M. Armand and J. Tarascon, Building better batteries, Nature, vol.128, issue.7179, pp.652-657, 2008.
DOI : 10.1038/451652a

URL : https://hal.archives-ouvertes.fr/hal-00258391

B. Dunn, H. Kamath, and J. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Science, vol.334, issue.6058, pp.928-935, 2011.
DOI : 10.1126/science.1212741

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, and R. Cakan, Research Development on Sodium-Ion Batteries Cathode composites for Li-S batteries via the use of oxygenated porous architectures, Chaical Rev. J. Am. Chem. Soc, vol.10, issue.133, pp.16154-16160, 1021.

G. Toussaint, P. Stevens, L. Akrour, R. Rouget, and F. Fourgeot, Development of a Rechargeable Zinc-Air Battery, ECS Trans, vol.28, pp.25-34, 2010.
DOI : 10.1149/1.3507924

N. Imanishi and O. Yamamoto, Rechargeable lithium???air batteries: characteristics and prospects, Materials Today, vol.17, issue.1, pp.24-30, 2014.
DOI : 10.1016/j.mattod.2013.12.004

P. G. Bruce, S. Freunberger, L. J. Hardwick, and J. Tarascon, Li???O2 and Li???S batteries with high energy storage, Nature Materials, vol.14, issue.1, pp.19-29, 2012.
DOI : 10.1016/j.jpowsour.2009.12.068

Y. Nimon, L. De-jonghe, and S. V. , Solid electrolytes based on lithium hafnium phosphate for active metal anode protection. US20060078790 A1 9 Preparation and Characterization of PEO- LATP/LAGP Ceramic Composite Electrolyte Membrane for Lithium Batteries, J. Inorg. Mater, vol.27, pp.249-252, 2012.

H. C. Chen, F. J. Lin, and C. Chen, Polyacrylonitrile electrolytes 1 . A novel high-conductivity composite polymer electrolyte based on PAN , LiClO 4 and a -Al 2 O 3, pp.327-335, 2002.

Y. Liang, Z. Lin, Y. Qiu, and X. Zhang, Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators, Electrochimica Acta, vol.56, issue.18, pp.6474-6480, 2011.
DOI : 10.1016/j.electacta.2011.05.007

Y. Liang, Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators, Journal of Power Sources, vol.196, issue.1, pp.436-441, 2011.
DOI : 10.1016/j.jpowsour.2010.06.088

C. C. Cook and M. J. Wagner, Ceramic/polymer solid electrolyte based lithium water primary battery, Electrochimica Acta, vol.89, pp.778-783, 2013.
DOI : 10.1016/j.electacta.2012.10.073

F. Niepceron, Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles, Journal of Membrane Science, vol.338, issue.1-2, pp.100-110, 2009.
DOI : 10.1016/j.memsci.2009.04.022

C. Sanchez, B. Julián, P. Belleville, and M. Popall, Applications of hybrid organic???inorganic nanocomposites, Journal of Materials Chemistry, vol.40, issue.January 22, p.3559, 2005.
DOI : 10.1039/b509097k

URL : https://hal.archives-ouvertes.fr/hal-00022857

C. Laberty-robert, K. Vallé, F. Pereira, and C. Sanchez, Design and properties of functional hybrid organic???inorganic membranes for fuel cells, Chemical Society Reviews, vol.10, issue.16, pp.961-1005, 2011.
DOI : 10.1021/nl1005993

J. Christensen, A Critical Review of Li???Air Batteries, Journal of The Electrochemical Society, vol.159, issue.2, p.1, 2012.
DOI : 10.1149/2.086202jes

L. Johnson, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li???O2 batteries, Nature Chemistry, vol.4, issue.12, pp.1091-1100, 2014.
DOI : 10.1021/jz401926f

K. M. Abraham and Z. Jiang, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, vol.143, issue.1, pp.1-5, 1996.
DOI : 10.1149/1.1836378

D. Xu, Z. Wang, J. Xu, L. Zhang, and X. Zhang, Novel DMSO-based electrolyte for high performance rechargeable Li???O2 batteries, Chemical Communications, vol.53, issue.55, p.6948, 2012.
DOI : 10.1002/adfm.201200403

Z. Peng, S. Freunberger, Y. Chen, and P. G. Bruce, A Reversible and Higher-Rate Li-O2 Battery, Science, vol.337, issue.6094, pp.563-566, 2012.
DOI : 10.1126/science.1223985

D. G. Kwabi, Chemical Instability of Dimethyl Sulfoxide in Lithium???Air Batteries, The Journal of Physical Chemistry Letters, vol.5, issue.16, pp.2850-2856, 2014.
DOI : 10.1021/jz5013824

R. Younesi, P. Norby, and T. Vegge, A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries, ECS Electrochemistry Letters, vol.3, issue.3, pp.15-18, 2014.
DOI : 10.1149/2.001403eel

B. D. Mccloskey, C. M. Burke, J. E. Nichols, and S. E. Renfrew, conductivity limitations and electrolyte and cathode instabilities, Mechanistic insights for the development of Li?O 2 battery materials: addressing Li 2 O 2 conductivity limitations and electrolyte and cathode instabilities, pp.12701-12715, 2015.
DOI : 10.1039/C5CC04620C

B. Key, D. J. Schroeder, B. J. Ingram, and J. Vaughey, Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries, Chemistry of Materials, vol.24, issue.2, pp.287-293, 2012.
DOI : 10.1021/cm202773d

M. Schroeder, Battery Cathode: Theoretical and Experimental Perspectives on Stability, DMSO?Li 2 O 2 Interface in the Rechargeable Li?O 2 Battery Cathode: Theoretical and Experimental Perspectives on Stability, pp.11402-11411, 2015.
DOI : 10.1021/acsami.5b01969

S. J. Visco, Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes Aprotic and Aqueous Li-O2 Batteries, J. Solid State Electrochem Chem. Rev, vol.114, pp.1443-1456, 2014.

