M. D. Brazas, F. Lewitter, M. V. Schneider, C. W. Van-gelder, and P. M. Palagi, A Quick Guide to Genomics and Bioinformatics Training for Clinical and Public Audiences, PLoS Computational Biology, vol.6, issue.4, p.1003510, 2014.
DOI : 10.1371/journal.pcbi.1003510.s002

J. Chang, Core services: Reward bioinformaticians, Nature, vol.520, issue.7546, pp.151-152, 2015.
DOI : 10.1038/520151a

F. Lewitter, Welcome to plos computational biology, PLoS computational biology, 2006.

S. Chawla and D. , The unsung heroes of scientific software, Nature, vol.529, issue.7584, pp.115-116, 2016.
DOI : 10.1038/529115a

D. R. Smith, Broadening the definition of a bioinformatician, Frontiers in Genetics, vol.6, issue.164, p.258, 2015.
DOI : 10.3389/fgene.2015.00164

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai et al., Big Data: Astronomical or Genomical The dawn of bilaterian animals: the case of acoelomorph flatworms, BioEssays : news and reviews in molecular, cellular and developmental biology, pp.261046-1057, 2004.

T. Bailey, P. Krajewski, I. Ladunga, C. Lefebvre, Q. Li et al., Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data, PLoS Computational Biology, vol.13, issue.11, p.1003326, 2013.
DOI : 10.1371/journal.pcbi.1003326.s007

Y. Bobkova, F. Yu, V. V. Kapitonov, J. Jurka, Y. V. Bobkov et al., The ctenophore genome and the evolutionary origins of neural systems, Nature, issue.7503, pp.510109-114, 2014.

H. Nakano, What is Xenoturbella? Zoological letters, p.22, 2015.

S. A. Nichols, B. W. Roberts, D. J. Richter, S. R. Fairclough, and N. King, Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/??-catenin complex, Proceedings of the National Academy of Sciences, pp.13046-13051, 2012.
DOI : 10.1073/pnas.1120685109

D. Noordermeer, M. Leleu, P. Schorderet, E. Joye, F. Chabaud et al., Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci, eLife, vol.3, 2014.

S. Ogishima and H. Tanaka, Missing link in the evolution of Hox clusters, Gene, vol.387, issue.1-2, pp.21-30, 2007.
DOI : 10.1016/j.gene.2006.08.011

J. Pascual-anaya, S. D-'aniello, S. Kuratani, and J. Garcia-fernàndezfern-`-fernàndez, Evolution of Hox gene clusters in deuterostomes, BMC Developmental Biology, vol.13, issue.1, p.26, 2013.
DOI : 10.1016/j.tig.2008.11.004

H. Philippe, H. Brinkmann, R. R. Copley, L. L. Moroz, H. Nakano et al., Acoelomorph flatworms are deuterostomes related to Xenoturbella, Nature, vol.432, issue.7333, p.470255, 2011.
DOI : 10.1038/nature09676

H. Philippe, R. Derelle, P. Lopez, K. Pick, C. Borchiellini et al., Phylogenomics Revives Traditional Views on Deep Animal Relationships, Current Biology, vol.19, issue.8, pp.706-712, 2009.
DOI : 10.1016/j.cub.2009.02.052

URL : https://hal.archives-ouvertes.fr/hal-00594690

M. Quiquand, N. Yanze, J. Schmich, V. Schmid, B. Galliot et al., More constraint on ParaHox than Hox gene families in early metazoan evolution, Developmental Biology, vol.328, issue.2, pp.173-187, 2009.
DOI : 10.1016/j.ydbio.2009.01.022

P. C. Reddy, M. K. Unni, A. Gungi, P. Agarwal, and S. Galande, Evolution of Hox-like genes in Cnidaria: Study of Hydra Hox repertoire reveals tailor-made Hox-code for Cnidarians, Mechanisms of Development, vol.138, issue.2, pp.87-96, 2015.
DOI : 10.1016/j.mod.2015.08.005

A. Riesgo, N. Farrar, P. J. Windsor, G. Giribet, and S. P. Leys, The Analysis of Eight Transcriptomes from All Poriferan Classes Reveals Surprising Genetic Complexity in Sponges, Molecular Biology and Evolution, vol.31, issue.5, pp.311102-1120, 2015.
DOI : 10.1093/molbev/msu057

J. F. Ryan, P. M. Burton, M. E. Mazza, G. K. Kwong, J. C. Mullikin et al., The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis, Genome Biology, vol.7, issue.7, p.64, 2006.
DOI : 10.1186/gb-2006-7-7-r64

