S. P. Herbert and D. Stainier, Molecular control of endothelial cell behaviour during blood vessel morphogenesis, Nature Reviews Molecular Cell Biology, vol.10, issue.9, pp.551-564, 2011.
DOI : 10.1038/nrm3176

B. Strilic, The Molecular Basis of Vascular Lumen Formation in the Developing Mouse Aorta, Developmental Cell, vol.17, issue.4, pp.505-515, 2009.
DOI : 10.1016/j.devcel.2009.08.011

K. Xu and O. Cleaver, Tubulogenesis during blood vessel formation, Seminars in Cell & Developmental Biology, vol.22, issue.9, pp.993-1004, 2011.
DOI : 10.1016/j.semcdb.2011.05.001

M. Zeeb, B. Strilic, and E. Lammert, Resolving cell???cell junctions: lumen formation in blood vessels, Current Opinion in Cell Biology, vol.22, issue.5, pp.626-632, 2010.
DOI : 10.1016/j.ceb.2010.07.003

M. L. Iruela-arispe and G. Davis, Cellular and Molecular Mechanisms of Vascular Lumen Formation, Developmental Cell, vol.16, issue.2, pp.222-231, 2009.
DOI : 10.1016/j.devcel.2009.01.013

A. Axnick, J. Lammert, and E. , Vascular lumen formation, Current Opinion in Hematology, vol.19, issue.3, pp.192-198, 2012.
DOI : 10.1097/MOH.0b013e3283523ebc

G. E. Davis and D. R. Senger, Endothelial Extracellular Matrix: Biosynthesis, Remodeling, and Functions During Vascular Morphogenesis and Neovessel Stabilization, Circulation Research, vol.97, issue.11, pp.1093-1107, 2005.
DOI : 10.1161/01.RES.0000191547.64391.e3

P. Carmeliet, Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis, Cell, vol.98, issue.2, pp.147-157, 1999.
DOI : 10.1016/S0092-8674(00)81010-7

S. Gory-faure, Role of vascular endothelial-cadherin in vascular morphogenesis, Development, vol.126, pp.2093-2102, 1999.

K. Xu, Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling, Developmental Cell, vol.20, issue.4, pp.526-539, 2011.
DOI : 10.1016/j.devcel.2011.02.010

A. C. Zovein, ??1 Integrin Establishes Endothelial Cell Polarity and Arteriolar Lumen Formation via a Par3-Dependent Mechanism, Developmental Cell, vol.18, issue.1, pp.39-51, 2010.
DOI : 10.1016/j.devcel.2009.12.006

A. S. Chung and N. Ferrara, Developmental and Pathological Angiogenesis, Annual Review of Cell and Developmental Biology, vol.27, issue.1, pp.563-584, 2011.
DOI : 10.1146/annurev-cellbio-092910-154002

H. M. Eilken and R. H. Adams, Dynamics of endothelial cell behavior in sprouting angiogenesis, Current Opinion in Cell Biology, vol.22, issue.5, pp.617-625, 2010.
DOI : 10.1016/j.ceb.2010.08.010

D. Smet, F. Segura, I. , D. Bock, K. Hohensinner et al., Mechanisms of Vessel Branching: Filopodia on Endothelial Tip Cells Lead the Way, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.5, pp.639-649, 2009.
DOI : 10.1161/ATVBAHA.109.185165

M. Lohela, M. Bry, T. Tammela, and K. Alitalo, VEGFs and receptors involved in angiogenesis versus lymphangiogenesis, Current Opinion in Cell Biology, vol.21, issue.2, pp.154-165, 2009.
DOI : 10.1016/j.ceb.2008.12.012

D. E. Ingber, Tensegrity and mechanotransduction, Journal of Bodywork and Movement Therapies, vol.12, issue.3, pp.198-200, 2008.
DOI : 10.1016/j.jbmt.2008.04.038

D. E. Leckband, Q. Le-duc, N. Wang, and J. De-rooij, Mechanotransduction at cadherin-mediated adhesions, Current Opinion in Cell Biology, vol.23, issue.5, pp.523-530, 2011.
DOI : 10.1016/j.ceb.2011.08.003

Z. Liu, Mechanical tugging force regulates the size of cell-cell junctions, Proc. Natl Acad. Sci. USA, pp.9944-9949, 2010.
DOI : 10.1073/pnas.0914547107

