
�>���G �A�/�, �i�2�H�@�y�R�j�9�e�9�k�k

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�j�9�e�9�k�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�3 �C�m�H �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�6�`�Q�K �J�Q�#�B�H�2 �i�Q �*�H�Q�m�/�, �l�b�B�M�; �"�B�Q�@�A�M�b�T�B�`�2�/ ���H�;�Q�`�B�i�?�K�b
�7�Q�` �*�Q�H�H���#�Q�`���i�B�p�2 ���T�T�H�B�+���i�B�Q�M �P�|�Q���/�B�M�;

�_�Q�v�� �:�Q�H�+�?���v

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�_�Q�v�� �:�Q�H�+�?���v�X �6�`�Q�K �J�Q�#�B�H�2 �i�Q �*�H�Q�m�/�, �l�b�B�M�; �"�B�Q�@�A�M�b�T�B�`�2�/ ���H�;�Q�`�B�i�?�K�b �7�Q�` �*�Q�H�H���#�Q�`���i�B�p�2 ���T�T�H�B�+���i�B�Q�M
�P�|�Q���/�B�M�;�X �J�Q�#�B�H�2 �*�Q�K�T�m�i�B�M�;�X �l�M�B�p�2�`�b�B�i�û �/�2 �G�v�Q�M�- �k�y�R�e�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�e�G�u�a�1�A�y�y�N���X ���i�2�H�@
�y�R�j�9�e�9�k�k��

https://tel.archives-ouvertes.fr/tel-01346422
https://hal.archives-ouvertes.fr


N� d'ordre NNT : 2016LYSEI009

THESE de DOCTORAT DE L'UNIVERSITE DE LYON

pr�epar�ee au sein de

l'INSA LYON

Ecole Doctorale N� 512

Informatique et Math�ematiques

Sp�ecialit�e de doctorat : Informatique

Soutenue publiquement le 26/01/2016, par :

Roya Golchay

From Mobile to Cloud: Using Bio-Inspired Algorithms

for Collaborative Application O�oading

Devant le jury compos�e de

Pr�esident : Bernard Tourancheau, Professeur, Universit�e Joseph Fourier

Rapporteurs : Philippe Roose, MCF HDR, Universit�e de Pau et des Pays de l'Adour

Sophie Chabridon, MCF HDR, T�el�ecom SudParis

Examinateur : Philippe Lalanda, Professeur, Universit�e Joseph Fourier

Jean-Marc Pierson, Professeur, Universit�e Paul Sabatier,Toulouse 3

Directeurs : Fr�ed�eric Le Mou•el, MCF, INSA de Lyon

St�ephane Fr�enot, Professeur, INSA de Lyon

Th�ese e�ectu�ee au sein du Centre d'Innovation en T�el�ecommunications et Int�egration de Services (CITI) de l'INSA de Lyon,

�equipe Dynamic Software and Distributed Systems (DynaMid)





R�esum�e
Actuellement les smartphones poss�edent un grand �eventail de fonctionnalit�es. Ces objets tout en un, sont

constamment connect�es. Il est l'appareil favori pl�ebiscit�e par les utilisateurs, comme �etant le plus e�cace,

pratique et n�ecessaire parmi tous les dispositifs de communication existants. Les applications actuelles

d�evelopp�ees pour les smartphones doivent donc faire face �a une forte augmentation de la demande en termes

de fonctionnalit�es - de la part des utilisateurs, en donn�ees collect�ees et enregistr�ees - de la part des objets

IoT du voisinage, en ressources de calculs - pour l'analyse des donn�ees et le pro�lage des utilisateurs ; tandis

que - dans un même temps - les smartphones doivent r�epondre �a des crit�eres de compacit�e et de conception

qui les limitent en �energie et �a un environnement d'ex�ecution relativement pauvre en ressources. Utiliser

un syst�eme riche en ressource est une solution classique introduite en informatique dans les nuages mobiles

(Mobile Cloud Computing), celle-ci permet de contourner les limites des appareils mobiles en ex�ecutant �a

distance, toutes ou certaines parties des applications dans ces environnements de nuage.

Cependant, l'ex�ecution d�eport�ee (o�oading) - mise en oeuvre dans des centres de donn�ees

g�eographiquement �eloign�es - introduit une grande latence du r�eseau, qui n'est pas acceptable pour les utilisa-

teurs de smartphone. De plus, une ex�ecution d�eport�ee (o�oading) massive sur une architecture centralis�ee,

cr�ee un goulot d'�etranglement, qui empêche l'�evolution requise par l'expansion du march�e des dispositifs de

l'Internet des choses. L'informatique brumeuse (libre traduction du Fog Computing) a �et�e introduite pour

ramener le stockage et la capacit�e de calcul dans le voisinage de l'utilisateur ou �a proximit�e d'un emplace-

ment pr�ecis. Certaines architectures �emergent, mais peu d'algorithmes existent pour traiter les propri�et�es

dynamiques de ces environnements.

Dans cette th�ese, nous focalisons notre int�erêt sur la conception d'ACOMMA (Ant-inspired Collaborative

O�oading Middleware for Mobile Applications), un interlogiciel d'ex�ecution d�eport�ee collaborative inspir�ee

par le comportement des fourmis, pour les applications mobiles. C'est une architecture orient�ee service

permettant de d�echarger dynamiquement des partitions d'applications, de mani�ere simultan�ee, sur plusieurs

clouds �eloign�es ou sur un cloud local cr�e�e spontan�ement, incluant les appareils du voisinage. Les principales

contributions de cette th�ese sont doubles. Si beaucoup d'intergiciels traitent un ou plusieurs d�e�s relatifs �a

l'�execution d�eport�ee, peu proposent une architecture ouverte bas�ee sur des services qui serait facile �a utiliser

sur n'importe quel support mobile sans aucun exigence particuli�ere. Parmi les principaux d�e�s il y a les

questions de quoi et quand d�echarger dans cet environnement changeant et tr�es dynamique, o�u le pro�le et

le contexte du dispositif mobile, et les propri�et�es du serveur jouent un rôle consid�erable dans l'e�cacit�e. A

cette �n, nous d�eveloppons des algorithmes de prises de d�ecisions bio-inspir�ees : un processus de prise de

d�ecision bi-objectif dynamique avec apprentissage et un processus de prise de d�ecision en collaboration avec

les autres dispositifs mobiles du voisinage.

i



Nous d�e�nissons un m�ecanisme de d�epôt d'ex�ecution avec une m�ethode de partitionnement grain �n de

son graphe d'appel. Nous utilisons les algorithmes des colonies de fourmis pour optimiser bi-objectivement

la consommation du CPU et le temps total d'ex�ecution, en incluant la latence du r�eseau. Nous montrons que

les algorithmes des fourmis sont plus facilement re-adaptables face aux modi�cations du contexte, peuvent

être tr�es e�caces en ajoutant des algorithmes de cache par comparaison de châ�ne (string matching caching)

et autorisent facilement la diss�emination du pro�l de l'application a�n de cr�eer une ex�ecution d�eport�ee

collaborative dans le voisinage.