J. F. Ryan, M. E. Mazza, K. Pang, D. Q. Matus, A. D. Baxevanis et al., Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis, PLoS ONE, vol.4, issue.1, p.153, 2007.
DOI : 10.1371/journal.pone.0000153.s013

J. F. Ryan, K. Pang, N. C. Program, J. C. Mullikin, M. Q. Martindale et al., The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa, EvoDevo, vol.1, issue.1, p.9, 2010.
DOI : 10.1186/2041-9139-1-9

J. F. Ryan, K. Pang, C. E. Schnitzler, A. Nguyen, R. T. Moreland et al., The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution, Science, vol.342, issue.6164, pp.3421242592-1242592, 2013.
DOI : 10.1126/science.1242592

I. N. Sarkar, J. W. Thornton, P. J. Planet, D. H. Figurski, B. Schierwater et al., An automated phylogenetic key for classifying homeoboxes, Molecular Phylogenetics and Evolution, vol.24, issue.3, pp.388-399, 2002.
DOI : 10.1016/S1055-7903(02)00259-2

M. P. Scott, ) genes, Nucleic Acids Research, vol.21, issue.8, pp.1687-1688, 1993.
DOI : 10.1093/nar/21.8.1687

M. P. Scott and A. J. Weiner, Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila., Proceedings of the National Academy of Sciences, vol.81, issue.13, pp.814115-4119, 1984.
DOI : 10.1073/pnas.81.13.4115

M. Sharkey, Y. Graba, and M. P. Scott, Hox genes in evolution: protein surfaces and paralog groups. Trends in genetics, pp.145-151, 1997.

M. J. Telford, Turning Hox "signatures" into synapomorphies, Evolution and Development, vol.30, issue.6, pp.360-364, 2000.
DOI : 10.1016/S0960-9822(00)00387-0

R. Aerts and S. , Computational Strategies for the Genome-Wide Identification of cis-Regulatory Elements and Transcriptional Targets, Current topics in developmental biology, vol.98, pp.121-145, 2012.
DOI : 10.1016/B978-0-12-386499-4.00005-7

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nature Biotechnology, vol.13, issue.8, pp.33831-838, 2015.
DOI : 10.1126/science.1162327

T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant et al., MEME SUITE: tools for motif discovery and searching, Nucleic Acids Research, vol.37, issue.Web Server, pp.202-210, 2009.
DOI : 10.1093/nar/gkp335

S. Aldridge, S. Watt, M. A. Quail, T. Rayner, M. Lukk et al., AHT-ChIP-seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation, Genome Biology, vol.14, issue.11, pp.14-124, 2013.
DOI : 10.1186/1471-2164-9-488

C. L. Araya, T. Kawli, A. Kundaje, L. Jiang, B. Wu et al., Regulatory analysis of the C. elegans genome with spatiotemporal resolution, Nature, issue.7515, pp.512400-405, 2014.

C. D. Arnold, D. Gerlach, C. Stelzer, M. Bory´nbory´-bory´n, M. Rath et al., Genomewide quantitative enhancer activity maps identified by STARR-seq, Science, issue.6123, pp.3391074-1077, 2013.

L. Arrigoni, A. S. Richter, E. Betancourt, K. Bruder, S. Diehl et al., Standardizing chromatin research: a simple and universal method for ChIP-seq, Nucleic Acids Research, vol.44, issue.7, 2015.
DOI : 10.1093/nar/gkv1495

H. Ashoor, A. Erault, A. Kamoun, F. Radvanyi, V. B. Bajic et al., HMCan: a method for detecting chromatin modifications in cancer samples using ChIP-seq data, Bioinformatics, vol.29, issue.23, pp.292979-2986, 2013.
DOI : 10.1093/bioinformatics/btt524

T. Bailey, P. Krajewski, I. Ladunga, C. Lefebvre, Q. Li et al., Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data, PLoS Computational Biology, vol.13, issue.11, p.1003326, 2013.
DOI : 10.1371/journal.pcbi.1003326.s007

L. Baranello, F. Kouzine, S. Sanford, and D. Levens, ChIP bias as a function of cross-linking time. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 2015.

Y. Benjamini and T. P. Speed, Summarizing and correcting the GC content bias in highthroughput sequencing, Nucleic Acids Research, issue.10, pp.40-72, 2012.

