G. Dudley and J. Verniolle, Secondary Lithium Batteries for Spacecraft, Bulletin Nr, vol.90, 1997.

B. Taylor, So what makes hydrogen fuel so appealing as an energy source

M. S. Whittingham, R. F. Savinelli, and T. Zawodzinsky, Introduction:??? Batteries and Fuel Cells, Chemical Reviews, vol.104, issue.10, pp.4243-4244, 2004.
DOI : 10.1021/cr020705e

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, vol.104, issue.10, pp.4245-4269, 2004.
DOI : 10.1021/cr020730k

S. Martinet, Nouvelles génération des batteries des véhicule électriques et hybrides

D. Linden and T. B. Reddy, Handbook of battery, pp.24-25, 2002.

M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries science and technologies, 2009.

B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources, vol.195, issue.9, pp.2419-2430, 0195.
DOI : 10.1016/j.jpowsour.2009.11.048

M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries science and technologies, 2009.

D. Linden and T. B. Reddy, Handbook of battery, 2002.

B. Scrosati and W. A. Schalkwijk, Advances in Lithium ? Ion Batteries, 2002.

E. Cohen and E. Gutoff, Modern Coating and Drying Technology, 1992.

M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries science and technologies, 2009.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.
DOI : 10.1142/9789814317665_0024

N. Yabuuchi and T. Ohzuku, Novel lithium of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for advanced lithium-ion batteries J. Power Sources, pp.119-121, 2003.

J. H. Ju and K. S. Ryu, Synthesis and electrochemical performance of Li with core-shell structure as cathode material for Li-ion batteries J. Alloy Compd, pp.509-539, 2011.

J. R. Dahn, Carbon and graphites as substitutes for the lithium anode, Industrial Chemistry Library, vol.5, 1994.

M. M. Thackeray, W. I. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Materials Research Bulletin, vol.18, issue.4, pp.461-472, 1983.
DOI : 10.1016/0025-5408(83)90138-1

Y. J. Kim, M. S. Park, H. J. Sohn, and H. Lee, Electrochemical behaviors of SnO and Sn anodes for lithium rechargeable batteries J. Alloy Compd, pp.509-521, 2011.

M. Winter and J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites Electrochim, Acta, pp.1-2, 1999.

P. Arora and Z. J. Zhang, Battery Separators, Chemical Reviews, vol.104, issue.10, pp.4419-4462, 2004.
DOI : 10.1021/cr020738u

M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries science and technologies, 2009.

J. Y. Song, Y. Y. Wang, and C. C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources, vol.77, issue.2, pp.183-197, 1999.
DOI : 10.1016/S0378-7753(98)00193-1

X. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4303-4417, 2004.
DOI : 10.1021/cr030203g

E. G. Leggesse, R. T. Lin, T. Teng, C. L. Chen, and J. C. Jiang, Oxidative Decomposition of Propylene Carbonate in Lithium Ion Batteries: A DFT Study, The Journal of Physical Chemistry A, vol.117, issue.33, pp.7959-7969, 2013.
DOI : 10.1021/jp403436u

V. R. Koxh, J. L. Goldman, C. J. Mattos, and M. J. Mulvaney, Specular Lithium Deposits from Lithium Hexafluoroarsenate/DiethylEther Electrolytes, J. Electrochem. Soc, vol.129, pp.1-4, 1982.

J. S. Foos and J. Mcveigh, Lithium Cycling in Polymethoxymethane Solvents, Journal of The Electrochemical Society, vol.130, issue.3, pp.628-630, 1983.
DOI : 10.1149/1.2119767

K. M. Abraham, J. L. Goldman, and D. L. Natwig, Characterization of Ether Electrolytes for Rechargeable Lithium Cells, Journal of The Electrochemical Society, vol.129, issue.11, pp.2404-2409, 1982.
DOI : 10.1149/1.2123556

P. L. Moss, G. Au, E. J. Plichta, and P. Zheng, Study of Capacity Fade of Lithium-Ion Polymer Rechargeable Batteries with Continuous Cycling, Journal of The Electrochemical Society, vol.157, issue.1, pp.1-7, 2010.
DOI : 10.1149/1.3246001

S. Sankarasubramanian and B. Krishnamurthy, A capacity fade model for lithium-ion batteries including diffusion and kinetics, Electrochimica Acta, vol.70, issue.70, pp.248-254
DOI : 10.1016/j.electacta.2012.03.063

Y. E. Eli, B. Markovsky, D. Aurbach, and Y. Carmeli, The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition, Electrochim. Acta, pp.39-56, 1994.