V. Maruthamuthu, B. Sabass, U. S. Schwarz, and M. L. Gardel, Cell-ECM traction force modulates endogenous tension at cell-cell contacts, Proc. Natl Acad. Sci. USA, pp.4708-4713, 2011.
DOI : 10.1073/pnas.1011123108

N. Borghi, E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch, Proc. Natl Acad. Sci. USA, pp.12568-12573, 2012.
DOI : 10.1073/pnas.1204390109

E. Dejana, F. Orsenigo, and M. G. Lampugnani, The role of adherens junctions and VE-cadherin in the control of vascular permeability, Journal of Cell Science, vol.121, issue.13, pp.2115-2122, 2008.
DOI : 10.1242/jcs.017897

E. S. Harris and W. J. Nelson, VE-cadherin: at the front, center, and sides of endothelial cell organization and function, Current Opinion in Cell Biology, vol.22, issue.5, pp.651-658, 2010.
DOI : 10.1016/j.ceb.2010.07.006

M. Montero-balaguer, Stable Vascular Connections and Remodeling Require Full Expression of VE-Cadherin in Zebrafish Embryos, PLoS ONE, vol.1, issue.4, p.5772, 2009.
DOI : 10.1371/journal.pone.0005772.s011

J. Millan, Adherens junctions connect stress fibers between adjacent endothelial cells, BMC Biology, vol.8, issue.1, p.11, 2010.
DOI : 10.1186/1741-7007-8-11

W. J. Nelson, F. Drees, and S. Yamada, Interaction of Cadherin with the Actin Cytoskeleton, Novartis Found. Symp, vol.269, pp.159-168, 2005.
DOI : 10.1002/047001766X.ch13

S. Huveneers, Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling, The Journal of Cell Biology, vol.108, issue.5, pp.641-652, 2012.
DOI : 10.1074/jbc.M206133200

A. Bratt, Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains, Gene, vol.298, issue.1, pp.69-77, 2002.
DOI : 10.1016/S0378-1119(02)00928-9

K. Aase, Angiomotin regulates endothelial cell migration during embryonic angiogenesis, Genes & Development, vol.21, issue.16, pp.2055-2068, 2007.
DOI : 10.1101/gad.432007

A. Doi, All rights reserved

M. Ernkvist, The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells, Blood, vol.113, issue.1, pp.244-253, 2009.
DOI : 10.1182/blood-2008-04-153874

Y. Zheng, Angiomotin-Like Protein 1 Controls Endothelial Polarity and Junction Stability During Sprouting Angiogenesis, Circulation Research, vol.105, issue.3, pp.260-270, 2009.
DOI : 10.1161/CIRCRESAHA.109.195156

M. Ernkvist, p130-Angiomotin associates to actin and controls endothelial cell shape, FEBS Journal, vol.20, issue.11, pp.2000-2011, 2006.
DOI : 10.1111/j.1742-4658.2006.05216.x

H. Huang, Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation, Development, vol.134, issue.5, pp.979-988, 2007.
DOI : 10.1242/dev.02782

URL : https://hal.archives-ouvertes.fr/hal-00188317

A. J. Sehnert, Cardiac troponin T is essential in sarcomere assembly and cardiac contractility, Nature Genetics, vol.31, issue.1, pp.106-110, 2002.
DOI : 10.1038/ng875

S. W. Jin, D. Beis, T. Mitchell, J. N. Chen, and D. Stainier, Cellular and molecular analyses of vascular tube and lumen formation in zebrafish, Development, vol.132, issue.23, pp.5199-5209, 2005.
DOI : 10.1242/dev.02087

H. Helker and C. S. , The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment, Development, vol.140, issue.13, pp.2776-2786, 2013.
DOI : 10.1242/dev.091876

N. Nakayama and M. , Spatial regulation of VEGF receptor endocytosis in angiogenesis, Nature Cell Biology, vol.5, issue.3, pp.249-260, 2013.
DOI : 10.1038/ncb2679

H. J. Schnittler, B. Puschel, and D. Drenckhahn, Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress, Am. J. Physiol, vol.273, pp.2396-2405, 1997.

