.. Functional-motor-neuron-differentiation-from-hipscs, 113 3.6.1 Motor neuron differentiation protocol, 115 3.6.2 Effect of beginning cell states and substrates on differentiation, p.121

I. Vakonakis and I. Campbell, Extracellular matrix: from atomic resolution to ultrastructure. Current opinion in cell biology, pp.578-83, 2007.

M. Laiho and J. Keski-oja, Growth factors in the regulation of pericellular proteolysis: a review. Cancer research, pp.2533-53, 1989.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen et al., The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology, vol.124, issue.10, pp.947-53, 2005.
DOI : 10.1007/s00249-003-0282-2

B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis et al., Essential cell biology: Garland Science, 2013.

G. Giannone and M. Sheetz, Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends in cell biology, pp.213-236, 2006.

E. Hay, Cell biology of extracellular matrix, 2013.

O. Merten, Introduction to animal cell culture technology???past, present and future, Cytotechnology, vol.131, issue.S2, pp.1-7, 2006.
DOI : 10.1007/s10616-006-9009-4

H. Deutsch, Fetuin: the mucoprotein of fetal calf serum, Journal of Biological Chemistry, vol.208, pp.669-78, 1954.

D. Mooney and H. Vandenburgh, Cell Delivery Mechanisms for Tissue Repair, Cell Stem Cell, vol.2, issue.3, pp.205-218, 2008.
DOI : 10.1016/j.stem.2008.02.005

T. Reya, S. Morrison, M. Clarke, and I. Weissman, Stem cells, cancer, and cancer stem cells, Nature, vol.414, issue.6859, pp.105-116, 2001.
DOI : 10.1038/35102167

G. Spangrude, S. Heimfeld, and I. Weissman, Purification and characterization of mouse hematopoietic stem cells, Science, vol.241, issue.4861, pp.58-62, 1988.
DOI : 10.1126/science.2898810

C. Baum, I. Weissman, A. Tsukamoto, A. Buckle, and B. Peault, Isolation of a candidate human hematopoietic stem-cell population., Proceedings of the National Academy of Sciences, vol.89, issue.7, pp.2804-2812, 1992.
DOI : 10.1073/pnas.89.7.2804

D. Da-conceição, Stem Cells in Microfluidics, 2011.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [31] Kotton DN. The 2012 Nobel Prize in Physiology or Medicine. [32] e Castro VP, Carbolante EMdSR. Reprogramming of Human Fibroblasts into Pluripotent Cells: Role of Lentiviral Mediated Transcription Factors, Cell. Stem Cells and Cancer Stem Cells, vol.126, issue.5, pp.663-76, 2006.

J. Robertson, Embryo stem cell research: ten years of controversy. The Journal of Law, Medicine & Ethics, vol.38, pp.191-203, 2010.

G. Daley, Customized human embryonic stem cells, Nature Biotechnology, vol.23, issue.7, pp.826-834, 2005.
DOI : 10.1056/NEJMra035397

H. Inoue, N. Nagata, H. Kurokawa, and S. Yamanaka, iPS cells: a game changer for future medicine, The EMBO Journal, vol.33, issue.5, pp.409-426, 2014.
DOI : 10.1002/embj.201387098

M. Bellin, M. Marchetto, F. Gage, and C. Mummery, Induced pluripotent stem cells: the new patient? Nature reviews Molecular cell biology, pp.713-739, 2012.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors

C. Hughes, L. Postovit, and G. Lajoie, Matrigel: A complex protein mixture required for optimal growth of cell culture, PROTEOMICS, vol.8, issue.9, pp.1886-90, 2010.
DOI : 10.1002/pmic.200900758

A. Higuchi, Q. Ling, S. Kumar, M. Munusamy, A. Alarfajj et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing, Progress in Polymer Science, vol.39, issue.7, pp.1348-74, 2014.
DOI : 10.1016/j.progpolymsci.2014.01.002

X. Li, Z. Du, E. Zarnowska, M. Pankratz, L. Hansen et al., Specification of motoneurons from human embryonic stem cells, Nature Biotechnology, vol.129, issue.2, pp.215-236, 2005.
DOI : 10.1016/j.ydbio.2003.12.034

S. Chambers, C. Fasano, E. Papapetrou, M. Tomishima, M. Sadelain et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nature Biotechnology, vol.15, issue.3, pp.275-80, 2009.
DOI : 10.1038/nature06534

G. Barriere, M. Tartary, M. Rigaud, J. Lee, S. Dedhar et al., Epithelial mesenchymal transition: a new insight into the detection of circulating tumor cells. ISRN oncology The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of cell biology, pp.973-81, 2006.