D. Guyomard and J. M. Tarascon, ChemInform Abstract: Rechargeable Li1+xMn2O4/Carbon Cells with a New Electrolyte Composition. Potentiostatic Studies and Application to Practical Cells., ChemInform, vol.140, issue.7, pp.140-151, 1993.
DOI : 10.1002/chin.199407006

T. Ohzuku, Y. Iwakoshi, and K. Sawai, ChemInform Abstract: Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell., ChemInform, vol.140, issue.51, pp.140-149, 1993.
DOI : 10.1002/chin.199351008

L. S. Plashnitsa, E. Kobayashi, S. Okada, and J. I. Yamaka, Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte, Electrochimica Acta, vol.56, issue.3
DOI : 10.1016/j.electacta.2010.10.051

D. Diijan, F. Alloin, S. Martinet, and H. Lignier, Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity, Journal of Power Sources, vol.187, issue.2, pp.575-580, 2009.
DOI : 10.1016/j.jpowsour.2008.11.027

J. T. Dudley, Conductivity of electrolytes for rechargeable lithium batteries, Journal of Power Sources, vol.35, issue.1, pp.59-82, 1991.
DOI : 10.1016/0378-7753(91)80004-H

E. Peled, D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, Journal of The Electrochemical Society, vol.144, issue.8, pp.208-210, 1997.
DOI : 10.1149/1.1837858

K. Edstr¨om, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources, vol.153, issue.2, pp.380-384, 2006.
DOI : 10.1016/j.jpowsour.2005.05.062

G. C. Chung, X. Zhang, A. J. Appleby, and X. Chen, Little self discharge of secondary lithium ion graphite anodes, J. Power Sources, vol.112, pp.98-104, 2002.

A. M. Andersson and K. Edstr¨om, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite, Journal of The Electrochemical Society, vol.148, issue.10, pp.1100-1109, 2001.
DOI : 10.1149/1.1397771

T. Takahashi, Silver ion conducting solid electrolytes. . Handbook of Solid State Batteries and Capacitors, Z. Munshi. Singapore : World Scientific. Chapter, 1995.

B. B. Owens, Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century, Journal of Power Sources, vol.90, issue.1, pp.2-8, 2000.
DOI : 10.1016/S0378-7753(00)00436-5

R. Kanno and M. Murayama, Lithium Ionic Conductor Thio-LISICON: The Li[sub 2]S-GeS[sub 2]-P[sub 2]S[sub 5] System, Journal of The Electrochemical Society, vol.148, issue.7, pp.742-746, 2001.
DOI : 10.1149/1.1379028

O. Bohnke, C. Bohnke, and J. L. Fourquet, Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanium lithium. Solid State Ionics, pp.91-112, 1996.

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, The Electrical Properties of Ceramic Electrolytes for LiM x Ti 2 ? x ( PO 4 ) 3 + yLi 2 O , M = Ge , Sn , Hf , and Zr Systems, J. Electrochem. Soc, pp.140-1827, 1993.

X. Yu, J. B. Bates, G. E. Jellison, and F. Hart, A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride, Journal of The Electrochemical Society, vol.144, issue.2, pp.144-524, 1997.
DOI : 10.1149/1.1837443

F. B. Dias, L. Plomp, and J. B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, Journal of Power Sources, vol.88, issue.2, pp.169-191, 2000.
DOI : 10.1016/S0378-7753(99)00529-7

J. Y. Song, Y. Y. Wang, and C. C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources, vol.77, issue.2, pp.183-197, 1999.
DOI : 10.1016/S0378-7753(98)00193-1

M. Alagmir, K. M. Abraham, and G. Pistoia, Lithium Batterie: New materials, Development and perspectives, p.93, 1994.

J. R. Nair, C. Gerbaldi, G. Meligrana, R. Bongiovanni, S. Bodoardo et al., UVcured polymer electrolyte membranes for Li-cells: improbe mechanical properties by a novel cellulose reinforcement, Electrochem. Commun, issue.11, pp.1796-1798, 2009.

J. R. Nair, C. Gerbaldi, G. Meligrana, and R. Bongiovanni, UV-cured methacrylic membranes as novel gel???polymer electrolyte for Li-ion batteries, Journal of Power Sources, vol.178, issue.2, pp.751-757, 2008.
DOI : 10.1016/j.jpowsour.2007.08.004

H. Kipphan, Handbook of print media: Technologies and Production methods, 2001.
DOI : 10.1007/978-3-540-29900-4

M. M. Hilali, Understanding and development of manufacturable screen-printed contacts on high sheet-resistance emitters for low-coast silicon solar cell, 2005.