A. Bratt, Angiomotin Regulates Endothelial Cell-Cell Junctions and Cell Motility, Journal of Biological Chemistry, vol.280, issue.41, pp.34859-34869, 2005.
DOI : 10.1074/jbc.M503915200

K. M. Patrie, Identification and characterization of a novel tight junctionassociated family of proteins that interacts with a WW domain of MAGI

A. Sakurai, MAGI-1 Is Required for Rap1 Activation upon Cell-Cell Contact and for Enhancement of Vascular Endothelial Cadherin-mediated Cell Adhesion, Molecular Biology of the Cell, vol.17, issue.2, pp.966-976, 2006.
DOI : 10.1091/mbc.E05-07-0647

I. Y. Dobrosotskaya and G. L. James, MAGI-1 Interacts with ??-Catenin and Is Associated with Cell???Cell Adhesion Structures, Biochemical and Biophysical Research Communications, vol.270, issue.3, pp.903-909, 2000.
DOI : 10.1006/bbrc.2000.2471

M. Dembo and Y. L. Wang, Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts, Biophysical Journal, vol.76, issue.4, pp.2307-2316, 1999.
DOI : 10.1016/S0006-3495(99)77386-8

Y. Wang, Angiomotin-like2 Gene (amotl2) Is Required for Migration and Proliferation of Endothelial Cells during Angiogenesis, Journal of Biological Chemistry, vol.286, issue.47, pp.41095-41104, 2011.
DOI : 10.1074/jbc.M111.296806

E. Dejana and D. Vestweber, The Role of VE-Cadherin in Vascular Morphogenesis and Permeability Control, Prog. Mol. Biol. Transl. Sci, vol.116, pp.119-144, 2013.
DOI : 10.1016/B978-0-12-394311-8.00006-6

M. Bagnat, I. D. Cheung, K. E. Mostov, and D. Y. Stainier, Genetic control of single lumen formation in the zebrafish gut, Nature Cell Biology, vol.95, issue.8, pp.954-960, 2007.
DOI : 10.1038/ng1961

B. Strilic, Electrostatic Cell-Surface Repulsion Initiates Lumen Formation in Developing Blood Vessels, Current Biology, vol.20, issue.22, 2003.
DOI : 10.1016/j.cub.2010.09.061

M. E. Pitulescu, I. Schmidt, R. Benedito, and R. H. Adams, Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice, Nature Protocols, vol.163, issue.9, pp.1518-1534, 2010.
DOI : 10.1038/nprot.2010.113

D. Traver, Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants, Nature Immunology, vol.4, issue.12, pp.1238-1246, 2003.
DOI : 10.1038/ni1007

N. D. Lawson and B. M. Weinstein, In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish, Developmental Biology, vol.248, issue.2, pp.307-318, 2002.
DOI : 10.1006/dbio.2002.0711

Y. Wang, Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis, Development, vol.137, issue.18, pp.3119-3128, 2010.
DOI : 10.1242/dev.048785

J. Bussmann, S. A. Wolfe, and A. Siekmann, Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling, Development, vol.138, issue.9, pp.1717-1726, 2011.
DOI : 10.1242/dev.059881

A. Lenard, In??Vivo Analysis Reveals a Highly Stereotypic Morphogenetic Pathway of Vascular Anastomosis, Developmental Cell, vol.25, issue.5, pp.492-506, 2013.
DOI : 10.1016/j.devcel.2013.05.010

S. Fisher, Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish, Nature Protocols, vol.4, issue.3, pp.1297-1305, 2006.
DOI : 10.1038/nprot.2006.230

Y. Blum, Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo, Developmental Biology, vol.316, issue.2, pp.312-322, 2008.
DOI : 10.1016/j.ydbio.2008.01.038

L. Herwig, Distinct Cellular Mechanisms of Blood Vessel Fusion in the Zebrafish Embryo, Current Biology, vol.21, issue.22, pp.1942-1948, 2011.
DOI : 10.1016/j.cub.2011.10.016

Q. Tseng, A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, Lab on a Chip, vol.17, issue.13, pp.2231-2240, 2011.
DOI : 10.1039/c0lc00641f

URL : https://hal.archives-ouvertes.fr/hal-00611335

J. P. Butler, I. M. Tolic-norrelykke, B. Fabry, and J. J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings, AJP: Cell Physiology, vol.282, issue.3, pp.595-605, 2002.
DOI : 10.1152/ajpcell.00270.2001

D. Bluteau, L. Lordier, D. Stefano, A. Chang, Y. Raslova et al., Regulation of megakaryocyte maturation and platelet formation, Journal of Thrombosis and Haemostasis, vol.113, issue.Suppl. 1, pp.227-261, 2009.
DOI : 10.1111/j.1538-7836.2009.03398.x

J. Italiano, . Jr, S. Patel-hett, and J. Hartwig, Mechanics of proplatelet elaboration, Journal of Thrombosis and Haemostasis, vol.23, pp.18-23, 2007.
DOI : 10.1111/j.1538-7836.2007.02487.x

E. Cramer, F. Norol, J. Guichard, J. Breton-gorius, W. Vainchenker et al., Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand, Blood, vol.89, pp.2336-2382, 1997.