V. Boeva, Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells, Frontiers in Genetics, vol.14, p.24, 2016.
DOI : 10.1186/1471-2164-14-796

URL : https://hal.archives-ouvertes.fr/inserm-01291222

J. T. Cannon, B. C. Vellutini, J. Smith, F. Ronquist, U. Jondelius et al., Xenacoelomorpha is the sister group to Nephrozoa, Nature, vol.61, issue.7588, pp.53089-93, 2016.
DOI : 10.1038/nature16520

T. S. Carroll, Z. Liang, R. Salama, R. Stark, and I. De-santiago, Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data, Frontiers in Genetics, vol.12, p.75, 2014.
DOI : 10.1038/ni.2117

Y. Chen, N. Negre, Q. Li, J. O. Mieczkowska, M. Slattery et al., Systematic evaluation of factors influencing ChIP-seq fidelity, Nature Methods, vol.26, issue.6, pp.609-614, 2012.
DOI : 10.1038/nmeth.1985

M. Cheung, T. A. Down, I. Latorre, and J. Ahringer, Systematic bias in high-throughput sequencing data and its correction by BEADS, Nucleic Acids Research, vol.39, issue.15, pp.39-103, 2011.
DOI : 10.1093/nar/gkr425

P. Collas and J. A. Dahl, Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation, Frontiers in Bioscience, vol.13, issue.13, pp.929-943, 2008.
DOI : 10.2741/2733

B. A. De-boer, K. Van-duijvenboden, M. Van-den-boogaard, V. M. Christoffels, P. Barnett et al., OccuPeak: ChIP-Seq Peak Calling Based on Internal Background Modelling, PLoS ONE, vol.7, issue.6, p.99844, 2014.
DOI : 10.1371/journal.pone.0099844.s001

A. Diaz, A. Nellore, and J. S. Song, CHANCE: comprehensive software for quality control and validation of ChIP-seq data, Genome Biology, vol.13, issue.10, pp.13-98, 2012.
DOI : 10.1186/gb-2011-12-2-r18

J. Ding, H. Hu, L. , and X. , SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data, Nucleic Acids Research, vol.42, issue.5, p.35, 2014.
DOI : 10.1093/nar/gkt1288

C. Flensburg, S. A. Kinkel, A. Keniry, M. E. Blewitt, and A. Oshlack, A comparison of control samples for ChIP-seq of histone modifications, Frontiers in genetics, vol.5, p.329, 2014.

T. S. Furey, ChIP???seq and beyond: new and improved methodologies to detect and characterize protein???DNA interactions, Nature Reviews Genetics, vol.10, issue.12, pp.840-852, 2012.
DOI : 10.1038/nrg3306

A. Gavrilov, S. V. Razin, C. , and G. , In vivo formaldehyde cross-linking: it is time for black box analysis, Briefings in Functional Genomics, vol.14, issue.2, pp.163-165, 2015.
DOI : 10.1093/bfgp/elu037

M. R. Hass, H. Liow, X. Chen, A. Sharma, Y. U. Inoue et al., SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers, SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers, pp.685-697, 2015.
DOI : 10.1016/j.molcel.2015.07.008

Q. He, J. Johnston, and J. Zeitlinger, ChIP-nexus enables improved detection of in vivo transcription factor binding footprints, Nature Biotechnology, vol.17, issue.4, pp.395-401, 2015.
DOI : 10.1093/bioinformatics/btp352

X. He, A. E. Cicek, Y. Wang, M. H. Schulz, H. Le et al., De novo ChIP-seq analysis, Genome Biology, vol.17, issue.1, p.205, 2015.
DOI : 10.1186/s13059-015-0756-4

L. Jourdren, M. Bernard, M. Dillies, L. Crom, and S. , Eoulsan: a cloud computing-based framework facilitating high throughput sequencing analyses, Bioinformatics, vol.28, issue.11, pp.281542-1543, 2012.
DOI : 10.1093/bioinformatics/bts165

S. Kasinathan, G. A. Orsi, G. E. Zentner, K. Ahmad, and S. Henikoff, High-resolution mapping of transcription factor binding sites on native chromatin, Epigenetics & Chromatin, vol.6, issue.Suppl 1, pp.203-209, 2014.
DOI : 10.1186/1756-8935-6-S1-P114

B. L. Kidder, G. Hu, and K. Zhao, ChIP-Seq: technical considerations for obtaining high-quality data, Nature Immunology, vol.27, issue.10, pp.918-922, 2011.
DOI : 10.1038/ni.2117

M. Levo and E. Segal, In pursuit of design principles of regulatory sequences, Nature Reviews Genetics, vol.49, issue.7, pp.453-468, 2014.
DOI : 10.1016/j.celrep.2013.03.014

A. Lihu and S. ¸. Holban, A review of ensemble methods for de novo motif discovery in ChIP-Seq data, Briefings in Bioinformatics, vol.16, issue.6, pp.964-973, 2015.
DOI : 10.1093/bib/bbv022

E. T. Liu, S. Pott, and M. Huss, Q&A: ChIP-seq technologies and the study of gene regulation, BMC Biology, vol.8, issue.1, p.56, 2010.
DOI : 10.1186/1741-7007-8-56

P. Madrigal, On Accounting for Sequence- Specific Bias in Genome-Wide Chromatin Accessibility Experiments: Recent Advances and Contradictions . Frontiers in bioengineering and biotechnology, p.144, 2015.