B. Barbic, B. Binder, H. Voss, F. Hofer, and W. Grogger, Thin-film zinc/manganese dioxide electrodes based on microporous polymer foils, Journal of Power Sources, vol.79, issue.2, pp.79-271, 1999.
DOI : 10.1016/S0378-7753(99)00183-4

P. Birke, W. F. Chu, and W. Weppner, Materials for lithium thin-film batteries for applications in silicon technology. Solid State Ionic, pp.1-2, 1996.

R. Paloshav, E. Becker, T. Riedl, H. H. Johannes, and W. Kowalsky, Large Area Using Printing Methods. Proceeding of IEE, pp.93-100, 2005.

A. George, C. C. Liu, A. Webber, and F. Feddrix, Development and Characterization of a Thick-Film Printed Zinc-Alkaline Battery, J. Electrochem. Soc, vol.150, pp.922-927, 2003.

M. Wendler, G. Hübner, and M. Krebs, Development of printed thin film and flexible batteries. Science and technology, pp.33-41, 2011.

M. Hilder, B. Winther-jensen, and N. B. Clark, Paper-based, printed zinc???air battery, Journal of Power Sources, vol.194, issue.2, pp.1135-1141, 0194.
DOI : 10.1016/j.jpowsour.2009.06.054

A. M. Gaikwad, G. L. Whiting, D. A. Steingart, and A. C. Arias, Highly Flexible, Printed Alkaline Batteries Based on Mesh-Embedded Electrodes, Advanced Materials, vol.49, issue.29, pp.3251-3255, 2011.
DOI : 10.1002/adma.201100894

A. M. Gaikwad, D. A. Steingart, T. N. Ng, D. E. Schwartz, and G. L. Whiting, A flexible high potential printed battery for powering printed electronics, Applied Physics Letters, vol.102, issue.23, p.233302, 2013.
DOI : 10.1063/1.4810974

A. Karpinski, B. Makovetski, S. Russell, J. Serenyi, and D. Williams, Silver???zinc: status of technology and applications, Journal of Power Sources, vol.80, issue.1-2, pp.53-60, 1999.
DOI : 10.1016/S0378-7753(99)00164-0

K. T. Braam, S. K. Volkman, and V. Sububramanian, Characterization and optimization of a printed, primary silver???zinc battery, Journal of Power Sources, vol.199, pp.367-372, 0199.
DOI : 10.1016/j.jpowsour.2011.09.076

I. Ferreira, B. Brás, N. Correia, P. Barquinha, E. Fortunato et al., Self rechargeable paper thin-film batteries, J. Disp. Technol, pp.6-8, 2010.

Y. Zhao, Q. Zhu, L. Liu, J. Xu, M. Yan et al., A novel and facile route of ink-jet printing to thin film SnO 2 anode for rechargeable lithium ion batteries, Electrochim. Acta, pp.51-2639, 2006.

F. Ding, Z. Fu, M. Zhou, and Q. Qin, Tin-Based Composite Oxide Thin-Film Electrodes Prepared by Pulsed Laser Deposition, Journal of The Electrochemical Society, vol.146, issue.10, pp.3554-3559, 1999.
DOI : 10.1149/1.1392513

J. Xie and V. K. Varadan, Synthesis of tin oxide/carbon nanotube composite by homogeneous precipitation and characterizations. Proceeding of SPIE, pp.210-220, 2004.

N. Li, C. R. Martin, and B. Scrosati, Nanomaterial-based Li-ion battery electrodes, Journal of Power Sources, vol.97, issue.98, pp.97-99, 2001.
DOI : 10.1016/S0378-7753(01)00760-1

Y. J. Park, K. S. Park, J. G. Kima, M. K. Kim, H. G. Kim et al., Characterization of tin oxide/LiMn2O4 thin-film cell, Journal of Power Sources, vol.88, issue.2, pp.250-254, 2000.
DOI : 10.1016/S0378-7753(00)00370-0

S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun et al., Reduction of Irreversibility in the First Charge of Tin Oxide Thin Film Negative Electrodes, Journal of The Electrochemical Society, vol.148, issue.3
DOI : 10.1149/1.1346603

Y. Kim, C. S. Yoon, and J. W. Park, Microstructural Evolution of Electrochemically Cycled Si-Doped SnO 2 -Lithium Thin-Film Battery, J. Solid State Chem, pp.160-388, 2001.

