M. Kho, K. Cransberg, W. Weimar, and T. Van-gelder, Current immunosuppressive treatment after kidney transplantation, Expert Opinion on Pharmacotherapy, vol.10, issue.3, pp.1217-1248, 2011.
DOI : 10.1056/NEJMra033540

U. Heemann, D. Abramowicz, G. Spasovski, and R. Vanholder, European Renal Best Practice Work Group on Kidney Transplantation. Endorsement of the Kidney Disease Improving Global Outcomes (KDIGO) guidelines on kidney transplantation: a European Renal Best Practice (ERBP) position statement. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, pp.2099-106, 2011.

F. Rusnak and P. Mertz, Calcineurin: form and function, Physiol Rev, vol.80, issue.4, pp.1483-521, 2000.

F. Macian, NFAT proteins: key regulators of T-cell development and function, Nature Reviews Immunology, vol.7, issue.6, pp.472-84, 2005.
DOI : 10.1073/pnas.0402803101

H. Ke and Q. Huai, Structures of calcineurin and its complexes with immunophilins???immunosuppressants, Biochemical and Biophysical Research Communications, vol.311, issue.4, pp.1095-102, 2003.
DOI : 10.1016/S0006-291X(03)01537-7

L. Pouché, J. Stojanova, P. Marquet, and N. Picard, New challenges and promises in solid organ transplantation pharmacogenetics: the genetic variability of proteins involved in the pharmacodynamics of immunosuppressive drugs, Pharmacogenomics, vol.17, issue.3, 2016.
DOI : 10.2217/pgs.15.169

M. Naesens, D. Kuypers, and M. Sarwal, Calcineurin Inhibitor Nephrotoxicity, Clinical Journal of the American Society of Nephrology, vol.4, issue.2, pp.481-508, 2009.
DOI : 10.2215/CJN.04800908

URL : http://cjasn.asnjournals.org/content/4/2/481.full.pdf

M. Haas, B. Sis, L. Racusen, K. Solez, D. Glotz et al., Banff 2013 Meeting Report: Inclusion of C4d-Negative Antibody-Mediated Rejection and Antibody-Associated Arterial Lesions, American Journal of Transplantation, vol.17, issue.2, 2014.
DOI : 10.1111/ajt.12590

T. Sigdel, Y. Ng, S. Lee, C. Nicora, W. Qian et al., Perturbations in the Urinary Exosome in Transplant Rejection, Frontiers in Medicine, vol.12, issue.10, p.57, 2014.
DOI : 10.1111/j.1600-6143.2012.04144.x

. Collège-de-la-haute-autorité-de-santé, Suivi ambulatoire de l'adulte transplanté rénal au-delà de 3 mois après transplantation -RECOMMANDATIONS. HAS, 2007.

F. Saint-marcoux, P. Marquet, and A. Rousseau, Pharmacocinétique et suivi thérapeutique pharmacologique de la ciclosporine en transplantation d'organes solides, Limoges]: S.C.D. de l'Université, 2004.

P. Wallemacq, V. Armstrong, M. Brunet, V. Haufroid, D. Holt et al., Opportunities to Optimize Tacrolimus Therapy in Solid Organ Transplantation: Report of the European Consensus Conference, Therapeutic Drug Monitoring, vol.31, issue.2, pp.139-52, 2009.
DOI : 10.1097/FTD.0b013e318198d092

L. Ting, E. Villeneuve, and M. Ensom, Beyond Cyclosporine: A Systematic Review of Limited Sampling Strategies for Other Immunosuppressants, Therapeutic Drug Monitoring, vol.28, issue.3, 2006.
DOI : 10.1097/01.ftd.0000211810.19935.44

. Agence-de-la-biomedecine, Haute Autorité de Santé Règles de bonnes pratiques en génétique constitutionnelle à des fins médicales (Hors diagnostic prénatal), p.2012

N. Picard, S. Bergan, P. Marquet, T. Van-gelder, P. Wallemacq et al., Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs, Therapeutic Drug Monitoring, vol.38, 2015.
DOI : 10.1097/FTD.0000000000000255

L. Rojas, I. Neumann, M. Herrero, V. Bosó, J. Reig et al., Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies, The Pharmacogenomics Journal, vol.87, issue.1, pp.38-48, 2015.
DOI : 10.1124/dmd.105.003822

A. Barry and M. Levine, A Systematic Review of the Effect of CYP3A5 Genotype on the Apparent Oral Clearance of Tacrolimus in Renal Transplant Recipients, Therapeutic Drug Monitoring, vol.32, issue.6, pp.708-722, 2010.
DOI : 10.1097/FTD.0b013e3181f3c063