J. Pouysségur, F. Dayan, and N. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.9, issue.7092, pp.437-480, 2006.
DOI : 10.1038/nature04871

A. Singh and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer, Oncogene, vol.104, issue.34, pp.4741-51, 2010.
DOI : 10.1038/onc.2010.215

C. Scheel and R. Weinberg, Cancer stem cells and epithelial?mesenchymal transition: concepts and molecular links. Seminars in cancer biology, pp.396-403, 2012.

V. Müller, N. Stahmann, S. Riethdorf, T. Rau, T. Zabel et al., Circulating Tumor Cells in Breast Cancer: Correlation to Bone Marrow Micrometastases, Heterogeneous Response to Systemic Therapy and Low Proliferative Activity, Clinical Cancer Research, vol.11, issue.10, pp.3678-85, 2005.
DOI : 10.1158/1078-0432.CCR-04-2469

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

A. Chiang and J. Massagué, Molecular Basis of Metastasis, New England Journal of Medicine, vol.359, issue.26, pp.2814-2837, 2008.
DOI : 10.1056/NEJMra0805239

N. Bednarz-knoll, C. Alix-panabières, and K. Pantel, Plasticity of disseminating cancer cells in patients with epithelial malignancies, Cancer and Metastasis Reviews, vol.223, issue.4, pp.673-87, 2012.
DOI : 10.1007/s10555-012-9370-z

J. Christiansen and A. Rajasekaran, Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer research, pp.8319-8345, 2006.

M. Cristofanilli, G. Budd, M. Ellis, A. Stopeck, J. Matera et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer

S. Arya, B. Lim, and A. Rahman, Enrichment, detection and clinical significance of circulating tumor cells, Lab on a Chip, vol.116, issue.11, pp.1995-2027, 2013.
DOI : 10.1039/c3lc00009e

F. Farace, C. Massard, N. Vimond, F. Drusch, N. Jacques et al., A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas, British Journal of Cancer, vol.156, issue.6, pp.847-53, 2011.
DOI : 10.1038/bjc.2011.294

J. Myung, K. Gajjar, J. Saric, D. Eddington, and S. Hong, Dendrimer-Mediated Multivalent Binding for the Enhanced Capture of Tumor Cells, Angewandte Chemie, vol.23, issue.49, pp.11973-11979, 2011.
DOI : 10.1002/ange.201105508

Y. Liu, S. Guo, Z. Zhang, W. Huang, D. Baigl et al., A micropillar-integrated smart microfluidic device for specific capture and sorting of cells, ELECTROPHORESIS, vol.249, issue.79
DOI : 10.1002/elps.200700212

S. Wang, K. Liu, J. Liu, Z. Yu, X. Xu et al., Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers, Angewandte Chemie International Edition, vol.10, issue.13, pp.3084-3092, 2011.
DOI : 10.1002/anie.201005853

Y. Chen, P. Li, P. Huang, Y. Xie, J. Mai et al., Rare cell isolation and analysis in microfluidics, Lab on a Chip, vol.11, issue.4, pp.626-671, 2014.
DOI : 10.1002/elps.201300196

J. Thiery, Epithelial???mesenchymal transitions in tumour progression, Nature Reviews Cancer, vol.59, issue.6, pp.442-54, 2002.
DOI : 10.1038/nrc822

M. Yu, A. Bardia, B. Wittner, S. Stott, M. Smas et al., Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition, Science, vol.339, issue.6119, pp.580-447, 2005.
DOI : 10.1126/science.1228522

O. 'brien and F. , Biomaterials & scaffolds for tissue engineering, Materials Today, vol.14, issue.3, pp.88-95, 2011.
DOI : 10.1016/S1369-7021(11)70058-X

L. Hench, Bioceramics, a clinical success, American Ceramic Society Bulletin, vol.77, pp.67-74, 1998.

A. Ambrosio, J. Sahota, Y. Khan, and C. Laurencin, A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization

M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Science and Technology of Advanced Materials, vol.37, issue.5, pp.445-54, 2003.
DOI : 10.1016/S0142-9612(00)00216-7

G. Chen, T. Ushida, and T. Tateishi, Scaffold design for tissue engineering

I. Jones, L. Currie, and R. Martin, A guide to biological skin substitutes, British Journal of Plastic Surgery, vol.55, issue.3, pp.185-93, 2002.
DOI : 10.1054/bjps.2002.3800

L. Nair and C. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery. Tissue engineering I: Springer, pp.47-90, 2006.

I. Kim, S. Seo, H. Moon, M. Yoo, I. Park et al., Chitosan and its derivatives for tissue engineering applications, Biotechnology Advances, vol.26, issue.1, pp.1-21, 2008.
DOI : 10.1016/j.biotechadv.2007.07.009

J. Glowacki and S. Mizuno, Collagen scaffolds for tissue engineering, Biopolymers, vol.19, issue.5, pp.338-382, 2008.
DOI : 10.1002/bip.20871

L. Cen, W. Liu, L. Cui, W. Zhang, and Y. Cao, Collagen tissue engineering: development of novel biomaterials and applications. Pediatric research, pp.492-498, 2008.

