J. Fenk, «RF-trends in mobile communication», Solid-State Circuits Conference, ESSCIRC '03. Proceedings of the 29th European, pp.21-27, 2003.

A. S. Morris and V. Steel, Integrated tunable systems for scalable 4G radios, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), pp.1-4, 2013.
DOI : 10.1109/MWSYM.2013.6697717

G. M. Rebeiz, K. Entesari, I. Reines, S. Park, M. A. El-tanani et al., Tuning in to RF MEMS, IEEE Microwave Magazine, vol.10, issue.6, pp.55-72, 2009.
DOI : 10.1109/MMM.2009.933592

Z. Tsai, M. Yeh, M. Lei, H. Chang, C. Lin et al., «DC-to-135 GHz and 15-to-135 GHz SPDT traveling wave switches using FET-integrated CPW line structure», IEEE MTT-S International Microwave Symposium Digest, p.4, 2005.

L. E. Larson, R. H. Hackett, M. A. Melendes, and R. F. Lohr, «Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits», Microwave and Millimeter-Wave Monolithic Circuits Symposium, Digest of Papers, pp.27-30, 1991.

C. Goldsmith, T. Lin, B. Powers, W. Wu, and B. , Norvell, «Micromechanical membrane switches for microwave applications», Microwave Symposium Digest, IEEE MTT-S International, vol.1, pp.91-94, 1995.

G. M. Rebeiz and J. B. , RF MEMS switches and switch circuits, IEEE Microwave Magazine, vol.2, issue.4, pp.59-71, 2001.
DOI : 10.1109/6668.969936

E. Gatard, R. Sommet, P. Bouysse, R. Quere, M. Stanislawiak et al., Bureau, «High power S band limiter simulation with a physics-based accurate nonlinear PIN diode model», Microwave Integrated Circuit Conference, pp.72-75, 2007.

A. V. Bezruk, A. Y. Yushchenko, G. I. Ayzenshtat, V. G. Bozhkov, and V. I. , Perfiliev, «The microwave power limiter based on pin-diodes for the frequency range of 100-110 GHz in form of waveguide MIC», 23rd International Crimean Conference, pp.74-75, 2013.

J. Zhang, S. W. Cheung, and T. I. Yuk, «A compact 6-bit phase shifter with high-power capacity based on composite right/left-handed transmission line», European Microwave Conference (EuMC), pp.437-440, 2010.

M. U. Nazir, M. Kashif, N. Ahsan, and Z. Y. Malik, PIN diode modelling for simulation and development of high power limiter, digitally controlled phase shifter and high isolation SPDT switch, Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST), pp.439-445, 2013.
DOI : 10.1109/IBCAST.2013.6512197

K. Kobayashi, A. K. Oki, D. K. Umemoto, S. Claxton, and D. C. , Streit, «GaAs HBT PIN diode attenuators and switches», IEEE-Microwave and Millimeter-Wave Monolithic Circuits Symposium, Digest of Papers, pp.151-154, 1993.

N. Camara, K. Zekentes, L. P. Romanov, A. V. Kirillov, M. S. Boltovets et al., Microwave p-i-n diodes and switches based on 4H-SiC, IEEE Electron Device Letters, vol.27, issue.2, pp.108-110, 2006.
DOI : 10.1109/LED.2005.862686

J. G. Yang and K. Yang, GaN-based pin diodes for microwave switching IC applications, Electronics Letters, vol.48, issue.11, p.650, 2012.
DOI : 10.1049/el.2012.0954

K. Ng, «Junction FieldEffect Transistor (JFET)», Complete Guide to Semiconductor Devices, pp.191-199, 2002.
DOI : 10.1002/9781118014769

J. Singh and G. Wadhwa, MOSFET mobility model at nanoscale including temperature effects, 2011 3rd International Conference on Computer Research and Development, pp.325-330, 2011.
DOI : 10.1109/ICCRD.2011.5764206

H. Kamitsuna, Y. Yamane, M. Tokumitsu, H. Sugahara, and M. Muraguchi, Low-Power InP-HEMT Switch ICs Integrating Miniaturized 2<tex>$,times,$</tex>2 Switches for 10-Gb/s Systems, IEEE Journal of Solid-State Circuits, vol.41, issue.2, pp.452-460, 2006.
DOI : 10.1109/JSSC.2005.862354

J. Turner, «History of the GaAs FET at Caswell (1964-1985)», IEE Colloquium on Modelling, Design and Application of MMIC's, pp.1-3, 1994.

