L. C. Clark and C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY, Annals of the New York Academy of Sciences, vol.12, issue.2, pp.29-45, 1962.
DOI : 10.1111/j.1749-6632.1962.tb13623.x

S. J. Updike and G. P. Hicks, The Enzyme Electrode, Nature, vol.18, issue.5092, pp.986-988, 1967.
DOI : 10.1021/ac60238a014

G. G. Guilbault and J. G. Montalvo, A urea-specific enzyme electrode, J. Am. Chem. Soc, pp.91-2164, 1969.

Y. J. Heo and S. Takeuchi, Towards Smart Tattoos: Implantable Biosensors for Continuous Glucose Monitoring, Advanced Healthcare Materials, vol.82, issue.1, pp.43-56, 2013.
DOI : 10.1002/adhm.201200167

E. B. Bahad?r and M. K. Sezgintürk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses, Analytical Biochemistry, vol.478, pp.478-107, 2015.
DOI : 10.1016/j.ab.2015.03.011

E. Burcu-bahad?r and M. Sezgintürk, Applications of electrochemical immunosensors for early clinical diagnostics, Talanta, vol.132, pp.162-174, 2015.
DOI : 10.1016/j.talanta.2014.08.063

M. L. Sin, K. E. Mach, P. K. Wong, and J. C. Liao, Advances and challenges in biosensorbased diagnosis of infectious diseases, Expert Rev. Mol. Diagn, pp.14-225, 2014.

S. Rodriguez-mozaz, M. J. De-alda, and D. Barceló, Biosensors as useful tools for environmental analysis and monitoring, Analytical and Bioanalytical Chemistry, vol.20, issue.4, pp.1025-1041, 2006.
DOI : 10.1007/s00216-006-0574-3

L. Barthelmebs, C. Calas-blanchard, G. Istamboulie, J. Marty, and T. Noguer, Biosensors as Analytical Tools in Food Fermentation Industry, Adv. Exp. Med. Biol, pp.698-293, 2010.
DOI : 10.1007/978-1-4419-7347-4_22

N. A. Mungroo and S. Neethirajan, Biosensors for the Detection of Antibiotics in Poultry Industry???A Review, Biosensors, vol.4, issue.4, pp.472-493, 2014.
DOI : 10.3390/bios4040472

A. M. Skelley, J. R. Scherer, A. D. Aubrey, W. H. Grover, R. H. Ivester et al., Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars, Proceedings of the National Academy of Sciences, vol.102, issue.4, pp.1041-1046, 2005.
DOI : 10.1073/pnas.0406798102

T. B. Tims and D. V. Lim, Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor, Journal of Microbiological Methods, vol.59, issue.1, pp.59-127, 2004.
DOI : 10.1016/j.mimet.2004.02.016

J. P. Chambers, B. P. Arulanandam, L. L. Matta, A. Weis, and J. J. Valdes, Biosensor recognition elements, Curr. Issues Mol. Biol, vol.10, pp.1-12, 2008.

A. Killard, Antibodies: production, functions and applications in biosensors, TrAC Trends in Analytical Chemistry, vol.14, issue.6, pp.257-266, 1995.
DOI : 10.1016/0165-9936(95)91618-3

J. Bockaert and J. P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success, The EMBO Journal, vol.18, issue.7, pp.1723-1729, 1999.
DOI : 10.1093/emboj/18.7.1723

S. Rodriguez-mozaz, M. Marco, M. J. Lopez-de-alda, and D. Barceló, Biosensors for environmental monitoring of endocrine disruptors: a review article, Anal. Bioanal. Chem, pp.378-588, 2004.

K. Miyano, Y. Sudo, A. Yokoyama, K. Hisaoka-nakashima, N. Morioka et al., History of the G Protein???Coupled Receptor (GPCR) Assays From Traditional to a State-of-the-Art Biosensor Assay, Journal of Pharmacological Sciences, vol.126, issue.4, pp.302-309, 2014.
DOI : 10.1254/jphs.14R13CP

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross et al., Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life, Sensors, vol.9, issue.4, pp.3122-3148, 2009.
DOI : 10.3390/s90403122

A. A. Ensafi, M. Taei, H. R. Rahmani, and T. Khayamian, Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode, Electrochimica Acta, vol.56, issue.24, pp.8176-8183, 2011.
DOI : 10.1016/j.electacta.2011.05.124

M. Tichoniuk, D. Gwiazdowska, M. Ligaj, and M. Filipiak, Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor, Biosensors and Bioelectronics, vol.26, issue.4, pp.1618-1623, 2010.
DOI : 10.1016/j.bios.2010.08.030

M. D. Carlo, M. D. Marcello, M. Perugini, V. Ponzielli, M. Sergi et al., Electrochemical DNA biosensor for polycyclic aromatic hydrocarbon detection, Microchimica Acta, vol.94, issue.4, pp.163-163, 2008.
DOI : 10.1007/s00604-008-0009-2

A. M. Nowicka, A. Kowalczyk, Z. Stojek, and M. Hepel, Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants, Biophysical Chemistry, vol.146, issue.1, pp.146-188, 2010.
DOI : 10.1016/j.bpc.2009.10.003

A. Mulchandani, Microbial Biosensors for Organophosphate Pesticides, Applied Biochemistry and Biotechnology, vol.7, issue.120, pp.687-699, 2011.
DOI : 10.1007/s12010-011-9288-x

L. Su, W. Jia, C. Hou, and Y. Lei, Microbial biosensors: A review, Biosensors and Bioelectronics, vol.26, issue.5, pp.1788-1799, 2011.
DOI : 10.1016/j.bios.2010.09.005

W. Zhou, P. J. Huang, J. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, The Analyst, pp.2627-2640, 2014.

A. Rhouati, C. Yang, A. Hayat, and J. Marty, Aptamers: A Promosing Tool for Ochratoxin A Detection in Food Analysis, Toxins, vol.5, issue.11, 1988.
DOI : 10.3390/toxins5111988

N. Amaya-gonzález, A. J. De-los-santos-alvarez, M. J. Miranda-ordieres, and . Lobo-castañón, Aptamer-Based Analysis: A Promising Alternative for Food Safety Control, Sensors, vol.13, issue.12, pp.13-16292, 2013.
DOI : 10.3390/s131216292

C. R. Tarley and L. T. Kubota, Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry, Analytica Chimica Acta, vol.548, issue.1-2, pp.548-559, 2005.
DOI : 10.1016/j.aca.2005.05.055

X. Wang and O. S. Wolfbeis, Fiber-Optic Chemical Sensors and Biosensors (2008???2012), Analytical Chemistry, vol.85, issue.2, pp.487-508, 2008.
DOI : 10.1021/ac303159b

H. H. Nguyen, J. Park, S. Kang, and M. Kim, Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications, Sensors, vol.15, issue.5, pp.15-10481, 2015.
DOI : 10.3390/s150510481

X. Guo, Surface plasmon resonance based biosensor technique: A review, Journal of Biophotonics, vol.289, issue.7, pp.483-501, 2012.
DOI : 10.1002/jbio.201200015

B. Becker and M. A. Cooper, A survey of the 2006-2009 quartz crystal microbalance biosensor literature, Journal of Molecular Recognition, vol.80, issue.13, pp.754-787, 2011.
DOI : 10.1002/jmr.1117

K. Mosbach, Thermal biosensors, Biosensors and Bioelectronics, vol.6, issue.3, pp.179-182, 1991.
DOI : 10.1016/0956-5663(91)80002-F

N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, Electrochemical biosensors, Electrochemical biosensors, pp.1747-1763, 2010.
DOI : 10.1039/b714449k

J. C. Vidal, L. Bonel, A. Ezquerra, S. Hernández, J. R. Bertolín et al., Electrochemical affinity biosensors for detection of mycotoxins: A review, Biosensors and Bioelectronics, vol.49, pp.49-146, 2013.
DOI : 10.1016/j.bios.2013.05.008

S. V. Dziadevych and O. P. , Soldatkin, [A conductometric method of measuring enzymatic catalysis], Ukr, Biokhimicheski? Zhurnal, vol.66, pp.30-42, 1978.