E. L. Littauer and K. C. Tsai, Anodic Behavior of Lithium in Aqueous Electrolytes, Journal of The Electrochemical Society, vol.123, issue.6, pp.771-776, 1976.
DOI : 10.1149/1.2132931

E. L. Littauer and K. C. Tsai, Anodic Behavior of Lithium in Aqueous Electrolytes, Journal of The Electrochemical Society, vol.123, issue.7, pp.964-969, 1976.
DOI : 10.1149/1.2133013

D. T. Welna, D. Stone, and H. Allcock, Lithium-Ion Conductive Polymers as Prospective Membranes for Lithium???Seawater Batteries, Chemistry of Materials, vol.18, issue.18, pp.4486-4492, 2006.
DOI : 10.1021/cm060691j

J. Steven, Y. S. Visco, B. D. Nimon, S. J. Visco, E. Nimon et al., Ionically conductive membranes for protection of active metal anodes and battery cells. US20090297935 A1 36 Lithium Metal Aqueous Batteries, 12th Int. Meet. Lithium Batter, 2004.

J. Steven, J. Visco, C. Lutgard, Y. S. De, A. Nimon et al., Aqueous lithium/air battery cells, CA, pp.2727266-2727267, 2010.

P. Stevens, Development of a Lithium Air Rechargeable Battery, ECS Trans, vol.28, pp.1-12, 2010.
DOI : 10.1149/1.3507922

P. Stevens, G. Toussaint, L. Puech, and P. Vinatier, Very High Specific Area Lithium-Air Battery, ECS Transactions, vol.50, issue.25, pp.1-11, 2013.
DOI : 10.1149/05025.0001ecst

F. Moureaux, P. Stevens, G. Toussaint, and M. Chatenet, Development of an oxygen-evolution electrode from 316L stainless steel: Application to the oxygen evolution reaction in aqueous lithium???air batteries, Journal of Power Sources, vol.229, pp.123-132, 2013.
DOI : 10.1016/j.jpowsour.2012.11.133

B. Bertolotti, Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane, Journal of Power Sources, vol.274, pp.488-495, 2015.
DOI : 10.1016/j.jpowsour.2014.10.059

B. Bertolotti, L. Chikh, C. Vancaeyzeele, S. Alfonsi, and O. Fichet, Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte, Journal of Power Sources, vol.274, pp.636-644, 2015.
DOI : 10.1016/j.jpowsour.2014.10.079

B. Kumar, A Solid-State, Rechargeable, Long Cycle Life Lithium???Air Battery, Journal of The Electrochemical Society, vol.157, issue.1, p.50, 2010.
DOI : 10.1149/1.3256129

B. Kumar and J. Kumar, Cathodes for Solid-State Lithium???Oxygen Cells: Roles of Nasicon Glass-Ceramics, Journal of The Electrochemical Society, vol.157, issue.5, pp.611-616, 2010.
DOI : 10.1149/1.3356988

Y. Inaguma and M. Nakashima, A rechargeable lithium???air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator, Journal of Power Sources, vol.228, pp.250-255, 2013.
DOI : 10.1016/j.jpowsour.2012.11.098

P. Zhang, Water-stable lithium ion conducting solid electrolyte of the Li1.4Al0.4Ti1.6???xGex(PO4)3 system (x=0???1.0) with NASICON-type structure, Solid State Ionics, vol.253, pp.175-180, 2013.
DOI : 10.1016/j.ssi.2013.09.022

N. B. Aetukuri, Flexible Ion-Conducting Composite Membranes for Lithium Batteries, Advanced Energy Materials, vol.7, issue.14
DOI : 10.1002/aenm.201500265

D. Safanama, D. Damiano, R. P. Rao, and S. Adams, Lithium conducting solid electrolyte Li1+xAlxGe2???x(PO4)3 membrane for aqueous lithium air battery, Solid State Ionics, vol.262, pp.211-215, 2014.
DOI : 10.1016/j.ssi.2013.11.031

J. S. Thokchom and B. Kumar, Water Durable Lithium Ion Conducting Composite Membranes from the Li[sub 2]O-Al[sub 2]O[sub 3]-TiO[sub 2]-P[sub 2]O[sub 5] Glass-Ceramic, Journal of The Electrochemical Society, vol.154, issue.4, pp.331-336, 2007.
DOI : 10.1149/1.2452822

M. Zhang, Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3???TiO2 sheet prepared by tape casting method for lithium-air batteries, Journal of Power Sources, vol.235, pp.117-121, 2013.
DOI : 10.1016/j.jpowsour.2013.01.167

L. Sebastian and J. Gopalakrishnan, Lithium ion mobility in metal oxides: a materials chemistry perspectiveBased on a lecture delivered at the international symposium ???Materials for Energy: Batteries and Fuel Cells???, November 2002, Madrid, Spain., Journal of Materials Chemistry, vol.13, issue.3, pp.433-441, 2002.
DOI : 10.1039/b211367h

P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics, vol.180, issue.14-16, pp.911-916, 2009.
DOI : 10.1016/j.ssi.2009.03.022

J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, Journal of Power Sources, vol.195, issue.15, pp.4554-4569, 2010.
DOI : 10.1016/j.jpowsour.2010.01.076