A. Lynn, I. Yannas, and W. Bonfield, Antigenicity and immunogenicity of collagen, Journal of Biomedical Materials Research, vol.19, issue.2
DOI : 10.1002/jbm.b.30096

B. Giménez and P. Montero, Fish gelatin: a renewable material for developing active biodegradable films, Trends in Food Science & Technology. Biomaterials, vol.2034, pp.3-16331, 2009.

A. Higuchi, Q. Ling, Y. Ko, Y. Chang, and A. Umezawa, Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells, Chemical Reviews, vol.111, issue.5, pp.3021-3056, 2011.
DOI : 10.1021/cr1003612

L. Buttery, Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium, Biotechnology and bioengineering, vol.105, pp.130-170, 2010.

S. Kim, S. Ahn, J. Lee, D. Lim, K. Kim et al., A Novel Culture Technique for Human Embryonic Stem Cells Using Porous Membranes, Stem Cells, vol.57, issue.10, pp.2601-2610, 2007.
DOI : 10.1634/stemcells.2006-0814

C. Sargent, G. Berguig, and T. Mcdevitt, Cardiomyogenic Differentiation of Embryoid Bodies Is Promoted by Rotary Orbital Suspension Culture, Tissue Engineering Part A, vol.15, issue.2, pp.331-373, 2009.
DOI : 10.1089/ten.tea.2008.0145

B. Phillips, R. Horne, T. Lay, W. Rust, T. Teck et al., Attachment and growth of human embryonic stem cells on microcarriers, Journal of Biotechnology, vol.138, issue.1-2, pp.24-32, 2008.
DOI : 10.1016/j.jbiotec.2008.07.1997

X. Chen, A. Chen, T. Woo, A. Choo, S. Reuveny et al., Investigations into the Metabolism of Two-Dimensional Colony and Suspended Microcarrier Cultures of Human Embryonic Stem Cells in Serum-Free Media, Stem Cells and Development, vol.19, issue.11, pp.1781-92, 2010.
DOI : 10.1089/scd.2010.0077

C. Chen, M. Mrksich, S. Huang, G. Whitesides, and D. Ingber, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, pp.1425-1433, 1997.
DOI : 10.1126/science.276.5317.1425

S. Bhatia, U. Balis, M. Yarmush, and M. Toner, Effect of cell?cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal, Research Part B: Applied Biomaterials, vol.98, pp.89-100, 2011.

D. Hutmacher, Scaffolds in tissue engineering bone and cartilage

S. Mitragotri and J. Lahann, Physical approaches to biomaterial design, Nature Materials, vol.53, issue.1, pp.15-23, 2009.
DOI : 10.1007/s11095-006-9197-9

C. Agrawal and R. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, Journal of Biomedical Materials Research, vol.5, issue.2, pp.141-50, 2001.
DOI : 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

T. Karande, J. Ong, and C. Agrawal, Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing, Annals of Biomedical Engineering, vol.23, issue.4, pp.1728-1771, 2004.
DOI : 10.1007/s10439-004-7825-2

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-91, 2005.
DOI : 10.1016/j.biomaterials.2005.02.002

J. Wei, M. Yoshinari, S. Takemoto, M. Hattori, E. Kawada et al., Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.41, issue.1, pp.66-75, 2007.
DOI : 10.1002/jbm.b.30638

J. Charest, A. García, and W. King, Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries, Biomaterials, vol.28, issue.13
DOI : 10.1016/j.biomaterials.2007.01.020

J. Hyun, J. Chen, L. Setton, and A. Chilkoti, Patterning cells in highly deformable microstructures: Effect of plastic deformation of substrate on cellular phenotype and gene expression, Biomaterials, vol.27, issue.8, pp.1444-51, 2006.
DOI : 10.1016/j.biomaterials.2005.08.018

T. Lee and P. Niederer, Basic Engineering for Medics and Biologists: An ESEM Primer, 2010.

S. Hollister, Scaffold engineering: a bridge to where?, Biofabrication, vol.1, issue.1, p.12001, 2009.
DOI : 10.1088/1758-5082/1/1/012001