J. Italiano, . Jr, P. Lecine, R. Shivdasani, and J. Hartwig, Blood Platelets Are Assembled Principally at the Ends of Proplatelet Processes Produced by Differentiated Megakaryocytes, The Journal of Cell Biology, vol.30, issue.6, pp.1299-312, 1999.
DOI : 10.1083/jcb.99.2.390

Z. Chen, O. Naveiras, A. Balduini, A. Mammoto, M. Conti et al., The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway, Blood, vol.110, issue.1, pp.171-180, 2007.
DOI : 10.1182/blood-2007-02-071589

A. Pecci, V. Bozzi, E. Panza, S. Barozzi, C. Gruppi et al., Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells, Thrombosis and Haemostasis, vol.106, issue.4, pp.693-704, 2011.
DOI : 10.1160/TH11-02-0126

Y. Chang, F. Aurade, F. Larbret, Y. Zhang, L. Couedic et al., Proplatelet formation is regulated by the Rho/ROCK pathway, Blood, vol.109, issue.10, pp.4229-4265, 2007.
DOI : 10.1182/blood-2006-04-020024

H. Schulze, M. Korpal, J. Hurov, S. Kim, J. Zhang et al., Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis, Blood, vol.107, issue.10, pp.3868-75, 2006.
DOI : 10.1182/blood-2005-07-2755

J. Thon, H. Macleod, A. Begonja, J. Zhu, K. Lee et al., Microtubule and cortical forces determine platelet size during vascular platelet production, Nature Communications, vol.319, p.852, 2012.
DOI : 10.1038/ncomms1838

L. Lordier, D. Bluteau, A. Jalil, C. Legrand, J. Pan et al., RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization, Nature Communications, vol.276, p.717, 2012.
DOI : 10.1038/ncomms1704

N. Murakami, P. Mehta, M. Elzinga, J. Shin, J. Swift et al., Studies on the distribution of cellular myosin with antibodies to isoform-specific synthetic peptides Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes, FEBS Lett Proc Natl Acad Sci, vol.288, issue.108, pp.247-11458, 1991.

M. Kelley, W. Jawien, T. Ortel, and J. Korczak, Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May- Hegglin anomaly, Nature Genetics, vol.26, issue.1, pp.106-114, 2000.
DOI : 10.1038/79069

M. Seri, R. Cusano, S. Gangarossa, G. Caridi, D. Bordo et al., Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium, Nat Genet, vol.26, pp.103-108, 2000.

K. Althaus and A. Greinacher, MYH9-Related Platelet Disorders, Seminars in Thrombosis and Hemostasis, vol.35, issue.02, pp.189-203, 2009.
DOI : 10.1055/s-0029-1220327

S. Kunishima and H. Saito, Advances in the understanding of MYH9 disorders, Current Opinion in Hematology, vol.17, issue.5, pp.405-415, 2010.
DOI : 10.1097/MOH.0b013e32833c069c

A. Savoia, C. Balduini, R. Pagon, M. Adam, T. Bird et al., MYH9-Related Disorders Available from, Accessed 05, 1993.

C. Balduini, A. Pecci, and A. Savoia, Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias, British Journal of Haematology, vol.373, issue.2, pp.161-74, 2011.
DOI : 10.1111/j.1365-2141.2011.08716.x

A. Pecci, E. Panza, D. Rocco, D. Pujol-moix, N. Girotto et al., related disease: four novel mutations of the tail domain of myosin-9 correlating with a mild clinical phenotype, European Journal of Haematology, vol.35, issue.4, pp.291-298, 2010.
DOI : 10.1111/j.1600-0609.2009.01398.x

A. Pecci, E. Panza, N. Pujol-moix, C. Klersy, D. Bari et al., Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history ofMYH9-related disease, Human Mutation, vol.11, issue.3, pp.409-426, 2008.
DOI : 10.1002/humu.20661

A. Eckly, C. Strassel, M. Freund, J. Cazenave, F. Lanza et al., Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation, Blood, vol.113, issue.14, pp.3182-3191, 2009.
DOI : 10.1182/blood-2008-06-164061