Abstract

Not bounded by time and place, and having now a wide range of capabilities, smartphones are all-in-one

always connected devices - the favorite devices selected by users as the most e�ective, convenient and neces-

sary communication tools. Current applications developed for smartphones have to face a growing demand

in functionalities - from users, in data collecting and storage - from IoT device in vicinity, in computing

resources - for data analysis and user pro�ling; while - at the same time - they have to �t into a compact

and constrained design, limited energy savings, and a relatively resource-poor execution environment. Using

resource- rich systems is the classic solution introduced in Mobile Cloud Computing to overcome these mobile

device limitations by remotely executing all or part of applications to cloud environments. The technique is

known as application o�oading.

O�oading to a cloud - implemented as geographically-distant data center - however introduces a great

network latency that is not acceptable to smartphone users. Hence, massive o�oading to a centralized

architecture creates a bottleneck that prevents scalability required by the expanding market of IoT devices.

Fog Computing has been introduced to bring back the storage and computation capabilities in the user

vicinity or close to a needed location. Some architectures are emerging, but few algorithms exist to deal

with the dynamic properties of these environments.

In this thesis, we focus our interest on designing ACOMMA, an Ant-inspired Collaborative O�oading

Middleware for Mobile Applications that allowing to dynamically o�oad application partitions - at the same

time - to several remote clouds or to spontaneously-created local clouds including devices in the vicinity.

The main contributions of this thesis are twofold. If many middlewares dealt with one or more of o�oading

challenges, few proposed an open architecture based on services which is easy to use for any mobile device

without any special requirement. Among the main challenges are the issues of what and when to o�oad

in a dynamically changing environment where mobile device pro�le, context, and server properties play

a considerable role in e�ectiveness. To this end, we develop bio-inspired decision-making algorithms: a

dynamic bi-objective decision-making process with learning, and a decision-making process in collaboration

with other mobile devices in the vicinity. We de�ne an o�oading mechanism with a �ne-grained method-level

application partitioning on its call graph. We use ant colony algorithms to optimize bi-objectively the CPU

consumption and the total execution time - including the network latency.

iii





List of the acronyms

MC Mobile Computing
CC Cloud Computing
MCC Mobile Cloud Computing
ACO Ant Colony Optimization
IoT Internet of Things
SPC Spontaneous Proximity Cloud
DS Distant Cloud
SM String Matching
SP Shortest Path
BSP Bi-objective Shortest Path

Table 1: List of the acronyms

v





Acknowledgements

Getting a doctorate, undoubtedly, was a challenging process in my life. I would like to express my very

great appreciation to all those who helped me by their guidelines and supports to successfully complete this

course.

First, I would like to o�er my special thanks to St�ephane for the opportunity he provided me to start

PhD and also for his availability. I wish to acknowledge my supervisor, Fr�ed�eric, who trusted me, helped me

grow as a researcher and gave me a new dimension to my way of thinking. I am grateful to all his personal

and academic comments and his di�erent attitudes to life. He always gave me con�dence that I would be

successful despite all obstacles and helped me get to the end.

My thanks also go to all Laboratory partners for the friendly atmosphere and great times we spent together.

My special thanks are extended to Fabrice and Florent for their support and attention and also to Marie

Ange because of her warm company and encouragement in the most di�cult times.

Special thanks should be given to my good friends whose company energetized me to work hard, especially

Marie whose kindness cannot be reciprocated with words.

I am deeply grateful to my parents for their unconditional love, companionship and support at all stages of

my life. I wish to thank my Dad for reminding me of the importance of teaching and research and my Mom

for her immeasurable support and assistance. I would like to express my deep gratitude to my brothers,

Hamed and Behnood, for their encouragement and endless kindness. I would like to express my very great

appreciation to my dear husband, Hamidreza, for all encouragement and conditions provided for me.

And �nally, I wish to thank my lovely daughters, Pania and Parmis, who have �lled every moment of my

life with joy and indescribable sweetness. I would like to do apologize about all the hours and days they

spent without Mom or with a busy and bored Mom.

It should be noted that this list is not exhaustive and I really acknowledge every people who contributed

to my project.

vii





Contents

1 Introduction 1
1.1 Mobile Device: From Personal Device to IoT Gateway . . . . . . . . . . . . . . . . . 1
1.2 From Mobile to Cloud: Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . . 5
1.3 Problem Statement: Application O�oading . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Overview of the Application O�oading Middleware 13
2.1 General Architecture of Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . . 13
2.2 Architecture and Communication for Cloud Application Engineering . . . . . . . . . 15

2.2.1 Client-Server Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Virtualization Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Mobile Agent Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 O�oading Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Distant Cloud Based Middleware . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Local Cloudlet Based Middleware . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Proximate Cloud Based Middleware . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Middleware Classi�cation Based on Decision Making Process . . . . . . . . . . . . . 33

3 An Automated Application O�oading Middleware 37
3.1 Main Contributions of Designing O�oading Middleware . . . . . . . . . . . . . . . . 38
3.2 An Overview of Mobile Applications from an Application Engineering Perspective . 40

3.2.1 Mobile Application Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Mobile Application Transformation . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 An Overview of Application O�oading Middleware from a Runtime Perspective . . 47
3.3.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Service-oriented Architecture for ACOMMA . . . . . . . . . . . . . . . . . . . 50

3.3.2.1 Service Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2.2 Service Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Individual O�oading Decision Making in ACOMMA 55
4.1 An Introduction of Decision Making Process for Application O�oading . . . . . . . 55

4.1.1 Di�erent Aspects of O�oading Decision Making . . . . . . . . . . . . . . . . 56
4.1.2 Application Partitioning Problem Considered as Shortest Path Problem . . . 60
4.1.3 Solving Shortest Path Problem Using Bio-Inspired Algorithms . . . . . . . . 63

4.2 Decision Making Process of ACOMMA for Application O�oading . . . . . . . . . . 65

ix



4.2.1 Application O�oading Flow of ACOMMA . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Bi-Objective O�oading Decision Making Using Ant Colony Optimization

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Learning-Based O�oading Decision Making Using String Matching Algorithm 71

5 Collaborative Application O�oading 75
5.1 An Introduction of Collaboration-based Application O�oading . . . . . . . . . . . . 75
5.2 Collaborative O�oading in ACOMMA . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Collaboration-Based Resource Sharing in Application O�oading . . . . . . . 80
5.2.1.1 Creating Service Graph for Multi Destination Application O�oading 82
5.2.1.2 Applying ACO for Multi Destination Decision Making . . . . . . . . 84

5.2.2 Collaboration-Based Decision Sharing in Application O�oading . . . . . . . . 86
5.2.2.1 Collaborative Decision Sharing . . . . . . . . . . . . . . . . . . . . . 86
5.2.2.2 Decision Cache Management . . . . . . . . . . . . . . . . . . . . . . 87

6 Implementation and Evaluation of ACOMMA 91
6.1 Validation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.2 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.3 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Evaluation of Individual Decision Making for Single Destination O�oading . 94

6.2.1.1 Ant Colony Optimization Performance . . . . . . . . . . . . . . . . 95
6.2.1.2 String Matching Performance . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Evaluation of Collaborative O�oading . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2.1 Decision Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2.2 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion 107
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Short and Long Term Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