T. Brousse, R. Retouxf, U. Herterich, and D. M. Schleich, Thin-Film Crystalline SnO[sub 2]-Lithium Electrodes, Journal of The Electrochemical Society, vol.145, issue.1, pp.145-146, 1998.
DOI : 10.1149/1.1838201

T. Brousse, O. Crosnier, X. Devaux, P. Fragnaud, P. Paillard et al., Advanced oxide and metal powders for negative electrodes in lithium-ion batteries, Powder Technology, vol.128, issue.2-3, pp.124-130, 2002.
DOI : 10.1016/S0032-5910(02)00186-9

N. Li, C. R. Martin, and . High-rate, A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis, Journal of The Electrochemical Society, vol.148, issue.2, pp.148-164, 2001.
DOI : 10.1149/1.1342167

F. Ding, Z. Fu, M. Zhou, and Q. Qin, Tin-Based Composite Oxide Thin-Film Electrodes Prepared by Pulsed Laser Deposition, Journal of The Electrochemical Society, vol.146, issue.10, pp.146-156, 1999.
DOI : 10.1149/1.1392513

Y. Nuli, S. Zhao, and Q. Qin, Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries, Journal of Power Sources, vol.114, issue.1, pp.113-120, 2003.
DOI : 10.1016/S0378-7753(02)00531-1

M. Mohamedi, S. J. Lee, D. Takahashi, M. Nishizawa, T. Itoh et al., Amorphous tin oxide films:preparation and characterization as an anode active material for lithium ion batteries, Electrochim. Acta, pp.46-54, 2001.

J. P. Maranchi, A. F. Hepp, and P. N. Kumta, LiCoO2 and SnO2 thin film electrodes for lithium-ion battery applications, Materials Science and Engineering: B, vol.116, issue.3, pp.327-340, 2005.
DOI : 10.1016/j.mseb.2004.05.041

H. Liangbing, H. F. Mantia, Y. Yang, and Y. Cui, Thin flexible secondary Li-ion paper batteries, ACSNANO, vol.2010, pp.4-10

K. Sun, T. S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon et al., 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Advanced Materials, vol.458, issue.33, pp.25-4539, 2013.
DOI : 10.1002/adma.201301036

L. Tymecki, E. Zwierkowska, and R. Koncki, Screen-printed reference electrodes for potentiometric measurements, Analytica Chimica Acta, vol.526, issue.1, pp.3-11, 2004.
DOI : 10.1016/j.aca.2004.08.056

N. J. Dudney and Y. Jang, Analysis of thin-film lithium batteries of 50 mm to 4 µm thick LiCoO 2, J. Power Sources, pp.119-121, 2003.

S. T. Lee, S. W. Jeon, B. J. Yoo, S. D. Choi, H. J. Kim et al., Electrochemical properties of LiCoO 2 thick-film cathodes prepared by screen-printing technique, J. Power Sources, pp.155-375, 2006.

M. S. Park, S. H. Hyun, and S. C. Nam, Characterization of a LiCoO2 thick film by screen-printing for a lithium ion micro-battery, Journal of Power Sources, vol.159, issue.2, pp.1416-1421, 2006.
DOI : 10.1016/j.jpowsour.2005.11.068

M. S. Park, S. H. Hyun, and S. C. Nam, Mechanical and electrical properties of a LiCoO 2 cathode prepared by screen-printing for a lithium-ion micro-battery, Electrochim. Acta, pp.52-7895, 2007.

U. Geyer, F. Siegel, A. Kreutzer, T. Blaudeck, R. Reinhard et al., Printing electrode materials for rechargeable lithium thin-film batteries, p.9, 2009.

H. Rouault, Development of electrodes for printed Li-ion Thin Film Batteries. ISFOE09, 2009.

S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita et al., All-solid-state lithium ion battery using garnet-type oxide and Li 3 BO 3 solid electrolytes fabricated by screen-printing, J. Power Sources, pp.238-53, 2013.

L. Jabbour, M. Destro, C. Gerbaldi, D. Chaussy, N. Penazzi et al., Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries, Journal of Materials Chemistry, vol.126, issue.7, pp.22-3227, 2012.
DOI : 10.1039/c2jm15117k

L. Jabbour, M. Destro, D. Chaussy, C. Gerbaldi, N. Penazzi et al., Flexible cellulose/LiFePO 4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, pp.571-582, 2013.

