Synthesis and characterization of new modified photocatalysts for environmental and energy applications
Ana Laura Luna Barron

To cite this version:

HAL Id: tel-01363518
https://tel.archives-ouvertes.fr/tel-01363518
Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis and characterization of new modified photocatalysts for environmental and energy applications
ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisors Prof. Christophe COLBEAU-JUSTIN and Hynd REMITA for their support during my PhD studies. They gave me the opportunity to attend many conferences and to have great experiences during the scientific internships, which have greatly benefited my development as a scientist.

I would like to thank to Essylt LOUARN for the interesting discussion and help for quantification of hydrogen by mass spectrometry.

I want to thank for all the support and guidance, that Prof. Bunsho OHTANI and Ewa KOWALSKA gave me during my priceless stay in Hokkaido university.

I wish to acknowledge the their experience, good laboratories practices and creative thinking that Marta LITTER and Martin MEICHTRY gave me during my stay in National Atomic Energy Commission.

I owe my deepest gratitude to Miguel A. VALENZUELA because of his encouragement and enlightening discussions.

Jaqueline BELLONI insightful comments and constructive criticisms at different stages of my research were thought-provoking and they helped me focus my ideas.

I am indebted to Filippo RUSCONI who helped to resolve numerous LATEX problems.

I would also like to warmly thank to Prof.: Valérie KELLER, Souad AMMAR, Alli AUKAULO, and Miguel VALENZUELA for the help, the insights and the comments that they gave me without restraint. I am glad he accepted to be a member of the jury of this thesis.

I must thank all the members of the excellent Laboratory of Chemistry and Physics, including the faculty, staff, and students. The friendship, enlightening discussions and and the overall atmosphere center spirit have made my stay at LCP pleasant and enjoyable. Special thanks to Dita FLORESYONA, Cornelia ZIEGLER, Iyad, Ekaterina NOVOSELTSEVA, Alexander HERISSAN, Marie CLEMENT, and Luis HERNANDEZ. Finally, I gladly acknowledge CONACYT that believed in my research and provided me with necessary fundings.

Esta tesis esta dedicada a las personas que siempre he tenido a mi lado
aplaudiendo mis triunfos y apoyándome en mis tropiezos. A quien no les ha importado ni tiempo ni la distancia para seguir velando por mi felicidad. Layis, Rey, Erick y Gio este logro es para y por ustedes. Los quiero muchísimo. Siempre estan en mi corazón.

Querido Adrian gracias por haber recorrido este camino conmigo, no puedo imaginar lo complicado que hubiera sido sin tu apoyo, compañía y amor. Gracias por tu paciencia a mis interminables platicas sobre fotocatálisis, radiolisis, NPs y demás y por tus invaluables consejos. Gracias kittito.

Sincerely,
Laura
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>3</td>
</tr>
<tr>
<td>Abbreviations — Glossary</td>
<td>vii</td>
</tr>
<tr>
<td>Synthèse</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1 Theoretical review</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Heterogeneous photocatalysis</td>
<td>11</td>
</tr>
<tr>
<td>1.2 Photocatalytic process</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1 Photon absorption: charge-carrier generation</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2 Hole trapping</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3 Electron trapping</td>
<td>19</td>
</tr>
<tr>
<td>1.2.4 Charge-carrier recombination</td>
<td>21</td>
</tr>
<tr>
<td>1.2.5 Electron Transfer</td>
<td>23</td>
</tr>
<tr>
<td>1.3 Mechanism</td>
<td>24</td>
</tr>
<tr>
<td>1.4 Photocatalytic applications</td>
<td>27</td>
</tr>
<tr>
<td>1.4.1 Water treatment</td>
<td>27</td>
</tr>
<tr>
<td>1.4.2 Hydrogen production over titania photocatalyst</td>
<td>29</td>
</tr>
<tr>
<td>1.4.2.1 Basic principles of hydrogen generation via photocatalysis</td>
<td>30</td>
</tr>
<tr>
<td>1.4.2.2 Oxidation of water</td>
<td>32</td>
</tr>
<tr>
<td>1.4.2.3 Reduction of water</td>
<td>34</td>
</tr>
<tr>
<td>1.5 Metal nanoparticles deposed on TiO₂</td>
<td>35</td>
</tr>
<tr>
<td>1.5.1 Gold</td>
<td>35</td>
</tr>
</tbody>
</table>
Synthesis and Characterization of New Modified Photocatalysts

1.5.2 Palladium ... 38
1.5.3 Nickel .. 39

2 Experimental Part

2.1 Fundamentals of Metal Nanoparticle Synthesis by Radiolysis

- 2.1.1 Radiation chemistry of water 43
- 2.1.2 Radiation-induced metal NPs synthesis 45
- 2.1.3 Synthesis of bimetallic NPs by radiolysis 47
- 2.1.4 Supported nanoclusters 50

2.2 Metal Nanoparticles Synthesis

- 2.2.1 Characterization Techniques 53
- 2.2.2 Time Resolved Microwave Conductivity 54
 - 2.2.2.1 Principle .. 54
 - 2.2.2.2 Technical aspects of TRMC 56
 - 2.2.2.3 Energy of the excitation wavelength 56

2.3 Material Characterization

- 2.3.1 Characterization Techniques 53
- 2.3.2 Time Resolved Microwave Conductivity 54
 - 2.3.2.1 Principle .. 54
 - 2.3.2.2 Technical aspects of TRMC 56
 - 2.3.2.3 Energy of the excitation wavelength 56

2.4 Photocatalytic Evaluation

- 2.4.1 Hydrogen Production Evaluation 58
 - 2.4.1.1 Irradiation system using a polychromatic light source 59
 - 2.4.1.2 Irradiation system employing monochromatic light: action spectra measurements 59
- 2.4.2 Phenol Degradation 60
- 2.4.3 Photooxidation of Lead Ions (II) 62
- 2.4.4 Photoreduction of Lead Ions (II) 62
- 2.4.5 Isopropanol Photoxidation 63

3 Nickel Ions on the Surface of Titania

- 3.1 Sensitizing of TiO$_2$ surface with Nickel ions 67
- 3.2 Characterization .. 68
 - 3.2.1 Diffuse reflectance spectrometry 69
 - 3.2.2 XPS ... 71
- 3.2.3 TRMC .. 72
4 Nickel and/or Gold on titania surface

4.1 Samples .. 81
4.2 Characterization 81
 4.2.1 UV-Vis Diffuse Reflectance (DRS) 81
 4.2.2 High resolution transmission electron microscopy (HRTEM) 84
 4.2.3 X-ray photoelectron spectroscopy (XPS) 86
 4.2.4 Time Resolved Microwave Conductivity method (TRMC) . 88
 4.2.4.1 Influence of excitation energy at 355 nm 89
 4.2.4.2 Excitation at different wavelength: TRMC spectra 93
4.3 Study of the photocatalytic activity 95
 4.3.1 Phenol degradation 95
 4.3.1.1 Phenol photodegradation under UV light 95
 4.3.1.2 Phenol photodegradation under visible light . 96
 4.3.1.3 Discussion 98
 4.3.2 Oxidation of 2-propanol 101
 4.3.3 Removal of lead (II) by photocatalytic reduction or oxidation process 104
 4.3.3.1 Photocatalytic reduction of Pb(II) ions 104
 4.3.3.2 Photocatalytic oxidation of Pb(II) ions 106
 4.3.3.3 Discussion 106
 4.3.4 Hydrogen production 111
 4.3.4.1 Photocatalytic Hydrogen production under Xe lamp irradiation 112
 4.3.4.2 Action spectra measurements 113
 4.3.4.3 Discussion 115
 4.3.5 Conclusion 121

5 Nickel and/or Palladium on titania

5.1 Samples .. 125
5.2 Characterization of the samples 128
5.2.1 UV-Vis Diffuse Reflectance
5.2.2 High Resolution Transmission Electron Microscopy (HRTEM)
5.2.3 X-ray photoelectron spectroscopy (XPS)
5.2.4 Time Resolved Microwave Conductivity
5.3 Photocatalytic hydrogen production test
5.3.1 Hydrogen generation under mercury lamp irradiation
5.3.2 Action spectra measurements
5.3.3 Discussion
5.3.4 Conclusion

Conclusions & Perspectives

Annexes

Introduction

Bibliography
List of Figures

1. Projections of global carbon emission and energy consumption rates 4
2. Water availability of the world by natural-economic regions 5

Theoretical review 9

1.1 Scheme of heterogeneous photocatalysis 12
1.2 Schematic representation of the general photocatalytic process on
 TiO₂ nanoparticles . 14
1.3 Effect of small size of TiO₂ nanoparticles in its optical absorption 15
1.4 Diffuse reflectance spectra of pure and modified P25 photocatalysts
 with bimetallic Au-Cu nanoparticles Hai et al. [2013] 16
1.5 Energy levels of O 2p orbitals for oxygen species at the TiO₂ surface 18
1.6 Transient absorption spectra from O₂-saturated and N₂-saturated
 solutions . 20
1.7 Model for trap state photoluminescence in anatase 22
1.8 Schematic illustration of three possible charge (electron or hole)
 transfer processes involving TiO₂ 24
1.9 Dependency of interfacial electron transfer rates on the driving
 forces Mohamed and Bahnemann [2012] 25
1.10 Reaction pathway for the O₂ photoreduction as proposed by Mattioli
 et al. [2006] . 27
1.11 Phenol photodegradation route Guo et al. [2006] 29
1.12 Basic principle of the overall water-splitting reaction on a semicon-
 ductor photocatalyst . 30
1.13 Water photooxidation propose by Nakato group 33
Synthesis and characterization of new modified photocatalysts

1.14 STM images (a and b) on hydroxyl-covered R TiO$_2$(110) at 381 K acquired three minutes apart. (c) Difference image (b-a)

1.15 I-V characteristics of (a) TiO$_2$, (b) TiO$_2$/Au (8 nm diameter), and (c) TiO$_2$/Au (5 nm diameter) composite film

1.16 Acetone generation under visible-light irradiation (>450 nm) on Au modified titania powders Kowalska et al. [2009]

1.17 Spatial distribution of fluorescence spots (red dots, >50 spots)

1.18 Effect of Pd loading on TiO$_2$ surface in H$_2$ yield

Experimental part

2.1 Schematic representation of solvated electron in water

2.2 Radiation chemistry of the water

2.3 Scheme of metal ion reduction in solution by ionizing radiation

2.4 Scheme summarizing the influence of the dose rate during the radiolytic reduction of mixed metal ion solutions

2.5 General scheme of the synthesis of metal nanoparticles supported on titania

2.6 A typical TRMC signal of TiO$_2$ P25 excited at 355 nm

2.7 Scheme of the TRMC set-up

2.8 Pulse energy as function of wavelength of the laser used as excitation source in TRMC setup

2.9 Continuous and batch systems used for hydrogen production via photocatalysis

2.10 Action spectra equipment

2.11 Photoreactor used for phenol degradation

Nickel ions on the surface of titania

3.1 Adsorption of Ni ions on TiO$_2$ surface

3.2 DR spectra of bare and Ni ions modified titania

3.3 DR spectra of Ni ions modified titania and of NiSO$_4$ aqueous solution from 500 and 800 nm

3.4 Nip$_{2/3}$ spectra of adsorbed Ni on titania
List of Figures

3.5 TRMC signals of bare titania and modified samples (nickel adsorbed on TiO₂) .. 74
3.6 TRMC and DRS spectra of bare TiO₂ and selected modified samples 75
3.7 Phenol degradation (above) and mineralization (below) profile under UV light 77
3.8 Conversion percentage of phenol degradation and mineralization under visible light. 78

Nickel and/or Gold on titania surface 79

4.1 Images of the Ni and/or Au modified titania .. 82
4.2 UV-Visible absorbance spectra of modified samples and bare TiO₂ 83
4.3 HRTEM images of selected samples ... 84
4.4 EDAX analyses ... 85
4.5 XPS spectra of peaks detected in both modified and bare titania 86
4.6 XPS spectra of modified samples with metal loading of 1 at% 87
4.7 XPS curve fitting for the sample 1-NiAu/TiO₂ ... 88
4.8 TRMC signals of Ni and/or Au modified samples and bare TiO₂ 90
4.9 TRMC signals of TiO₂ before and after irradiation at different doses. 92
4.10 TRMC spectra and absorption spectra of modified samples, metal loading 0.5 at% 94
4.11 TRMC spectra of commercial NiO ... 94
4.12 Phenol degradation kinetics for selected modified samples with 0.1 at % metal loading .. 96
4.13 Kinetics of phenol degradation for selected modified samples with 0.1 at% metal loading. 98
4.14 Kinetics of phenol degradation for selected modified samples of x-NiAu/TiO₂ 99
4.15 Schematic phenol degradation using surface modified titania with metal NPs under UV light ... 100
4.16 Schematic phenol degradation using surface modified titania with metal NPs under visible light ... 101
4.17 Acetone generation under visible-light irradiation .. 102
Synthesis and characterization of new modified photocatalysts

4.18 Action spectrum of 2-propanol oxidation (red marker-line) and DR spectrum (purple solid line) of 1-NiAu/TiO₂ .. 103

4.19 Schematic 2-propanol oxidation using surface modified titania with metal NPs under visible light. .. 104

4.20 Photocatalytic reduction of Pb (II) ... 105

4.21 Photocatalytic oxidation of Pb (II) ... 107

4.22 Proposed scheme of the effect of COO⁻⁻ radicals and electron CB in the reduction of leads ions in aqueous solutions using TiO₂ 109

4.23 Proposed scheme of the effect of COO⁻⁻ radicals and electron CB in the reduction of leads ions in aqueous solutions using modified samples ... 111

4.24 Rates for H₂ photoproduction from methanol/water solutions under UV light ... 112

4.25 Absorption spectra (photon absorption), TRMC spectra (charge-carrier formation) and action spectra (apparent quantum efficiency) 114

4.26 Gold NPs acting as recombination site during the photocatalytic H₂ formation ... 116

4.27 Proposed mechanism of H₂ production on x-Ni/TiO₂ samples . . 118

4.28 A propose mechanism of H₂ production onx-NiAu/TiO₂ samples . 119

Nickel and/or Palladium on titania surfac

5.1 Scheme illustrating the effect of complexation on the reduction potentials of nickel ions in aqueous solutions with or without PA⁻ 125

5.2 Images of modified samples of with Ni and/or Pd 127

5.3 UV-Visible absorbance spectra of modified samples and bare TiO₂ 129

5.4 UV-Visible absorption spectra of 1-PdNi/TiO₂ and 1-Pd/TiO₂ samples ... 130

5.5 HRTEM of 1-Pd/TiO₂ samples .. 131

5.6 HRTEM of 1-NiPd/TiO₂ samples ... 131

5.7 HRTEM of 1-PdNi/TiO₂ samples ... 132

5.8 XPS spectra of the Pd3d core level of: a) PdNi/TiO₂, b) Pd/TiO₂, and c) NiPd/TiO₂ ... 133
List of Figures

5.9 Fitting of Ni2p core level of NiPd/TiO₂ sample .. 134
5.10 Proposed structural model of the systems: a) Ni/TiO₂, b) Pd/TiO₂,
 c) NiPd/TiO₂, and d) PdNi/TiO₂ ... 135
5.11 TRMC signal of the modified samples and bare TiO₂ 136
5.12 H₂ production rates for modified samples and bare titania 139
5.13 Comparison of H₂ production rates of bimetallic samples with its
 respecting parts .. 140
5.14 Absorption- and action spectra of modified samples 141
5.15 Schematic representation of the mechanisms proposed to explain
 the role of metal NPs (Pd-Ni) in the photocatalytic H₂ generation 144
5.16 MS signal for generated H₂ calibration curve 153
5.17 Calibration curve of H₂ ... 154
5.18 The signals recover during the photocatalytic test and converted
 to partial fraction ... 154
5.19 Projections of global carbon emission and energy consumption rates 158
5.20 Water availability of the world by natural-economic regions 159
Synthesis and characterization of new modified photocatalysts
List of Tables

2.1 Mass of the metal precursors and the doses used for each sample.
The system x-NiAu/TiO₂, where x indicates the metal loading. . . 51

2.2 Mass of the metal precursors and the doses used for each sample.
The system x-NiPd/TiO₂, where x indicates the metal loading. . . 52

3.1 Half life time of the phenol degradation and mineralization under
UV light . 76

4.1 TRMC parameters for bare and modified TiO₂. 91
4.2 Kinetics data for bare and modified TiO₂ under UV light. . . . 97
4.3 Kinetics data of bare and modified TiO₂ under visible light. . . 98
4.4 H₂ production rates with x-Au/TiO₂, x-Ni/TiO₂ and x-NiAu/TiO₂
samples and bare TiO₂ followed by gas chromatography and mass
spectrometry. The reaction conditions for these two systems are
described in the experimental part. 113

5.1 TRMC parameters for bare titania and modified samples. . . . 137
5.2 Fricke solution . 157
Abbreviations — Glossary

- MS mass spectrometry;
- GC gas chromatography;
- AQE apparent quantum efficiency;
- TOC total organic carbon;
- CB conduction band;
- VB valance band;
- E_g band gap;
- DRS diffuse reflectance spectrometry;
- NPs nanoparticles;
- TRMC time-resolved microwave conductivity;
- AOP advanced oxidation processes;
- XPS X-ray photoelectron spectroscopy;
- BE binding energy;
- HPLC high performance liquid chromatography;
- PL photoluminescence;
- A acceptor;
- D donor;
- TRXRF X-ray fluorescence spectrometer;
Synthesis and characterization of new modified photocatalysts

- e^-_s electron solvated also call hydrated electron;
- h^+ hole;
- HO^* hydroxyl radical;
- M^+ metal cation;
- M^0 metal ;
- ROH alcohol;
- I_{max} maximum value of the TRMC signal;
- I_{40s}/I_{max} TRMC short-range decay, arbitrarily fixed up to 40 ns after the maximum of the pulse;
- TiO$_2$ titanium dioxide;
- O$_2$ oxygen;
- Ti$^{(4+)}OH$ hydroxyl ions at the surface of TiO$_2$;
- O$_2^-_b$ bridging oxygens ;
- O$_2^*-$ superoxide;
- H* atomic hydrogen ;
- H$_2$ hydrogen;
- Ti$^{4+}_{5C}$ five-fold coordinated Ti$^{4+}$ surface;
- EB electron beams;
La photocatalyse est une technologie prometteuse pour l’environnement et l’énergie. L’intérêt actuel pour celle-ci découle des défis auxquels le monde doit faire face, liés aux changements climatiques et à l’approvisionnement en énergie. La photocatalyse a démontré qu’elle pouvait dégrader un grand nombre de contaminants dans l’eau et dans l’air ainsi que produire de l’énergie propre sous forme d’hydrogène en utilisant la lumière et un semi-conducteur en tant que composantes clés du processus. De plus, à côté de ses applications prometteuses, la photocatalyse se caractérise également par sa simplicité et son faible coût. Le processus photocatalytique global consiste en la génération de paires électron-trou, suite à l’excitation d’un semi-conducteur par une lumière ayant une énergie supérieure ou égale à l’énergie de la bande interdite de celui-ci. Les électrons et les trous sont à la base des réactions souhaitées de réduction et d’oxydation. Comme il l’a été mentionné précédemment, les deux éléments clés sont la lumière et le semi-conducteur. Le dioxyde de titane (TiO$_2$) est le semi-conducteur le plus utilisé en photocatalyse en raison de ses excellentes propriétés physiques et chimiques, de sa grande disponibilité et de son faible coût. Cependant, les deux principaux inconvénients de l’utilisation de TiO$_2$ photocatalytique sont la cinétique de réaction relativement lente et la nécessité d’utiliser un rayonnement UV. La modification de surface de TiO$_2$ avec des nanoparticules métalliques (NPs) est une stratégie classique pour surmonter ces inconvénients. Les photocatalyseurs modifiés (métaux NPs/TiO$_2$) ont montré leur capacité à augmenter l’efficacité de la réaction photocatalytique sous lumière UV, en particulier pour la réaction de génération d’hydrogène, et dans certains cas pour la réaction de dégradation des polluants. En outre, certains métaux déposés ont montré un effet de sensibilisation de la surface de l’oxyde de titane, ce qui conduit à l’activation du photocatalyseur sous lumière visible. Récemment, il a été proposé de modifier la surface de TiO$_2$ avec des NPs bimétalliques. Les principaux points forts des systèmes bimétalliques sont: (1) dans la plupart des cas une activité photocatalytique supérieure comparée à
celle obtenue avec des modifications monométalliques et (2) la possibilité d’utiliser des métaux peu coûteux tels que Co, Ni et Cu. Malgré les grandes avancées réalisées dans l’étude de la modification de surface du TiO$_2$ par des NPs mono et bimétalliques sur l’activité photocatalytique, beaucoup d’aspects restent encore incompris. Notre travail présente la modification du TiO$_2$ commercial P25 par des NPs mono- et bimétalliques (Ni, Au, Ni-Au, Pd et Ni-Pd), leur caractérisation et leur évaluation photocatalytique. Cette étude complète relie les trois étapes principales du procédé photocatalytique: (1) l’absorption de la lumière (génération des paires électron-trou), (2) la dynamique des porteurs de charge et (3) l’efficacité photocatalytique. Les NPs métalliques ont été synthétisées directement sur la surface de TiO$_2$ par rayonnement gamma. La caractérisation exhaustive a été faite par Microscopie Electronique à Transmission Haute Résolution (MET-HR), Diffraction des Rayons X (DRX), Analyse Dispersive en Énergie de RX (EDS), Spectrométrie Photoélectronique X (XPS), Spectroscopie UV-vis en Réflexion Diffuse (DRS) et Time Resolved Microwave Conductivity (TRMC). Les échantillons ont été testés, sous illumination UV-Visible poly et monochromatique (Action Spectra), par les réactions photocatalytiques suivantes: (1) dégradation du phénol et du 2-propanol, (2) production d’hydrogène et (3) oxydation et réduction du Pb$^{2+}$. Les résultats montrent que les systèmes bimétalliques sont plus actifs que leurs homologues monométalliques respectifs. Nos résultats nous conduisent à affirmer que le rôle principal des NPs métalliques est, dans le cas de la production d’hydrogène photocatalytique, sur l’aspect catalytique. Cette étude ne rejette pas les arguments classiques des NPs métalliques agissant comme piègeurs d’électrons, mais montre que ce n’est pas leur rôle principal. Les échantillons Au/TiO$_2$ et Ni-Au/TiO$_2$ ont montré une activité photocatalytique dans la dégradation des composés organiques sous illumination visible. Ceci a été expliqué par l’effet plasmonique des NPs d’Au.
The lifestyle of the modern society has provoked an increase of extraction and processing of resources to meet human consumption. This has been reflected in accelerated industrial growth, but also in negative environmental impact.

The energetic demand has increased considerably along with the industrial growth. From the past until nowadays, the fossil fuels such as coal, gas and petroleum have been considered as major energy resources. Approximately 85% of the world’s energy is provided in the form of fossil fuels, which causes various serious environmental problems, namely atmospheric pollution (Figure 5.19), greenhouse effect, and depletion of natural resources.

Furthermore, the environmental impact by the industrial sector also affects unfortunately the waters. Due to poor environmental policies, industries have contaminated the waterways by release of toxic agents. The latter represent a serious and latent problem because freshwater is a limited and essential resource for life on Earth. From the total amount of water in the hydrosphere (1,386 million cubic kilometers) only 2.5 percent is freshwater, and only 0.26 percent of this freshwater is concentrated in lakes and river systems (accessible to humans). The rest is concentrated in Antarctic, Arctic and mountains in form of permanent ice or snow Holland et al. [2015]; Shiklomanov [2000]. Therefore misuse and pollution of water represent the lost of the ecosystem, which effects directly and indirectly the human being. The abnormal climatic changes that we are facing now are an irrefutable proof of the ecosystem alteration.

The direct effects of the water pollution on the humanity are already present. Around 4 billions of people have little or no access to clean water, and this has led to pollution-related diseases. The water scarcity has increased progressively in the last 60 years and the estimations reveal that, by 2025 the greater part of earth’s population will likely live under conditions of low and catastrophically low water supply, see Figure 5.20. In view to suppress the worsening of clean water shortage, development of advanced with low-cost and high efficiency water
treatment technologies to treat the wastewater is desirable.

It should therefore be our goal to contribute to the development of technologies to treat wastewater and to provide energy—reliably, affordably and without endangering the natural environment. Both of these goals are the most urgent challenges scientists are facing today.

One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will be sufficient to safeguard our future energy supply. Similarly no single water treatment processes will be universal. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy and efficient wastewater systems that adequately takes local environmental, political,
social, and economic conditions into account.

From broad spectrum of technologies currently explored by scientific community, photocatalysis represents an attractive technology to both energy supply and water treatment.

Photocatalysis is a promising technology to produce clean energy (hydrogen). The inexhaustibly abundant, clean, and safe energy of the sun can be used by photocatalysis for sustainable, nonhazardous, and economically viable technology capable to produce energy. Hydrogen is widely considered as the clean energy of the future. Using H_2 to supply the energy consumption leads to a markedly reduction of atmospheric pollution, because no greenhouse gases are produced.
during the combustion process of H₂.

Besides, photocatalysis is considered as an innovative water treatment technology, which is capable of degrading indistinctly organic compounds by highly reactive transitory species.

In either aforementioned applications (hydrogen generation or degradation of contaminants) the photocatalytic process is always present.

The two main components of the photocatalytic process is the light irradiation and the semiconductor. Titanium dioxide semiconductor has shown a great potential as photocatalyst for various significant reactions due to its chemical stability, non-toxicity, and high reactivity. The two main drawbacks of using TiO₂ as a photocatalyst are the relatively slow reaction kinetics and the necessity to use UV irradiation. To overcome the above drawbacks, many strategies have been investigated, for example doping, coupling it with a semiconductor, and surface modification with metal nanoparticles (NPs).

The deposition of metal NPs on titania surface has an important impact on the production of H₂ via photocatalysis. The addition of metals such as platinum or gold on a semiconductor surface leads to enhancement of its photoactivity for H₂ generation. This has been attributed to the ability of the metal to scavenge the photogenerated electrons. Surface modification of titania with metal nanoparticles can also improve its photocatalytic activity for degradation of organic pollutants.

Moreover some deposited metals have shown the ability to sensitize titania surface because they absorb visible light. This surface modification can lead to photocatalysts active under natural sunlight irradiation. However, the efficiency of metal nanoparticles to separate effectively the charge-carriers as well as the ability to absorb visible light depends on their nature, size, morphology, and loading.

Different recent publications report that surface modification of titanium dioxide with bimetallic NPs can lead to higher photocatalytic activity compared to titania modified with monometallic NPs. The bimetallic systems include not only noble metals, but also inexpensive transition metals such as Cu, Ni and Co, which represent an economic advantage.

Identifying the factors that govern the kinetics of the photocatalytic processes and understanding the role that metal NPs play is inherent to achieve the desired
goal of developing more efficient systems.

Although great strides have been made in the study of the effect of surface modification of TiO$_2$ with mono- and bimetallic NPs on its photocatalytic activity, a lot still remains unknown. Most of the investigations have been based on the study of the kinetics or the mechanisms involved in photocatalysis. There are few reported studies, which integrate the absorption, dynamics of charge-carriers and photocatalytic activity.