M. Uzunkol and G. M. Rebeiz, 140&#x2013;220 GHz SPST and SPDT Switches in 45 nm CMOS SOI, IEEE Microwave and Wireless Components Letters, vol.22, issue.8, pp.412-414, 2012.
DOI : 10.1109/LMWC.2012.2206017

S. Ye and C. A. Salama, «A 1 V, 1.9 GHz, low distortion dual-gate CMOS on SOI mixer», SOI Conference, pp.104-105, 2000.

S. Venkataraman, X. Zhu, Y. Zhang, and C. Hutchens, «SOI voltage controlled ring oscillator», IEEE-Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, pp.223-226, 2004.

B. Francois and P. , Highly Linear Fully Integrated Wideband RF PA for LTE-Advanced in 180-nm SOI, IEEE Transactions on Microwave Theory and Techniques, vol.63, issue.2, pp.649-658, 2015.
DOI : 10.1109/TMTT.2014.2380319

V. Blaschke, A. Unikovski, and R. Zwingman, «An ultra-compact SP4T cellular antenna switch in 3, 3V CMOS thick-film SOI», Wireless Symposium (IWS), pp.1-4, 2013.

V. Blaschke, R. Zwingman, P. Hurwitz, S. Chaudhry, and M. Racanelli, A linear-throw SP6T antenna switch in 180nm CMOS thick-film SOI, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), pp.1-4, 2011.
DOI : 10.1109/COMCAS.2011.6105898

Z. Zhang, L. Huang, K. Yu, and G. Zhang, A novel body self-biased technique for enhanced RF performance of a SP8T antenna switch in partially depleted CMOS-SOI technology, 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1-3, 2014.
DOI : 10.1109/ICSICT.2014.7021253

C. Tinella, J. M. Fournier, D. Belot, and V. Knopik, A high-performance CMOS-SOI antenna switch for the 2.5-5 GHz band, IEEE Journal of Solid-State Circuits, vol.38, issue.7, pp.1279-1283, 2003.
DOI : 10.1109/JSSC.2003.813289

K. A. Jenkins, J. Y. Sun, and J. Gautier, Characteristics of SOI FET's under pulsed conditions, IEEE Transactions on Electron Devices, vol.44, issue.11, 1997.
DOI : 10.1109/16.641362

S. Sarkhel, B. Manna, and S. K. Sarkar, A compact capacitive approach based threshold voltage modeling and performance comparison of a novel UBR MOSFET with SOI MOSFET, 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp.1-5, 2014.
DOI : 10.1109/ICDCSyst.2014.6926216

H. Mizutani and Y. Takayama, DC-110-GHz MMIC traveling-wave switch, IEEE Transactions on Microwave Theory and Techniques, vol.48, issue.5, pp.840-845, 2000.
DOI : 10.1109/22.841881

A. Tomkins, P. Garcia, and S. P. Voinigescu, A 94GHz SPST Switch in 65nm Bulk CMOS, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, pp.1-4, 2008.
DOI : 10.1109/CSICS.2008.34

K. Lin, W. Tu, P. Chen, H. Chang, H. Wang et al., Millimeter-Wave MMIC Passive HEMT Switches Using Traveling-Wave Concept, IEEE Transactions on Microwave Theory and Techniques, vol.52, issue.8, pp.1798-1808, 2004.
DOI : 10.1109/TMTT.2004.831574

G. M. Rebeiz and R. Mems, Theory, Design, and Technology, 2004.

R. Chan, R. Lesnick, D. Becher, and M. Feng, Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles, Journal of Microelectromechanical Systems, vol.12, issue.5, pp.713-719, 2003.
DOI : 10.1109/JMEMS.2003.817889

H. Zareie, G. M. Rebeiz, C. High-power, S. , and S. Rf, Compact High-Power SPST and SP4T RF MEMS Metal-Contact Switches, IEEE Transactions on Microwave Theory and Techniques, vol.62, issue.2, pp.297-305, 2014.
DOI : 10.1109/TMTT.2013.2296749

G. M. Rebeiz, «RF MEMS switches: status of the technology», TRANSDUCERS, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, pp.1726-1729, 2003.

G. Yang, Z. Ying-bin, B. Lu, and Q. , Ran, «Design and modeling of 4-bit MEMS switchedline phase shifter», International Conference on Electronics, Communications and Control (ICECC), pp.798-801, 2011.

D. Kelly, C. Brindle, C. Kemerling, and M. , Stuber, «The state-of-the-art of silicon-onsapphire CMOS RF switches», IEEE Compound Semiconductor Integrated Circuit Symposium CSIC '05, pp.1-4, 2005.