L. Jabbour, C. Gerbaldi, D. Chaussy, E. Zeno, S. Bodoardod et al., Microfibrillated cellulose???graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes, Journal of Materials Chemistry, vol.108, issue.35, pp.7344-7347, 2010.
DOI : 10.1039/c0jm01219j

S. Leijonmarck, A. Cornell, G. Lindbergh, and L. Wagberg, Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose, Journal of Materials Chemistry A, vol.89, issue.15
DOI : 10.1039/c3ta01532g

B. Scrosati, Nanomaterials: Paper powers battery breakthrough, Nature Nanotechnology, vol.4, issue.10, pp.2-10, 2007.
DOI : 10.1038/nmat1672

V. L. Pushparaj, Flexible energy storage devices based on naocomposite paper. Proceeding of the National Academy of Sciences of the United States of America, pp.13574-13577, 2007.

I. Siro and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, vol.14, issue.13, pp.459-494, 2010.
DOI : 10.1007/s10570-010-9405-y

L. Jabbour, Elaboration of Li-ion batteries using cellulose fibers and papermaking techniques
URL : https://hal.archives-ouvertes.fr/tel-00998372

J. H. Lee, S. Lee, U. Paik, and Y. M. Choi, Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance, Journal of Power Sources, vol.147, issue.1-2
DOI : 10.1016/j.jpowsour.2005.01.022

Y. M. Choi, U. Paik, and K. H. Kim, Anode composition for lithium battery and anode and lithium battery using the same. Korean Patent Application No, pp.2003-0040085, 2008.

H. W. Lin, C. P. Chang, W. H. Hwu, and M. D. Ger, The rheological behaviors of screenprinting pastes, J. Mater. Process Tech, pp.284-291, 0197.

J. Hoornstra, A. W. Weeber, H. H. De-moor, and W. C. Sinke, The importance of paste rheology in improving fine line, thick film screen printing of front side metallization. Netherland Energy Research Foundation, 1997.

R. Faddoul, Procèdes d'impression dédies a la production de masse de microcomposants électroniques a base de céramique

J. Pan, G. L. Tonkay, and A. Quintero, SCREEN PRINTING PROCESS DESIGN OF EXPERIMENTS FOR FINE LINE PRINTING OF THICK FILM CERAMIC SUBSTRATES, Journal of Electronics Manufacturing, vol.09, issue.03, pp.203-223, 1999.
DOI : 10.1142/S096031319900012X

C. Kovalchick, Mechanics of Peelings: Cohesive Zone Law and Stability, 2011.

R. S. Rivlin, The Effective Work of Adhesion, J. Paint Technol, vol.9, p.244, 1944.
DOI : 10.1007/978-1-4612-2416-7_179

M. Iotti, W. Gregersen, S. Moe, and M. Lenes, Rheological Studies of Microfibrillar Cellulose Water Dispersions, Journal of Polymers and the Environment, vol.36, issue.4, pp.137-151
DOI : 10.1007/s10924-010-0248-2

D. J. Jeffrey and A. Crivos, The rheological properties of suspensions of rigid particles, AIChE Journal, vol.22, issue.3
DOI : 10.1002/aic.690220303

W. H. Liu, T. L. Yu, and H. L. Lin, Shear thickening behavior of dilute poly(diallyl dimethyl ammonium chloride) aqueous solutions. Polymer, pp.148-162, 2007.

. C. Clasen and W. M. Kulicke, Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives, Progress in Polymer Science, vol.26, issue.9, pp.26-35, 2001.
DOI : 10.1016/S0079-6700(01)00024-7

E. Dave, K. Dunstan, E. Hill, and Y. Wei, Direct measurement of polymer segment orientation and distortion in shear: semi-dilute solution behavior. Polymer, pp.45-49, 2004.

A. Benchabane and K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions, Colloid and Polymer Science, vol.229, issue.10, pp.1173-1180, 2008.
DOI : 10.1007/s00396-008-1882-2

URL : https://hal.archives-ouvertes.fr/hal-00323103

J. Scher, Rhéologie, texture et texturation des produits alimentaires. Techniques de l'Ingénieur -F3300V2, 1998.

W. B. Russel, Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion. Colloid Surf, p.161, 2000.

R. Mahendra, S. P. Brandon, and N. P. Brandon, Rheological Studies of Nickel/Scandia- Stabilized-Zirconia Screen Printing inks for Oxide Fuel Cell Anode Fabrication, J. Amer

J. Strnadel, M. Simon, and I. Macha?, Abstract, Chemical Papers, vol.4, issue.2, p.65, 2011.
DOI : 10.1016/0377-0257(84)85016-8.http://dx.doi.org/10.1016/0377-0257(84)85016-8

C. Németh, I. Zeke, R. Juhász, L. Friedrich, J. Bata et al., Flow Properties of Processed Liquid Egg White Products, Annu. Trans. Nord. Rheol. Soc, p.18, 2010.