The later has motivated the development of the present work, having the main objective to study systematically the effect of metal NPs on titania surface in the three principal steps of the photocatalytic processes: (1) absorption of light (generation of electron-hole pair), (2) dynamics of charge-carriers, and (3) efficiency of the photocatalytic activity.

The structure of this manuscript is the following:

Chapter 1 is devoted to provide a background about photocatalysis, its fundamentals as well as the still controversial issues. Photocatalytic applications such as hydrogen production and degradation of pollutants are also discussed. Moreover, a brief review recompilation of relevant reported results of TiO$_2$ surface modification with Au, Ni ad Pd is presented.

In **Chapter 2**, a detailed description of the synthesis conditions and depositions of metal NPs, technical aspects of characterization methods and set-up of photocatalytic tests are given. Both radiolysis (synthesis method) and TRMC (equipment to measure the kinetics of charge-carriers) are unconventional, then it was considered relevant to give an explanation of their fundamentals to help the readers to understand easily the results in the following chapters.

Chapters 3, 4, and 5 present the results of this work: Each chapter corresponds to one system. **Chapter 3** refers to the TiO$_2$ surface modification with Nickel ions, the effect of the ions in the electronic and optical properties are studied, the photocatalytic activity is tested for the phenol degradation reaction. The results of surface modification of titania with mono- and bimetallic (Ni and/or Au) nanoparticles are presented in **Chapter 4**. First, the characterization of the photocatalysts is presented and discussed. Then, the photocatalytic efficiency is tested for different reactions such as phenol degradation, H$_2$ production, and reduc-
tion and oxidation of lead ions. Similarly, the effects of Ni and/or Pd nanoparticles deposited on the titania surface on its photocatalytic activity are presented in Chapter 5. Hydrogen generation from water/methanol solution was selected as a reaction to evaluate the photocatalytic activity for this system. For each photocatalytic system, we evaluated the absorption of the model pollutant, and we studied the charge-carriers kinetics and charge transfers. The photocatalytic activity was tested under both UV and visible light.
CHAPTER 1

THEORETICAL REVIEW
1.1 HETEROGENEOUS PHOTOCATALYSIS

The field of heterogeneous photocatalysis has expanded rapidly during the last four decades and, has undergone various developments especially in relation to energy and environment. Heterogeneous photocatalysis is a natural phenomenon in which a material, called photocatalyst generates reactive species leading to chemical reactions with the compounds present at its surface, thanks to the action of light, without degrading itself. The only difference with conventional catalysis is the mode of activation of the catalyst in which the thermal activation is replaced by a photonic activation.

Heterogeneous photocatalysis can be carried out in a fluid phase either liquid or gaseous. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps Chong et al. [2010]; Herrmann [1999]:

1. Transfer of the reactants in the fluid phase to the surface

2. Adsorption of a least one of the reactants

3. Reaction in the adsorbed phase

4. Desorption of the product(s)

5. Removal of the products from the interface region

The photocatalytic reaction occurs in the adsorbed phase (step 3). Such reaction is the consequence of an electron transfer from the photoexcited semiconductor to the adsorbed molecules (O₂, H₂O, pollutants) Henderson [2011]. The electron transfer is the last step of the photocatalytic process. Then the step 3 occurs in the border between the photocatalytic process and the photoreaction mechanism (1,2,4,5 steps). Figure 1.1 shows the overall photocatalysis process.

In the following two sections a detailed explanation of photocatalytic process and mechanisms is given.
Figure 1.1: **Scheme of heterogeneous photocatalysis.** It involves two mainly subprocesses: 1) photocatalytic process inside of the semiconductor and 2) photoreaction mechanism.

1.2 Photocatalytic process

Since, first reports of Fujishima and Honda [1972] in the early 1970’s, heterogeneous photocatalysis has been mostly based on TiO$_2$. It is estimated that from the total number of papers published in this field, approximately 80% involved TiO$_2$-based materials Henderson [2011]. Compared to other semiconductor photocatalysts, titanium dioxide (TiO$_2$ or titania) has so far been shown to be the most promising material used for both fundamental research and practical applications, because it exhibits a higher photoreactivity and it is economically viable, nontoxic, chemically and biologically inert, and photostable Henderson [2011]; Schneider et al. [2014].

The absorption of light by semiconductors promotes redox reactions at their surface due to their electronic structure, which is characterized by a filled valence band and an empty conduction band. When a photon, with an energy of $h\nu$ matches or exceeds the band gap energy (E_g) of the semiconductor, an electron (e^-) is excited from the valence band (VB), into the conduction band (CB), leaving
1.2. PHOTOCATALYTIC PROCESS

a hole (h+) Hoffmann et al. [1995]. Such separation of charges is commonly called electron-hole pair.

These photogenerated electron-hole pairs may further be involved in the following three possible processes: (i) successfully migrate to the surface of the semiconductor and react with electron donors and electron acceptors adsorbed on the semiconductor; (ii) be captured by the defect sites in bulk and/or on the surface region of the semiconductor; and (iii) recombine and release energy in the form of heat or photon Hoffmann et al. [1995]. summarized a general mechanism of heterogeneous photocatalysis on TiO$_2$ by the following steps (Figure 1.2):

1. Charge-carrier generation

\[TiO_2 + h\nu \rightarrow h^+ + e^- \quad (fs) \quad (1.1) \]

2. Charge-carrier trapping

\[e^- + Ti^{(4+)}OH \rightarrow Ti^{(3+)}OH \quad deep \; trap \quad (< 200 \; ps) \quad (1.2) \]
\[e^- + Ti^{(4+)} \rightarrow Ti^{(3+)} + e^- \quad shallow \; trap \quad (10 \; ns) \quad (1.3) \]
\[h^+ + Ti^{(4+)}OH \rightarrow Ti^{(4+)}OH^* \quad (10 \; ns) \quad (1.4) \]

3. Charge-carrier recombination

\[e^- + Ti^{(4+)}OH^* \rightarrow Ti^{(4+)}OH \quad (100 \; ns) \quad (1.5) \]
\[h^+ + Ti^{(3+)}OH \rightarrow Ti^{(4+)}OH \quad (10 \; ns) \quad (1.6) \]

4. Interfacial charge transfer

\[Ti^{(3+)}OH + A \rightarrow Ti^{(4+)}OH + A^- \quad (ms) \quad (1.7) \]
\[Ti^{(4+)}OH^* + D \rightarrow Ti^{(4+)}OH + D^+ \quad (100 \; ns) \quad (1.8) \]

Therefore, it is possible to generalize the three key issues to TiO$_2$ photocatalysis. First, excitation or photon absorption. Second, the behavior of charge carriers after their photo excitation, in particular recombination, charge transport to the surface and trapping. Third, the electron transfer starting the reaction mechanism.

Here, in the following section those three issues will be discussed in a compressive manner and based on published studies.
Figure 1.2: Schematic representation of the general photocatalytic process on TiO$_2$ nanoparticles.

1.2.1 Photon absorption: charge-carrier generation

The starting point in photocatalysis is the absorption of photons by the semiconductor. The bulk optical properties of TiO$_2$ anatase and rutile are well-documented in the literature. The minimal energy of the photons required to promote (excite) the electrons from the valance band (lower energy state) to the conduction band (higher energy state) is 3.2 and 3.0 eV for anatase and rutile respectively Kavan et al. [1996]; Murakami et al. [2001]. For rutile, such transition is direct while it is indirect for anatase Amtout and Leonelli [1995].

Although the photons with absorption threshold energy lead to electron excitation, the amount of those is not the optimum. Using Density Of State (DOS) calculations, it was estimated that maximum absorption occurs at \sim4 eV for both anatase and rutile Amtout and Leonelli [1995].

The absorption thresholds can be altered by different factors such as photon energy, temperature and nanoparticle size Tang et al. [1994, 1995]. For example, it was observed that the anatase absorption coefficient increases exponentially
with increasing photon energy while those of rutile increment more-or-less linearly. An increase of temperature induces a decrease of the optical absorption edge. For TiO$_2$ nanoparticles with size <10 nm the absorption edge is shifted it to the blue region Qu and Kroes [2006], as shown in Figure 1.3.

![Figure 1.3: Effect of small size of TiO$_2$ nanoparticles in its optical absorption.](image)

The absorptivity of the TiO$_2$ can be altered from the bulk due to changes in transition energies and/or formation of surface states, which are induced by: 1) the incorporation or substitution of a foreigner atom into the TiO$_2$ lattice, commonly denominated doping, and 2) removal of some oxygen atoms from the titania lattice (oxygen vacancies). Both cases (doping or oxygen vacancies) provoke changes in the titania optical properties, which are usually a shift of the absorption toward longer wavelengths Hashimoto et al. [2006]; Henderson [2011].

The optical properties are usually inferred based in the bulk studies, however the surface of the material also has an important role in such properties. The surface atoms are different from those of the the bulk because of broken symmetry
and bonds. Naturally surface states are formed due to the truncation of the bulk lattice influencing the absorptivity of the materials.

The surface can be reconstructed by the absorption of foreigner species, which lead to alteration of the optical properties of TiO$_2$. For example the simple surface decoration with certain molecules as sensitizing dyes, stearic acid among other Hannappel et al. [1997]; Ramakrishna and Ghosh [2001]; Szarko et al. [2008]. Metal clusters such as Au, Ag exhibiting plasmonic band contribute to absorption of visible light Driessen and Grassian [1998]; Grabowska et al. [2013]; Hai et al. [2013]; Jovic et al. [2013]; Tian and Tatsuma [2005], see Figure 1.4.

![Diffuse reflectance spectra of pure and modified P25 photocatalysts with bimetallic Au-Cu nanoparticles](image)

Figure 1.4: Diffuse reflectance spectra of pure and modified P25 photocatalysts with bimetallic Au-Cu nanoparticles Hai et al. [2013].

In most cases of the latter examples, such modifications are the consequence of the incorporation of the optical transition proper to the modifier.

However, in other cases the modifier can affect the electronic states of TiO$_2$. For example, a composite material formed by coupling a semiconductor such as, WO$_3$, SnO$_2$ or CuO to TiO$_2$ can be excited by UV/Vis light, through interfacial states created between them Luna et al. [2015]; Maeda and Hirota [2006]; Song
et al. [2006].

Although many groups have reported an extension of absorption TiO$_2$ to longer wavelengths using some of the strategies previously discussed, sometimes it does not correlate with its photoactivity.

1.2.2 Hole trapping

A possible fate of generated holes in TiO$_2$ is to be captured by trapping sites. Generally, bridging oxygens (O$^{2-}$) and hydroxyl groups (HO$^•$), at the subsurface and surface of the TiO$_2$, are considered as trapping sites Schneider et al. [2014]. From the interaction between holes and trapping sites, active centers are generated:

$$Ti^{(4+)}OH + h^+ \rightarrow Ti^{(4+)}HO^• \quad (1.9)$$

$$O^{2-} + h^+ \rightarrow O^-^• \quad (1.10)$$

The nature of hydroxyl groups acting as trapping sites, has been a controversial issue in the photocatalysis field. First of all, the position of the valance band edge of TiO$_2$ is much more positive than standard redox potential of both hydroxyl groups and water, E$_0$(OH$^-$/•OH) = 1.9 V$_{NHE}$ and E$_0$(H$_2$O/•OH) = 2.73 V$_{NHE}$, then photogenerated holes are able to oxidize such species Wardman [1989]. Supporting the later, combined spin trapping and ESR techniques have provided evidence of photogeneration of •OH radicals under UV illumination of TiO$_2$ aqueous suspensions Anpo et al. [1985]; Jaeger and Bard [1979]. However, recent theoretical studies using ab initio molecular dynamics (AIMD) simulations, has revealed that although •OH radicals are formed on the surface of TiO$_2$, their potential barriers for the desorption are too high, consequently formation of free hydroxyl radicals is considered to be highly unlikely. Thus considering only the surface-bound hydroxyl radicals, the formation of both hydrogen peroxide and peroxide radicals is favored Bredow and Jug [1995]; Cheng et al. [2014].

Other several experimental studies exclude both superficially bound and free •OH radicals, claiming that the primary products of the hole trapping are O$^{•−}$ radicals ions in the TiO$_2$ lattice. For example, Imanishi et al. [2007]; Nakamura...
and Nakato [2004] estimated the energy levels of the O 2p orbitals for H₂O and −OH, from the reported photoelectron emission spectra and Ti-OH under vacuum and at the TiO₂/ water interface from Ultraviolet Photo-electron Spectroscopy (UPS) spectra, as shown in Figure 1.5.

![Energy levels of O 2p orbitals for oxygen species at the TiO₂ surface.](image)

Figure 1.5: **Energy levels of O 2p orbitals for oxygen species at the TiO₂ surface.** It was estimated from UPS and photoelectron emission spectra, compared with the conduction and valence bands of n-TiO₂ at pH 0 Imanishi et al. [2007].

Their results show that the O 2p energy levels of Ti-OH are below to the valance band of TiO₂, which means that those groups can not be oxidized by VB holes. Then, the only surface hole traps available seem to be those associated with O²⁻.

More recently, Bahnemann et al. [1997] performed a laser flash photolysis study employing colloidal TiO₂ suspensions and found that at least two different types of holes have to be considered, deeply trapped holes, which are unreactive, and shallowly trapped holes, which exist in a thermally activated equilibrium with free holes and possess a very high oxidation potential. The deeply trapped holes were identified as surface-bound hydroxyl radicals.

Although the presence of bound and free •OH radicals remains a matter of
debate, the formation of •OH radicals during the photocatalytic process cannot be completely excluded, because •OH radical species can be formed either through the electroreduction of dissolved oxygen by photogenerated electrons via reactions or/and in acidic solution via the trapping of the holes by lattice bound O^{2-}: Salvador [2007]:

$$O_{aq}^2 + e^- \rightarrow O_2^- + H^+ \rightarrow HO_2^* + H^+ , e^- \rightarrow H_2O_2 \quad (1.11)$$

$$Ti^{(3+)} + H_2O_2 \rightarrow Ti^{(4+)} + HO^* + OH^- \quad (1.12)$$

$$H_2O_2 + O_2^- \rightarrow HO^* + OH^- + O^2 \quad (1.13)$$

$$H_2O_2 \xrightarrow{\lambda} 2HO^* \quad (1.14)$$

$$O^{2-} + H^+ + h^+ \rightarrow HO^* \quad (1.15)$$

1.2.3 Electron trapping

As in the case of holes, photoexcited electrons can also be trapped. The electron trapping occurs on a timescale of sub-picoseconds and possible shorter than 100 fs, depending on the conditions Henderson [2011]. The trapping site has been a controversial topic. The discrepancies stemmed whether the electrons are rather trapped at the surface or in the bulk of TiO$_2$.

Based on the band bending model, the photogenerated electrons are forced from TiO$_2$ surface into the bulk, due to the characteristic upward band bending of n-TiO$_2$. Once in the bulk, electrons can be delocalized over different Ti sites. Various reports support the latter idea Bredow and Jug [1995]; Shapovalov et al. [2002]. However, others studies propose that electrons can also be trapped by Ti ions bound to hydroxyls (Ti$^{(4+)}$OH) located at the TiO$_2$ surface, resulting in the formation of Ti$^{(3+)}$OH species:

$$Ti^{(4+)}OH + e^- \rightarrow Ti^{(3+)}OH \quad (1.16)$$

Therefore such species can attract holes, becoming a recombination center. Using hybrid functional electronic structure calculations Valentin and Selloni
[2011] reported the possibility of electron migration to the surface by driving forces, which are the result of energy difference between the trapping energy levels at the surface and those in the bulk.

The size of the particles is also an important factor to be considered in the trapping electrons. In small particles no space charge layer or rather band bending exists, and thus both electrons and holes are available at the surface. It has been shown that, for small size of the TiO$_2$ nanoparticles the number of trapping sides increases. The presence of both electron and holes at the TiO$_2$ surface was observed, in the respective laser flash photolysis experiments, where the transient absorption bands of electrons and holes overlapped as shown in Figure 1.6 Bahnemann et al. [1997].

![Figure 1.6: Transient absorption spectra from O$_2$-saturated and N$_2$-saturated solutions.](image)

Figure 1.6: Transient absorption spectra from O$_2$-saturated and N$_2$-saturated solutions. The measures were recovered 20 ns after laser excitation (λ_2 355 nm). The absorbed photon concentration per pulse by colloidal TiO$_2$ particles (pH 2.3; 1.0×10$^{-4}$ mol L$^{-1}$) was 9 ×10$^{-6}$ mol L$^{-1}$ Bahnemann et al. [1997].

In the presence of electron acceptors such as, O$_2$, the maximum of these transient absorption spectra is shifted toward shorter wavelengths evidencing distinctive trapping of the holes at the surface. Saturation of the solution with
1.2. PHOTOCATALYTIC PROCESS

N₂, on the other hand, supports the electron trapping resulting in the formation of Ti³⁺ centers with their transient absorption maxima located around 650 nm.

Once the electrons are trapped, their trapping lifetime can be very long. Several groups have determined the life-time of trapping electron in a wide range from hundreds of picoseconds to months. The lifetime of trapped electrons depends on measurement conditions. For example, Peiró et al. [2006] demonstrated, using transient absorption spectroscopy, that in the absence of ethanol or O₂ the lifetime of a trapped electron is around \(\sim 25 \, \mu s \). The corresponding decay has been attributed to the recombination at trap sites:

\[
Ti³⁺ + O•⁻ \rightarrow Ti⁴⁺ + O²⁻ \tag{1.17}
\]

While in the presence of ethanol (but still in absence of O₂), it was found that the lifetime of trapped electrons increases to 0.5 s. Ethanol is scavenging the holes, thus the recombination is avoided.

On the other hand, Kuznetsov et al. [2005] investigated the charge separation and storage of electrons in media-wet TiO₂ gels (anatase) and observed that under UV illumination more than 14% of the Ti⁴⁺ centers were converted into Ti³⁺. The lifetime of trapped electron was found to be on time scales of months in the absence of oxygen.

1.2.4 Charge-carrier recombination

In photocatalysis, recombination refers to annihilation of charge-carriers.

The word recombination has been used as a convenient term to explain photocatalytic activity. For example, when the activity of a given photocatalyst is lower than expected, the lower activity is attributed to fast recombination and vice versa. Then, recombination is considered an undesirable process in photocatalysis, however its study provides crucial information concerning the charge-carrier dynamics in TiO₂ Ohtani [2013].

Recombination generally proceeds with liberation of heat or light emission, called nonirradiative and irradiative routes respectively Henderson [2011]; Ohtani
Generally, it is assumed that in TiO\textsubscript{2}, due to its indirect band gap, the photogenerated electron-hole pairs predominantly recombine via non-radiative route. Non-radiative partway is quite difficult to observe in-situ directly, because detection of heat is not easy. Abe \textit{et al.} [2008] could detect heat, during photocatalytic reaction on titanium oxide particles. However, the detected heat was attributed to the heat from exothermic chemical reactions, not the heat liberated by electron-hole recombination. The emission of light is quite simpler to detect than heat, thus measuring the emission is a way to study recombination. Although TiO\textsubscript{2} exhibits only a very weak emission of direct electron and hole pair recombination, the irradiative recombination involving trap states is optically allowed. Considering this and using the photoluminescence (PL) technique, the irradiative recombination in TiO\textsubscript{2} has been widely studied. Knorr \textit{et al.} observed for anatase a broad visible PL band, which was interpreted as a combination of the recombination of mobile electrons with trapped holes (1 PL) and the recombination of trapped electrons with holes in the valence band (2 PL) (Figure 1.7).

A comparative study of charge-carrier dynamics between rutile and anatase TiO\textsubscript{2} was done by Yamate \textit{et al.} They employed a combination of time-resolved PL, photoconductivity (PC), and transient absorption (TA), measurements and found longer lifetime for electrons in anatase (>few ms) in comparison with rutile (24 ns), while the decay for the holes in both crystal phases occurs on the nanosecond time scale.

Other techniques such as time resolved-absorption spectroscopy and microwave conductivity have been used to study recombination kinetics. According to the reported results, electron-hole recombination can be affected by many factors such as the sample preparation, the size, crystallinity and porosity of the sample, the reaction temperature, the charge trapping, the interfacial charge transfer, and the excitation light intensity. Consequently, the lifetime of the charge-carrier recombination in TiO\textsubscript{2} extends from the picosecond to the millisecond time scale.
1.2. PHOTOCATALYTIC PROCESS

Figure 1.7: Model for trap state photoluminescence in anatase. Wavy and straight lines indicate nonradiative and radiative transitions, respectively. The photoluminescence of anatase is considered to be a combination of both type 1 and type 2 PL, involving spatially separated hole and electron traps, respectively. The shaded regions represent the energetic distributions of traps estimated from the wavelengths spanned by the PL spectra.

1.2.5 ELECTRON TRANSFER

In heterogeneous photocatalysis, electron transfer is an interfacial phenomena between the semiconductor surface and adsorbed species (chemi- or physisorbed). The transfer of electron is the last step of the photocatalytic process. The efficiency of such process is principally determined by the lifetime of charge-carriers and the electron transfers Henderson [2011].

Three possible electron transfer routes in TiO$_2$ are illustrated in the Figure 1.8.

The first one involves the electron transfer from a donor (e.g., dye molecules) to the conduction band of TiO$_2$. In the second possible trajectory, the electron is transferred from the CB of TiO$_2$ to an acceptor, such process is called photoreduction dynamics. Finally the third possibility concerns the photooxidation dynamics, which is the electron transfer from a donor to the VB of TiO$_2$, that process is commonly named hole transfer Henderson [2011].
The last two electron transfer routes (2 and 3) are related to excitation events in TiO$_2$, while the first one deals with excitation events in an adsorbed molecule. The acceptor or the donor can be molecules, ions or solids with a band structure (metals or oxides).

Recently, two reviews exposing and discussing the factors affecting the efficiency of electron transfer have been published Henderson [2011]; Mohamed and Bahnemann [2012]. The size, surface composition, cristallinity or morphology of the photocatalyst are factors that influence the electron transfer. Moreover, one of the most important parameters that affect the electron transfer is the standard redox potential.

For the photoreduction dynamics, the redox potential position of the acceptor have to be more positive than, that of CB electron, producing a driving force favorable for the electron transfer. In case of photooxidation dynamics the redox potential position of the donor have to be less positive compared to that of the VB hole. Increasing the driving force of the reduced couple leads to an efficient
electron transfer as it is illustrated in Figure 1.9.

Figure 1.9: **Dependency of interfacial electron transfer rates on the driving forces** Mohamed and Bahnemann [2012].

In both photo-reduction or oxidation dynamics the coupling formed has to be strong in order to prevent back-electron transfer.

1.3 MECHANISM

The electron transfer is the final step of the photocatalytic process with TiO$_2$ material, and the next steps may be seen as a photoreaction mechanism. The mechanism or pathway reaction is different for each species and is sensitive to the reaction conditions and the photocatalyst. The adsorption and desorption form part of the mechanism and can promote, regulate, or inhibit the photocatalytic process on TiO$_2$.

There are a large amount of studies, which try to elucidate the whole reaction mechanism of various organic and inorganic molecules. In this section O$_2$ and methanol have been selected to illustrated the mechanism of photo-oxidation
and reduction reactions. Although, the mechanism will be explained from the point of view either oxidative or reductive, it is important to keep in mind that both reactions occur in a spatial region. This is the reason why there is a large thermodynamic and kinetically interdependence between oxidation and reduction reactions.

Methanol: Many alcohols, such as ethanol or methanol, are efficient electron donor, and they can be used in photocatalysis. Concerning the methanol mechanism it was found that it adsorbs predominantly via a dissociative pathway on the surface of TiO$_2$ nanoparticles, to produce surface methoxy and hydroxyl groups as follow:

$$Ti^{4+}OH + CH_3OH \longleftrightarrow Ti^{4+}OH \cdots O(H)CH_3 \quad (1.18)$$

$$Ti^{4+}_{5C} + CH_3OH + O^{2-} \longleftrightarrow Ti^{4+}_{5C} - O(H)CH_3 \cdots O^{2-} \quad (1.19)$$

$$Ti^{4+}_{5C} + CH_3OH + O^{2-} \longleftrightarrow Ti^{4+}_{5C} - O^{-}CH_3 \cdots HO^{-} \quad (1.20)$$

$$2Ti^{4+}_{5C} + CH_3OH + O^{2-} \longleftrightarrow 2(Ti^{4+}_{5C}) - O^{-}CH_3 \cdots HO^{-} \quad (1.21)$$

In the presence of surface methoxy species, holes can be trapped by the adsorbate:

$$Ti^{4+}_{5C} - O^{-}CH_3 + h^{+} \longleftrightarrow Ti^{4+}_{5C} - OC\cdot H_3 \quad (1.22)$$

The scavenging of holes by methoxy groups inhibits, effectively, the recombination process between electrons and holes, increasing the population of free electrons in the CB.

The subsequent photochemistry induces a two-electron oxidative degradation process of the surface methoxy groups to formate as is shown in the following reactions:

$$Ti^{4+}_{5C} - OC\cdot H_3 \longleftrightarrow Ti^{4+}_{5C} - OC\cdot ^{-}H_3 + H^{+} \quad (1.23)$$

$$Ti^{4+}_{5C} - OC\cdot ^{-}H_2 \longleftrightarrow Ti^{4+}_{5C} - OCH_2 + e^{-} \quad (1.24)$$

$$H^{+} + O^{2-} \longleftrightarrow OH^{-} \quad (1.25)$$
In summary, the photooxidation of methanol leads to the relocation of the trapped holes and to the accumulation of the electrons on the TiO$_2$ surface Panayotov et al. [2012].

Oxygen: In photocatalysis, O$_2$ molecules play a key role, being the species mainly involved in the photoreduction processes accompanying the photooxidation ones. Furthermore, O$_2$-derived oxidizing species are generally involved in the oxidation of organic compounds.

Based on density functional theory (DFT) method Mattioli et al. [2006] determined that the adsorption of oxygen occurs in five-fold coordinated Ti$^{4+}$ surface ion. The value of the desorption enthalpy of oxygen was estimated, obtaining a value of -0.34 eV showing that O$_2$ molecule is weakly binded to the Ti ion. Although this is a weak bond, the O$_2$ molecule induces occupied and empty states in the anatase energy gap, corresponding to electronic eigenvalues located between 0.60 and 0.89 eV above the VB. The latter electronic state suggests an acceptor behavior of the adsorbed molecule. The formation of charged peroxo groups is a consequence of the scavenging of two photoexcited electrons by the adsorbed oxygen, see Figure 1.10.

![Figure 1.10: Reaction pathway for the O$_2$ photoreduction as proposed by Mattioli et al. [2006].](image)

1.4 PHOTOCATALYTIC APPLICATIONS

Environmental pollution and increasing energy demand are some of the most serious problems the world faces. They both have become the most urgent scientific challenges. Photocatalysis have shown great potential as a low-cost, environmental friendly and sustainable solution to environmental and energetic issues.
1.4.1 Water treatment

Advanced oxidation processes (AOPs) are considered as highly competitive water treatment technology, such processes are based on the generation of highly reactive, transitory, and oxidizing species such as hydroxyl radical. Among these AOPs, heterogenous photocatalysis has attracted increasing attention because it has demonstrated to be efficient in the degradation of a wide range of refractory contaminants Antonopoulou *et al.* [2014]; Sillanpää and Matilainen [2015].

Photocatalysis exhibits several characteristics which are desired and useful for its application as water treatment technology: (1) low operating cost, (2) mild operating conditions (atmospheric temperature and pressure) and (3) complete degradation of the contaminant and intermediate compounds without secondary pollution.

