stationary ferromagnetic thin films in degenerated cases

U. De Maio, L. Faella, S. Soueid. Quasi-stationary ferromagnetic thin films in degenerated cases, accepté pour publication Ricerchie Mat. Doi: 10.1007/s11587-014-0197-5.

Abstract. In this paper we study the asymptotic behavior of a quasy-stationary ferromagnetic problem in a multi-domain consisting of two joined thin films. It is possible to distinguish different regimes depending on the limit q of the ratio between the small thickness of the two films. Here the case q = 0 and $q = +\infty$ are analyzed.

Keywords: Micromagnetics, thin films, Landau-Lifschitz equation. **AMS** 78A25, 74K35, 78M35.

3.1 Introduction

For every $n \in N$, let $\Omega_n = \Omega_n^a \cup \Omega_n^b$, where

$$\Omega_n^a = \left(\left] -\frac{h_n^a}{2}, \frac{h_n^a}{2} \right[\times \left] -\frac{1}{2}, \frac{1}{2} \right[\times \left[0, 1 \right[\right) \text{ and } \Omega_n^b = \left(\left] -\frac{1}{2}, \frac{1}{2} \right[^2 \times \left] -h_n^b, 0 \right[\right),$$

be a 3D ferromagnetic multidomain consisting of two orthogonal joined thin films with small thicknesses h_n^a and $h_n^b \in [0, 1[$, respectively, such that

(3.1.1)
$$\lim_{n} h_{n}^{a} = 0 = \lim_{n} h_{n}^{b}, \qquad \lim_{n} \frac{h_{n}^{b}}{h_{n}^{a}} = q \in \{0, +\infty\}.$$

Let $B = [-1, 1[^2 \times]-2, 2[$ and set

$$(3.1.2) \quad \mathcal{U} = \left\{ U \in L^{1}_{loc}\left(\mathbb{R}^{3}\right) : U \in L^{2}\left(B\right), \ DU \in \left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}, \ \int_{B} U dx = 0 \right\}.$$

For $M \in L^2(\Omega_n, \mathbb{R}^3)$, let U_M be the unique solution of the following problem

(3.1.3)
$$\begin{cases} U_M \in \mathcal{U}, \\ \int DU_M DU = \int M DU dx, \quad \forall U \in \mathcal{U}. \\ \mathbb{R}^3 \qquad \Omega_n \end{cases}$$

For T > 0 and $M_{0,n} \in H^1(\Omega_n, S^2)$, the following problem

$$(3.1.4) \begin{cases} M_n \in L^{\infty}\left(0,T; H^1\left(\Omega_n, S^2\right)\right), & \frac{\partial M_n}{\partial t} \in L^2\left(0,T; L^2(\Omega_n, \mathbb{R}^3)\right), \\ \forall \ \phi \in D(]0, T[\times \overline{\Omega_n}, \mathbb{R}^3) & \int_{0}^T \int_{\Omega_n} \left(\frac{\partial M_n}{\partial t} + M_n \wedge \frac{\partial M_n}{\partial t}\right) \cdot \phi dx dt = \\ -2 \int_{0}^T \int_{\Omega_n} \sum_{i=1}^3 M_n \wedge D_{x_i} M_n \cdot D_{x_i} \phi - 2 \int_{0}^T \int_{\Omega_n} M_n \wedge DU_{M_n} \cdot \phi, \\ M_n(0, x) = M_{0,n}. \end{cases}$$

admits solution (see [15]), where \wedge denotes the cross product in \mathbb{R}^3 , \cdot denotes the inner product in \mathbb{R}^3 and S^2 denotes the unit sphere of \mathbb{R}^3 . Moreover (see [15] again), M_n satisfies

(3.1.5)
$$\mathcal{E}(t) + \int_{0}^{t} \left\| \frac{\partial M_{n}(s, \cdot)}{\partial t} \right\|_{(L^{2}(\Omega_{n}))^{3}}^{2} ds \leq \mathcal{E}(0), \quad \forall t \in [0, T],$$

where

$$\mathcal{E}(t) = \int_{\Omega_n} |DM_n(t,x)|^2 dx + \int_{\mathbb{R}^3} |DU_{M_n}(t,x)|^2 dx.$$

By a density argument (for instance see [28]), problem (3.1.4) it is equivalent to that obtained choosing test functions $\phi = \chi g$ with $\chi \in D(]0,T[)$ and $g \in H^1(\Omega_n, \mathbb{R}^3)$.

After the reformulation of our problem in a fixed domain $\Omega = \Omega^a \cup \Omega^b$, with

$$\Omega^{a} = \left] -\frac{1}{2}, \frac{1}{2} \right[^{2} \times \left] 0, 1 \right[\text{ and } \Omega^{b} = \left] -\frac{1}{2}, \frac{1}{2} \right[^{2} \times \left] -1, 0 \right],$$

through rescalings of the kind proposed in [54] and appropriate convergence assumptions on the initial data, we study the asymptotic behavior, as n diverges, of problem (3.1.4) under assumption (3.1.1). If q = 0 (i.e. $h_n^b \ll h_n^a$), we prove

that the limit problem reduces to a 2D local problem in a vertical thin film losing the junction condition (see Theorem 3.3.1). Analogously, if $q = +\infty$ (i.e. $h_n^a \ll h_n^b$), the limit problem reduces to a 2D local problem in an horizontal thin film (see Theorem 3.3.2).

In the case $q \in [0, +\infty[$ (i.e. $h_n^b \simeq h_n^a)$), studied in [2], the problems on the two thin films are linked by a junction condition.

In Section 2, we rescale the problem. In Section 3, we state the main results. In Section 4, we sketch the proofs for the case q = 0. We omit the proofs for the case $q = +\infty$, since they are quite similar to previous ones.

This paper is inspired by [12] and [33], where the authors study a quasystationary ferromagnetic thin film and the junction of stationary ferromagnetic thin films, respectively.

About ferromagnetic theory see [11], [29], [50], [57] and the references therein. About ferroelectric thin structure see [1], [2], [3], [5], [6], [15], [16], [19], [39], [41], [48], [49], [52], [53], [55], [56] and the references therein. About ferroelectric thin multi-structure see [34] and the references therein. For related problems in thin structure see [9], [32], [31], [35] and [36], in composites with imperfect interface see [26, 27]. For recent papers on joined structure see also [4], [22], [23], [25], [30] and [38].

3.2 The rescaled problem

We reformulate problem (3.1.4) on a fixed domain through the following rescalings

(3.2.1)
$$\begin{cases} (x_1, x_2, x_3) \in \Omega^a \to (h_n^a x_1, x_2, x_3) \in Int(\Omega_n^a), \\ (x_1, x_2, x_3) \in \Omega^b \to (x_1, x_2, h_n^b x_3) \in \Omega_n^b, \end{cases}$$

where $Int(\Omega_n^a)$ denotes the interior of Ω_n^a .

For every $n \in \mathbb{N}$, space \mathcal{U} defined in (3.1.2) is rescaled in the following one

$$\begin{aligned} \mathcal{U}_{n} &= \{ \upsilon = (\upsilon^{a}, \upsilon^{b}) \in L^{1}_{loc} \left(\overline{\mathbb{R}^{3}_{+}} \right) \times L^{1}_{loc} \left(\overline{\mathbb{R}^{3}_{-}} \right) : (\upsilon^{a}_{|B^{a}_{n}}, \upsilon^{b}_{|B^{b}_{n}}) \in L^{2} \left(B^{a}_{n} \right) \times L^{2} \left(B^{b}_{n} \right), \\ & \left(D\upsilon^{a}, D\upsilon^{b} \right) \in \left(L^{2} \left(\mathbb{R}^{3}_{+} \right) \right)^{3} \times \left(L^{2} \left(\mathbb{R}^{3}_{-} \right) \right)^{3}, \int_{B^{a}_{n}} \upsilon^{a} dx + \frac{h^{b}_{n}}{h^{a}_{n}} \int_{B^{b}_{n}} \upsilon^{b} dx = 0, \\ & \upsilon^{a}(x_{1}, x_{2}, 0) = \upsilon^{b}(h^{a}_{n}x_{1}, x_{2}, 0), \text{ for } (x_{1}, x_{2}) \text{ a.e. in } \mathbb{R}^{2} \}, \end{aligned}$$

where $\mathbb{R}^3_+ = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0 \right\}, \ \mathbb{R}^3_- = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 < 0 \right\}, \ B^a_n = \left] -\frac{1}{h^a_n}, \frac{1}{h^a_n} \right[\times]-1, 1[\times]0, 2[\text{ and } B^b_n =]-1, 1[^2 \times \left] -\frac{2}{h^b_n}, 0 \right[.$
For $\underline{m} = (\underline{m}^{a}, \underline{m}^{b}) \in L^{2}(\Omega^{a}, \mathbb{R}^{3}) \times L^{2}(\Omega^{b}, \mathbb{R}^{3})$, the following equation (3.2.2) $\begin{cases} u_{\underline{m}} = \left(u_{\underline{m}}^{a}, u_{\underline{m}}^{b}\right) \in \mathcal{U}_{n}, \\ \int \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{\underline{m}}^{a}, D_{x_{2}} u_{\underline{m}}^{a}, D_{x_{3}} u_{\underline{m}}^{a}\right) \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u^{a}, D_{x_{2}} u^{a}, D_{x_{3}} u^{a}\right) dx + \\ \frac{h_{n}^{b}}{h_{n}^{a}} \int \left(D_{x_{1}} u_{\underline{m}}^{b}, D_{x_{2}} u_{\underline{m}}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m}}^{b}\right) \left(D_{x_{1}} u^{b}, D_{x_{2}} u^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u^{b}\right) dx = \\ \int \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u^{a}, D_{x_{2}} u^{a}, D_{x_{3}} u^{a}\right) \underline{m}^{a} dx + \\ \frac{h_{n}^{b}}{h_{n}^{a}} \int \left(D_{x_{1}} u^{b}, D_{x_{2}} u^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u^{b}\right) \underline{m}^{b} dx, \quad \forall u = (u^{a}, u^{b}) \in \mathcal{U}_{n}, \end{cases}$

which rescales equation (3.1.3), admits a unique solution. Moreover, its solution $u_{\underline{m}} = \left(u_{\underline{m}}^{a}, u_{\underline{m}}^{b}\right) \in \mathcal{U}_{n}$ is characterized as the unique minimizer of the following problem

(3.2.3)
$$\min\left\{\frac{1}{2}\int_{\mathbb{R}^{3}_{+}}\left|\left(\frac{1}{h_{n}^{a}}D_{x_{1}}u^{a}, D_{x_{2}}u^{a}, D_{x_{3}}u^{a}\right) - \underline{m}^{a}\right|^{2}dx + \frac{1}{2}\frac{h_{n}^{b}}{h_{n}^{a}}\int_{\mathbb{R}^{3}_{-}}\left|\left(\frac{1}{h_{n}^{a}}D_{x_{1}}u^{b}, D_{x_{2}}u^{b}, D_{x_{3}}u^{b}\right) - \underline{m}^{b}\right|^{2}dx : u \in \mathcal{U}_{n}\right\},$$

understanding $\underline{m}^a = 0$ in $\mathbb{R}^3_+ \backslash \Omega^a$ and $\underline{m}^b = 0$ in $\mathbb{R}^3_- \backslash \Omega^b$.

For every $n \in \mathbb{N}$, let us consider the following spaces

(3.2.4)
$$\mathcal{W}_{n} = \{ \underline{m} = (\underline{m}^{a}, \underline{m}^{b}) \in H^{1}(\Omega^{a}) \times H^{1}(\Omega^{b}) : \\ \underline{m}^{a}(x_{1}, x_{2}, 0) = \underline{m}^{b}(h_{n}^{a}x_{1}, x_{2}, 0), \text{ for } (x_{1}, x_{2}) \text{ a.e. in }] -\frac{1}{2}, \frac{1}{2} [^{2}] \}$$

and

(3.2.5)
$$\mathcal{M}_n = \mathcal{W}_n \cap \left(H^1\left(\Omega^a, S^2\right) \times H^1\left(\Omega^b, S^2\right) \right).$$

Let $\underline{m_0}_n = (\underline{m_0}_n^a, \underline{m_0}_n^b) \in \mathcal{M}_n$ and $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b) \in L^{\infty}(0, T; \mathcal{M}_n)$ be the rescaling through (3.2.1) of the initial data M_{0n} and of a solution M_n of problem

$$\begin{array}{l} (3.1.4). \text{ Then it results} \\ (3.2.6) \\ \left\{ \begin{array}{l} \displaystyle \frac{m_n}{\partial t} = \left(\underline{m}_n^a, \underline{m}_n^b \right) \in L^{\infty} \left(0, T; \mathcal{M}_n \right), \\ \displaystyle \frac{\partial \underline{m}_n}{\partial t} = \left(\frac{\partial \underline{m}_n^a}{\partial t}, \frac{\partial \underline{m}_n^b}{\partial t} \right) \in L^2 \left(0, T; L^2 (\Omega^a, \mathbb{R}^3) \times L^2 \left(0, T; L^2 (\Omega^b, \mathbb{R}^3) \right), \\ \forall \ \chi \in D \left([0, T] \right) \ \text{and} \ \forall g = \left(g^a, g^b \right) \in \mathcal{W}_n \\ \displaystyle \int_{0}^{T} \int_{\Omega^a} \left(\frac{\partial \underline{m}_n^a}{\partial t} + \underline{m}_n^a \wedge \frac{\partial \underline{m}_n^a}{\partial t} \right) \chi g^a dx dt + \frac{h_n^b}{h_n^a} \int_{0}^{T} \int_{\Omega^b} \left(\frac{\partial \underline{m}_n^b}{\partial t} + \underline{m}_n^b \wedge \frac{\partial \underline{m}_n^b}{\partial t} \right) \chi g^b dx dt = \\ -2 \int_{0}^{T} \int_{\Omega^a} \left[\underline{m}_n^a \wedge \frac{1}{h_n^a} D_{x_1} \underline{m}^a \cdot \frac{1}{h_n^a} \left(D_{x_1} g^a \right) \chi + \sum_{i=2}^3 \underline{m}_n^a \wedge D_{x_i} \underline{m}_n^a \cdot \left(D_{x_i} g^a \right) \chi \right] dx dt \\ -2 \int_{0}^{T} \int_{\Omega^b} \underline{m}_n^a \wedge \left(\frac{1}{h_n^a} D_{x_1} \underline{u}_{\underline{m}_n}^a, D_{x_2} u_{\underline{m}_n}^a, D_{x_3} u_{\underline{m}_n}^a \right) \chi g^a dx dt \\ -2 \frac{h_n^b}{h_n^a} \int_{0}^{T} \int_{\Omega^b} \left[\underline{m}_n^b \wedge \frac{1}{h_n^b} D_{x_3} \underline{m}^b \cdot \frac{1}{h_n^b} \left(D_{x_3} g^b \right) \chi + \sum_{i=1}^2 \underline{m}_n^b \wedge D_{x_i} \underline{m}_n^b \cdot \left(D_{x_i} g^b \right) \chi \right] dx dt \\ -2 \frac{h_n^b}{h_n^a} \int_{0}^{T} \int_{\Omega^b} \underline{m}_n^b \wedge \left(D_{x_1} u_{\underline{m}_n}^b, D_{x_2} u_{\underline{m}_n}^b, \frac{1}{h_n^b} D_{x_3} u_{\underline{m}_n}^b \right) \chi g^b dx dt, \\ \underline{m}_n(0, x) = \underline{m}_{0_n}, \end{array}$$

and
(3.2.7)

$$E_{n}\left(t\right) + \int_{0}^{t} \left\|\frac{\partial \underline{m}_{n}^{a}}{\partial t}\right\|_{\left(L^{2}\left(\Omega^{a}\right)\right)^{3}}^{2} ds + \frac{h_{n}^{b}}{h_{n}^{a}} \int_{0}^{t} \left\|\frac{\partial \underline{m}_{n}^{b}}{\partial t}\right\|_{\left(L^{2}\left(\Omega^{b}\right)\right)^{3}}^{2} ds \leq E_{n}\left(0\right), \forall t \in [0,T],$$

where

$$(3.2.8) \qquad E_{n}(t) = \int_{\Omega^{a}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \underline{m}_{n}^{a}, D_{x_{2}} \underline{m}_{n}^{a}, D_{x_{3}} \underline{m}_{n}^{a} \right) \right|^{2} dx \\ + \frac{1}{2} \int_{\Omega^{a}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{\underline{m}_{n}}^{a}, D_{x_{2}} u_{\underline{m}_{n}}^{a}, D_{x_{3}} u_{\underline{m}_{n}}^{a} \right) \right|^{2} dx \\ + \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left| \left(D_{x_{1}} \underline{m}_{n}^{b}, D_{x_{2}} \underline{m}_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \underline{m}_{n}^{b} \right) \right|^{2} dx \\ + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left| \left(D_{x_{1}} u_{\underline{m}_{n}}^{b}, D_{x_{2}} u_{\underline{m}_{n}}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m}_{n}}^{b} \right) \right|^{2} dx.$$

In the sequel we set

(3.2.9)
$$E_{n}^{mag}(t) = \frac{1}{2} \int_{\mathbb{R}^{3}_{+}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{\underline{m}_{n}}^{a}, D_{x_{2}} u_{\underline{m}_{n}}^{a}, D_{x_{3}} u_{\underline{m}_{n}}^{a} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{\underline{m}_{n}}^{b}, D_{x_{2}} u_{\underline{m}_{n}}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{\underline{m}_{n}}^{b} \right) \right|^{2} dx, \quad \forall t \in [0, T].$$

3.3 The main results

3.3.1 Case q = 0

Let us introduce the following space

(3.3.1)
$$\mathcal{M}_0 = \left\{ \psi^a \in H^1\left(\Omega^a, S^2\right) : \psi^a \text{ is indep. of } x_1 \right\}.$$