D. Ghorbel, N. Barbouche, H. Riahi, A. Braham, and H. Attia, INFLUENCE OF FAT CONTENT ON RHEOLOGICAL PROPERTIES OF MOLTEN ICE CREAM COMPOUND COATINGS AND THICKNESS OF SOLIDIFIED PRODUCTS, Journal of Food Process Engineering, vol.70, issue.1, 2008.
DOI : 10.1111/j.1745-4530.2008.00342.x

H. A. Barns, Thixotropy???a review, Journal of Non-Newtonian Fluid Mechanics, vol.70, issue.1-2, pp.1-33, 1997.
DOI : 10.1016/S0377-0257(97)00004-9

R. O. Heckroodt and W. Ryan, Clay suspensions with " negative thixotropy, Trans British Ceramic Society, p.77, 1978.

H. Kanai and T. Amari, Negative thixotropy in ferric-oxide suspensions, Rheologica Acta, vol.72, issue.3, pp.303-310
DOI : 10.1007/BF00396021

M. P. Lowys, J. Desbrieres, and M. Rinaudo, Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocolloid, pp.15-16, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00307705

G. Agoda-tandjawa, S. Durand, S. Berot, C. Blassel, C. Gaillard et al., Rheological characterization of microfibrillated cellulose suspensions after freezing, Carbohydrate Polymers, vol.80, issue.3, pp.80-83, 2010.
DOI : 10.1016/j.carbpol.2009.11.045

D. Buzby and A. Dobie, Fine line screen printing of thick film pastes on silicon solar cells, IMAPS, 2008.

M. Yoshio, H. Wang, K. Fukuda, Y. Hara, and Y. Adachi, Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium-Ion Battery Anode Material, Journal of The Electrochemical Society, vol.147, issue.4, pp.147-151, 2000.
DOI : 10.1149/1.1393344

C. M. Ghimbeu, Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries, Journal of the Electrochemical Society, vol.160, issue.10, pp.160-170
DOI : 10.1149/2.101310jes

L. Mantia and F. , Characterization of Electrodes for Lithium-Ion Batteries through Electrochemical Impedance Spectroscopy and Mass Spectrometry, 2008.

L. Hu, M. Pasta, L. Mantia, and F. , Stretchable, Porous, and Conductive Energy Textiles, Nano Letters, vol.10, issue.2, pp.10-12, 2010.
DOI : 10.1021/nl903949m

L. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper, Applied Physics Letters, vol.96, issue.18, p.96, 2010.
DOI : 10.1063/1.3425767

J. H. Lee, U. Paik, V. A. Hackley, and Y. M. Choi, Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries, Journal of The Electrochemical Society, vol.152, issue.9, pp.152-161, 2005.
DOI : 10.1149/1.1979214

A. Chiappone, J. R. Nair, C. Gerbaldi, L. Jabbour, R. Bongiovanni et al., Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability, Journal of Power Sources, vol.196, issue.23, pp.196-219, 2011.
DOI : 10.1016/j.jpowsour.2011.07.015

K. A. Striebel, A. Sierra, J. Shima, C. Wang, and A. M. Sastry, The effect of compression on natural graphite anode performance and matrix conductivity, Journal of Power Sources, vol.134, issue.2, pp.134-136, 2004.
DOI : 10.1016/j.jpowsour.2004.03.052

T. Takamura, Charge/discharge efficiency improvement by the incorporation of conductive carbons in the carbon anode of Li-ion batteries, Journal of Power Sources, vol.90, issue.1, pp.90-91, 2000.
DOI : 10.1016/S0378-7753(00)00446-8

P. Novak, W. Sceifele, M. Winter, and O. Haas, Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries, Journal of Power Sources, vol.68, issue.2, pp.68-70, 1997.
DOI : 10.1016/S0378-7753(96)02561-X

J. S. Gnanaraj, Y. S. Cohen, M. D. Levi, and D. Aurbach, The effect of pressure on the electroanalytical response of graphite anodes and LiCoO 2 cathodes for Li-ion batteries, J. Electroanal. Chem, vol.516, pp.1-2, 2001.