E. Thervet, M. Loriot, S. Barbier, M. Buchler, M. Ficheux et al., Optimization of Initial Tacrolimus Dose Using Pharmacogenetic Testing, Clinical Pharmacology & Therapeutics, vol.87, issue.6, pp.721-727, 2010.
DOI : 10.1097/00007890-200212150-00002

K. Birdwell, B. Decker, J. Barbarino, J. Peterson, C. Stein et al., Genotype and Tacrolimus Dosing, Clinical Pharmacology & Therapeutics, vol.79, issue.1, pp.19-24
DOI : 10.1002/cpt.113

H. De-jonge, L. Elens, H. De-loor, R. Van-schaik, and D. Kuypers, The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients, The Pharmacogenomics Journal, vol.35, issue.2, pp.144-52
DOI : 10.1038/sj.clpt.6100216

D. A. Moes, J. Swen, J. Den-hartigh, T. Van-der-straaten, J. Van-der-heide et al., Effect of CYP3A4*22, CYP3A5*3, and CYP3A Combined Genotypes on Cyclosporine, Everolimus, and Tacrolimus Pharmacokinetics in Renal Transplantation, CYP3A5*3, and CYP3A Combined Genotypes on Cyclosporine, Everolimus, and Tacrolimus Pharmacokinetics in Renal Transplantation, p.100, 2014.
DOI : 10.1016/j.cmpb.2010.04.018

L. Elens, T. Van-gelder, D. Hesselink, V. Haufroid, and R. Van-schaik, variant allele for personalizing pharmacotherapy, Pharmacogenomics, vol.14, issue.1, pp.47-62, 2013.
DOI : 10.2217/pgs.12.187

I. Yano, Pharmacodynamic Monitoring of Calcineurin Phosphatase Activity in Transplant Patients Treated with Calcineurin Inhibitors, Drug Metabolism and Pharmacokinetics, vol.23, issue.3, pp.150-157, 2008.
DOI : 10.2133/dmpk.23.150

R. Caruso, N. Perico, D. Cattaneo, G. Piccinini, S. Bonazzola et al., Wholeblood calcineurin activity is not predicted by cyclosporine blood concentration in renal transplant recipients, Clin Chem, vol.47, issue.9, pp.1679-87, 2001.

C. Sommerer and T. Giese, NFAT-regulated gene expression as predictive biomarker of personal response to calcineurin inhibitors, Ther Drug Monit, 2015.

C. Sommerer, P. Schnitzler, S. Meuer, M. Zeier, and T. Giese, Pharmacodynamic Monitoring of Cyclosporin A Reveals Risk of Opportunistic Infections and Malignancies in Renal Transplant Recipients 65 Years and Older, Therapeutic Drug Monitoring, vol.33, issue.6, pp.694-702, 2011.
DOI : 10.1097/FTD.0b013e318237e33c

E. Heard and S. Khochbin, Epigénétique : comment se joue la partition du génome ? Science&Santé, pp.23-33, 2012.

N. Lacoste and J. Coté, Le code épigénétique des histones. Médecine Sci, 2003.

A. Barski, S. Cuddapah, K. Cui, T. Roh, D. Schones et al., High-resolution profiling of histone methylations in the human genome. Cell, pp.823-860, 2007.

M. Blewitt, Epigenetic Control of Gene Expression [Internet] University of Melbourne Available from: https

C. Nestor, J. Reddington, M. Benson, and R. Meehan, Investigating 5-Hydroxymethylcytosine (5hmC): The State of the Art, Methods Mol Biol Clifton NJ, vol.1094, pp.243-58, 2014.
DOI : 10.1007/978-1-62703-706-8_19

C. Vinson and C. R. Cg-methylation, CG methylation, Epigenomics, vol.4, issue.6, pp.655-63, 2012.
DOI : 10.2217/epi.12.55

D. Schübeler, Function and information content of DNA methylation, Nature, vol.62, issue.7534, pp.321-327, 2015.
DOI : 10.1038/ng.2442

R. Thurman, E. Rynes, R. Humbert, J. Vierstra, M. Maurano et al., The accessible chromatin landscape of the human genome, Nature, vol.27, issue.7414, pp.75-82, 2012.
DOI : 10.1038/nature11232

L. Shen and Y. Zhang, 5-Hydroxymethylcytosine: generation, fate, and genomic distribution, Current Opinion in Cell Biology, vol.25, issue.3, pp.289-96
DOI : 10.1016/j.ceb.2013.02.017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060438