H. Shiga, D. Takashima, S. Shiratake, K. Hoya, T. Miyakawa et al., A 1.6 GB/s DDR2 128 Mb Chain FeRAM With Scalable Octal Bitline and Sensing Schemes, Mb Chain FeRAM With Scalable Octal Bitline and Sensing Schemes», pp.142-152, 2010.
DOI : 10.1109/JSSC.2009.2034414

M. Schadt, «Electro-optical effects, liquid crystals and their application in displays», CompEuro '8?, «VLSI and Computer Peripherals. VLSI and Microelectronic Applications in Intelligent Peripherals and their Interconnection Networks», Proceedings. p. 2/15?2, 1989.

J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, Ferrite devices and materials, «Ferrite devices and materials», pp.721-737, 2002.
DOI : 10.1109/22.989957

X. Yang, Y. Gao, J. Wu, S. Beguhn, T. Nan et al., Dual H- and E-Field Tunable Multiferroic Bandpass Filter at <formula formulatype="inline"><tex Notation="TeX">${\rm K}_{U}$</tex></formula>-Band Using Partially Magnetized Spinel Ferrites, IEEE Transactions on Magnetics, vol.49, issue.11, pp.5485-5488, 2013.
DOI : 10.1109/TMAG.2013.2266897

W. W. Hui, J. M. Bell, M. F. Iskander, and J. J. Lee, Low-Cost Microstrip-Line-Based Ferrite Phase Shifter Design for Phased Array Antenna Applications, Antennas and Wireless Propagation Letters, vol.6, issue.11, pp.86-89, 2007.
DOI : 10.1109/LAWP.2007.893068

B. J. Choi, J. J. Yang, M. Zhang, K. J. Norris, D. A. Ohlberg et al., Nitride memristors, Applied Physics A, vol.60, issue.1, pp.1-4, 2012.
DOI : 10.1007/s00339-012-7052-x

A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. , Reproducible switching effect in thin oxide films for memory applications, Applied Physics Letters, vol.77, issue.1, pp.139-141, 2000.
DOI : 10.1063/1.126902

Y. Kim and . Choi, A Comprehensive Study of the Resistive Switching Mechanism in <formula formulatype="inline"><tex Notation="TeX">$\hbox{Al/TiO}_{x}/\hbox{TiO}_{2}/\hbox{Al}$</tex></formula>-Structured RRAM, IEEE Transactions on Electron Devices, vol.56, issue.12, pp.3049-3054, 2009.
DOI : 10.1109/TED.2009.2032597

T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe et al., Electronic transport in Ta2O5 resistive switch, «Electronic transport in Ta2O5 resistive switch», p.92110, 2007.
DOI : 10.1063/1.2777170

R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nat. Mater, vol.6, issue.11, pp.833-840, 2007.
DOI : 10.1142/9789814287005_0016

M. Hasan, R. Dong, D. S. Lee, D. J. Seong, H. J. Choi et al., A Materials Approach to Resistive Switching Memory Oxides, JSTS:Journal of Semiconductor Technology and Science, vol.8, issue.1, pp.66-79, 2008.
DOI : 10.5573/JSTS.2008.8.1.066

T. M. Rice and D. B. , Metal-insulator Transition in Transition Metal Oxides, IBM Journal of Research and Development, vol.14, issue.3, pp.251-257, 1970.
DOI : 10.1147/rd.143.0251

Z. Yang, C. Ko, and E. S. Ramanathan, Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions, Annual Review of Materials Research, vol.41, issue.1, pp.337-367, 2011.
DOI : 10.1146/annurev-matsci-062910-100347

S. R. Ovshinsky, Reversible Electrical Switching Phenomena in Disordered Structures, Physical Review Letters, vol.21, issue.20, pp.1450-1453, 1968.
DOI : 10.1103/PhysRevLett.21.1450

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen et al., Phase-change random access memory: A scalable technology, IBM Journal of Research and Development, vol.52, issue.4.5, pp.465-479, 2008.
DOI : 10.1147/rd.524.0465

D. Adler, Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides, Reviews of Modern Physics, vol.40, issue.4, pp.714-736, 1968.
DOI : 10.1103/RevModPhys.40.714

F. J. Morin, Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature, Physical Review Letters, vol.3, issue.1, pp.34-36, 1959.
DOI : 10.1103/PhysRevLett.3.34

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi et al., during an Ultrafast Solid-Solid Phase Transition, Physical Review Letters, vol.87, issue.23, p.237401, 2001.
DOI : 10.1103/PhysRevLett.87.237401

Y. W. Lee, B. Kim, S. Choi, H. Kim, and G. Kim, Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film, Optics Express, vol.15, issue.19, p.12108, 2007.
DOI : 10.1364/OE.15.012108

G. Stefanovich, A. Pergament, and D. , Stefanovich, «Electrical switching and Mott transition in VO2», J. Phys. Condens. Matter, vol.12, pp.41-8837, 2000.