Y. Shekibi, A. Gray-weale, D. R. Macfarlane, A. J. Hill, and M. Forsyth, Nanoparticle Enhanced Conductivity in Organic Ionic Plastic Crystals:??? Space Charge versus Strain Induced Defect Mechanism, The Journal of Physical Chemistry C, vol.111, issue.30, pp.11463-11468, 2007.
DOI : 10.1021/jp071631j

Z. Deng, B. Radhakrishnan, and S. P. Ong, Anti-Perovskite Superionic Conductors, Chemistry of Materials, vol.27, issue.10, pp.3749-3755, 2015.
DOI : 10.1021/acs.chemmater.5b00988

X. Lü, OCl films with enhanced ionic conductivity, Chem. Commun., vol.4, issue.78, pp.11520-11522, 2014.
DOI : 10.1039/C4CC05372A

Y. Zhao and L. L. Daemen, Superionic Conductivity in Lithium-Rich Anti-Perovskites, Journal of the American Chemical Society, vol.134, issue.36, pp.15042-15047, 2012.
DOI : 10.1021/ja305709z

Y. Zhu, X. He, Y. A. Mo, R. Hausbrand, and W. Jaegermann, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First Principles Calculations Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission, ACS Appl. Mater. Interfaces Solid State Ionics, vol.151006114532008, issue.273, pp.51-54, 2015.

A. Kahn, A Typical Solid Electrolyte, pp.981-1013, 1984.

DOI : 10.1016/B978-0-12-437075-3.50006-3

H. Aono, Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate, Journal of The Electrochemical Society, vol.137, issue.4, p.1023, 1990.
DOI : 10.1149/1.2086597

M. Huang, A. Dumon, C. Nan, . Effect, and . Si, Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12, and Ge doping on high ionic conductivity of Li7La3Zr2O12, pp.62-64, 2012.
DOI : 10.1016/j.elecom.2012.04.032

N. Kamaya, A lithium superionic conductor, Nature Materials, vol.9, issue.9, pp.682-686, 2011.
DOI : 10.1038/nmat3066

T. Zhang, Li???Polymer Electrolyte???Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium???Air Secondary Batteries with an Aqueous Electrolyte, Journal of The Electrochemical Society, vol.155, issue.12, p.965, 2008.
DOI : 10.1149/1.2990717

Y. Shimonishi, A study on lithium/air secondary batteries???Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions, Journal of Power Sources, vol.196, issue.11, pp.5128-5132, 2011.
DOI : 10.1016/j.jpowsour.2011.02.023

Y. Shimonishi, Synthesis of garnet-type Li7???xLa3Zr2O12???1/2x and its stability in aqueous solutions, Solid State Ionics, vol.183, issue.1, pp.48-53, 2011.
DOI : 10.1016/j.ssi.2010.12.010

H. M. Chen, C. Maohua, and S. Adams, Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes, Phys. Chem. Chem. Phys., vol.15, issue.155, pp.16494-16506, 2015.
DOI : 10.1039/C5CP01841B

S. D. Jackman and R. Cutler, Stability of NaSICON-type Li1.3Al0.3Ti1.7P3O12 in aqueous solutions, Journal of Power Sources, vol.230, pp.251-260, 2013.
DOI : 10.1016/j.jpowsour.2012.12.022

F. Ding, H+ diffusion and electrochemical stability of Li1+x+yAlxTi2???xSiyP3???yO12 glass in aqueous Li/air battery electrolytes, Journal of Power Sources, vol.214, pp.292-297, 2012.
DOI : 10.1016/j.jpowsour.2012.04.058

S. Hasegawa, Study on lithium/air secondary batteries???Stability of NASICON-type lithium ion conducting glass???ceramics with water, Journal of Power Sources, vol.189, issue.1, pp.371-377, 2009.
DOI : 10.1016/j.jpowsour.2008.08.009

H. Aono, High Li+ Conducting Ceramics, Accounts of Chemical Research, vol.27, issue.9, pp.265-270, 1994.
DOI : 10.1021/ar00045a002

Y. Lu, Z. Tu, and L. A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nature Materials, vol.22, issue.82, pp.961-969, 2014.
DOI : 10.1038/nmat4041

H. Arribart, History of Recent Science and Technology at <authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/Beta-alumina.htm> 76 Chimie minérale -sur les propriétés d'un nouvel aluminate de sodium NaAl5O8, C. R. Hebd. Seances Acad. Sci, vol.254, p.2782, 1962.

J. Koh, N. Weber, and A. Virkar, Synthesis of lithium-beta-alumina by various ion-exchange and conversion processes, Solid State Ionics, vol.220, pp.32-38, 2012.
DOI : 10.1016/j.ssi.2012.06.006

M. Wu, Z. Wen, Y. Liu, X. Wang, and L. Huang, Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries, Journal of Power Sources, vol.196, issue.19, pp.8091-8097, 2011.
DOI : 10.1016/j.jpowsour.2011.05.035

R. Kanno, T. Hata, Y. Kawamoto, and M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON???lithium germanium sulfide system, Solid State Ionics, vol.130, issue.1-2, pp.97-104, 2000.
DOI : 10.1016/S0167-2738(00)00277-0

T. Kaib, New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li + -Conducting Tetralithium ortho-Sulfidostannate Li 4 SnS 4, Chem. Mater, vol.8, pp.2-10, 2012.

. Ujiie, J. Ujiie, and S. S. , 2013 (Li2S-P2S5-LiI glass-ceramic).pdf. 82. BATES, J. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53-56, El.Chem, pp.647-654, 1992.