List of Figures

1.1 Application o�oading dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 General architecture of Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . . 15
2.2 A�ecting factors in Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The architecture of Cuckoo [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 The architecture of MAUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 The architecture of ThinkAir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Fuzzy logic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 VM synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Thematic taxonomy of application o�oading middlewares . . . . . . . . . . . . . . . 34

3.1 Mobile devices as IoT gateway and SPC . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 A sample call graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Mobile application architecture of ACOMMA from application engineering point of

view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Mobile application execution 
ow with servicization modi�cations . . . . . . . . . . 46
3.5 A general execution 
ow of o�oading middleware . . . . . . . . . . . . . . . . . . . . 49
3.6 Layered architecture of application o�oading middleware . . . . . . . . . . . . . . . 50
3.7 Service interactions of middleware architecture . . . . . . . . . . . . . . . . . . . . . 53

4.1 Transforming call graph to be compatible to SP problem . . . . . . . . . . . . . . . . 61
4.2 A weighted call graph with local and remote paths . . . . . . . . . . . . . . . . . . . 63
4.3 An architectural view of o�oading building blocks in ACOMMA . . . . . . . . . . . 66
4.4 O�oading process in ACOMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Non dominated solutions for Shortest Path Problem . . . . . . . . . . . . . . . . . . 69
4.6 Decision making process using String Matching . . . . . . . . . . . . . . . . . . . . . 72
4.7 A sample of String Matching Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 A motivating scenario to make mobile devices collaborate . . . . . . . . . . . . . . . 77
5.2 Centralized client-server vs. decentralized peer-to peer communication . . . . . . . . 79
5.3 Building blocks of ACOMMA for collaborative o�oading . . . . . . . . . . . . . . . 81
5.4 General 
ow of collaborative o�oading . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Application partitioning for multi destination o�oading . . . . . . . . . . . . . . . . 83
5.6 Call graph modi�cation for multi destination o�oading . . . . . . . . . . . . . . . . 84
5.7 A decision cache composed of decision trails and contextual information . . . . . . . 87

6.1 Local and ACO o�oading execution time of micro benchmarks on Galaxy SII . . . . 96

xi



6.2 Local and ACO o�oading execution time of micro benchmarks on Google Nexus 7
Tablette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Local and ACO o�oading execution time of macro benchmarks on Galaxy SII . . . 98
6.4 ACOMMA's overhead running ACO for successful runs of Determinant and Integral 98
6.5 Local and ACO o�oading CPU usage of micro benchmarks on Google Nexus 7 Tablette 99
6.6 Nearby device discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Execution time of application o�oading, using SM by local or collaborative cache . 103



List of Tables

1 List of the acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

2.1 A classi�cation of application o�oading middlewares . . . . . . . . . . . . . . . . . . 35

6.1 Test inputs for individual decision making using ACO . . . . . . . . . . . . . . . . . 95
6.2 Summary of individual decision making using ACO on micro benchmarks . . . . . . 100
6.3 Summary of individual decision making using ACO on macro benchmarks . . . . . . 100
6.4 Execution time gained bye SM algorithm compared with ACO . . . . . . . . . . . . 101
6.5 Test inputs for collaborative decision sharing using ACO . . . . . . . . . . . . . . . . 102
6.6 Execution time gained by SM using collaborative cache compared with local cache . 103
6.7 Execution trace of Determinant for multi destination o�oading . . . . . . . . . . . . 104
6.8 Execution trace of Integral for multi destination o�oading . . . . . . . . . . . . . . . 104

xiii



xiv



Chapter 1

Introduction

1.1 Mobile Device: From Personal Device to IoT Gateway . . . . . . . . . . . . . . . . 1

1.2 From Mobile to Cloud: Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . 5

1.3 Problem Statement: Application O�oading . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The goal of this chapter is to highlight the challenges in computer system research raised

by Mobile Cloud Computing and put the light on new challenging problems, the management

of dynamic and scaling aspects in application o�oading. We begin by examining the dual role

of mobile device and specially smartphone as a personal device and as a gateway of Internet of

Things. Then we mention the motivation of application o�oading from mobile device to the cloud

to overcome its inherent resource limitations. We especially focus on two hot key research points

on Mobile Cloud Computing: dynamic decision making for o�oading and collaboration between

mobile devices and IoT from o�oading point of view. Finally, we outline the contributions of this

thesis and detail the chapter contents.

1.1 Mobile Device: From Personal Device to IoT Gateway

The user tends to use more and more smartphones instead of portable computing and communica-

tion devices as all-in-one always-connected devices with custom-built personal productivity, social

media, and entertainment signi�cantly increased so that becoming less of a luxury and more of a

necessity in human life. According to CISCO Visual Networking Index [30] average smartphone us-

age grew 50 percent in 2013. By the end of 2014, the number of mobile-connected devices exceeded

1



CHAPTER 1. INTRODUCTION

the number of people on earth, and by 2019 there will be nearly 1.5 mobile devices per capita.

Ubiquitous network connectivity, even for these small devices in addition to their mobility prop-

erty make users to rely on their mobile devices as their go-to devices and increasingly using them

for daily tasks such as Internet banking, emailing, and emergencies (such as viewing online tra�c

map or using routing applications to �nd the best shopping way or connecting to a medical infor-

mation system to take a prescription urgently). The expansion of mobile devices usage o�ers large

number of features to users. Indeed, these platforms make services, applications and functionalities

available anywhere and any time.

Wide range of smartphones capabilities typically including 3G connectivity, GPS, WiFi, high

quality graphic, cameras,various sensors, gigabytes of storage and gigahertz speed processors beside

their compact design and miniature nature which make them dominant computing devices selected

by users highly motivate application market to develop wide range of resource constrained mo-

bile applications such as m-commerce, mobile telemedicine, multiplayer mobile gamming, machine

learning, natural language processing, pattern recognition, augmented reality service to satisfy high

users expectation. However the inherent limitations of smartphones make it di�cult to exploit their

full potential to run these complex applications and have the best performance compared with the

same application running on powerful stationary computing devices.

However not bounded by time and place make the mobile devices become an essential part

of human life as the most e�ective and convenient communication tools but its more than just

connecting people. Mobile is about connecting everything.

Machine-to-machine (M2M) mobile connectivity represents the next great wave of what mobile

can make possible in our lives. Huawei [134] uses M2M also standing for Machine to Man, Man

to Machine, or Machine to Mobile. As wireless innovation continues, this M2M connectivity the

so-called \Internet of Things" intelligently connects humans, devices, and systems and will further

accelerate mobile opportunity and transform how people and our economy interact with the many

tools of modern life. Through mobile connectivity, the Internet can make virtually anything more

intelligent: holding great promise for our economy, our environment, our education and health care

systems, our safety and our standard of living. From a refrigerator and home thermostat to a car

or o�ce whiteboard to a child's textbook or doctor's medical tablet, wireless technology is leaping

beyond the phone to connect the world around us to the Internet and this \Internet of Things"

2



CHAPTER 1. INTRODUCTION

will greatly improve our lives and our economy.

When embedded with chips and sensors, these objects(Things) can \think", \feel", and \talk"

with each other. Together with the infrastructure of the Internet and mobile networks, these objects

can communicate with humans, and enable us to monitor and control them anytime anywhere and

enjoy their intelligent service, making the idea of a \Smart Planet" a dream come true.