C. Chen, R. Wang, L. Shang, and C. Guo, Gate-field-induced phase transitions in VO2: Monoclinic metal phase separation and switchable infrared reflections, Applied Physics Letters, vol.93, issue.17, pp.17-171101, 2008.
DOI : 10.1063/1.3009569

J. Sakai and M. Kurisu, planar-type junctions, Physical Review B, vol.78, issue.3, p.33106, 2008.
DOI : 10.1103/PhysRevB.78.033106

S. Hormoz and S. Ramanathan, «Limits on vanadium oxide Mott metal?insulator transition field-effect transistors», Solid-State Electron, pp.654-659, 2010.

J. Leroy, A. Crunteanu, A. Bessaudou, F. Cosset, C. Champeaux et al., High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes, Applied Physics Letters, vol.100, issue.21, p.213507, 2012.
DOI : 10.1063/1.4721520

URL : https://hal.archives-ouvertes.fr/hal-00720474

J. Leroy, A. Bessaudou, F. Cosset, and A. , Crunteanu, «Structural, electrical and optical properties of thermochromic VO2 thin films obtained by reactive electron beam evaporation», Thin Solid Films, vol.520, pp.14-4823, 2012.

H. Kakiuchida, P. Jin, and M. Tazawa, Control of Optical Performance in Infrared Region for Vanadium Dioxide Films Layered by Amorphous Silicon, International Journal of Thermophysics, vol.61, issue.10, 2009.
DOI : 10.1007/s10765-009-0564-8

N. Sepúlveda, A. Rúa, R. Cabrera, and F. Fernández, Young???s modulus of VO2 thin films as a function of temperature including insulator-to-metal transition regime, Applied Physics Letters, vol.92, issue.19, p.191913, 2008.
DOI : 10.1063/1.2926681

A. Zylbersztejn and N. F. Mott, Metal-insulator transition in vanadium dioxide, Physical Review B, vol.11, issue.11, pp.4383-4395, 1975.
DOI : 10.1103/PhysRevB.11.4383

N. F. Mott and . Transition», Metal-Insulator Transition, Reviews of Modern Physics, vol.40, issue.4, pp.677-683, 1968.
DOI : 10.1103/RevModPhys.40.677

URL : https://hal.archives-ouvertes.fr/jpa-00209009

R. E. Peierls, Quantum Theory of Solids, p 229, 1956.

L. A. Gea and L. A. Boatner, precipitates formed in sapphire by ion implantation and annealing, Applied Physics Letters, vol.68, issue.22, pp.22-3081, 1996.
DOI : 10.1063/1.116429

R. M. Briggs, I. M. Pryce, and H. A. Atwater, Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition, Optics Express, vol.18, issue.11, pp.11192-11201, 2010.
DOI : 10.1364/OE.18.011192

A. Crunteanu, M. Fabert, J. Givernaud, V. Kermene, A. Desfarges-berthelemot et al., Catherinot, «Vis-IR optical switching/ modulation based on the electrically-activated phase transition of VO2 thin films», Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), pp.1-2, 2010.

T. D. Manning, I. P. Parkin, M. E. Pemble, D. Sheel, and D. , Intelligent Window Coatings:?? Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide, Chemistry of Materials, vol.16, issue.4, pp.744-749, 2004.
DOI : 10.1021/cm034905y

E. Strelcov, Y. Lilach, and A. , Nanowire Thermistor, Nano Letters, vol.9, issue.6, pp.2322-2326, 2009.
DOI : 10.1021/nl900676n

L. Wang and X. Li, «Preparation of VO2 microbolometer for CO2 gas detection», International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp.1774-1777, 2010.