X. Yu, A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride, Journal of The Electrochemical Society, vol.144, issue.2, p.524, 1997.
DOI : 10.1149/1.1837443

Y. Hamon, Influence of sputtering conditions on ionic conductivity of LiPON thin films, Solid State Ionics, vol.177, issue.3-4, pp.257-261, 2006.
DOI : 10.1016/j.ssi.2005.10.021

URL : https://hal.archives-ouvertes.fr/hal-00023560

S. Nowak, F. Berkemeier, and G. Schmitz, Ultra-thin LiPON films ??? Fundamental properties and application in solid state thin film model batteries, Journal of Power Sources, vol.275, pp.144-150, 2015.
DOI : 10.1016/j.jpowsour.2014.10.202

A. C. Kozen, A. J. Pearse, C. Lin, M. Noked, and G. W. Rubloff, Atomic Layer Deposition of the Solid Electrolyte LiPON, Chemistry of Materials, vol.27, issue.15, pp.5324-5331, 2015.
DOI : 10.1021/acs.chemmater.5b01654

W. England, J. B. Goodenough, and P. J. Wiseman, Ion-exchange reactions of mixed oxides, Journal of Solid State Chemistry, vol.49, issue.3, pp.289-299, 1983.
DOI : 10.1016/S0022-4596(83)80006-1

C. Bohnke and J. L. Fourquet, Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate, Solid State Ionics, vol.91, issue.1-2, pp.21-31, 1996.
DOI : 10.1016/S0167-2738(96)00434-1

M. H. Bhat, A. Miura, P. Vinatier, A. Levasseur, and K. J. Rao, Microwave synthesis of lithium lanthanum titanate, Solid State Communications, vol.125, issue.10, pp.557-562, 2003.
DOI : 10.1016/S0038-1098(02)00852-9

URL : https://hal.archives-ouvertes.fr/hal-00195419

T. Wohrle, Sol-Gel Synthesis of the lithium-ion conducting perovskite LLTO. Effect of synthesis and thermal treatments on the structure and conducting properties, pp.442-445, 1996.

D. Qian, Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes, Chemistry of Materials, vol.24, issue.14, pp.2744-2751, 2012.
DOI : 10.1021/cm300929r

C. Hua, X. Fang, Z. Wang, and L. Chen, Lithium storage in perovskite lithium lanthanum titanate, Electrochemistry Communications, vol.32, pp.5-8, 2013.
DOI : 10.1016/j.elecom.2013.03.038

A. Gupta, Optimum lithium-ion conductivity in cubic Li7???xLa3Hf2???xTaxO12, Journal of Power Sources, vol.209, pp.184-188, 2012.
DOI : 10.1016/j.jpowsour.2012.02.099

S. Narayanan, F. Ramezanipour, and V. Thangadurai, Enhancing Li Ion Conductivity of Garnet- Type Li 5 La 3 Nb 2 O 12 by Y-and Li-Codoping : Synthesis, Structure , Chemical Stability , and Transport Properties, 2012.

H. Y. Hong and -. , Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Crystal Structure And Ionic Conductivity of Li14Zn(GeO4)4 and Other New Li+ Superionic Conductors, pp.117-124, 1978.
DOI : 10.1016/0025-5408(78)90075-2

C. Wessells, L. Mantia, F. Deshazer, H. Huggins, and R. Cui, Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.158, issue.3, p.352, 2011.
DOI : 10.1149/1.3536619

W. Wu, A. Mohamed, and J. Whitacre, Microwave Synthesized NaTi2(PO4)3 as an Aqueous Sodium-Ion Negative Electrode, Journal of the Electrochemical Society, vol.160, issue.3, pp.497-504, 2013.
DOI : 10.1149/2.054303jes

P. Fabry, J. P. Gros, J. F. Million-brodaz, and M. Kleitz, Nasicon, an ionic conductor for solid-state Na+-selective electrode, Sensors and Actuators, vol.15, issue.1, pp.33-49, 1988.
DOI : 10.1016/0250-6874(88)85016-9

J. Fu, Photocatalytic activity of glass ceramics containing Nasicon-type crystals, Materials Research Bulletin, vol.48, issue.1, pp.70-73, 2013.
DOI : 10.1016/j.materresbull.2012.10.009

C. Masquelier and L. Croguennec, Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries, Chemical Reviews, vol.113, issue.8, pp.6552-91, 2013.
DOI : 10.1021/cr3001862

URL : https://hal.archives-ouvertes.fr/hal-00834789

M. Catti and S. Stramare, Lithium location in NASICON-type Li+ conductors by neutron diffraction: II. Rhombohedral ??-LiZr2(PO4)3 at T=423 K, Solid State Ionics, vol.136, issue.1-2, pp.489-494, 2000.
DOI : 10.1016/S0167-2738(00)00459-8

X. Xu, Z. Wen, X. Yang, and L. Chen, Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique, Materials Research Bulletin, vol.43, issue.8-9, pp.2334-2341, 2008.
DOI : 10.1016/j.materresbull.2007.08.007

A. Mart?, C. Pecharroma, J. E. Iglesias, and M. Rojo, Relationship between Activation Energy and Bottleneck Size for Li + Ion Conduction, NASICON Materials of Composition LiMM ? ( PO 4 ) 3 ; M , M ? ) Ge, pp.372-375, 1998.