Exponentially augmented number of connected devices to IoT make an old science �ction history

comes true. According to Gartner1 the IoT will reach 26 billion connected devices in 2020, with

an exponential growth of 30 times the installed base in 2009, when connected devices in the web

were just 900 million [90]. According to ABI Research2 [89] more than 30 billion devices will be

wirelessly connected to the IoT (Internet of Everything) by 2020.

The smartphones brimming with sensors (an accelerometer, a compass, GPS, light, sound,

and altimeter) are becoming a universal interface and remote control for these things. In this

way, the smartphone is a gateway drug for you to enter the next level, in which the internet is

in your thermostat, lights, door locks, car and wristwatch. For instance, in order to reduce car

accidents and provide drivers with an easier and safer way of manipulating the navigation system,

[132] introduces a remote control framework that make remote person capable to control the car

navigation system on behalf of the driver. Using 
exible home control and monitoring system

proposed in [98], any Android based smartphone with built in support for Wi-Fi can be used to

access and control the devices at home. Another example is a thermostat system in a house that

could be controlled via the personal IoT platform using smart phone [128].

Smart homes, Internet-connected cars, and wearable devices which represent the next generation

of mobile gear beyond smartphones, are new systems that will coexist with phones for at least the

next few years.

Despite increasing usage of smartphones either for individual owner use as mini-computers that

travel with them and keep them connected 24 hours a day for running di�erent mobile applica-

tions, or as the universal interface for IoT, exploiting their full potential is di�cult due to their

inherent limitations. This often severely constrains hardware and software development for these

devices. [103] divides constraints raised by mobile computing into the three main categories of

1American information technology research and advisory �rm headquartered in Stamford, Connecticut, United
States

2Market research and market intelligence �rm based in New York

3



CHAPTER 1. INTRODUCTION

mobile device, network and mobility constraints. We do the same division but we consider mobile

device as a gateway for the IoT as well as ordinary personal device.

� Mobile Device Constraints: Due to their small size and weight mobile devices are resource-

poor in terms of processor speed, storage space, display size and screen resolution compared

with stationary computers. This is what is mentioned in almost all researches done in Mobile

Computing domain. We believe that although mobile devices are not as powerful as stationary

computers, by the virtue of rapid and drastic progress in embedded technologies they are

strong enough to meet user requirements itself and the user rather su�ers from short battery

life time. This battery shortage is more problematic while connecting to IoT as a gateway.

In addition, hardware resources of mobile device could not support new volume of processing

imposed by its new role. How to meet these constraints plus power limitation while satisfying

user is a great challenging point for developers [61].

� Network Constraints: Because of their mobility nature, mobile devices use wireless networks

instead of wired ones. Despite great improvement in wireless network they will still continue

to have limited bandwidth, high latency and frequent disconnections due to power limitations,

available spectrum and mobility.

� Mobility Constraints:

{ Mobility is inherently hazardous [108]: While mobile devices are in move they are more

vulnerable to loss or misplace, damage or theft. Their mobility makes it di�cult to

consider their availability. Security and privacy points are also much more important

than stationary computer. Mobile devices record various private data about user same

as location and this sensitive information should not be accessible to others without

owner authorisation.

{ Mobile connectivity is highly variable in performance and reliability: Wireless network

coverage is varying in di�erent geographical position. There maybe no network coverage

in some places. In addition network providers o�er di�erent bandwidth and connection

speed. Some buildings may o�er reliable, high-bandwidth wireless connectivity while

others may only o�er low-bandwidth connectivity. Outdoors, a mobile element may

surely have to rely on a low-bandwidth wireless network with gaps in coverage. If

4



CHAPTER 1. INTRODUCTION

the system does not recognize and adapt to these di�erences, it can impact the user

experience. For example, if a system sends high-quality video to a device with a very

limited wireless connection, the result is long loading times and a poor user experience.

{ Mobile device is not accessible for a speci�c period of time: Mobility makes it di�cult

to rely on a mobile device as an IoT gateway. At any movement, a mobile device should

rediscover its environment to know nearby mobile devices as well as IoT. In addition,

the availability of mobile device up to the end of IoT related processes is not guaranteed

because of its mobility.

Great and consecutive improvement in mobile devices and network communication is required

in order to overcome challenges raised by the aforementioned constraints. Augmentations in mobile

device side divided into hardware and software approaches. Hardware approaches focus to empower

mobile devices by exploiting powerful resources and long lasting battery.

Hardware solutions are not always feasible; generating powerful device caused additional heat,

size and weight, preparing last longing battery in small device with enlarged resources is not

possible with current technologies and �nally equipping mobile device with high-end hardware will

noticeably increasing the price [14]. On the other hand, software development process is much

more faster than hardware development. There is a highly impressive development in software

domain in the last decades.

This is why we are interested in software level solutions to atone hardware limitation in mobile

computing. In the next section we introduce the most recent software approach named Mobile

Cloud Computing after presenting a brief history of software approaches and its categories.

1.2 From Mobile to Cloud: Mobile Cloud Computing

Empowering mobile devices using software solutions is not a new concept. Di�erent approaches

including load sharing [95], remote execution [106], cyber foraging [109], and computation o�oad-

ing [75], [76] try to improve performance and energy consumption of resource-poor mobile devices

by using the power of one or more resource-rich stations. Due to slight di�erences among their

concepts, researchers use the terms \remote execution", \cyber foraging" and \computation of-


oading" interchangeably in the literature with similar principle and notion [14]. \O�oading" is

5



CHAPTER 1. INTRODUCTION

the term which we use in the rest of this dissertation for this concept.

The basic idea of code o�oading is the core concept of di�erent researches over the years

[93, 18, 21, 19] as one of the most practical solutions to alleviate resource limitation in smartphones.

A key area of application o�oading is to make a resource-intensive device use remote execution to

improve performance and energy consumption. The surrogate can be a powerful stationary device

or a set of processors. Drastic evolution of wireless technologies that make network connectivity

ubiquitous and successful practices of Cloud Computing for stationary machines are motivating

factors to bring the cloud to the vicinity of a mobile from an o�oading perspective. As result

Mobile Cloud Computing was introduced to enable rich mobile computing by extending the on

demand computing vision of CC and enrich smartphones and address their issues of computational

power and battery lifetime by executing complete mobile applications or identi�ed resource intensive

components of a partitioned mobile application on cloud-based surrogates.

Although the o�oading method is not a new concept, the term Mobile Cloud Computing was

introduced and used about the same time as generalization of CC. Then in 2010, Google CEO, Eric

Schmidt, explained MCC in an interview. Increasing use of mobile devices, especially smartphones,

on the one hand and the many bene�ts of using MCC on the other hand have attracted a lot of

attention to this new concept and prompted much research done in this area. The advantages of

MCC can be divided as follows:

� Strengthening the processing power: Sending all or part of computation intensive mobile

application to a reliable and strong resource can increase the prepossessing power and available

memory while reducing execution time.

� Prolonging the battery: O�oading process on a cloud-based device considerably decreases

energy consumption and increases mobile device battery life during the execution of the

energy-intensive application.

� Unlimited storage: Being connected to cloud and its almost unlimited storage compared with

the limited storage of mobile device results in an increase in the available storage capacity in

mobile device.