B. Chae, H. Kim, D. Youn, and K. Kang, Abrupt metal???insulator transition observed in VO2 thin films induced by a switching voltage pulse, Physica B: Condensed Matter, vol.369, issue.1-4, pp.76-80, 2005.
DOI : 10.1016/j.physb.2005.07.032

G. Seo, B. Kim, C. Ko, Y. Cui, Y. W. Lee et al., Voltage-Pulse-Induced Switching Dynamics in <formula formulatype="inline"><tex Notation="TeX">$ \hbox{VO}_{2}$</tex></formula> Thin-Film Devices on Silicon, Pulse-Induced Switching Dynamics in Thin-Film Devices on Silicon», pp.1582-1584, 2011.
DOI : 10.1109/LED.2011.2163922

F. Dumas-bouchiat, C. Champeaux, A. Catherinot, A. Crunteanu, and P. Blondy, «rfmicrowave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition», Appl. Phys. Lett, vol.91, pp.22-223505, 2007.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux et al., -based electrical switches: a lifetime operation analysis, Science and Technology of Advanced Materials, vol.11, issue.6, p.65002, 2010.
DOI : 10.1063/1.2930959

URL : https://hal.archives-ouvertes.fr/hal-00259589

S. D. Ha, Y. Zhou, C. J. Fisher, S. Ramanathan, and J. P. Treadway, radio frequency devices, Journal of Applied Physics, vol.113, issue.18, pp.18-184501, 2013.
DOI : 10.1063/1.4803688

C. Hillman, P. A. Stupar, J. B. Hacker, Z. Griffith, M. Field et al., Rodwell, «An ultra-low loss millimeter-wave solid state switch technology based on the metal -insulator -transition of vanadium dioxide», Microwave Symposium (IMS), 2014 IEEE MTT-S International, pp.1-4, 2014.

J. Givernaud, C. Champeaux, A. Catherinot, A. Pothier, P. Blondy et al., Crunteanu, «Tunable band stop filters based on Metal-Insulator Transition in vanadium dioxide thin films», Microwave Symposium Digest, IEEE MTT-S International, pp.1103-1106, 2008.

J. Givernaud, A. Crunteanu, A. Pothier, C. Champeaux, A. Catherinot et al., CPW self-resetting power limiting devices based on microwave power induced semiconductor-metal transition in vanadium dioxide, 2009 IEEE MTT-S International Microwave Symposium Digest, pp.109-112, 2009.
DOI : 10.1109/MWSYM.2009.5165644

URL : https://hal.archives-ouvertes.fr/hal-00437606

A. Crunteanu, J. Leroy, G. Humbert, D. Ferachou, J. Orlianges et al., Tunable terahertz metamaterials based on metal-insulator phase transition of VO2 layers, 2012 IEEE/MTT-S International Microwave Symposium Digest, pp.1-3, 2012.
DOI : 10.1109/MWSYM.2012.6259429

URL : https://hal.archives-ouvertes.fr/hal-00942939

M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nature Materials, vol.6, issue.11, pp.824-832, 2007.
DOI : 10.1038/nmat2009

A. L. Lacaita, «Phase change memories: State-of-the-art, challenges and perspectives», Solid-State Electron, pp.24-31, 2006.

S. Raoux, W. We?nic, and D. , Phase Change Materials and Their Application to Nonvolatile Memories, Chemical Reviews, vol.110, issue.1, pp.240-267, 2010.
DOI : 10.1021/cr900040x

URL : https://hal.archives-ouvertes.fr/hal-01081911

H. J. Borg, M. Van-schijndel, J. C. Rijpers, M. H. Lankhorst, G. Zhou et al., Phase-Change Media for High-Numerical-Aperture and Blue-Wavelength Recording, Japanese Journal of Applied Physics, vol.40, issue.Part 1, No. 3B, pp.3-1592, 2001.
DOI : 10.1143/JJAP.40.1592

A. L. Lacaita, D. Ielmini, and D. , Status and challenges of phase change memory modeling, Solid-State Electronics, vol.52, issue.9, pp.1443-1451, 2008.
DOI : 10.1016/j.sse.2008.04.020

A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti et al., Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials, IEEE Transactions on Electron Devices, vol.51, issue.5, pp.714-719, 2004.
DOI : 10.1109/TED.2004.825805

F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson et al., «A 90nm phase change memory technology for stand-alone non-volatile memory applications», VLSI Technology, Digest of Technical Papers, pp.122-123, 2006.

H. Lo, E. Chua, J. C. Huang, C. C. Tan, C. Wen et al., Three-Terminal Probe Reconfigurable Phase-Change Material Switches, «Three-Terminal Probe Reconfigurable Phase- Change Material Switches», pp.312-320, 2010.
DOI : 10.1109/TED.2009.2035533

N. El-hinnawy, P. Borodulin, B. P. Wagner, M. R. King, J. S. Mason et al., A 7.3 THz Cut-Off Frequency, Inline, Chalcogenide Phase-Change RF Switch Using an Independent Resistive Heater for Thermal Actuation, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp.1-4, 2013.
DOI : 10.1109/CSICS.2013.6659195

M. Wang, Y. Shim, and M. , A Low-Loss Directly Heated Two-Port RF Phase Change Switch, IEEE Electron Device Letters, vol.35, issue.4, pp.491-493, 2014.
DOI : 10.1109/LED.2014.2303972

J. Moon, H. Seo, and D. Le, «High linearity 1-ohm RF switches with phase-change materials», IEEE Topical Meeting on Silicon Monolithic Integrated Circuits Rf Systems, pp.7-9, 2014.