C. Chouteau, S. Dzyadevych, C. Durrieu, and J. Chovelon, A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples, Biosensors and Bioelectronics, vol.21, issue.2, pp.273-281, 2005.
DOI : 10.1016/j.bios.2004.09.032

N. Tekaya, O. Saiapina, H. B. Ouada, F. Lagarde, H. B. Ouada et al., Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis, Environmental Pollution, vol.178, pp.178-182, 1987.
DOI : 10.1016/j.envpol.2013.03.013

URL : https://hal.archives-ouvertes.fr/hal-00851121

M. A. Phuong-dinh and . Tam, Facile preparation of a DNA sensor for rapid herpes virus detection, Mater. Sci. Eng. C, vol.30, pp.1145-1150, 2010.

M. Hnaien, W. M. Hassen, A. Abdelghani, C. Fournier-wirth, J. Coste et al., A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection, Electrochemistry Communications, vol.10, issue.8, pp.10-1152, 2008.
DOI : 10.1016/j.elecom.2008.04.009

Z. Q. and Y. Liu, Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode, Biochemical Engineering Journal, vol.32, issue.3, pp.211-217, 2006.
DOI : 10.1016/j.bej.2006.10.003

C. O. Parker, Y. H. Lanyon, M. Manning, D. W. Arrigan, and I. E. , Electrochemical immunochip sensor for aflatoxin M1 detection, Anal. Chem, pp.81-5291, 2009.

A. Radi, X. Muñoz-berbel, V. Lates, and J. Marty, Label-free impedimetric immunosensor for sensitive detection of ochratoxin A, Biosensors and Bioelectronics, vol.24, issue.7, pp.24-1888, 2009.
DOI : 10.1016/j.bios.2008.09.021

C. Wu, H. Sun, Y. Li, X. Liu, X. Du et al., Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection, Biosensors and Bioelectronics, vol.66, pp.66-350, 2015.
DOI : 10.1016/j.bios.2014.11.037

A. Hierlemann, O. Brand, C. Hagleitner, and H. Baltes, Microfabrication techniques for chemical/biosensors, Proc. IEEE. 91, pp.839-863, 2003.
DOI : 10.1109/JPROC.2003.813583

S. Zhang, G. Wright, and Y. Yang, Materials and techniques for electrochemical biosensor design and construction, Biosensors and Bioelectronics, vol.15, issue.5-6, pp.273-282, 2000.
DOI : 10.1016/S0956-5663(00)00076-2

P. Van-gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. Op-de-beeck et al., Nanoscaled interdigitated electrode arrays for biochemical sensors, Sens. Actuators B Chem, pp.49-73, 1998.

S. Datta, L. R. Christena, and Y. R. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech, vol.92, issue.103, pp.1-9, 2013.
DOI : 10.1007/s13205-012-0071-7

A. Sassolas, L. J. Blum, and B. D. Leca-bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances, vol.30, issue.3, pp.489-511, 2012.
DOI : 10.1016/j.biotechadv.2011.09.003

URL : https://hal.archives-ouvertes.fr/hal-00631944

I. Migneault, C. Dartiguenave, M. J. Bertrand, and K. C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, BioTechniques, pp.37-790, 2004.

V. I. David and R. Walt, The Chemistry of enzyme and protein immobilization with glutaraldehyde, TrAC Trends Anal. Chem, vol.13, pp.425-430, 1994.

M. Radulescu, B. Bucur, M. Bucur, and G. L. Radu, Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis, Sensors, vol.14, issue.1, pp.14-1028, 2014.
DOI : 10.3390/s140101028

M. Sheliakina, V. Arkhypova, O. Soldatkin, O. Saiapina, B. Akata et al., Urease-based ISFET biosensor for arginine determination, Talanta, vol.121, pp.121-139, 2014.
DOI : 10.1016/j.talanta.2013.12.042

M. Ates, A review study of (bio)sensor systems based on conducting polymers, Materials Science and Engineering: C, vol.33, issue.4, pp.1853-1859, 2013.
DOI : 10.1016/j.msec.2013.01.035

D. Bélanger, J. Nadreau, and G. Fortier, Electrochemistry of the polypyrrole glucose oxidase electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.274, issue.1-2, pp.143-155, 1989.
DOI : 10.1016/0022-0728(89)87036-6

M. Hasanzadeh, N. Shadjou, M. De, and . Guardia, Electrochemical biosensing using hydrogel nanoparticles, Electrochemical biosensing using hydrogel nanoparticles, pp.11-19, 2014.
DOI : 10.1016/j.trac.2014.06.011

M. Yuqing, C. Jianrong, and W. Xiaohua, Using electropolymerized non-conducting polymers to develop enzyme amperometric biosensors, Trends in Biotechnology, vol.22, issue.5, pp.227-231, 2004.
DOI : 10.1016/j.tibtech.2004.03.004

C. Malitesta, F. Palmisano, L. Torsi, and P. G. Zambonin, Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film, Analytical Chemistry, vol.62, issue.24, pp.62-2735, 1990.
DOI : 10.1021/ac00223a016

Z. Zhang, H. Liu, and J. Deng, A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerized o-Aminophenol Film on Platinized Glassy Carbon Electrode, Anal. Chem, pp.68-1632, 1996.

C. Knierim, M. Enzeroth, P. Kaiser, C. Dams, D. Nette et al., Living Composites of Bacteria and Polymers as Biomimetic Films for Metal Sequestration and Bioremediation, Macromolecular Bioscience, vol.66, issue.8, 2015.
DOI : 10.1002/mabi.201400538

X. Liu, Y. Deng, X. Jin, L. Chen, J. Jiang et al., Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization, Analytical Biochemistry, vol.389, issue.1, pp.389-63, 2009.
DOI : 10.1016/j.ab.2009.03.019

R. K. Mishra, R. B. Dominguez, S. Bhand, R. Muñoz, and J. Marty, A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk, Biosensors and Bioelectronics, vol.32, issue.1, pp.32-56, 2012.
DOI : 10.1016/j.bios.2011.11.028

A. L. Simonian, E. I. Rainina, V. I. Lozinsky, I. E. Badalian, G. E. Khachatrian et al., A biosensor for L-proline determination by use of immobilized microbial cells, Applied Biochemistry and Biotechnology, vol.11, issue.3, pp.36-199, 1992.
DOI : 10.1007/BF02921779

H. Kobayashi and Y. Ikada, Covalent immobilization of proteins on to the surface of poly(vinyl alcohol) hydrogel, Biomaterials, vol.12, issue.8, pp.747-751, 1991.
DOI : 10.1016/0142-9612(91)90024-5

B. Xue and Y. Sun, Protein adsorption equilibria and kinetics to a poly(vinyl alcohol)-based magnetic affinity support, Journal of Chromatography A, vol.921, issue.2, pp.109-119, 2001.
DOI : 10.1016/S0021-9673(01)00860-3

Y. N. Martínez, I. Cavello, S. Cavalitto, A. Illanes, and G. R. Castro, Studies on PVA pectin cryogels containing crosslinked enzyme aggregates of keratinase, Colloids and Surfaces B: Biointerfaces, vol.117, pp.284-289, 2014.
DOI : 10.1016/j.colsurfb.2014.02.049

U. Lad, G. M. Kale, and R. Bryaskova, Glucose Oxidase Encapsulated Polyvinyl Alcohol???Silica Hybrid Films for an Electrochemical Glucose Sensing Electrode, Analytical Chemistry, vol.85, issue.13, pp.6349-6355, 2013.
DOI : 10.1021/ac400719h

Y. Liu, J. Qian, X. Fu, H. Liu, J. Deng et al., Immobilization of horseradish peroxidase onto a composite membrane of regenerated silk fibroin and polyvinyl alcohol and its application to a new methylene blue-mediating sensor for hydrogen peroxide, Enzyme Microb. Technol, vol.21, pp.154-159, 1997.