N. Anantharamulu, A wide-ranging review on Nasicon type materials, Journal of Materials Science, vol.217, issue.121, pp.2821-2837, 2011.
DOI : 10.1007/s10853-011-5302-5

C. Chang, Y. Lee, . Il, S. Hong, and H. Park, Spark Plasma Sintering of LiTi2(PO4)3-Based Solid Electrolytes, Journal of the American Ceramic Society, vol.103, issue.7, pp.1803-1807, 2005.
DOI : 10.1016/S0955-2219(98)00232-5

S. Wong, Towards elucidating microscopic structural changes in Li-ion conductors Li1+yTi2???yAly[PO4 ]3 and Li1+yTi2???yAly[PO4 ]3???x [MO4 ]x(M=V and Nb): X-ray and27Al and31P NMR studies, Journal of Materials Chemistry, vol.8, issue.10, pp.2199-2203, 1998.
DOI : 10.1039/a802752h

E. Yi, Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films, Journal of Power Sources, vol.269, pp.577-588, 2014.
DOI : 10.1016/j.jpowsour.2014.07.029

P. Zhang, High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3, Solid State Ionics, vol.272, pp.101-116, 2015.
DOI : 10.1016/j.ssi.2015.01.004

J. S. Thokchom and B. Kumar, The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass???ceramic, Journal of Power Sources, vol.195, issue.9, pp.2870-2876, 2010.
DOI : 10.1016/j.jpowsour.2009.11.037

X. M. Wu, Preparation and characterization of lithium-ion-conductive Li1.3Al0.3Ti1.7(PO4)3 thin films by the solution deposition, Thin Solid Films, vol.425, issue.1-2, pp.103-107, 2003.
DOI : 10.1016/S0040-6090(02)01094-5

X. Xu, Z. Wen, X. Yang, J. Zhang, and Z. Gu, High lithium ion conductivity glass-ceramics in Li2O???Al2O3???TiO2???P2O5 from nanoscaled glassy powders by mechanical milling, Solid State Ionics, vol.177, issue.26-32, pp.2611-2615, 2006.
DOI : 10.1016/j.ssi.2006.04.010

G. B. Kunshina, V. V. Efremov, and E. P. Lokshin, Microstructure and ionic conductivity of lithium-aluminum titanophosphate, Russian Journal of Electrochemistry, vol.49, issue.7, pp.725-731, 2013.
DOI : 10.1134/S1023193513070082

X. Xu, Z. Wen, J. Wu, and X. Yang, Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol???gel method, Solid State Ionics, vol.178, issue.1-2, pp.29-34, 2007.
DOI : 10.1016/j.ssi.2006.11.009

Q. Ma, Q. Xu, C. Tsai, F. Tietz, and O. Guillon, A Novel Sol-Gel Method for Large-Scale Production of Nanopowders: Preparation of Li 1 (PO 4 ) 3 as an Example, J. Am. Ceram. Soc, vol.5, 2015.

S. Duluard, Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry, Journal of the European Ceramic Society, vol.33, issue.6, pp.1145-1153, 2013.
DOI : 10.1016/j.jeurceramsoc.2012.08.005

URL : https://hal.archives-ouvertes.fr/hal-00793078

N. Imanaka, T. Shimizu, and G. Adachi, Lithium conducting amorphous solid electrolytes obtained by explosion method, Solid State Ionics, vol.62, issue.3-4, pp.167-171, 1993.
DOI : 10.1016/0167-2738(93)90368-D

A. S. Best, Characterization and impedance spectroscopy of substituted Li1.3 Al0.3 Ti1.7 (PO4)3-x(ZO4)x (Z=V,Nb) ceramics, pp.191-196, 1999.

A. S. Best, M. Forsyth, and D. R. Macfarlane, Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2???x(PO4)3: impedance, X-ray and NMR studies, Solid State Ionics, vol.136, issue.1-2, pp.136-137, 2000.
DOI : 10.1016/S0167-2738(00)00493-8

M. Schroeder, S. Glatthaar, and J. Binder, Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) powders, Solid State Ionics, vol.201, issue.1, pp.49-53, 2011.
DOI : 10.1016/j.ssi.2011.08.014

L. Huang, Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method, Journal of Power Sources, vol.196, issue.16, pp.6943-6946, 2011.
DOI : 10.1016/j.jpowsour.2010.11.140

M. Cretin and P. Fabry, Comparative Study of Lithium Ion Conductors in the System Li 1 + x Al x A 2 À x IV ( PO 4 ) 3 with A IV = Ti or Ge and 0 x 0 . 7 for Use as Li + Sensitive Membranes, 1999.

X. Wu, R. Li, S. Chen, and Z. He, Synthesis and characterization of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 by wet chemical route, Rare Metals, vol.147, issue.2, pp.122-126, 2009.
DOI : 10.1007/s12598-009-0024-4

H. Chen, H. Tao, X. Zhao, and Q. Wu, Fabrication and ionic conductivity of amorphous Li???Al???Ti???P???O thin film, Journal of Non-Crystalline Solids, vol.357, issue.16-17, pp.3267-3271, 2011.
DOI : 10.1016/j.jnoncrysol.2011.05.023

X. M. Wu, X. H. Li, Y. H. Zhang, M. F. Xu, and . He, Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol???gel technique, Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol?gel technique, pp.1227-1230, 2004.
DOI : 10.1016/j.matlet.2003.09.013

M. Kotobuki and M. Koishi, Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol???gel route using various Al sources, Ceramics International, vol.39, issue.4, pp.4645-4649, 2012.
DOI : 10.1016/j.ceramint.2012.10.206

C. R. Mariappan, C. Galven, M. Crosnier-lopez, L. Berre, F. Bohnke et al., Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method, Journal of Solid State Chemistry, vol.179, issue.2, pp.450-456, 2006.
DOI : 10.1016/j.jssc.2005.11.005

X. Xu, Z. Wen, Z. Gu, X. Xu, and . Lin, Glass-Ceramics by a Citrate Process, Chemistry Letters, vol.34, issue.4, p.512, 2005.
DOI : 10.1246/cl.2005.512