J. Shim and K. A. Striebel, Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries, Journal of Power Sources, vol.119, issue.121, pp.119-121, 2003.
DOI : 10.1016/S0378-7753(03)00235-0

P. Arora, R. E. White, and M. Doyle, Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.145, issue.10, pp.145-155, 1998.
DOI : 10.1149/1.1838857

K. Zaghib, F. Brochu, A. Guerfi, and K. Kinoshita, Effect of particle size on lithium intercalation rates in natural graphite, Journal of Power Sources, vol.103, issue.1, 2001.
DOI : 10.1016/S0378-7753(01)00853-9

R. Mcmillan, H. Slegr, Z. X. Shu, and W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, Journal of Power Sources, vol.81, issue.82, pp.81-82, 1999.
DOI : 10.1016/S0378-7753(98)00201-8

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.144, issue.4, pp.144-148, 1997.
DOI : 10.1149/1.1837571

R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, and J. Jamnik, Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries, Electrochimica Acta, vol.48, issue.24
DOI : 10.1016/S0013-4686(03)00522-X

S. P. Rwei, F. H. Ku, and K. C. Cheng, Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies, Colloid Polym. Sci, pp.280-292, 2002.

R. Dominko, M. Bele, M. Gaberschek, M. Remskar, D. Hanzel et al., Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 /C Composites, J. Electrochem. Soc, pp.152-155, 2005.

T. Amari, K. Uesugi, and H. Suzui, Viscoelastic properties of carbon black suspension as a flocculated percolation system, Progress in Organic Coatings, vol.31, issue.1-2, pp.31-32, 1997.
DOI : 10.1016/S0300-9440(97)00033-7

M. H. Bischoff and F. E. Dolle, Electrical conductivity of carbon black?polyethylene composites Experimental evidence of the change of cluster connectivity in the PTC effect, Carbon, pp.39-42, 2001.

J. H. Lee, J. S. Kim, Y. C. Kim, D. S. Zang, and U. Paik, Dispersion properties of aqueousbased LiFePO4 pastes and their electrochemical performance for lithium batteries

T. Saarinen, M. Lille, and J. Seppala, Technical Aspects on Rheological Characterization of Microfibrillar Cellulose Water Suspensions, Annu. Trans. Nord. Rheol. Soc, p.17, 2009.

W. M. Kulichet, A. H. Kull, W. Kull, and H. Thielking, Characterization of aqueous caboxymethylcellulose solutions in terms of their molecular structure and its influence on rheological behavior, Polymer, pp.37-50, 1996.

W. Porcher, B. Lestriez, S. Jouanneau, and D. Guyomard, Design of Aqueous Processed Thick LiFePO4 Composite Electrodes for High-Energy Lithium Battery, J. Electrochem
URL : https://hal.archives-ouvertes.fr/hal-00432274

G. Agoda-tandjawa, S. Durand, S. Berot, C. Blassel, C. Gaillard et al., Rheological characterization of microfibrillated cellulose suspensions after freezing, Carbohydrate Polymers, vol.80, issue.3, pp.80-83, 2010.
DOI : 10.1016/j.carbpol.2009.11.045

H. Rehage and H. Hoffman, Rheological properties of viscoelastic surfactant systems, The Journal of Physical Chemistry, vol.92, issue.16, pp.92-108, 1988.
DOI : 10.1021/j100327a031

J. W. Phair, Rheological Analysis of Concentrated Zirconia Pastes with Ethyl Cellulose for Screen Printing SOFC Electrolyte Films, Journal of the American Ceramic Society, vol.91, issue.7, pp.91-98, 2008.
DOI : 10.1111/j.1551-2916.2008.02443.x

R. Mahendra, S. Brandon, and P. Brandon, Rheological studies of nickel/Scandia stabilized zirconia screen printing inks for solide oxide fuel cell anode fabrication, J. Amer. Ceram

G. W. Lee, J. H. Ryu, W. Han, K. H. Ahn, and S. M. Oh, Effect of slurry preparation process on electrochemical performances of LiCoO 2 composite electrode, J. Power Sources, pp.195-213, 2010.

F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells, vol.93, issue.4, pp.93-394, 2009.
DOI : 10.1016/j.solmat.2008.10.004

S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska et al., Fabrication of Screen-Printing Pastes From TiO 2 Powders for Dye-Sensitised Solar Cells, Progress in Photovoltaics Research and Applications, pp.15-22, 2007.

M. Y. Lee, J. E. Park, J. S. Park, and C. K. Song, A printing technology combining screenprinting with a wet-etching process for the gate electrodes of organic thin film transistors on a plastic substrate, Microelectron. Eng, pp.87-97, 2010.