A. Mikos, L. Lu, J. Temenoff, and J. Tessmar, Synthetic bioresorbable polymer scaffolds, pp.237-282, 2004.

P. Plikk, S. Målberg, and A. Albertsson, Design of Resorbable Porous Tubular Copolyester Scaffolds for Use in Nerve Regeneration, Biomacromolecules, vol.10, issue.5, pp.1259-64, 2009.
DOI : 10.1021/bm900093r

Y. Huang and D. Mooney, Gas foaming to fabricate polymer scaffolds in tissue engineering Scaffoldings in tissue engineering. 2005:159. structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation, Desalination, vol.287, pp.326-365, 2012.

M. Tibbitt and K. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnology and Bioengineering, vol.17, issue.13, pp.655-63, 2009.
DOI : 10.1002/bit.22361

A. Azad, N. Sermsintham, S. Chandrkrachang, and W. Stevens, Chitosan membrane as a wound-healing dressing: Characterization and clinical application, Journal of Biomedical Materials Research, vol.341, issue.2
DOI : 10.1002/jbm.b.30000

H. Yoo and H. Kim, Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.16, issue.2, pp.326-359, 2008.
DOI : 10.1002/jbm.b.30950

B. Jafari, F. Rafie, S. Davaran, R. Takaoka, and Y. Tabata, Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration, BioImpacts: BI. Journal of Controlled Release, vol.1143, pp.135201-135207, 2010.

S. Bryant and K. Anseth, The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels, Biomaterials, vol.22, issue.6, pp.619-645, 2001.
DOI : 10.1016/S0142-9612(00)00225-8

N. Ashammakhi, A. Ndreu, Y. Yang, H. Ylikauppila, and L. Nikkola, Nanofiber-based scaffolds for tissue engineering, European Journal of Plastic Surgery, vol.7, issue.7, pp.135-184, 2012.
DOI : 10.1007/s00238-008-0217-3

C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering, Biomaterials, vol.25, issue.5, pp.877-86, 2004.
DOI : 10.1016/S0142-9612(03)00593-3

J. Venugopal and S. Ramakrishna, Applications of Polymer Nanofibers in Biomedicine and Biotechnology, Applied Biochemistry and Biotechnology, vol.125, issue.3, pp.147-57, 2005.
DOI : 10.1385/ABAB:125:3:147

J. Norman and T. Desai, Methods for Fabrication of Nanoscale Topography for Tissue Engineering Scaffolds, Annals of Biomedical Engineering, vol.26, issue.9???10, pp.89-101, 2006.
DOI : 10.1007/s10439-005-9005-4

J. Zeleny, N. Zhu, and X. Chen, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces Biofabrication of tissue scaffolds, Physical Review, vol.3, 1914.

E. Sackmann, A. Fulton, and D. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.9, issue.7491, pp.181-190, 2014.
DOI : 10.1021/ac301512f

S. Terry, J. Jerman, and J. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Transactions on Electron Devices, vol.26, issue.12, pp.1880-1886, 1979.
DOI : 10.1109/T-ED.1979.19791

J. Doroszewski, J. Skierski, and L. Przaa?-dka, Interaction of neoplastic cells with glass surface under flow conditions. Experimental cell research, pp.335-378, 1977.

A. Manz, N. Graber, and W. Há, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.244-252, 1990.
DOI : 10.1016/0925-4005(90)80209-I

G. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-73, 2006.
DOI : 10.1038/nature05058

H. Andersson, . Van-den, and A. Berg, Microfluidic devices for cellomics: a review, Sensors and Actuators B: Chemical, vol.92, issue.3, pp.315-340, 2003.
DOI : 10.1016/S0925-4005(03)00266-1

S. Sia and G. Whitesides, Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies, ELECTROPHORESIS, vol.24, issue.21, pp.3563-76, 2003.
DOI : 10.1002/elps.200305584

B. Xiong, K. Ren, Y. Shu, Y. Chen, B. Shen et al., Recent Developments in Microfluidics for Cell Studies, Advanced Materials, vol.12, issue.31, pp.5525-5557, 2014.
DOI : 10.1002/adma.201305348

J. El-ali, P. Sorger, and K. Jensen, Cells on chips, Nature, vol.4, issue.7101, pp.403-414, 2006.
DOI : 10.1038/nature05063

D. Huh, W. Gu, Y. Kamotani, J. Grotberg, and S. Takayama, Microfluidics for flow cytometric analysis of cells and particles, Physiological Measurement, vol.26, issue.3, p.73, 2005.
DOI : 10.1088/0967-3334/26/3/R02

M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. Haber, Circulating tumor cells: approaches to isolation and characterization. The Journal of cell biology, pp.373-82, 2011.