H. Güler and F. Kurtulu?, A rapid synthesis of sodium titanium phosphate, NaTi2(PO4)3 by using microwave energy, Materials Chemistry and Physics, vol.99, issue.2-3, pp.394-397, 2006.
DOI : 10.1016/j.matchemphys.2005.11.011

S. D. Jackman and R. Cutler, Effect of microcracking on ionic conductivity in LATP, Journal of Power Sources, vol.218, pp.65-72, 2012.
DOI : 10.1016/j.jpowsour.2012.06.081

J. Wolfenstine, J. L. Allen, J. Sumner, and J. Sakamoto, Electrical and mechanical properties of hot-pressed versus sintered LiTi2(PO4)3, Solid State Ionics, vol.180, issue.14-16, pp.961-967, 2009.
DOI : 10.1016/j.ssi.2009.03.021

J. Fu, Superionic conductivity of glass-ceramics in the system Li2O_ Al2O3_TiO2_P2O5, Solid State Ionics, vol.96, issue.3-4, pp.195-200, 1997.
DOI : 10.1016/S0167-2738(97)00018-0

S. Soman, Y. Iwai, J. Kawamura, and A. Kulkarni, Crystalline phase content and ionic conductivity correlation in LATP glass???ceramic, Journal of Solid State Electrochemistry, vol.86, issue.88, pp.1761-1766, 2012.
DOI : 10.1007/s10008-011-1592-4

. Martínez-juárez, J. M. Amarilla, J. E. Iglesias, and J. M. Rojo, Ionic conductivity of LiHf2(PO4)3 with NASICON-type structure and its possible application as electrolyte in lithium batteries, Journal of the Brazilian Chemical Society, vol.8, pp.261-264, 1997.
DOI : 10.1590/S0103-50531997000300014

N. Imanishi, Lithium anode for lithium-air secondary batteries, Journal of Power Sources, vol.185, issue.2, pp.1392-1397, 2008.
DOI : 10.1016/j.jpowsour.2008.07.080

C. R. Mariappan, M. Gellert, C. Yada, F. Rosciano, and B. Roling, Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li???Al???Ti???P???O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic, Electrochemistry Communications, vol.14, issue.1, pp.25-28, 2012.
DOI : 10.1016/j.elecom.2011.10.022

L. Persano, A. Camposeo, C. Tekmen, and D. Pisignano, Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review, Macromolecular Materials and Engineering, vol.10, issue.188, pp.1-17, 2013.
DOI : 10.1002/mame.201200290

A. Greiner and J. Wendorff, Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers, Angewandte Chemie International Edition, vol.59, issue.188, pp.5670-5703, 2007.
DOI : 10.1002/anie.200604646

G. Srinivasan and D. H. Reneker, Structure and morphology of small diameter electrospun aramid fibers, Polymer International, vol.36, issue.2, pp.195-201, 1995.
DOI : 10.1002/pi.1995.210360210

G. Taylor, Electrically Driven Jets, Proc. R. Soc. A Math, pp.453-475, 1969.
DOI : 10.1098/rspa.1969.0205

B. Sun, Advances in three-dimensional nanofibrous macrostructures via electrospinning, Progress in Polymer Science, vol.39, issue.5, pp.862-890, 2014.
DOI : 10.1016/j.progpolymsci.2013.06.002

J. Stranger, Effect of Charge Density on the Taylor Cone in Electrospinning, Solid State Phenomena, vol.151, pp.1956-1961, 2009.
DOI : 10.4028/www.scientific.net/SSP.151.54

S. Ramakrishna, Electrospun nanofibers: solving global issues, Materials Today, vol.9, issue.3, pp.40-50, 2006.
DOI : 10.1016/S1369-7021(06)71389-X

W. K. Son, J. H. Youk, T. S. Lee, and W. Park, The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer (Guildf), pp.2959-2966, 2004.

S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer (Guildf), pp.5742-5746, 2007.

H. Hou, Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes, Chemistry of Materials, vol.17, issue.5, pp.967-973, 2005.
DOI : 10.1021/cm0484955

R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, Nanostructured ceramics by electrospinning, Journal of Applied Physics, vol.102, issue.11, p.111101, 2007.
DOI : 10.1063/1.2815499

S. Madhugiri, W. Zhou, J. P. Ferraris, and K. J. Balkus, Electrospun mesoporous molecular sieve fibers, Microporous and Mesoporous Materials, vol.63, issue.1-3, pp.75-84, 2003.
DOI : 10.1016/S1387-1811(03)00433-5

S. W. Lee, Preparation of SiO2/TiO2 composite fibers by sol???gel reaction and electrospinning, Materials Letters, vol.61, issue.3, pp.889-893, 2007.
DOI : 10.1016/j.matlet.2006.06.020

M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, and J. Ahn, TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells, Applied Physics Letters, vol.87, issue.11, p.113113, 2005.
DOI : 10.1063/1.2048816

Y. Dai, W. Liu, E. Formo, Y. Sun, and Y. Xia, Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology, Polymers for Advanced Technologies, vol.9, issue.436, pp.326-338, 2011.
DOI : 10.1002/pat.1839

G. Larsen, R. Velarde-ortiz, K. Minchow, A. Barrero, and I. G. Loscertales, A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol???Gel Chemistry and Electrically Forced Liquid Jets, Journal of the American Chemical Society, vol.125, issue.5, pp.1154-1155, 2003.
DOI : 10.1021/ja028983i

S. Choi, S. Lee, S. Im, S. Kim, and Y. Joo, Silica nanofibers from electrospinning/sol-gel process, Journal of Materials Science Letters, vol.22, issue.12, pp.891-893, 2003.
DOI : 10.1023/A:1024475022937