Theorem 3.3.1. Let \mathcal{M}_0 be defined by (3.3.1). Assume (3.1.1) with q = 0. For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be a solution of Problem (3.2.6) with the following assumptions on the initial data

$$(3.3.2) \qquad \begin{cases} \frac{\underline{m}_{0_n} = (\underline{m}_{0_n}^a, \underline{m}_{0_n}^b) \in \mathcal{M}_n, & \underline{\mu}_0^a \in \mathcal{M}_0, \\ \underline{m}_{0_n}^a \to \underline{\mu}_0^a \text{ strongly in } H^1\left(\Omega^a, S^2\right), \\ \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} \underline{m}_{0_n}^b \to 0 \text{ strongly in } H^1\left(\Omega^b, \mathbb{R}^3\right), \\ \frac{1}{h_n^a} D_{x_1} \underline{m}_{0_n}^a \to 0 \text{ strongly in } L^2\left(\Omega^a, \mathbb{R}^3\right), \\ \frac{1}{h_n^b} \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} D_{x_3} \underline{m}_{0_n}^b \to 0 \text{ strongly in } L^2\left(\Omega^b, \mathbb{R}^3\right). \end{cases}$$

Then, there exist an increasing sequence of positive integer numbers, still denoted by $\{n\}$, and $\underline{\mu}^a = \left(\underline{\mu}^a_1, \underline{\mu}^a_2, \underline{\mu}^a_3\right) \in L^{\infty}(0, T; \mathcal{M}_0)$, depending on the selected subsequence, such that

$$\begin{cases} \underline{m}_{n}^{a} \rightarrow \mu^{a} \ weakly \ ^{*} \ in \ L^{\infty} \left(0, T; H^{1}(\Omega^{a}, S^{2})\right), \\ \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \rightarrow 0 \ weakly \ ^{*} \ in \ L^{\infty} \left(0, T; H^{1}(\Omega^{b}, \mathbb{R}^{3})\right), \\ \underline{m}_{n}^{a} \rightarrow \mu^{a} \ strongly \ in \ L^{2} \left(0, T; L^{2} \left(\Omega^{a}, S^{2}\right)\right) \ and \ a. \ e. \ in \]0, T[\times \Omega^{a}, \\ \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \rightarrow 0 \ strongly \ in \ L^{2} \left(0, T; L^{2} \left(\Omega^{b}, \mathbb{R}^{3}\right)\right) \ and \ a. \ e. \ in \]0, T[\times \Omega^{b}, \mathbb{R}^{b}, \\ \end{cases}$$

where $\underline{\mu^a}$ is the solution of the following problem

Moreover, the following energy estimates hold (3.3.4)

$$E_{0}(t) + \int_{0}^{t} \left\| \frac{\partial \underline{\mu}^{a}}{\partial t} \right\|_{\left(L^{2}(\left[-\frac{1}{2}, \frac{1}{2} \left[\times \left[0, 1 \right[\right] \right) \right]^{3}} dx_{2} dx_{3} dt \le E_{0}(0) , \forall t \in [0, T],$$

where

(3.3.5)
$$E_0(t) = \int_{\left]-\frac{1}{2}, \frac{1}{2}\right[\times]0,1[} \left|D\underline{\mu}^a\right|^2 dx_2 dx_3 + \frac{1}{2} \int_{\left]-\frac{1}{2}, \frac{1}{2}\left[\times\right]0,1[} \left|\underline{\mu}^a_1\right|^2 dx_2 dx_3.$$

3.3.2 Case $q = +\infty$

Let us introduce the following space

(3.3.6)
$$\mathcal{M}_{\infty} = \left\{ \psi^{b} \in H^{1}\left(\Omega^{b}, S^{2}\right) : \psi^{b} \text{ is independent of } x_{3} \right\}.$$

Theorem 3.3.2. Let \mathcal{M}_{∞} be defined by (3.3.6). Assume (3.1.1) with $q = +\infty$. For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be a solution of Problem (3.2.6) with the following assumptions on the initial data

$$\begin{cases} \underline{m}_{0_n} = (\underline{m}_{0_n}^a, \underline{m}_{0_n}^b) \in \mathcal{M}_n, \quad \underline{\mu}_0^b \in \mathcal{M}_\infty, \\ \left(\frac{h_n^a}{h_n^b}\right)^{\frac{1}{2}} \underline{m}_{0_n}^a \to 0 \text{ strongly in } H^1\left(\Omega^a, \mathbb{R}^3\right), \\ \underline{m}_{0_n}^b \to \mu_0^b \text{ strongly in } H^1\left(\Omega^b, S^2\right), \\ \frac{1}{h_n^a} \left(\frac{h_n^a}{h_n^b}\right)^{\frac{1}{2}} D_{x_1} \underline{m}_{0_n}^a \to 0 \text{ strongly in } L^2\left(\Omega^a, \mathbb{R}^3\right), \\ \frac{1}{h_n^b} D_{x_3} \underline{m}_{0_n}^b \to 0 \text{ strongly in } L^2\left(\Omega^b, \mathbb{R}^3\right). \end{cases}$$

Then, there exist an increasing sequence of positive integer numbers, still denoted by $\{n\}$, and $\underline{\mu}^b = \left(\underline{\mu}^b_1, \underline{\mu}^b_2, \underline{\mu}^b_3\right) \in L^{\infty}(0, T; \mathcal{M}_{\infty})$, depending on the selected subsequence, such that

$$\begin{cases} \left(\frac{h_n^a}{h_n^b}\right)^{\frac{1}{2}} \underline{m}_n^a \to 0 \ \text{weakly} \ * \ in \ L^{\infty}\left(0, T; H^1(\Omega^a, \mathbb{R}^3)\right), \\ \underline{m}_n^b \to \mu^b \ \text{weakly} \ * \ in \ L^{\infty}\left(0, T; H^1(\Omega^b, S^2)\right), \\ \left(\frac{h_n^a}{h_n^b}\right)^{\frac{1}{2}} \underline{m}_n^a \to 0 \ \text{strongly} \ in \ L^2\left(0, T; L^2\left(\Omega^a, \mathbb{R}^3\right)\right) \ \text{and} \ a. \ e. \ in \]0, T[\times \Omega^a, \\ \underline{m}_n^b \to \underline{\mu}^b \ \text{strongly} \ in \ L^2\left(0, T; L^2\left(\Omega^b, S^2\right)\right) \ \text{and} \ a. \ e. \ in \]0, T[\times \Omega^b, \end{cases}$$

where $\underline{\mu}^{b}$ is the solution of the following problem

$$\begin{cases} \underline{\mu}^{b} \in L^{\infty}\left(0,T;\mathcal{M}_{\infty}\right), \ \frac{\partial \underline{\mu}^{b}}{\partial t} \in L^{2}\left(0,T;L^{2}\left(\left]-\frac{1}{2},\frac{1}{2}\right[^{2},\mathbb{R}^{3}\right)\right), \ \underline{\mu}^{b}(0,\cdot) = \underline{\mu}_{0}^{b} \in \mathcal{M}_{\infty}, \\ \forall \ \chi \in D\left(0,T\right), \ \forall g^{b} \in H^{1}\left(\Omega^{b},\mathbb{R}^{3}\right), \ \int_{0}^{T} \int_{\left]-\frac{1}{2},\frac{1}{2}\right]^{2}} \left(\frac{\partial \underline{\mu}^{b}}{\partial t} + \underline{\mu}^{b} \wedge \frac{\partial \underline{\mu}^{b}}{\partial t}\right) \chi g^{b} dx_{1} dx_{2} dt = \\ -2 \int_{0}^{T} \int_{\left]-\frac{1}{2},\frac{1}{2}\right]^{2}} \sum_{i=1}^{2} \underline{\mu}^{b} \wedge D_{x_{i}} \underline{\mu}^{b} D_{x_{i}} g^{b} \chi dx_{1} dx_{2} dt - 2 \int_{0}^{T} \int_{\left]-\frac{1}{2},\frac{1}{2}\right]^{2}} \underline{\mu}^{b} \wedge \left(0,0,\underline{\mu}_{3}^{b}\right) g^{b} \chi dx_{1} dx_{2} dt \end{cases}$$

Moreover the following energy estimates hold

$$E_{\infty}\left(t\right)+\int_{0}^{t}\left\|\frac{\partial\underline{\mu}^{b}}{\partial t}\right\|_{\left(L^{2}\left(\left]-\frac{1}{2},\frac{1}{2}\right[^{2}\right)\right)^{3}}^{2}dx_{1}dx_{2}dt\leq E_{\infty}\left(0\right),\quad\forall\ t\in\left[0,T\right],$$

where

$$E_{\infty}(t) = \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} \left|D\underline{\mu}^{b}\right|^{2} dx_{1} dx_{2} + \frac{1}{2} \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} \left|\underline{\mu}^{b}_{3}\right|^{2} dx_{1} dx_{2}.$$

3.4 The proof in the case q = 0

3.4.1 A priori estimates

Let us recall the following result which can be proved as in [33].

Proposition 3.4.1. Assume (3.1.1) with q = 0 and (3.3.2). For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be a solution of Problem (3.2.6). Then, it results that

$$(3.4.1) \qquad \exists c \in]0, +\infty[: E_n(0) \le c, \quad \forall n \in \mathbb{N}.$$

Remark 3.4.2. Similarly, in the case $q = +\infty$, one can prove that

(3.4.2)
$$\exists c \in]0, +\infty[: \frac{h_n^a}{h_n^b} E_n(0) \le c, \quad \forall n \in \mathbb{N}.$$

The following result is an immediate conseguence of Proposition 3.4.1.

Corollary 3.4.3. Let \mathcal{M}_0 be defined by (3.3.1). Assume (3.1.1) with q = 0and (3.3.2). For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b)$ be a solution of Problem (3.2.6). Then, there exist an increasing sequence of positive integer numbers, still denoted by $\{n\}$, and $\underline{\mu}^a = (\underline{\mu}_1^a, \underline{\mu}_2^a, \underline{\mu}_3^a) \in L^{\infty}(0, T; \mathcal{M}_0)$, depending on the selected subsequence, such that (3.4.3)

$$\begin{cases} \underline{m}_{n}^{a} \rightarrow \underline{\mu}^{a} \ weakly \ast \ in \ L^{\infty}(0,T; H^{1}\left(\Omega^{a}, S^{2}\right)), \\ strongly \ in \ L^{2}(]0, T[\times\Omega^{a}, S^{2}) \ and \ a. \ e. \ in \]0, T[\times\Omega^{a}, \\ \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \rightarrow 0 \ weakly \ast \ in \ L^{\infty}(0,T; H^{1}\left(\Omega^{b}, \mathbb{R}^{3}\right)), \\ strongly \ in \ L^{2}(]0, T[\times\Omega^{b}, \mathbb{R}^{3}) \ and \ a. \ e. \ in \]0, T[\times\Omega^{b}, \\ \left(\frac{\partial \underline{m}_{n}^{a}}{\partial t} \rightarrow \frac{\partial \underline{\mu}^{a}}{\partial t} \ weakly \ in \ L^{2}(]0, T[\times\Omega^{a}, \mathbb{R}^{3}), \\ \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \frac{\partial \underline{m}_{n}^{b}}{\partial t} \rightarrow 0 \ weakly \ in \ L^{2}(]0, T[\times\Omega^{b}, \mathbb{R}^{3}). \end{cases}$$

3.4.2 A convergence result for the magnetostatic energy

Let us identify the limit magnetostatic energy.

Proposition 3.4.4. Assume (3.1.1) with q = 0. For every $n \in \mathbb{N}$, let $\underline{m}_n = (\underline{m}_n^a, \underline{m}_n^b) \in L^{\infty}(0, T; L^2(\Omega^a, \mathbb{R}^3)) \times L^{\infty}(0, T; L^2(\Omega^b, \mathbb{R}^3))$ and $\mu^a = (\mu_1^a, \mu_2^a, \mu_3^a) \in L^{\infty}(0, T; L^2(\Omega^a, \mathbb{R}^3))$ be such that

$$(3.4.4) \qquad \begin{pmatrix} \underline{m}_n^a, \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} \underline{m}_n^b \end{pmatrix} \to (\mu^a, 0) \\ strongly \ in \ L^2(]0, T[\times \Omega^a, \mathbb{R}^3) \times L^2(]0, T[\times \Omega^b, \mathbb{R}^3), \end{cases}$$

as n diverges. Let $u_n = (u_n^a, u_n^b)$ be the unique solution of (3.2.2) corresponding to \underline{m}_n . Then it result that (3.4.5)

$$\begin{cases} \frac{1}{h_n^a} D_{x_1} u_n^a \rightharpoonup \mu_1^a, \quad D_{x_2} u_n^a \rightharpoonup 0, \quad D_{x_3} u_n^a, , \rightharpoonup 0 \\ & weakly \ \ast \ in \ L^{\infty}(0,T; L^2\left(\mathbb{R}^3_+\right)), \\ \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} D_{x_1} u_n^b \rightharpoonup 0, \quad \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} D_{x_2} u_n^b \rightharpoonup 0, \quad \frac{1}{h_n^b} \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} D_{x_3} u_n^b \rightharpoonup 0 \\ & weakly \ \ast \ in \ L^{\infty}(0,T; L^2\left(\mathbb{R}^3_-\right)), \end{cases}$$

as n diverges, and for $t \in [0, T]$

(3.4.6)
$$\lim_{n} E_{n}^{mag}(t) = \frac{1}{2} \int_{\Omega^{a}} |\mu_{1}^{a}|^{2} dx.$$

Proof. Let us choose u = (0, 0) as test function in problem 3.2.3. Then, arguing as in Proposition 3.2 in [34], there exists a constant c (independent of t and n) such that

$$(3.4.7) \quad \begin{cases} \|\frac{1}{h_n^a} D_{x_1} u_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \|D_{x_2} u_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \|D_{x_3} u_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \\ \|D_{x_1} u_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \|D_{x_2} u_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \|\frac{1}{h_n^b} D_{x_3} u_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \end{cases}$$

and

$$(3.4.8) \qquad \begin{cases} Du_n^a \to 0 \quad strongly \text{ in } (L^2(\mathbb{R}^3_+))^3, \\ \frac{1}{h_n^a} D_{x_1} u_n^a \to \mu_1^a \quad strongly \text{ in } L^2(\mathbb{R}^3_+), \\ \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} Du_n^b \to 0 \quad strongly \text{ in } (L^2(\mathbb{R}^3_-))^3, \\ \frac{1}{h_n^b} \left(\frac{h_n^b}{h_n^a}\right)^{\frac{1}{2}} D_{x_3} u_n^b \to 0 \quad strongly \text{ in } L^2(\mathbb{R}^3_-), \end{cases}$$

as *n* diverges, for $t \in]0, T[$, where it is understood that $\mu_1^a = 0$ in $\mathbb{R}^3_+ \setminus \Omega^a$. Limits in (3.4.5) are obtained combining (3.4.7) with (3.4.8).

Finally, passing to the limit in (3.2.9) and taking into account (2.4.22), we obtain

(3.4.9)
$$\lim_{n} E_{n}^{mag}(t) = \lim_{n} \left[\frac{1}{2} \int_{\mathbb{R}^{3}_{+}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} u_{n}^{a}, D_{x_{2}} u_{n}^{a}, D_{x_{3}} u_{n}^{a} \right) \right|^{2} dx + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} u_{n}^{b}, D_{x_{2}} u_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} u_{n}^{b} \right) \right|^{2} dx \right] = \frac{1}{2} \int_{\Omega^{a}} |\mu_{1}^{a}|^{2} dx.$$

3.4.3 Proof of theorem 3.3.1

Let us choose $g = (\psi^a, \psi^a(x_2, 0))$ as test function in (3.2.6), with $\psi^a \in C^{\infty} \left([-\frac{1}{2}, \frac{1}{2}] \times [0, 1], \mathbb{R}^3 \right)$. Then it results

$$\begin{split} &\int_{0}^{T} \int_{\Omega_{n}}^{Q^{a}} \left(\frac{\partial \underline{m}_{n}^{a}}{\partial t} + \underline{m}_{n}^{a} \wedge \frac{\partial \underline{m}_{n}^{a}}{\partial t}\right) \chi \psi^{a} dx dt \\ &+ \int_{0}^{T} \int_{\Omega_{n}}^{D} \left(\frac{h_{n}^{b}}{h_{n}^{a}} \frac{\partial \underline{m}_{n}^{b}}{\partial t} + \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \wedge \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \frac{\partial \underline{m}_{n}^{b}}{\partial t}\right) \chi \psi^{a} (x_{2}, 0) dx dt = \\ &- 2 \int_{0}^{T} \int_{\Omega_{n}}^{S} \sum_{i=2}^{3} \underline{m}_{n}^{a} \wedge D_{x_{i}} \underline{m}_{n}^{a} \cdot (D_{x_{i}} \psi^{a}) \chi dx dt \\ &- 2 \int_{0}^{T} \int_{\Omega_{n}}^{Q} \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \wedge \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{2}} u_{n}^{a}, D_{x_{3}} u_{n}^{a}\right) \chi \psi^{a} dx dt \\ &- 2 \int_{0}^{T} \int_{\Omega_{n}}^{Q} \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \wedge \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{2}} \underline{m}_{n}^{b} \cdot (D_{x_{2}} \psi^{a} (x_{2}, 0)) \chi dx dt \\ &- 2 \int_{0}^{T} \int_{\Omega_{n}^{b}} \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \wedge \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{1}} u_{n}^{b}, \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{2}} u_{n}^{b}, \frac{1}{h_{n}^{b}} \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{3}} u_{n}^{b} \right) \chi \psi^{a} (x_{2}, 0) dx dt, \\ &+ 2 \int_{0}^{T} \int_{\Omega_{n}^{b}} \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} \underline{m}_{n}^{b} \wedge \left(\left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{1}} u_{n}^{b}, \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{2}} u_{n}^{b}, \frac{1}{h_{n}^{b}} \left(\frac{h_{n}^{b}}{h_{n}^{a}}\right)^{\frac{1}{2}} D_{x_{3}} u_{n}^{b} \right) \chi \psi^{a} (x_{2}, 0) dx dt, \\ &\forall \chi \in D\left(0, T\right), \ \forall \psi^{a} \in C^{\infty}\left(\left[-\frac{1}{2}, \frac{1}{2}\right] \times \left[0, 1\right], \mathbb{R}^{3}\right). \end{split}$$

Then passing to the limit in this equation, as n diverges, and using (3.4.3) and (3.4.5), we obtain that $\underline{\mu}^a \in L^{\infty}(0,T; \mathcal{M}_0)$ satisfies

$$\begin{cases} \int_{0}^{T} \int_{\left|-\frac{1}{2},\frac{1}{2}\right| \times \left|0,1\right|} \left(\frac{\partial \underline{\mu}^{a}}{\partial t} + \underline{\mu}^{a} \wedge \frac{\partial \underline{\mu}^{a}}{\partial t}\right) \chi \psi^{a} dx dt = \\ T \\ -2 \int_{0}^{T} \int_{\left|-\frac{1}{2},\frac{1}{2}\right| \times \left|0,1\right|} \sum_{i=2}^{3} \underline{\mu}^{a} \wedge D_{x_{i}} \underline{\mu}^{a} D_{x_{i}} \psi^{a} \chi - 2 \int_{0}^{T} \int_{\left|-\frac{1}{2},\frac{1}{2}\right| \times \left|0,1\right|} \underline{\mu}^{a} \wedge \left(\underline{\mu}_{1}^{a},0,0\right) \chi \psi^{a}, \\ \forall \chi \in D(0,T), \quad \forall \psi^{a} \in C^{\infty}(\left[-\frac{1}{2},\frac{1}{2}\right] \times \left[0,1\right], \mathbb{R}^{3}). \end{cases}$$

Since $C^{\infty}(\left[-\frac{1}{2},\frac{1}{2}\right] \times [0,1], \mathbb{R}^3)$ is dense in $H^1(\Omega^a, \mathbb{R}^3)$, it follows that $\underline{\mu}^a$ solves system in (3.3.3).