S. Mahony and B. F. Pugh, Protein???DNA binding in high-resolution, Critical Reviews in Biochemistry and Molecular Biology, vol.503, issue.4, pp.269-283, 2015.
DOI : 10.1093/nar/gkp802

E. R. Mardis, ChIP-seq: welcome to the new frontier, Nature Methods, vol.129, issue.8, pp.613-614, 2007.
DOI : 10.1038/nmeth0807-613

C. A. Meyer and X. S. Liu, Identifying and mitigating bias in next-generation sequencing methods for chromatin biology, Nature Reviews Genetics, vol.1038, issue.11, pp.709-721, 2014.
DOI : 10.1038/nature08872

K. H. Miga, C. Eisenhart, K. , and W. J. , Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments, Nucleic Acids Research, issue.20, pp.43-133, 2015.
DOI : 10.1093/nar/gkv671

R. Nakato and K. Shirahige, Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation, Briefings in Bioinformatics, 2016.
DOI : 10.1093/bib/bbw023

D. Park, Y. Lee, G. Bhupindersingh, and V. R. Iyer, Widespread Misinterpretable ChIP-seq Bias in Yeast, PLoS ONE, vol.95, issue.12, p.83506, 2013.
DOI : 10.1371/journal.pone.0083506.s007

P. J. Park, ChIP???seq: advantages and challenges of a maturing technology, Nature Reviews Genetics, vol.453, issue.10, pp.669-680, 2009.
DOI : 10.1038/nrg2641

J. K. Pickrell, D. J. Gaffney, Y. Gilad, and J. K. Pritchard, False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions, Bioinformatics, vol.27, issue.15, pp.272144-2146, 2011.
DOI : 10.1093/bioinformatics/btr354

P. Ramachandran, G. A. Palidwor, and T. J. Perkins, BIDCHIPS: bias decomposition and removal from ChIP-seq data clarifies true binding signal and its functional correlates, Epigenetics & Chromatin, vol.37, issue.suppl 2, p.33, 2015.
DOI : 10.1186/s13072-015-0028-2

H. S. Rhee and B. F. Pugh, Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution, Cell, vol.147, issue.6, pp.1408-1419, 2011.
DOI : 10.1016/j.cell.2011.11.013

C. Schmidt, A. F. Rendeiro, N. C. Sheffield, and C. Bock, ChIPmentation: fast, robust, lowinput ChIP-seq for histones and transcription factors, Nature Methods, issue.10, pp.12963-965, 2015.

A. A. Serandour, G. Brown, J. D. Cohen, C. , and J. S. , Development of an Illuminabased ChIP-exonuclease method provides insight into FoxA1-DNA binding properties, Bioinformatics, issue.7, pp.271017-1018, 2013.

P. J. Skene and S. Henikoff, A simple method for generating high-resolution maps of genomewide protein binding, 2015.

S. R. Starick, J. Ibn-salem, M. Jurk, C. Hernandez, M. I. Love et al., ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors, Genome Research, vol.25, issue.6, pp.825-835, 2015.
DOI : 10.1101/gr.185157.114

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai et al., Big Data: Astronomical or Genomical?, PLOS Biology, vol.28, issue.7, p.1002195, 2015.
DOI : 10.1371/journal.pbio.1002195.s006

G. D. Stormo and Y. Zhao, Determining the specificity of protein???DNA interactions, Nature Reviews Genetics, vol.28, issue.11, pp.751-760, 2010.
DOI : 10.1038/nrg2845

J. Telorac, S. V. Prykhozhij, S. Schönesch¨schöne, D. Meierhofer, S. Sauer et al., Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements, Nucleic Acids Research, vol.44, issue.13, 2016.
DOI : 10.1093/nar/gkw203

L. Teytelman, D. M. Thurtle, J. Rine, and A. Van-oudenaarden, Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins, Proceedings of the National Academy of Sciences, pp.11018602-18607, 2013.
DOI : 10.1073/pnas.1316064110