W. K. Son, D. Cho, and W. H. Park, Direct electrospinning of ultrafine titania fibres in the absence of polymer additives and formation of pure anatase titania fibres at low temperature, Nanotechnology, vol.17, issue.2, pp.439-443, 2005.
DOI : 10.1088/0957-4484/17/2/016

C. Wessel, R. Ostermann, R. Dersch, and B. M. Smarsly, Nanoparticles via Electrospinning, The Journal of Physical Chemistry C, vol.115, issue.2, pp.362-372, 2011.
DOI : 10.1021/jp108202b

N. Horzum, Hierarchically Structured Metal Oxide/Silica Nanofibers by Colloid Electrospinning, ACS Applied Materials & Interfaces, vol.4, issue.11, pp.6338-6345, 2012.
DOI : 10.1021/am301969w

H. Kim and H. Kim, Nanofiber of Ultra-Structured Aluminum and Zirconium Oxide Hybrid, Journal of Nanoscience and Nanotechnology, vol.6, issue.2, pp.505-509, 2006.
DOI : 10.1166/jnn.2006.099

Z. Cai, Synthesis and characterization of zinc titanate fibers by sol-electrospinning method, Journal of Sol-Gel Science and Technology, vol.70, issue.325, pp.49-55, 2012.
DOI : 10.1007/s10971-011-2589-2

C. Qin, L. Qin, G. Chen, and T. Lin, One-dimensional Eu3+ and Tb3+ doped LaBO3 nanofibers: Fabrication and improved luminescence performances, Materials Letters, vol.106, pp.436-438, 2013.
DOI : 10.1016/j.matlet.2013.05.105

J. Liu, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries, Nanoscale, vol.89, issue.10, pp.5081-5087, 2014.
DOI : 10.1039/c3nr05329f

H. Li, Y. Bai, F. Wu, Y. Li, and C. Wu, Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries, Journal of Power Sources, vol.273, pp.784-792, 2015.
DOI : 10.1016/j.jpowsour.2014.09.153

D. Shao, Coaxial electrospinning fabrication and electrochemical properties of LiFePO4/C/Ag composite hollow nanofibers, Journal of Materials Science: Materials in Electronics, vol.21, issue.12, pp.4718-4724, 2013.
DOI : 10.1007/s10854-013-1465-y

Z. Favors, Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers, Scientific Reports, vol.6, p.8246, 2015.
DOI : 10.1038/srep08246

T. Yang, Y. Li, and C. K. Chan, Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning, Journal of Power Sources, vol.287, pp.164-169, 2015.
DOI : 10.1016/j.jpowsour.2015.04.044

W. Liu, Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers, Nano Letters, vol.15, issue.4, pp.2740-2745, 2015.
DOI : 10.1021/acs.nanolett.5b00600

M. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, 1967.

R. Velchuri, V. Kumar, R. Devi, S. Seok, and M. Vithal, Low temperature preparation of NaTi<SUB align=right>2(PO<SUB align=right>4)<SUB align=right>3 by sol-gel method, International Journal of Nanotechnology, vol.7, issue.9/10/11/12, pp.1077-1086, 2010.
DOI : 10.1504/IJNT.2010.034712

R. Shimanouchi-futagami, M. Nishimora, and H. Nishizawa, Hydrothermal synthesis and electric conductivity of the NASICON-related solid solution, Na1+2xTi2BxP3-xO12, J. Mater. Sci. Lett, 2000.

C. Delmas, F. Cherkaoui, . Nadiri, and P. Hagenmuller, A nasicon-type phase as intercalation electrode: NaTi2(PO4)3, Materials Research Bulletin, vol.22, issue.5, pp.631-639, 1987.
DOI : 10.1016/0025-5408(87)90112-7

F. Sun, R. Wang, H. Jiang, and W. Zhou, Synthesis of sodium titanium phosphate at ultra-low temperature, Research on Chemical Intermediates, vol.29, issue.412, pp.1857-1864, 2012.
DOI : 10.1007/s11164-012-0720-9

J. Yao, Microwave assisted sol???gel synthesis of chlorine doped lithium vanadium phosphate, Ceramics International, vol.39, issue.2, pp.2165-2170, 2013.
DOI : 10.1016/j.ceramint.2012.07.100

K. E. Haque, Microwave energy for mineral treatment processes???a brief review, International Journal of Mineral Processing, vol.57, issue.1, pp.1-24, 1999.
DOI : 10.1016/S0301-7516(99)00009-5

S. Marinel, Aspects fondamentaux et pratiques du frittage micro-ondes, 2006.

J. Menéndez, Microwave heating processes involving carbon materials, Fuel Processing Technology, vol.91, issue.1, pp.1-8, 2010.
DOI : 10.1016/j.fuproc.2009.08.021

M. Poux, P. Cognet, and C. Gourdon, Génie des procédés durables : Du concept à la concrétisation industrielle, 2010.

R. Debnath, J. Chaudhuri, and C. Glass, Surface-Bound Selective of Tridymite Aluminum Phosphate Growth and Stabilization, pp.163-168, 1992.