As it was explained in the previous sections, heterogeneous photocatalysis involves the absorption of photons by a semiconductor creating a separation of charge-carriers inside of the semiconductor. In degradation of contaminants *via* photocatalysis, the recombination of those charge-carriers is avoided commonly by adding an oxygen flow in the system. Thus, the recombination between holes and electron are prevented and at the same time superoxides radical (O_2^-) are formed. Subsequently O_2^- species lead to the formation of hydroxyl radicals (\bulletOH) as it is shown in the equations 1.11-1.15. The degradation of the contaminant molecules until its completed mineralization is mainly carried on by (\bulletOH), but a direct oxidation by the holes can not be dismissed. The overall degradation reaction is as follow:

\[
\text{Organic Contaminants} \overset{TiO_2/hv}{\rightarrow} \text{Intermediate(s)} \rightarrow CO_2 + H_2O \quad (1.26)
\]

The mechanism of degradation of many organic compounds, *via* photocatalysis, has been investigated, for example phenol, which is considered as one of the most representative contaminants discharger in wastewater. Phenol is a toxic and mutagenic substance at high concentration and can be absorbed through skin.
Most of the studies, concerning the mechanism of phenol photocatalytic destruction, have reported that phenol destruction proceeds \textit{via} \cdotOH attacking the phenyl ring, yielding catechol, hydroquinone, resorcinol, and p-benzoquinone. Subsequently the phenyl rings in these compounds break up to give malonic acid, after short-chain organic acids such as maleic, oxalic, acetic, and formic are formed. CO$_2$ is the final product Grabowska \textit{et al.} [2012]. One of the mechanism of phenol degradation proposed in the literature is showed in the Figure 1.11.

![Figure 1.11: Phenol photodegradation route Guo \textit{et al.} [2006].](image)

The degradation of many other organic pollutants \textit{via} photocatalysis has been well documented. Photocatalysis is not only limited to destruction of organic contaminants but it can be used also for removal (or treatment) of inorganic contaminants such as heavy metals Hoffmann \textit{et al.} [1995]; Murruni \textit{et al.} [2007].

1.4.2 Hydrogen production over titania photocatalyst

Hydrogen is considered as the clean energy of the future solving the global energy and environmental crises. Development of efficient and cheap materials for H$_2$ production is a main challenge towards a sustainable hydrogen economy. Nowadays, hydrogen is mostly produced from fossil resources, such as natural gas, oil, and coal, which are limited and expensive. Furthermore, hydrogen production from fossil resources has the disadvantage to emit high level of CO$_2$ as a byproduct.
The recent growing concerns about the global weather changes due to CO₂ emissions and the depletion of fossil fuel reserves have encouraged the development of new green and renewable technologies to produce hydrogen. In this context, photocatalysis is a promising method for H₂ production because it can use solar energy sustainably and efficiently, and is economically attractive compared to more conventional methods Bahruji et al. [2010]; Ismail and Bahnemann [2014].

The most widely used semiconductor in photocatalysis is TiO₂ because of its physical and chemical properties, excellent stability, high availability, and low cost Schneider et al. [2014]. TiO₂-based photocatalysts are still the most extensively studied materials for the photocatalytic production of hydrogen from water.

1.4.2.1 Basic principles of hydrogen generation via photocatalysis

Watter splitting has been considered “the holy grail” of heterogeneous photocatalysis. Many articles report on water splitting using TiO₂ as a photocatalyst, however the involved mechanism in both oxidative or reduction reactions are still unclear.

To understand the fundamentals of water splitting into H₂ and O₂ over photocatalysts, it is convenient to start showing the overall reaction (eq 1.27) and the schematic representation of the process (Figure 1.12):

\[
H_2O \xrightarrow{hv/photocatalyst} H_2 + 1/2O_2 \quad \Delta G = 237.2 \text{ kJ mol}^{-1} \quad (1.27)
\]

First of all, the water splitting reaction is thermodynamically endothermic with a Gibbs free energy change of 237.2 kJ mol⁻¹. Then the energy required for the reaction is indirectly obtained from the photons. The semiconductor converts the energy of the photons in chemical energy useful for the reaction.

As shown in the Figure 1.12, the photocatalytic process involves excitation in a semiconductor by photon of suitable energy (higher or equal to the band gap) leading to the formation of an electron-hole pair. The electrons and holes either recombine or migrate to the surface of the semiconductor particle and participate in reduction and oxidation reactions. When a photocatalyst is used for water splitting,
the energetic position of the bottom of the conduction band must be more negative than the reduction potential of water to produce H\textsubscript{2} (E°(H+/H\textsubscript{2})=0.00 V\textsubscript{NHE}), while the top of the valence band must be more positive than the oxidation potential of water to produce O\textsubscript{2} (E°(O\textsubscript{2}/H\textsubscript{2}O)=1.23 V\textsubscript{NHE}).

Under that conditions, the theoretical minimal band gap for water splitting is 1.23 eV, which corresponds to a wavelength of about 1010 nm. However, in practice only the semiconductors with band gap larger than 2.0 eV are capable to split the water molecule. The disadvantages of this short band gap semiconductor are: 1) the fast recombination of charge-carrier and 2) little stability in aqueous solution under photo irradiation.

TiO\textsubscript{2} (band gap 3.0-3.2 eV) is probably the most promising semiconductor for H\textsubscript{2} production from water or biofuels due to its excellent physical and chemical properties. The position of both CB and VB of the TiO\textsubscript{2} make it capable to carry on the water splitting reaction, see Figure 1.12.

Figure 1.12: Basic principle of the overall water-splitting reaction on a semiconductor photocatalyst.

TiO\textsubscript{2} can be crystallized in three structures (rutile, anatase, and brookite). Rutile and anatase are the phases more frequently used as a photocatalyst for hydrogen production. Anatase has been found more active than rutile. The difference in activity has been explained in terms of CB position with respect to
redox potential position of water. The band gap values for anatase and rutile are 3.2 and 3.0 eV respectively. The location of VBs of both phases is almost the same, however there is a slightly difference (0.2 eV) in their CB position. The anatase CB is considered 0.2 eV more negative than that of rutile. Consequently the driving force, for water reduction is smaller for rutile while the reduction takes place more effectively in anatase.

Nonetheless, recent studies using X-ray photoemission demonstrate that the CB of anatase is 0.2 eV below that of rutile, and consequently VB of rutile is above of anatase VB. These results invalidate the explanation based on CB position (previously described) about the difference in activity between anatase and rutile Scanlon et al. [2013].

Colbeau-Justin et al. [2003] show, using TRMC, that the recombination of charge-carriers in rutile is faster than in anatase, such difference was attributed to the fact that anatase has a higher amount of surficial OH groups, where the holes can be trapped leading to an enhanced charge separation. In the presence of water, a faster decay has been observed for the anatase sample, while the lifetime of the mobile electrons in rutile does not show any change after this surface treatment. These results reveals that factors as charge-carriers lifetime and/or surface composition also play an important role between anatase and rutile photoactivity.

The charge-carrier recombination is very important to be considered, and both surface and bulk recombination can be classified as deactivation processes. Therefore, charge recombination is ineffective for water splitting. Besides to avoid the recombination of electrons and holes, it is of key importance to elucidate the molecular mechanisms of the reactions, which should strongly depend on the morphology, and chemical and electronic structures of the materials at the surface as well as the reactivity (or energy) of photogenerated charge-carriers. In that context, some fundamentals studies of the chemistry of water (and hydroxyls) on TiO$_2$ surfaces have tried to explain the drawbacks of TiO$_2$ to generate hydrogen. Some of those studies, for both photooxidation and photoreduction reactions, will be discussed below.
1.4. PHOTOCATALYTIC APPLICATIONS

1.4.2.2 Oxidation of water

The overall objective in water photooxidation is to convert water to oxygen using VB holes, according to the reaction:

\[H_2O + 2h^+ \rightarrow 1/2O_2(g) + 2H^+ \] \hspace{1cm} (1.28)

Although TiO₂ has demonstrated to be capable to produce oxygen under UV irradiation, the formation mechanism is still unclear. It has been assumed that the water oxidation at TiO₂ surface is initiated by oxidation of surface Ti-OH groups (or -OH ions in the aqueous solution) by photogenerated holes, h⁺, by an electron-transfer mechanism:

\[Ti-OH + h^+ \rightarrow Ti^\ast OH \] \hspace{1cm} (1.29)

This mechanism has not been completely accepted by the photocatalysis community because a number of reports reveal that the water photooxidation reaction at TiO₂ does not produce neither absorbed nor free \(\cdot OH \) radicals. Therefore, such reports propose that holes are trapped by bridging oxygen atoms at the surface O²⁻ (see hole trapping section).

Considering the latter, Nakato’s group Imanishi et al. [2007]; Nakamura and Nakato [2004] has proposed that the key step in water photooxidation involves a nucleophilic attack of water in the aqueous/physiosorbed phase with a trapped surface hole on a surface 3-coordinate O anion site and not due to a hole reaction with an adsorbed H₂O/OH⁻ species, scheme in Figure 1.13.

Although the mechanism of water oxidation is unclear, it has been proven that oxygen production occurs.

1.4.2.3 Reduction of water

The limiting step in the hydrogen generation using TiO₂ is the reduction reaction. The amount of hydrogen produced using TiO₂ is negligible. Some basic studies have been performed using bare TiO₂ to explain the absence of H₂ when all the raw ingredients are present (two protons and two near CB edge electrons) in close
CHAPTER 1. THEORETICAL REVIEW

Figure 1.13: Water photooxidation propose by Nakato group. Here the reaction is initiated by a nucleophilic attack of a water molecule to a surface-trapped hole. It is assumed that the hole is trapped by triply coordinated O atoms and bridging O atoms at the surface Imanishi et al. [2007].

proximity. For instance, Li et al. [2008] observed the formation of atomic hydrogen in the surface of TiO$_2$ by STM, see Figure 1.14. They studied the hopping kinetics of H atoms along the O$^{2-}$ bridging rows on rutile TiO$_2$ and they conclude that there are barriers in the approach of two H atoms to each other in order making impossible the formation of H$_2$.

Figure 1.14: STM images (a and b) on hydroxyl-covered R TiO$_2$(110) at 381 K acquired three minutes apart. (c) Difference image (b-a). The dark and bright spots represent the initial and final hydrogen positions, respectively. The black arrows show the hopping directions. Black lines mark positions of the bridging O rows. (Image conditions: 1.5 V bias, 0.1 nA current) Li et al. [2008].
The results of Yin et al. [2008] are in agreement with the latter. Their studies show conclusively that no thermal atomic hydrogen recombination to H\textsubscript{2} is possible on TiO\textsubscript{2} surface; it was speculated that the surface H atoms (H\textsubscript{ads}) either penetrate into the bulk or diffuse across the surface instead of recombining.

Metal particles deposed on the surface of TiO\textsubscript{2} have been used as co-catalyst to assist in lowering the H\textsubscript{2} formation barrier but little is known about the molecular-level details of mass and charge transport between TiO\textsubscript{2} and supported metal particles.

1.5 **Metal nanoparticles deposed on TiO\textsubscript{2}**

Supported metal nanoparticles on TiO\textsubscript{2} surface usually have beneficial impact in photocatalytic reaction. Deposition of metal NPs often play a role of promoters, however in some cases they are considered as poisons. In heterogeneous photocatalysis, a promoter influences the interactions on ground (as in thermal catalysis) and excited (photoabsorption and electron transfer events) states Henderson [2011].

To understand the influence of supported noble metal NPs on TiO\textsubscript{2}, it is necessary to study deeply different factors such as: 1) the properties of the metal NPs, such as size, shape among other, 2) interaction between metal NPs and TiO\textsubscript{2} (e.g., creation of interfacial states), and 3) mass transport between the metal NPs and TiO\textsubscript{2}.

Many of these factors are characteristic for each metal NPs leading to unique properties of metal/TiO\textsubscript{2} photocatalysts. Here, is a brief discussion of the effect already reported for deposition of metal NPs used in this work (Au, Ni and Pd).

1.5.1 **Gold**

Since the pioneering work of Haruta, Au clusters supported by oxides (Au/oxides) have perhaps become the most interesting systems in heterogeneous catalysis because of their unique catalytic properties at low temperatures for many reactions.

The properties of Au nanoparticles have also received considerable attention in heterogeneous photocatalysis. Several groups have reported an enhancement of
the photocatalytic activity under UV irradiation when gold is used as co-catalyst, such improvement has been related more to the size of the Au nanoparticles than the amount of metal loading. It has been demonstrated that the physical and/or electronic structures of small (≤3 nm) Au particles differ considerably from those of larger Au particles or extended Au surfaces.

In that context, the photocatalytic enhancement has been linked to the size of gold nanoparticles. For instance, Subramanian et al. [2004] (Kamat’s group) found that smaller Au particles supported on TiO\textsubscript{2} were more effective as electron transfer centers in photoreduction of C\textsubscript{60} because the smaller particles shifted the Fermi level to more negative values, see Figure 1.15.

Figure 1.15: I-V characteristics of (a) TiO\textsubscript{2}, (b) TiO\textsubscript{2}/Au (8 nm diameter), and (c) TiO\textsubscript{2}/Au (5 nm diameter) composite film. Measurements were performed in a three-arm cell with Pt as counter electrode, a saturated calomel electrode as reference, and 3 mL 0.05 M NaOH as electrolyte. UV light from xenon lamp (λ >300 nm) was used as the excitation source Subramanian et al. [2004].

The influence of gold NPs size was also observed by Orlov and coworkers, who reported an improvement in 4-chlorophenol photooxidation when Au nanoparticles
with size below of 3 nm were deposited on TiO$_2$, while large particles suppressed reactivity. Murdoch et al. [2011] found that Au particle size, in a range of 3-12 nm, does not affect the photoreaction rate of hydrogen production.

Nowadays, there is a particular interest in use gold nanoparticles as co-catalyst to achieve visible-light photocatalytic response. The interest of gold come from its characteristic surface plasmon resonance (SPR), which is closely related with its magnetic, electronic, and optical properties. It has been observed that Au deposited on TiO$_2$ surface favors the generation of H$_2$ and degradation of contaminants under visible illumination, but in both cases the corresponding rates were found to be low as compared to the rates obtained upon UV irradiation. The properties related to SPR are strongly dependent on individual differences in size, shape, surface area, and crystalline form of the employed nanoparticles, as reported E. Kowalska and co-workers Kowalska et al. [2009, 2010, 2012]. For example by Tanaka et al. [2013] reported that large gold particles size (13 nm) on TiO$_2$ prepared by deposition method exhibits much stronger photoabsorption at 550 nm than small particles size (1.2 nm). However, the photocatalytic activity of Au/TiO$_2$ for H$_2$ evolution from methanol aqueous solution under visible irradiation at 550 nm, was found higher with small Au particles than with large ones.

Kowalska et al. [2009] showed that the oxidation of 2-propanol to acetone under visible light (>450 nm) is favored with big sizes of deposited Au NPs on titania, as is shown in Figure 1.16.

As for mechanism of SPR-induced photocatalytic reactions under visible light, it is considered that the charge separation occurs inside of the metal particles, consequently the electrons transfer is carried out from the metal NP to the CB of the semiconductor. Thus, the photooxidation takes place at the surface of gold nanoparticles while the reduction happens at the semiconductor surface. Tachikawa et al. [2012] studied the photocatalytic reduction sites of Au/TiO$_2$ using water-soluble fluorescent probe molecule and found that these sites were well distributed over the surface of bare TiO$_2$ while on the Au/TiO$_2$ surface these sites were concentrated around of Au nanoparticles. The latter shows that the injection of electrons from Au NPs to TiO$_2$ occurs but the electrons remain in the
Figure 1.16: **Acetone generation under visible-light irradiation (>450 nm) on Au modified titania powders** Kowalska et al. [2009].

vicinity of metal NPs.

Figure 1.17: **Spatial distribution of fluorescence spots (red dots, >50 spots).** They were collected from TiO$_2$ (a) and from 14 nm Au/TiO$_2$ particles (b). The SEM images of the particles analyzed are shown. Scale bars are 100 nm. The locations of the reactive sites and of the Au nanoparticles are surrounded with dashed lines in red and blue, respectively Tachikawa et al. [2012].
1.5.2 **Palladium**

As co-catalyst on TiO$_2$, Pd contributes manly of the same benefits seen for other noble metal particles Behar and Rabani [2006]; Yang 	extit{et al.} [2006]. Sano and coworkers Belver 	extit{et al.} [2003] have shown that addition of Pd nanoparticles to TiO$_2$ resulted in more complete mineralization of vinyl chloride through surface reactions. Deactivation of TiO$_2$ as a result of strongly bound organic intermediates was also minimized with the presence of Pd. Shiraishi 	extit{et al.} [2003] examined the concentration of H$_2$O$_2$ formed from water and during the decomposition of formaldehyde (HCHO) using bare TiO$_2$ and Pd/TiO$_2$ as photocatalysts. They found that deposition of Pd on TiO$_2$ increases the rate formation of H$_2$O$_2$ from water, but during the degradation of HCHO the concentration of H$_2$O$_2$ decreases. A higher degradation rate of HCHO was observed using Pd/TiO$_2$ photocatalyst than bare TiO$_2$. The results suggested that Pd favors the H$_2$O$_2$ formation, which reacts with the CB electrons forming hydroxyl radicals responsible of HCHO oxidation.

Hydrogen production was enhanced for Pd/TiO$_2$ compared to TiO$_2$ alone. On the latter point, Al-Mazroai 	extit{et al.} [2007] examined the Pd loading (on P25) dependence on the anaerobic photochemical conversion of methanol and water to CO$_2$ and H$_2$. As shown in Figure 1.18, they found that a sharp increase of the activity at low Pd loadings, with a maximum at 0.5% Pd, and a decrease of the activity to near zero at 5% Pd. Such behavior was explained by assuming that the active sites for the reaction are located at the periphery of the Pd particles adjacent to the titania. Oxidation of CO, which tend to cover the Pd particles, was considered as limiting step in the overall reaction.

1.5.3 **Nickel**

Although Nickel does not form part of the groups of noble metals, the modification of TiO$_2$ with Ni can enhance its photoactivity. Recently Chen 	extit{et al.} [2015] considered nickel as the best candidate to replace expensive metals co-catalyst, since Ni is cheap, abundant, and has a high work function (Ni=5.3 eV). They
studied the H\textsubscript{2} evolution from an ethanol aqueous solution (20 % vol) under UV irradiation. A photocatalytic enhancement compared to bare TiO\textsubscript{2} was reported, and it was explained by the high work function of Ni, which allows scavenging of the CB electrons, thus the recombination of charge carrier is decreased. The optimal nominal Ni loading of \sim0.5 \text{ wt\%} was found. On the contrary Ni was reported as an inefficient co-catalyst for the hydrogen production by Letters and The [1984]. In the last two mentioned works, Ni was presumably metallic (Ni0). However, it is quite susceptible to change of states depending on the conditions, for example nickel is quickly oxidized when it is exposed to air, and to ensure only the presence of Ni metal a careful management is required. The reoxidation of Ni does not have necessary a negative impact, in fact according to the work done by Domen et al. [1986], Ni/NiO co-deposition on a semiconductor improves its

Figure 1.18: **Effect of Pd loading on TiO\textsubscript{2} surface in H\textsubscript{2} yield.** Comparison of the experimental data for the metal loading dependence of hydrogen yield (filled circles) with the theoretical dependence of the active sites on loading (open circles), in the theoretical model it is assumes that the active sites are located at the metal-oxide interface Al-Mazroai et al. [2007].
photoactivity for water splitting photoreaction compared to surface modification with only Ni or NiO. The issue then becomes the interplay between the various states of Ni on TiO$_2$.

Chapter 2
Experimental set-up and its fundamentals

This chapter gives a description of the conditions of synthesis of the photocatalysts, the techniques used for their characterization, and the set-up for photocatalytic evaluation. The radiolysis method is a powerful technique but unconventional, therefore its fundamentals, the formation mechanism of metal NPs by this method, and the dose rate effect are also explained in this section. Similarly, the TRMC characterization technique is quite useful to study the charge-carrier dynamics in a semiconductor. This technique has demonstrated to be very convenient to understand the lifetimes of charge-carriers in the photocatalysis studies, then it is relevant to explain its principle, the main data obtained as well as the experimental device in order to facilitate the understanding of the subsequence chapters.
2.1 Fundamentals of metal nanoparticle synthesis by radiolysis

NPs are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. NPs are generally made out of metallic, semiconductors or insulating materials. Potential applications of nanosized materials in diverse fields have encouraged the interest in developing different methodologies to produce NPs of controlled size and shape. Among these, the soft-chemical techniques appear to be the most successful approach.

Specifically, the radiolysis method has been successfully applied to the synthesis of a wide range of monometallic, bi- or multimetallic NPs Belloni et al. [1998]; Hai et al. [2013]; Kowalska et al. [2008]. Outstanding advantages of this method in comparison with other ones are: (1) the mild conditions (atmospheric pressure and room temperature); (2) the homogeneous size distribution; (3) no additional reducing agent; and (4) most importantly control of composition and structure (core-shell or alloy) by fixing the dose rate Belloni [2006].

2.1.1 Radiation chemistry of water

The radiolysis method is based on ionization and electronic excitation of water (generally) by high-energy photons (1.17 and 1.33 MeV), which are emitted from a $^{60}\text{Co} \gamma$-source (low LET irradiation) or by fast electrons from an accelerator with energy typically in the range 2-20 MeV (1 eV = 1.6×10^{-19} J). From such interaction, an ejection of a single electron from the water is obtained. The ejected electron is called secondary electron which itself may have sufficient energy to cause further ionization, but which rapidly ($< 10^{-12}$s) reaches thermal equilibrium with the water and becomes trapped as so-called solvated electron (e^{-}_s). Solvated electron may be visualized as an excess electron surrounded by oriented water molecules, see Figure 2.1.

At the same time, a chain reaction occurs from positive radical ion ($\text{H}_2\text{O}^{\bullet+}$) and the electronically excited stated ($\text{H}_2\text{O}^{\bullet}$) (both also produced by the high energy absorbed). As a result of such reactions, transitory species are generated
Figure 2.1: Schematic representation of solvated electron in water.

(reducing and oxidizing species) \((\sim 10^{-7} \text{ s})\), which are homogeneously distributed Belloni [2008]; Le Caër [2011]. A general scheme of radiation chemistry of the water is shown in the Figure 2.2.

Figure 2.2: Radiation chemistry of the water.

The primary radicals are the hydrated electron \((e^-_s)\) and the hydroxyl radical \((^{•}OH)\), which are powerful reducing and oxidizing species respectively. The reduction potential of hydrated electron is \(E^o=-2.87 \text{ V}\), while the reduction potential of hydroxyl radical changes as a function of pH solution, \(E^o(^{•}OH/OH^-)=1.90 \text{ V}\) and in neutral and acid solution respectively. The atomic hydrogen \((H^*)\) does not present an important participation in neutral or alkaline solution, but it becomes the major reductant \(E^o(H^+/H^*)=-2.31 \text{ V}\) in acid solution Belloni [2008]; Belloni and Mostafavi [2001].
2.1.2 Radiation-induced metal NPs synthesis

Metallic clusters can be obtained successfully using the radiolysis method. The synthesis, by this method, starts with isolated atoms resulting from the reduction of metal ions by the radiolytic reducing species, mainly solvated electrons, which are homogeneously distributed in the solution. Consequently, the very first metal atoms produced are also uniformly dispersed in the liquid, and then undergo an aggregation process that leads to the production of size-homodisperse clusters. The particles size can be controlled by the preparation conditions.

A detailed explanation of reduced metal ions process by this method is described below: as previously mentioned, ionizing irradiation of water generates radiolytic radicals homogeneously distributed in the solution, see Figure 2.2. From those radicals, electron solvated (e_{s}^-) and atomic hydrogen (H^\bullet), are strong reducing species [$E^\circ(H_2O/e^-)= -2.8 \text{ V}_{\text{NHE}}$ and $E^\circ(H^+/H^\bullet)= -2.31 \text{ V}_{\text{NHE}}$], their reduction potential values are so negative and capable to reduce the metal cations (M^+) Belloni [2006]; Belloni and Mostafavi [2001]. The metal reduction is carried out at each encounter with solvated electrons. The reduction of monovalent metal ions is represented by the equations:

$$M^+ + e_{\text{s}}^- \rightarrow M^0 \quad (2.1)$$

$$M^+ + H^\bullet \rightarrow M^0 + H^+ \quad (2.2)$$

However, the radicals HO$^\bullet$ are also formed in radiolysis of water. The high reactivity of hydroxyl radicals leads to back reaction of metal ions already reduced. Then, to counter the participation of undesirable HO$^\bullet$ ($E^\circ(\bullet OH/OH^-)=1.90 \text{ V}$) a scavenging molecule of those such a secondary alcohol (isopropanol) or formate anion is generally added to the solution. The scavenging molecules react not only with the hydroxyl radical but also with atomic hydrogen; After such reactions secondary radicals with a strong reducing character are obtained:

$$(\text{CH}_3)_2\text{CHOH} + \text{HO}^\bullet \rightarrow (\text{CH}_3)_2\text{C}^\bullet\text{OH} + \text{H}_2\text{O} \quad (2.3)$$

$$\text{HCOO}^- + \text{HO}^\bullet \rightarrow \text{COO}^{\bullet^-} + \text{H}_2\text{O} \quad (2.4)$$
\[(CH_3)_2CHOH + H^\bullet \rightarrow (CH_3)_2C^\bullet OH + H_2 \quad (2.5)\]

\[HCOO^- + H^\bullet \rightarrow COO^{\bullet^-} + H_2 \quad (2.6)\]

The radicals \((CH_3)_2C^\bullet OH\) and \(COO^{\bullet^-}\) are almost as powerful reducing agents as \(H^\bullet\) atoms: \(E^\circ((CH_3)_2CO/(CH_3)_2\dot{C}OH) = -1.87\ V_{\text{NHE}}\) Elliot and Simsons [1984] at pH 7 and \(E^\circ(CO_2/COO^{\bullet^-}) = -1.97\ V_{\text{NHE}}\) Soediono [1989] respectively. Thus, reducing conditions are obtained.

In the case of multivalent metal ions, they are reduced by multistep reactions, also including the disproportion of intermediate valences. An example of this kind of reduction is given by the equations from 2.7 to 2.9; considering a metal with two valences. During the first step \(M^{2+}\) is reduced to \(M^+\) by reducing species; in the second step \(M^+\) is reduced to \(M^0\) but two different ways could take place: (a) direct reduction by reducing agent (eq. 2.8), and (b) the encounter between two ions \((M^+)\) resulting in a metallic atom plus a cation as shown in the eq. 2.9. This kind of reaction is called disproportionation reactions.

\[M^{2+} + \text{reducing species} \rightarrow M^+ \quad (2.7)\]

\[M^+ + \text{reducing species} \rightarrow M^0 \quad (2.8)\]

\[M^+ + M^+ \rightarrow M^0 + M^{2+} \quad (2.9)\]

The reduced atoms are homogeneously distributed throughout the solution. The dimerization of the atoms occurs on contact because the binding energy between metal atoms is stronger than the atom-solvent bond energy. The bonding between atoms or clusters (particles) with unreduced ions is also strong, therefore the ions are absorbed to metallic atoms or clusters and are subsequently reduced. Thereby, the dimers and oligomers progressively grow into clusters and eventually into precipitates Belloni [2006]; Belloni and Mostafavi [2001]; Belloni et al. [1998]. The precipitation step can be avoided using a stabilizing polymer, ligand or support. The general scheme of metal ions reduction in solution by radiolysis is shown in the Figure 2.3.
2.1. FUNDAMENTALS OF METAL NANOPARTICLE SYNTHESIS BY RADIOLYSIS

Figure 2.3: **Scheme of metal ion reduction in solution by ionizing radiation.** Alcohol ROH (or formate ion HCOO$^{-}$) is added in order to scavenge oxidizing radicals. The isolated atoms formed M0 coalesce into clusters. They adsorb excess ions. They are stabilized by ligands, polymers or supports. The redox potential $E^{0}(M_{n}^{+}/M_{n})$ increases with the nuclearity. The smallest oligomers may undergo reverse corrosion Belloni [2006].