The initial condition can be obtained in a classical way. Estimate (3.3.4) can be obtained as in [12], taking into account that assumption (3.3.2) and the

stationary result given in Theorem 4.1 in $\left[33\right]$ provide

$$\begin{split} &\frac{1}{h_n^a} D_{x_1} \underline{u}_{0_n}^a \to \underline{\mu}_{0_1}^a, \quad D_{x_2} \underline{u}_{0_n}^a \to 0, \ D_{x_3} \underline{u}_{0_n}^a \to 0, \text{ strongly in } L^2 \left(\mathbb{R}^3_+ \right), \\ & \left(\frac{h_n^b}{h_n^a} \right)^{\frac{1}{2}} D_{x_1} \underline{u}_{0_n}^b \to 0, \ \left(\frac{h_n^b}{h_n^a} \right)^{\frac{1}{2}} D_{x_2} \underline{u}_{0_n}^b \to 0, \ \frac{1}{h_n^b} \left(\frac{h_n^b}{h_n^a} \right)^{\frac{1}{2}} D_{x_3} \underline{u}_{0_n}^b \to 0 \text{ strongly in } L^2 \left(\mathbb{R}^3_- \right), \end{split}$$

where $\underline{\mu}_{0_1}^a$ is the first component of $\underline{\mu}_0^a$.

Chapter 4

Asymptotic analysis for two joined thin slanting Ferromagnetic films

R. Hadiji, S. Soueid. Asymtotic analysis for two joined thin slanting Ferromagnetic films, soumis pour publication.

Abstract.Starting from a 3D non-convex and nonlocal micromagnetic energy for ferromagnetic materials, we determine, via an asymptotic analysis, the free energy of two joined ferromagnetic thin films. Precisely, how the limit problem depend on limit of the ratio between the volumes of the two joined films.

Mathematics Subject Classification (2000): 78M35, 74K30, 74K35.

Keywords: micromagnetics, variational problem, thin film, junctions.

4.1 Introduction

In this paper, starting from the classical 3D micromagnetic energy (cf. L.D. Landau and E.M. Lifschitz [50]), we determine via an asymptotic analysis, the free energy of a multi-structure ferromagnetic, composed of two joined films, forming an angle $\theta_0 \in]0, \pi[$ at the junction point $(h_n^a x_1, x_2, 0)$ (see Figure 4.1). Precisely, let $\Omega_n^{\theta_0} = \Omega_n^{a,\theta_0} \cup \Omega_n^b$, with $n \in \mathbb{N}, \Omega_n^b =] - \frac{1}{2}, \frac{1}{2}[^2 \times] - h_n^b, 0[$ and Ω_n^{a,θ_0} is a bounded domain in \mathbb{R}^3 , so that form an angle θ_0 with the domain Ω_n^b such that, for all $n \in \mathbb{N}$

$$\Omega_n^{a,\theta_0} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : |x_1 - \cot \theta_0 x_3| < \frac{h_n^a}{2}, (x_2, x_3) \in \left] -\frac{1}{2}, \frac{1}{2} [\times [0, \sin \theta_0] \right\},$$

where h_n^a and h_n^b are the small thickness of Ω_n^{a,θ_0} and Ω_n^b respectively, such that

Figure 4.1: Ω_n^{a,θ_0}

(4.1.1)
$$\begin{cases} \lim_{n} h_{n}^{a} = 0 = \lim_{n} h_{n}^{b}, \\ \lim_{n} \frac{h_{n}^{b}}{h_{n}^{a}} = q \in [0, +\infty], \end{cases}$$

In general, this type of thin films, it is used in apparatus for the storage of numerical information, such as the hard disks , magnetoresistive sensors, inductive thin films heads in magnetic, etc. The aim of this paper, is to study the asymptotic behavior as n diverges of the following problem:

(4.1.2)
$$\min\left\{\int_{\Omega_n^{\theta_0}} (\alpha |D\underline{m}|^2 + \varphi(\underline{m}) + \frac{1}{2}D\underline{\zeta}\underline{m} - 2F_n\underline{m})dx, \underline{m} \in H^1(\Omega_n^{\theta_0}, S^2)\right\}$$

subject to,

(4.1.3)
$$D(-D\zeta + \underline{m}) = 0 \quad \text{in } \mathbb{R}^3$$

where α is the exchange constant and let $\varphi : S^2 \to [0, +\infty[$ is a continuous and even function, $F_n \in L^2(\Omega_n^{\theta_0}, \mathbb{R}^3)$, and S^2 denotes the unit sphere of \mathbb{R}^3 . In classical theory of micromagnetics, $\underline{m} : \Omega_n^{\theta_0} \longrightarrow \mathbb{R}^3$ denotes the magnetization and the body is always locally magnetized to a saturation magnetization $|\underline{m}(x)| = m_s(T) > 0$ unless the local temperature T is greater or equal to Curie temperature depending on the body, in the latter case $\underline{m}(T) = 0$. It is understood that $\underline{m}(x) = 0$ in $\mathbb{R}^3 \setminus \Omega_n^{\theta_0}$. This model was proposed by Brown in [11]. We suppose that the temperature is a constant and lower than Curie temperature and, without loss of generality, we assume that $|\underline{m}| = 1$, i.e. $\underline{m}(x) \in S^2$ a.e in $\Omega_n^{\theta_0}$. The function $\underline{\zeta} : \mathbb{R}^3 \to \mathbb{R}$ denotes the magnetic field potential. The magnetic field potential and the magnetization \underline{m} are connected by equation 4.1.3. Afin to reformulate the problem on a fixed domain $\Omega^{\theta_0} = \Omega^{a,\theta_0} \cup \Omega^b$, where $\Omega^b =] -\frac{1}{2}, \frac{1}{2}[^2 \times] - 1, 0[$ and Ω^{a,θ_0} is a the rescaled domain of Ω_n^{a,θ_0} , we derive the limit problem which depends on the limit $\lim_{n \to a} \frac{h_n^b}{h_n^a} = q \in [0, +\infty]$.

Precisely, if $q \in]0, +\infty[$, we prove that the limit problem is given by

$$\begin{aligned} &(4.1.4)\\ \min\left\{\int_{\Omega^{a,\theta_0}} \left(\alpha |(D_{x_1}\xi^a, D_{x_2}\mu^a, D_{x_3}\mu^a - \cot\theta_0 D_{x_1}\xi^a)|^2 + \varphi(\mu^a) + \frac{1}{2}|\sin\theta_0\mu_1^a - \cos\theta_0\mu_3^a|^2\right) dx \\ &-2\int_{\Omega^{a,\theta_0}} f^a(x_1, x_2, x_3)\mu^a dx - 2q\int_{\Omega^b} f^b(x_1, x_2, x_3)\mu^b dx + \\ &q\int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^2} \left(\alpha |(D_{x_1}\mu^b, D_{x_2}\mu^b)|^2 + \varphi(\mu^b) + \frac{1}{2}|\mu_3^b|^2\right) dx_1 dx_2, \\ &(\mu^a, \mu^b, \xi^a) \in H^1(\Omega^{a,\theta_0}, S^2) \times H^1(\Omega^b, S^2) \times \mathcal{F}, \\ &\mu^a(x_2, 0) = \mu^b(0, x_2) \text{ in }] - \frac{1}{2}, \frac{1}{2}[\left.\right\}, \end{aligned}$$

where μ_1^a , μ_3^a is the first and the third component of μ^a respectively, μ_3^b is the third component of μ^b , $\mathcal{F} = \{g \in L^2(\Omega^{a,\theta_0}) : D_{x_1}g \in L^2(\Omega^{a,\theta_0})\}$, and f^a and f^b are the L^2 -weak limits of the rescaled exterior fields in Ω^{a,θ_0} and Ω^b respectively, we obtain two problem coupled by the junction condition $\mu^a(x_2,0) = \mu^b(0,x_2)$ in $] -\frac{1}{2}, \frac{1}{2}[$.

Remark 4.1.1. • It is easy to see that if $\varphi = 0$ and f = 0, then the limit problem is zero and is attained by $((0, \pm 1, 0), (0, \pm 1, 0))$.

• If $\varphi \neq 0$ and f = 0, there exist several type of anisotropy. In the unixial anisotropy, for wich only one direction $u \in S^2$ is privileged, and we have:

$$\varphi(m) = 1 - (m.u)^2.$$

In this case, we suppose that $u \neq (0, \pm 1, 0)$, it is easy to see that

$$0 = \varphi(\pm u) < \varphi(m), \qquad \text{for all } m \neq \pm u.$$

In this case, we can show easly here that the minimizer of (4.1.4) does not attained by $\pm u$. Therfore, this limit is not parallel to the junction axis.

In the second case, for q = 0 the limit problem reduces to a single domain Ω^{a,θ_0} . Precisely, we prove that the limit problem is

$$\min\left\{\int_{\Omega^{a,\theta_0}} (\alpha |(D_{x_1}\xi^a, D_{x_2}\mu^a, D_{x_3}\mu^a - \cot\theta_0 D_{x_1}\xi^a)|^2 + \varphi(\mu^a) + \frac{1}{2}|\sin\theta_0\mu_1^a - \cos\theta_0\mu_3^a|^2)dx - 2\int_{\Omega^{a,\theta_0}} f^a\mu^a dx, (\mu^a, \xi^a) \in H^1(\Omega^{a,\theta_0}, S^2) \times \mathcal{F}\right\}.$$

Similarly in the last case, for $q = +\infty$ the limit problem reduces to a single domain Ω^b . Precisely, we prove that the limit problem is

$$\min\left\{\int_{]-\frac{1}{2},\frac{1}{2}|^{2}} \left(\alpha |(D_{x_{1}}\mu^{b}, D_{x_{2}}\mu^{b})|^{2} + \varphi(\mu^{b}) + \frac{1}{2}|\mu_{3}^{b}|^{2}\right) dx_{1} dx_{2}$$
$$-2\int_{\Omega^{b}} f^{b}(x_{1}, x_{2}, x_{3})\mu^{b} dx, \mu^{b} \in H^{1}(\Omega^{b}, S^{2})\right\}.$$

The proof of these results are developed in severel steps. If $q \in]0, +\infty[$, we begin by proving a general convergence result for the magnetostatic energy. In the next step, we prove a weak convergence of the magnetization in $H^1(\Omega^{a,\theta_0}, S^2) \times$ $H^1(\Omega^b, S^2)$, verifying the junction condition.

Our study generalizes the cases studed by Gaudiello and Hadiji (cf. [31],[32],[33]), they studied the junction of ferromagnetic bodies. In [33], they considered two orthogonal ferromagnetic thin films and they proved that the limit magnetization are coupled when the volumes of the two thin films vanish with the same rate. In [31] and [32], they developed an asymptotic analysis of minimizing maps with values in S^2 for the energy $\int_{\Omega_n} (|DM|^2 - 2F_nM) dx$, neglecting the term with non-local magnetostatic energy which characterizes the actuel paper.

In what concerns the study of a single ferromagnetic thin film, several results regarding the study of a single ferromagnetic thin film are presented by Gioia and James in [39]. They considered a ferromagnetic thin film (Ω_h of thickness h), and studied the behavior of a thin film, with a external magnetic field equal to zero, when $h \to 0$, the energy of this film depending on the magnetization \overline{m} , Gioia and James proved that the magnetization minimizing the energy converge when $h \to 0$, to a magnetization minimizing the limit energy, and this limit energy is local. This result was extended by Leone and Alicandro in [1] to the case of non-convex exchange energy. In [41] and [42], the authors studied a micromagnetic thin film with degenerate exchange energy. For related problems, some interesting regularity theorems were obtained in [43]. The time dependent case was treated in [12] and in [14]. In general, magnetic thin-film elements are used in many applications: inductive thin films heads, magnetic recording, megnetoresistive sensors, thin films memories, etc. About this subject we refer to Hubert and Schafer in [46]. For recent papers on joined structure see also [38] and [56]

4.1.1 The setting of the problem

Let B be a open bounded containing $\overline{\Omega_n^{\theta_0}}$ for every $n \in \mathbb{N}$, and set

(4.1.5)
$$\mathcal{U} = \left\{ U \in L^1_{loc}(\mathbb{R}^3) : U \in L^2(B), \ DU \in (L^2(\mathbb{R}^3))^3, \ \int_B U dx = 0 \right\}.$$

Remark that $\mathcal U$ is contained in $L^2_{loc}(\mathbb R^3)$ and it is a Hilbert space with the inner product:

$$(U,V) = \int_{\mathbb{R}^3} DUDV dx + \int_B UV dx.$$

From the Poincaré-Wirtinger inequality it follows that a norm on ${\mathcal U}$ is given by

$$(U,U)^{\frac{1}{2}} = \left(\int_{\mathbb{R}^3} |DU|^2 dx\right)^{\frac{1}{2}}.$$

Then, for $\underline{m} \in L^2(\Omega_n^{\theta_0}, \mathbb{R}^3)$, Lax-Milgram Theorem ensures that the following problem

(4.1.6)
$$\begin{cases} \underline{\zeta}_{n,\underline{m}} \in \mathcal{U}, \\ \int_{\mathbb{R}^3} D\underline{\zeta}_{n,\underline{m}} D\underline{\zeta} dx = \int_{\Omega_n^{\theta_0}} \underline{m} D\underline{\zeta} dx = 0, \qquad \forall \underline{\zeta} \in \mathcal{U}, \end{cases}$$

admits a unique solution $\underline{\zeta}_{n,\underline{m}}$ in \mathcal{U} and it is characterized as the unique solution of the following problem:

(4.1.7)
$$\min\left\{\frac{1}{2}\int_{\mathbb{R}^3} |D\underline{\zeta} - \underline{m}|^2 dx : \underline{\zeta} \in \mathcal{U}\right\},$$

where it is understood that $\underline{m} = 0$ in $\mathbb{R}^3 \setminus \Omega_n^{\theta_0}$. Moreover, $\underline{\zeta}_{n,\underline{m}}$ belong to $H^1(\mathbb{R}^3)$ up to additive constant (see. [48]) Let us consider the following problem (4.1.8)

$$\min\left\{\int_{\Omega_n^{\theta_0}} \left(\alpha |\underline{D}\underline{m}|^2 + \varphi(\underline{m}) + \frac{1}{2}\underline{\zeta}_{n,\underline{m}}\underline{m} - 2F_n\underline{m}\right) dx : \underline{m} \in H^1(\Omega_n^{\theta_0}, S^2)\right\},\$$

has at least one solution (cf. [57]). The aim of this paper is to study the asymptotic behavior of problem (4.1.8), as n diverges.