C. Leon, A. Eckly, B. Hechler, B. Aleil, M. Freund et al., Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion, Blood, vol.110, issue.9, pp.3183-91, 2007.
DOI : 10.1182/blood-2007-03-080184

URL : https://hal.archives-ouvertes.fr/inserm-00166437

S. Kunishima, M. Hamaguchi, and H. Saito, Differential expression of wild-type and mutant NMMHC-IIA polypeptides in blood cells suggests cell-specific regulation mechanisms in MYH9 disorders, Blood, vol.111, issue.6, pp.3015-3038, 2008.
DOI : 10.1182/blood-2007-10-116194

J. Franke, R. Montague, W. Rickoll, and D. Kiehart, An MYH9 human disease model in flies: site-directed mutagenesis of the Drosophila non-muscle myosin II results in hypomorphic alleles with dominant character, Human Molecular Genetics, vol.16, issue.24, pp.3160-73, 2007.
DOI : 10.1093/hmg/ddm279

Y. Zhang, M. Conti, D. Malide, F. Dong, A. Wang et al., Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A, Blood, vol.119, issue.1, pp.238-50, 2012.
DOI : 10.1182/blood-2011-06-358853

K. Ubukawa, Y. Guo, M. Takahashi, M. Hirokawa, Y. Michishita et al., Enucleation of human erythroblasts involves non-muscle myosin IIB, Blood, vol.119, issue.4, pp.1036-1080, 2012.
DOI : 10.1182/blood-2011-06-361907

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-89, 2006.
DOI : 10.1016/j.cell.2006.06.044

Q. Tseng, I. Wang, E. Duchemin-pelletier, A. Azioune, N. Carpi et al., A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, Lab on a Chip, vol.17, issue.13, pp.2231-2271, 2011.
DOI : 10.1039/c0lc00641f

URL : https://hal.archives-ouvertes.fr/hal-00611335

A. Hu, F. Wang, and J. Sellers, Mutations in Human Nonmuscle Myosin IIA Found in Patients with May-Hegglin Anomaly and Fechtner Syndrome Result in Impaired Enzymatic Function, Journal of Biological Chemistry, vol.277, issue.48, pp.46512-46519, 2002.
DOI : 10.1074/jbc.M208506200

M. Ikebe, S. Komatsu, J. Woodhead, K. Mabuchi, R. Ikebe et al., The Tip of the Coiled-coil Rod Determines the Filament Formation of Smooth Muscle and Nonmuscle Myosin, Journal of Biological Chemistry, vol.276, issue.32, pp.30293-300, 2001.
DOI : 10.1074/jbc.M101969200

A. Pecci, A. Malara, S. Badalucco, V. Bozzi, M. Torti et al., Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation, Thrombosis and Haemostasis, vol.102, pp.90-96, 2009.
DOI : 10.1160/TH09-01-0068

M. Breckenridge, N. Dulyaninova, and T. Egelhoff, Multiple Regulatory Steps Control Mammalian Nonmuscle Myosin II Assembly in Live Cells, Molecular Biology of the Cell, vol.20, issue.1, pp.338-385, 2009.
DOI : 10.1091/mbc.E08-04-0372

A. Eckly, J. Rinckel, P. Laeuffer, J. Cazenave, F. Lanza et al., Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice, Journal of Thrombosis and Haemostasis, vol.123, issue.Suppl 1, pp.2243-51, 2010.
DOI : 10.1111/j.1538-7836.2010.04009.x

C. Chen, J. Alonso, E. Ostuni, G. Whitesides, and D. Ingber, Cell shape provides global control of focal adhesion assembly, Biochemical and Biophysical Research Communications, vol.307, issue.2, pp.355-61, 2003.
DOI : 10.1016/S0006-291X(03)01165-3

Y. Cai, N. Biais, G. Giannone, M. Tanase, G. Jiang et al., Nonmuscle Myosin IIA-Dependent Force Inhibits Cell Spreading and Drives F-Actin Flow, Biophysical Journal, vol.91, issue.10, pp.3907-3927, 2006.
DOI : 10.1529/biophysj.106.084806

H. Godwin and A. Ginsburg, May-Hegglin Anomaly: A Defect in Megakaryocyte Fragmentation?, British Journal of Haematology, vol.183, issue.1, pp.117-145, 1974.
DOI : 10.1172/JCI104970