R. E. Marvel, K. Appavoo, B. K. Choi, J. Nag, and R. F. , Electron-beam deposition of vanadium dioxide thin films, Applied Physics A, vol.20, issue.12, pp.975-981, 2012.
DOI : 10.1007/s00339-012-7324-5

J. Nag and R. F. Jr, Synthesis of vanadium dioxide thin films and nanoparticles, Journal of Physics: Condensed Matter, vol.20, issue.26, p.264016, 2008.
DOI : 10.1088/0953-8984/20/26/264016

L. L. Fan, Y. F. Wu, C. Si, G. Q. Pan, C. W. Zou et al., crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains, Applied Physics Letters, vol.102, issue.1, p.11604, 2013.
DOI : 10.1063/1.4775580

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng et al., thin films, Journal of Applied Physics, vol.113, issue.4, p.43707, 2013.
DOI : 10.1063/1.4788804

URL : https://hal.archives-ouvertes.fr/hal-00446799

P. Schilbe, Raman scattering in VO2, Physica B: Condensed Matter, vol.316, issue.317, pp.600-602, 2002.
DOI : 10.1016/S0921-4526(02)00584-7

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu et al., thin films, Journal of Applied Physics, vol.113, issue.23, p.233104, 2013.
DOI : 10.1063/1.4811689

K. Okimura, J. Sakai, and S. Ramanathan, x-ray diffraction studies on epitaxial VO2 films grown on c-Al2O3 during thermally induced insulator-metal transition, Journal of Applied Physics, vol.107, issue.6, p.63503, 2010.
DOI : 10.1063/1.3327422

G. I. Petrov, V. V. Yakovlev, and J. Squier, Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide, Applied Physics Letters, vol.81, issue.6, pp.1023-1025, 2002.
DOI : 10.1063/1.1496506

C. Marini and P. , compounds under high pressure, Physical Review B, vol.77, issue.23, p.235111, 2008.
DOI : 10.1103/PhysRevB.77.235111

S. Chang, W. Hong, H. J. Kim, J. B. Lee, J. Yoon et al., Probing the photothermally induced phase transitions in single-crystalline vanadium dioxide nanobeams, Nanotechnology, vol.24, issue.34, pp.34-345701, 2013.
DOI : 10.1088/0957-4484/24/34/345701

Y. F. Wu, L. L. Fan, S. M. Chen, S. Chen, C. W. Zou et al., thin film prepared by facile sol-gel method, AIP Advances, vol.3, issue.4, p.42132, 2013.
DOI : 10.1063/1.4802981

S. D. Ha, Y. Zhou, C. J. Fisher, S. Ramanathan, and J. P. Treadway, radio frequency devices, Journal of Applied Physics, vol.113, issue.18, pp.18-184501, 2013.
DOI : 10.1063/1.4803688

D. Ruzmetov, K. T. Zawilski, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, Infrared reflectance and photoemission spectroscopy studies across the phase transition boundary in thin film vanadium dioxide, Journal of Physics: Condensed Matter, vol.20, issue.46, pp.46-465204, 2008.
DOI : 10.1088/0953-8984/20/46/465204

S. Hormoz and S. Ramanathan, «Limits on vanadium oxide Mott metal?insulator transition field-effect transistors», Solid-State Electron, pp.654-659, 2010.

J. Leroy, A. Crunteanu, A. Bessaudou, F. Cosset, C. Champeaux et al., High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes, Applied Physics Letters, vol.100, issue.21, p.213507, 2012.
DOI : 10.1063/1.4721520

URL : https://hal.archives-ouvertes.fr/hal-00720474

Z. Yang, C. Ko, and S. Ramanathan, Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions, Annual Review of Materials Research, vol.41, issue.1, pp.337-367, 2011.
DOI : 10.1146/annurev-matsci-062910-100347

Y. W. Lee, B. Kim, J. Lim, S. J. Yun, S. Choi et al., Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film, Applied Physics Letters, vol.92, issue.16, pp.16-162903, 2008.
DOI : 10.1063/1.2911745

J. Leroy, A. Crunteanu, J. Givernaud, J. Orlianges, C. Champeaux et al., Generation of electrical self-oscillations in two-terminal switching devices based on the insulator-to-metal phase transition of VO2 thin films, International Journal of Microwave and Wireless Technologies, vol.98, issue.01, pp.101-107, 2012.
DOI : 10.1109/TMTT.2010.2057172

J. Leroy, «Caractéristiques électriques non-linéaires de la transition isolant-métal du dioxyde de vanadium (VO2) ; application à la conception de métamatériaux accordables dans le domaine térahertz», Thèse en Electronique des Hautes fréquences, Photonique et Systèmes, 2013.