2.1.3 **Synthesis of bimetallic NPs by radiolysis**

Metal NPs composed of two (or more) different metal elements have unique catalytic, electronic, and optical properties distinct from those of the corresponding monometallic particles. Such unique properties are currently the subject of intense investigation in various fields, such as catalysis, photocatalysis, magnetism and nanoelectronics Ferrando et al. [2008].

The reduction of two different metal ions, either by radiolysis or chemical method, leads to the arrangement of the metal atoms into different bimetallic structures: core-shell or alloys.

In radiolysis, the formation kinetics of such structures depends, on one hand,
on the electron transfer from the less noble metal atoms to the more noble metal ion, and, on the other hand, on the dose rate used to reduce both metal ions.

1) Electron transfer

The formation of the metal nanoparticles using a low dose irradiation (\(^{60}\)Co \(\gamma\)-source) is based on the potential reduction of the metal ions. Then, when two metals ions \((M^+ , Z^+)\) are irradiated in the same solution, they have the same possibility to be reduced simultaneously by solvated electrons.

\[
M^+ + e^-_{s} \rightarrow M^0 \quad (2.10)
\]

\[
Z^+ + e^-_{s} \rightarrow Z^0 \quad (2.11)
\]

However, when the reduced metals and ions coalesce, an electron transfer occurs from the less noble \((Z^0)\) metal to the more noble one \((M^+)\). Then the reduction of the noble metal is favored leading (most of the cases) to a segregation of the two metals.

\[
Z^0 + M^+ \rightarrow (MZ)^+ \rightarrow M^0 + Z^+ \quad (2.12)
\]

If the ionic precursors are multivalent, an electron transfer is possible as well between the low valences of both metals, thus increasing the probability of segregation. Once the reduction of the noble metal is concluded, the ions of the other metal \((Z^+)\) are reduced at the surface of \(M_n\). The final result is a core-shell nanoparticles where the more noble metal \(M\) is coated by the other metal \(Z\).

2) Dose rate

To form alloys the intermetallic electron transfers have to be suppressed. Thus the \(M^0\) or \(Z^0\) coalesce between them forming metal nanoparticles. To suppress the electron transfer, a high dose rate is necessary, for example using electron beams.

To summarize, the core-shell structures are commonly obtained by low dose irradiation using \(^{60}\)Co \(\gamma\)-source (Figure 2.4). The latter is principally due to the intermetallic electron transfer. While the alloyed structures are typically obtained using a high dose rate by electron beams (EB).
2.1. FUNDAMENTALS OF METAL NANOPARTICLE SYNTHESIS BY RADIOLYSIS

Figure 2.4: Scheme summarizing the influence of the dose rate during the radiolytic reduction of mixed metal ion solutions. It illustrates the competition between the inter-metal electron transfer and the coalescence processes. High dose rates favor alloying whereas low dose rates favor core-shell segregation of the metals in the clusters Belloni [2006].

In some cases (exceptions), alloying may occur even at low dose rate (γ-irradiation) Morse et al. [1985], as for alloys Cu₃Pd, CuPd, NiPt, CuAu and AgPt clusters. In few cases, alloying is not obtained even at high dose rate. In spite of the very fast reduction (a few seconds for complete reduction with EB) in some systems the electron transfer was faster and metals are still segregated (Ag/Cu).
2.1.4 Supported nanoclusters

One of the important applications of metal NPs is to be used as catalysts on solid supports. The radiolytic synthesis was successful in producing various supported NPs. The formation of the metal particles follows the reaction pathway previously mentioned. The metal NPs deposition on the support can be achieved by two possible methods: (a) preparing in solution the metal nanoparticles, and then putting in contact with the support (possibly by wet impregnation) or (b) in one put by irradiating directly the solution containing the metal precursors (adsorbed) on the support. The ionizing radiation penetrates throughout the support and forms the atoms in situ everywhere the ions have diffused. The fixation of the ions precursors on the support before the irradiation allows not only to control the size distribution, but also favors the formation of the nanoparticles, which is more difficult in the case of non-noble metals, like Ni, Cu, Co.

2.2 Metal nanoparticles synthesis

Materials

Commercial titanium dioxide P25, from Evonik (ca. 50 m².g⁻¹, anatase ca. 80% with rutile) was used as a photocatalyst. Potassium gold choride (Sigma-Aldrich), nickel formate (Alfa Aesor), and tetraamminepalladium(II) dichloride (Sigma-Aldrich) were used as gold, palladium, and nickel precursors respectively. Methanol and 2-propanol were purchased from Sigma-Adlrich. Deionized water (Milli-Q with 18.6 MΩ) was used all through the experiments.

Photocatalysts preparation

Metal nanoparticles were synthesized by radiolysis on P25. Two different systems were prepared (Ni-Au and Ni-Pd) on TiO₂ and their respective single metal components. For each system, distinct total metal loadings and metal ratios were used, see Table 2.1 and 2.2. The number in the name code indicates the total metal loading. For the NiAu/TiO₂ samples the metal ratio used was 5:1, thus in the samples there is 5 times more Ni than Au. For the Ni-Pd system, the metal ratio used was 10:1, therefore the sample x-NiPd/TiO₂ contains 10 times more Ni.
The concentration of Pd, in the sample x-PdNi/TiO$_2$, is 10 times higher than Ni. The suffix “real” in the samples x-Ni$_{real}$/TiO$_2$ or x-Pd$_{real}$/TiO$_2$ refers to that lowest metal loading deposited in the bimetallic samples.

The metal precursors and others chemicals products used were of the highest purity commercially available. The solutions were prepared with deionized water.

For every photocatalyst, the needed amount of the precursors (indicated in Table 2.1 and 2.2) was dissolved in 35 mL of an aqueous solution of 0.2 M 2-propanol. Subsequently, the solutions containing nickel or palladium ions were alkalized with ammonium hydroxide until reaching a pH 11. Afterward, 1.5 g of TiO$_2$ were added to each samples and stirred 24 h in order to adsorb the desired metal ions (Ni, Au, Pd or Ni-Au or NiPd) on TiO$_2$ surface by ionic exchange. After TiO$_2$ surface impregnation, a nitrogen flow was introduced during 20 min to the samples in order to remove oxygen. Then, the sample irradiation was carried out using a panoramic 60Co γ-source with a dose rate 4.5 kGy.h$^{-1}$. The dosimetry of the source was done using the Fricke dosimeter. After irradiation, the samples were filtered under vacuum and dried at 30 °C for 16 h. Finally, colorful powders were obtained. A scheme of the procedure described before is shown in Figure 2.5.

Table 2.1: Mass of the metal precursors and the doses used for each sample. The system x-NiAu/TiO$_2$, where x indicates the metal loading.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>m_{Ni} (mg)</th>
<th>m_{Au} (mg)</th>
<th>Dose (kGray)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-Ni/TiO$_2$</td>
<td>2.79</td>
<td>_</td>
<td>4.0</td>
</tr>
<tr>
<td>0.5-Ni/TiO$_2$</td>
<td>14.03</td>
<td>_</td>
<td>20.2</td>
</tr>
<tr>
<td>1-Ni/TiO$_2$</td>
<td>28.21</td>
<td>_</td>
<td>40.6</td>
</tr>
<tr>
<td>0.1-Au/TiO$_2$</td>
<td>_</td>
<td>7.10</td>
<td>5.4</td>
</tr>
<tr>
<td>0.5-Au/TiO$_2$</td>
<td>_</td>
<td>35.66</td>
<td>27.1</td>
</tr>
<tr>
<td>1-Au/TiO$_2$</td>
<td>_</td>
<td>71.69</td>
<td>54.5</td>
</tr>
<tr>
<td>0.1-NiAu/TiO$_2$ ratio(5:1)</td>
<td>2.33</td>
<td>1.18</td>
<td>4.3</td>
</tr>
<tr>
<td>0.5-NiAu/TiO$_2$ ratio(5:1)</td>
<td>11.69</td>
<td>5.94</td>
<td>21.4</td>
</tr>
<tr>
<td>1-NiAu/TiO$_2$ ratio(5:1)</td>
<td>23.52</td>
<td>11.94</td>
<td>42.9</td>
</tr>
</tbody>
</table>
Table 2.2: Mass of the metal precursors and the doses used for each sample. The system x-NiPd/TiO$_2$, where x indicates the metal loading.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>m$_{pd}$ (mg)</th>
<th>m$_{ni}$ (mg)</th>
<th>Dose (kGray)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-Ni/TiO$_2$</td>
<td>-</td>
<td>19</td>
<td>42.6</td>
</tr>
<tr>
<td>0.5-Pd/TiO$_2$</td>
<td>18.56</td>
<td>-</td>
<td>7.3</td>
</tr>
<tr>
<td>0.5-NiPd/TiO$_2$ ratio(10:1)</td>
<td>3.36</td>
<td>19</td>
<td>32.7</td>
</tr>
<tr>
<td>0.5-PdNi/TiO$_2$ ratio(10:1)</td>
<td>18.56</td>
<td>1.04</td>
<td>9.6</td>
</tr>
<tr>
<td>0.5-Nireal/TiO$_2$</td>
<td>0</td>
<td>1.04</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5-Pd$_{real}$/TiO$_2$</td>
<td>3.36</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>1-Ni/TiO$_2$</td>
<td>-</td>
<td>38</td>
<td>85.2</td>
</tr>
<tr>
<td>1-Pd/TiO$_2$</td>
<td>37.13</td>
<td>-</td>
<td>13.9</td>
</tr>
<tr>
<td>1-NiPd/TiO$_2$ ratio(10:1)</td>
<td>6.73</td>
<td>38</td>
<td>86.1</td>
</tr>
<tr>
<td>1-PdNi/TiO$_2$ ratio(10:1)</td>
<td>37.13</td>
<td>2.09</td>
<td>18.1</td>
</tr>
<tr>
<td>1-Nireal/TiO$_2$</td>
<td>0</td>
<td>2.09</td>
<td>4.7</td>
</tr>
<tr>
<td>1-Pd$_{real}$/TiO$_2$</td>
<td>6.73</td>
<td>-</td>
<td>2.8</td>
</tr>
</tbody>
</table>
2.3. MATERIAL CHARACTERIZATION

2.3.1 Characterization Techniques

Here, the condition and specification of the characterization equipment used are provided. Except for TRMC because most of the techniques employed are commonly used, no fundamentals are provided.

UV-Vis diffuse reflectance spectra of the photocatalysts were recorded in the region of 200 to 800 nm using an Agilent Technologies Cary 500 Spectrophotometer with PTFG as reference.

For High Resolution Transmission Electron Microscopy (HRTEM) observations, the suspensions containing modified TiO$_2$ were first sonicated for few minutes then a few drops of the suspension were deposited on copper coated carbon grids. HRTEM measurements were performed in a JEOL JEM 2010 transmission electron microscope equipped with a LaB6 filament and operated at 200 kV. The chemical analyses were obtained by selected Energy-Dispersive X-Ray Spectroscopy (EDS) Microanalyser (PGI-IMIX PC) mounted to the microscope.
To realize X-Ray Photoelectron Spectroscopy (XPS) analysis, the powder samples were fixed on double-face adhesive carbon tape mounted on a steel holder. XPS measurements were performed on a Kα X-Ray Photoelectron Spectrometer under ultrahigh vacuum (5x10^{-9} mbar) with an Al Kα (hν=1486.7 eV) monochromated X-Ray source operating at 3 mA and corresponding to a spot size of 400 µm. Survey scans were acquired at a pass energy of 200 eV and 50 eV for the acquisition of high-resolution windows over the binding energy range of 1350-0 eV. The C 1s signal at 284.8 eV was used as reference to compensate any charging effects.

2.3.2 Time Resolved Microwave Conductivity

2.3.2.1 Principle

The Time Resolved Microwave Conductivity (TRMC) technique is based on the measurement of the relative change of the microwave power reflected by a sample (semiconductor), \(\Delta P(t)/P \), during its simultaneous irradiation by pulsed laser. Such relative variation can be correlated to small perturbation of the sample conductivity, \(\Delta \sigma \), as shown in the following equation:

\[
\frac{\Delta P(t)}{P} = A\Delta \sigma(t) \tag{2.13}
\]

where \(A \) is a time independent proportionality factor. Because the electron mobility \((\mu_e) \) in TiO\(_2\) is much larger than the hole mobility, \(\Delta \sigma(t) \) can be attributed to excess electrons.

\[
A\Delta \sigma(t) \approx \Delta n_e(t) \cdot \mu_e \tag{2.14}
\]

The signal obtained by this technique displays the evolution of the sample conductivity, \(I(t) \), (denominated photoconductivity) as function of time (ns), see Figure 2.6. The main data provided by TRMC are given by the maximum value of the signal \((I_{max}) \), which reflects the number of the excess charge-carriers created by the pulse, and the decay due to the decrease of the excess electrons (free electrons) Colbeau-Justin et al. [2003]; Kunst and Beck [1986]. To analyze the TRMC signals, the decay is divided in two sections: (1) short-; and (2) long-range.
The short-range decay, arbitrarily fixed up to 40 ns after the maximum of the pulse, is represented by the $I_{40\text{ns}}/I_{\text{max}}$ ratio, which reflects the fast processes active during and just after the pulse. Most probably, electron-hole recombination and possibly electron scavenging by metal are responsible for this ratio. The long-range decay, here fixed after 200 ns until 1000 ns, is related to slow processes involving trapped species, i.e., interfacial charge transfer reactions and decay of excess electrons controlled by the relaxation time of trapped holes. In this range, the decay of TRMC signal can be fitted to a power decay according to:

$$I = I_D t^{k_D}$$ \hspace{1cm} (2.15)

where I_D is the intensity of the signal due to charge-carriers that recombine after 200ns, and k_D is an adimentional parameter related to their lifetime value Meichtry et al. [2014].

Figure 2.6: A typical TRMC signal of TiO$_2$ P25 excited at 355 nm. It show two main parts: 1) maximum and 2) decay: short- and long range.
2.3.2.2 Technical aspects of TRMC

The TRMC device can be described as a sophisticated, ingenious and simple apparatus, with which valuable information about the charge-carrier kinetics can be obtained. The TRMC equipment is constituted by: (1) sample holder, (2) excitation source, (3) microwave circuit, (4) detection system, and (5) acquisition system (see Figure 2.7).

The sample holder consists of an aluminum cell connected to a microwave guide. In the cell cavity, a small PTFE support is laid, where the sample is deposited. The PTFE support allows the control of the amount of sample.

The pulsed light source was an OPO laser (EKPLSA, NT342B) tunable from 225 to 2000 nm. It delivers 8 ns FWMH pulses with a frequency of 10 Hz. The density of light energy received by the sample was around 747 μJ.cm$^{-2}$ at 355 nm.

The light beam is directed to the sample by a mirror system. The mirrors-position reflects the beam vertically to reach the sample from above.

The incident microwaves were generated by a Gunn diode of K band at 30 ± GHz, the frequency corresponding to the highest microwave power. The microwaves generated are directed toward the sample by a waveguide placed just below the sampler holder. The waveguide has a circulator system (Pamtech RYG2032), which directs both the generated microwave to the sample and reflecting microwaves to a detector (R422C, Agilent Technology). The detector used was a Schottky type diode. The function of the detector is to convert the power to voltage. The detector is directly connected to a voltage amplifier (DHPVA-200, Femto). In the system, the signal is amplified 10^6 times and the acquisition is realized by an oscilloscope.

2.3.2.3 Energy of the excitation wavelength

The energy of the photons is expressed in joules (J). The excitation energy (E), known as fluence within the optic community, determines the amount of laser energy delivered in a single pulse and is expressed in joules/cm2. Experimentally, the energy of the laser at a fixed wavelength is measured with a pyroelectric energy
Figure 2.7: **Scheme of the TRMC set-up**. The parts of this equipment are: (1) sample holder, (2) excitation source, (3) microwave circuit, (4) detection system, and (5) acquisition system.

sensor (ES111C, Thorlabs) connected to a power meter (PM100D, Thorlabs). The energy pulse of the laser function of the wavelength is shown Figure 2.8.

Then, the numbers of incident photons \(n_{hv} \) in the samples can be calculated using the measurement of excitation energy by the following equation:

\[
 n_{hv} = \frac{E}{h\nu} = \frac{E\lambda}{hc} \tag{2.16}
\]

Because the number of photons is important, it is appropriated to express it as mole of photons also called Einstein (ein), therefore the Avogadro number have to be add to the equation:

\[
 n_{hv} = \frac{E\lambda}{hcNA} \tag{2.17}
\]

where \(E \) is the excitation energy (J), \(\lambda \) is the wavelength (nm), \(h \) is the Planck constant (J.s), \(c \) speed of light \((m.s^{-1}) \) and \(NA \) Avogadro constant \((mol^{-1}) \). The plot of \(I_{max}/n_{hv} \) values for each wavelength allows to obtain a spectrum called
CHAPTER 2. EXPERIMENTAL PART

Figure 2.8: Pulse energy as function of wavelength of the laser used as excitation source in TRMC setup.

TRMC action spectra. In this work, the range of the wavelengths examined was from 310 to 505 nm. The wavelengths and its corresponding excitation energy are shown in Annexes.

2.4 PHOTOCATALYTIC EVALUATION

The activity of the modified titania was mainly tested for two reaction, organic compounds (phenol and 2-propanol) oxidation and hydrogen production. The response of the samples under UV and visible light were evaluated.

For the samples Ni-Au, the activity of modified samples for the reduction and oxidation of lead ions in solution was also studied. A detailed explanation of the testing protocols used for each reaction set is given below.

2.4.1 HYDROGEN PRODUCTION EVALUATION

The photocatalytic activity of the modified samples for hydrogen generation was evaluated under UV light using a polychromatic light source. The effect of different
2.4. PHOTOCATALYTIC EVALUATION

irradiation wavelengths was investigated using monochromatic light source.

2.4.1.1 Irradiation system using a polychromatic light source

The hydrogen production was evaluated using a mercury lamp, which emits a whole light spectrum with a maximum intensity of UV light. Two distinct set-ups were used: (1) a continuous reactor and (2) batch reactor. In the first one, the production of hydrogen was followed by Mass Spectrometry (MS), while in the second one, it was measured by gas chromatography.

For the continuous set-up, the reaction volume was 60 mL of a methanol solution 10vol% and the concentration of photocatalyst was 1 g.L$^{-1}$. The amount of H$_2$ was measured in real-time in the headspace thanks to an UGA mass spectrometer (SRS Instruments). The UGA is based on residual gas analyzer (RGA SRS Instrument - mass domain 1-300). The instrument is adapted for analysis at atmospheric pressure. The headspace gas of the reactor is pumped through a 1 m long capillary (peek tubing, 0.18 mm ID) thanks to a roughing pump. A pinhole (400 nm) allows a small portion of the gas to be transferred to the vacuum chamber. The pressure measured at the roughing pump is circa 1.1 mbar and the pressure in the vacuum chamber is 5.10$^{-6}$ mbar. This pressure is kept constant during the analysis.

In case of the batch system, a glass reactor with a volume of 35 mL was employed. The photocatalyst (50 mg) was suspended in 5 mL of a methanol solution at 50vol%. A sample of 0.2 mL of the headspace gas was taken every 15 min during 1 h. The amount of hydrogen was determined using a Gas Chromatograph (GC).

In both continuous and batch systems, prior to suspension irradiation, a flux of nitrogen was introduced in the system in order to evacuate the oxygen.

2.4.1.2 Irradiation system employing monochromatic light: action spectra measurements

Experiments realized in Catalysis research center at Hokkaido university, Japan. The measurements of H$_2$ evolution were performed on bare and modified TiO$_2$. The amount of photocatalyst used was 30 mg. It was added to quartz cuvette of
10.5 mL volume containing 3 mL of 50 vol% aqueous methanol. Before irradiation, the air was removed from the cell by nitrogen bubbling. The samples were irradiated under stirring with monochromatic light at 320, 350, 380, 410 and 440 nm (±5 nm), using a diffraction grating-type illuminator (JASCO CRM-FD) equipped with a 300-W xenon lamp (Hamamatsu Photonics C2578-02). The total time of irradiation was 60 min, and each 20 min a gas sample of 0.2 mL was taken and monitored by gas chromatography (Shimadzu GC-8A). The Apparent Quantum Efficiency (AQE) as a function of monochromatic wavelength was calculated as a ratio of the number of electrons used in hydrogen production to the flux of incident photons on the system, according to the stoichiometry of the reaction where 2 electrons were required.

2.4.2 Phenol degradation

The photocatalyst activity was evaluated in a batch photoreactor using UV or Vis lamp as light source (Figure 2.11). 1 g.L\(^{-1}\) of photocatalyst in 300 ml of 50 ppm aqueous solution of phenol was added to a 500 ml glass reactor. An oxygen flow of 20 mL.min\(^{-1}\) was introduced, the system was magnetically stirred. After 20 min of stabilization the light was turned on. The above conditions were maintained for 90 min for UV test and 240 min for Visible test. The reaction run was tested
2.4. PHOTOCATALYTIC EVALUATION

Figure 2.10: Action spectra equipment.

every 5 min for the UV test, and every 30 min for the visible test by taking 5 ml of sample which was filtered.

Figure 2.11: Photoreactor used for phenol degradation.

The remaining phenol concentration was measured by UV-Vis spectrometry and High Performance Liquid Chromatography (HPLC) using a Varian Prostar 220/230/240. The mobile phase used in HPLC was water/acetonitrile (78/22 v/v) pH 3.5. The Total Organic Carbon was determined by Total Organic Carbon
2.4.3 **Photooxidation of lead ions (II)**

Both photo-reduction and oxidation of lead ions experiments were realized at National Atomic Energy Commission in Argentina. The photocatalytic oxidation of Pb$^{2+}$ was carried out in an open batch reactor, with magnetic stirring. A 150 W xenon lamp with an UV-Vis irradiation spectrum was used as light source. The reactor was irradiated with wavelength above 380 nm whereby a cut-filter was put between the reactor and the lamp. The irradiated volume was 25 mL. The Pb$^{2+}$ was added from \([\text{Pb (ClO}_4\text{)}_2\cdot 3\text{H}_2\text{O}]\) and the photocatalyst concentration was 0.5 mM and 1 g.L$^{-1}$ respectively. Prior to irradiation, the pH of the suspension was adjusted to 3 using NaOH, and then it was sonificated during 2 min. The total irradiation time was 3 h with sampling time of 15 min during the first 30 min, and after, the sampling intervals were 30 min. The sample volume was 0.5 mL, which was subsequently filtered. The filtered solution was added to a flask of 10 mL, along with 1 mL of PAR (4-(2-pyridylazo)-resorcinol) solution (0.004 %). The volume was completed with water. The Pb(II) concentration changes were measured by colorimetry with 4-(2-pyridylazo)-resorcinol (PAR reagent) at 520 nm. In some cases, parallel determination were made by total reflection X-Ray fluorescence (TRXRF), using an X-ray fluorescence spectrometer composed of a Philips generator, a fine focus Mo X-ray tube and a TRXRF module; a CANBERRA Si(Li) detector with a Be window was employed.

2.4.4 **Photoreduction of lead ions (II)**

The experimental set-up is quite similar to the one described before. However, in this test a closed reactor was used. Also, before irradiation the oxygen was removed using a helium flow during 10 min. The volume of the samples was 0.5 mL, which was filtered and added to a 10 mL flask. Then the volume was completed with water. The reduction of Pb$^{2+}$ was followed by conductivity. As a complementary study TXRF measurements were carried out for selected samples.
Only the initial and final point were evaluated with this technique.

2.4.5 Isopropanol photoxidation

The activity of the samples under Vis irradiation was also examined using a xenon lamp set-up. 5 µg of photocatalyst were added to 5 mL of a solution of 2-propanol 50v/v %. The formed suspension was in a glass tube of 35 ml, which was kept in a water bath thermostated at 298 ± 5 K. The suspension was magnetically stirred and irradiated by a xenon lamp installed outside the water bath. To eliminate the UV radiation, a cut-off filter was used. A sample of 0.5 mL was taken every 30 min. The irradiation of 2-propanol solutions generated acetone, which was analyzed chromatographically by Shimadzu GC-14B equipped with an Flame Ionisation Detector (FID). Before injection of a portion of liquid phase to GC, the photocatalyst powder was separated from the suspension using a filter (Whatman Mini-UniPrep, PVDF).
Chapter 3

Nickel ions on the surface of titania

It has been reported that some metal ions on the surface of TiO$_2$ are capable of working as sensitizers for visible light by formation of surface complexes. For this reason, the modification of titania surface with nickel ions, was the starting point of this study. This chapter presents the effect of nickel ions on the optical and electronics properties of TiO$_2$ as well as the photocatalytic activity of the surface modified TiO$_2$ for the degradation of phenol.
CHAPTER 3. NICKEL IONS ON THE SURFACE OF TITANIA
3.1 Sensitizing of TiO$_2$ surface with Nickel ions

The adsorption of nickel ions on titania surface was obtained using a simple procedure. Three grams of TiO$_2$ were added to 50 mL of an aqueous solution containing NiSO$_4$ at an adequate concentration to obtain the desired loading in Ni (0.5, 1, 2, 3, 4, and 5 wt%). The suspension was stirred for 12 h at room temperature. After that, it was filtrated, and the residue was washed with deionized water two times. The powders were dried at 50 °C for 12 h. Then metal-ion-modified TiO$_2$ (x-Ni$^{2+}$/TiO$_2$) were obtained.

Strong electrostatic adsorption is indeed the simplest interaction that can occur between a complex and a surface. The only requirement is that the oxide surface and the metal complex have opposites chargers. Every oxide support has a point of zero charge (PZC), defined as the pH at which the surface is neutrally charged. The PZC value for TiO$_2$ is ≈6.5. Since the support, TiO$_2$ in our case, has -OH functional groups on its surface, the hydroxyl groups will become protonated and positively charged when the pH of the solution is below the PZC, and then the surface can adsorb anionic metal complexes. The same groups become deprotonated and negatively charged when the pH of solution is above the PZC of the oxide support, and thus positively charged species can be adsorbed onto the support.

It must to mention that the pH of the NiSO$_4$ solution is 4.5, therefore a poor electrostatic adsorption of Ni$^{2+}$ is expected. No adjustment of the pH of NiSO$_4$ solutions to above of PZC of TiO$_2$ was done (to values higher than PZC) because the modified samples were used in the test of phenol degradation, and the pH of phenol solutions is around 5.2. Then at this pH leaching phenomena should occur.