H. Jan, M. Wei, C. Peng, S. Lin, P. Lai et al., The use of polyethylenimine???DNA to topically deliver hTERT to promote hair growth, Gene Therapy, vol.105, issue.1, pp.86-93, 2012.
DOI : 10.1016/j.semcdb.2007.01.005

G. Lin, W. Zhu, L. Yang, J. Wu, B. Lin et al., Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells, Biomaterials, vol.35, issue.35, pp.35-9495, 2014.
DOI : 10.1016/j.biomaterials.2014.07.049

M. Ghoul, M. Bacquet, and M. Morcellet, Uptake of heavy metals from synthetic aqueous solutions using modified PEI???silica gels, Water Research, vol.37, issue.4, pp.729-734, 2003.
DOI : 10.1016/S0043-1354(02)00410-4

W. Huang, M. Lv, and Z. Gao, Polyethylenimine grafted with diblock copolymers of polyethylene glycol and polycaprolactone as siRNA delivery vector, Journal of Controlled Release, vol.152, issue.1, pp.143-145, 2011.
DOI : 10.1016/j.jconrel.2011.08.051

Y. Chu, C. Hsu, P. K. Soma, and Y. M. Lo, Immobilization of bioluminescent Escherichia coli cells using natural and artificial fibers treated with polyethyleneimine, Bioresource Technology, vol.100, issue.13, pp.3167-3174, 2009.
DOI : 10.1016/j.biortech.2009.01.072

I. S. Tan and K. T. Lee, Immobilization of ??-glucosidase from Aspergillus niger on ??-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue, Bioresource Technology, vol.184, pp.386-394, 2015.
DOI : 10.1016/j.biortech.2014.10.146

H. Zhu, M. Du, M. Zhang, P. Wang, S. Bao et al., Facile fabrication of AgNPs/(PVA/PEI) nanofibers: High electrochemical efficiency and durability for biosensors, Biosensors and Bioelectronics, vol.49, pp.49-210, 2013.
DOI : 10.1016/j.bios.2013.04.016

S. A. Bhakta, E. Evans, T. E. Benavidez, and C. D. Garcia, Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review, Analytica Chimica Acta, vol.872, pp.7-25, 2015.
DOI : 10.1016/j.aca.2014.10.031

M. Holzinger, A. L. Goff, and S. Cosnier, Nanomaterials for biosensing applications: a review, Frontiers in Chemistry, vol.81, issue.63, 2014.
DOI : 10.1021/ac900136z

L. Nie, F. Liu, P. Ma, and X. Xiao, Applications of Gold Nanoparticles in Optical Biosensors, Journal of Biomedical Nanotechnology, vol.10, issue.10, pp.2700-2721, 2014.
DOI : 10.1166/jbn.2014.1987

C. Yang, M. E. Denno, P. Pyakurel, and B. J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review, Analytica Chimica Acta, vol.887, pp.17-37, 2015.
DOI : 10.1016/j.aca.2015.05.049

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.
DOI : 10.1039/df9511100055

F. F. Tao and Z. Ma, Water???gas shift on gold catalysts: catalyst systems and fundamental studies, Physical Chemistry Chemical Physics, vol.44, issue.208, pp.15260-15270, 2013.
DOI : 10.1039/c3cp51326b

L. E. Cole, R. D. Ross, J. M. Tilley, T. Vargo-gogola, and R. K. Roeder, Gold nanoparticles as contrast agents in x-ray imaging and computed tomography, Nanomed, pp.10-321, 2015.

H. Daraee, A. Eatemadi, E. Abbasi, S. Fekri-aval, M. Kouhi et al., Application of gold nanoparticles in biomedical and drug delivery, Artificial Cells, Nanomedicine, and Biotechnology, vol.331, issue.2, pp.1-13, 2014.
DOI : 10.1063/1.1632546

E. Hutter and D. Maysinger, Gold-nanoparticle-based biosensors for detection of enzyme activity, Trends in Pharmacological Sciences, vol.34, issue.9, pp.497-507, 2013.
DOI : 10.1016/j.tips.2013.07.002

V. K. Upadhyayula, Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review, Analytica Chimica Acta, vol.715, pp.1-18, 2012.
DOI : 10.1016/j.aca.2011.12.008

W. Putzbach and N. J. Ronkainen, Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review, Sensors, vol.13, issue.4, pp.4811-4840, 2013.
DOI : 10.3390/s130404811

S. G. Cabrera, Magnetite nanoparticles: Electrochemical synthesis and characterization, Electrochimica Acta, vol.53, issue.8, pp.3436-3441, 2008.
DOI : 10.1016/j.electacta.2007.12.006

R. Kaur, A. Hasan, N. Iqbal, S. Alam, M. K. Saini et al., Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review, Journal of Separation Science, vol.95, issue.916, pp.1805-1825, 2014.
DOI : 10.1002/jssc.201400256

R. Ghosh-chaudhuri and S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chemical Reviews, vol.112, issue.4, pp.2373-2433, 2012.
DOI : 10.1021/cr100449n

J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang et al., Application of Iron Magnetic Nanoparticles in Protein Immobilization, Molecules, vol.19, issue.8, pp.11465-11486, 2014.
DOI : 10.3390/molecules190811465

J. Liu, Z. Zhao, P. Shao, and F. Cui, Activation of peroxymonosulfate with magnetic Fe3O4???MnO2 core???shell nanocomposites for 4-chlorophenol degradation, Chemical Engineering Journal, vol.262, pp.262-854, 2015.
DOI : 10.1016/j.cej.2014.10.043

L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications, Chemical Reviews, vol.112, issue.11, pp.5818-5878, 2012.
DOI : 10.1021/cr300068p

A. Singh, S. Poshtiban, and S. Evoy, Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection, Sensors, vol.13, issue.2, pp.1763-1786, 2013.
DOI : 10.3390/s130201763

M. H. Mashhadizadeh, M. Amoli-diva, M. R. Shapouri, and H. Afruzi, Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles, Food Chemistry, vol.151, pp.300-305, 2014.
DOI : 10.1016/j.foodchem.2013.11.082

C. Garcia-galan, Á. Berenguer-murcia, R. Fernandez-lafuente, and R. C. Rodrigues, Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance, Advanced Synthesis & Catalysis, vol.349, issue.20, pp.353-2885, 2011.
DOI : 10.1002/adsc.201100534

I. Giouroudi and F. Keplinger, Microfluidic Biosensing Systems Using Magnetic Nanoparticles, International Journal of Molecular Sciences, vol.14, issue.9, pp.18535-18556, 2013.
DOI : 10.3390/ijms140918535

J. B. Haun, T. Yoon, H. Lee, and R. Weissleder, Magnetic nanoparticle biosensors, Magnetic nanoparticle biosensors, pp.291-304, 2010.
DOI : 10.1002/wnan.84

A. Van-reenen, A. M. De-jong, J. M. Den-toonder, and M. W. Prins, Integrated lab-onchip biosensing systems based on magnetic particle actuation--a comprehensive review, Lab. Chip, pp.14-1966, 2014.