Y. Li, B. Chandran, C. Lim, and X. Chen, Rational Design of Materials Interface for Efficient Capture of Circulating Tumor Cells, Advanced Science, vol.36, issue.11, 2015.
DOI : 10.1002/advs.201500118

R. Pal, M. Yang, R. Lin, B. Johnson, N. Srivastava et al., An integrated microfluidic device for influenza and other genetic analyses, Lab on a Chip, vol.16, issue.10
DOI : 10.1039/b505994a

D. Hern and J. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing, Journal of Biomedical Materials Research, vol.269, issue.2, pp.266-76, 1998.
DOI : 10.1002/(SICI)1097-4636(199802)39:2<266::AID-JBM14>3.0.CO;2-B

S. Liu, P. Ee, C. Ke, J. Hedrick, and Y. Yang, Biodegradable poly(ethylene glycol)???peptide hydrogels with well-defined structure and properties for cell delivery, Biomaterials, vol.30, issue.8
DOI : 10.1016/j.biomaterials.2008.11.023

W. Koh, A. Revzin, and M. Pishko, Poly(ethylene glycol) Hydrogel Microstructures Encapsulating Living Cells, Langmuir, vol.18, issue.7, pp.2459-62, 2002.
DOI : 10.1021/la0115740

J. Temenoff, K. Athanasiou, R. Lebaron, and A. Mikos, Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering, Journal of Biomedical Materials Research, vol.32, issue.3, pp.429-466, 2002.
DOI : 10.1002/jbm.1259

H. Ju, B. Mccloskey, A. Sagle, V. Kusuma, and B. Freeman, Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials, Journal of Membrane Science, vol.330, issue.1-2, pp.180-188, 2009.
DOI : 10.1016/j.memsci.2008.12.054

J. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling et al., Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells, Lab on a Chip, vol.39, issue.10
DOI : 10.1039/b705085m

V. Guarino, A. Gloria, M. Raucci, and A. L. , Hydrogel-Based Platforms for the Regeneration of Osteochondral Tissue and Intervertebral Disc, Polymers, vol.4, issue.4, pp.1590-612, 2012.
DOI : 10.3390/polym4031590

T. Hill, Effect of rotation on the diffusion-controlled rate of ligand-protein association., Proceedings of the National Academy of Sciences, vol.72, issue.12, pp.4918-4940, 1975.
DOI : 10.1073/pnas.72.12.4918

O. Bég and O. Makinde, Viscoelastic flow and species transfer in a Darcian high-permeability channel, Journal of Petroleum Science and Engineering, vol.76, issue.3-4, pp.93-102, 2011.
DOI : 10.1016/j.petrol.2011.01.008

J. Nitsche, H. Frasch, M. Verhulsel, M. Vignes, S. Descroix et al., Dynamics of diffusion with reversible binding in microscopically heterogeneous membranes: General theory and applications to dermal penetration A review of microfabrication and hydrogel engineering for micro-organs on chips, Chemical Engineering Science. Biomaterials, vol.6635, pp.2019-411816, 2011.

M. Madou, Fundamentals of microfabrication: the science of miniaturization, www.microchem.com/Prod-SU8_KMPR.htm. [41] Xia YWGM. Soft lithography, pp.550-75, 1998.

J. Rogers and R. Nuzzo, Recent progress in soft lithography, Materials Today, vol.8, issue.2, pp.50-56, 2005.
DOI : 10.1016/S1369-7021(05)00702-9

L. Hln and C. Vieu, Nanoscale Patterns of Dendrimers Obtained by Soft Lithography Using Elastomeric Stamps Spontaneously Structured by Plasma Treatment, Langmuir, vol.25, pp.7752-7760, 2009.

S. Kang, B. Kim, K. Kim, Y. Zhao, Z. Chen et al., Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs, Advanced Materials, vol.9, issue.31, pp.3531-3536, 2011.
DOI : 10.1002/adma.201101570

Y. Xia and G. Whitesides, Soft lithography. Annual review of materials science, pp.153-84, 1998.

A. Plecis and Y. Chen, Fabrication of microfluidic devices based on glass???PDMS???glass technology, Microelectronic Engineering, vol.84, issue.5-8, pp.1265-1274, 2007.
DOI : 10.1016/j.mee.2007.01.276

A. Kumar and G. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ??????ink?????? followed by chemical etching, Applied Physics Letters, vol.63, issue.14, pp.2002-2006, 1993.
DOI : 10.1063/1.110628