J. Espada, E. Carrasco, and M. Calvo, Standard DNA Methylation Analysis in Mouse Epidermis: Bisulfite Sequencing, Methylation-Specific PCR, and 5-Methyl-Cytosine (5mC) Immunological Detection, Methods Mol Biol Clifton NJ, vol.1094, pp.221-252, 2014.
DOI : 10.1007/978-1-62703-706-8_17

K. Wani and K. Aldape, PCR Techniques in Characterizing DNA Methylation, Methods Mol Biol Clifton NJ, vol.1392, pp.177-86, 2016.
DOI : 10.1007/978-1-4939-3360-0_16

L. Elens, F. Sombogaard, D. Hesselink, R. Van-schaik, and T. Van-gelder, Single-nucleotide polymorphisms in P450 oxidoreductase and peroxisome proliferator-activated receptor-?? are associated with the development of new-onset diabetes after transplantation in kidney transplant recipients treated with tacrolimus, Pharmacogenetics and Genomics, vol.23, issue.12, pp.649-57, 2013.
DOI : 10.1097/FPC.0000000000000001

B. Tavira, E. Coto, C. Díaz-corte, F. Ortega, M. Arias et al., KCNQ1 gene variants and risk of new-onset diabetes in tacrolimus-treated renal-transplanted patients, Clinical Transplantation, vol.501, issue.3, pp.284-291, 2011.
DOI : 10.1111/j.1399-0012.2011.01417.x

Y. Chen, M. Sampaio, J. Yang, D. Min, and I. Hutchinson, Genetic Polymorphisms of the Transcription Factor NFATc4 and Development of New-Onset Diabetes After Transplantation in Hispanic Kidney Transplant Recipients, Transplantation, vol.93, issue.3, pp.325-355, 2012.
DOI : 10.1097/TP.0b013e31823f7f26

V. Lauschke and M. Ingelman-sundberg, Precision Medicine and Rare Genetic Variants, Trends in Pharmacological Sciences, vol.37, issue.2, pp.85-91, 2016.
DOI : 10.1016/j.tips.2015.10.006

M. Maurano, R. Humbert, E. Rynes, R. Thurman, E. Haugen et al., Systematic Localization of Common Disease-Associated Variation in Regulatory DNA, Science, vol.337, issue.6099, 2012.
DOI : 10.1126/science.1222794

A. Mai and L. Altucci, Epi-drugs to fight cancer: From chemistry to cancer treatment, the road ahead, The International Journal of Biochemistry & Cell Biology, vol.41, issue.1, pp.199-213, 2009.
DOI : 10.1016/j.biocel.2008.08.020

J. Lötsch, G. Schneider, D. Reker, M. Parnham, P. Schneider et al., Common non-epigenetic drugs as epigenetic modulators, Trends in Molecular Medicine, vol.19, issue.12, 2013.
DOI : 10.1016/j.molmed.2013.08.006

J. Thomson, J. Moggs, C. Wolf, and R. Meehan, Epigenetic profiles as defined signatures of xenobiotic exposure, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.764, issue.765, pp.764-7653, 2014.
DOI : 10.1016/j.mrgentox.2013.08.007

K. Sato, H. Fukata, Y. Kogo, J. Ohgane, K. Shiota et al., Neonatal Exposure to Diethylstilbestrol Alters Expression of DNA Methyltransferases and Methylation of Genomic DNA in the Mouse Uterus, Endocrine Journal, vol.56, issue.1, pp.131-140, 2009.
DOI : 10.1507/endocrj.K08E-239

B. Suárez-Álvarez, A. Baragaño-raneros, F. Ortega, and C. López-larrea, Epigenetic modulation of the immune function, Epigenetics, vol.8, issue.7, p.2013
DOI : 10.4161/epi.19507

A. Sawalha, Epigenetics and T-cell immunity, Autoimmunity, vol.3, issue.4, pp.245-52, 2008.
DOI : 10.1016/S1074-7613(03)00179-1

C. Lee, A. Sahoo, and S. Im, Epigenetic Regulation of Cytokine Gene Expression in T Lymphocytes, Yonsei Medical Journal, vol.50, issue.3, pp.322-352, 2009.
DOI : 10.3349/ymj.2009.50.3.322

G. Lal and J. Bromberg, Epigenetic mechanisms of regulation of Foxp3 expression, Blood, vol.114, issue.18, pp.3727-3762, 2009.
DOI : 10.1182/blood-2009-05-219584

Y. Li, S. Ohms, F. Shannon, C. Sun, and J. Fan, IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages, Biochemical and Biophysical Research Communications, vol.419, issue.4, pp.748-53, 2012.
DOI : 10.1016/j.bbrc.2012.02.094