S. Kruss, A. J. Hilmer, J. Zhang, N. F. Reuel, B. Mu et al., Carbon nanotubes as optical biomedical sensors, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.65-1933, 2013.
DOI : 10.1016/j.addr.2013.07.015

T. Sarkar, Y. Gao, and A. Mulchandani, Carbon Nanotubes-Based Label-Free Affinity Sensors for Environmental Monitoring, Applied Biochemistry and Biotechnology, vol.19, issue.5, pp.1011-1025, 2013.
DOI : 10.1007/s12010-013-0233-z

A. G. Marroquín-cardona, N. M. Johnson, T. D. Phillips, and A. W. Hayes, Mycotoxins in a changing global environment ??? A review, Food and Chemical Toxicology, vol.69, pp.69-220, 2014.
DOI : 10.1016/j.fct.2014.04.025

F. Malir, V. Ostry, A. Pfohl-leszkowicz, J. Toman, I. Bazin et al., Transfer of Ochratoxin A into Tea and Coffee Beverages, Toxins, vol.6, issue.12, pp.3438-3453, 2014.
DOI : 10.3390/toxins6123438

A. Pfohl-leszkowicz and R. A. Manderville, Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans, Molecular Nutrition & Food Research, vol.30, issue.141, pp.61-99, 2007.
DOI : 10.1002/mnfr.200600137

K. J. Van-der-merwe, P. S. Steyn, L. Fourie, D. B. Scott, and J. J. Theron, Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh., Nature, vol.1, issue.4976, pp.205-1112, 1965.
DOI : 10.1021/ja00894a050

R. R. Marquardt and A. A. Frohlich, A review of recent advances in understanding ochratoxicosis., Journal of Animal Science, vol.70, issue.12, pp.3968-3988, 1992.
DOI : 10.2527/1992.70123968x

D. Höhler, Ochratoxin A in food and feed: occurrence, legislation and mode of action, Z. Für Ernährungswissenschaft, vol.37, pp.2-12, 1998.

R. Mateo, A. Medina, E. M. Mateo, F. Mateo, and M. Jiménez, An overview of ochratoxin A in beer and wine, International Journal of Food Microbiology, vol.119, issue.1-2, pp.79-83, 2007.
DOI : 10.1016/j.ijfoodmicro.2007.07.029

A. B. Trivedi, E. Doi, and N. Kitabatake, Detoxification of Ochratoxin A on Heating under Acidic and Alkaline Conditions, Bioscience, Biotechnology, and Biochemistry, vol.56, issue.5, pp.741-745, 1992.
DOI : 10.1271/bbb.56.741

X. Chang, Z. Wu, S. Wu, Y. Dai, and C. Sun, Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1, Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess, pp.1-8, 2014.

M. Castegnaro, D. Canadas, T. Vrabcheva, T. Petkova-bocharova, I. N. Chernozemsky et al., Balkan endemic nephropathy: Role of ochratoxins A through biomarkers, Molecular Nutrition & Food Research, vol.72, issue.1, pp.519-529, 2006.
DOI : 10.1002/mnfr.200500182

M. Peraica, A. Domijan, M. Mileti?-medved, and R. Fuchs, Die Rolle von Mykotoxinen bei der endemischen Nephropathie, Wiener klinische Wochenschrift, vol.104, issue.Suppl 1, pp.402-407, 2008.
DOI : 10.1007/s00508-008-0981-x

T. Petkova-bocharova and M. Castegnaro, Ochratoxin A in human blood in relation to Balkan endemic nephropathy and urinary tract tumours in Bulgaria, IARC Sci. Publ, pp.135-137, 1991.

W. Hassen, S. Abid-essafi, A. Achour, N. Guezzah, A. Zakhama et al., Karyomegaly of tubular kidney cells in human chronic interstitial nephropathy in Tunisia: respective role of Ochratoxin a and possible genetic predisposition, Human & Experimental Toxicology, vol.37, issue.7, pp.339-346, 2004.
DOI : 10.1191/0960327104ht458oa

G. Schwerdt, R. Freudinger, S. Silbernagl, and M. Gekle, Ochratoxin A-binding proteins in rat organs and plasma and in different cell lines of the kidney, Toxicology, vol.135, issue.1, pp.135-136, 1999.
DOI : 10.1016/S0300-483X(99)00028-1

C. A. González-arias, A. B. Benitez-trinidad, M. Sordo, L. Robledo-marenco, I. M. Medina-díaz et al., Low doses of ochratoxin A induce micronucleus formation and delay DNA repair in human lymphocytes, Food and Chemical Toxicology, vol.74, pp.74-249, 2014.
DOI : 10.1016/j.fct.2014.10.006

E. E. Creppy, F. C. Størmer, R. Röschenthaler, and G. , Dirheimer, Effects of two metabolites of ochratoxin A, (4R)-4-hydroxyochratoxin A and ochratoxin alpha, on immune response in mice, Infect. Immun, pp.39-1015, 1983.

I. P. Hallén, A. Breitholtz-emanuelsson, K. Hult, M. Olsen, and A. Oskarsson, Placental and lactational transfer of ochratoxin A in rats, Natural Toxins, vol.6, issue.1, pp.43-49, 1998.
DOI : 10.1002/(SICI)1522-7189(199802)6:1<43::AID-NT12>3.0.CO;2-4

F. Minervini, A. Giannoccaro, M. Nicassio, G. Panzarini, and G. M. Lacalandra, First Evidence of Placental Transfer of Ochratoxin A in Horses, Toxins, vol.5, issue.1, pp.84-92, 2013.
DOI : 10.3390/toxins5010084

T. Petkova-bocharova, I. I. Stoichev, I. N. Chernozemsky, M. Castegnaro, and A. , Pfohl- Leszkowicz, Formation of DNA adducts in tissues of mouse progeny through transplacental contamination and/or lactation after administration of a single dose of ochratoxin A to the pregnant mother, Environ. Mol. Mutagen, pp.32-155, 1998.

G. Biasucci, G. Calabrese, R. Di-giuseppe, G. Carrara, F. Colombo et al., The presence of ochratoxin A in cord serum and in human milk and its correspondence with maternal dietary habits, European Journal of Nutrition, vol.162, issue.Suppl 1, pp.50-211, 2011.
DOI : 10.1007/s00394-010-0130-y

K. Doi and K. Uetsuka, Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways, International Journal of Molecular Sciences, vol.12, issue.12, pp.5213-5237, 2011.
DOI : 10.3390/ijms12085213

X. Zhang, C. Boesch-saadatmandi, Y. Lou, S. Wolffram, P. Huebbe et al., Ochratoxin A induces apoptosis in neuronal cells, Genes & Nutrition, vol.134, issue.Suppl, pp.41-48, 2009.
DOI : 10.1007/s12263-008-0109-y

K. Imaida, M. Hirose, T. Ogiso, Y. Kurata, and N. Ito, Quantitative analysis of initiating and promoting activities of five mycotoxins in liver carcinogenesis in rats, Cancer Letters, vol.16, issue.2, pp.137-143, 1982.
DOI : 10.1016/0304-3835(82)90054-4

H. Mori, K. Kawai, F. Ohbayashi, T. Kuniyasu, M. Yamazaki et al., Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes, Cancer Res, pp.44-2918, 1984.