The addition of TiO$_2$ to the NiSO$_4$ solution leads to a decrement of the pH until 3.8, this suggests that bonds between Ni$^{2+}$ and TiO$_2$ support are formed via surface oxygen atoms and proton release. It is proposed that the hydroxyl group of titanium dioxide is involved in the formation of surface complexes with metal ions:
The adsorption below the p\(\text{H}_{\text{zpc}} \) (6.5) suggests an inner sphere type of complex formation between Ni(II) and the TiO\(_2\) surface, see Figure 3.1. In the inner-sphere complexes a covalent bond between the metal and the electron-donating oxygen ions is formed. The surface hydroxyl groups act as \(\sigma \)-donor ligands, which increase the electron density of the coordinated nickel ions. Only a small amount of nickel ions were adsorbed because the number of adsorption sites was limited due to the pH suspension. The color of the filtrate indicates that a large amount of Ni ions were not adsorbed by titania.

The samples show a very light blue color and the intensity of the color does not change with the loading in nickel ions.

\[
2TiOH + Ni^{2+} \rightleftharpoons (TiO)_2Ni + 2H^+ \tag{3.1}
\]

Figure 3.1: Adsorption of Ni ions on TiO\(_2\) surface.

3.2 Characterization

The characterization of the modified samples was focused mainly in the study of the electronic and optical properties.
3.2. CHARACTERIZATION

3.2.1 Diffuse reflectance spectrometry

The surface modification of TiO$_2$ with nickel ions induced a change in absorption of the materials, see Figure 3.2. The modified samples absorb light in the visible region (contrary to bare TiO$_2$). This absorption can be due to the adsorbed nickel ions. A zoom of the DR spectra in the range 500-800 nm is presented in Figure 3.3, where it can be observed that the absorbance of the samples increase slightly with the ions loading. In the inset of Figure 3.2, the absorption spectrum of the [Ni(H$_2$O)$_2$]$^{2+}$ species in aqueous solution is presented. This absorption spectrum is quite similar to that of the modified samples in the visible region.

![Figure 3.2: DR spectra of bare and Ni ions modified titania. The insert is the UV-vis spectrum of aqueous NiSO$_4$ solution.](image)

It has been recently shown that diffuse reflectance spectroscopy may be used to investigate the mode of interfacial deposition of metal complex. The [Ni(H$_2$O)$_2$]$^{2+}$ in solution exhibits three bands at about 390, 720, and 655 nm which are characteristic of Ni$^{2+}$ with octahedral symmetry. However, because of the strong absorption of titania below 400 nm, the band of [Ni(H$_2$O)$_2$]$^{2+}$ at 390 nm is not
considered in the surface analysis. In Figure 3.3 the DR spectra of the modified samples and of NiSO$_2$ in aqueous solution (from 500 to 800 nm) are displayed.

Figure 3.3: **DR spectra of Ni ions modified titania and of NiSO$_4$ aqueous solution from 500 and 800 nm.** Modified samples (top) and NiSO$_4$ solution (down).

The modified samples show two bands at 673 and 745 nm, which are shifted to longer wavelengths compared with those of the $[Ni(H_2O)]^{2+}$. This shift can be explained by the presences of some weak ligand-filled donors in the coordination sphere of Ni$^{2+}$ (inner-sphere complexes). The hydroxyl groups on the surface of
3.2. CHARACTERIZATION

TiO\(_2\) are considered ligand-filled donors.

3.2.2 XPS

The selected samples (0.5, 3 and 5\%w) were analyzed by XPS. The elements found in the survey spectra were Ti, C, O, S and Ni. The 2P\(_{2/3}\) nickel spectra (856.0 eV) were identified in the samples, see Figure 3.4. The binding energy (BE) of the absorbed nickel is close to the value of NiO (855.7 eV). The slight blue color of the samples is not the characteristic color of NiO. Then BE detected can be attributed to incorporation of hydroxyl ligands (from TiO\(_2\) surface) into the nickel coordination shell.

A satellite signal at 862 eV was also detected, which has been assigned to ligand-metal charge transfer transitions. Oxygen atoms belonging to surface hydroxyl groups play the ligand role.

The satellite signals in the sample are symmetric. Such symmetry also suggests that the absorbed nickel is bound to surface hydroxide groups. An asymmetry satellite signal has been found in NiO and NiOH.

Figure 3.4: Nip\(_{2/3}\) spectra of adsorbed Ni on titania.
CHAPTER 3. NICKEL IONS ON THE SURFACE OF TITANIA

The amount of Ni present in the samples is much lower than the nominal amount. This support the idea that TiO₂ surface, under the impregnation conditions used, can not adsorb a large amount of nickel ions. The atomic percentage of Ni in the three selected samples increases with the nominal loading of adsorbed nickel, suggesting that the adsorption increases with the concentration of nickel ions in the solution. However, even with a large concentration of nickel solution the total amount of nickel adsorbed is low, around 0.5% at.

Sulfur BE was also detected (167.9 eV). The powders were washed two times with water before drying. Clearly the washing step was not enough to remove the sulfates probably due to the adsorption of sulfates in surface hydroxyl.

3.2.3 TRMC

The dynamics of charge-carriers was studied for all the samples. Figure 3.5 shows the TRMC signals obtained with an excitation wavelength at 355 nm, which is the optimum one for titania. All the samples show a higher maximum intensity I_max compared to that of bare TiO₂. The maximum is related to the free electrons, therefore a higher signal suggests a larger number of electrons in the conduction band of TiO₂. A larger number of electron can be explained by excitation and injection of electrons from the metal complex (at the surface) to the conduction band of TiO₂.

Both the short and large range signals are not influenced (no change in the signal slope is observed) by the presence of adsorbed nickel ions. This reveals that the excess electrons injected does not influence the charge-carriers dynamics.

Under excitation wavelength larger than 355 nm, the modified samples with nickel ions exhibit signals. Figure 3.6 presents the maximum conductivity at different wavelengths. Under the same irradiation wavelengths, titania does not show a TRMC signal because the excitation does not generate electron-hole pairs. In the wavelength range of (450-550 nm), the samples exhibit the highest conductivity at 490 nm, and at larger wavelengths the conductivity progressively decreases. The DR spectra of the samples do not follow the profile of TRMC
spectra. The TRMC signals are obtained in the region where the absorption of photons is low (450 to 550 nm), while in the range (600 to 800 nm) where the light absorption is higher, no signals are detected. The decay profile of TRMC signals of the modified samples at $\lambda > 450 \text{nm}$ is slow, indicating a long life time of CB free electron. The TRMC signals obtained at larger excitation wavelengths imply an electron injection from the nickel complexes to CB of titania. Since the holes, inside of TiO$_2$ are not present, the injected electrons have a long life time.

3.3 Phenol Degradation

The selected test to evaluate the photoactivity of the modified samples was the phenol degradation. The evaluation was done using different irradiation sources: UV or visible light. The phenol degradation profiles under UV light are presented in Figure 3.7.

Taking into account the standard deviation, we can say that under UV light the adsorbed ions on the TiO$_2$ surface have a little influence in the kinetics of phenol degradation. In table 3.1, the half life time of phenol degradation under UV light is presented. Almost all the samples show a higher photocatalytic activity for phenol degradation compared to bare TiO$_2$, however the mineralization rate is quite similar than that obtained with bare titania.

Figure 3.8 shows the percentage of phenol degradation after 4 hours of reaction under visible light irradiation. Under such conditions all the modified sample are more efficient for phenol compared to bare titania. The activity increases with the Ni loading. The improvement in the percentage of phenol mineralization using the modified sample is not significant.

The degradation of phenol is around 10 times faster under UV light than under visible light.

Considering the TRMC results, the improvement of phenol degradation under both UV and visible light can be explained by the injected electrons from the metal ions to CB of the semiconductor. TRMC signals were observed using excitation wavelengths from 355 to 550 nm, such signals were always higher than
Figure 3.5: TRMC signals of bare titania and modified samples (nickel adsorbed on TiO$_2$). The signals were obtained using an excitation wavelength of 355 nm.

that obtained with bare TiO$_2$ suggesting an injection of electron from the adsorbed Ni ions to the CB of the semiconductor. Under excitation of the modified samples at 355 nm not change in the signal decay was observed. This indicates that Ni ions do not scavenge electrons from TiO$_2$.
The photocatalytic process under UV light involves the generation of the electron-hole pair and the injection of photoexcited electrons from Ni complexes into TiO$_2$ CB, then nickel complexes become oxidized into the Ni$^{3+}$ state. Therefore the oxidation process occurs by both hole (from the semiconductor) and Ni$^{3+}$ species. The reduction of dissolved oxygen is carried out by the electrons from titania and those from absorbed nickel ions.

Under visible irradiation Ni complexes also are excited injecting an electron in the CB of TiO$_2$, however in this case the participation of titania in the photocatalytic process is quite low. Then the improvement in the catalytic activity is markedly influenced by the absorbed Ni ions.
Table 3.1: Half life time of the phenol degradation and mineralization under UV light

<table>
<thead>
<tr>
<th>Sample name</th>
<th>t phenol degradation (min)</th>
<th>t mineralization (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO2</td>
<td>21.8</td>
<td>31.5</td>
</tr>
<tr>
<td>0.5</td>
<td>30.1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>20.1</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>19.8</td>
<td>32.6</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>28.7</td>
</tr>
<tr>
<td>4</td>
<td>18.5</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>30.8</td>
</tr>
</tbody>
</table>

3.4 Conclusion

The photocatalytic activity and electron migration in Ni2+/TiO\textsubscript{2} samples were investigated under UV and visible light irradiation. Ni2+/TiO\textsubscript{2} showed a higher photocatalytic activity than that of the bare sample. The adsorption of nickel ions on the surface occurs by the formation of inner-sphere complexes with the hydroxyl groups present in the surface of TiO\textsubscript{2}. The adsorption of ions is low, and the maximum adsorbed amount of ions on the titania surface is around 0.5\% at.

The strong interaction between the adsorbed ions and the surface leads to electron injection from the nickel ions to the CB of the semiconductor. The injected electrons lead to formation of O2−. These superoxide radicals and Ni3+ oxidize phenol leading to its degradation.
Figure 3.7: Phenol degradation (above) and mineralization (below) profile under UV light.
Figure 3.8: Conversion percentage of phenol degradation and mineralization under visible light.
Chapter 4

Surface Modification of Titania with Gold and/or Nickel NPs

This section is devoted to surface modification of TiO$_2$ with Ni and/or Au nanoparticles for application in photocatalysis. Synthesis, characterization and photocatalytic activity of the modified samples are presented. In the first part, characterization of the photocatalysts with different techniques and their electronic properties (charge carriers mobility) are studied. In the second part, the photocatalytic activity of the samples is tested for different reactions: phenol degradation, 2-propanol oxidation, hydrogen production, and oxidation and reduction of lead ions. Finally a general conclusion for titania modification with Ni and/or Au is given.
CHAPTER 4. NICKEL AND/OR GOLD ON TITANIA SURFACE
4.1 Samples

After the impregnation step, Au$^{3+}$ and/or Ni$^{2+}$ ions were reduced using the 60Co γ-source. The dose was chosen to ensure a complete reduction of the ions. The dose was deduced from the reduction yield in a free solution containing the metal ions in a concentration comparable to that of the impregnating solution.

As it was explained in the experimental chapter, the metal reduction is carried out mainly by reactive species such as solvated electrons (e_{s}^{-}) (which are strong reducing species) and H$^{\bullet}$ radicals both generated by the excitation and ionization of water with high energy radiation.

Additionally, secondary reducing radicals ((CH$_{3}$)$_{2}$COH and CO$_{2}^{-}$) also contribute to the reduction of metal ions. Those secondary species are generated from the interaction from the oxidizing radicals (HO$^{\bullet}$) and/or holes (h$^{\bullet}$, from titania) with 2-propanol and formate ions Chettibi et al. [2013]. During the irradiation electron-hole pairs (e^{-},h$^{\bullet}$), inside TiO$_{2}$, are formed.

After the deposition of metal particles on TiO$_{2}$ surface, different colors of sample were obtained: gray, purple and pink/violet respectively for nickel, gold, and nickel-gold deposition, and the tone increased with metal loading, see Figure 4.1.

4.2 Characterization

The influence of titania surface modification (with Ni and/or Au) on its light absorption property and on the mobility of charge-carriers was examined as well as the morphology and the chemical composition of the photocatalysts. The characterization of the surface modified titania is presented below.

4.2.1 UV-Vis Diffuse Reflectance (DRS)

The absorption spectra of pure and modified TiO$_{2}$ are shown in Figure 4.2.

In addition to the characteristic ultraviolet absorption of TiO$_{2}$, all the modified samples showed an absorption in the visible and near infrared regions, which
CHAPTER 4. NICKEL AND/OR GOLD ON TITANIA SURFACE

Figure 4.1: Images of the Ni and/or Au modified titania.

varies with the deposited metal. The samples containing only nickel show a flat absorption in the visible range. This absorption can be attributed to NiO, which is known to absorb in this region, due to the d-d transitions Guillou et al. [2006]; Hu and Teng [2010].

The samples containing gold show a maximum peak at 540-560 nm characteristic of the plasmon band of gold. This plasmon band is sensitive to the environment and the substrate. The coupling between metal NPs and TiO$_2$ support results in a shift of the plasmon band toward larger wavelengths compared to its position in water (for the same particle size). Au/TiO$_2$ samples show a localized surface plasmon resonance (LSPR) at slightly longer wavelength than those of NiAu/TiO$_2$, which indicates larger sizes of gold NPs. The difference in the size of gold NPs in Au/TiO$_2$ and NiAu/TiO$_2$ is also suggested by the colors of the samples. The pink/violet color exhibited by the bimetallic samples is attributed to smaller size particles, while purple color displayed by Au/TiO$_2$ samples reveals larger size. Similar observations between the color and gold LSPR shift on titania surface were reported by Kowalska et al. [2009].

The samples 0.5 and 1-Au/TiO$_2$ show larger scattering compared to 0.1-
4.2. CHARACTERIZATION

Figure 4.2: UV-Visible absorbance spectra of modified samples and bare TiO$_2$. (a) x-Ni/TiO$_2$; (b) x-Au/TiO$_2$; and (c) x-NiAu/TiO$_2$.

Au/TiO$_2$ probably because of the larger Au nanoparticle size. For the NiAu/TiO$_2$ samples, the plasmon band increases with the metal loading. Similarly, a slight shift to shorter wavelength is observed as the metal loading increases.

On the other hand, the DRS of the modified samples show a slight shift in the
band gap toward longer wavelengths, this can be partly due to oxygen vacancies generated in TiO$_2$ during the synthesis.

4.2.2 High resolution transmission electron microscopy (HRTEM)

Figure 4.3 shows a representative HRTEM image of the photocatalysts 0.1-Au/TiO$_2$ (a) and 0.5-NiAu/TiO$_2$ (b).

![HRTEM images](image)

Figure 4.3: **HRTEM images of selected samples.** (a) x-Ni/TiO$_2$; (b) x-Au/TiO$_2$; and (c) x-NiAu/TiO$_2$.

Polycrystalline metal NPs are deposited on TiO$_2$. EDAX analyses show that these nanoparticles are mainly composed of gold, however nickel signal is also observed in the 0.5–NiAu/TiO$_2$ sample (see Figure 4.4).

In 0.1-Au/TiO$_2$, the average diameter of gold nanoparticles is around 18 nm, while for 0.5-NiAu/TiO$_2$, the diameter of the metal particles is below 9 nm. This indicates that the addition of Ni has an influence on the growth of Au nanoparticles. Gold NPs in the 0.1-Au/TiO$_2$ sample are at the interface of two or more TiO$_2$ crystallites due to their large size, similar observation has been reported Murdoch et al. [2011]; Tsukamoto et al. [2012]. Thus, it is clear that the number of gold
Figure 4.4: **EDAX analyses.** a) 0.1-Au/TiO$_2$, b) 0.5-NiAu/TiO$_2$, and c) 0.5-Ni/TiO$_2$ samples

particles was limited and that only a small part of titania particles was contact with gold particles.

EDAX analyses show Ni signals for the samples x-NiAu/TiO$_2$ and x-Ni/TiO$_2$. In both mono- and bimetallic based photocatalysts, Ni nanoparticles on TiO$_2$ were quite difficult to be observed by HRTEM probably because of the close atomic numbers of Ni and Ti and the small size of Ni clusters.
4.2.3 X-ray photoelectron spectroscopy (XPS)

XPS was used to analyze the chemical composition of the modified TiO$_2$ and to probe the oxidation state(s) of nickel and/or gold on the surface of the photocatalysts. The elements identified in the survey spectra were Ti, O and C (Figure 4.5) for all the samples, and Ni and/or Au (Figure 4.6) for the modified photocatalysts.

Figure 4.5: XPS spectra of peaks detected in both modified and bare titania. a) O 1s; b) C 1s and c) Ti 2p.

The 1-Au/TiO$_2$ and 1-NiAu/TiO$_2$ samples exhibit peaks corresponding to Au 4f binding energy at 83.58 eV and 87.18 eV, which are respectively assigned to Au 4f$_{7/2}$ and Au 4f$_{5/2}$. The Au 4f signals obtained from the samples were compared with metallic gold foil (Au 4f$_{7/2}$=84.0 eV and Au 4f$_{7/2}$ =87.7 eV) as shown in Figure 4.6a: We can consider that the position range of Au signals, is in agreement with Au(0) chemical state but with a specific low binding energy (BE) position.
which has already been reported in the literature Chimentão et al. [2007]; Hai et al. [2013]; Tominaga et al. [2008].

This shift can reflect the strong interaction of gold-based NPs with TiO$_2$ changing their electronic environment Hai et al. [2013].

![Figure 4.6: XPS spectra of modified samples with metal loading of 1 at%. (a) Ni 2p spectra of Ni0 and NiO references, and samples modified containing Ni; and (b) Au 4f XP core-level spectra for Au0 reference and samples modified containing Au.](image)

The Ni 2p XPS spectra for the samples 1-Ni/TiO$_2$ and 1-NiAu/TiO$_2$ shown in Figure 4.6b are quite similar. In both samples, Ni 2p$_{1/2}$ and Ni 2p$_{3/2}$ peaks were identified at 873.4 eV and 855.7 eV, respectively. Such binding energies are attributed to the presence of Ni(II) and the satellite signal at 861.7 eV confirms the presence of NiO.

The fitting of the XPS spectra of the sample 1-NiAu/TiO$_2$ (Figure 4.7) reveals also the existence of a small amount of Ni0 (853.3 eV).

The exposition of Ni nanoclusters to air during the drying step may cause the partial oxidation of the samples and the formation of NiO clusters. Nevertheless,
the XPS results also indicate the presence of Ni0 proving that Ni clusters oxidation was not complete. The remaining amount of Ni0 is probably localized at the interface between NiO and TiO$_2$. It has to be noted that Ni 2p signals are also negatively shifted from those observed for pure metal or oxide references. Similar shift was reported by other groups Chen et al. [2015].

4.2.4 Time Resolved Microwave Conductivity method (TRMC)

The effect of the metal NPs on the charge-carriers kinetics of TiO$_2$ under excitation wavelength of 355 nm, which is the optimum one to photoexcite a larger number of electrons in bare TiO$_2$, was studied. Both I_{max} and decay kinetics were analyzed for all the modified samples and compared with bare titania. The effect of different excitation wavelengths on the generation of charge-carriers and their dynamics were also examined.
4.2. CHARACTERIZATION

4.2.4.1 Influence of excitation energy at 355 nm

The dynamic of excess electrons in the conduction band of the photocatalysts and their recombination kinetics were studied by time resolved microwave conductivity. TRMC measurements were carried on for all the samples (bare TiO$_2$, x-Au/TiO$_2$, x-Ni/TiO$_2$, and x-NiAu/TiO$_2$), see Figure 4.8. The transient photoconductivity data were displayed in double-logarithmic plots with a time scale from 0 to 1000 ns. The TRMC data (I_{max}, $I_{40\text{ns}}/I_{\text{max}}$, and k_D) for each sample are presented in Table 4.1.

The modified photocatalysts show a reduction of the I_{max} values compared to bare TiO$_2$. This decrease can be attributed to three phenomena linked to the metal deposition, and corresponding to the lost of charge-carriers during the pulse Emilio et al. [2006]: a) shield effect by metal NPs, b) surface recombination centers created by the synthesis method, and c) fast electron scavenging by the metal (<10 ns). A detailed analysis of the signal decays may help to understand the observed effect on I_{max}.

The analysis is not trivial, because different effects are observed, the signals can be slowed down or accelerated by the surface modification with metal nanoparticles. Anyway, a global tendency can be drawn.

As explained in the experimental section, the decay kinetics can be divided in two parts: the short-time range from 0 to 40 ns and the long-time range from 200 ns to 1000 ns.

Figure 4.8 and $I_{40\text{ns}}/I_{\text{max}}$ values of Table 4.1, characterizing the short time range, evidence that an opposite effect is observed for mono- and bimetallic modifications. All Ni/TiO$_2$ and Au/TiO$_2$ samples present a slightly slower or identical decay than bare TiO$_2$, when a faster decay is observed for the NiAu/TiO$_2$. A slower decay indicates that metal nanoparticles do not scavenge the electrons. This effect, already observed with Pt and Pd deposits Kowalska et al. [2008]; Tahiri Alaoui et al. [2012], indicates that the metal can help to avoid charge-carriers recombination. A faster decay can be explained by a) a higher rate of recombination of charge-carriers, may be due to surface defects generated by the
CHAPTER 4. NICKEL AND/OR GOLD ON TITANIA SURFACE

Figure 4.8: TRMC signals of Ni and/or Au modified samples and bare TiO$_2$. The signals were induced by 355 nm light pulses at 747 μJ.cm$^{-2}$ excitation density. (a) x-Ni/TiO$_2$; (b) x-Au/TiO$_2$; and (c) x-NiAu/TiO$_2$.

deposition b) electron scavenging by the metal.

Figure 4.8 and k_D values of Table 4.1, characterizing the long time range, confirm mainly the tendency observed at short time range: an identical or slower decay for monometallic modification, and a faster decay for bimetallic one. This confirmation of an accelerated decay at long time range for NiAu/TiO$_2$ supports
Table 4.1: TRMC parameters for bare and modified TiO$_2$.

<table>
<thead>
<tr>
<th>Material</th>
<th>I_{max} (mV)</th>
<th>I_{40}/I_{max}</th>
<th>k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>233</td>
<td>0.64</td>
<td>0.186</td>
</tr>
<tr>
<td>0.1-Au/TiO$_2$</td>
<td>224</td>
<td>0.63</td>
<td>0.185</td>
</tr>
<tr>
<td>0.5-Au/TiO$_2$</td>
<td>151</td>
<td>0.81</td>
<td>0.102</td>
</tr>
<tr>
<td>1-Au/TiO$_2$</td>
<td>155</td>
<td>0.77</td>
<td>0.143</td>
</tr>
<tr>
<td>0.1-Ni/TiO$_2$</td>
<td>202</td>
<td>0.63</td>
<td>0.180</td>
</tr>
<tr>
<td>0.5-Ni/TiO$_2$</td>
<td>135</td>
<td>0.74</td>
<td>0.128</td>
</tr>
<tr>
<td>1-Ni/TiO$_2$</td>
<td>158</td>
<td>0.45</td>
<td>0.197</td>
</tr>
<tr>
<td>0.1-NiAu/TiO$_2$</td>
<td>187</td>
<td>0.49</td>
<td>0.208</td>
</tr>
<tr>
<td>0.5-NiAu/TiO$_2$</td>
<td>190</td>
<td>0.58</td>
<td>0.186</td>
</tr>
<tr>
<td>1-NiAu/TiO$_2$</td>
<td>142</td>
<td>0.42</td>
<td>0.197</td>
</tr>
</tbody>
</table>

the hypothesis of electron scavenging by the metal. Indeed, the hypothesis of a higher rate of recombination of charge-carriers, due to surface defects, should not have been confirmed at long time range, because it corresponds to fast phenomena.

In the case of Ni/TiO$_2$ samples the hypothesis of electron scavenging is refused because, no fast decay at long time is observed, then the decrease of short-time decay can be explained by a higher rate of charge-carriers recombination, probably caused by surface defects generated by the metal deposition or during the synthesis.

In order to know if some defects were created on titania during the synthesis and if they have influences on the TRMC signals, 1 g of TiO$_2$ in 0.2 M 2-propanol solution was irradiated at different doses (200, 2000 and 4000 Gy). After irradiation, the powders present a gray-blue color indicating “trivalent titanium (Ti$^{3+}$) formation” consequences of the semiconductor reduction by solvated electrons. After the drying step, that color decreases. The TRMC measures show that the I_{max} value of TiO$_2$ irradiated decreases but the signal decay profile, both short and long ranges, does not change for the samples subjected to 200 and 2000 Gy. However for the sample irradiated with 4000 Gy both I_{max} and short time decay
decrease Figure 4.9. The above results show that the change in I_{40ns}/I_{max} value of x-Ni/TiO$_2$ samples is cause by defects of titania generated during the deposition of the metal NPs. Probably, the dose used was higher than the required dose used for metal ions reduction.

![Figure 4.9: TRMC signals of TiO$_2$ before and after irradiation at different doses.](image)

The reduction of the support during irradiation is avoided thanks to ion metals, which are faster reduced by solvated electrons and alcohol radicals. Metal ions “protect” in such way the support from reduction. However, if the irradiation continues after reduction of all the metal ions (leading to NPs), then the solved electrons will reduce the support (titania). For the experiments, the necessary dose to reduce the metal ions was calculated, but the electrons produced by TiO$_2$ during its irradiation or secondary radicals from interaction of holes (from TiO$_2$) with water and 2-propanol were not taken into account. Such species, also contribute to the metal reduction, accelerating it.

TRMC measurements reveal also that gold nanoparticles in x-Au/TiO$_2$ are inefficient in electron scavenging. This is probably due to the large size of gold particles. Indeed, theoretical calculations have indicated that the transfer of
excited electrons from the semiconductor to the metal is practically inefficient when the size of the metal nanoparticles is larger than 10 nm Ioannides and Verykios [1996]. The TRMC signals, of x-Au/TiO$_2$, show a slow decay revealing long lifetime of electrons. Long lifetime of electrons suggests that in somehow the interaction between the metal and support produce hole trapping.

4.2.4.2 Excitation at different wavelength: TRMC spectra

The influence of the different excitation wavelengths on charge-carriers generation was study for both bare and modified (0.5 at%) titania. The samples were excited at different excitation wavelengths from 310 to 505 nm, with intervals of 15 nm. The I_{max} values divided by the number of incident photons at each wavelength were plotted. The graphic obtained is called “TRMC action spectra”. Figure 4.10 shows the comparison between the absorption spectra and the TRMC action spectra for each sample.

For bare TiO$_2$ both TRMC and absorption spectra the signals are zero for wavelength longer than 415 nm. Both the absorption and charge separation occurs in the UV region $\lambda<415$ nm. Based of DRS results the highest absorption come about $\lambda<320$ nm, however TRMC results reveals that the large amount of photogenerated electrons is obtained with an irradiation wavelength of 355 nm, before and after of such wavelength the amount of electrons decrease. The above reveals that although the photon absorption is favored at shorter wavelengths it has a negative effect in the total number of photogenerated electrons.