4.1.2 The rescaled problem

In this section, we reformulate problem (4.1.8) on a fixed domain, using the following rescaling

$$\begin{cases} (x_1, x_2, x_3) \in \Omega^{a, \theta_0} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : |x_1 - \cot \theta_0 x_3| < \frac{1}{2}, (x_2, x_3) \in] - \frac{1}{2}, \frac{1}{2} [\times] 0, \sin \theta_0 [\right\} \\ \longrightarrow (h_n^a x_1 + \frac{\cos \theta_0}{\sin \theta_0} (1 - h_n^a) x_3, x_2, x_3) \in int(\Omega_n^{a, \theta_0}), \\ (x_1, x_2, x_3) \in \Omega^b =] - \frac{1}{2}, \frac{1}{2} [^2 \times] - 1, 0 [\longrightarrow (x_1, x_2, h_n^b x_3) \in \Omega_n^b, \end{cases}$$

In fact, for every $n \in \mathbb{N}$ set

$$m: x \in \Omega^{\theta_0} = \Omega^{a,\theta_0} \cup \Omega^b \longmapsto m(x) = \begin{cases} m^a(x) = \underline{m}(h_n^a x_1 + \frac{\cos \theta_0}{\sin \theta_0}(1 - h_n^a)x_3, x_2, x_3) \text{ for } x \text{ a.e. in } \Omega^{a,\theta_0}, \\ m^b(x) = \underline{m}(x_1, x_2, h_n^b x_3) & \text{ for } x \text{ a.e. in } \Omega^b x_1 + \frac{\cos \theta_0}{\sin \theta_0}(1 - h_n^a)x_3, x_2, x_3 \end{cases}$$

Let as set $\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}, \mathbb{R}^3_- = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 < 0\}.$ For every $n \in \mathbb{N}$, let B^a_n and B^b_n is a open bounded in \mathbb{R}^3 containing $\overline{\Omega}^{a,\theta_0}$ and $\overline{\Omega}^b$ respectively, let

$$\begin{aligned} & (4.1.9) \\ & \mathcal{U}_n = \left\{ \quad u = (u^a, u^b) \in L^1_{loc}(\bar{\mathbb{R}}^3_+) \times L^1_{loc}(\bar{\mathbb{R}}^3_-) \ : \ (u^a_{|_{B^a_n}}, u^b_{|_{B^b_n}}) \in L^2(B^a_n) \times L^2(B^b_n), \\ & (Du^a, Du^b) \in (L^2(\mathbb{R}^3_+))^3 \times (L^2(\mathbb{R}^3_-))^3, \quad \int_{B^a_n} u^a dx + \frac{h^b_n}{h^a_n} \int_{B^b_n} u^b dx = 0, \\ & u^a(x_1, x_2, 0) = u^b(h^a_n x_1, x_2, 0), \text{ for } (x_1, x_2) \text{ a.e. in } \mathbb{R}^2 \right\}. \end{aligned}$$

We state problem (4.1.6) in the fixed domain Ω^{θ_0} , for every $m = (m^a, m^b) \in L^2(\Omega^{a,\theta_0}, \mathbb{R}^3) \times L^2(\Omega^b, \mathbb{R}^3)$, the following equation: (4.1.10)

$$\begin{cases} \zeta_{n,m} = (\zeta_{n,m}^{a}, \zeta_{n,m}^{b}) \in \mathcal{U}_{n} \\ \int_{\mathbb{R}^{3}_{+}} \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta_{n,m}^{a}, D_{x_{2}} \zeta_{n,m}^{a}, D_{x_{3}} \zeta_{n,m}^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta_{n,m}^{a} \right) \\ \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta^{a}, D_{x_{2}} \zeta^{a}, D_{x_{3}} \zeta^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta^{a} \right) dx + \\ \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left(D_{x_{1}} \zeta_{n,m}^{b}, D_{x_{2}} \zeta_{n,m}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta_{n,m}^{b} \right) \left(D_{x_{1}} \zeta^{b}, D_{x_{2}} \zeta^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta^{b} \right) dx = \\ \int_{\Omega^{a,\theta_{0}}} \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta^{a}, D_{x_{2}} \zeta^{a}, D_{x_{3}} \zeta^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta^{a} \right) m^{a} dx + \\ \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left(D_{x_{1}} \zeta^{b}, D_{x_{2}} \zeta^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta^{b} \right) m^{b} dx, \quad \zeta = (\zeta^{a}, \zeta^{b}) \in \mathcal{U}_{n}, \end{cases}$$

admits a unique solution $\zeta_{n,m} = (\zeta_{n,m}^a, \zeta_{n,m}^b) \in \mathcal{U}_n$, and this solution is characterized as the unique solution of the following problem:

(4.1.11)
$$j_n(\zeta_{n,m}) = \min\left\{j_n(\zeta) : \zeta \in \mathcal{U}_n\right\},$$

$$(4.1.12) \\ j_n: \zeta = (\zeta^a, \zeta^b) \in \mathcal{U}_n \longrightarrow \frac{1}{2} \int_{\mathbb{R}^3_+} \left| \left(\frac{1}{h_n^a} D_{x_1} \zeta^a, D_{x_2} \zeta^a, D_{x_3} \zeta^a + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} \zeta^a \right) - m^a \right|^2 dx \\ + \frac{1}{2} \frac{h_n^b}{h_n^a} \int_{\mathbb{R}^3_-} \left| \left(D_{x_1} \zeta^b, D_{x_2} \zeta^b, \frac{1}{h_n^b} D_{x_3} \zeta^b \right) - m^b \right|^2 dx.$$

Remark that, $\zeta_{n,m} = (\zeta_{n,m}^a, \zeta_{n,m}^b)$ belongs to $H^1(\mathbb{R}^3_+) \times H^1(\mathbb{R}^3_-)$ up to additive constant. For every $n \in \mathbb{N}$, let (4.1.13)

$$\mathcal{M}_{n} = \left\{ m = (m^{a}, m^{b}) \in H^{1}(\Omega^{a, \theta_{0}}, S^{2}) \times H^{1}(\Omega^{b}, S^{2}) : \\ m^{a}(x_{1}, x_{2}, 0) = m^{b}(h_{n}^{a}x_{1}, x_{2}, 0), \text{ for } (x_{1}, x_{2}) \text{ a.e. in }] - \frac{1}{2}, \frac{1}{2}[^{2}] \right\},$$

$$f_n: x \in \Omega^{a,\theta_0} \cup \Omega^b \longmapsto f_n(x) = \begin{cases} f_n^a(x) = F_n(h_n^a x_1 + \frac{\cos \theta_0}{\sin \theta_0}(1 - h_n^a)x_3, x_2, x_3) & \text{for } x \text{ a.e. in } \Omega^{a,\theta_0}, \\ \\ f_n^b(x) = F_n(x_1, x_2, h_n^b x_3) & \text{for } x \text{ a.e. in } \Omega^b, \end{cases}$$
 let

$$\begin{aligned} &(4.1.14) \\ &E_{n}: m = (m^{a}, m^{b}) \in \mathcal{M}_{n} \longrightarrow \\ &\int_{\Omega^{a,\theta_{0}}} \left(\alpha \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} m^{a}, D_{x_{2}} m^{a}, D_{x_{3}} m^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} m^{a} \right) \right|^{2} + \varphi(m^{a}) - 2f_{n}^{a} m^{a} \right) dx + \\ &\frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left(\alpha \left| \left(D_{x_{1}} m^{b}, D_{x_{2}} m^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} m^{b} \right) \right|^{2} + \varphi(m^{b}) - 2f_{n}^{b} m^{b} \right) dx + \\ &\frac{1}{2} \int_{\Omega^{a,\theta_{0}}} \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta_{n,m}^{a}, D_{x_{2}} \zeta_{n,m}^{a}, D_{x_{3}} \zeta_{n,m}^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta_{n,m}^{a} \right) m^{a} dx + \\ &\frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left(D_{x_{1}} \zeta_{n,m}^{b}, D_{x_{2}} \zeta_{n,m}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta_{n,m}^{b} \right) m^{b} dx. \end{aligned}$$

Then the function defined by

where

 $\underline{m}(h_n^a x_1 + \frac{\cos \theta_0}{\sin \theta_0}(1 - h_n^a)x_3, x_2, x_3) \text{ for } x \text{ a.e. in } \Omega^{a, \theta_0}, \quad \underline{m}(x_1, x_2, h_n^b x_3) \text{ for } x \text{ a.e. in } \Omega^b,$

with \underline{m} solution of problem (4.1.8), as a minimizer of the following problem:

(4.1.15)
$$\min\left\{E_n(m): m \in \mathcal{M}_n\right\}.$$

Remark that, setting for every
$$n \in \mathbb{N}$$

(4.1.16)
 $E_n^{mag}: m = (m^a, m^b) \in L^2(\Omega^{a,\theta_0}, \mathbb{R}^3) \times L^2(\Omega^b, \mathbb{R}^3) \longrightarrow$
 $\frac{1}{2} \int_{\Omega^{a,\theta_0}} \left(\frac{1}{h_n^a} D_{x_1} \zeta_{n,m}^a, D_{x_2} \zeta_{n,m}^a, D_{x_3} \zeta_{n,m}^a + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} \zeta_{n,m}^a \right) m^a dx +$
 $\frac{1}{2} \frac{h_n^b}{h_n^a} \int_{\Omega^b} \left(D_{x_1} \zeta_{n,m}^b, D_{x_2} \zeta_{n,m}^b, \frac{1}{h_n^b} D_{x_3} \zeta_{n,m}^b \right) m^b dx =$
 $\frac{1}{2} \int_{\mathbb{R}^3_+} \left| \left(\frac{1}{h_n^a} D_{x_1} \zeta_{n,m}^a, D_{x_2} \zeta_{n,m}^a, D_{x_3} \zeta_{n,m}^a + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} \zeta_{n,m}^a \right) \right|^2 dx +$
 $\frac{1}{2} \frac{h_n^b}{h_n^a} \int_{\mathbb{R}^3_-} \left| \left(D_{x_1} \zeta_{n,m}^b, D_{x_2} \zeta_{n,m}^b, \frac{1}{h_n^b} D_{x_3} \zeta_{n,m}^b \right) \right|^2 dx,$

from (4.1.10), it follows that (4.1.17)

$$\begin{split} E_n(m) &= \int_{\Omega^{a,\theta_0}} \left(\alpha \left| \left(\frac{1}{h_n^a} D_{x_1} m^a, D_{x_2} m^a, D_{x_3} m^a + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} m^a \right) \right|^2 + \varphi(m^a) - 2f_n^a m^a \right) dx \\ &+ \frac{h_n^b}{h_n^a} \int_{\Omega^b} \left(\alpha \left| \left(D_{x_1} m^b, D_{x_2} m^b, \frac{1}{h_n^b} D_{x_3} m^b \right) \right|^2 + \varphi(m^b) - 2f_n^b m^b \right) dx + E_n^{mag}(m), \\ \forall m = (m^a, m^b) \in \mathcal{M}_n, \quad \forall n \in \mathbb{N}. \end{split}$$

Actually, the goal of this paper is to study the asymptotic behavior, as n diverges, of problem (4.1.15). To this aim, Assume that

(4.1.18)
$$f_n^a \to f^a$$
 weakly in $L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \qquad f_n^b \to f^b$ weakly in $L^2(\Omega^b, \mathbb{R}^3).$

4.1.3 preliminary

Let us define

(4.1.19)
$$\mathcal{F} = \left\{ g \in L^2(\Omega^{a,\theta_0}) : D_{x_1}g \in L^2(\Omega^{a,\theta_0}) \right\},$$

remark that ${\mathcal F}$ it is a Hilbert space with the norm

$$(u, u)_{\mathcal{F}} = \left(\int_{\Omega^{a, \theta_0}} |u|^2 dx\right)^{\frac{1}{2}} + \left(\int_{\Omega^{a, \theta_0}} |D_{x_1}u|^2 dx\right)^{\frac{1}{2}},$$

Using standard arguments (see. [10]), we have $C^{\infty}(\overline{\Omega}^{a,\theta_0})$ is dense in \mathcal{F} .

4.2 The main results

Let

$$\mathcal{M} = \left\{ \mu = (\mu^a, \mu^b) \in H^1(\Omega^{a, \theta_0}, S^2) \times H^1(\Omega^b, S^2) : \right.$$

 μ^a is independent of x_1, μ^b is independent of x_3 ,

(4.2.1)

$$\mu^{a}(x_{2},0) = \mu^{b}(0,x_{2}), \text{ for } x_{2} \text{ a.e. in }] - \frac{1}{2}, \frac{1}{2}[\}$$

$$\simeq \left\{ \mu = (\mu^{a},\mu^{b}) \in H^{1}(] - \frac{1}{2}, \frac{1}{2}[\times]0, \sin\theta_{0}[,S^{2}) \times H^{1}(] - \frac{1}{2}, \frac{1}{2}[^{2},S^{2}) : \right\}$$

 μ^a is independent of x_1, μ^b is independent of x_3 ,

$$\mu^{a}(x_{2},0) = \mu^{b}(0,x_{2}), \text{ for } x_{2} \text{ a.e. in }] -\frac{1}{2}, \frac{1}{2}[$$

and for
$$q \in]0, \infty[$$
, let
(4.2.2)
 $E_q : (\mu^a, \mu^b, \xi^a) \in \mathcal{M} \times \mathcal{F} \longrightarrow$
 $\int_{\Omega^{a,\theta_0}} \left(\alpha |(D_{x_1}\xi^a, D_{x_2}\mu^a, D_{x_3}\mu^a - \cot\theta_0 D_{x_1}\xi^a)|^2 + \varphi(\mu^a) + \frac{1}{2} |\sin\theta_0\mu_1^a - \cos\theta_0\mu_3^a|^2 \right) dx -$
 $2 \int_{\Omega^{a,\theta_0}} f^a(x_1, x_2, x_3) \mu^a dx - 2q \int_{\Omega^b} f^b(x_1, x_2, x_3) \mu^b dx +$
 $q \int_{]-\frac{1}{2}, \frac{1}{2}[^2} \left(\alpha |(D_{x_1}\mu^b, D_{x_2}\mu^b)|^2 + \varphi(\mu^b) + \frac{1}{2} |\mu_3^b|^2 \right) dx_1 dx_2,$

Our first main result is

 $\begin{array}{l} \textbf{Theorem 4.2.1.} Assume (4.1.1) with \ q \in]0, +\infty[and (4.1.18). For every \\ n \in \mathbb{N}, \ let \ m_n = (m_n^a, m_n^b) \ be \ a \ solution \ of \ (4.1.15) \ and \ \zeta_n = (\zeta_n^a, \zeta_n^b) \ be \ the \\ unique \ solution \ of \ (4.1.11) \ corresponding \ to \ m_n, \ let \ \xi_n^{(1)}(x_2, x_3) = \int_{-\frac{1}{2}}^{\frac{1}{2}} m_n^a(x_1 + \\ \cot \ \theta_0 x_3, x_2, x_3) dx_1. \ Then, \ there \ exist \ a \ subsequence \ (m_{n_i})_{i \in \mathbb{N}} \ and \ (\hat{\mu}^a, \hat{\mu}^b, \hat{\xi}^a) \in \\ \mathcal{M} \times \mathcal{F}, \ depending \ on \ the \ selected \ subsequence, \ such \ that \\ (4.2.3) \\ \left\{ \begin{array}{c} m_{n_i}^a \to \hat{\mu}^a \ strongly \ in \ H^1(\Omega^{a,\theta_0}, S^2), m_{n_i}^b \to \hat{\mu}^b \ strongly \ in \ H^1(\Omega^b, S^2), \\ \frac{1}{h_{n_i}^a}(m_{n_i}^a - \xi_{n_i}^{(1)}) \to \hat{\xi}^a \ weakly \ in \ \mathcal{F}, \end{array} \right. \end{array} \right.$

(4.2.4)
$$\begin{cases} \frac{1}{h_{n_i}^a} D_{x_1} m_{n_i}^a \to D_{x_1} \hat{\xi}^a \text{ strongly in } L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \\ \frac{1}{h_{n_i}^b} D_{x_3} m_{n_i}^b \to 0 \text{ strongly in } L^2(\Omega^b, \mathbb{R}^3), \end{cases}$$

$$\begin{cases} and \\ (4.2.5) \\ \begin{cases} \frac{1}{h_{n_i}^a} D_{x_1} \zeta_{n_i}^a \to \sin^2 \theta_0 \tilde{\hat{\mu}}_1^a - \sin \theta_0 \cos \theta_0 \tilde{\hat{\mu}}_3^a, \quad D_{x_2} \zeta_{n_i}^a \to 0, \quad D_{x_3} \zeta_{n_i}^a \to 0 \quad strongly \ in \ L^2(\mathbb{R}^3_+), \\ \\ D_{x_1} \zeta_{n_i}^b \to 0, \quad D_{x_2} \zeta_{n_i}^b \to 0, \quad \frac{1}{h_{n_i}^b} D_{x_3} \zeta_{n_i}^b \to \tilde{\hat{\mu}}_3^b \qquad strongly \ in \ L^2(\mathbb{R}^3_-), \end{cases}$$

as i and n diverges, where $\tilde{\mu}_1^a$, $\tilde{\mu}_3^a$ and $\tilde{\mu}_3^b$ denote the zero extension of $\hat{\mu}_1^a$, $\hat{\mu}_3^a$ and $\hat{\mu}_3^b$ on \mathbb{R}^3 respectively, and $(\hat{\mu}, \hat{\xi}^a)$ is a solution of the following problem

(4.2.6) $E_q(\hat{\mu}, \hat{\xi}^a) = \min \left\{ E_q(\mu, \xi^a) : (\mu, \xi^a) \in \mathcal{M} \times \mathcal{F} \right\},$

where \mathcal{M} and E_q be defined (4.2.1) and (4.2.2), respectively. Moreover, it results that

(4.2.7)
$$\lim_{n} E_n(m_n) = E_q(\hat{\mu}^a, \hat{\xi}^a).$$

If q = 0, let

(4.2.8)
$$\mathcal{M}_0 = \left\{ \mu^a \in H^1(\Omega^{a,\theta_0}, S^2) : \mu^a \text{ is independent of } x_1 \right\}$$

and

(4.2.9) $E_0: (\mu^a, \xi^a) \in \mathcal{M}_0 \times \mathcal{F} \longrightarrow$

$$\begin{split} &\int_{\Omega^{a,\theta_0}} \left(\alpha |(D_{x_1}\xi^a, D_{x_2}\mu^a, D_{x_3}\mu^a - \cot\theta_0 D_{x_1}\xi^a)|^2 + \varphi(\mu^a) + \frac{1}{2} |\sin\theta_0\mu_1^a - \cos\theta_0\mu_3^a|^2 \right) dx \\ &- 2 \int_{\Omega^{a,\theta_0}} f^a(x_1, x_2, x_3) \mu^a dx, \end{split}$$

then, it results that

Theorem 4.2.2. Assume (4.1.1) with q = 0 and (4.1.18). For every $n \in \mathbb{N}$, let $m_n = (m_n^a, m_n^b)$ be a solution of (4.1.15) and $\zeta_n = (\zeta_n^a, \zeta_n^b)$ be the unique solution of (4.1.11) corresponding to m_n , let $\xi_n^{(1)}(x_2, x_3) = \int_{-\frac{1}{2}}^{\frac{1}{2}} m_n^a(x_1 + \sum_{n=1}^{\infty} m_n^a) dx_n^n$

 $\cot \theta_0 x_3, x_2, x_3) dx_1$. Then, there exist a subsequence $(m_{n_i})_{i \in \mathbb{N}}$ and $(\hat{\mu}^a, \hat{\mu}^b, \hat{\xi}^a) \in \mathcal{M} \times \mathcal{F}$, depending on the selected subsequence, such that (4.2.10)

$$\begin{cases} \stackrel{'a}{m_{n_i}^a} \to \hat{\mu}^a \ strongly \ in \ H^1(\Omega^{a,\theta_0}, S^2), m_{n_i}^b \to \hat{\mu}^b \ strongly \ in \ H^1(\Omega^b, S^2), \\ \\ \frac{1}{h_{n_i}^a}(m_{n_i}^a - \xi_{n_i}^{(1)}) \to \hat{\xi}^a \ weakly \ in \ \mathcal{F}, \end{cases}$$