M. Lutolf and J. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature Biotechnology, vol.961, issue.1, pp.47-55, 2005.
DOI : 10.1172/JCI200418420

S. Bhatia and D. Ingber, Microfluidic organs-on-chips. Nature biotechnology, 2014.

K. Rho, L. Jeong, G. Lee, B. Seo, Y. Park et al., Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing, Biomaterials, vol.27, issue.8, pp.1452-61, 2006.
DOI : 10.1016/j.biomaterials.2005.08.004

S. Liu, Y. Kau, C. Chou, J. Chen, R. Wu et al., Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing, Journal of Membrane Science, vol.355, issue.1-2, pp.53-62, 2010.
DOI : 10.1016/j.memsci.2010.03.012

S. Li, J. Shi, L. Liu, J. Li, L. Jiang et al., Fabrication of gelatin nanopatterns for cell culture studies, Microelectronic Engineering, vol.110, pp.70-74, 2013.
DOI : 10.1016/j.mee.2013.01.053

D. Cho, S. Lee, and M. Frey, Characterizing zeta potential of functional nanofibers in a microfluidic device, Journal of Colloid and Interface Science, vol.372, issue.1, pp.252-60, 2012.
DOI : 10.1016/j.jcis.2012.01.007

A. Alwan, Global status report on noncommunicable diseases 2010: World Health Organization, 2011.

M. Naghavi, H. Wang, R. Lozano, A. Davis, X. Liang et al., Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death: a systematic analysis for the Global Burden of Disease Study 2013, Heart disease and stroke statistics-2015 update, pp.29-40, 1990.

J. Chong, X. Yang, C. Don, E. Minami, Y. Liu et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts, Nature, vol.22, issue.7504, pp.273-280, 2014.
DOI : 10.1038/nature13233

X. Li, G. Meng, R. Krawetz, S. Liu, and D. Rancourt, The ROCK Inhibitor Y-27632 Enhances the Survival Rate of Human Embryonic Stem Cells Following Cryopreservation, Stem Cells and Development, vol.17, issue.6, pp.1079-85, 2008.
DOI : 10.1089/scd.2007.0247

K. Riento and A. Ridley, Rocks: multifunctional kinases in cell behaviour, Nature Reviews Molecular Cell Biology, vol.4, issue.6, pp.446-56, 2003.
DOI : 10.1038/nrm1128

J. Dahlmann, G. Kensah, H. Kempf, D. Skvorc, A. Gawol et al., The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells, Biomaterials, vol.34, issue.10, pp.2463-71, 2013.
DOI : 10.1016/j.biomaterials.2012.12.024

P. Burridge, S. Thompson, M. Millrod, S. Weinberg, X. Yuan et al., A Universal System for Highly Efficient Cardiac Differentiation of Human Induced Pluripotent Stem Cells That Eliminates Interline Variability, PLoS ONE, vol.451, issue.4, p.18293, 2011.
DOI : 10.1371/journal.pone.0018293.s016

K. Yamada and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D, Cell, vol.130, issue.4
DOI : 10.1016/j.cell.2007.08.006

F. Pampaloni, E. Reynaud, and E. Stelzer, The third dimension bridges the gap between cell culture and live tissue, Nature Reviews Molecular Cell Biology, vol.48, issue.10, pp.839-884, 2007.
DOI : 10.1038/nrm2236

I. Minami, K. Yamada, T. Otsuji, T. Yamamoto, Y. Shen et al., A Small Molecule that Promotes Cardiac Differentiation of Human Pluripotent Stem Cells under Defined, Cytokine- and Xeno-free Conditions, Cell Reports, vol.2, issue.5, pp.1448-60, 2012.
DOI : 10.1016/j.celrep.2012.09.015

A. Mehta, V. Verma, M. Nandihalli, C. Ramachandra, G. Sequiera et al., A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells, PloS one. PloS one, vol.94, pp.103485-103511, 2008.

N. Gaspard and P. Vanderhaeghen, From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders. Developmental medicine and child neurology, pp.13-20, 2011.