A. Limonciel and P. Jennings, A Review of the Evidence that Ochratoxin A Is an Nrf2 Inhibitor: Implications for Nephrotoxicity and Renal Carcinogenicity, Toxins, vol.6, issue.1, pp.371-379, 2014.
DOI : 10.3390/toxins6010371

S. C. Duarte, A. Pena, and C. M. Lino, A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products, Food Microbiology, vol.27, issue.2, pp.187-198, 2010.
DOI : 10.1016/j.fm.2009.11.016

J. Gil-serna, B. Patiño, L. Cortes, M. T. Gonzalez-jaen, and C. Vazquez, Aspergillus steynii and Aspergillus westerdijkiae as potential risk of OTA contamination in food products in warm climates, Food Microbiology, vol.46, pp.168-175, 2015.
DOI : 10.1016/j.fm.2014.07.013

S. A. Tittlemier, E. Varga, P. M. Scott, and R. Krska, Sampling of cereals and cereal-based foods for the determination of ochratoxin A: an overview, Food Additives & Contaminants: Part A, vol.89, issue.6, pp.775-785, 2011.
DOI : 10.1007/978-90-481-9634-0

S. A. Zaied, Natural occurrence of ochratoxin A in Tunisian cereals, Food Control, pp.218-222, 2009.

M. B. Coronel, S. Marín, G. Cano-sancho, A. J. Ramos, and V. Sanchis, Exposure assessment to ochratoxin A in Catalonia (Spain) based on the consumption of cereals, nuts, coffee, wine, and beer, Food Additives & Contaminants: Part A, vol.2, issue.6, pp.979-993, 2012.
DOI : 10.1080/02652030600967230

W. S. Darwish, Y. Ikenaka, S. M. Nakayama, and M. Ishizuka, An Overview on Mycotoxin Contamination of Foods in Africa, Journal of Veterinary Medical Science, vol.76, issue.6, pp.76-789, 2014.
DOI : 10.1292/jvms.13-0563

J. Rubert, N. León, C. Sáez, C. P. Martins, M. Godula et al., Evaluation of mycotoxins and their metabolites in human breast milk using liquid chromatography coupled to high resolution mass spectrometry, Analytica Chimica Acta, vol.820, pp.39-46, 2014.
DOI : 10.1016/j.aca.2014.02.009

L. Reddy and K. Bhoola, Ochratoxins???Food Contaminants: Impact on Human Health, Toxins, vol.2, issue.4, pp.771-779, 2010.
DOI : 10.3390/toxins2040771

M. A. Baffi, S. Romo-sánchez, and J. , Fungi isolated from olive ecosystems and screening of their potential biotechnological use, New Biotechnology, vol.29, issue.3, pp.451-456, 2012.
DOI : 10.1016/j.nbt.2011.05.004

R. Ferracane, A. Tafuri, A. Logieco, F. Galvano, D. Balzano et al., Simultaneous determination of aflatoxin B1 and ochratoxin A and their natural occurrence in Mediterranean virgin olive oil, Food Addit. Contam, pp.24-173, 2007.

S. Roussos, N. Zaouia, G. Salih, A. Tantaoui-elaraki, K. Lamrani et al., Characterization of filamentous fungi isolated from Moroccan olive and olive cake: Toxinogenic potential ofAspergillusstrains, Molecular Nutrition & Food Research, vol.149, issue.6, pp.500-506, 2006.
DOI : 10.1002/mnfr.200600005

A. Papachristou and P. Markaki, Determination of ochratoxin A in virgin olive oils of Greek origin by immunoaffinity column clean-up and high-performance liquid chromatography, Food Additives and Contaminants, vol.13, issue.1, pp.85-92, 2004.
DOI : 10.1016/0378-4347(94)00569-Q

G. S. Shephard, Impact of mycotoxins on human health in developing countries, Food Additives & Contaminants: Part A, vol.44, issue.2, pp.146-151, 2008.
DOI : 10.1201/9781420028171.ch23

M. Denli and J. F. Perez, Ochratoxins in Feed, a Risk for Animal and Human Health: Control Strategies, Toxins, vol.2, issue.5, pp.1065-1077, 2010.
DOI : 10.3390/toxins2051065

N. Magan and D. , Conditions of formation of ochratoxin A in drying, transport and in different commodities, Food Additives & Contaminants, vol.13, issue.1, pp.10-16, 2005.
DOI : 10.1080/02652030500412154

L. Abrunhosa, R. R. Paterson, and A. Venâncio, Biodegradation of Ochratoxin A for Food and Feed Decontamination, Toxins, vol.2, issue.5, pp.1078-1099, 2010.
DOI : 10.3390/toxins2051078

A. Bruinink, T. Rasonyi, and C. Sidler, Differences in neurotoxic effects of ochratoxin A, ochracin and ochratoxin-??in vitro, Natural Toxins, vol.137, issue.5, pp.173-177, 1998.
DOI : 10.1002/(SICI)1522-7189(199809/10)6:5<173::AID-NT10>3.0.CO;2-4

A. Petchkongkaew, P. Taillandier, P. Gasaluck, and A. Lebrihi, and ochratoxin A detoxification, Journal of Applied Microbiology, vol.53, issue.5, pp.1495-1502, 2008.
DOI : 10.1111/j.1574-6968.1983.tb00433.x

S. Fuchs, G. Sontag, R. Stidl, V. Ehrlich, M. Kundi et al., Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria, Food and Chemical Toxicology, vol.46, issue.4, pp.46-1398, 2008.
DOI : 10.1016/j.fct.2007.10.008

G. Schatzmayr, D. Heidler, E. Fuchs, E. M. Binder, A. P. Loibner et al., Evidence of ochratoxin A-detoxification activity of rumen fluid, intestinal fluid and soil samples as well as isolation of relevant microorganisms from these environments, Mycotoxin Res, pp.183-187, 2002.

M. Mobashar, J. Hummel, R. Blank, and K. Südekum, Ochratoxin A in Ruminants???A Review on Its Degradation by Gut Microbes and Effects on Animals, Toxins, vol.2, issue.4, pp.809-839, 2010.
DOI : 10.3390/toxins204809

H. Bejaoui, F. Mathieu, P. Taillandier, and A. Lebrihi, Biodegradation of ochratoxin A by Aspergillus section Nigri species isolated from French grapes: a potential means of ochratoxin A decontamination in grape juices and musts, FEMS Microbiol. Lett, pp.255-203, 2006.

G. Engelhardt, Degradation of ochratoxin a and b by the white rot funguspleurotus ostreatus, Mycotoxin Res, pp.37-43, 2002.

J. Varga, Z. Péteri, K. Tábori, J. Téren, and C. Vágvölgyi, Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates, International Journal of Food Microbiology, vol.99, issue.3, pp.321-328, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.034

Z. Péteri, J. Téren, C. Vágvölgyi, and J. Varga, Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts, Food Microbiology, vol.24, issue.3, pp.205-210, 2007.
DOI : 10.1016/j.fm.2006.06.003

A. Angioni, P. Caboni, A. Garau, A. Farris, D. Orro et al., In vitro interaction between ochratoxin A and different strains of Saccharomyces cerevisiae and Kloeckera apiculata, J. Agric. Food Chem, pp.55-2043, 2007.