� Data Safety: By storing the sensitive data on secure and reliable resources of a cloud, it

reduces the possibility of these data being stolen, lost or physically damaged.

6



CHAPTER 1. INTRODUCTION

� Data sharing and ubiquitous access: Users of mobile devices will be able to access their stored

data on the cloud storage anytime, anywhere and through any device.

� Enriched user interface: Due to the inherent limitations of mobile devices, heavy and compact

2D and 3D screen rendering can be done in the cloud and the �nal image will be prepared

based on the features and screen size of the mobile device.

� Enhanced Application Generation: Distributed Mobile Applications can be implemented for

a variety of dissimilar mobile devices by using already developed components on the clouds.

The main objective of MCC is to exploit the above-mentioned bene�ts and provide a method

for fast and easy access to cloud resources. Naturally, there are some problems in achieving these

goals. Since MCC has arisen from a merger of Mobile Computing and CC, important factors that

a�ect the quality of MCC are challenges related to MC and CC and the relationship between these

two:

� Cloud side challenges

{ Privacy: Although the protected state of data stored in the cloud avoids them being lost

or destroyed, the public part of cloud space can compromise the users privacy despite

the creation of separate virtual space for each user.

{ Security: Protecting the security of the data during transmission to the cloud and vice

versa and during their residence on cloud is a noteworthy point in discussions on CC

and consequently in MCC.

{ Cost: cloud is a non-free infrastructure and the user must meet its cost to be able to use

it. Estimating whether paying such a cost is e�ective for the user and when the user is

willing to pay it are other issues to be considered.

� Communication challenges

{ Communication Protocol: Although communication protocols such as Hadoop [9] which

is implemented in distributed computing as well as open resource APIs of the cloud

itself like Dropbox [2], Azur [10] and OpenNebula [12] can be used in MCC, the lack of a

standard communication protocol especial(customized) for MCC is one of its drawbacks

that must be examined more.

7



CHAPTER 1. INTRODUCTION

{ Infrastructure deployment: As an IoT gateway, a mobile device needs to communicate

with heterogeneous sensors. These sensors usually use private communication protocols

in their network that are known only within their network. How to deploy an infras-

tructure to communicate with these sensors on various communication networks while

having reasonable response time and how to connect them to the cloud is a challenging

point.

� Mobile side challenges

{ Complexity of application implementation: Applications that can be transferred into

a cloud are more complex than normal applications and their implementation requires

more knowledge, skills and time. When some parts of the application need to be trans-

ferred to the cloud, the developer is responsible for detecting and annotating the portable

parts.

{ Performance: Although the main goal of MCC is to overcome the problems caused by

restrictions of mobile device resources through o�oading the entire application or costly

parts of it in order to increase e�ciency, communication with cloud and sending and

receiving information require large amounts of resources and is costly. How to make an

e�cient o�oading decision to augment mobile device performance concerning o�oading

costs and bene�ts is a challenging point while designing an o�oading middleware.

{ Mobility transparency and awareness: Mobility of mobile device itself as well as its

dynamic and highly changing environment also cause some challenges. Mobility may

interrupt mobile devices' connection with the cloud during the execution of some parts of

the application on the cloud, therefore, it can lead to the impossibility of mobile devices'

access to the processing results. Making these issues transparent to mobile device is

important. On the other hand, mobile devices specially used as IoT gateway need to

be aware of their highly changing environment to be able to communicate with cloud

as well as IoT. This awareness may lead to making more e�cient o�oading decisions.

Being mobility transparent and mobility aware at the same time depending on situation

is an important challenging point while o�oading. Making users to agree to collaborate

with others using incentive methods is challenging. How to make this collaboration be

also bene�cial for mobile device itself is a point of discussion.

8



CHAPTER 1. INTRODUCTION

Figure 1.1: Application o�oading dimensions

In this thesis we focus on challenging points related to mobile device and introduce our o�oading

middleware as a response to these issues.

1.3 Problem Statement: Application O�oading

How to make mobile devices bene�t from CC using application o�oading is an important research

point in MCC. There are di�erent ways to delegate resource / computation-intensive parts of a mo-

bile application to more powerful machine that their choices based on the context and requirements

may result in di�erent performance. Answering some key questions as follows leads to designing

an o�oading middleware that meets performance goals in an e�cient way.

� What to o�oad?

� Where to o�oad?

� How to o�oad?

Figure 1.1 shows a summary of existing answers to these questions.

The proposed o�oading solutions are generally to develop an architecture in which the mobile is

charged with the responsibility of de�ning what should be o�oaded based on two main strategies:

entire application o�oading and application partitioning. The virtual machine techniques used

9



CHAPTER 1. INTRODUCTION

to migrate the entire application process in �rst o�oading form where code partition becomes

transparent to programmer [110], [28] while in application partitioning form the application is

partitioned either statically using basic implementation primitives (e.g. annotations) or dynamically

using component-based application partitioning techniques [84] and part of the code is outsourced

based on available resources, such as network availability, bandwidth and latency [32], [91], [55].

These portions could have di�erent granularity same as OSGi bundles [32] or methods [73].

There are three main surrogate types for mobile device to o�oad the above mentioned parts.

The �rst one is the real cloud resources with static hardware infrastructure. Googles Gmail for

Mobile [8] is an example which uses rich Google servers while the mobile device uses 3G connection

to communicate with a remote server as a thin client. Facebooks' location aware services [5] and

Twitter for mobile [13] are some other example of this type. The second surrogate type is a closer

network layer to mobile device called \Cloudlet" that was proposed in [110] and described as \data

center in a box". Cloudlet is a set of several multi-core computers with connectivity to the remote

cloud servers. Mobile devices in local vicinity can also be considered as resource providers with

peer-to-peer communication. Other available stationary devices can be used in addition to these

collective devices of various mobile devices. Hyrax [83] is an example which uses this surrogate

type while o�oading.

The total process of o�oading can be done either statically while implementing or dynamically

at run time. In the �rst case, o�oadable parts are de�ned at the beginning of an application and

they will not change during the execution. In the second case, the decision making engine will

decide for o�oad able portions based on the current situation at runtime.

To be adapted to the mobility of the mobile device itself and its environment while o�oading, we

make a contribution on an o�oading middleware with an open architecture which makes dynamic

o�oading decisions at runtime considering the current situation of a mobile device and its context.

To perform an adaptable and scalable o�oading, we apply �ne-grain method level o�oading. We

propose a bio-inspired algorithm to take o�oading decisions in a dynamic way.

To bene�t form physical proximity of an IoT to the mobile device compared with Cloudlet and

DS, we consider nearby devices as a cloud that constructs and destroys itself spontaneously. Then

we propose an approach to make these nearby devices to collaborate in the event of o�oading. The

�ne-granularity of o�oadable parts makes it possible to execute on small nearby mobile devices.

10



CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

In this the �rst chapter, we presented the concept of o�oading in MCC and then we highlighted

new challenging points in the domain considering the dual role of a mobile device in its dynamic

environment as a personal device and as an IoT gateway at the same time. Finally, we shortly

mentioned how we address these issues. This manuscript is organized as follows:

� Chapter 2 provides a survey of existing application o�oading middleware and brings out

drawbacks and limitations of currently existing solutions. A classi�cation of these approaches

under new key research points is presented at the end of the section.