For all the modified samples, the DRS spectra show an absorption in the visible region, but no charge separation at those wavelengths is observed by TRMC. Ni/TiO$_2$ samples were the exception, they show a small TRMC signal until 460 nm. In order to know if such TRMC signals were characteristic of NiO or if they were the consequence of the Ni-TiO$_2$ interaction, commercial NiO was studied by TRMC. It can be observed that NiO shows also a TRMC signal in part of the visible region (until 500 nm). The TRMC spectra of Ni/TiO$_2$ sample is similar to that obtained with commercial NiO in the visible region.

The samples containing Au (NiAu/TiO$_2$ and Au$_2$) do not show TRMC signal
since 410 nm, in which bare TiO$_2$ shows a separation of charge-carriers.

Figure 4.10: TRMC spectra and absorption spectra of modified samples, metal loading 0.5 at%.

Figure 4.11: TRMC spectra of commercial NiO.
4.3 STUDY OF THE PHOTOCATALYTIC ACTIVITY

The activity of the modified samples was studied in both oxidation and reduction reactions, which involve: (i) phenol degradation, (ii) 2-propanol oxidation, (iii) oxidation and reduction of lead ions and, (iv) hydrogen production from a water/methanol mixture. The results, analysis and discussion for each photocatalytic reaction are presented.

4.3.1 PHENOL DEGRADATION

One of the potential applications of photocatalysis is wastewater treatment. To evaluate the photocatalityc activity of the samples many compounds have been used as model pollutants, among which are methyl orange and some phenolic compounds such as phenolphthalein, gallic acid, and phenol. In this study phenol was used as a model pollutant because: (1) it is toxic and is a serious threat to many ecosystems, water supplies, and human health, (2) it is difficult to be degraded by conventional methods and, (3) it is highly stable under irradiation UV (it does not undergo photolysis).

4.3.1.1 PHENOL PHOTODEGRADATION UNDER UV LIGHT

Previous to photocatalytic test, an adsorption test during 5 h was carried out for all the modified samples and bare TiO$_2$. A small adsorption (<6%) was detected during this period. UV phenol photo-sensibility test was also done. Negligible phenol decomposition was observed under UV light irradiation even after 2 h. Therefore the phenol degradation was considered proper of the photocatalytic test.

The photocatalytic degradation of phenol with bare and modified TiO$_2$ is displayed in the Figure 4.12 which shows that almost all the modified samples (x-NiAu/TiO$_2$, x-Ni/TiO$_2$ and x-Au/TiO$_2$) did not exhibit better photocatalytic activity compared with bare TiO$_2$. The sample 0.1-Au/TiO$_2$ was the exception, but the photocatalytic improvement was not substantial.
The kinetics of phenol degradation on a photocatalytic surface can be described by the first order reaction:

\[\ln \frac{C_0}{C_t} = kt \]

where \(k \) is the rate constant (min\(^{-1}\)), \(C_0 \) is the phenol initial concentration at irradiation time \(t \). The linear relation of \(\ln \frac{C_0}{C_t} \) versus time \(t \) was fitted to obtain the rate constants for phenol decomposition for all photocatalysts, which are summarized in the Table 4.2. It can be seen that rate constants of the modified photocatalysts are lower than that of bare TiO\(_2\).

4.3.1.2 Phenol photodegradation under visible light

For phenol degradation a xenon lamp was used. To study the real effect of surface modification with metal NP\(_S\) on the photocatalytic activity under visible light, a NaNO\(_2\) solution (10 g.L\(^{-1}\)) was used as a UV filter. Consequently, the
photocatalytic tests were conducted with wavelengths $\lambda > 420$ nm. However, a small photoactivity of P25 was observed even when a stable filter-solution was used to cut off the UV-light. This can be explained by the coupling of anatase and rutile phases which leads to an activity under visible light. The effect of the surface modification of TiO$_2$ with different metal nanoparticles on the phenol photocatalytic degradation under visible light is present in Figure 4.13.

Clearly the modification of TiO$_2$ surface with metal NPs leads to an enhancement in the photocatalytic degradation of phenol under visible light. The efficiency is as follows: x -NiAu/TiO$_2$ > x-Au/TiO$_2$ > x -Ni/TiO$_2$.

The activity of the co-modified TiO$_2$ with Ni-Au is found to be strongly dependent on the metal loading (Figure 4.14).

Surprisingly, low metal loading is beneficial for phenol degradation, see kinetic constants (Table 4.3). Also, under Vis light irradiation, the kinetics were fitted with a pseudo first order reaction like in the case of UV irradiation, see equation 4.1. The kinetic constants under visible light were two order of magnitudes slower than those of obtained under UV irradiation.

Table 4.2: Kinetics data for bare and modified TiO$_2$ under UV light.

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>k (min)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>0.173</td>
<td>0.97</td>
</tr>
<tr>
<td>0.1-Au/TiO$_2$</td>
<td>0.177</td>
<td>0.80</td>
</tr>
<tr>
<td>0.5-Au/TiO$_2$</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>1-Au/TiO$_2$</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>0.1-Ni/TiO$_2$</td>
<td>0.1645</td>
<td>0.97</td>
</tr>
<tr>
<td>0.5-Ni/TiO$_2$</td>
<td>0.1247</td>
<td>0.96</td>
</tr>
<tr>
<td>1-Ni/TiO$_2$</td>
<td>0.141*</td>
<td>0.96</td>
</tr>
<tr>
<td>0.1-NiAu/TiO$_2$</td>
<td>0.1552</td>
<td>0.95</td>
</tr>
<tr>
<td>0.5-NiAu/TiO$_2$</td>
<td>0.1456</td>
<td>0.97</td>
</tr>
<tr>
<td>1-NiAu/TiO$_2$</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>
Figure 4.13: Kinetics of phenol degradation for selected modified samples with 0.1 at% metal loading. Experimental conditions: (1) solar lamp light source; (2) initial concentration of phenol of 50 ppm; (3) 1 g.L⁻¹ of photocatalyst; (4) 20 mL.min⁻¹ oxygen flow; and (4) volume photoreaction: 250 mL.

Table 4.3: Kinetics data of bare and modified TiO₂ under visible light.

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>k (min)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>4.19x10⁻⁴</td>
<td>0.99</td>
</tr>
<tr>
<td>0.1-Ni/TiO₂</td>
<td>5.48x10⁻⁴</td>
<td>0.97</td>
</tr>
<tr>
<td>0.1-Au/TiO₂</td>
<td>6.72x10⁻⁴</td>
<td>0.96</td>
</tr>
<tr>
<td>0.1-NiAu/TiO₂</td>
<td>9x10⁻⁴</td>
<td>0.90</td>
</tr>
<tr>
<td>0.5-NiAu/TiO₂</td>
<td>5.32x10⁻⁴</td>
<td>0.87</td>
</tr>
<tr>
<td>1-NiAu/TiO₂</td>
<td>2x10⁻⁴</td>
<td>-</td>
</tr>
</tbody>
</table>

4.3.1.3 DISCUSSION

The purpose of deposition of metal NPs on the titania surface was to reduce the recombination of electron-hole pairs and consequently to improve the degradation of phenol molecules. The modification of TiO₂ with metal nanoparticles leads to
4.3. STUDY OF THE PHOTOCATALYTIC ACTIVITY

Figure 4.14: Kinetics of phenol degradation for selected modified samples of x-NiAu/TiO$_2$.

a slightly lower photocatalytic activity compared to bare TiO$_2$ under UV light. In fact, the kinetic constants do not show a noteworthy difference ($<$0.04 min$^{-1}$) compared to that of bare TiO$_2$. Based on the TRMC study and photocatalytic phenol degradation test, we can say that not favorable effect of metal NPs during photocatalytic process is observed. No scavenging of electron by the metal NPs occurs.

Clearly the photocatalytic activity under UV light is carried out at titania surface, where the metal NPs act like impurities, either as a recombination center of electron-hole pairs or as black points decreasing the interaction of the semiconductor with light. Therefore, the oxidation of phenol molecules follows the conventional phenol pathway degradation on titania: phenol degradation is carried out directly by holes (h$^+$) as well as indirectly by photogenerated oxidizing radicals: O$_2$$^•$--, HO$_2$$^•$--, and HO$^•$--, see Figure 4.15.

Moreover, phenol degradation was observed in both bare and modified TiO$_2$ under visible irradiation. However, contrary to UV irradiation, under visible light metal NPs exhibit a beneficial effect on the photocatalytic process. The
activity under visible light of bare TiO$_2$-P25 can be explained by the junction of anatase with rutile phase leading to a band alignment in which the electrons are injected from rutile to anatase Scanlon et al. [2013]. TRMC results support this explanation because a small but significant signal is observed under excitation at 450 nm.

The TRMC spectra of the samples Ni/TiO$_2$ show that nickel species lead to the formation of charge carriers under visible light, explaining the photoactivity improvement compared to bare titania. The samples containing gold NPs (Au/TiO$_2$ and NiAu/TiO$_2$) do not show any TRMC signal under visible excitation wavelengths, however, a good activity in the degradation phenol was observed. Gold NPs present a localized surface plasmon resonance (LSPR) with a maximum peak at 540-560 nm, which was observed by DRS characterization. Plasmon is the oscillation of free electrons, which is the consequence of the formation of a
dipole in the material due to interaction with light, and such free electrons can contribute to phenol degradation. Injection of those free electrons into the CB of titania is not considered because no signal at larger wavelength (>450 nm) is detected by TRMC measurements. Therefore, we considered that the reaction with free electrons is performed directly on the metal NPs surface.

Based on the experimental results, a mechanism of phenol oxidation is proposed, where phenol is degraded directly either on the surface of the metals by free electrons or indirectly by $O_2^{•-}$, $HO_2^{•-}$, and $HO^{•-}$ species.

Figure 4.16: Schematic phenol degradation using surface modified titania with metal NPs under visible light.

4.3.2 Oxidation of 2-propanol

The photocatalytic activity under the visible light was also evaluated for 2-propanol oxidation in liquid phase. Such alcohol oxidation involves the formation of acetone before the CO_2 generation, see equation (4.2). Then, we follow indirectly the 2-propanol oxidation by acetone evolution.

$$2\text{ - propanol} \rightarrow \text{acetone} \rightarrow CO_2$$ \hspace{1cm} (4.2)
Figure 4.17 shows the acetone evolution with x-NiAu/TiO_2 and x-Au/TiO_2 samples using a xenon lamp equipped with a cut-filter ($\lambda > 450$ nm).

![Graph showing acetone generation](image)

Figure 4.17: **Acetone generation under visible-light irradiation.** The evaluated samples were: a) NiAu and b) Au-modified titania powders. The irradiation wavelengths were $\lambda > 450$ nm.

The x-NiAu/TiO_2 show one-order of magnitude higher photoactivity than x-Au/TiO_2.

It should be noted that acetone was not detected in dark or under visible light irradiation neither for bare TiO$_2$ nor x-Ni/TiO_2 samples. Acetone evolution is
faster with increasing the Au loading. It is clear that the presence of gold NPs plays an important role in the oxidation of 2-propanol under visible light.

An action spectrum is a strong tool for determining whether an observed reaction with the modified samples occurs via a photo-induced or a thermocatalytic process. To obtain an action spectrum, acetone evolution from decomposition of 2-propanol with 1-NiAu/TiO$_2$ was measured at room temperature under monochromatic visible light irradiation (450, 480, 510, 540, 570 and 600 nm). The apparent quantum efficiency (AQE) was calculated. A good agreement between the action and absorbance spectra was observed, Figure 4.18, indicating that the photocatalytic activity of 1-NiAu/TiO$_2$ was induced by photoabsorption due to LSPR of gold.

Figure 4.18: Action spectrum of 2-propanol oxidation (red marker-line) and DR spectrum (purple solid line) of 1-NiAu/TiO$_2$.
4.3.3 Removal of lead (II) by photocatalytic reduction or oxidation process

Lead (II) is a toxic metal ion frequently found in wastewater coming from industrial effluents. The usual treatments to remove lead from water, include precipitation, electrolysis or chemical oxidation. All these treatments are expensive, and other ways of lead elimination from wastewater have to be developed. In this sense, photocatalysis can be envisaged as a potential method for eliminating Pb(II) from aqueous solutions. The removal pathway can occur either by photooxidation or reduction of lead ions Murruni et al. [2008]. Oxidation and reduction of Pb(II) by bare titania, NiAu/TiO$_2$, Au/TiO$_2$ and Ni/TiO$_2$ powders were evaluated.

4.3.3.1 Photocatalytic reduction of Pb(II) ions

Because of the photoreduction was carried on at pH 3, no Pb$^{2+}$ adsorption on the titania surface or modified samples was expected. The point zero charge value of titania is higher than at pH 3 (PZC, 6.5), consequently titania surface is positively
4.3. STUDY OF THE PHOTOCATALYTIC ACTIVITY

charged leading to a repulsion between it and Pb\(^{2+}\) ions.

Adsorption of lead ions on both bare titania and modified samples surface was studied, in dark conditions during one hour. Only a negligible adsorption (< 4%) was observed. The adsorption in the dark was then discounted and in all cases, the initial Pb\(^{2+}\) concentration was fixed at its value before illumination.

The results of the photocatalytic reduction of lead (II) using bare and modified TiO\(_2\) are shown in Figure 4.20.

![Figure 4.20: Photocatalytic reduction of Pb (II)](image)

Figure 4.20: **Photocatalytic reduction of Pb (II).** The figure shows the time profile of normalized Pb (II) concentration follows by conductivity. Experimental conditions: (1) light source; (2) the initial concentration of Pb (II) was 0.5 mM; (3) 1 g.L\(^{-1}\) of photocatalyst; (4) volume photoreaction: 25 mL.; (5) deaerate atmosphere and; (6) 0.1 M of formic acid.

A better Pb\(^{2+}\) removal was reached with 0.5-NiAu/TiO\(_2\) sample. The final reduction of Pb\(^{2+}\) to Pb\(^0\) by conductivity measurements was 53% at 120 min, the small standard error deviation plotted suggests good reproducibility. The final reduction using bare TiO\(_2\) was 23%.

The modification of titania with monometallic metals seems to be harmful to lead (II) reduction. The sample 0.5-Ni/TiO\(_2\) shows a small total removal (13%),
and a long time induction time of 60 min is observed. No removal of Pb(II) is measured using the 0.5-Au/TiO$_2$ sample.

After the photocatalytic reaction the samples turned to dark gray color because of deposited Pd on bare titania and on 0.5-NiAu/TiO$_2$ sample. In case of 0.5-Ni/TiO$_2$, no evident color change was observed because of: (i) similar gray color characteristic of that sample and (ii) low achieved conversion.

4.3.3.2 Photocatalytic oxidation of Pb(II) ions

Another alternative for lead ions removal is via photooxidation. Contrary to the photoreduction, in this pathway the presence of oxygen is required and no hole scavenger (formic acid) is added. Figure 4.21 shows the results of Pb$^{2+}$ removal by photooxidation.

Bare titanium dioxide exhibited no activity. Pb(II) oxidation was more efficient with the modified samples. The co-catalyst Ni-Au samples show the highest activity (55% at 180 min) while the monometallic modified titania present a lower activity around 22% less. Final conversion was determined either by colorimetry or by total reflection X-Ray fluorescence (TRXRF).

4.3.3.3 Discussion

Under UV irradiation ($\lambda < 380$ nm), there is a formation of electron-hole pairs inside of titanium dioxide. Certain amount of those charge-carriers migrate to the surface of the semiconductor, where both reduction and oxidation reactions occurs (according the conditions of the system). Such charge separation in TiO$_2$ under UV light is confirmed by our TRMC characterization.

Using bare TiO$_2$, it should be highlighted that reduction of lead (II) ions is achieved while their oxidation do not occurs. This suggests that the removal of Pb$^{2+}$ ion the electron transfer is influenced by other factors. In order to try to understand the factors involved in the transfer electron in both reduction or oxidation reactions, a detail analysis, based on our experimental results, observation, and literature is done.
4.3. STUDY OF THE PHOTOCATALYTIC ACTIVITY

Figure 4.21: Photocatalytic oxidation of Pb (II). The figure above shows the time profile of normalized Pb (II) concentration follows by colorimetry. The figure below displays the final reduction of Pb (II) follows by X-Ray fluorescence. Experimental conditions: (1) solar lamp light source; (2) the initial concentration of Pb (II) was 0.5 mM; (3) 1 g.L\(^{-1}\) of photocatalyst; and (4) photoreaction volume: 25 mL.
(I) Removal of lead(II) by photo reduction

Based on: (a) previous works done by Martha Litter et. al (our experiments were carried out in her laboratory) who used the same reaction conditions, (b) gray color observed on the surface photocatalyst at the end of the reaction, and (c) ideal reducing conditions, we assume that the only possible reaction product is Pb0.

During the photocatalytic process holes and electrons are generated, which are oxidizing and reducing species respectively. The addition of a scavenging of oxidizing species (formic acid in our case) prevents the re-oxidation of species already reduced. The COO** radical is produced by the reaction of h+ or HO• with formic acid. The COO** radical is a strong reducing species, with a redox potential of -1.97 V NHE Soediono [1989]. Thus, the reaction system is in reducing conditions, in which only electrons and COO•− are present. The reduction facility of lead ions depends on their redox potential position.

Lead (II) ions were negligible adsorbed (< 4%) on the photocatalyst, then they can be considered as free ions in the solution. The reduction potential is E°[Pb2+/Pb0] =-0.126 V NHE and it value corresponds to a global reduction process and stable solid metal formed. In the reduction of Pb2+ several intermediate reactions occur, consequently the reduction potential changes. Breitenkamp et al. [1976] tentatively estimated by pulse radiolysis study the potential for the systems E°[Pb2+/Pb+]= -1.0 V and E°[Pb+ /Pb0 solid] =0.75 V NHE. Belloni [2006] demonstrated that potential energies of the first metal atoms and small clusters formed are always more negative than for bulk metal. The E°[Pb+ /Pb0 atom]= -0.82 V NHE was calculated Breitenkamp et al. [1976]. The coalescence of the metal atoms leads to increase the redox potential until the E°[Pb+/Pb0 solid] value.

Considering the above explanation and the energy levels of conduction band edge of titania P-25, a scheme illustrating the reduction of lead (II) is proposed, see Figure 4.22:

It is evident that bivalent lead ions is reduced to Pb+ only by COO•− radical, see equation (4.3). The reduction by electrons in the conduction band are not thermodynamically possible. Similarly the reduction of Pb+ to Pb0 is carried out
4.3. STUDY OF THE PHOTOCATALYTIC ACTIVITY

Figure 4.22: Proposed scheme of the effect of COO$^{•−}$ radicals and electron CB in the reduction of lead ions in aqueous solutions using TiO$_2$.

(eq. (4.4)), however a disproportion reaction Pb$^+$ and Pb$^{2+}$ occurs as shown in equation (4.5).

$$Pb^{2+} + COO^{•−} \rightarrow Pb^+ + CO_2$$ \hspace{1cm} (4.3)

$$Pb^+ + COO^{•−} \rightarrow Pb^{0} + CO_2$$ \hspace{1cm} (4.4)

$$Pb^+ + Pb^+ \rightarrow Pb^{0} + Pb^{2+}$$ \hspace{1cm} (4.5)

The metal atoms will coalesce to form small cluster. The reduction potential of Pb$^+/Pb^{0}_n$ increases with the nuclearity n. For a certain number of lead atoms (n_c) the reduction of Pb$^+$ by the electrons in the conduction band will be possible.

$$Pb^+ + e^- \rightarrow Pb^{0}$$ \hspace{1cm} (4.6)
Thus, we can say that at the beginning of reduction the role of the semiconductor is the photocatalytic formation of \(\text{COO}^{*-} \), then the reduction by electrons in the conduction band will be possible when Pd clusters reach a critical size.

The modification of TiO\(_2\) surface with metal NPs improves or harms the reduction of Pb\(^{2+}\) depending on the metal deposited. Baba et al. reports an improvement in Pb\(^{2+}\) reduction using titania platinizing suggesting that Pt island can increase the redox potential of electrons to more negative value. Such explanation is usually used when metals are deposed on TiO\(_2\), then it is expected the same effect when Ni or Au NPs are deposed on TiO\(_2\), however it does not happen. Then we consider that the position of the redox potential of the leads ions change in the present of the modified samples. In case of Au/TiO\(_2\) or Ni/TiO\(_2\) samples \(E^o[\text{Pb}^+/\text{Pb}^{2+}] \) and \(E^o[\text{Pb}^+/\text{Pb}_\text{atom}^0] \) had to be shifted to more a negative value. For Au/TiO\(_2\) sample \(E^o[\text{Pb}^+/\text{Pb}^{2+}] \) has to be lower than \(\text{COO}^{*-} \) one, inhibiting completely the lead (II) reduction.

For NiAu/TiO\(_2\) it is obvious that either \(E^o[\text{Pb}^+/\text{Pb}_\text{atom}^0] \) or both \(E^o[\text{Pb}^+/\text{Pb}_\text{atom}^0] \) and \(E^o[\text{Pb}^{2+}/\text{Pb}^+] \) were displaced to more positive values than the value of the electron conduction band, improving the lead ions reduction. Figure 4.23 shows a proposed scheme of lead ions (II) reduction using the modified samples.
4.3. STUDY OF THE PHOTOCATALYTIC ACTIVITY

4.3.4 HYDROGEN PRODUCTION

The photocatalytic production of hydrogen from water or alcoholic solutions have shown to be a promising alternative to produce hydrogen, in a cleaner and less inexpensive way than actual production route. The modification of titania surface with mono-metallic NPs has been widely studied. Recent studies have demonstrated that deposition of bimetallic NPs on semiconductor surfaces, can lead to enhancement the photocatalytic performance compared to the monometallic systems.

The motivation to evaluate the samples Ni-Au for this reaction lies in trying to understand the key factors that make the bimetallic samples more active than mono metallic ones.

Figure 4.23: Proposed scheme of the effect of COO$^{•−}$ radicals and electron CB in the reduction of leads ions in aqueous solutions using modified samples.
4.3.4.1 **Photocatalytic Hydrogen production under Xe lamp irradiation**

The hydrogen production rates from methanol solution (50/50% v) with the photocatalysts as a function of metal loading are presented in Figure 4.24a. As expected, bare TiO$_2$ was largely inactive for the reaction because of fast recombination of charge carriers Ismail and Bahnemann [2014]; Schneider et al. [2014] and its short ability to act as a recombination center for atomic hydrogen Baba et al. [1985]; Islam et al. [2011]; Joo et al. [2014]. Clearly, the deposition of metal NPs (Au, Ni or Au-Ni) on TiO$_2$ surface improves the H$_2$ production rate. It must be highlighted that even if the conditions for reactions in continuous and batch systems are different, a clear tendency is observed: the photocatalysts x-NiAu/TiO$_2$ present the highest H$_2$ production followed by x-Ni/TiO$_2$ and x-Au/TiO$_2$ samples as shown in Figure 4.24 and in the Table 4.4.

![Figure 4.24: Rates for H$_2$ photoproduction from methanol/water solutions under UV light.](image)

(a) R$_{H_2}$ from 50vol% aqueous methanol for batch system; and (b) Continuous profile of H$_2$ generation using modified samples (0.5at%) in 10vol% aqueous methanol.

Concerning the metal loading of the modified samples (x-Au/TiO$_2$, x-NiAu/TiO$_2$ and x-Ni/TiO$_2$), three different effects were observed. The system Au/TiO$_2$ shows a slightly, but clear increase in H$_2$ evolution when the amount of metal increases, whereas for Ni/TiO$_2$ the amount of H$_2$ does not vary much with the metal loading.
Table 4.4: \(\text{H}_2 \) production rates with x-Au/TiO\(_2\), x-Ni/TiO\(_2\) and x-NiAu/TiO\(_2\) samples and bare TiO\(_2\) followed by gas chromatography and mass spectrometry. The reaction conditions for these two systems are described in the experimental part.

<table>
<thead>
<tr>
<th></th>
<th>Gas chromatography</th>
<th>Mass spectrometry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{H}_2) production rate ((\mu \text{mol.h}^{-1}))</td>
<td>(\text{H}_2) production rate ((\mu \text{mol.h}^{-1}))</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>6.2</td>
<td><1</td>
</tr>
<tr>
<td>0.1-Au</td>
<td>29.0</td>
<td>25</td>
</tr>
<tr>
<td>0.5-Au</td>
<td>31.6</td>
<td>46</td>
</tr>
<tr>
<td>1-Au</td>
<td>39.2</td>
<td>78</td>
</tr>
<tr>
<td>0.1-Ni</td>
<td>68.3</td>
<td>88</td>
</tr>
<tr>
<td>0.5-Ni</td>
<td>58.2</td>
<td>135</td>
</tr>
<tr>
<td>1-Ni</td>
<td>67.7</td>
<td>61</td>
</tr>
<tr>
<td>0.1-NiAu</td>
<td>97.6</td>
<td>193</td>
</tr>
<tr>
<td>0.5-NiAu</td>
<td>157.0</td>
<td>318</td>
</tr>
<tr>
<td>1-NiAu</td>
<td>136.4</td>
<td>284</td>
</tr>
</tbody>
</table>

The x-NiAu/TiO\(_2\) photocatalysts show an optimal metal loading of 0.5 at\% in metal.

4.3.4.2 Action spectra measurements

To understand the \(\text{H}_2 \) production enhancement with the modified samples, a systematic study of the photocatalytic activity as a function of the irradiation wavelength was done. Action spectra of the different samples (x-Au/TiO\(_2\), x-NiAu/TiO\(_2\) and x-Ni/TiO\(_2\) with a metal loading of 0.5 at\%) were measured in the range 320-440 nm (with intervals of 30 nm).

Figure 4.25 displays the AQE determined by the action spectra for each sample. The absorbance obtained by DRS, and the \(\text{Imax}/\text{photons} \) obtained by TRMC have also been plotted to follow the evolution with the wavelength of the three steps of the photocatalytic mechanism: photon absorption, charge-carrier formation, and
chemical surface reaction.

Figure 4.25: Absorption spectra (photon absorption), TRMC spectra (charge-carrier formation) and action spectra (apparent quantum efficiency). The selected samples were those of metal loading of 0.5 at% and bare TiO$_2$.

It can be observed that the AQE of bare TiO$_2$ is very weak. The action spectrum shows that the maximum amount of hydrogen is obtained at a wavelength of 350±5 nm. This suggests that the highest density of electrons in the conduction band is obtained at this energy. This is in agreement with the TRMC results, where the highest photoconductivity was obtained under irradiation at 355±5 nm.

Detailed analysis of AQE spectra of the three modified compounds suggests appreciable differences among them; the action spectrum of 0.5-Au/TiO$_2$ shows a low level and a maximum at 380 nm, while the action spectra of compounds containing Ni present higher levels and follow the absorption spectra. 0.5-Ni/TiO$_2$ and 0.5-NiAu/TiO$_2$ samples show similar profiles, but an enhancement of the AQE is clearly shown for 0.5-NiAu/TiO$_2$. Considering the small amount of gold, the enhancement in H$_2$ production cannot be explained only by an additional effect of gold, but by a synergistic effect of gold with nickel.
P25 is a mixture of anatase (the main phase) and rutile with absorption edge at 380 and 410 nm, respectively, it contains also a very small amount of amorphous TiO$_2$. Thereby a shoulder of its absorption spectrum at ca. 400 nm is assigned to rutile phase. The observed action spectra of modified compounds suggest that gold and nickel particles were loaded predominantly on rutile, and anatase particle, respectively. It has been observed that platinum particles were photodeposited preferentially on rutile in P25 if the number of platinum particles was small and the corresponding action spectrum showed a dip in the wavelength region at around 350 nm Ohtani et al. [2010, 2015]. This was explained by the disturbance of rutile photoabsorption by inactive anatase crystallites in the relatively short wavelength region. Thus, anatase and rutile crystallites mainly work in 0.5-Ni/TiO$_2$ and 0.5-Au/TiO$_2$, respectively, even though both crystallites absorb light, and 0.5-NiAu/TiO$_2$ might show activity higher than the sum of activities of singly modified samples due to both crystallites work effectively.