M. J. Pitout, The hydrolysis of ochratoxin a by some proteolytic enzymes, Biochemical Pharmacology, vol.18, issue.2, pp.485-491, 1969.
DOI : 10.1016/0006-2952(69)90224-X

M. A. Stander, P. S. Steyn, F. H. Van-der-westhuizen, and B. E. Payne, A Kinetic Study into the Hydrolysis of the Ochratoxins and Analogues by Carboxypeptidase A, Chemical Research in Toxicology, vol.14, issue.3, pp.14-302, 2001.
DOI : 10.1021/tx000221i

L. Abrunhosa, L. Santos, and A. Venâncio, Degradation of Ochratoxin A by Proteases and by a Crude Enzyme of Aspergillus niger, Food Biotechnology, vol.20, issue.3, pp.231-242, 2006.
DOI : 10.1080/08905430600904369

M. A. Stander, U. T. Bornscheuer, E. Henke, and P. S. Steyn, Screening of Commercial Hydrolases for the Degradation of Ochratoxin A, Journal of Agricultural and Food Chemistry, vol.48, issue.11, pp.48-5736, 2000.
DOI : 10.1021/jf000413j

D. Dobritzsch, H. Wang, G. Schneider, and S. Yu, Structural and functional characterization of ochratoxinase, a novel mycotoxin-degrading enzyme, Biochemical Journal, vol.157, issue.3, pp.462-441, 2014.
DOI : 10.1021/bi010682i

J. O. Pereira, Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis, Trends Food Sci, Amp Technol, vol.36, 2014.

N. Al-hadithi, P. Kössler, and P. Karlovsky, Determination of Ochratoxin A in Wheat and Maize by Solid Bar Microextraction with Liquid Chromatography and Fluorescence Detection, Toxins, vol.7, issue.8, pp.3000-3011, 2015.
DOI : 10.3390/toxins7083000

K. T. Nguyen and D. Ryu, Ultrasonic Extraction with Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry for the Determination of Ochratoxin A in Processed Cereal Products, Journal of AOAC International, vol.97, issue.5, pp.97-1384, 2014.
DOI : 10.5740/jaoacint.13-425

S. Noba, A. Uyama, and N. Mochizuki, Determination of Ochratoxin A in Ready-To-Drink Coffee by Immunoaffinity Cleanup and Liquid Chromatography???Tandem Mass Spectrometry, Journal of Agricultural and Food Chemistry, vol.57, issue.14, pp.6036-6040, 2009.
DOI : 10.1021/jf900546p

Y. Rodríguez-carrasco, G. Font, J. C. Moltó, and H. Berrada, Quantitative determination of trichothecenes in breadsticks by gas chromatography-triple quadrupole tandem mass spectrometry, Food Additives & Contaminants: Part A, vol.9, issue.8, pp.31-1422, 2014.
DOI : 10.1016/j.jchromb.2012.12.016

J. Olsson, T. Börjesson, T. Lundstedt, and J. Schnürer, Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose, International Journal of Food Microbiology, vol.72, issue.3, pp.72-203, 2002.
DOI : 10.1016/S0168-1605(01)00685-7

E. P. Meulenberg, Immunochemical Methods for Ochratoxin A Detection: A Review, Toxins, vol.4, issue.12, pp.244-266, 2012.
DOI : 10.3390/toxins4040244

J. J. Pestka, B. W. Steinert, and F. S. Chu, Enzyme-linked immunosorbent assay for detection of ochratoxin A, Appl. Environ. Microbiol, pp.41-1472, 1981.

X. Wang, T. Liu, N. Xu, Y. Zhang, and S. Wang, Enzyme-linked immunosorbent assay and colloidal gold immunoassay for ochratoxin A: investigation of analytical conditions and sample matrix on assay performance, Analytical and Bioanalytical Chemistry, vol.67, issue.9, pp.389-903, 2007.
DOI : 10.1007/s00216-007-1506-6

N. W. Turner, S. Subrahmanyam, and S. A. Piletsky, Analytical methods for determination of mycotoxins: A review, Analytica Chimica Acta, vol.632, issue.2, pp.168-180, 2009.
DOI : 10.1016/j.aca.2008.11.010

M. S. Klari?, Z. Cvetni?, S. Pepeljnjak, and I. Kosalec, Co-occurrence of Aflatoxins, Ochratoxin A, Fumonisins, and Zearalenone in Cereals and Feed, Determined by Competitive Direct Enzyme-Linked Immunosorbent Assay and Thin-Layer Chromatography, Archives of Industrial Hygiene and Toxicology, vol.60, issue.4, pp.427-434, 2009.
DOI : 10.2478/10004-1254-60-2009-1975

M. B. Moressi, A. Zon, H. Fernandez, G. Rivas, and V. Solis, Amperometric quantification of Alternaria mycotoxins with a mushroom tyrosinase modified carbon paste electrode, Electrochemistry Communications, vol.1, issue.10, pp.472-476, 1999.
DOI : 10.1016/S1388-2481(99)00096-X

M. A. Alonso-lomillo, O. Domínguez-renedo, L. D. Román, and M. J. , Arcos-Martínez, Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A, Anal. Chim. Acta, pp.688-737, 2011.

M. A. Alonso-lomillo, O. Domínguez-renedo, L. Ferreira-gonçalves, and M. J. , Arcos- Martínez, Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A, Biosens. Bioelectron, pp.25-1333, 2010.

V. G. Eijsink, O. R. Veltman, W. Aukema, G. Vriend, and G. Venema, Structural determinants of the stability of thermolysin-like proteinases, Nature Structural Biology, vol.55, issue.5, pp.374-379, 1995.
DOI : 10.1016/0263-7855(87)80010-3

U. Eichhorn, A. S. Bommarius, K. Drauz, and H. D. Jakubke, Synthesis of dipeptides by suspension-to-suspension conversion via thermolysin catalysis: from analytical to preparative scale, Journal of Peptide Science, vol.29, issue.4, pp.245-251, 1997.
DOI : 10.1002/(SICI)1099-1387(199707)3:4<245::AID-PSC98>3.0.CO;2-L

M. B. Rao, A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande, Molecular and biotechnological aspects of microbial proteases, Microbiol, Mol. Biol. Rev. MMBR, pp.62-597, 1998.

H. M. Holden and B. W. Matthews, The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis, J. Biol. Chem, vol.263, pp.3256-3260, 1988.

F. W. Dahlquist, J. W. Long, and W. L. Bigbee, Role of calcium in the thermal stability of thermolysin, Biochemistry, vol.15, issue.5, pp.15-1103, 1976.
DOI : 10.1021/bi00650a024

M. Tajima, I. Urabe, K. Yutani, and H. Okada, Role of Calcium Ions in the Thermostability of Thermolysin and Bacillus subtilis var. amylosacchariticus Neutral Protease, European Journal of Biochemistry, vol.51, issue.1, pp.243-247, 1976.
DOI : 10.1111/j.1432-1033.1976.tb10293.x

V. Pelmenschikov, M. R. Blomberg, and P. E. Siegbahn, A theoretical study of the mechanism for peptide hydrolysis by thermolysin, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.3, pp.284-298, 2002.
DOI : 10.1007/s007750100295

K. Morihara and H. Tsuzuki, Thermolysin: Kinetic Study with Oligopeptides, European Journal of Biochemistry, vol.239, issue.2, pp.374-380, 1970.
DOI : 10.1016/0006-291X(69)90739-6

H. Matsubara, Observations on the specificity of thermolysin with synthetic peptides, Biochemical and Biophysical Research Communications, vol.24, issue.3, pp.427-430, 1966.
DOI : 10.1016/0006-291X(66)90177-X

R. Hayashi, S. Aibara, and T. Hata, A unique carboxypeptidase activity of yeast proteinase C, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.212, issue.2, pp.359-361, 1970.
DOI : 10.1016/0005-2744(70)90218-4

D. H. Wolf and G. R. Fink, Proteinase C (carboxypeptidase Y) mutant of yeast, J. Bacteriol, vol.123, pp.1150-1156, 1975.

B. A. Hemmings, G. S. Zubenko, A. Hasilik, and E. W. Jones, Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae., Proceedings of the National Academy of Sciences, vol.78, issue.1, pp.78-435, 1981.
DOI : 10.1073/pnas.78.1.435

J. A. Endrizzi, K. Breddam, and S. J. Remington, 8-A structure of yeast serine carboxypeptidase, Biochemistry (Mosc.), vol.2, issue.33, pp.11106-11120, 1994.

