Etude du rôle joué par les porines dans la persistance des infections par Providencia stuartii

Abstract : Present in the outer membrane of bacteria, porins are the main gateway for soluble molecules, such as nutrients and ions, into the bacteria. They are also the way taken by hydrophilic antibiotics to reach their targets and kill the cell. Under the strong selective pressure caused by antibiotic overuse, bacteria have evolved modified porins that are less permeable to antibiotics. Although not the only strategy developed by bacteria to survive drug treatment, it is an important factor in the spreading phenomenon of multidrug resistant infections.In order to gain further insights into the molecular determinants of antibiotic translocation, the first part of my thesis work aimed at resolving the crystallographic structures of Omp-Pst1 and Omp-Pst2, two non-specific porins encoded in the genome of Providencia stuartii. This bacterial species is not very invasive and, therefore, causes endemic rather than epidemic infections. However, these infections are often fatal given the intrinsically stringent MDR phenotype of this species. It has been shown that Omp-Pst1 is the main entrance for β-lactam antibiotics. To provide structural and functional insights into the contribution of P. stuartii porins to antibiotic resistance phenotypes, structural analysis was undertaken, not only from the wild type strain but also from two clinical mutant strains i.e. Omp-Pst1-99645 and Omp-Pst1-Nea16. Mutations result in more pronounced anion selectivity due to an increased number of positively charged amino acids lining the pore and mostly in the extracellular loops in both mutants compared to the wild type. To further determine whether these mutations contributed to a decrease in antibiotic uptake, we undertook the characterization of β-lactam antibiotics transport kinetics using electrophysiology studies at the single protein level. For the zwitterionic β-lactam tested, single-molecule conductance measurements evidenced a decrease in the association rate constant, in both mutants compared to the wild type. However, we observed instead an increase in these values for the negatively charged β-lactam, which is in good agreement with our structure-based analysis. All together, our results point towards porins playing a major role in the antibiotic resistance mechanism by reducing drug uptake.In the second part of my thesis work, we discovered that porins could self-associate to form adhesive junctions between two cells and could provide the initial scaffold for the establishment of biofilms at early stages of their developpement. The self-matching interaction is mediated by a steric zipper interaction and involves their extracellular loops. In order to confirm the adhesive proprieties of porins, we exploited a large panel of biophysical and imaging methods both in vitro and in vivo. Furthermore, we studied their diffusive proprieties in reconstituted liposomes, to explore whether these self-matching interactions between porins could play a role in cell-to-cell communication. Our results point at a major role of P. stuartii porins, Omp-Pst1 and Omp-Pst2, in cell-to-cell adhesion and make them promising targets to disrupt bacterial biofilm infections.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01346736
Contributor : Abes Star <>
Submitted on : Tuesday, July 19, 2016 - 3:02:23 PM
Last modification on : Friday, April 5, 2019 - 1:01:53 AM

File

NASRALLAH_2014_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01346736, version 1

Collections

Citation

Chady Nasrallah. Etude du rôle joué par les porines dans la persistance des infections par Providencia stuartii. Biologie structurale [q-bio.BM]. Université de Grenoble, 2014. Français. ⟨NNT : 2014GRENY001⟩. ⟨tel-01346736⟩

Share

Metrics

Record views

791

Files downloads

174