For the bare TiO$_2$, the low AQE values are associated to high TRMC signal. In comparison, modified compounds present higher AQE values corresponding to slightly lower TRMC signal. This point confirms the assumption that the positive effect of the NPs is more effective on the H$_2$ overpotential, i.e. its ability to act as a recombination center of atomic hydrogen, than on the separation of charge-carriers.

4.3.4.3 Discussion

According to TRMC results, the metal loading on the surface of TiO$_2$ does not have a strong influence on the photocatalytic activity of TiO$_2$. For nickel and nickel-gold/TiO$_2$ samples a very small transfer of photoelectron to metal was observed, while for gold/TiO$_2$ samples no transfer of electron from the metal to TiO$_2$ was observed. Surprisingly, however all the modified samples show enhanced hydrogen production, in increasing order from x-Au/TiO$_2$, x-Ni/TiO$_2$ and x-NiAu/TiO$_2$. The results evidence that the role of the metal is not only to avoid the recombination of charge-carriers by trapping electrons Ismail and Bahnemann [2014]; Schneider et al. [2014], but also to act as recombination center of atomic
hydrogen (H\(^•\)) coming from TiO\(_2\) surface to form hydrogen, as it has been recently proposed Joo \textit{et al.} [2014].

Both theoretical and experimental results demonstrate that TiO\(_2\) can reduce the protons (H\(^+\)) to atomic hydrogen, however TiO\(_2\) surface is not capable to act an efficient recombination center of H\(^•\) Islam \textit{et al.} [2011]; Joo \textit{et al.} [2014]. In this context and considering the results obtained in this work, we propose a photocatalytic mechanism for each system.

It is well known that a Schottky contact is formed between Au and TiO\(_2\), where the electron transfer depends on the size of metal NPs: For example small metal particles improve the electron transfer and vice versa Ioannides and Verykios [1996]; Subramanian \textit{et al.} [2004]. The HRTEM study for Au/TiO\(_2\) photocatalysts reveals a large average particle size (mean size 18 nm), such a size is too large to scavenge photoexcited electrons Ioannides and Verykios [1996]; Murdoch \textit{et al.} [2011]; Subramanian \textit{et al.} [2004]. TRMC results support the idea of negligible electron scavenging by Au NPs in x-Au/TiO\(_2\) samples. H\(_2\) production by Au/TiO\(_2\) photocatalysts can be explained by the facts that Au NPs decrease the electron-hole recombination and act as recombination centers of atomic hydrogen (H\(^•\)) coming from TiO\(_2\) surface as is shown in the Figure 4.26.

For Ni/TiO\(_2\) samples, most of the nickel is dispersed as small NiO clasters on the semiconductor surface. In order to find out the photocatalytic role of nickel species deposed on TiO\(_2\), a series of hypotheses are discussed. Firstly, the NiO/TiO\(_2\) junction hypothesis is disregarded, because of the position conduction band energy level of NiO is higher than of that of TiO\(_2\) Yip and Jen [2012], then an electrons transfer from TiO\(_2\) to NiO is not probable. Another, possibility is that NiO act as active site for H\(^•\) recombination. However, it is worth mentioning that in our samples a small amount of Ni\(^0\) is also present. Because of the high reactivity of metallic nickel with the air, it is expected that the remaining Ni\(^0\) (detected by XPS) is between the interphase of TiO\(_2\) and NiO clusters. It has been reported that a mix of NiO-Ni deposed on a semiconductor has a higher photocatalytic activity than the single components Domen \textit{et al.} [1986]. The latter evidence shows the Ni\(^0\) importance in the sample. It is well known that Ni forms an ohmic
4.3. **STUDY OF THE PHOTOCATALYTIC ACTIVITY**

Figure 4.26: **Gold NPs acting as recombination site during the photocatalytic H₂ formation.**

junction with TiO₂, through which the photo-excited electrons migrate to the metal. In our samples the Ni⁰ amount is small, therefore the electrons transfer should be small.

In addition, TRMC signals and action spectra suggest that both NiO and TiO₂ are photoexcited simultaneously under UV-light irradiation. Based on our observations, we propose a scheme for Ni/TiO₂ that explain the photocatalytic activity, see Figure 4.27.

The photons absorption induces excitation of both TiO₂ and NiO. The oxidative part (protons formation, H⁺) is carried out only in the valence band of TiO₂, while the reduction of protons is carried out in both conduction bands of NiO and TiO₂ semiconductors. H₂ production (hydrogen atomic recombination) takes place only on NiO surface. The TiO₂ electrons transferred by Ohmic contact to NiO recombine with the holes of NiO. Thus, the amount of photoexcited electrons is identical to that of bare TiO₂, this idea is supported by TRMC results, which show an identical decays for x-Ni/TiO₂ and bare TiO₂. The advantage of an ohmic contact in the photocatalyst is a larger number of holes available in the
valence band of TiO₂.

Finally for the NiAu/TiO₂ samples, an alloy is not expected because of the immiscibility between nickel and gold Ferrando et al. [2008]; Zhou et al. [2009]. The characterization of the samples confirms the metal segregation. In TRMC signals, the NiAu/TiO₂ samples exhibit a change in the charge-carrier kinetics attributed to electrons scavenging by the metals. However, that change is not evident suggesting that only a small amount of electrons are trapped. The decrease of gold particle size, as evidenced by HRTEM results, is probably the cause of electron scavenging improvement. The Au loading in NiAu/TiO₂ samples is five times smaller than the Ni loading. The hydrogen generation improvement cannot be attributed only to small amount of gold.

The x-NiAu/TiO₂ samples are much more efficient in photocatalytic hydrogen generation than the monometallic samples. For example, in the batch system the rate of generated hydrogen using x-Ni/TiO₂ and x-Au/TiO₂ were 31 and 58 μmol.h⁻¹ respectively, while the sample x-NiAu/TiO₂, under the same conditions, reaches an H₂ rate of 157 μmol.h⁻¹. Clearly, the improvement of the photocatalytic
performance was due to a synergetic effect between Au and Ni(O) since it was not a simple additive effect.

The synergetic effect has been observed using bimetallic NPs in catalysis and photocatalysis Doherty et al. [2012]; Zielinska-Jurek [2014]. In photocatalysis, the synergy has been commonly related to electronic and geometry effects. However, further experiments are needed to deeply understand the origin of this synergetic effect.

Based on our experimental results, we propose a reaction scheme for hydrogen photoproduction on x-NiAu/TiO$_2$ samples (Figure 4.28).

![Proposed mechanism of H$_2$ production on x-NiAu/TiO$_2$ samples.](image)

The mechanism is similar to that proposed for x-Ni/TiO$_2$. The generation of the electron-hole pair takes place on the TiO$_2$ and NiO surfaces. The holes, coming from TiO$_2$, oxidize water and/or the methanol mixture generating protons, which are then reduced at the surface of both TiO$_2$ and NiO forming atomic hydrogen. Finally, H$^\bullet$ recombination occurs on the surface of metal NPs forming H$_2$. The improvement of hydrogen generation compared with that of the monometallic samples is attributed to a synergetic effect between both Ni(O) and Au acting as
a better atomic hydrogen recombination site than the monometallic samples.

According to a recent review on supported model catalysts, the catalytic activity depends mainly on the size and shape of the metal nanoparticles, but in some cases also on the distance between them. Therefore, despite the segregation between Ni(O) and Au in our co-modified samples, the proximity between Au and Ni-based nanoparticles seems to be enough to act as a better active site for atomic hydrogen recombination, consequently a synergetic effect can be considered Henry [2015].
4.3. STUDY OF THE PHOTOCATALYTIC ACTIVITY

4.3.5 Conclusion

Ni and/or Au NPs were synthesized on P25 TiO₂ by radiolysis. According to the characterization results, a segregation of the two metals was observed. Large Au NPs and Ni nanoclusters (partially oxidized) were obtained on TiO₂. The kinetic study of charge-carrier of modified samples reveals no scavenging of electrons by the metallic NPs deposed, except for bimetallic modification (NiAu).

TiO₂ surface modification with metal nanoparticles (mono or bimetallic) does not improve the photooxidation of phenol under UV showing that the metal NPs do not help to decrease the charge-carrier recombination in TiO₂. This is confirmed by the TRMC analysis.

Hydrogen generation, using a methanol-water solution under UV light, increase with the metal NPs on the surface of TiO₂. The highest production of hydrogen was obtained with the NiAu/TiO₂ samples, which was explained in terms of a synergetic effect by the presence on Au NPs and Ni⁰-NiO clusters on TiO₂, acting as recombination sites for atomic hydrogen conversion to molecular hydrogen.

We have found that a very small amount of gold associated to nickel (atomic ratio Ni:Au 5:1 and total metal 0.1 to 1 at%) can induce a significant increase in H₂ formation, thus the costs of photocatalyst preparation are relatively low.

The photocatalysts containing gold (NiAu/TiO₂ or Au/TiO₂) showed a photocatalytic activity under visible light (λ > 450 nm). Both phenol and 2-propanol oxidation reveal a dependence between the activity and metal loading. Phenol oxidation is favored with low loading metal (0.1 at%), increasing metal loading reduces the phenol adsorption (≈5%) then the oxidation begins to be difficult. In case of 2-propanol oxidation, acetone formation is favored with the increasing of metal loading. SPR leads to separation of electrons and holes inside of gold NPs. Then the holes are easily trapped by 2-propanol (hole scavenger) which is oxidized by them on the surface of gold NPs. The electrons from gold SPR are captured by oxygen, see Figure 4.18. Electron injection from gold NPs to TiO₂ is not considered in TRMC results because signals at longer wavelengths of 410 nm were not observed, then we propose that both oxidation and reduction reactions
take place on the surface of the gold NPs. NiAu/TiO$_2$ photocatalyst show the best response under visible irradiation.

NiAu/TiO$_2$ photocatalyst was more efficient in the lead ions (II) removal, under UV irradiation via phooxidation or photoreduction, than monometallic and bare titania. Such activity is explained in terms of a synergetic effect by the presence on Au NPs and Ni0-NiO clusters on TiO$_2$.
In the present chapter, the study of titania surface modification with metal Ni and/or Pd nanoparticles synthesized by radiolysis is presented. The modified photocatalysts were characterized by High Resolution Transmission Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDS), UV-Vis Diffuse Reflectance Spectroscopy (DRS) and X-Ray Photoelectron Spectroscopy (XPS). The charge-carrier mobility was studied by Time Resolved Microwave Conductivity (TRMC). The photocatalytic activities were tested under UV/vis irradiation using polychromatic and monochromatic light (action spectrum analysis of apparent quantum efficiency). Surface modified TiO$_2$ with Pd and Ni NPs show high photocatalytic activity for hydrogen evolution from aqueous methanol solution. An enhanced hydrogen evolution rate is obtained for TiO$_2$ co-modified with Pd and Ni, where synergetic effect of the two metals was observed.
5.1 Samples

Recently, Marignier [2014] demonstrated by pulse radiolysis that the reduction of Ni$^{2+}$ to Ni0 is favored in the presence of a stabilizing agent (polyacrylated anion, PA$^-$. The complexation of Ni$^{2+}$ by PA$^-$ leads to a shift of the reduction potential such that $E^0[\text{Ni}^{2+},\text{PA}^-]/[\text{Ni}^+,\text{PA}^-]<E^0[\text{Ni}^+,\text{PA}^-]/[\text{Ni}^0,\text{PA}^-]$, see Figure 5.1. Then, the formation of Ni oligomer (Ni$_{at}^0$) is carried out by solvated electron and disproportionation reactions, driving to nucleation and formation of Ni NPs (Ni$_n$).

![Figure 5.1: Scheme illustrating the effect of complexation on the reduction potentials of nickel ions in aqueous solutions with or without PA$^-$.](image)

The value of $E^0[\text{Ni}^+,\text{PA}^-]/[\text{Ni}^0,\text{PA}^-]$ is an upper limit, and that of $E^0[\text{Ni}^{2+}/\text{Ni}^+]$ is a lower limit. The potentials should fulfill the condition $E^0[\text{H}_2\text{O}/e^-_{\text{sol}}]<E^0[\text{Ni}^{2+},\text{PA}^-/\text{Ni}^+,\text{PA}^-]<E^0[\text{Ni}^+,\text{PA}^-/\text{Ni}^0,\text{PA}^-]<E^0[\text{Ni}^+/\text{Ni}^0]<-2.55 \text{ V}_\text{NHE}$ Marignier [2014].

The reduction potential of [Ni$^{2+}$/Ni$^+$] and [Ni$^+$/Ni0] is not modified in absence of PA$^-$, see Figure 5.1. Consequently, both the disproportion reaction of free Ni$^+$ into Ni$^{2+}$ and Ni0 atom and the fast consumption of solvated electrons prevent the formation of Ni$_{at}^0$ and Ni$_n$. These results highlight the importance of the
stabilization of small oligomers to form the metal NPs.

The production of colloidal solutions of Pd and Ni clusters stabilized by polyvinyl alcohol (PVA) by radiation-induced reduction of the corresponding metal ions in aqueous solution, has been reported Redjala et al. [2008]. Nickel NPs have been also synthesized by radiolysis in solutions or on oxide supports for catalytic applications Chettibi et al. [2013]. The oxide support plays an analogous role of stabilizing agent, leading to a change in reduction potentials of the metals ions favoring the formation of metal NPs. Hence, it is important to fix the ions metal prior to irradiation in order to: 1) achieve an effective reduction of metal ion, specially non-noble metal ions and 2) avoid the highly dispersed aggregates on the oxide.

To assure the adsorption or the fixation of the metal precursor on the support, a compromise has to be done between the three following factors: (1) the charge of the precursor in relation with the Point of Zero Charge (PZC) of the oxide, (2) the hydrolysis of the metals, and (3) the radiolytic conditions. The precursor fixation kinetic follows an ionic exchange process with surface groups of the support. The PZC of TiO$_2$ is 6.5. The fixation of metal the ions (Ni$^{2+}$ and Pd$^{2+}$) is assured at pHs higher than the PZC of titania because its surface is negatively charged. The pH=11 allows the optimum fixation by ionic exchange of both Ni and Pd ions to TiO$_2$ surface Chettibi et al. [2013].

Ni and Pd ions are divalents, the reduction involves firstly the reduction into M$^2+$ to M$^+$ and then the reduction of M$^+$ into zero valence. At the beginning, the reduction of the metal precursor into an unusual valence state (Ni$^+$ and Pd$^+$) is carried out by the radiolytic reducing species, mainly solvated electron, which are strong reducing agents homogeneously distributed in the solution. Based on a recent work reported by Marignier [2014], it can be proposed that the Ni$^{2+}$ reduction into Ni$^+$ and after into Ni0 is carried out at the beginning of the reducing process, only by solvated electrons because the redox potential of secondary radicals can not reduce nickel ions. The Pd$^{2+}$ is reduced by both solvated electrons and organic radicals. Palladium is a noble metal, then it is easier to reduce than nickel ions. The irradiations were carried out with a 60Co
γ-source with a dose rate of 4.5 kGy/h (low rate dose). The reduction of two metal precursors with very different redox potentials and the use of low dose rate favours the formation of core-shell structure. However the formation of alloys cannot be ruled out because even using low dose rate some alloy formation has been reported, for example PdCu Morse et al. [1985].

The surface modification of TiO$_2$ with Pd and/or Ni NPs induces a change in the color of the powder from white to grey, as shown Figure 5.2. Different tones of gray can be observed: Ni/TiO$_2$ samples are light gray (whitesmoke) compared to Pd/TiO$_2$ samples. The NiPd/TiO$_2$ samples show a silver color and the PdNi/TiO$_2$ samples exhibit a dark/gray color. The difference between the two last catalysts is the metal ratio. The metal ratio for PdNi/TiO$_2$ samples is Pd/Ni=10 while for the NiPd/TiO$_2$ sample is Pd/Ni=0.1. The suffix “real” in the samples x-Ni$_{\text{real}}$/TiO$_2$ or x-Pd$_{\text{real}}$/TiO$_2$ refers to that lowest metal loading deposited in the bimetallic samples.

Figure 5.2: Images of modified samples of with Ni and/or Pd.
5.2 Characterization of the samples

Undoubtedly, deposition of metal NPs on TiO$_2$ causes changes in the electronic and optical properties of the semiconductor. Such changes were studied by DRS and TRMC techniques. Size, morphology and structure of metal NPs, and chemical states were examined by HRTEM and XPS. The results are presented below.

5.2.1 UV-Vis Diffuse Reflectance

The diffuse reflectance spectra (DRS) of bare and modified TiO$_2$ are shown in Figure 5.3. For all the samples, the highest absorbance was obtained below 400 nm, which is mainly attributed to the intrinsic band gap absorption (3.15 eV) of the TiO$_2$ support. A zero absorbance at wavelength greater than 400 nm, characterizes the TiO$_2$ spectrum. However, surface modification of TiO$_2$ with metal NPs leads to an additional absorption in the visible region, and this absorption depends on the deposited metal and on the loading.

The visible light absorption of Pd NPs on TiO$_2$ surface is probably caused by their surface plasmon absorbance. The absorption properties of Pd particles highly depend upon their size and shape. Pd clusters with size smaller than 10 nm show a maximum plasmon absorbance in the UV region (maximum at 250 nm in water and at lower wavelength in air), but larger NPs and 2D-nanostructures (such as sheets) have shown an absorption in visible region Leong et al. [2015]; Mohapatra et al. [2008]; Siril et al. [2009]. Therefore, the plasmon absorption of x-Pd/TiO$_2$ samples in the visible region suggests a size of Pd NPs larger than 10 nm.

A similar absorbance spectrum was observed in the x-PdNi/TiO$_2$ samples, however remarkable visible-red absorbance was obtained (Figure 5.4), indicating an increase in size and/or irregular shape of Pd NPs in the x-PdNi/TiO$_2$ photocatalysts compared with the monometallic materials.
Figure 5.3: **UV-Visible absorbance spectra of modified samples and bare TiO$_2$.** (a) x-Pd/TiO$_2$; (b) x-Ni/TiO$_2$; and (c) x-NiPd/TiO$_2$ and x-PdNi/TiO$_2$

5.2.2 High Resolution Transmission Electron Microscopy (HRTEM)

The HRTEM analysis shows significant changes in the size, morphology and dispersion of the metal nanoparticles between mono- and bimetallic samples, as
CHAPTER 5. NICKEL AND/OR PALLADIUM ON TITANIA

Figure 5.4: UV-Visible absorption spectra of 1-PdNi/TiO$_2$ and 1-Pd/TiO$_2$ samples.

shown in the Figure 5.5, 5.6 and 5.7. In the monometallic samples, (Pd/TiO$_2$) most of the Pd NPs are spherical with an average size of 13 nm. However, some Pd NPs agglomeration was also observed. In general the number of Pd NPs in an aggregate does not exceeded 3, and the aggregate size is around 20 nm, Figure 5.5.

In the case of co-modification with Pd and Ni, both shape and size of NPs depend on the metal ratio. On one hand, for the PdNi/TiO$_2$ photocatalyst with the ratio Pd/Ni=10, large aggregates of metal NPs were observed with an average size > 20nm as shown in Figure 5.7. Such aggregates are constituted of numerous individual grains with an average size <7 nm, see Figure 5.7 b and c. On the other hand, when nickel is the predominant metal in the sample (Pd/Ni=0.1), small and spherical NPs where observed with an average size of 6 nm, see Figure 5.6. It is clear that the size of the NPs decreases with an increase of nickel loading. It must be highlighted that NPs aggregation was not observed.

For the bimetallic samples, the elemental analysis reveals the presence of both Ni and Pd signals. For the monometallic samples, the corresponding signals were
5.2. CHARACTERIZATION OF THE SAMPLES

Figure 5.5: HRTEM of 1-Pd/TiO$_2$ samples.

Figure 5.6: HRTEM of 1-NiPd/TiO$_2$ samples.

detected, even that of nickel, proofing the nickel existence on the samples. Nickel NPs in the samples Ni/TiO$_2$ were not observed by HRTEM probably because of the proximity of the atomic number of Ni and Ti, which makes difficult to
5.2.3 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

The surface composition and oxidation states of all elements (Pd, Ni, O, Ti, and C species) in samples were analyzed using X-ray Photoelectron Spectroscopy. A comparison of the spectrum Pd3d of the mono- and bimetallic samples is presented in Figure 5.8.

The Pd3d core-level energy of the samples Pd/TiO$_2$ and PdNi/TiO$_2$ are the same (334.7 eV) while this of NiPd/TiO$_2$ is shifted to higher values (335.5 eV). The fit of the signals show four contributions: metallic Pd Fujiwara et al. [2016]; Yui et al. [2011], intermediate Pd oxidation (PdOx) Gabasch et al. [2006]; Ouyang et al. [2015], PdO Gabasch et al. [2006], and ionic Pd$^{2+}$ Fujiwara et al. [2016], with a BE of 334.5, 335.5, 336.7 and 337.7 ±0.2 eV, associated to 3d$_{3/2}$, respectively. The samples Pd/TiO$_2$ and PdNi/TiO$_2$ are mainly composed by metallic Pd (\approx51%). In both samples a strong contribution of PdOx is observed (36-38%), which can be attributed to PdOx−TiO$_2$ interaction and/or substoichiometric PdOx ($x<1$).
5.2. CHARACTERIZATION OF THE SAMPLES

Figure 5.8: XPS spectra of the Pd3d core level of: a) PdNi/TiO$_2$, b) Pd/TiO$_2$, and c) NiPd/TiO$_2$.

PdO concentration exhibited by such samples is around 9% indicating a slight oxidation of the surface NPs by air contact.

For the sample NiPd/TiO$_2$ the fit of the Pd3d spectrum reveals mostly a contribution of PdOx, PdO, and only a small peak corresponding to Pd0. Studies of Ni-Pd total energy calculations have reported a clear preference for a Ni
core-Pd shell structure Zhang et al. [2010], therefore the intermediate Pd contribution can be endorsed to substoichiometric PdOx ($x<1$) mainly. The interaction with Ni, whose concentration is 10 times higher than Pd, can be the cause of substoichiometric PdOx.

The Ni2p spectra of NiPd/TiO$_2$ and Ni/TiO$_2$ samples exhibit 2p$_{1/2}$ and 2p$_{3/2}$ binding energies at 873.4 and 855.7 eV respectively. These binding energies and the shake-up satellite peaks, observed at 6 eV above the main Ni 2p$_{1/2}$ and 2p$_{3/2}$ lines, indicate the presence of NiO nanoparticles. Nevertheless, the fit of Ni 2p signal shows a small amount of Ni0, see Figure 5.8. Solvated electrons are very strong reducing species able to reduce Ni ions, and the applied dose is sufficient to reduce all the Ni$^{2+}$ precursor present in the suspension. However, it is well known that Nickel is very sensitive to air contact, which is the cause of the partial oxidation of NPs during the drying step of the synthesis.

Based on the latter, structural model for each system was proposed, see Figure 5.10. A more detailed explanation about these models will be given in the discussion of the results.

![Fitting of Ni2p core level of NiPd/TiO$_2$ sample.](image-url)
5.2. CHARACTERIZATION OF THE SAMPLES

5.2.4 Time Resolved Microwave Conductivity

The effect of surface modification of TiO$_2$ with metal NPs on the charge-carrier kinetics was examined by TRMC. For all the samples, the TRMC signals were obtained. However for clear discussion and understanding, only the most representative TRMC signals and data (I_{max}, I_{40}/I_{max}, and k_D) are shown in Figure 5.11 and Table 5.1. The TRMC signals were displayed in double logarithm plots with a time scale from 0 to 1000 ns.

In comparison with bare titania, all the modified samples display a lower maximum (I_{max}). Three phenomena linked to metal deposition and corresponding to the lost of charge-carriers during the pulse can be responsible for this I_{max} reduction: a) shield effect by NPs, b) surface recombination centers induced by the synthesis method, and c) fast electron scavenging by the metal (<10 ns). Therefore,
Figure 5.11: TRMC signal of the modified samples and bare TiO$_2$. The signals were induced by 355 nm light pulses at 1.2 mJ.cm$^{-2}$ excitation density. (a) 1-PdNi/TiO$_2$ and (b) 1-NiPd/TiO$_2$.

to understand which of these three phenomena has the largest contribution on I_{max} reduction a detailed analysis of the signal decay is required.

The short-range decay for the modified samples is faster than bare TiO$_2$. The latter can be easily observed in the Table 5.1, where I_{40}/I_{max} values are presented. For that range, a faster decay can be explained by: a) a larger recombination rate
of charge-carriers, which may be caused by surface defects generated during metal deposition b) electron trapping by the metal. To discern between the two above causes, the analysis of long-range decay is also necessary.

The photocatalyst containing mainly palladium (0.5-Pd\textsubscript{real}/TiO\textsubscript{2}, 1-PdNi/TiO\textsubscript{2} and 1-Pd/TiO\textsubscript{2}) exhibit higher k_D value compared to bare TiO\textsubscript{2}. While the samples with higher amount of nickel (0.5-Ni\textsubscript{real}/TiO\textsubscript{2}, 1-Ni/TiO\textsubscript{2} and 1-NiPd/TiO\textsubscript{2}) show either a lower or similar value of k_D compared to bare titanium. The higher K_D value of the modified samples (compared to that of bare titanium) leads to consider the hypothesis of trapping electron by the metal, because it is the only phenomenon that can induce a change in the long-range decay. The influence of the surface defects in the recombination of charge-carriers should not have an effect on the k_D value. In that context, TRMC profiles support the idea that the palladium NPs in the samples improve the capacity to scavenge electrons.

5.3 Photocatalytic hydrogen production test

The generation of hydrogen was the reaction selected to evaluated the effect of the metal NPs on titania surface. The evaluation was realized with different irradiation sources: (1) polychromatic light and (2) monochromatic light (action spectra).
5.3.1 Hydrogen generation under mercury lamp irradiation

The activity of the PdNi/TiO$_2$, NiPd/TiO$_2$, Ni/TiO$_2$ and Pd/TiO$_2$ photocatalysts for H$_2$ production was initially evaluated using batch set-up conditions (50vol% of aqueous methanol under UV irradiation), previously described in detail in the experimental section. The reaction displays a zero order kinetics.

Firstly, the surface modification of TiO$_2$ with metal NPs leads to a H$_2$ rates production higher than that of bare TiO$_2$, as shown in Figure 5.12. It is not a surprising result because it is well known that bare TiO$_2$ is an inefficient material for photocatalytic hydrogen generation. The above is commonly attributed to high hydrogen overpotential resulting in the rapid electron-hole recombination, reducing the number of charge-carriers available for the photoreaction. In both mono- and bimetallic samples, the efficiency of these changes is according the amount and the type of the metal NPs.