(4.2.11)
$$\begin{cases} \frac{1}{h_{n_i}^a} D_{x_1} m_{n_i}^a \to D_{x_1} \hat{\xi}^a & strongly in L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \\ \frac{1}{h_{n_i}^b} \left(\frac{h_{n_i}^b}{h_{n_i}^a}\right)^{\frac{1}{2}} D_{x_3} m_{n_i}^b \to 0 & strongly in L^2(\Omega^b, \mathbb{R}^3), \end{cases}$$

and

$$\begin{cases} (4.2.12) \\ \begin{cases} \frac{1}{h_{n_i}^a} D_{x_1} \zeta_{n_i}^a \to \sin^2 \theta_0 \tilde{\hat{\mu}}_1^a - \sin \theta_0 \cos \theta_0 \tilde{\hat{\mu}}_3^a, \quad D_{x_2} \zeta_{n_i}^a \to 0, \quad D_{x_3} \zeta_{n_i}^a \to 0 \quad strongly \ in \ L^2(\mathbb{R}^3_-), \\ \\ \begin{pmatrix} \frac{h_{n_i}^b}{h_{n_i}^a} \end{pmatrix}^{\frac{1}{2}} D_{x_1} \zeta_{n_i}^b \to 0, \quad \left(\frac{h_{n_i}^b}{h_{n_i}^a} \right)^{\frac{1}{2}} D_{x_2} \zeta_{n_i}^b \to 0, \quad \frac{1}{h_{n_i}^b} \left(\frac{h_{n_i}^b}{h_{n_i}^a} \right)^{\frac{1}{2}} D_{x_3} \zeta_{n_i}^b \to 0 \quad strongly \ in \ L^2(\mathbb{R}^3_+), \end{cases}$$

as i and n diverges, where $\tilde{\mu}_1^a$ and $\tilde{\mu}_3^a$ denote the zero extension of $\hat{\mu}_1^a$ and $\hat{\mu}_3^a$ on \mathbb{R}^3 respectively, and $(\hat{\mu}^a, \hat{\xi}^a)$ is a solution of the following problem:

(4.2.13)
$$E_0(\hat{\mu}^a, \hat{\xi}^a) = \min\{E_0(\mu^a, \xi^a) : (\mu^a, \xi^a) \in \mathcal{M}_0 \times \mathcal{F}\}.$$

Moreover, it results that

(4.2.14)
$$\lim_{n} E_n(m_n) = E_0(\hat{\mu}^a, \hat{\xi}^a).$$

In the case $q = +\infty$, let (4.2.15)

$$\mathcal{M}_{\infty} = \left\{ \mu^{b} \in H^{1}(\Omega^{b}, S^{2}) : \mu^{b} \text{ is independent of } x_{3} \right\} \simeq H^{1}(] - \frac{1}{2}, \frac{1}{2}[^{2}, S^{2})$$

and
(4.2.16)

$$E_{\infty}: \mu = \mu^{b} \in \mathcal{M}_{\infty} \longrightarrow$$

$$\int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(\alpha |(D_{x_{1}}\mu^{b}, D_{x_{2}}\mu^{b})|^{2} + \varphi(\mu^{b}) + \frac{1}{2}|\mu_{3}^{b}|^{2} \right) dx_{1} dx_{2} - 2 \int_{\Omega^{b}} f^{b}(x_{1}, x_{2}, x_{3}) \mu^{b} dx,$$

then, it results that:

Theorem 4.2.3. Assume (4.1.1) with $q = +\infty$ and (4.1.18). For every $n \in \mathbb{N}$, let $m_n = (m_n^a, m_n^b)$ be a solution of (4.1.15) and $\zeta_n = (\zeta_n^a, \zeta_n^b)$ be the unique solution of (4.1.11) corresponding to m_n . Then, there exist a subsequence $(m_{n_i})_{i \in \mathbb{N}}$ and $\hat{\mu}^b \in \mathcal{M}_{\infty}$, depending on the selected subsequence, such that

$$(4.2.17) \qquad \begin{cases} \left(\frac{h_{n_i}^a}{h_{n_i}^b}\right)^{\frac{1}{2}} m_{n_i}^a \to 0 & strongly \ in \ H^1(\Omega^{a,\theta_0}, S^2), \\ m_{n_i}^b \to \hat{\mu}^b & strongly \ in \ H^1(\Omega^b, S^2), \end{cases}$$

$$(4.2.18) \qquad \begin{cases} \frac{1}{h_{n_i}^a} \left(\frac{h_{n_i}^a}{h_{n_i}^b}\right)^{\frac{1}{2}} D_{x_1} m_{n_i}^a \to 0, & strongly \ in \ L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \\ \frac{1}{h_{n_i}^b} D_{x_3} m_{n_i}^b \to 0 & strongly \ in \ L^2(\Omega^b, \mathbb{R}^3), \end{cases}$$

and

$$\begin{cases}
\left(4.2.19\right) \\
\left\{\begin{array}{l}
\frac{1}{h_{n_i}^a} \left(\frac{h_{n_i}^a}{h_{n_i}^b}\right)^{\frac{1}{2}} D_{x_1} \zeta_{n_i}^a \to 0, \quad \left(\frac{h_{n_i}^a}{h_{n_i}^b}\right)^{\frac{1}{2}} D_{x_2} \zeta_{n_i}^a \to 0, \quad \left(\frac{h_{n_i}^a}{h_{n_i}^b}\right)^{\frac{1}{2}} D_{x_3} \zeta_{n_i}^a \to 0 \quad strongly \ in \ L^2(\mathbb{R}^3_+), \\
D_{x_1} \zeta_{n_i}^b \to 0, \quad D_{x_2} \zeta_{n_i}^b \to 0, \quad \frac{1}{h_{n_i}^b} D_{x_3} \zeta_{n_i}^b \to \hat{\mu}_3^b \quad strongly \ in \ L^2(\mathbb{R}^3_-), \\
\end{cases}$$

as i and n diverges, where $\tilde{\mu}_3^b$ denote the zero extension of $\hat{\mu}_3^b$ on \mathbb{R}^3 , and $\hat{\mu}^b$ is a solution of the following problem:

(4.2.20)
$$E_{\infty}(\hat{\mu}^b) = \min\{E_{\infty}(\mu^b) : \mu^b \in \mathcal{M}_{\infty}\}.$$

Moreover, it results that

(4.2.21)
$$\lim_{n} \left(\frac{h_n^a}{h_n^b} E_n(m_n) \right) = E_{\infty}(\hat{\mu}^b)$$

4.3 If $q \in]0, +\infty[$

The proof of Theorem 4.2.1 well developed in several steps. We begin by proving a general convergence result for the magnetostatic energy.

4.3.1 A convergence result for the magnetostatic energy

Proposition 4.3.1. Assume (4.1.1), with $q \in [0, +\infty[$. Let $\{m_n = (m_n^a, m_n^b)\}_{n \in \mathbb{N}} \subset L^2(\Omega^{a,\theta_0}, \mathbb{R}^3) \times L^2(\Omega^b, \mathbb{R}^3)$ and $\mu = (\mu^a, \mu^b) = ((\mu_1^a, \mu_2^a, \mu_3^a), (\mu_1^b, \mu_2^b, \mu_3^b)) \in L^2(\Omega^{a,\theta_0}, \mathbb{R}^3) \times L^2(\Omega^b, \mathbb{R}^3)$ such that μ^a and μ^b be a independent of x_1 and x_3 respectively, and

$$(4.3.1) \quad (m_n^a, m_n^b) \longrightarrow (\mu^a, \mu^b) \qquad strongly in \ L^2(\Omega^{a, \theta_0}, \mathbb{R}^3) \times L^2(\Omega^b, \mathbb{R}^3)$$

as n diverges. Let $\zeta_n = (\zeta_n^a, \zeta_n^b)$ be the unique solution of (4.1.11) corresponding to m_n . Then, it results that (4.3.2)

$$\begin{cases} \frac{1}{h_n^a} D_{x_1} \zeta_n^a \to \sin^2 \theta_0 \mu_1^a - \sin \theta_0 \cos \theta_0 \mu_3^a, \quad D_{x_2} \zeta_n^a \to 0, \quad D_{x_3} \zeta_n^a \to 0 \quad strongly \ in \ L^2(\mathbb{R}^3_+), \\ D_{x_1} \zeta_n^b \to 0, \quad D_{x_2} \zeta_n^b \to 0, \quad \frac{1}{h_n^b} D_{x_3} \zeta_n^b \to \mu_3^b \qquad strongly \ in \ L^2(\mathbb{R}^3_-), \end{cases}$$

as n diverges, and (4.3.3)

$$\lim_{n} E_{n}^{mag}(m_{n}) = \frac{1}{2} \left(\int_{\Omega^{a,\theta_{0}}} |\sin\theta_{0}\mu_{1}^{a} - \cos\theta_{0}\mu_{3}^{a}|^{2} dx_{2} dx_{3} + q \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} |\mu_{3}^{b}|^{2} dx_{1} dx_{2} \right).$$

Proof. For a given ζ_n is a solution of the problem (4.1.11), and by choosing $\zeta = (0,0)$ as test function in (4.1.11) corresponding to m_n , it results that (4.3.4)

$$\exists c \in]0, +\infty[: \int_{\mathbb{R}^{3}_{+}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta_{n}^{a}, D_{x_{2}} \zeta_{n}^{a}, D_{x_{3}} \zeta_{n}^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta_{n}^{a} \right) - m_{n}^{a} \right|^{2} dx + \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} \zeta_{n}^{b}, D_{x_{2}} \zeta_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta_{n}^{b} \right) - m_{n}^{b} \right|^{2} dx \leqslant c, \forall n \in \mathbb{N}.$$

Applying the triangle inequality and by taking into account the fact that $|m_n| = 1$ and (4.1.1), we prove the existence of a positive constant $c \in]0, +\infty[$, such that

$$(4.3.5) \quad \begin{cases} \exists c \in]0, +\infty[, \\ \|\frac{1}{h_n^a} D_{x_1} \zeta_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \|D_{x_2} \zeta_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \|D_{x_3} \zeta_n^a\|_{L^2(\mathbb{R}^3_+)} \leqslant c, \\ \|D_{x_1} \zeta_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \|D_{x_2} \zeta_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \|\frac{1}{h_n^b} D_{x_3} \zeta_n^b\|_{L^2(\mathbb{R}^3_-)} \leqslant c, \end{cases}$$

From the Sobolev-Gagliardo-Niremberg inequality and (3.5), we obtain

(4.3.6)
$$\exists c \in]0 + \infty[: \|\zeta_n\|_{L^6(\mathbb{R}^3)} \leq c, \forall n \in \mathbb{N}.$$

Moreover, the estimates (4.3.5) and (4.3.6) guarantee the existence of a function $\zeta = (\zeta^a, \zeta^b) \in L^6(\mathbb{R}^3_+) \times L^6(\mathbb{R}^3_-)$ and $D\zeta = (D\zeta^a, D\zeta^b) \in (L^2(\mathbb{R}^3_+))^3 \times (L^2(\mathbb{R}^3_-))^3$, where ζ^a and ζ^b is independent of x_1 and x_3 respectively, such that (4.3.7) $\begin{cases} \zeta^a_n \rightharpoonup \zeta^a & \text{weakly in } L^6(\mathbb{R}^3_+), & D\zeta^a_n \rightharpoonup D\zeta^a & \text{weakly in } (L^2(\mathbb{R}^3_+))^3, \end{cases}$

$$\left(\begin{array}{cc} \zeta_n^b \rightharpoonup \zeta^b & \text{weakly in } L^6(\mathbb{R}^3_-), & D\zeta_n^b \rightharpoonup D\zeta^b & \text{weakly in } (L^2(\mathbb{R}^3_-))^3, \end{array} \right)$$

as n diverges. Moreover, the fact that ζ^a is independent of x_1 and $D\zeta^a \in$

 $(L^2(\mathbb{R}^3_+))^3$, gives that

$$+\infty > \int_{\mathbb{R}^3_+} |D\zeta^a|^2 dx \ge \int_{]a,b[} \left(\int_{\mathbb{R}^2_+} \left(|D_{x_2}\zeta^a|^2 + |D_{x_3}\zeta^a|^2 \right) d(x_2,x_3) \right) dx_1 = (b-a) \int_{\mathbb{R}^2_+} \left(|D_{x_2}\zeta^a|^2 + |D_{x_3}\zeta^a|^2 \right) d(x_2,x_3), \forall a,b \in \mathbb{R} \text{ where } a < b$$

which gives that ζ^a is independent of x_2 and x_3 , then $\zeta^a = 0$ in $L^6(\mathbb{R}^3_+)$. Similarly, we obtain $\zeta^b = 0$ in $L^6(\mathbb{R}^3_-)$. It results that

(4.3.8)
$$\begin{cases} D\zeta_n^a \to 0 & \text{weakly in } (L^2(\mathbb{R}^3_+))^3, \\ D\zeta_n^b \to 0 & \text{weakly in } (L^2(\mathbb{R}^3_-))^3, \end{cases}$$

as n diverges. Moreover, (4.3.5) guarantee the existence of $\rho^a \in L^2(\mathbb{R}^3_+)$ and $\rho^b \in L^2(\mathbb{R}^3_-)$ such that

(4.3.9)
$$\begin{cases} \frac{1}{h_n^a} D_{x_1} \zeta_n^a \rightharpoonup \rho^a & \text{weakly in } L^2(\mathbb{R}^3_+), \\ \frac{1}{h_n^b} D_{x_3} \zeta_n^b \rightharpoonup \rho^b & \text{weakly in } L^2(\mathbb{R}^3_-), \end{cases}$$

as *n* diverges. The next step is devoted to identify ρ^a and ρ^b . In this aim, now in equation (4.1.10), choose

(4.3.10)
$$\begin{cases} m = m_n, \\ \zeta^a = c_n^a + \varphi \quad \text{where} \quad \varphi \in C_0^\infty(\mathbb{R}^3_+), \\ \zeta^b = c_n^a, \end{cases}$$

with $c_n^a = -(|B_n^a| + \frac{h_n^b}{h_n^a}|B_n^b|)^{-1} \int_{B_n^a} \varphi dx.$ After having multiplied this equation by h_n^a , we obtain

$$\begin{split} &\int_{\mathbb{R}^3_+} \left(\frac{1}{h_n^a} D_{x_1} \zeta_n^a, D_{x_2} \zeta_n^a, D_{x_3} \zeta_n^a + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} \zeta_n^a \right) \left(D_{x_1} \varphi, h_n^a D_{x_2} \varphi, h_n^a D_{x_3} \varphi + \frac{\cos \theta_0}{\sin \theta_0} (h_n^a - 1) D_{x_1} \varphi \right) dx \\ &= \int_{\Omega^{a,\theta_0}} \left(D_{x_1} \varphi, h_n^a D_{x_2} \varphi, h_n^a D_{x_3} \varphi + \frac{\cos \theta_0}{\sin \theta_0} (h_n^a - 1) D_{x_1} \varphi \right) m_n^a dx, \quad \forall \varphi \in C_0^\infty(\mathbb{R}^3_+), \end{split}$$

by passing to the limit as n diverges and by taking into account (4.3.8) and (4.3.9) we obtain

(4.3.11)
$$\int_{\mathbb{R}^3_+} \frac{1}{\sin^2 \theta_0} \rho^a D_{x_1} \varphi dx = \int_{\mathbb{R}^3_+} (\tilde{\mu}_1^a - \frac{\cos \theta_0}{\sin \theta_0} \tilde{\mu}_3^a) D_{x_1} \varphi dx,$$

where $\tilde{\mu}_1^a$ and $\tilde{\mu}_3^a$ denotes the zero extension of μ_1^a and μ_3^a on $\mathbb{R}_3^+ \setminus \Omega^{a,\theta_0}$ respectively, this proves that for (x_2, x_3) a.e. in \mathbb{R}_+^2 , the function $\frac{1}{\sin^2\theta_0}\rho^a(., x_2, x_3) - \left(\tilde{\mu}_1^a(., x_2, x_3) - \frac{\cos\theta_0}{\sin\theta_0}\tilde{\mu}_3^a(., x_2, x_3)\right)$ is constant in \mathbb{R} , and the fact that $\frac{1}{\sin^2\theta_0}\rho^a(., x_2, x_3) - \left(\tilde{\mu}_1^a(., x_2, x_3) - \frac{\cos\theta_0}{\sin\theta_0}\tilde{\mu}_3^a(., x_2, x_3)\right) \in L^2(\mathbb{R})$, we concludes

$$\rho^{a}(., x_{2}, x_{3}) = \sin^{2}\theta_{0}\tilde{\mu}_{1}^{a}(., x_{2}, x_{3}) - \sin\theta_{0}\cos\theta_{0}\tilde{\mu}_{3}^{a}(., x_{2}, x_{3}) \quad \text{ a.e. in } \mathbb{R}$$

Then

(4.3.12)
$$\rho^{a}(x) = \begin{cases} \sin^{2}\theta_{0}\mu_{1}^{a} - \sin\theta_{0}\cos\theta_{0}\mu_{3}^{a} & \text{a.e. in } \Omega^{a,\theta_{0}}, \\ \\ 0 & \text{a.e. in } \mathbb{R}^{3} \setminus \Omega^{a,\theta_{0}}, \end{cases}$$

similarly, now, in equation (4.1.10), choose

$$\begin{split} & \zeta \ m = m_n, \\ & \zeta^b = c_n^b + \varphi \quad \text{where} \quad \varphi \in C_0^\infty(\mathbb{R}^3_-), \\ & \zeta^a = c_n^b, \end{split}$$

with $c_n^b = -(|B_n^a| + \frac{h_n^b}{h_n^a}|B_n^b|)^{-1}\frac{h_n^b}{h_n^a}\int_{B_n^b}\varphi dx$, we obtain

(4.3.13)
$$\rho^b(x) = \begin{cases} \mu_3^b(x_2, x_3) & \text{a.e. in } \Omega^b, \\ 0 & \text{a.e. in } \mathbb{R}^3 \setminus \Omega^b, \end{cases}$$

The last step is devoted to prove that convergences in (4.3.8) and (4.3.9) are strong, and we have convergence (4.3.3). Let $w_n = D_{x_3}\zeta_n^a + \frac{\cos\theta_0}{\sin\theta_0}(1-\frac{1}{h_n^a})D_{x_1}\zeta_n^a$, from (4.3.8) and (4.3.9) we have

$$w_n \rightharpoonup -\frac{\cos \theta_0}{\sin \theta_0} \rho^a$$
 weakly in $L^2(\mathbb{R}^3_+)$.