C. Altmann and A. Brivanlou, Neural patterning in the vertebrate embryo, International review of cytology, vol.203, pp.447-82, 2001.
DOI : 10.1016/S0074-7696(01)03013-3

A. Levine and A. Brivanlou, Proposal of a model of mammalian neural induction, Developmental Biology, vol.308, issue.2, pp.247-56, 2007.
DOI : 10.1016/j.ydbio.2007.05.036

I. Chambers and S. Tomlinson, The transcriptional foundation of pluripotency, Development, vol.136, issue.14, pp.2311-2333, 2009.
DOI : 10.1242/dev.024398

A. Swistowski, J. Peng, Q. Liu, P. Mali, M. Rao et al., Efficient Generation of Functional Dopaminergic Neurons from Human Induced Pluripotent Stem Cells Under Defined Conditions, STEM CELLS, vol.30, issue.10, pp.1893-904, 2010.
DOI : 10.1002/stem.499

D. Doi, B. Samata, M. Katsukawa, T. Kikuchi, A. Morizane et al., Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation Stem cell reports, pp.337-50, 2014.

A. Maroof, S. Keros, J. Tyson, S. Ying, Y. Ganat et al., Directed Differentiation and Functional Maturation of Cortical Interneurons from Human Embryonic Stem Cells, Cell Stem Cell, vol.12, issue.5, pp.559-72, 2013.
DOI : 10.1016/j.stem.2013.04.008

C. Wonders and S. Anderson, The origin and specification of cortical interneurons, Nature Reviews Neuroscience, vol.5, issue.9, pp.687-96, 2006.
DOI : 10.1038/nrn1954

X. Li, Z. Du, E. Zarnowska, M. Pankratz, L. Hansen et al., Specification of motoneurons from human embryonic stem cells, Nature Biotechnology, vol.129, issue.2, pp.215-236, 2005.
DOI : 10.1016/j.ydbio.2003.12.034

X. Lian, X. Bao, A. Ahmad, J. Liu, Y. Wu et al., Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of Wnt signaling Stem cell reports, pp.804-820, 2014.

H. Wilson, S. Canfield, M. Hjortness, S. Palecek, and E. Shusta, Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids and Barriers of the CNS, p.13, 2015.

A. Balgude, X. Yu, A. Szymanski, and R. Bellamkonda, Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures, Biomaterials, vol.22, issue.10, pp.1077-84, 2001.
DOI : 10.1016/S0142-9612(00)00350-1

M. Tessier-lavigne and C. Goodman, The Molecular Biology of Axon Guidance, Science, vol.274, issue.5290
DOI : 10.1126/science.274.5290.1123

A. Jemal, F. Bray, M. Center, J. Ferlay, E. Ward et al., CA: a cancer journal for clinicians, Global cancer statistics, pp.69-90, 2011.

M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. Haber, Circulating tumor cells: approaches to isolation and characterization. The Journal of cell biology, pp.373-82, 2011.

A. Fischer, Circulating tumor cells: seeing is believing, Archives of Pathology & Laboratory Medicine, vol.133, pp.1367-1376, 2009.

A. Yusa, M. Toneri, T. Masuda, S. Ito, S. Yamamoto et al., Development of a New Rapid Isolation Device for Circulating Tumor Cells (CTCs) Using 3D Palladium Filter and Its Application for Genetic Analysis, PLoS ONE, vol.16, issue.2, p.88821, 2014.
DOI : 10.1371/journal.pone.0088821.s002

R. Harouaka, M. Nisic, and S. Zheng, Circulating Tumor Cell Enrichment Based on Physical Properties, Journal of Laboratory Automation, vol.31, issue.17, pp.455-68, 2013.
DOI : 10.1172/JCI39104

H. Hou, M. Warkiani, B. Khoo, Z. Li, R. Soo et al., Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific reports, p.1259, 2013.

S. Hur, A. Mach, D. Carlo, and D. , High-throughput size-based rare cell enrichment using microscale vortices, Biomicrofluidics, vol.5, issue.2, p.22206, 2011.
DOI : 10.1063/1.3576780.1

J. Kelm, N. Timmins, C. Brown, M. Fussenegger, and L. Nielsen, Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types, Biotechnology and Bioengineering, vol.123, issue.2, pp.173-80, 2003.
DOI : 10.1002/bit.10655

G. Mehta, A. Hsiao, M. Ingram, G. Luker, and S. Takayama, Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy, Journal of Controlled Release, vol.164, issue.2
DOI : 10.1016/j.jconrel.2012.04.045

J. Haycock, 3D Cell Culture: A Review of Current Approaches and Techniques
DOI : 10.1007/978-1-60761-984-0_1

S. Kosvintsev, I. Cumming, and S. Zhdanov, Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system Pore design and engineering for filters and membranes, PloS one. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.8364, pp.161-74, 2006.