A. Beaumont, J. Leroy, J. Orlianges, and A. , Crunteanu, «Current-induced electrical selfoscillations across out-of-plane threshold switches based on VO2 layers integrated in crossbars geometry», J. Appl. Phys, vol.115, pp.15-154502, 2014.

A. Mennai, A. Bessaudou, F. Cosset, C. Guines, D. Passerieux et al., Crunteanu, «High cut-off frequency RF switches integrating a metal-insulator transition material», IEEE MTT-S International Microwave Symposium (IMS), pp.1-3, 2015.

J. Rascher, S. Pinarello, J. Mueller, G. Fischer, and R. , Weigel, «Highly linear robust RF switch with low insertion loss and high power handling capability in a 65nm CMOS technology», IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp.21-24, 2012.

J. Rascher, A. Zohny, S. Glock, G. Fischer, R. Weigel et al., A comparative overview of high power handling CMOS switches and their recent applications in RF front ends, WAMICON 2013, pp.1-5, 2013.
DOI : 10.1109/WAMICON.2013.6572754

D. Im, B. Kim, D. Im, and K. Lee, A Stacked-FET Linear SOI CMOS Cellular Antenna Switch With an Extremely Low-Power Biasing Strategy, IEEE Transactions on Microwave Theory and Techniques, vol.63, issue.6, 2015.
DOI : 10.1109/TMTT.2015.2427801

S. W. Ryu, J. H. Oh, B. J. Choi, S. Hwang, S. K. Hong et al., SiO[sub 2] Incorporation Effects in Ge[sub 2]Sb[sub 2]Te[sub 5] Films Prepared by Magnetron Sputtering for Phase Change Random Access Memory Devices, Electrochemical and Solid-State Letters, vol.9, issue.8, pp.259-261, 2006.
DOI : 10.1149/1.2205120

E. Rimini, R. D. Bastiani, E. Carria, M. G. Grimaldi, G. Nicotra et al., Spinella, «Crystallization of sputtered-deposited and ion implanted amorphous Ge2Sb2Te5 thin films», J. Appl. Phys, vol.105, pp.12-123502, 2009.

E. Morales-sánchez, E. F. Prokhorov, J. González-hernández, and A. , Structural, electric and kinetic parameters of ternary alloys of GeSbTe, Thin Solid Films, vol.471, issue.1-2, pp.243-247, 2005.
DOI : 10.1016/j.tsf.2004.06.141

S. Song, D. Yao, Z. Song, L. Gao, Z. Zhang et al., Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon, Nanoscale Research Letters, vol.105, issue.4, 2015.
DOI : 10.1186/s11671-015-0815-5

P. N?mec, V. Nazabal, A. Moreac, J. Gutwirth, L. Bene? et al., Amorphous and crystallized Ge???Sb???Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy, Materials Chemistry and Physics, vol.136, issue.2-3, pp.935-941, 2012.
DOI : 10.1016/j.matchemphys.2012.08.024

H. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. Zhu et al., Rauschenbach, «Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films», Adv. Funct. Mater, vol.23, pp.29-3621, 2013.

P. R. Willmott and J. R. Huber, Pulsed laser vaporization and deposition, Reviews of Modern Physics, vol.72, issue.1, pp.315-328, 2000.
DOI : 10.1103/RevModPhys.72.315

E. M. Vinod, K. Ramesh, and K. S. Sangunni, Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys, Scientific Reports, vol.332, p.8050, 2015.
DOI : 10.1038/srep08050

Y. Won, J. Lee, M. Asheghi, T. W. Kenny, and K. E. Goodson, films down to 25???nm thickness, Applied Physics Letters, vol.100, issue.16, pp.16-161905, 2012.
DOI : 10.1063/1.3699227

R. Shuker and R. W. , Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials, Physical Review Letters, vol.25, issue.4, pp.222-225, 1970.
DOI : 10.1103/PhysRevLett.25.222

K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials, Journal of Physics and Chemistry of Solids, vol.68, issue.5-6, pp.1074-1078, 2007.
DOI : 10.1016/j.jpcs.2007.02.027