By passing to the limit in (4.1.16) with $m = m_n$ and using (4.3.1), (4.3.8) and (4.3.9) we obtain the convergence of the energie:

$$\begin{aligned} (4.3.14) \\ \lim_{n} E_{n}^{mag}(m_{n}) &= \lim_{n} \left[\frac{1}{2} \int_{\mathbb{R}^{3}_{+}} \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta_{n}^{a}, D_{x_{2}} \zeta_{n}^{a}, D_{x_{3}} \zeta_{n}^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta_{n}^{a} \right) \right|^{2} dx + \\ &\quad \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} \zeta_{n}^{b}, D_{x_{2}} \zeta_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta_{n}^{b} \right) \right|^{2} dx \right] = \\ &\quad \lim_{n} \left[\frac{1}{2} \int_{\mathbb{R}^{3}_{+}} \left(\left| \frac{1}{h_{n}^{a}} D_{x_{1}} \zeta_{n}^{a} \right|^{2} + |D_{x_{2}} \zeta_{n}^{a}|^{2} + |w_{n}|^{2} \right) dx \\ &\quad + \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\mathbb{R}^{3}_{-}} \left| \left(D_{x_{1}} \zeta_{n}^{b}, D_{x_{2}} \zeta_{n}^{b}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta_{n}^{b} \right) \right|^{2} dx \right] = \\ &\quad \lim_{n} \left[\frac{1}{2} \int_{\Omega^{a,\theta_{0}}} \left(\left(\frac{1}{h_{n}^{a}} D_{x_{1}} \zeta_{n}^{a}, D_{x_{2}} \zeta_{n}^{a}, D_{x_{3}} \zeta_{n}^{a} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} \zeta_{n}^{a} \right) m_{n}^{a} \right) dx + \\ &\quad \frac{1}{2} \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left(\left(D_{x_{1}} \zeta_{n}^{b}, D_{x_{2}} \zeta_{n}^{a}, \frac{1}{h_{n}^{b}} D_{x_{3}} \zeta_{n}^{b} \right) m_{n}^{b} \right) dx \right] = \\ &\quad \frac{1}{2} \left(\int_{\Omega^{a,\theta_{0}}} |\sin \theta_{0} \mu_{1}^{a} - \cos \theta_{0} \mu_{3}^{a}|^{2} dx + q \int_{\Omega^{b}} |\mu_{3}^{b}|^{2} dx_{1} dx_{2} \right) \end{aligned}$$

By multiplying the last lign of (4.3.14) by $\sin^2 \theta_0 + \cos^2 \theta_0 = 1$, we obtain (4.3.15)

$$\lim_{n} E_{n}^{mag}(m_{n}) = \frac{1}{2} \left(\int_{\Omega^{a,\theta_{0}}} \left(|\sin^{2}\theta_{0}\mu_{1}^{a} - \cos\theta_{0}\sin\theta_{0}\mu_{3}^{a}|^{2} + |\sin\theta_{0}\cos\theta_{0}\mu_{1}^{a} - \cos^{2}\theta_{0}\mu_{3}^{a}|^{2} \right) dx + q \int_{\Omega^{b}} |\mu_{3}^{b}|^{2} dx \right) = \frac{1}{2} \left(\int_{\Omega^{a,\theta_{0}}} \left(|\rho^{a}|^{2} + |\frac{\cos\theta_{0}}{\sin\theta_{0}}\rho^{a}|^{2} \right) dx + q \int_{\Omega^{b}} |\mu_{3}^{b}|^{2} dx \right)$$

and by combining this result with (4.3.8), (4.3.9), (4.3.12) and (4.3.13), we deduce the convergences (4.3.2). $\hfill \Box$

Proposition 4.3.2. Assume (4.1.1), with $q \in]0, +\infty[$. For every $n \in \mathbb{N}$, let $m_n = (m_n^a, m_n^b)$ be a solution of (4.1.15). Then there exist $c \in]0, +\infty[$, such that:

$$E_n(m_n) \le c, \quad \forall n \in \mathbb{N},$$

Proof. Let m = ((0, 1, 0), (0, 1, 0)) as the test function in (4.1.17), it follows that

$$E_n(m_n) \le \varphi((0,1,0)) + 2 \|f_n^a\|_{(L^2(\Omega^{a,\theta_0}))^3} + \frac{h_n^b}{h_n^a} \Big(\varphi((0,1,0)) + 2 \|f_n^b\|_{(L^2(\Omega^b))^3}\Big)$$
$$+ E_n^{mag} \Big(((0,1,0), (0,1,0)) \Big), \forall n \in \mathbb{N}$$

In the other hand, choosing (ζ^a, ζ^b) the potential corresponding to ((0, 1, 0), (0, 1, 0))as test function in (4.1.16) and by using the Cauchy-Schwarz inequality, we obtain

$$\begin{split} 2E_n^{mag}((0,1,0),(0,1,0)) &\leq \left(\int_{\mathbb{R}^3_+} \left| \left(\frac{1}{h_n^a} D_{x_1} \zeta^a, D_{x_2} \zeta^a, D_{x_3} \zeta^a + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} \zeta^a \right) \right|^2 dx \right)^{\frac{1}{2}} \\ &+ \frac{h_n^a}{h_n^b} \left(\int_{\mathbb{R}^3_-} \left| \left(D_{x_1} \zeta^b, D_{x_2} \zeta^b, \frac{1}{h_n^b} D_{x_3} \zeta^b \right) \right|^2 dx \right)^{\frac{1}{2}} \\ &\leq \left(2E_n^{mag}((0,1,0),(0,1,0)) \right)^{\frac{1}{2}} + \left(\frac{h_n^a}{h_n^b} \right)^{\frac{1}{2}} \left(2E_n^{mag}((0,1,0),(0,1,0)) \right)^{\frac{1}{2}}, \forall n \in \mathbb{N}. \end{split}$$

Then, there exist a constant $c \in]0, +\infty[$, such that:

$$E_n(m_n) \le c, \quad \forall n \in \mathbb{N}.$$

Corollary 4.3.3. Assume (4.1.1) with $q \in]0, +\infty[$ and (4.1.18). For every $n \in \mathbb{N}$ let $m_n = (m_n^a, m_n^b)$ is a solution of (4.1.15). Then, there exist $c \in]0, +\infty[$, such that:

$$\begin{split} \|D_{x_1}m_n^a\|_{(L^2(\Omega^{a,\theta_0}))^3} &\leq ch_n^a, \quad \|D_{x_2}m_n^a\|_{(L^2(\Omega^{a,\theta_0}))^3} \leq c, \quad \|D_{x_3}m_n^a\|_{(L^2(\Omega^{a,\theta_0}))^3} \leq c, \quad \forall n \in \mathbb{N}, \\ \|D_{x_1}m_n^b\|_{(L^2(\Omega^b))^3} &\leq c, \quad \|D_{x_2}m_n^b\|_{(L^2(\Omega^b))^3} \leq c, \quad \|D_{x_3}m_n^b\|_{(L^2(\Omega^b))^3} \leq ch_n^b, \quad \forall n \in \mathbb{N}. \\ \mathbf{Proposition 4.3.4. Let } m_n &= (m_n^a, m_n^b) \text{ is a solution of } (4.1.15), \ \mathcal{M} \text{ defined} \\ in (4.2.1), \text{ and let } \xi_{n_i}^{(1)}(x_2, x_3) = \int_{-\frac{1}{2}}^{\frac{1}{2}} m_{n_i}^a(x_1 + \cot \theta_0 x_3, x_2, x_3) dx_1. \ Then, \ there \\ exist \ a \ subsequence \ (m_{n_i})_{i\in\mathbb{N}} \ and \ (\hat{\mu}^a, \hat{\mu}^b, \hat{\xi}^a) \in \mathcal{M} \times \mathcal{F}, \ such \ that \\ (4.3.16) \end{split}$$

$$\begin{cases} m_{n_i}^a \rightharpoonup \hat{\mu}^a & \text{weakly in } H^1(\Omega^{a,\theta_0}, \mathbb{R}^3), \ m_{n_i}^b \rightharpoonup \hat{\mu}^b & \text{weakly in } H^1(\Omega^b, \mathbb{R}^3), \\ \frac{1}{h_{n_i}^a} (m_{n_i}^a - \xi_{n_i}^{(1)}) \rightharpoonup \hat{\xi}^a & \text{weakly in } \mathcal{F}, \ \frac{1}{h_{n_i}^a} D_{x_1} m_{n_i}^a \longrightarrow D_{x_1} \hat{\xi}^a & \text{weakly in } L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \end{cases}$$

Proof. By taking into account $|m_n| = 1$ a.e. in Ω^{θ_0} , Corollary 4.3.3 and $q \in]0, +\infty[$, there exist a subsequence $(m_{n_i})_{i\in\mathbb{N}}$, $\hat{\mu}^a \in H^1(\Omega^{a,\theta_0}, S^2)$ is independent of x_1 and $\hat{\mu}^b \in H^1(\Omega^b, S^2)$ is independent of x_3 , such that

(4.3.17)
$$\begin{cases} m_{n_i}^a \rightharpoonup \hat{\mu}^a & \text{weakly in } H^1(\Omega^{a,\theta_0}, \mathbb{R}^3), \\ m_{n_i}^b \rightharpoonup \hat{\mu}^b & \text{weakly in } H^1(\Omega^b, \mathbb{R}^3). \end{cases}$$

To prove the last convergence in (4.3.16), for every $n \in \mathbb{N}$ we set

$$\xi_n^{(1)}(x_2, x_3) = \int_{\cot \theta_0 x_3 - \frac{1}{2}}^{\cot \theta_0 x_3 + \frac{1}{2}} m_n^a(x_1, x_2, x_3) dx_1,$$

by virtue of the Poincaré-Wirtinger inequality, there exist a constant $c\in]0,+\infty[$ such that

$$\begin{split} \left\| \frac{1}{h_n^a} \Big(m_n^a(x_1, x_2, x_3) - \xi_n^{(1)}(x_2, x_3) \Big) \right\|_{L^2(]\cot\theta_0 x_3 - \frac{1}{2}, \cot\theta_0 x_3 + \frac{1}{2}[, dx_1)} \leq \\ c \left\| \frac{1}{h_n^a} D_{x_1} m_n^a(x_1, x_2, x_3) \right\|_{L^2(]\cot\theta_0 x_3 - \frac{1}{2}, \cot\theta_0 x_3 + \frac{1}{2}[, dx_1)}, \quad \forall n \in \mathbb{N}, \end{split}$$

it gives that

$$\left\|\frac{1}{h_n^a} \left(m_n^a(x_1, x_2, x_3) - \xi_n^{(1)}(x_2, x_3)\right)\right\|_{H^1(]\cot\theta_0 x_3 - \frac{1}{2}, \cot\theta_0 x_3 + \frac{1}{2}[, dx_1)} \le (1+c) \left\|\frac{1}{h_n^a} D_{x_1} m_n^a(x_1, x_2, x_3)\right\|_{L^2(]\cot\theta_0 x_3 - \frac{1}{2}, \cot\theta_0 x_3 + \frac{1}{2}[, dx_1)}, \quad \forall n \in \mathbb{N},$$

for (x_2, x_3) a.e. in $] -\frac{1}{2}, \frac{1}{2}[\times]0, \sin \theta_0[$. Thus integrating this inequality over $(x_2, x_3) \in] -\frac{1}{2}, \frac{1}{2}[\times]0, \sin \theta_0[$, the first estimate in Corollary 4.3.3 ensures the existence of a subsequence of $\{n_i\}_{i\in\mathbb{N}}$ and a function $\hat{\xi}^a \in \mathcal{F}$ such that

$$\frac{1}{h_{n_i}^a} \left(m_{n_i}^a - \xi_n^{(1)} \right) \rightharpoonup \hat{\xi}^a \quad \text{weakly in } \mathcal{F},$$

consequently,

$$\frac{1}{h_{n_i}^a} D_{x_1} m_{n_i}^a \rightharpoonup D_{x_1} \hat{\xi}^a \quad \text{weakly in } L^2(\Omega^{a,\theta_0}, \mathbb{R}^3).$$

For asserting that $(\hat{\mu}^a, \hat{\mu}^b) \in \mathcal{M}$, it remains to prove that

(4.3.18)
$$\hat{\mu}^a(x_2, 0) = \hat{\mu}^b(0, x_2) \text{ for } x_2 \text{ a.e. in } \bigg] - \frac{1}{2}, \frac{1}{2} \bigg[.$$

The proof of (4.3.18) will be performed in several steps. At first remark that (4.3.19)

$$\lim_{i} \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i}}^{a}(x_{1},x_{2},0) - \hat{\mu}^{a}(x_{2},0) \right) \varphi(x_{2}) dx_{1} dx_{2} = 0 \quad \forall \varphi \in C_{0}^{\infty}(]-\frac{1}{2},\frac{1}{2}[).$$

Now, for every $i \in \mathbb{N}$, set

From Fatou's Lemma and the fact that $|m^b_{n_i}|=1$ a.e. in $\Omega^b,$ it follows that

$$\int_{]-1,0[} \liminf_{i} \rho_i(x_3) dx_3 \le \liminf_{i} \int_{]-1,0[} \rho_i(x_3) dx_3 < +\infty$$

Consequantly, there exist two constants $c \in]0, +\infty[$ and $\overline{x}_3 \in]-1, 0[$, and a subsequence $(\rho_{i_k})_{k\in\mathbb{N}}$ such that

$$\rho_{i_k}(\overline{x}_3) < c, \forall k \in \mathbb{N}$$

It results that

(4.3.20)
$$m_{n_{i_k}}^b(.,.,\overline{x}_3) \rightharpoonup \hat{\mu}^b$$
 weakly in $H^1(] - \frac{1}{2}, \frac{1}{2}[^2, \mathbb{R}^3),$

as k diverges.

The second step is devoted to prove that
(4.3.21)
$$\lim_{k} \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1},x_{2},0) - \hat{\mu}^{b}(0,x_{2}) \right) \varphi(x_{2}) dx_{1} dx_{2} = 0, \quad \forall \varphi \in C_{0}^{\infty}(]-\frac{1}{2},\frac{1}{2}[)$$

Moreover, for $\varphi \in C_0^{\infty}(] - \frac{1}{2}, \frac{1}{2}[)$ we have

$$(4.3.22) \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1},x_{2},0) - \hat{\mu}^{b}(0,x_{2}) \right) \varphi(x_{2}) dx_{1} dx_{2} = \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1},x_{2},0) - m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1},x_{2},\overline{x_{3}}) \right) \varphi(x_{2}) dx_{1} dx_{2} + \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1},x_{2},\overline{x_{3}}) - m_{n_{i_{k}}}^{b}(0,x_{2},\overline{x_{3}}) \right) \varphi(x_{2}) dx_{1} dx_{2} + \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(0,x_{2},\overline{x_{3}}) - \hat{\mu}^{b}(0,x_{2}) \right) \varphi(x_{2}) dx_{1} dx_{2} \quad \forall k \in \mathbb{N}$$

and we will pass to the limit, as k diverges, in each term of this decomposition,

•

 $\begin{aligned} &\text{there exist } c \in]0, +\infty[\text{ such that} \\ &(4.3.23) \\ &\lim\sup_{k} \left| \int_{]-\frac{1}{2}, \frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1}, x_{2}, 0) - m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1}, x_{2}, \overline{x_{3}}) \right) \varphi(x_{2}) dx_{1} dx_{2} \right| = \\ &\lim\sup_{k} \left| \int_{]-\frac{1}{2}, \frac{1}{2}[^{2}} \left(\int_{0}^{\overline{x_{3}}} D_{t} m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1}, x_{2}, t) dt \right) \varphi(x_{2}) dx_{1} dx_{2} \right| \leq \\ &\|\varphi\|_{L^{\infty}(]-\frac{1}{2}, \frac{1}{2}[)} |\Omega^{b}|^{\frac{1}{2}} \limsup_{k} \left(\int_{\Omega^{b}} |D_{x_{3}} m_{n_{i_{k}}}^{b}(h_{n_{i_{k}}}^{a}x_{1}, x_{2}, x_{3})|^{2} dx \right)^{\frac{1}{2}} \leq \\ &\|\varphi\|_{L^{\infty}(]-\frac{1}{2}, \frac{1}{2}[)} |\Omega^{b}|^{\frac{1}{2}} \limsup_{k} \left(\frac{1}{h_{n_{i_{k}}}^{a}} \|D_{x_{3}} m_{n_{i_{k}}}^{b}\|_{L^{2}(\Omega^{b})} \right)^{\frac{1}{2}} \leq \\ &c\|\varphi\|_{L^{\infty}(]-\frac{1}{2}, \frac{1}{2}[)} |\Omega^{b}|^{\frac{1}{2}} \limsup_{k} \frac{h_{n_{i_{k}}}^{b}}{\sqrt{h_{n_{i_{k}}}^{a}}} = 0 \end{aligned}$

In the other hand, there exist $c\in]0,+\infty[$ such that (4.3.24)

$$\begin{split} \lim_{k} \sup_{k} \left| \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} \left(m_{n_{i_{k}}}^{b} \left(h_{n_{i_{k}}}^{a} x_{1}, x_{2}, \overline{x_{3}}\right) - m_{n_{i_{k}}}^{b} \left(0, x_{2}, \overline{x_{3}}\right) \right) \varphi(x_{2}) dx_{1} dx_{2} \right| = \\ \lim_{k} \sup_{k} \left| \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} \left(\int_{0}^{h_{n_{i_{k}}}^{a}} D_{t} m_{n_{i_{k}}}^{b} \left(t, x_{2}, \overline{x_{3}}\right) dt \right) \varphi(x_{2}) dx_{1} dx_{2} \right| \leq \\ \frac{1}{2} \left\| \varphi \right\|_{L^{\infty}\left(\left|-\frac{1}{2}, \frac{1}{2}\right|\right)} \lim_{k} \sup_{k} \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} \left(\int_{0}^{h_{n_{i_{k}}}^{a}} |D_{t} m_{n_{i_{k}}}^{b} \left(t, x_{2}, \overline{x_{3}}\right)| dt \right) dx_{2} + \\ \frac{1}{2} \left\| \varphi \right\|_{L^{\infty}\left(\left|-\frac{1}{2}, \frac{1}{2}\right|\right)} \lim_{k} \sup_{k} \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} \left(\int_{-\frac{h_{n_{i_{k}}}^{n_{n_{i_{k}}}}} |D_{t} m_{n_{i_{k}}}^{b} \left(t, x_{2}, \overline{x_{3}}\right)| dt \right) dx_{2} \leq \\ \frac{1}{2} \left\| \varphi \right\|_{L^{\infty}\left(\left|-\frac{1}{2}, \frac{1}{2}\right|\right)} \lim_{k} \sup_{k} \left(h_{n_{i_{k}}}^{a} \int_{\left|-\frac{1}{2}, \frac{1}{2}\right|^{2}} |D_{x_{1}} m_{n_{i_{k}}}^{b} \left(x_{1}, x_{2}, \overline{x_{3}}\right)|^{2} dx_{1} dx_{2} \right)^{\frac{1}{2}} \leq \\ \frac{c}{2} \left\| \varphi \right\|_{L^{\infty}\left(\left|-\frac{1}{2}, \frac{1}{2}\right|\right)} \lim_{k} \sqrt{h_{n_{i_{k}}}^{a}} = 0 \end{split}$$

From (4.3.20), it follows that

(4.3.25)
$$\lim_{k} \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} \left(m_{n_{i_{k}}}^{b}(0,x_{2},\overline{x_{3}}) - \hat{\mu}^{b}(0,x_{2}) \right) \varphi(x_{2}) dx_{1} dx_{2} = 0$$
$$\lim_{k} \int_{]-\frac{1}{2},\frac{1}{2}[} \left(m_{n_{i_{k}}}^{b}(0,x_{2},\overline{x_{3}}) - \hat{\mu}^{b}(0,x_{2}) \right) \varphi(x_{2}) dx_{2} = 0$$

Then, by passing to the limit in (4.3.22), as k diverges, and by taking into account (4.3.23)-(4.3.25) we obtain (4.3.21). Finally, the junction condition (4.3.18), is obtained by passing to the limit, as k diverges in

$$\begin{aligned} &(4.3.26)\\ &\int_{]-\frac{1}{2},\frac{1}{2}[^2} m^a_{n_{i_k}}(x_1,x_2,0)\varphi(x_2)dx_1dx_2 = \int_{]-\frac{1}{2},\frac{1}{2}[^2} m^b_{n_{i_k}}(h^a_{n_{i_k}}x_1,x_2,0)\varphi(x_2)dx_1dx_2 \\ &\forall k \in \mathbb{N}, \forall \varphi \in C^{\infty}_0(]-\frac{1}{2},\frac{1}{2}[), \end{aligned}$$

and by using (4.3.19) and (4.3.21).