On one hand, the activity of Ni/TiO$_2$ samples is almost the same (around 60 μmol/h) for the samples containing ≤0.5w%, see Figure 5.12a. The increase of metal loading leads to a decreasing in the hydrogen generation. On the other hand, as shown in Figure 5.12b, the palladium photocatalyst exhibits an optimum amount of metal loading around 0.5w%.

The main purpose of this work is to study the effect of the bimetallic modification compared with its monometallic components. An improvement of hydrogen production was achieved using the bimetallic samples compare to the monometallic ones, as shown in Figure 5.13. However just two of the samples (0.5-NiPd/TiO$_2$ and 1-PdNi/TiO$_2$) show a true synergistic effect, that is, the whole amount of obtained hydrogen for such samples is greater than the simple sum of its parts.
5.3. PHOTOCATALYTIC HYDROGEN PRODUCTION TEST

Figure 5.12: H\textsubscript{2} production rates for modified samples and bare titania. R\textsubscript{H\textsubscript{2}} from 50vol\% aqueous methanol.

5.3.2 Action spectra measurements

In order to better elucidate the origin of the enhanced photoactivity of the modified materials, the generation of hydrogen was studied as a function of the irradiation wavelength.

A comparison of the absorption and action spectra (apparent quantum efficiency) for three different samples (\textit{1-Ni\textsubscript{real}/TiO\textsubscript{2}}, \textit{1-PdNi/TiO\textsubscript{2}} and \textit{1-Pd/TiO\textsubscript{2}}) was measured in the range 320-440 nm (with intervals of 30 nm), Figure 5.14.

Bare titania shows the lowest AQE. Its action spectra profile does not follow the absorption spectrum. According the absorption spectrum, the bare titanium absorbs a large amount of photons at wavelength <350 nm. However, measuring action spectra show an optimum at wavelength of 355 nm and below of that...
wavelength the activity to produce hydrogen decreases. The modified samples exhibit a higher AQE than bare TiO$_2$, and they display different action spectra profile.

The sample 1-Ni$_{real}$/TiO$_2$ shows an action spectrum shape similar than absorption spectrum, while the action spectra of the other two samples (1-PdNi/TiO$_2$ and 1-Pd/TiO$_2$) show different profiles compared to their absorption spectra.

For the sample 1-PdNi/TiO$_2$, high AQE values were obtained using 320 and 355 nm irradiation wavelengths, being the optimum one 355 nm. The AQE value decreases considerably at wavelength \geq 380 nm. A similar results was obtained with sample 1-Pd/TiO$_2$, however for this sample also a significant AQE at 380 nm was observed. The activity around 400 nm suggests that a large amount of Pd nanoparticles are deposited on the rutile phase, which has an absorption edge around 410 nm.

Figure 5.13: **Comparison of H$_2$ production rates of bimetallic samples with its respecting parts.**
5.3. PHOTOCATALYTIC HYDROGEN PRODUCTION TEST

Figure 5.14: Absorption- and action spectra of modified samples. a) TiO$_2$, b) 1-PdNi/TiO$_2$, c) 1-Pd/TiO$_2$, and d) 1-Ni$_{real}$/TiO$_2$

5.3.3 Discussion

The results show that modification of bare titania with metal NPs has an influence on its conventional light absorption, electronics properties, and photocatalytic activity. In photocatalysis, it is generally accepted that the generation of hydrogen depends on the efficiency of the deposited metal to trap electrons in order to avoid their recombination with the holes. However, our results show that titania by itself can absorb UV photons and generate a large amount of electrons available to carry out the photocatalytic process to generate hydrogen. However the amount of the hydrogen produced is negligible. An opposite effect was observed with the modified sample, which generated a larger amount of hydrogen than bare TiO$_2$, even though the charge-carriers generated by the modified samples were less than those generated by bare TiO$_2$. That point reveals that the two first steps of the process (photons absorption and charge-carriers separation) are proper to
the photocatalytic process, while the third step (hydrogen production) involves a catalytic process where the metals NPs act as active sites. This hypothesis is well supported by the integral analysis of the DRS, TRMC and action spectra results, where the absorption of photons, the generation of charge-carriers and the efficiency to produce hydrogen are respectively observed.

Also in photocatalysis, the efficiency of the metals for scavenging electrons is sensitive to the size of the metal NPs. Usually small size of metal NPs are desired to trap a large amount of electrons. But according our results, the effect of the cluster size does not seem to play a key role in the hydrogen production. The samples 1-NiPd/TiO$_2$ and 1-Pd/TiO$_2$, with small particles (<10 nm), were not the best photocatalysts to produce hydrogen. While, the sample 1-PdNi/TiO$_2$ showed the highest activity, despite of large size of metal NPs (around 8 times larger).

Although, it has been demonstrated that electron trapping is beneficial for H$_2$ generation, our results show clearly that the ability of metal NPs to trap electrons is not their principal role. Our integral study provides evidence that the key role of metallic NPs is to act as good active site for the recombination of atomic hydrogen. For example, TRMC results of Ni/TiO$_2$ samples do not show to be a good electron scavengers, even so a considerable amount of H$_2$ was generated by these samples.

The samples containing mostly Pd show a good efficiency to trap electrons, even the sample 1-PdNi/TiO$_2$, which shows larger size of nanoparticles. However, it is well known that larger particles are less efficient in trapping electrons coming from the CB of the semiconductor. In order to explain such behavior, it is necessary to take into account the XPS results. The XPS results reveal the presence of Pd, PdO$_x$ and PdO. For the samples rich in Pd, Pd NPs are assumed to in interaction with TiO$_2$ surface through the Pd-O bonds. Therefore, PdO$_x$ species must be mainly located at the interface of Pd and TiO$_2$. The Pd atoms at the middle layers of the particles should mainly exist in the metallic state. Finally, PdO species are located as a thin layer covering the NPs. Then, the strong interaction between PdO$_x$ and TiO$_2$ surface can be responsible in the photogenerated electrons
scavenging. When the amount of Ni increases in the samples, the interaction between PdO$_x$ and TiO$_2$ surface decreases, consequently the NPs become less efficient to scavenger the CB electrons. Our TRMC results support the latter explanation.

Although, the mount of electrons trapped by the samples rich in Ni is negligible, the generated hydrogen is considerable, proving again that metallic NPs act as recombination center of atomic hydrogen.

For bimetallic samples an appreciable improvement for hydrogen production was observed. The rate of hydrogen production for 1-PdNi/TiO$_2$ and 0.5-NiPd/TiO$_2$ photocatalyst is around 50% higher than the sum of the H$_2$ amount obtained with the their monometallic counterparts. This improvement can be attributed to a synergetic effect of the two metals acting as active sites. The difference in the efficiency of the latter samples (1-PdNi/TiO$_2$ and 0.5-NiPd/TiO$_2$) is because of PdO$_x$ between TiO$_2$ surface and metallic Pd. The presence of PdO$_x$ is beneficial for electron scavenging, in that way the recombination of electrons and holes on TiO$_2$ surface is avoided, as shown Figure 5.15. The above mentioned results and conclusions confirm that electron scavenging is beneficial to H$_2$ generation, but it is not the main role of the metallic NPs. The main role of metal NPs, according our results, is to recombine the atomic hydrogen. It means that metal NPs are catalytic sites.
5.3.4 Conclusion

Ni and/or Pd NPs were synthesized on P25 TiO$_2$ by radiolysis. The characterization of the samples show an extended absorption of spectra of titanium dioxide to the visible region. A remarkable difference in the size of the metal NPs was found as function of the metal ratio. Large size of NPs are obtained in bimetallic samples when Pd is the predominant metal. A partial oxidation of both Ni and Pd was observed.

The surface modification of TiO$_2$ with Pd and Ni NPs resulted in an increase of the photocatalytic activity for hydrogen production using a methanol-water solution under UV light. The highest production of hydrogen was obtained with the PdNi/TiO$_2$ photocatalyst, which was explained in terms of a synergetic
effect induced by the presence on Pd0-PdO-PdO\textsubscript{x} NPs and Ni0-NiO clusters on TiO\textsubscript{2}, acting as recombination sites for atomic hydrogen conversion to molecular hydrogen.
Conclusions & Perspectives

* General conclusion

In this work, we have studied the effect of surface modification of titanium dioxide with ions or metal NPs on its photocatalytic activity.

The adsorption of nickel ions on titania had an effect on the absorption of light in the visible region. The kinetics of charge-carriers were not modified under excitation at 355 nm, but under visible light excitation (wavelengths 460-500 nm) free electrons in the CB of TiO$_2$ were detected by TRMC. TiO$_2$ modified with Ni$^{2+}$ ions showed small improvement in phenol degradation kinetics either under visible or under UV irradiation.

The deposition of metal nanoparticles (mono and bimetallic NPs) on the TiO$_2$ was successfully performed by radiolysis method. The metal ions were reduced until the zero valence, however in the case of Ni and Pd NPs, they were sensitive to the contact with air, and partially oxidized.

The morphology of the metal NPs was spherical and the size varied with the deposited metal. The size of the gold NPs in the Au/TiO$_2$ system was around of 18 nm. In the sample Pd/TiO$_2$, the size of Pd NPs was around 7 nm. The Ni NPs on TiO$_2$ were quite difficult to observe by HRTEM, because of the close atomic number of Ni and Ti, and/or the small size of Ni clusters. The addition of a second metal had an impact on the size of the metal NPs. In case of the sample NiAu/TiO$_2$, the presence of nickel induced a reduction of the size of Au NPs. The size of gold NPs were < 9 nm.

The size of the Pd NPs in the sample NiPd/TiO$_2$ was sensitive to the ratio PdNi. Large aggregates of metal NPs were observed with an average size > 20 nm when the ratio PdNi=10. In contrast, small Pd NPs (<7 nm) were obtained with the ratio NiPd=0.1.

The photocatalytic process was influenced by the presence of metal NPs on titanium dioxide under UV irradiation, but this effect depends on different factors
such as: metal, size, and morphology of the metal NPs. The first step of the photocatalytic process, e.i. the photo absorption, is slightly influenced at wavelength shorter than 380 nm by the presence of metal NPs. Although this effect is not obvious in the DRS characterization. When the study was complemented with TRMC results, it revealed that the presence of metal NPs induced lower light absorption by TiO\textsubscript{2}. However since the metal loading is low, this effect is small.

In the second step of the photocatalytic process, charge-carrier dynamics was influenced (or not) depending on the type of deposited metal:

1. Nickel clusters did not influence the dynamics of the charge-carriers, and this was attributed to the oxidation of nickel clusters to NiO by air contact. Then, the electron injection from TiO\textsubscript{2} to NiO was not thermodynamically possible, as supported by TRMC results.

2. Gold NPs did not act as scavengers of the photoexcited electrons due to their large size (mean diameter of 18 nm). However, the lifetime of the free photoexcited electrons was longer in the presence of Au NPs. The long lifetime of the electrons was apparently explained by hole trapping as a consequence of the presence of Au NPs.

3. Palladium NPs scavenged the photogenerated electrons. This is due to the intermediate Pd oxidation (PdO\textsubscript{x}).

4. Ni-Au NPs also acted as electron scavengers, however since the observed segregation between Ni and Au, the electron scavenging was attributed mainly to Au because in those samples the size of Au NPs was smaller than in the metallic gold.

5. For Ni-Pd system, the NPs ability to scavenge the electrons increases with the increasing of the Pd loading. An opposite effect is obtained with increasing the Ni loading.

The photoactivity of the modified samples were tested in the degradation of phenol under UV irradiation. No improvement was obtained even for the samples
where electron scavenging by the metal NPs were observed. Then metal NPs were considered as an impurity on the TiO$_2$ surface. Titania was the only participant in the oxidation of phenol.

Contrarily, the generation of hydrogen was improved with metal NPs deposition. Bare TiO$_2$ was not efficient to produce hydrogen even if titania could absorb photons and generate the electron-hole pair as DRS and TRMC characterization respectively revealed. The production of hydrogen was promoted by adding small amounts of metals to TiO$_2$ surface, even with those metals (Ni and Au) which did not show any capacity to scavenge electrons from TiO$_2$ CB. Our results suggested that the hydrogen generation involved photocatalytic and catalytic processes. Photoexcited electrons and holes, induced by TiO$_2$ excitation, are responsible of the oxidation of alcohol/water and the reduction of protons, respectively. The atomic hydrogen is recombined on the surface of metal NPs. The amount of hydrogen generated depends on the efficiency of the metal NPs to recombine the atomic hydrogen. Bimetallic NPs (Ni-Au and Ni-Pd) on TiO$_2$ were much more active than the monometallic NPs, due to the synergetic effect obtained with two deposited metals on the surface of TiO$_2$. Bimetallic NPs become better recombination centers compared to their monometallic counterparts.

The modification of TiO$_2$ with metal NPs induces a strong influence in the photon absorption in the visible region. However the study of the charge carrier dynamics at wavelengths longer than 430 nm does not reveal separation of charge-carriers. Then, the absorption under visible light was considered a consequence of the incorporation of the optical transitions or the plasmon proper to metal NPs. The samples containing gold (Au/TiO$_2$ and NiAu/TiO$_2$) presented photocatalytic response under visible light for the oxidation of phenol and 2-propanol. This was explained by the LSPR proper of gold NPs. Action spectra experiments showed that the oxidation of 2-propanol was photo-induced by the LSPR. No TRMC signal was detected when the samples were irradiated at the LSPR wavelengths of gold suggesting that there is no injection of electron from the gold NPs to TiO$_2$. Therefore we proposed that both reduction and oxidation reactions happen at the surface of gold NPs. The samples NiAu/TiO$_2$ were much more
active than Au/TiO$_2$. The samples Ni/TiO$_2$ did not show any activity under visible light, and considering the few amount of Au in the bimetallic samples, we propose a synergetic effect between Ni species and Au NPs leading to higher photocatalytic activity for degradation of phenol or 2-propanol.

Hydrogen was not generated under visible light ($\lambda > 450$ nm) because, at this wavelength, the electron-hole pair is not created in TiO$_2$.

Thus, the results of our integral study lead us to argue that the main role of the metal NPs in H$_2$ generation is to act as recombination center (promoter) of atomic hydrogen. This conclusion suggests a change in the focus, in which the goal is to identify better promoters instead of better scavengers. Bimetallic systems, mainly base on inexpensive metals such as Ni, have shown to be better promoters compared to the monometallic ones. Thus, the costs of the photocatalyst preparation are relatively low for future applications. These bimetallic NPs can also have applications in catalysis and electrocatalysis.

Perspectives

The obtained results open lead to the following perspectives:

1. It is a great interest to continue to explore bimetallic systems mainly based on inexpensive metals such Co, Ni and Cu for photocatalysis, and mainly for H$_2$ generation. For example, a deep study of Co-Au, Cu-Au, Co-Cu and their single metal counterparts will be interesting to investigate, in order to know if in all those cases a synergetic effect is obtained and to try to understand origin of this synergetic effect. In particular, the system Cu-Au has already been studied in our group and a synergetic effect has been obtained for photocatalytic oxidation reactions and TRMC study has shown that Cu-Au nanoparticles scavenge electrons better that monometallic Au and Cu Hai *et al.* [2013]. It will be interesting to study the photocatalytic activity of this system for reduction reactions and H$_2$ generation.

2. The bimetallic NPs Ni-Au or Ni-Pd can be deposited on inorganic semiconductors with small a band gap in order to produce hydrogen using visible
light. Inorganic semiconductors can also be replaced by another materials able to split the water molecule and to reduce the protons to atomic hydrogen, for example a conducting polymer. Indeed, our research group has shown that conjugated polymer nanostructures are a new class of photocatalysts very active under visible light Ghosh et al. [2015].

3. In this work, it was demonstrated that the gold plasmon plays an important role in the oxidation of 2-propanol under visible light. The photocatalytic activity increase considerably with the presence of a transition metal. A deep study is suggested in order to understand how the transition metal affects the gold plasmon leading to higher photocatalytic activity.
ANNEXES

DETERMINATION OF H\textsubscript{2} MEASURED BY GC

* Pressure Correction

The head space of the reactor (Figure) is important in quantification of hydrogen generated.

The correction is calculated using the following equation:

\[
x = \frac{A \cdot a \cdot Z}{[y - (22.4 \cdot 298 \cdot 275 \cdot 1000 \cdot A \cdot a)]}\tag{5.1}
\]

were:
- \(x\) is the amount of H\textsubscript{2} \([\text{mol}]\)
- \(A\) is the area obtained by GC measured
- \(a\) is the slope from GC calibration curve the value for the used GC was 4.67 x 10-12
- \(Z\) head space \([\text{mL}]\)
- \(y\) sample injected \([\text{mL}]\)

The temperature at which measurements were made 25 °C

* Apparent quantum efficiency (AQE)

\[
\text{AQE} = \left(\frac{\text{reaction rate}}{\text{light flux}}\right) \cdot 100 \tag{5.2}
\]

* Reaction rate \((r)\) \([\text{mol} \cdot \text{s}^{-1}]\) this take into account the rates of e- and h+ consumption by the number of reaction electron in H\textsubscript{2} evolution, and is calculated as follow:

\[
r = \frac{n \cdot \text{reaction rate}}{3600} \tag{5.3}
\]

\(n= 2\) reaction electron number for H\textsubscript{2} evolution (methanol decomposition)

* Light flux \([\text{mol} \cdot \text{s}^{-1}]\)
\[\text{Light flux} = \frac{\text{Intensity}}{\text{Energy of 1 mol photon}} \] (5.4)

where

Light intensity \([J \cdot s^{-1}]\) this is measured directly in the lamp

Energy of 1 mol photon \((E') [J \cdot mol^{-1}]\)

\[E' = 6.022 \times 10^{23} \cdot \left[\frac{6.63 \times 10^{-34} \cdot 3 \times 10^{8}}{\lambda \times 10^{-9}} \right] \] (5.5)
Determination of H_2 measured by MS

To quantify the amount of hydrogen generated during the photoreaction by MS it was necessary to calibrated the equipment. For that different amount of a gases mix (hydrogen, oxygen, nitrogen) was injected to the system. In each injection the amount of H_2 (ppm) was known. The graphic obtain is show in Figure 5.16. The average of the constant signal (red circle) values were calculated. After using those values the linear calibration graph was generated, see Figure 5.17

![Graph](image)

Figure 5.16: **MS signal for generated H_2 calibration curve.** To obtain this graph different amount of mix gases with a determinate amount of H_2 was injected to MS equipment.

The signals recover during the photocatalytic test can been converted to partial fraction (Figure 5.18) using the liner equation from the calibration curve.

The amount of hydrogen (n_{H_2}) is calculated using the following equation:

$$x_{\text{ppm}} = \frac{n_{H_2}}{n_{\text{total}}}$$ \hspace{1cm} (5.6)

where

x_{ppm} is the fraction times 1E^{-6}
Figure 5.17: **Calibration curve of H$_2$.** A linear regression was fitted

\[y = 1.4713^{12}x + 2.1772^{19} \]

\(n_{\text{total}} \) is the total moles of the different gases inside of the reactor. It can be calculated using the ideal gas law at standard conditions. The volume in the head space of the reactor was 130 mL.

Figure 5.18: **The signals recover during the photocatalytic test and converted to partial fraction.**
Fricke dosimetry

60Co-rays, photons with energies of 1.17 and 1.33 MeV ($1 \text{ eV} = 1.6x10^{-19} \text{J}$)

The reaction involved in the Fricke dosimeter is the radiation-induced oxidation of ferrous ion to ferric ion ($\text{Fe}^{2+} \rightarrow \text{Fe}^{3+}$) at low pH and in the presence of oxygen. The standard dosimeter solution contains 10^{-3} M ferrous sulfate or ferrous ammonium sulfate, 10^{-3} M NaCl in 0.4 M of H_2SO_4 (pH 0.46) and is saturated with air.

Water radiolysis

$$H_2O \rightarrow H^{\bullet}, OH^{\bullet}, e^{-}_{aq}, H_3O^{+}, H_2O_2, HO_2^{-}, OH$$ (5.7)

$$H_2O \rightarrow H^{\bullet}, OH^{\bullet}, e^{-}_{aq}, H_3O^{+}, H_2O_2, HO_2^{-}, OH$$ (5.8)

In presence of Fe^{2+} and oxygen

$$\text{Fe}^{2+} + H_2O_2 \rightarrow \text{Fe}^{3+} + OH^{\bullet} + OH$$ (5.9)

$$\text{Fe}^{2+} + OH^{\bullet} \rightarrow \text{Fe}^{3+} + OH$$ (5.10)

and

$$H^{\bullet} + O_2 \rightarrow HO_2^{-}$$ (5.11)

$$\text{Fe}^{2+} + HO_2^{-} \rightarrow \text{Fe}^{3+} + H_2O_2$$ (5.12)

Acid medium (H_2SO_4) is used to scavenge the e_{aq} and to follow the hydroxyl radical presence by the oxidation of ferrous ion.

The yield of Fe^{3+} is:

$$G(\text{Fe}^{3+}) = 2G(H_2O_2) + G(\text{OH}^{\bullet}) + 3G(H^{\bullet}) = 15.6(\text{ions/100eV})$$ (5.13)

$$G(\text{Fe}^{3+}) = 15.6/9.65x10^6 = 1.62x10^{-6} \text{ mol.J}^{-1}$$

The number of formed ions per cm3 in the irradiation conditions is:

$$n = G \times (\Delta E/100) \text{ with } G[=] \text{ ion/100 eV and } E[=] \text{ eV/cm}^3$$
where the moles of the formed ions per litter (or kg) is:

\[C = G \times \Delta E \]

with \(G = \text{mol.J}^{-1} \) and \(E = \text{J.kg}^{-1} = \text{Gy} \)

Thus, we measure the formed Fe\(^{3+}\) concentration by absorption spectrophotometry. We measure the DO from the irradiated solutions at 304 nm (maximum Fe\(^{3+}\) absorption).

\[
DO = E \times l \times C
\]

(5.14)

where \(E = 2204 \text{ L.mol}^{-1}.\text{cm}^{-1}, l = 1 \text{ cm} \) and \(C = \text{molar concentration [mol.L}^{-1}\)\]

The radiation dose can be found by:

\[
D = \Delta E = \frac{DO}{E \times l \times G} = \text{[Gy]}
\]

(5.15)

And the dose rate \((d = \frac{D}{t})\) as follow

\[
d = \frac{DO}{E \times l \times G \times t} = \text{[Gy.h]}
\]

(5.16)

\[
d = \frac{1}{2204 \times 1 \times 1.62E^{-6}} \times \frac{DO}{t}
\]

(5.17)

\[
d = 280 \times \frac{DO}{t} = \text{[Gy.h]}
\]

(5.18)
<table>
<thead>
<tr>
<th>Concentration</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3} M</td>
<td>Fe$^{2+}$, Mohr salt: Fe(NH$_4$)$_2$(SO$_4$)$_2$(H$_2$O)$_6$</td>
</tr>
<tr>
<td>0.4 M</td>
<td>H$_2$SO$_4$</td>
</tr>
<tr>
<td>10^{-3} M</td>
<td>NaCl</td>
</tr>
</tbody>
</table>
Bibliography

David Behar and Joseph Rabani. Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd(0), Pt(0), or Au(0) coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study. *The journal of physical chemistry. B*, 110(17):8750–5, 2006.

E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, a. Etcheberry, C. Colbeau-Justin, and H. Remita. Modification of titanium(IV) dioxide with small silver

Ana L Luna, Miguel A Valenzuela, Christophe Colbeau-Justin, Patricia Vázquez, Salvador Alfaro, Salvador Tirado, Julia L Rodríguez, and Juan R Avenda. Applied Catalysis A : General under UV / Vis LEDs irradiation. pages 16–20, 2015.

Bunsho Ohtani, Kunlei Wang, and Ewa Kowalska. Photocatalytic activities of anatase and rutile isolated from P25 with platinum deposits for methanol dehydrogenation. In *Abstract Proceedings of First International Symposium on*

P. Salvador. On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: A revision

Titre: Synthèse et caractérisation de nouveaux photocatalyseurs modifiés pour des applications environnementales et énergétiques

Mots clés : Photocatalyse, Action spectra, TRMC, Radiolyse, Ni-Au/TiO₂

Résumé : Notre travail présente la modification du TiO₂ commercial P25 par des NPs mono- et bimétalliques (Ni, Au, Ni-Au, Pd et Ni-Pd), leur caractérisation et leur évaluation photocatalytique. Cette étude complète relie les trois étapes principales du procédé photocatalytique: (1) l'absorption de la lumière (génération des paires électron-trou), (2) la dynamique des porteurs de charge et (3) l'efficacité photocatalytique. Les NPs métalliques ont été synthétisées directement sur la surface de TiO₂ par rayonnement gamma. La caractérisation exhaustive a été faite par Microscopie Electronique à Transmission Haute Résolution (MET-HR), Diffraction des Rayons X (DRX), Analyse Dispersive en Energie de RX (EDS), Spectrométrie Photoélectronique X (XPS), Spectroscopie UV-vis en Réflexion Diffuse (DRS) et Time Resolved Microwave Conductivity (TRMC). Les échantillons ont été testés, sous illumination UV-Visible polychromatique et monochromatique (Action Spectra), par les réactions photocatalytiques suivantes: (1) dégradation du phénol et du 2-propanol, (2) production d'hydrogène et (3) oxydation et réduction du Pb²⁺. Les résultats montrent que les systèmes bimétalliques sont plus actifs que leurs homologues monométalliques respectifs. Nos résultats nous conduisent à affirmer que le rôle principal des NPs métalliques est, dans le cas de la production d'hydrogène photocatalytique, sur l'aspect catalytique. Cette étude ne rejette pas les arguments classiques des NPs métalliques agissant comme piègeurs d'électrons, mais montre que ce n’est pas leur rôle principal. Les échantillons Au/TiO₂ et Ni-Au/TiO₂ ont montré une activité photocatalytique dans la dégradation des composés organiques sous illumination visible. Ceci a été expliqué par l'effet plasmonique des NPs d’Au.

Title: Synthesis and characterization of new modified photocatalysts for environmental and energy applications.

Keywords : Photocatalysis, Action spectra, TRMC, Radiolysis, Ni-Au/TiO₂

Abstract : Our study presents the modification of TiO₂ P25 with mono- and bimetallic NPs (Ni, Au, Ni-Au, Pd and Ni-Pd), their characterization and their photocatalytic evaluation. Our integral study links the three main steps of the photocatalytic process: (1) absorption of light (generation of electron-hole pair), (2) dynamics of charge-carriers and (3) efficiency of the photocatalytic activity. The metal NPs were synthetized, directly on the surface of TiO₂ by gamma radiation. The exhaustive characterization was done through High Resolution Transmission Microscopy (HRTEM), X-ray diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), and UV–vis Diffuse Reflectance Spectroscopy (DRS) and Time Resolved Microwave Conductivity (TRMC). The samples were tested using UV and visible polychromatic and monochromatic (action spectra) light in the following photocatalytic reactions: (1) phenol and 2-propanol degradation, (2) hydrogen production and (3) Pb²⁺ oxidation and reduction. The results show that bimetallic systems are more active that their respective counterparts. Our results lead us to argue that the main role of the metal NPs is, in photocatalytic hydrogen generation, acting as catalytic site. This study does not reject the typical arguments that the metal NPs act as a scavenger of electrons, however our integral study shows that it is not the main role of the metal NPs. The Au/TiO₂ and Ni-Au/TiO₂ samples showed photoactivity in the organic compound degradation under visible light. It was attributed to the plasmon effect, which is characteristic of gold NPs.