R. B. Trimble and F. Maley, Subunit structure of external invertase from Saccharomyces cerevisiae, J. Biol. Chem, vol.252, pp.4409-4412, 1977.

C. Hashimoto, R. E. Cohen, W. J. Zhang, and C. E. Ballou, Carbohydrate chains on yeast carboxypeptidase Y are phosphorylated., Proceedings of the National Academy of Sciences, vol.78, issue.4, pp.78-2244, 1981.
DOI : 10.1073/pnas.78.4.2244

A. Hamberg, M. Kempka, J. Sjödahl, J. Roeraade, and K. Hult, C-terminal ladder sequencing of peptides using an alternative nucleophile in carboxypeptidase Y digests, Analytical Biochemistry, vol.357, issue.2, pp.357-167, 2006.
DOI : 10.1016/j.ab.2006.07.025

G. Jung, H. Ueno, and R. Hayashi, Carboxypeptidase Y: Structural Basis for Protein Sorting and Catalytic Triad, Journal of Biochemistry, vol.126, issue.1, pp.126-127, 1999.
DOI : 10.1093/oxfordjournals.jbchem.a022408

Y. Bai and R. Hayashi, Properties of the single sulfhydryl group of carboxypeptidase Y. Effects of alkyl and aromatic mercurials on activities toward various synthetic substrates, J. Biol. Chem, vol.254, pp.8473-8479, 1979.

H. R. Stennicke, U. H. Mortensen, and K. Breddam, Studies on the Hydrolytic Properties of (Serine) Carboxypeptidase Y, Biochemistry, vol.35, issue.22, pp.35-7131, 1996.
DOI : 10.1021/bi952758e

R. Hayashi, Y. Bai, and T. Hata, Kinetic Studies of Carboxypeptidase Y I. Kinetic Parameters for the Hydrolysis of Synthetic Substrates, J. Biochem, pp.77-69, 1975.

X. Fang, H. Ma, S. Xiao, M. Shen, R. Guo et al., Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications, Journal of Materials Chemistry, vol.1, issue.12, pp.4493-4501, 2011.
DOI : 10.1039/c0jm03987j

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.
DOI : 10.1039/df9511100055

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.241-261, 1973.
DOI : 10.1038/physci241020a0

E. Katz and I. Willner, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA- Sensors, and Enzyme Biosensors Electroanalysis, pp.15-913, 2003.

R. Ferracane, A. Tafuri, A. Logieco, F. Galvano, D. Balzano et al., Simultaneous determination of aflatoxin B1 and ochratoxin A and their natural occurrence in Mediterranean virgin olive oil, Food Addit. Contam, pp.24-173, 2007.

L. Abrunhosa, R. R. Paterson, and A. Venâncio, Biodegradation of Ochratoxin A for Food and Feed Decontamination, Toxins, vol.2, issue.5, pp.1078-1099, 2010.
DOI : 10.3390/toxins2051078

R. Hayashi, Y. Bai, and T. Hata, Kinetic Studies of Carboxypeptidase Y I. Kinetic Parameters for the Hydrolysis of Synthetic Substrates, J. Biochem, pp.77-69, 1975.

K. Morihara and H. Tsuzuki, Thermolysin: Kinetic Study with Oligopeptides, European Journal of Biochemistry, vol.239, issue.2, pp.374-380, 1970.
DOI : 10.1016/0006-291X(69)90739-6

V. G. Eijsink, O. R. Veltman, W. Aukema, G. Vriend, and G. Venema, Structural determinants of the stability of thermolysin-like proteinases, Nature Structural Biology, vol.55, issue.5, pp.374-379, 1995.
DOI : 10.1016/0263-7855(87)80010-3

A. Bittner, B. Cramer, and H. Humpf, Matrix Binding of Ochratoxin A during Roasting, Journal of Agricultural and Food Chemistry, vol.61, issue.51, pp.61-12737, 2013.
DOI : 10.1021/jf403984x

L. Abrunhosa and A. Venâncio, Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus niger, Biotechnology Letters, vol.59, issue.12, pp.1909-1914, 2007.
DOI : 10.1007/s10529-007-9479-2

R. C. Doster and R. O. Sinnhuber, Comparative rates of hydrolysis of ochratoxins A and B in vitro, Food and Cosmetics Toxicology, vol.10, issue.3, pp.389-394, 1972.
DOI : 10.1016/S0015-6264(72)80257-8

M. J. Pitout, The hydrolysis of ochratoxin a by some proteolytic enzymes, Biochemical Pharmacology, vol.18, issue.2, pp.485-491, 1969.
DOI : 10.1016/0006-2952(69)90224-X

M. A. Alonso-lomillo, O. Domínguez-renedo, L. D. Román, and M. J. , Arcos-Martínez, Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A, Anal. Chim. Acta, pp.688-737, 2011.

M. A. Alonso-lomillo, O. Domínguez-renedo, L. Ferreira-gonçalves, and M. J. , Arcos- Martínez, Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A, Biosens. Bioelectron, pp.25-1333, 2010.

A. Hayat, A. Sassolas, J. Marty, and A. Radi, Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry, Talanta, vol.103, pp.14-19, 2013.
DOI : 10.1016/j.talanta.2012.09.048

G. Wulff, Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates??? A Way towards Artificial Antibodies, Angewandte Chemie International Edition in English, vol.34, issue.17, pp.1812-1832, 1995.
DOI : 10.1002/anie.199518121

L. Cao and R. D. Schmid, Wiley: Carrier-bound Immobilized Enzymes: Principles, Application and Design -Linqiu Cao, 2006.

G. J. Koper and M. Borkovec, Proton binding by linear, branched, and hyperbranched polyelectrolytes, Polymer, vol.51, issue.24, pp.51-5649, 2010.
DOI : 10.1016/j.polymer.2010.08.067

M. Tencer, R. Charbonneau, N. Lahoud, and P. Berini, AFM study of BSA adlayers on Au stripes, AFM study of BSA adlayers on Au stripes, pp.9209-9214, 2007.
DOI : 10.1016/j.apsusc.2007.05.079

K. Balashev, T. H. Callisen, A. Svendsen, and T. Bjørnholm, Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air???water interface and liquid Atomic Force Microscopy (AFM) imaging, Colloids and Surfaces B: Biointerfaces, vol.88, issue.2, pp.582-586, 2011.
DOI : 10.1016/j.colsurfb.2011.07.043

K. Awsiuk, A. Budkowski, M. M. Marzec, P. Petrou, J. Rysz et al., Effects of Polythiophene Surface Structure on Adsorption and Conformation of Bovine Serum Albumin: A Multivariate and Multitechnique Study, Langmuir, vol.30, issue.46, pp.30-13925, 2014.
DOI : 10.1021/la502646w

L. S. Jasti, S. R. Dola, T. Kumaraguru, S. Bajja, N. W. Fadnavis et al., Protein-coated polymer as a matrix for enzyme immobilization: Immobilization of trypsin on bovine serum albumin-coated allyl glycidyl ether-ethylene glycol dimethacrylate copolymer, Biotechnology Progress, vol.91, issue.2, pp.30-317, 2014.
DOI : 10.1002/btpr.1871