C. Lim, E. Zhou, and S. Quek, Mechanical models for living cells???a review, Journal of Biomechanics, vol.39, issue.2, pp.195-216, 2006.
DOI : 10.1016/j.jbiomech.2004.12.008

J. Kuo, Y. Zhao, P. Schiro, L. Ng, D. Lim et al., Deformability considerations in filtration of biological cells, Lab on a Chip, vol.1, issue.7, pp.837-879, 2010.
DOI : 10.1039/b922301k

R. Harouaka, M. Zhou, Y. Yeh, W. Khan, A. Das et al., Flexible Micro Spring Array Device for High-Throughput Enrichment of Viable Circulating Tumor Cells, Clinical Chemistry, vol.60, issue.2, pp.323-356, 2014.
DOI : 10.1373/clinchem.2013.206805

J. Dahlmann, G. Kensah, H. Kempf, D. Skvorc, A. Gawol et al., The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells, Biomaterials, vol.34, issue.10, pp.2463-71, 2013.
DOI : 10.1016/j.biomaterials.2012.12.024

V. Sanna, M. Jaggi, V. Kumar, and A. Burman, Evaluation of 5-hydroxy-2,3-diaryl (substituted)-cyclopent-2-en-1-ones as cis-restricted analogues of combretastatin A-4

P. Olive and R. Durand, Detection of Hypoxic cells in a Murine Tumour With the Use of the Comet Assay, JNCI Journal of the National Cancer Institute, vol.84, issue.9, pp.707-718, 1992.
DOI : 10.1093/jnci/84.9.707

A. Oloumi, W. Lam, J. Banath, and P. Olive, Identification of genes differentially expressed in V79 cells grown as multicell spheroids, International Journal of Radiation Biology, vol.78, issue.6, pp.483-92, 2002.
DOI : 10.1080/09553000210122299

Z. Eroglu, O. Fielder, and G. Somlo, Analysis of Circulating Tumor Cells in Breast Cancer, Journal of the National Comprehensive Cancer Network, vol.11, pp.977-85, 2013.

J. Kling, Beyond counting tumor cells, Nature Biotechnology, vol.107, issue.7, pp.578-80, 2012.
DOI : 10.1038/nbt.2295

A. Deutsch and S. Dormann, Cellular automaton modeling of biological pattern formation2005

G. Hu and D. Li, Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel, Biomedical Microdevices, vol.128, issue.3, pp.315-338, 2007.
DOI : 10.1007/s10544-006-9035-1

T. Kim, K. Lee, and J. Choi, 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation, Biomaterials, vol.34, issue.34, pp.8660-70, 2013.
DOI : 10.1016/j.biomaterials.2013.07.101

Y. Huang, A. Baji, H. Tien, Y. Yang, S. Yang et al., Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films, Nanotechnology, vol.22, issue.47, p.475603, 2011.
DOI : 10.1088/0957-4484/22/47/475603

S. Shah, P. Yin, T. Uehara, S. Chueng, Y. L. Lee et al., Guiding Stem Cell Differentiation into Oligodendrocytes Using Graphene-Nanofiber Hybrid Scaffolds, Advanced Materials, vol.4, issue.22, pp.3673-80, 2014.
DOI : 10.1002/adma.201400523

W. Lee, C. Lim, H. Shi, L. Tang, Y. Wang et al., Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide, ACS Nano, vol.5, issue.9, pp.7334-7375, 2011.
DOI : 10.1021/nn202190c

G. Chen, D. Pang, S. Hwang, H. Tuan, and Y. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation, Biomaterials, vol.33, issue.2, pp.418-445, 2012.
DOI : 10.1016/j.biomaterials.2011.09.071

T. Nayak, H. Andersen, V. Makam, C. Khaw, S. Bae et al., Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells, ACS Nano, vol.5, issue.6, pp.4670-4678, 2011.
DOI : 10.1021/nn200500h

Y. Tang, J. Shi, S. Li, L. Wang, E. Yvon et al., Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells Scientific reports, 2014.

Y. Tang, Y. Chen, and L. Wang, Jian Shi?Cell culture device

Y. Tang, J. Liu, and Y. Chen, Agarose multi-wells for tumor spheroid formation and anti-cancer drug test. Microelectronic engineering

Y. Tang, Off-ground culture using a net of nanofibers for the formation of cardiac patch derived from human induced pluripotent stem cells

Y. Tang, Off-ground motor neuron differentiation from induced pluripotent stem cells

B. Wang, J. Shi, Y. Tang, J. Wei, X. Tu et al., Microelectronic engineering

J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu et al., Fabrication of Adjacent Micropillar Arrays with Different Heights for Cell Studies Microelectronic engineering

X. Tu, L. Wang, J. Wei, B. Wang, Y. Tang et al., 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectronic engineering
URL : https://hal.archives-ouvertes.fr/hal-01285501