4.4 A density result

Let
(4.4.1)
$$\mathcal{M}_{reg} = \left\{ \mu = (\mu^a, \mu^b) \in C^1(\overline{\Omega^{a,\theta_0}}, S^2) \times C(\overline{\Omega^b}, S^2) : \right.$$

 μ^a is independent of x_1, μ^b is independent of x_3 ,

$$\begin{split} & \mu^b /_{[-\frac{1}{2},0] \times [-\frac{1}{2},\frac{1}{2}] \times [-1,0]} \in C^1([-\frac{1}{2},0] \times [-\frac{1}{2},\frac{1}{2}] \times [-1,0], S^2), \\ & \mu^b /_{[0,\frac{1}{2}] \times [-\frac{1}{2},\frac{1}{2}] \times [-1,0]} \in C^1([0,\frac{1}{2}] \times [-\frac{1}{2},\frac{1}{2}] \times [-1,0], S^2), \\ & \mu^a(x_2,0) = \mu^b(0,x_2) \text{ for } x_2 \in]-\frac{1}{2},\frac{1}{2}[\end{split}$$

$$\simeq \left\{ \mu = (\mu^a, \mu^b) \in C^1([-\frac{1}{2}, \frac{1}{2}] \times [0, \sin \theta_0], S^2) \times C([-\frac{1}{2}, \frac{1}{2}]^2, S^2) : \right\}$$

 μ^a is independent of x_1, μ^b is independent of x_3 ,

$$\mu^{b}/_{[-\frac{1}{2},0]\times[-\frac{1}{2},\frac{1}{2}]} \in C^{1}([-\frac{1}{2},0]\times[-\frac{1}{2},\frac{1}{2}],S^{2}), \mu^{b}/_{[0,\frac{1}{2}]\times[-\frac{1}{2},\frac{1}{2}]} \in C^{1}([0,\frac{1}{2}]\times[-\frac{1}{2},\frac{1}{2}],S^{2}),$$
$$\mu^{a}(x_{2},0) = \mu^{b}(0,x_{2}) \text{ for } x_{2} \in]-\frac{1}{2},\frac{1}{2}[\}$$

Remark that, $\mathcal{M}_{reg} \subset W^{1,\infty}(\Omega^{a,\theta_0}, S^2) \times W^{1,\infty}(\Omega^b, S^2)$. The proof is based on the combination of an approximation result proved in [7] with splitting techniques introduced in [51] and a projection technique from \mathbb{R}^3 into S^2 as in [44].

Proposition 4.4.1. Let \mathcal{M}_{reg} and \mathcal{M} be the space defined in (4.4.1) and (4.2.1), respectively. Then \mathcal{M}_{reg} is dense in \mathcal{M} .

Proof. this proof is very similar to the proof of proposition 5.5 in [33]. So omit it. \Box

4.4.1 Proof of theorem 4.2.1

Proof. From Proposition 4.3.4, there exist of subsequence $\{m_{n_i}\}_{i\in\mathbb{N}}$ of m_n , $(\hat{\mu}^a, \hat{\mu}^b, \hat{\xi}^a) \in \mathcal{M} \times \mathcal{F}$ and from Corollary 4.3.3, there exist $\eta^b \in L^2(\Omega^b, \mathbb{R}^3)$

such that

$$\begin{pmatrix}
(4.4.2) \\
m_{n_i}^a \rightharpoonup \hat{\mu}^a & \text{weakly in } H^1(\Omega^{a,\theta_0}, \mathbb{R}^3), \quad m_{n_i}^b \rightharpoonup \hat{\mu}^b & \text{weakly in } H^1(\Omega^b, \mathbb{R}^3), \\
\begin{cases}
\frac{1}{h_{n_i}^a}(m_{n_i}^a - \xi_{n_i}^{(1)}) \rightharpoonup \hat{\xi}^a & \text{weakly in } \mathcal{F}, \\
\frac{1}{h_{n_i}^a}D_{x_1}m_{n_i}^a \rightharpoonup D_{x_1}\hat{\xi}^a & \text{weakly in } L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \quad \frac{1}{h_{n_i}^b}D_{x_3}m_{n_i}^b \rightharpoonup \eta^b & \text{weakly in } L^2(\Omega^b, \mathbb{R}^3)
\end{cases}$$

as i diverges. Consequently, by virtue of Proposition 4.3.1 and convergences (4.2.5) hold true, it results that (4.4.3)

$$\lim_{i} E_{n_{i}}^{mag}(m_{n_{i}}) = \frac{1}{2} \left(\int_{\Omega^{a,\theta_{0}}} |\sin\theta_{0}\hat{\mu}_{1}^{a} - \cos\theta_{0}\hat{\mu}_{3}^{a}|^{2}dx + q \int_{]-\frac{1}{2},\frac{1}{2}[^{2}} |\mu_{3}^{b}|^{2}dx_{1}dx_{2} \right)$$

Let $(\mu^a, \mu^b, \xi^a) \in \mathcal{M}_{reg} \times C^{\infty}(\overline{\Omega^{a,\theta_0}})$. We shall build a sequence $\{g_n\}_{n \in \mathbb{N}} \subset H^1(\Omega^{a,\theta_0}, \mathbb{R}^3)$, such that $\begin{cases}
(4.4.4) \\
g_n \rightarrow \mu^a \quad \text{weakly in } H^1(\Omega^{a,\theta_0}, \mathbb{R}^3), \\
\begin{pmatrix}
(\frac{1}{h_n^a} D_{x_1}g_n, D_{x_2}g_n, D_{x_3}g_n + \frac{\cos\theta_0}{\sin\theta_0}(1 - \frac{1}{h_n^a})D_{x_1}g_n) \rightarrow \\
(D_{x_1}\xi^a, D_{x_2}\mu^a, D_{x_3}\mu^a - \cot\theta_0 D_{x_1}\xi^a) \quad \text{strongly in } L^2(\Omega^{a,\theta_0}, \mathbb{R}^3), \\
\end{pmatrix}$ (4.4.4)

$$g_n(x_1, x_2, 0) = \mu^b(h_n^a x_1, x_2), \quad \text{for } (x_1, x_2) \in \left] -\frac{1}{2}, \frac{1}{2} \right[^2,$$

Let $W_{n,1}^a = \left\{ x \in \mathbb{R}^3 : (x_2, x_3) \in \left] - \frac{1}{2}, \frac{1}{2} \right] \times h_n^a \sin \theta_0, \sin \theta_0 [, |x_1 - \cot \theta_0 x_3| < \frac{1}{2} \right\}$ and $W_{n,2}^a = \left\{ x \in \mathbb{R}^3 : (x_2, x_3) \in \left] - \frac{1}{2}, \frac{1}{2} \right] \times [0, h_n^a \sin \theta_0], |x_1 - \cot \theta_0 x_3| < \frac{1}{2} \right\},$ where $\Omega^{a,\theta_0} = W_{n,1}^a \cup W_{n,2}^a$. To this aim, for every $n \in \mathbb{N}$, since for h_n^a small $\|\mu^a + h_n^a \xi^a\|_{\infty} \neq 0$, we set (4.4.5)

$$g_{n}(x) = \begin{cases} \frac{\mu^{a}(x_{2},x_{3}) + h_{n}^{a}\xi^{a}(x_{1},x_{2},x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}}, & \text{if } x \in W_{n,1}^{a} \\ \left(\frac{\mu^{a}(x_{2},h_{n}^{a}\sin\theta_{0}) + h_{n}^{a}\xi^{a}(x_{1},x_{2},h_{n}^{a}\sin\theta_{0})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}}\right) \frac{x_{3}}{h_{n}^{a}\sin\theta_{0}} + \mu^{b}(h_{n}^{a}x_{1},x_{2})\frac{h_{n}^{a}\sin\theta_{0}-x_{3}}{h_{n}^{a}\sin\theta_{0}}, & \text{if } x \in W_{n,2}^{a}. \end{cases}$$

103

,

Remark that $\{g_n\}_{n\in\mathbb{N}} \subset H^1(\Omega^{a,\theta_0},\mathbb{R}^3)$, and the last line of (4.4.4) is verified. Moreover, by using the properties of \mathcal{M}_{reg} and there exist $c \in]0, +\infty[$, we have

$$\begin{split} \lim_{n} \int_{W_{n,2}^{a}} \left| \frac{1}{h_{n}^{a}} D_{x_{1}} g_{n}(x) \right|^{2} dx &= \lim_{n} \int_{W_{n,2}^{a}} \left| D_{x_{1}} \mu^{b} (h_{n}^{a} x_{1}, x_{2}) \frac{h_{n}^{a} \sin \theta_{0} - x_{3}}{h_{n}^{a} \sin \theta_{0}} + \frac{D_{x_{1}} \xi^{a} (x_{1}, x_{2}, h_{n}^{a} \sin \theta_{0})}{\|\mu^{a} + h_{n}^{a} \xi^{a}\|_{\infty}} \frac{x_{3}}{h_{n}^{a} \sin \theta_{0}} \right|^{2} dx \\ &\leq 2 \lim_{n} \int_{W_{n,2}^{a}} \left| D_{x_{1}} \mu^{b} (h_{n}^{a} x_{1}, x_{2}) \frac{h_{n}^{a} \sin \theta_{0} - x_{3}}{h_{n}^{a} \sin \theta_{0}} \right|^{2} dx \\ &+ 2 \lim_{n} \int_{0}^{h_{n}^{a} \sin \theta_{0}} \int_{\cot \theta_{0} x_{3} - \frac{1}{2}}^{\cot \theta_{0} x_{3} + \frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \left| \frac{D_{x_{1}} \xi^{a} (x_{1}, x_{2}, h_{n}^{a} \sin \theta_{0})}{\|\mu^{a} + h_{n}^{a} \xi^{a}\|_{\infty}} \frac{x_{3}}{h_{n}^{a} \sin \theta_{0}} \right|^{2} dx \\ &\leq c \Big(\|\mu^{b}\|_{W^{1,\infty}(]-\frac{1}{2}, \frac{1}{2}[^{2}, S^{2})} \lim_{n} h_{n}^{a} + \|\xi^{a}\|_{W^{1,\infty}(\Omega^{a,\theta_{0}}, \mathbb{R}^{3})} \lim_{n} \frac{h_{n}^{a}}{\|\mu^{a} + h_{n}^{a} \xi^{a}\|_{\infty}^{2}} \Big) = 0 \end{split}$$

$$\lim_{n} \int_{W_{n,2}^{a}} \left| D_{x_{2}}g_{n}(x) \right|^{2} dx = \lim_{n} \int_{W_{n,2}^{a}} \left| \frac{D_{x_{2}}\mu^{a}(x_{2},h_{n}^{a}\sin\theta_{0})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} \frac{x_{3}}{h_{n}^{a}\sin\theta_{0}} + \frac{D_{x_{2}}\xi^{a}(x_{1},x_{2},h_{n}^{a}\sin\theta_{0})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} \frac{x_{3}}{\sin\theta_{0}} + D_{x_{2}}\mu^{b}(h_{n}^{a}x_{1},x_{2}) \frac{h_{n}^{a}\sin\theta_{0} - x_{3}}{h_{n}^{a}\sin\theta_{0}} \right|^{2} dx$$

$$\leq c \left(\left(\|\mu^a\|_{W^{1,\infty}(\Omega^{a,\theta_0},S^2)}^2 + \|\mu^b\|_{W^{1,\infty}(]-\frac{1}{2},\frac{1}{2}[^2,S^2)}^2 \right) \lim_n \frac{h_n^a}{\|\mu^a + h_n^a \xi^a\|_\infty^2} + \|\xi^a\|_{W^{1,\infty}(\Omega^{a,\theta_0},\mathbb{R}^3)}^2 \lim_n h_n^a \right) = 0$$

and

$$\begin{split} &\lim_{n} \int_{W_{n,2}^{a}} \left| D_{x_{3}}g_{n}(x) \right|^{2} dx = \\ &\lim_{n} \int_{W_{n,2}^{a}} \frac{1}{h_{n}^{a^{2}} \sin^{2} \theta_{0}} \left| \frac{\mu^{a}(x_{2}, h_{n}^{a} \sin \theta_{0}) - \mu^{a}(x_{2}, 0)}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} + \frac{h_{n}^{a}\xi^{a}(x_{1}, x_{2}, h_{n}^{a} \sin \theta_{0})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} + \mu^{b}(0, x_{2}) - \mu^{b}(h_{n}^{a}x_{1}, x_{2}) \right|^{2} dx \\ &\leq c \left(\left(\left\| \mu^{a} \right\|_{W^{1,\infty}(\Omega^{a,\theta_{0}}, S^{2})}^{2} + \left\| \xi^{a} \right\|_{L^{\infty}(\Omega^{a,\theta_{0}}, \mathbb{R}^{3})}^{2} \right) \lim_{n} \frac{h_{n}^{a}}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}^{2}} + \left\| \mu^{b} \right\|_{W^{1,\infty}(]-\frac{1}{2}, \frac{1}{2}[^{2}, S^{2})}^{2} \lim_{n} h_{n}^{a} \right) = 0, \end{split}$$

that is

$$(4.4.6) \lim_{n} \left\| \left(\frac{1}{h_n^a} D_{x_1} g_n, D_{x_2} g_n, D_{x_3} g_n + \frac{\cos \theta_0}{\sin \theta_0} (1 - \frac{1}{h_n^a}) D_{x_1} g_n \right) \right\|_{L^2(W_{n,2}^a, \mathbb{R}^9)} = 0,$$

In the other hand,

$$\lim_{n} \int_{W_{n,1}^{a}} \left| \frac{1}{h_{n}^{a}} D_{x_{1}} g_{n}(x) - D_{x_{1}} \xi^{a}(x_{1}, x_{2}, x_{3}) \right|^{2} dx = \lim_{n} \int_{W_{n,1}^{a}} \left| \frac{D_{x_{1}} \xi^{a}(x_{1}, x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a} \xi^{a}\|_{\infty}} - D_{x_{1}} \xi^{a}(x_{1}, x_{2}, x_{3}) \right|^{2} dx = 0$$

$$\lim_{n} \int_{W_{n,1}^{a}} \left| D_{x_{2}}g_{n}(x) - D_{x_{2}}\mu^{a}(x_{2}, x_{3}) \right|^{2} dx = \lim_{n} \int_{W_{n,1}^{a}} \left| \frac{D_{x_{2}}\mu^{a}(x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} + h_{n}^{a} \frac{D_{x_{2}}\xi^{a}(x_{1}, x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} - D_{x_{2}}\mu^{a}(x_{2}, x_{3}) \right|^{2} dx$$

$$\leq 2 \lim_{n} \int_{W_{n,1}^{a}} \frac{(h_{n}^{a})^{2}}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}^{2}} \left| D_{x_{2}}\xi^{a}(x_{1}, x_{2}, x_{3}) \right|^{2} dx + 2 \lim_{n} \int_{W_{n,1}^{a}} \left| \frac{D_{x_{2}}\mu^{a}(x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} - D_{x_{2}}\mu^{a}(x_{2}, x_{3}) \right|^{2} dx = 0$$

and

$$\lim_{n} \int_{W_{n,1}^{a}} \left| D_{x_{3}}g_{n}(x) - D_{x_{3}}\mu^{a}(x_{2}, x_{3}) \right|^{2} dx = \lim_{n} \int_{W_{n,1}^{a}} \left| \frac{D_{x_{3}}\mu^{a}(x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} + h_{n}^{a} \frac{D_{x_{3}}\xi^{a}(x_{1}, x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} - D_{x_{3}}\mu^{a}(x_{2}, x_{3}) \right|^{2}$$

$$\leq 2 \lim_{n} \int_{W_{n,1}^{a}} \frac{(h_{n}^{a})^{2}}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}^{2}} \Big| D_{x_{3}}\xi^{a}(x_{1}, x_{2}, x_{3}) \Big|^{2} dx + 2 \lim_{n} \int_{W_{n,1}^{a}} \Big| \frac{D_{x_{3}}\mu^{a}(x_{2}, x_{3})}{\|\mu^{a} + h_{n}^{a}\xi^{a}\|_{\infty}} - D_{x_{3}}\mu^{a}(x_{2}, x_{3}) \Big|^{2} dx = 0$$