J. Falvo, L. Jasenosky, L. Kruidenier, and A. Goldfeld, Epigenetic Control of Cytokine Gene Expression, Adv Immunol, vol.118, pp.37-128, 2013.
DOI : 10.1016/B978-0-12-407708-9.00002-9

R. Rodriguez, B. Suarez-alvarez, R. Salvanés, M. Muro, P. Martínez-camblor et al., DNA Methylation Dynamics in Blood after Hematopoietic Cell Transplant, PLoS ONE, vol.4, issue.2, p.56931, 2013.
DOI : 10.1371/journal.pone.0056931.s007

T. Mehta, M. Hoque, R. Ugarte, M. Rahman, E. Kraus et al., Quantitative Detection of Promoter Hypermethylation as a Biomarker of Acute Kidney Injury During Transplantation, Transplantation Proceedings, vol.38, issue.10, pp.3420-3426, 2006.
DOI : 10.1016/j.transproceed.2006.10.149

M. Esteller, J. Garcia-foncillas, E. Andion, S. Goodman, O. Hidalgo et al., and the Clinical Response of Gliomas to Alkylating Agents, New England Journal of Medicine, vol.343, issue.19, pp.1350-1354, 2000.
DOI : 10.1056/NEJM200011093431901

M. Corley, W. Zhang, X. Zheng, A. Lum-jones, and A. Maunakea, Semiconductor-based sequencing of genome-wide DNA methylation states, Epigenetics, vol.4, issue.2, pp.153-66, 2015.
DOI : 10.1038/nprot.2012.016

J. Sengenès, Développement de méthodes de séquençage de seconde génération pour l'analyse des profils de méthylation de l'ADN

S. Andrews and A. Fastqc, Quality Control tool for High Throughput Sequence Data [Internet] Available from

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl, Aug, vol.1525, issue.16, pp.2078-2087, 2009.

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

R. Stark and G. Brown, DiffBind: differential binding analysis of ChIP-Seq peak data. Bioconductor [Internet] Available from: http://bioconductor.org/packages, 2011.

C. Ross-innes, R. Stark, A. Teschendorff, K. Holmes, H. Ali et al., Differential oestrogen receptor binding is associated with clinical outcome in breast cancer, Nature, vol.2, issue.7381, pp.389-93, 2012.
DOI : 10.1038/nature10730

M. Robinson, D. Mccarthy, and G. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-179, 2010.
DOI : 10.1093/bioinformatics/btp616

M. Robinson and G. Smyth, Small-sample estimation of negative binomial dispersion, with applications to SAGE data, Biostatistics, vol.9, issue.2, pp.321-353, 2008.
DOI : 10.1093/biostatistics/kxm030

A. Quinlan and I. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, issue.6, pp.841-843, 2010.
DOI : 10.1093/bioinformatics/btq033

S. Sato, W. Yoshida, H. Soejima, K. Nakabayashi, and K. Hata, Methylation dynamics of IG-DMR and Gtl2-DMR during murine embryonic and placental development, Genomics, vol.98, issue.2, pp.120-127, 2011.
DOI : 10.1016/j.ygeno.2011.05.003

K. Michels, A. Binder, S. Dedeurwaerder, C. Epstein, J. Greally et al., Recommendations for the design and analysis of epigenome-wide association studies, Nature Methods, vol.3, issue.10, pp.949-55, 2013.
DOI : 10.1093/nar/gkp335

L. Reinius, N. Acevedo, M. Joerink, G. Pershagen, S. Dahlén et al., Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility, PLoS ONE, vol.4, issue.7, p.41361, 2012.
DOI : 10.1371/journal.pone.0041361.s007

Y. Yang, Q. Tang, M. Zhao, G. Liang, H. Wu et al., The effect of mycophenolic acid on epigenetic modifications in lupus CD4+T cells, Clinical Immunology, vol.158, issue.1, 2015.
DOI : 10.1016/j.clim.2015.03.005

Y. Jo, J. Lim, Y. Kim, K. Han, W. Min et al., CD4 T-cell function assay using Cylex ImmuKnow and lymphocyte subset recovery following allogeneic hematopoietic stem cell transplantation, Transplant Immunology, vol.33, issue.2, pp.78-83, 2015.
DOI : 10.1016/j.trim.2015.09.001

G. Oliver, S. Hart, and E. Klee, Bioinformatics for Clinical Next Generation Sequencing, Clinical Chemistry, vol.61, issue.1, pp.124-159
DOI : 10.1373/clinchem.2014.224360

R. Epigénétique, expression des gènes via la méthylation de l, p.13