R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar et al., Impact of LiFePO4/C Composites Porosity on Their Electrochemical Performance, J. Electrochem. Soc, pp.152-157, 2005.

K. Zaghib, A. Mauger, F. Gendron, and C. M. Julien, Surface Effects on the Physical and Electrochemical Properties of Thin LiFePO 4 Particles, Chem. Mater, pp.20-22, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00282508

S. Leijonmarck, A. Cornell, G. Lindbergh, and L. Wagberg, Flexible nano-paper-based positive electrodes for Li-ion batteries???Preparation process and properties, Nano Energy, vol.2, issue.5, pp.2-5
DOI : 10.1016/j.nanoen.2013.02.002

A. Kumar, R. Thomas, N. K. Karan, J. J. Saavedra-arias, M. K. Singh et al., Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C-LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries, J. Nanotechnol, pp.1-10, 2009.

M. Takahashi, S. Tobishima, K. Takei, and Y. Sakurai, Reaction behavior of LiFePO 4 as a cathode material for rechargeable lithium batteries Solid state Ionics, pp.148-151, 2002.

D. Y. Yu, C. Fietzek, W. Weydanz, K. Donue, T. Inoue et al., Study of LiFePO[sub 4] by Cyclic Voltammetry, Journal of The Electrochemical Society, vol.154, issue.4, pp.154-158, 2007.
DOI : 10.1149/1.2434687

N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier et al., Electroactivity of natural and synthetic triphylite, Journal of Power Sources, vol.97, issue.98, pp.97-98, 2001.
DOI : 10.1016/S0378-7753(01)00727-3

N. J. Yun, H. W. Ha, K. H. Jeong, H. Y. Park, and K. Kim, Synthesis and electrochemical properties of olivine-type LiFePO 4 /C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor, J. Power Sources, pp.160-162, 2006.

B. Jin, H. B. Gu, W. Zhang, H. Park, and G. Sun, Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries, Journal of Solid State Electrochemistry, vol.119, issue.121, pp.1549-1554, 2008.
DOI : 10.1007/s10008-008-0509-3

A. Liu, Z. H. Hu, Z. B. Wen, L. Lei, and J. An, LiFePO 4 /C with high capacity synthesized by carbothermal reduction method, Ionics, pp.16-20, 2010.

W. Haselrieder, S. Ivanov, D. K. Christen, H. Bockholt, and A. Kwade, Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries, ECS Transactions, vol.50, issue.26, pp.50-76
DOI : 10.1149/05026.0059ecst

D. Y. Yu, K. Donoue, T. Inoue, M. Fujimoto, and S. Fujitani, Effect of Electrode Parameters on LiFePO[sub 4] Cathodes, Journal of The Electrochemical Society, vol.153, issue.5, pp.153-158, 2006.
DOI : 10.1149/1.2179199

H. Zheng, J. Li, X. Song, G. Liu, and V. S. Battaglia, A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes, Electrochimica Acta, vol.71, pp.71-258, 2012.
DOI : 10.1016/j.electacta.2012.03.161

M. Zhao, F. R. Lemke, and H. D. Dewald, Electrochemical Stability of Copper in Lithium-Ion Battery Electrolytes, Journal of The Electrochemical Society, vol.147, issue.8, pp.147-155, 2000.
DOI : 10.1149/1.1393619

W. K. Behl and E. J. Plicha, Stability of Aluminum in Low-Temperature Lithium-Ion Battery Electrolytes. Army Research Laboratory, pp.1-17, 1999.

S. S. Zhang and T. R. Jow, Aluminum corrosion in electrolyte of Li-ion battery, Journal of Power Sources, vol.109, issue.2, pp.458-464, 2002.
DOI : 10.1016/S0378-7753(02)00110-6

M. Xu and H. Dewald, Impedance studies of copper foil and graphite-coated copper foil electrodes in lithium-ion battery electrolyte, Electrochimica Acta, vol.50, issue.27, pp.5473-5478, 2005.
DOI : 10.1016/j.electacta.2005.03.051

W. Bennet, Considerations for estimating electrode performance in Li-Ion cells, 2012 IEEE Energytech, pp.1-5, 2012.
DOI : 10.1109/EnergyTech.2012.6304635

Z. Chen, L. Christensen, and J. R. Dahn, Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers, Electrochemistry Communications, vol.5, issue.11
DOI : 10.1016/j.elecom.2003.08.017