M. Thomas-chollier, L. C. Watson, S. B. Cooper, M. A. Pufall, J. S. Liu et al., A naturally occuring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms, Proceedings of the National Academy of Sciences of the United States of America, p.110, 2013.
DOI : 10.1073/pnas.1316235110

M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De-moor et al., Assessing computational tools for the discovery of transcription factor binding sites, Nature Biotechnology, vol.5, issue.1, pp.137-144, 2005.
DOI : 10.1002/prot.10556

N. T. Tran and C. Huang, A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data, Biology Direct, vol.9, issue.1, p.4, 2014.
DOI : 10.1038/nbt1053

F. Zambelli, G. Pesole, and G. Pavesi, Motif discovery and transcription factor binding sites before and after the next-generation sequencing era, Briefings in Bioinformatics, vol.14, issue.2, pp.225-237, 2013.
DOI : 10.1093/bib/bbs016

G. E. Zentner and S. Henikoff, High-resolution digital profiling of the epigenome, Nature Reviews Genetics, vol.4, issue.12, pp.814-827, 2014.
DOI : 10.1038/nrg3798

M. Thomas-­?chollier-mthomas@biologie, ens.fr Maître de conference ENS département de Biologie CNU-­?65 Summary Born: 06 August 1979 ? 36 years Nationality: French Training: Master in Biology interests: transcriptional regulation, high-­?throughput functional genomics, development and evolution Education PhD, PhD in Bioinformatics Current position: Associate Professor (MCU) at Ecole normale supérieure (ENS), 2004.

E. Paris and F. , Biology department, Laboratory of Computational Systems Biology

U. Brussels and . Belgium, Bioinformatique des Génomes et des réseaux

V. Ulb, . Brussels, and . Belgium, Supervisors: Luc Leyns Evolutionary study of the Hox gene family with matrix-­?based bioinformatics approaches, and Valérie Ledent

S. Supervisor, M. Vuillemier, S. Berlingermany, and . Johnsen, Study of the putative role of glutathione S-­?transferases in rhizobacterial genomes Award from the foundation « Alice et David Van Buuren», Postdoc fellowship from the Alexander von Humboldt foundation Collaborations Sebastiaan Meijsing and Albert Poustka, 2008.

E. Simionato, V. Ledent, G. Richards, M. Thomas-­?chollier, P. Kerner et al., Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics, BMC Evolutionary Biology, vol.7, issue.1, pp.33-2007
DOI : 10.1186/1471-2148-7-33

URL : https://hal.archives-ouvertes.fr/hal-00167529

L. Leyns, D. Piette, and M. Thomas-­?chollier, Evo-­?devo: paleontologie zonder fossielen?, Evolutie vandaag, pp.125-146, 2005.

. Exoprofiler, prototyping, supervision of development. International Conferences With invitation: ? Bringing Maths to life ? 15 th Evolutionary Biology Meeting, With oral presentation: ? Condition-­?specific Binding of the Glucocorticoid Receptor Sixth Annual RECOMB/ISCB conference on Regulatory and Systems Genomics, 2011.

@. Magallanes, C. Hernandez, and D. Thieffry, M Thomas-­?Chollier Evaluation of a probabilistic partitioning approach to systematically refine ChIP-­?seq peaks location, 2015.

@. Pm-chiaroni and D. Thieffry, M Thomas-­?Chollier Prediction of transcription factor motifs and binding sites from multiple histone mark ChIP-­?seq datasets, Participation with poster presentations: ? EpiGeneSys: Annual Meeting, 2014.

@. Workshop, Novel genome-­?wide approaches to decipher transcriptional and epigenetic regulation in mammalian cells, 2013.

@. Igbmc, ? Réseau RENABI ChIP-­?seq, Institut Curie ? Regional network of bioinformatics engineers, 2011.

. @bullet-since-sept, 2014: Samuel Collombet, student at IBENS (rate: 25%; D. Thieffry: 75%). Participation to his pre-­? doctoral supervision since, 2012.

J. @bullet-since, 2016: Céline Hernandez, student at IBENS (rate: 50%; D. Thieffry: 50%) Supervision of master (M2) students, p.5

M. Genomes, Teaching responsibilities ? Responsible for 2 teaching modules at M2 level. ? Co-­?responsible of 3 teaching modules at L3 and M1 levels. ? Participation to establishing of a novel module in L3, Referee International journals: Nucleic Acids ResearchM2 entitled " soft skills " (writing reports, design posters, giving oral presentations, understanding the organisation of academic research in France,?)