� Chapter 3 �rstly exposes our main contributions of designing an o�oading middleware. It

then describes how to make a mobile application be adapted to our o�oading middleware.

Descriptions of service-based and open architecture of this middleware as well as a description

of the services and their interactions can be found in the last section of this chapter.

� Chapter 4 presents the decision making process for application o�oading and explains our

proposed bio-inspired algorithm to make a dynamic o�oading decision. Learning-based of-


oading decision making using past decisions and its string matching algorithm is also illus-

trated in this chapter.

� Chapter 5 describes our second contribution: making a collaborative o�oading in cooper-

ation between nearby mobile devices. Decision sharing and resource sharing are introduced

as two di�erent interests for making mobile devices to collaborate for o�oading. How our

middleware operates to o�oad onto nearby devices or bene�ts from others' decisions to make

its own is explained in this chapter.

� Chapter 6 is in fact a proof of concept. It explains our methodology for implementing

our o�oading middleware. Micro and macro benchmarks, di�erent test scenarios and the

results of several tests are presented in this chapter to show the performance of our proposed

middeware under di�erent circumstances.

� Chapter 7 concludes and provides a summary of this work and presents the major perspec-

tives of this work.

11



CHAPTER 1. INTRODUCTION

12



Chapter 2

Overview of the Application

O�oading Middleware

2.1 General Architecture of Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . 13
2.2 Architecture and Communication for Cloud Application Engineering . . . . . . . . 15

2.2.1 Client-Server Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Virtualization Based Architecture . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Mobile Agent Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 O�oading Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Distant Cloud Based Middleware . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Local Cloudlet Based Middleware . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Proximate Cloud Based Middleware . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Middleware Classi�cation Based on Decision Making Process . . . . . . . . . . . . 33

To bene�t from the advantages of MCC and to meet its challenges cited in Chapter 1, many

improvements are made regularly on design and development of application o�oading middlewares.

In this chapter we prepare a state of the art of existing approaches considering the e�ects of

application nature, from application engineering perspective, as well as cloud type on middleware

design and o�oading performance. We propose a thematic taxonomy of existing approaches and

also a classi�cation of them.

2.1 General Architecture of Mobile Cloud Computing

Despite slight di�erences in dThi�erent de�nitions of MCC which is sometimes referred to as the

future of mobile applications [101], o�oading has been regarded to be the core of MCC in all de�-

13



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

nitions. Therefore a lot of methods have been recently proposed in this regard for the code, compu-

tation or application o�oading. Furthermore, there have recently been many programs in di�erent

contexts which support CC. Among such programs, it can be referred to commerce [131],health-

care [43], [117],education [48], [133], social networks [4], �le sharing [6], and searching [96] applica-

tions.

Various surveys have also tried to highlight the importance of MCC and o�oading from di�erent

points of view [107], [80], [114], [111], [37]. The authors of [104], [86], [120], [111] examined the

challenges and problems in MCC and [100] gave also a perspective. [69], [33], [126] focused on MCC

applications. [33] presented a basic comparison of MCC applications and classi�ed them and in [69]

mobile cloud application models and their strengths and weaknesses as well as the parameters that

in
uenced them were also reviewed. Unlike other surveys, [74] classi�ed the methods of computation

o�oading based on the year they were found. The authors of [14] did one of the most complete

surveys in this domain. In addition to providing a taxonomy of o�oading methods that is called

Cloud based Mobile Augmentation, they evaluated di�erent types of remote resources and their

impact on the quality of o�oading. Items related to decision making, factors a�ecting e�ciency

and existing challenges are among the other topics discussed in this survey. O�oading frameworks

entitled Distributed Application Processing Frameworks were explained and classi�ed in [114] and

the challenges and issues of their development and implementation in MCC is also highlighted.

The �gure 2.1 shows the overall architecture of MCC. Mobile devices ranging from smartphone,

tablet, PDA, etc can be connected through the infrastructure network to the cloud. Depending

on the local conditions of a mobile device, this connection can be established via satellite, access

point or BTS with the help of wi� / 3G / wi-max and LTE technologies. Amazon Elastic Compute

Cloud (EC2) [1], Google App Engine [7] and Microsoft Azure [10] are among famous public clouds.

There is also the possibility of using the Cloudlet or group of nearby mobile devices instead of a

DS.

Several factors in
uence the quality of achieving the main goal of o�oading,i.e. reducing the

overall execution cost in mobile application. [69], [47], [112] analysed these factors and evaluated

their e�ect on the o�oading decision and its result. These factors are derived from the properties

of mobile devices, application, environment and cloud as well as user dependent points(�gure 2.2).

Although the connection, mobile device and user behavior in
uence the o�oading process, they

14



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

Figure 2.1: General architecture of Mobile Cloud Computing

usually cannot be changed by the programmer and are less emphasized in the various solutions

o�ered in this regard. Application engineering and the way an application is made are among the

issues that are taken into consideration. Granularity and partitioning in o�oading are functionali-

ties which have signi�cant impact on the architecture, the manner of communicating with the server

and the results of o�oading. In the next section of this chapter, we will examine the relationship

between the architecture and the relevancy of programs for cloud application engineering and then

we will explain some examples of middlewares available with di�erent architectures.

2.2 Architecture and Communication for Cloud Application En-

gineering

As mentioned in the previous section, MCC focuses on transfer of all or parts of a mobile application

on machines that are more powerful than a mobile device and therefore, increases e�ciency in mobile

device. One factor a�ecting the quality of the transfer and its outcome is application engineering

and the determination of what can be transferred and how. In fact, the process of o�oading starts

15



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

Figure 2.2: A�ecting factors in Mobile Cloud Computing

with an application that is running on a mobile device and comes to an end in the surrogate.

That's why an architecture based on application requirements is very e�ective in determining

the transfer block. From the standpoint of applications engineering, the available architectures for

mobile application can be divided into three models, Client-server based architecture, Virtualization

based architecture and Mobile Agent based architecture. The following describes each of the three

architectural models and introduces frameworks that rely on them.

2.2.1 Client-Server Based Architecture

In client-server based architecture, at �rst the application is divided into parts that can be of-


oaded. The division can be �ne-grained or coarse-grained and is usually performed with the help

of developer and by marking (annotating) the transferable parts. Then some of these parts will be

transferred to the surrogate or server. In this method, protocols such as Remote Procedure Call

(RPC) and Remote Method Invocation(RMI) are responsible for communication between the mo-

bile device and surrogate. Stability of the protocols is one of the advantages of this communication

16



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

method. In addition, both of them well support APIs. RPC and RMI can be used only if these

services are pre-installed and since such services may not be available on adjacent cloud or mobile

device, the possibility of o�oading may get limited. Spectra [49] and Chroma [21] are among the

frameworks that have used RPC in o�oading.

Spectra [49]

Spectra is a remote execution system that automatically estimates where and how the compo-

nents should run. To that end, it monitors resource usage in small mobile device and resources

available in the environment, especially static compute servers and takes into account the e�ciency,

energy consumption and the quality of the application. At �rst, the components that can be run

on a remote server are statically speci�ed and then the future resource requirements are foretasted

and the manner of execution is proposed by resource monitor collection of Spectra at runtime with

a continuous view of supply and demand of remote and local sources and by building models of

resource consumption. Spectra forecasts the e�ciency, energy consumption and the quality for

every proposal and balances the con
icting aims during the selection process. Spectra has one of

the earliest history based pro�ling cost models.