Consequently, convergence (4.4.4) holds true. Remark that, $|g_n(x)| \leq 1$ in Ω^{a,θ_0} . To normalize g_n , it suffices to project on S^2 . To this aim, let $y \in B_{\frac{1}{2}}(0) = \{y \in \mathbb{R}^3 : |y| \leq \frac{1}{2}\}$, project $x \in \mathbb{R}^3 \setminus \{y\}$ on S^2 by the intersection of S^2 with the half line $y + t(x - y) : t \in]0, +\infty[$, introduce the projection

$$\pi_y: x \in \mathbb{R}^3 \setminus \{y\} \longmapsto y + \frac{-y(x-y) + \sqrt{(y(x-y))^2} + |x-y|^2(1-|y|^2)}{|x-y|^2}(x-y) \in S^2$$

It is easy to see that

$$\pi_y(x) = x, \quad \forall x \in S^2$$

Moreover, it results that (see. [44])

$$(4.4.7) \quad \exists c \in]0, +\infty[: |D\pi_y(x)|^2 \le \frac{c}{|x-y|^2}, \quad \forall y \in B_{\frac{1}{2}}(0), \quad \forall x \in \mathbb{R}^3 \setminus \{y\}$$

with c independent on $y \in B_{\frac{1}{2}}(0) \setminus G$, let

$$G_n = \Big\{ y \in B_{\frac{1}{2}}(0) : \exists x \in W_{n,2}^a, \text{ with } g_n(x) = y, rank(Dg_n(x)) < 3 \Big\},\$$

and set

$$G = \bigcup_{n \in \mathbb{N}} G_n.$$

By Sard's lemma, meas(G) = 0. Consequently, for every $n \in \mathbb{N}$, and for every $y \in B_{\frac{1}{2}}(0) \setminus G$, the function $\pi_y \circ g_n$ is well defined and, by virtue of (4.4.7) there exist a constant c > 0 such that

$$\begin{split} \int_{B_{\frac{1}{2}}(0)\backslash G} \left(\int_{W_{2}^{a}} \left| D(\pi_{y} \circ g_{n}(x)) \right|^{2} dx \right) dy &= \int_{B_{\frac{1}{2}}(0)\backslash G} \int_{W_{2}^{a}} |D\pi_{y}(g_{n}(x))|^{2} |Dg_{n}(x)|^{2} dx dy \\ &\leq \int_{B_{\frac{1}{2}}(0)\backslash G} c \left(\int_{W_{2}^{a}} \frac{|Dg_{n}(x)|^{2}}{|g_{n}(x) - y|^{2}} dx \right) dy \\ &\leq c \int_{B_{\frac{3}{2}}(0)} \frac{1}{|z|^{2} dz} \left(\int_{W_{2}^{a}} |Dg_{n}(x)|^{2} dx \right), \quad \forall n \in \mathbb{N}, \end{split}$$

Consequently by using the Fatou Lemma and by taking into account (4.4.6) and the fact that $\int_{B_{\frac{3}{2}}(0)} \frac{1}{|z|^2} dz < \infty$, there exist a subsequence of $\{n\}$, still denoted by $\{n\}$, and $\overline{y} \in B_{\frac{1}{2}}(0) \setminus G$ such that

(4.4.8)
$$\lim_{x} \|D(\pi_{\overline{y}} \circ g_n(x))\|_{L^2(W_2^a, \mathbb{R}^3)} = 0.$$

Consequently, we have $\{(v_n, \mu^b)\}_{n \in \mathbb{N}} = \{(\pi_{\overline{y}} \circ g_n, \mu^b)\}_{n \in \mathbb{N}} \subset \mathcal{M}_{reg}$, Remark that the first line in (4.4.4) and Proposition 4.3.1 provide that

(4.4.9)
$$\lim_{n} E_{n}^{mag}(v_{n}, \mu^{b}) = \frac{1}{2} \left(\int_{\Omega^{a,\theta_{0}}} |\sin\theta_{0}\mu_{1}^{a} - \cos\theta_{0}\mu_{3}^{a}|^{2} dx + q \int_{\Omega^{b}} |\mu_{3}^{b}|^{2} dx_{1} dx_{2} \right)$$

Finally, choosing (v_n, μ^b) as test function in (4.1.15) and taking into account (4.1.17), one has that

$$\begin{aligned} &(4.4.10)\\ &\lim_{n} \left(\int_{\Omega^{a,\theta_{0}}} \left(\alpha \left| \left(\frac{1}{h_{n}^{a}} D_{x_{1}} v_{n}, D_{x_{2}} v_{n}, D_{x_{3}} v_{n} + \frac{\cos \theta_{0}}{\sin \theta_{0}} (1 - \frac{1}{h_{n}^{a}}) D_{x_{1}} v_{n} \right) \right|^{2} + \varphi(v_{n}) - 2f_{n}^{a} v_{n} \right) dx \\ &+ \frac{h_{n}^{b}}{h_{n}^{a}} \int_{\Omega^{b}} \left(\alpha \left| \left(D_{x_{1}} \mu^{b}, D_{x_{2}} \mu^{b}, 0 \right) \right|^{2} + \varphi(\mu^{b}) - 2f_{n}^{b} \mu^{b} \right) dx + E_{n}^{mag}(v_{n}, \mu^{b}) \right) = \\ &\int_{\Omega^{a,\theta_{0}}} \left(\alpha \left| \left(D_{x_{1}} \xi^{a}, D_{x_{2}} \mu^{a}, D_{x_{3}} \mu^{a} - \cot \theta_{0} D_{x_{1}} \xi^{a} \right) \right|^{2} + \varphi(\mu^{a}) + \frac{1}{2} |\sin \theta_{0} \mu_{1}^{a} - \cos \theta_{0} \mu_{3}^{a}|^{2} \right) dx \\ &- 2 \int_{\Omega^{a,\theta_{0}}} f^{a}(x_{1}, x_{2}, x_{3}) \mu^{a} dx - 2q \int_{\Omega^{b}} f^{b}(x_{1}, x_{2}, x_{3}) \mu^{b} dx + \\ &q \int_{\left| -\frac{1}{2}, \frac{1}{2} \right|^{2}} \left(\alpha \left| \left(D_{x_{1}} \mu^{b}, D_{x_{2}} \mu^{b} \right) \right|^{2} + \varphi(\mu^{b}) + \frac{1}{2} |\mu_{3}^{b}|^{2} \right) dx_{1} dx_{2} = E_{q}(\mu^{a}, \mu^{b}), \end{aligned}$$

The last step is devoted to prove that convergences in (4.4.2) are strong. To this aim, by using a l.s.c. argument, with $q \in]0, +\infty[$ and from (4.4.2), it follows that

$$(4.4.11) q \int_{\Omega^b} \alpha |\eta^b|^2 + E_q(\hat{\mu^a}, \hat{\mu}^b, \hat{\xi^a}) \le \liminf_i E_{n_i}(m_{n_i}) \le \limsup_i E_{n_i}(m_{n_i}) \le \limsup_i E_{n_i}(v_{n_i}, \mu^b) = E_q(\mu^a, \mu^b, \xi^a)$$

Since (μ^a, μ^b, ξ^a) can be any arbitrarily element of $\mathcal{M}_{reg} \times C^{\infty}(\overline{\Omega^{a,\theta_0}})$, by virtue of the density result stated in Proposition 4.4.1 and the fact that $C^{\infty}(\overline{\Omega^{a,\theta_0}})$ dense in \mathcal{F} , this inequelity also holds true with $(\mu^a, \mu^b, \xi^a) = (\hat{\mu}^a, \hat{\mu}^b, \hat{\xi}^a)$. Consequently, it results that $\eta^b = 0$, and by combining this results and (4.4.2), we concludes the convergences of (4.2.3), (4.2.4) and (4.2.7). Moreover (4.4.2) and (4.4.11) provide that $\hat{\mu}$ is a solution of (4.2.6).

Remark 4.4.2. In the other cases, the structure behaves like a single thin film. Precisely, when q = 0 (i.e. $h_n^b \ll h_n^a$), the limit problem reduces to a 2D problem the vertical thin film losing the junction condition. Analogously, when $q = +\infty$ (i.e. $h_n^b \gg h_n^a$), the limit problem reduces to a 2D problem in the horizontal thin film. For shorting the paper, we omit the proofs of these results.
108

Bibliography

- R. ALICANDRO, C. LEONE, 3D-2D asymptotic analysis for micromagnetic thin films, *ESAIM Control Optim. Calc. Var.* 6, (2001), 489-498.
- [2] F. ALOUGES, S. LABBÉ, Convergence of a ferromagnetic film model, C. R. Math. Acad. Sci. Paris 344 (2007), 2, 77-82.
- [3] F. ALOUGES, T. RIVIÈRE, S. SERFATY, Néel and cross-tie wall energies for planar micromagnetic configurations. A tribute to J. L. Lions, *ESAIM Control Optim. Calc. Var.* 8 (2002), 31-68.
- [4] Y. AMIRAT, O. BODART, U. DE MAIO, A. GAUDIELLO, Effective boundary condition for Stokes flow over a very rough surface, J. Differential Equations, 254 (2013), 3395-3430.
- [5] H. AMMARI, L. HALPERN, K. HAMDACHE, Asymptotic behavior of thin ferromagnetic films, Asymptot. Anal. 24 (2000), 277-294.
- [6] M. BAÍA, E. ZAPPALE, A note on the 3D-2D dimensional reduction of a micromagnetic thin film with nonhomogeneous profile, *Appl. Anal.* 86 (2007), n. 5, 555-575.
- [7] F. BETHUEL, X. ZHENG, Density of Smooth Functions between Two Manifolds in Sobolev Spaces, J. Functional Anal. 80 (1988), n.2, 60-75.
- [8] Brezis, H. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, 1983. Théorie et applications.
- [9] D. BORISOV, G. CARDONE, L. FAELLA, C. PERUGIA Uniform resolvent convergence for strip with fast oscillating boundary, J. Differential Equations 255 (2013), 12, 4378-4402.
- [10] H. BREZIS, Analyse fonctionnelle, *Masson* (1983).
- [11] W.F. BROWN, Micromagnetics. New Yor: Wiley. (1963).
- [12] G. CARBOU, Thin layers in micromagnetism, M³AS: Math. Models Methods Appl. Sci. 11 (2001), 9, 1529-1546.

- [13] G. CARBOU, Regularity of critical points of a non local energy, Calc. Var. Partial Differential Equations 5 (1997), 409-433.
- [14] G. CARBOU, F. FABRIE, Time average in micromagnetism, Journal of Differential Equations 147 (1998), 383-409.
- [15] P. G. CARBOU, S. LABBÉ, Stabilization of walls for nano-wire of finite lenght, ESAIM Control Optim. Calc. Var. 18 (2012), 1-21.
- [16] G. CARBOU, S. LABBÉ, E. TRÉLAT, Control of travelling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 1, 5159.
- [17] P. C. CIARLET, P. DESTUYNDER, A justification of the two-dimensional linear plate model, J. Mécanique 18 (1979), 2, 315-344.
- [18] J.DENY, L.-L.LIONS, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1954), 305-370.
- [19] A. DESIMONE, R. KOHN, S. MULLER, F. OTTO, A reduced theory for thin-film micromagnetics, *Comm. Pure Appl. Math.* 55 (2002), 1408-1460.
- [20] A. DESIMONE, R.V. KOHN, S. MF. ALOUGES, S. LABBÉ, Convergence of a ferromagnetic film model, C. R. Math. Acad. Sci. Paris 344 (2007), 2, 77-82.
- [21] M. LAVAL, Observation et modélisation du comportement de micro et nanostructures magnétiques excitées par microondes en vue d'une application capteur, Thèse de doctorat, Université Paul Sabatier Toulouse 3, 2008.
- [22] U. DE MAIO, L. FAELLA, C. PERUGIA, Optimal control for a secondorder linear evolution problem in a domain with very rough boundary, *submitted*.
- [23] U. DE MAIO, L. FAELLA, C. PERUGIA, Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary, *Ricerche Mat. DOI: 10.1007/s11587-014-0183-y.*
- [24] U. DE MAIO, L. FAELLA, S. SOUEID, Quasy-stationary ferromagnetic thin films in degenerated cases, *Ricerche Mat.* Doi: 10.1007/s11587-014-0197-5.
- [25] U. DE MAIO, A.K. NANDAKUMARAN, Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary, *Asymp*tot. Anal. 83 (2013), 3, 189-206.
- [26] P. DONATO, L. FAELLA, S. MONSURRÓ, Homogenization of the wave equation in composites with imperfect interface: A memory effect, J. Math. Pures Appl. 87 (2007), pp. 119–143.

- [27] P. DONATO, L. FAELLA, S. MONSURRÓ, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces, SIAM J. Math. Anal. 40 (2009), pp. 1952-1978.
- [28] T. DURANTE, L. FAELLA, C. PERUGIA, Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boundary, *Nonlinear differ.equ. appl.* 14 (2007), 455-489.
- [29] I. FONSECA, G. LEONI, Relaxation results in micromagnetics, *Ricerche Mat.* 49 (2000), 269-304.
- [30] A. GAUDIELLO, O. GUIBÉ, Homogenization of an elliptic second-order problem with LlogL data in a domain with oscillating boundary, *Commun. Contemp. Math.* **15** (2013), 6, 13 pp.
- [31] A. GAUDIELLO, R. HADIJI, Asymptotic analysis, in a thin multidomain, of minimizing maps with values in S², Ann. Inst. H. Poincaré Anal. Non Lineaire 26 (2009), 59-80.
- [32] A. GAUDIELLO, R. HADIJI, Junction of one-dimensional minimization problems in-volving S² valued maps, Adv. Differ. Equ. 13 (2008), 9-10, 935-958.
- [33] A. GAUDIELLO, R. HADIJI, Junction of ferromagnetic thin films, *Calc. Var. Partial Differential Equations* **39**, 3-4, (2010), 593-619.
- [34] A. GAUDIELLO, R. HADIJI, Ferromagnetic thin multi-structures, arXiv: 1402.722lvl [math-ph], 28-02-2014.
- [35] A. GAUDIELLO, K. HAMDACHE, The polarization in a ferroelectric thin film: local and nonlocal limit problems, *ESAIM Control Optim. Calc. Var.* 19 (2013), 657-667.
- [36] A. GAUDIELLO, A. SILI, Asymptotic analysis of the eigenvalues of an elliptic problem in an anisotropic thin multidomain, *Proc. Roy. Soc. Edinburgh Sect. A* 141 (2011), 4, 739-754.
- [37] A. GAUDIELLO, B. GUSTAFSSON, C. LEFTER, J. MOSSINO, Asymptotic Analysis for Monotone Quasilinear Problems in Thin Multidomains. *GAKUTO Internat. Ser. Math. Sci. Appl.* 18, Gakkotosho, Tokyo, (2003), 245-249
- [38] A. GAUDIELLO, E.ZAPPALE A model of joined beams as limit of a 2D plate, J. Elasticity 103, (2011), 2, 205-233.
- [39] G. GIOIA, R.D. JAMES, Micromagnetics of very thin films, Proc. R. Lond. A, 453 (1997), 213-223.
- [40] E. DE , T. FRANZONI, Su un tipo di con vergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (8) (1975), n.6, 842-850.

- [41] R. HADIJI, K. SHIRAKAWA, Asymptotic analysis of micromagnetics on thin films governed by indefinite material coefficients, *Commun. Pure Appl. Anal.* 9 (2010), 5, 1345-1361.
- [42] R. HADIJI, K. SHIRAKAWA, 3D-2D Asymptotic observation for minimization problems associated with degenerative energy-coefficients, *Discrete Contin. Dyn. Syst.* Suppl. vol. I (2011), 624-633.
- [43] R. HADIJI, F. ZHOU, Regularity of $\int_{\Omega} |\nabla u|^2 + \lambda \int_{\Omega} |u f|^2$ and some gap phenomenon, *Potential Anal.* 1, 4, (1992), 385-400.
- [44] R. HARDT, D. KINDERLEHRER, F. H. LIN, Existence and Partial Regularity of Static Liquid Crystal Configurations Commun. Math. Phys. 105 (1986), 547-570.
- [45] R. HARDT, D. KINDERLEHRER, Some regularity results in ferromagnetism, to appear.
- [46] A. HUBERT, R. SCHAFER, Magnetic domains: the analysis of magnetic microstructures, Springer-Verlag, (1998).
- [47] S.S. IRUDAYARAJ, A. EMADI, Micromachines: principles of operation, dynamics, and control, electric machines and drives. *In: 2005 IEEE International Conference* (2005), 1108-1115.
- [48] R. D. JAMES, D. KINDERLEHRER, Frustration in ferromagnetic materials, Contin. Mech. Thermodyn. 2 (1990), 215-239.
- [49] R. V. KHON, V. V. SLASTIKOV, Another thin-film limit of micromagnetics, Arch. Rational Mech. Anal. 178 (2005), 277-245.
- [50] L. D. LANDAU, E. M. LIFSHITZ, On the theory of the dispersion of magnetic perme- ability in ferromagnetic bodies, *Phy. Z. Sowjetunion* 8 153 (1935), ter Haar, D. (eds.). Reproduced in *Collected Papers of L. D. Landau*, pp.101-114, New York: Pergamon Press (1965)
- [51] H. LE DRET, Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications. Research in Applied Mathematics, 19. Masson, Paris, (1991).
- [52] T. RIVIÈRE, S. SERFATY, Limiting domain wall energy for a problem related to micromagnetics, *Comm. Pure Appl. Math.* 54 (2001), 3, 294-338.
- [53] D. SANCHEZ, Behaviour of the Landau-Lifshitz equation in a ferromagnetic wire, Math. Methods Appl. Sci. 32 (2009), 2, 167-205.
- [54] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, (1996).
- [55] V. V. SLASTIKOV, C. SONNENBERG, Reduced models for ferromagnetic nanowires, J. Appl. Math. 77 (2012), 220-235.

- [56] S. SOUEID, nD-pD Dimensional reduction of micromagnetic structures, *Ricerche Mat.* Doi: 10.1007/s11587-014-0186-8
- [57] A. VISINTIN, On Landau-Lifschitz, equations for ferromagnetism, Jap. J. Appl. Math. 2 (1985), 69-84.