K. Omidfar, A. Dehdast, H. Zarei, B. K. Sourkohi, and B. Larijani, Development of urinary albumin immunosensor based on colloidal AuNP and PVA, Biosensors and Bioelectronics, vol.26, issue.10, pp.4177-4183, 2011.
DOI : 10.1016/j.bios.2011.04.022

K. Omidfar, H. Zarei, F. Gholizadeh, and B. Larijani, A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41???polyvinyl alcohol nanocomposite and colloidal gold nanoparticles, Analytical Biochemistry, vol.421, issue.2, pp.421-649, 2012.
DOI : 10.1016/j.ab.2011.12.022

T. Gu, J. Wang, H. Xia, S. Wang, and X. Yu, Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film, Materials, vol.7, issue.2, pp.7-1069, 2014.
DOI : 10.3390/ma7021069

Y. Rodríguez-carrasco, G. Font, J. C. Moltó, and H. Berrada, Quantitative determination of trichothecenes in breadsticks by gas chromatography-triple quadrupole tandem mass spectrometry, Food Additives & Contaminants: Part A, vol.9, issue.8, pp.31-1422, 2014.
DOI : 10.1016/j.jchromb.2012.12.016

Y. Wang, J. Ping, Z. Ye, J. Wu, and Y. Ying, Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7, Biosensors and Bioelectronics, vol.49, pp.49-492, 2013.
DOI : 10.1016/j.bios.2013.05.061

T. L. Adamson, F. A. Eusebio, C. B. Cook, and J. T. Labelle, The promise of electrochemical impedance spectroscopy as novel technology for the management of patients with diabetes mellitus, The Analyst, pp.137-4179, 2012.

B. A. Haselwood and J. T. Belle, Development of electrochemical methods to enzymatically detect traumatic brain injury biomarkers, Biosensors and Bioelectronics, vol.67, pp.752-756, 2015.
DOI : 10.1016/j.bios.2014.09.032

S. Kunugi, H. Hirohara, and N. , pH and Temperature Dependences of Thermolysin Catalysis. Catalytic Role of Zinc-Coordinated Water, European Journal of Biochemistry, vol.267, issue.1, pp.157-163, 1982.
DOI : 10.1016/0006-291X(69)90739-6

W. Nouira, A. Maaref, H. Elaissari, F. Vocanson, M. Siadat et al., Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles, Sensors, vol.14, issue.7, pp.14-13298, 2014.
DOI : 10.3390/s140713298

URL : https://hal.archives-ouvertes.fr/ujm-01057656

J. Wang, Electrochemical biosensing based on noble metal nanoparticles, Microchimica Acta, vol.83, issue.1, pp.245-270, 2012.
DOI : 10.1007/s00604-011-0758-1

A. De-poulpiquet, A. Ciaccafava, and E. Lojou, New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells, Electrochimica Acta, vol.126, pp.104-114, 2014.
DOI : 10.1016/j.electacta.2013.07.133

URL : https://hal.archives-ouvertes.fr/hal-01493465

M. Hasanzadeh, N. Shadjou, M. De, and . Guardia, Electrochemical biosensing using hydrogel nanoparticles, Electrochemical biosensing using hydrogel nanoparticles, pp.11-19, 2014.
DOI : 10.1016/j.trac.2014.06.011

J. S. Dieter-britz, Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme, Electrochimica Acta, vol.152, pp.302-307, 2015.
DOI : 10.1016/j.electacta.2014.11.117

R. Khan and M. , Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A, Biosensors and Bioelectronics, vol.24, issue.6, pp.1700-1705, 2009.
DOI : 10.1016/j.bios.2008.08.046

A. Radi, X. Muñoz-berbel, V. Lates, and J. Marty, Label-free impedimetric immunosensor for sensitive detection of ochratoxin A, Biosensors and Bioelectronics, vol.24, issue.7, pp.24-1888, 2009.
DOI : 10.1016/j.bios.2008.09.021

L. Zamfir, I. Geana, S. Bourigua, L. Rotariu, C. Bala et al., Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection, Sensors and Actuators B: Chemical, vol.159, issue.1, pp.178-184, 2011.
DOI : 10.1016/j.snb.2011.06.069

URL : https://hal.archives-ouvertes.fr/hal-00809661

A. Radi, X. Muñoz-berbel, M. Cortina-puig, and J. Marty, An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode, Electrochimica Acta, vol.54, issue.8, pp.2180-2184, 2009.
DOI : 10.1016/j.electacta.2008.10.013

X. Liu, Z. Yang, Y. Zhang, and R. Yu, A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode, Analytical Methods, vol.42, issue.6, pp.1481-1486, 2013.
DOI : 10.1039/c2ay26271a

P. R. Perrotta, F. J. Arévalo, N. R. Vettorazzi, M. A. Zón, and H. Fernández, Development of a very sensitive electrochemical magneto immunosensor for the direct determination of ochratoxin A in red wine, Sensors and Actuators B: Chemical, vol.162, issue.1, pp.327-333, 2012.
DOI : 10.1016/j.snb.2011.12.089

J. C. Zhang, An electrochemical biosensor based on hairpin-DNA aptamer probe and restriction endonuclease for ochratoxin A detection, Electrochemistry Communications, vol.25, pp.25-30, 2012.
DOI : 10.1016/j.elecom.2012.09.006

S. Xie, Y. Chai, Y. Yuan, L. Bai, and R. Yuan, Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification, Biosensors and Bioelectronics, vol.55, pp.55-324, 2014.
DOI : 10.1016/j.bios.2013.11.009

X. Yang, J. Qian, L. Jiang, Y. Yan, K. Wang et al., Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy, Bioelectrochemistry, vol.96, pp.96-103, 2014.
DOI : 10.1016/j.bioelechem.2013.11.006

J. Wu, H. Chu, Z. Mei, Y. Deng, F. Xue et al., Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor, Analytica Chimica Acta, vol.753, pp.27-31, 2012.
DOI : 10.1016/j.aca.2012.09.036

H. Kuang, W. Chen, D. Xu, L. Xu, Y. Zhu et al., Fabricated aptamer-based electrochemical ???signal-off??? sensor of ochratoxin A, Biosensors and Bioelectronics, vol.26, issue.2, pp.26-710, 2010.
DOI : 10.1016/j.bios.2010.06.058

G. Evtugyn, A. Porfireva, V. Stepanova, M. Kutyreva, A. Gataulina et al., Impedimetric aptasensor for ochratoxin A determination based on Au nanoparticles stabilized with hyper-branched polymer, Sensors, pp.13-16129, 2013.

L. Jiang, J. Qian, X. Yang, Y. Yan, Q. Liu et al., Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A, Analytica Chimica Acta, vol.806, pp.806-128, 2014.
DOI : 10.1016/j.aca.2013.11.003

R. K. Mishra, A. Hayat, G. Catanante, C. Ocaña, and J. Marty, A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries, Analytica Chimica Acta, vol.889, pp.889-106, 2015.
DOI : 10.1016/j.aca.2015.06.052

URL : https://hal.archives-ouvertes.fr/hal-01257017

L. Rivas, C. C. Mayorga-martinez, D. Quesada-gonzález, A. Zamora-gálvez, A. De-la-escosura-muñiz et al., Label-Free Impedimetric Aptasensor for Ochratoxin-A Detection Using Iridium Oxide Nanoparticles, Analytical Chemistry, vol.87, issue.10, pp.5167-5172, 2015.
DOI : 10.1021/acs.analchem.5b00890

J. Qian, L. Jiang, X. Yang, Y. Yan, H. Mao et al., Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density, The Analyst, pp.139-5587, 2014.