As for the Granularity, although �ne-grained remote execution increases 
exibility in spite of

having access to other o�oading options, coarse-grained is used in Spectra due to the possibility of

increasing the e�ciency with amortizing overhead over a larger unit of execution because overhead

decisions cannot be overlooked. As a result, Spectra is suitable for applications that perform the

coarse-grained operations, and therefore, not appropriate for applications with shorter operations.

For testing purpose, two main parts of the Spectra, the client and server, are run on a machine.

Application makes remote procedure calls (RPCs) to local and remote Spectra servers. When

Spectra is designing, the feasibility of using the service discovery protocol designed to identify

available servers are dynamically considered, but since this feature is not supported, the potential

servers are not statically stored in con�guration �le. When mobile device wants to o�oad a

program, the Spectra client refers to the con�guration �le to obtain Spectra server speci�cations

that are pre-installed with the application and act as a service. The Coda �le system [72] is

used to make synchronous the changes of �les in di�erent remote and local performances. Coda

�le system provides strong consistency when the network connection is appropriate and when the

17



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

network connection is weak. In fact, Spectra interacts with Coda to assure the remote operations

would read the same data they read if they were run locally. Janus speech recognizer [124], Latex

document preparation system and Pangloss-Lite language translator [51] are programs that have

been modi�ed to work with Spectra and evaluate the Spectra performance.

One of the advantages of Spectra is its good adaptability to the changes in the available resources

of remote execution. Furthermore, the best execution option is recommended to the application.

However, there are some points that can be improved in Spectra that include the lack of security

features in data transmission, dependence on the programmer to determine the remotable parts of

application, the lack of 
exibility due to the �ne-grain partitioning and overhead that are imposed

to the system due to the use of Coda. As the number of servers increases, the amount of overhead

increases too, but it is still an acceptable amount according to the results obtained with 5 servers.

Cuckoo [68]

Cuckoo is a complete computation o�oading framework for Android with RMI like communi-

cation method and is based on partial application o�oading in which the decision to remote or

local execution of an application part is made at runtime. Cuckoo aims to simplify the task of

developer for implementing the program. Cuckoo's integration with available development tools

that are familiar to developers and automaticity of a large part of the implementation process have

created a simple programming environment. Cuckoo is composed of a runtime system, a resource

manager application and a programming model for developers which have all been integrated with

Eclipse build system (�gure 2.3).

The �rst stage of developing a program with Cuckoo is to develop a project and write the

source code. The next stage is the separation of computation intensive (services) and interactive

(activities) sectors with the help of existing activity/service model of Android via an interface

de�nition language AIDL which is in turn done by the developer. Then, the Cuckoo framework

generates an implementation of the same interface which includes a dummy method implementation

at the beginning and should replace real methods implementations. Furthermore, the Cuckoo

Service Rewriter CSR makes a stub/proxy for any AIDL interface. As a result, based on information

provided by Cuckoo Resource Manager, the methods can be called in a local or remote form. In

the end, the prepared code is compiled and the apk �le is prepared and the user can install it on a

18



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

smartphone. The program can use any source on which Java Virtual machine is running, whether

it is nearby infrastructure or cloud, as the destination of computation o�oading. Of course, this

remote resource should register its address in a part of the Cuckoo framework called Resource

Manager that can be identi�ed by smartphone. Cuckoo uses heuristics, context information and

history to investigate whether it is e�ective to o�oad. The e�ectiveness can be adjusted to maximize

performance or minimize the energy. To communicate with a remote server, the Ibis communication

Figure 2.3: The architecture of Cuckoo [69]

middleware [122] which o�ers a service similar to RMI has been used. Cuckoo's performance has

been evaluated with the help of two applications: eyeDef and PhotoShoot.

One of the bene�ts of Cuckoo is using the famous tools for application development and support

of the partial o�oading. Among its shortcomings, however, are a lack of Cuckoo's support from

asynchronous callbacks and the state transferring from remote resources. Also, at switching time

between remote and local execution, no situation is stored. In addition, the lack of security features

for preventing the installation of malicious programs and controlling access to the server can be

seen while designing Cuckoo. And �nally, the decision of o�oading in cuckoo is static and context

unaware because the only thing considered in the context is the availability of the remote server.

19



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

2.2.2 Virtualization Based Architecture

In VM- based architecture, the programmer is not involved with o�oading and has no idea of what

is running on the mobile device and its surrogate and their management is undertaken by VM

middleware. A virtual image is what is transferred in this method and is much larger grain than

client-sever method, even in the case of coarse-grain. In a virtualization-based architecture, the

image of VM is copied at runtime from the source to the destination. Live migration of virtual

machines is a technique that is used to transfer the entire OS and its applications in mobile devices

in some frameworks. The use of this method does not require a change in the program at the time of

o�oading. In addition, security needs increase due to the separated virtual spaces. But the transfer

of large volumes of VM are generally regarded as challenging point of this method with regard

with compatibility issues between overlays and bandwidth limitation. Most o�oading frameworks

use complete VM migration or a combination of it with partitioning algorithms. MAUI [32],

MobiCloud [59], COMET [57] and Odessa [102] are examples of such a middleware. We explain

below, the two most famous ones among them.

MAUI [32]

Between two general remote executing methods, application partitioning and full VM/process

migration, MAUI [32] tried to bene�t from both. It intends to decrease energy consumption in the

smartphone using code o�oading as well as to reduce programmer's interference.

Firstly, with the help of .NET programming environment features, two versions of the desired

program will be made ready: the former is to be used for running the smartphone and the latter for

being implemented on the infrastructure. MAUI makes o�oading decisions at run time to do �ne

grain class/method level o�oading. Firstly, o�oadable methods are marked by the programmer

in the programming environment provided by MAUI, and then remotable methods are determined

automatically by the middleware using a combination of re
ection programming and type safety.

At each method invocation, the optimization framework decides to o�oad the method if there

is any server available. The cost of method o�oading such as the number of states that must

be transferred and the advantages of performing it such as the rate of decline in CPU cycle are

among parameters that a�ect decision-making. Under server unavailability condition or for the

de�nitive events, the method is run locally. Hence, the control of connection to the server and the

20



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

estimation of bandwidth and delay are performed continuously. All these parameters are considered

as variables of optimization problems that are formulated and solved as integer linear programming

to �nd the optimal solution. MAUI starts storing information after each method o�oad in order

to make better decisions in the next performs. As shown in the �gure 2.4, the main constituent

Figure 2.4: The architecture of MAUI

parts of MAUI are as follows:

� MAUI pro�ler: O�oading decision making depends on smartphone, network and program

characteristics that are monitored and measured by MAUI pro�ler that includes three sections:

{ Device pro�ling: that is related to the measurement of energy consumption of the smart-

phone on the basis of CPU cycles. For this purpose, a hardware tool called a power meter

is used.

{ Program pro�ling :the number of calls of each method as well as the number of CPU

cycles required for implementation are the important parameters in the measurement of

energy consumption which is calculated in this section.