E. Cho, S. Yoon, H. R. Yoon, and E. W. Jo, «Micro-Raman scattering studies of Ge-Sb-Te bulk crystals and nanoparticles», J Korean Phys Soc, vol.48, pp.1616-1619, 2006.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach et al., Disorder-induced localization in crystalline phase-change materials, Nature Materials, vol.44, issue.3, pp.202-208, 2011.
DOI : 10.1038/nmat2934

S. Raoux, W. We?nic, and D. , Phase Change Materials and Their Application to Nonvolatile Memories, Chemical Reviews, vol.110, issue.1, pp.240-267, 2010.
DOI : 10.1021/cr900040x

URL : https://hal.archives-ouvertes.fr/hal-01081911

M. Wuttig, Phase-change materials: Towards a universal memory?, Nature Materials, vol.50, issue.4, pp.265-266, 2005.
DOI : 10.1038/nmat1359

A. L. Lacaita, D. Ielmini, and D. , Status and challenges of phase change memory modeling, Solid-State Electronics, vol.52, issue.9, pp.1443-1451, 2008.
DOI : 10.1016/j.sse.2008.04.020

A. Crunteanu, A. Mennai, C. Guines, D. Passerieux, and P. Blondy, «Out-of-plane and inline RF switches based on Ge2Sb2Te5 phase-change material», IEEE MTT-S International Microwave Symposium Digest, 2014.

Y. Shim, G. Hummel, and M. , Rais-Zadeh, «RF switches using phase change materials», IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp.237-240, 2013.

J. Moon, H. Seo, and D. Le, «High linearity 1-ohm RF switches with phase-change materials», IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems (SiRF), pp.7-9, 2014.

N. El-hinnawy, P. Borodulin, B. P. Wagner, M. R. King, J. S. Mason et al., A 7.3 THz Cut-Off Frequency, Inline, Chalcogenide Phase-Change RF Switch Using an Independent Resistive Heater for Thermal Actuation, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp.1-4, 2013.
DOI : 10.1109/CSICS.2013.6659195

A. L. Lacaita, «Phase change memories: State-of-the-art, challenges and perspectives», Solid-State Electron, pp.24-31, 2006.

E. K. Chua, L. P. Shi, R. Zhao, K. G. Lim, T. C. Chong et al., Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications, Applied Physics Letters, vol.97, issue.18, pp.18-183506, 2010.
DOI : 10.1063/1.3508954

J. R. Black, Electromigration&#8212;A brief survey and some recent results, IEEE Transactions on Electron Devices, vol.16, issue.4, pp.338-347, 1969.
DOI : 10.1109/T-ED.1969.16754

I. A. Blech, Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, vol.47, issue.4, pp.1203-1208, 1976.
DOI : 10.1063/1.322842

V. A. Vashchenko and V. F. Sinkevitch, Physical Limitations of Semiconductor Devices, 2008.
DOI : 10.1007/978-0-387-74514-5

M. Wang, Y. Shim, and M. Rais-zadeh, A Low-Loss Directly Heated Two-Port RF Phase Change Switch, IEEE Electron Device Letters, vol.35, issue.4, pp.491-493, 2014.
DOI : 10.1109/LED.2014.2303972

. A. Conférences-internationales-1, A. Crunteanu, C. Mennai, D. Guines, P. Passerieux et al., «Out-of-plane and inline RF switches based on Ge2Sb2Te5 phase-change material», IEEE MTT-S International Microwave Symposium Digest, pp.1-3, 2014.

A. Crunteanu, M. Fabert, J. Cornette, M. Colas, J. Orlianges et al., «Electric field-assisted metal insulator transition vanadium dioxide (VO2) thin films: optical switching behavior and anomalous far-infrared emissivity variation», Proceeding SPIE 934, Oxide-based Materials and Devices VI, 2015.

V. Thery, J. Orlianges, A. Boulle, A. Mennai, A. Bessaudou et al., Crunteanu, «Strain and thickness dependence of the metal-insulator transition in VO2 epitaxial films», MRS) Spring Meeting (Symposium M), 2015.

. Crunteanu, «High cut-off frequency RF switches integrating a metal-insulator transition material», IEEE MTT-S International Microwave Symposium (IMS), p. 1?3, 2015.

A. Mennai, A. Bessaudou, F. Cosset, and A. , Crunteanu, «Caractéristiques électriques de dispositifs MIM intégrant un film mince de dioxyde de vanadium», JNRDM : Journées Nationales du Réseau Doctoral en Micro-nanoélectronique, 2014.