A. Robertson, J. G. Fletcher, J. M. Skakle, and A. West, Synthesis of LiTiPO5 and LiTiAsO5 with the ??-Fe2PO5 Structure, Journal of Solid State Chemistry, vol.109, issue.1, pp.53-59, 1994.
DOI : 10.1006/jssc.1994.1070

F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, A review on electrospinning for membrane fabrication: Challenges and applications, Desalination, vol.356, pp.15-30, 2015.
DOI : 10.1016/j.desal.2014.09.033

S. Agarwal, A. Greiner, and J. H. Wendorff, Functional materials by electrospinning of polymers, Progress in Polymer Science, vol.38, issue.6, pp.963-991, 2013.
DOI : 10.1016/j.progpolymsci.2013.02.001

N. D. Wanasekara, L. E. Matolyak, and L. T. Korley, Tunable Mechanics in Electrospun Composites via Hierarchical Organization, ACS Applied Materials & Interfaces, vol.7, issue.41, pp.22970-22979, 2015.
DOI : 10.1021/acsami.5b06230

J. Jolivet, De la solution à l'oxyde, 1994.

J. Blanchard, F. Ribot, C. Sanchez, P. Bellot, and A. Trokiner, Structural characterization of titanium-oxo-polymers synthesized in the presence of protons or complexing ligands as inhibitors, Journal of Non-Crystalline Solids, vol.265, issue.1-2, pp.83-97, 2000.
DOI : 10.1016/S0022-3093(99)00885-6

D. Grosso, Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly, Advanced Functional Materials, vol.14, issue.4, pp.309-322, 2004.
DOI : 10.1002/adfm.200305036

URL : https://hal.archives-ouvertes.fr/hal-00005435

L. G. , S. Yu, J. C. Zhang, L. Zheng, Z. Zhao et al., Stability Constants of Metal-Ion Complexes Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity, Chem. Soc. London Special Pu Chem. Mater, vol.15, pp.2280-2286, 2003.

A. Lencastre, Hydraulique générale, 1957.

L. Bail, A. Duroy, H. Fourquet, and J. L. , Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Materials Research Bulletin, vol.23, issue.3, pp.447-452, 1988.
DOI : 10.1016/0025-5408(88)90019-0

C. A. Jouenne, Traité de céramiques et matériaux minéraux, 2001.

S. D. Jackman and R. Cutler, Effect of microcracking on ionic conductivity in LATP, Journal of Power Sources, vol.218, pp.65-72, 2012.
DOI : 10.1016/j.jpowsour.2012.06.081

D. Woodcock, P. Lightfoot, and N. Li, Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M = Li, Na, K), Journal of Materials Chemistry, vol.9, issue.11, pp.2907-2911, 1999.
DOI : 10.1039/a904193a

N. Kheoussi, Contribution a l'étude et à la caractérisation de nanofibres obtenies par électrofilage , application aux domaines médical t composite, 2010.

S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Controlling the Fiber Diameter during Electrospinning, Physical Review Letters, vol.90, issue.14, p.144502, 2003.
DOI : 10.1103/PhysRevLett.90.144502

C. J. Thompson, G. G. Chase, .. L. Yarin, and D. H. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer, vol.48, issue.23, pp.6913-6922, 2007.
DOI : 10.1016/j.polymer.2007.09.017

T. Krishnamoorthy, V. Thavasi, G. Subodh, M. Ramakrishna, and S. , A first report on the fabrication of vertically aligned anatase TiO2 nanowires by electrospinning: Preferred architecture for nanostructured solar cells, Energy & Environmental Science, vol.8, issue.8, p.2807, 2011.
DOI : 10.1039/c1ee01315g

P. I. Morgado, A. Aguiar-ricardo, and I. J. Correia, Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship, Journal of Membrane Science, vol.490, pp.139-151, 2015.
DOI : 10.1016/j.memsci.2015.04.064

X. Yu, Z. Bi, F. Zhao, and A. Manthiram, Hybrid Lithium???Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte, ACS Applied Materials & Interfaces, vol.7, issue.30, pp.16625-16656, 2015.
DOI : 10.1021/acsami.5b04209

P. Stevens, G. Toussaint, G. Lancel, C. Laberty-robert, D. Bregiroux et al., Procédé de fabrication d'une membrane flexible étanche à l'eau et conductrice ionique

T. Kimura, Molten Salt Synthesis of Ceramic Powders, Adv. Ceram. -Synth. Charact. Process. Specif. Appl, vol.5772, pp.75-10010, 2011.
DOI : 10.5772/20472

J. Ni, H. Zhou, J. Chen, and X. Zhang, Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles, Materials Letters, vol.61, issue.4-5, pp.1260-1264, 2007.
DOI : 10.1016/j.matlet.2006.07.006

X. Cao, L. Xie, H. Zhan, and Y. Zhou, Facile preparation of Ag2V4O11 nanoparticles via low-temperature molten salt synthesis method, Inorganic Materials, vol.44, issue.8, pp.886-889, 2008.
DOI : 10.1134/S0020168508080190

L. Popovic, D. Waal, &. De, and J. C. Boeyens, Correlation between Raman wavenumbers and P?O bond lengths in crystalline inorganic phosphates, Journal of Raman Spectroscopy, vol.212, issue.1, pp.2-11, 2005.
DOI : 10.1002/jrs.1253

P. Naidu and A. Virkar, Low-Temperature TiO2-SnO2 Phase Diagram Using the Molten-Salt Method, Journal of the American Ceramic Society, vol.68, issue.1, pp.2176-2180, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02603.x

P. Thévenaz, U. E. Ruttimann, and M. Unser, A pyramid approach to subpixel registration based on intensity, IEEE Transactions on Image Processing, vol.7, issue.1, pp.27-41, 1998.
DOI : 10.1109/83.650848

B. Schmid, J. Schindelin, C. Cardona, M. Longair, and M. Heisenberg, A high-level 3D visualization API for Java and ImageJ, BMC Bioinformatics, vol.11, issue.1, 2010.
DOI : 10.1186/1471-2105-11-274