{ Network pro�ling: used to pro�le the wireless networking environment to maximize

energy savings. Therefore, a network measurement tool is applied to measure the round

trip time and bandwidth.

21



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

� MAUI Solver: data collected by MAUI Pro�ler are used as input values of optimization

problem in MAUI solver. A call graph is considered here with nodes indicating the methods,

edges representing method calls and the consumed energy and runtime as the weight of edges.

Then MAUI solver begins to solve the Integer linear Programming.

The results of tests on a face-recognition application, a highly-interactive video, a chess game

and a real-time voice-based language showed that MAUI's energy savings and performance are

impressive.

Odessa [102]

Odessa is a lightweight and adaptive runtime that aims to automatically and adaptively in-

crease the performance and accuracy of mobile interactive perception applications by o�oading,

parallelism and pipelining. In fact, Odessa investigates the compliance of VM-based o�oading and

the level of parallelism simultaneously. Because of some of their requirements such as crisp response

and continuous processing of high data rate sensors and also due to their being compute intensive,

mobile interactive perception applications that conduct perception tasks, such as face recognition or

object recognition by using the camera and other high-data rate sensors face some problems when

they are run on mobile devices. Makespan and Throughput are two measures of responsiveness and

accuracy of these programs. O�oading one or more compute-intensive application components on

an Internet-connected server and parallelism on multi-core systems are two techniques that can be

used to overcome this problem. Odessa aims to make optimal use of these techniques.

Tests show that changes in input variability, network bandwidth and device characteristics at

runtime cause dramatic changes in responsiveness and accuracy; therefore, both o�oading decisions

and level of data or pipeline parallelism must be determined dynamically at runtime. Odessa is built

on a distributed stream processing system called Sprout that facilitates the implementation and

execution of parallel applications in addition to supporting the continuous, online processing of high

rate streaming data. Sprout [99] features, i.e. the use of the data 
ow graph in programming model,

automated data transfer and parallelism support are suitable to support Odessa runtime system.

Data 
ow graph vertices and edges display processing step (called stages) and data dependencies

between the stages, respectively.

22



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

To obtain low makespan and high throughput, fast response to input, device and network

changes, as well as low computation and communication overhead are among the most important

objectives of designing Odessa.

Odessa is composed of an application pro�ler and a decision engine. The pro�ler maintains the

data related to the performance of applications such as execution time of each stage in the graph,

wait time on every connector, volume of data transferred on each connector, and transfer time

across the network connector edges. This section provides the data for decision engine without

a�ecting application performance. Odessa estimates the bottleneck using these data and with the

help of a greedy algorithm. Then the decision engine, based on a simple prediction and recent

measurements of the network, examines whether o�oading or increasing the level of parallelism in

the bottleneck stage can be e�ective in increasing the e�ciency. The decision engine functionality

is divided into two threads on the mobile device, the former manages the data parallelism and stage

o�oading and the latter is responsible for the management of pipeline parallelism.

The costs for o�oading and data parallelism are linearly estimated. Tests conducted on appli-

cations such as Face, Gesture, Object and Pose Recognition indicate the acceptable performance

of Odessa. One of Odessa's positive points is the use of lightweight online pro�ler and simple ex-

ecution time predictors, as well as the use of parallelism and pipelining, in addition to o�oading.

The other one is its rapid compliance with the scene complexity, compute resource availability, and

network bandwidth. Although the security points are not considered and its function is limited to

the perception applications.

2.2.3 Mobile Agent Based Architecture

A mobile agent is a software program with mobility, which can be sent out from a computer into

a network and roam among the computer nodes in the network [27]. In an agent based model,

the agents are not aware of the server, but know the locations towards which they themselves and

other agents can move. The use of mobile agent compensates the lack of a standard APIs in the

communication between di�erent cloud infrastructures and heterogeneous mobile devices. In this

way, codes and data are encapsulated within an agent in order to be transferred. Mobile agent

places are virtual machines on which mobile agents run. The agents can also move between their

places and communicate with each other. The management of these agents as well as the security

23



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

restrictions are among the weaknesses of this method.

Agent-based Optimization Framework [17]

In the o�oading framework introduced in [17], o�oading is done dynamically and at runtime

with the help of autonomous agent-based application partitions. The goal of this dynamic perfor-

mance optimization framework is an e�ective o�oading that is done by enjoying the bene�ts of

mobile agent computing, such as providing good support for mobile clients, facilitation of real-time

interaction with server, ability of performing more robust queries/transactions and not required to

preserve the process state.

In [17], mobile agents are developed using the Java Agent Development Environment(JADE)

that supports multiple platforms such as Android OS. Each mobile application, statically and

before it is installed on a mobile device, is classi�ed into a set of agent-based partitions that can be

o�oaded on the cloud and components that must be run on mobile device due to their constraints.

Agent-based application partitions are autonomous, i.e. they can move transparently between the

cloud hosts without any need to be managed by the caller. Once the mobile application begins

to run, the execution manager receives a list of machine instances in the the cloud from cloud

directory service, and then having selected instances that establish the most powerful and fast

communication with mobile device, o�ers an execution plan including o�oading decisions. To make

decisions, the execution manager uses a cost model and a static application pro�ler considering that

if a partition is o�oaded, all of its sub partitions should also be o�oaded and partitions with by

frequent communication should be kept together .

The results of the tests conducted on sudoko and NQueens Puzzle show that the proposed

framework is promising for improved performance in terms of application execution time and energy

consumption. Although this framework performs well and exploits the features of mobile agent, it

depends on the developer to divide the program. A lack of attention to security tips and static

pro�ling are among its weak points that can be improved.

2.3 O�oading Destination

Another factor that has a signi�cant impact on the quality and outcome of o�oading is its desti-

nation or its surrogate. As shown in the general architecture of MCC (�gure 2.1), the destinations

24



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

of o�oading can be divided into three di�erent categories on the basis of the physical distance

from the mobile device: DS that has the maximum distance from mobile device, cloudlet that is in

the middle and a group of nearby mobile devices that are physically closest to mobile device. The

processing power of a surrogate is inversely proportional to its distance from the mobile device,

namely the closer is the surrogate to mobile device, the less it has processing power and vice versa.

Therefore, the selection of the appropriate destination based on processing power and its distance

from mobile device are of challenging points in MCC. The following section presents a brief expla-

nation of how each of these three o�oading types performs and introduces some of the frameworks

in each category.

2.3.1 Distant Cloud Based Middleware

Sources used in this type of middleware are large collections of stationary servers that are located in

the vendor or the company and that are recognized as public or private clouds. These resources that

can be accessed via the Internet are highly available, elastic, scalable resources with high security

features. While the e�ciency and e�ectiveness of the methods that use remote cloud resources are

strongly in
uenced by the long WAN latency caused by a long distance between the mobile client

and cloud data center. In the following, two examples of o�oading middlewares that use remote

cloud for the implementation of remotable parts are discussed.

ThinkAir [73]

ThinkAir is an o�oading framework that takes advantage of the smartphone virtualization in

the cloud and provides method level computation o�oading to support smartphone applications.

Parallelizing method execution using multiple virtual machine images and focusing on the elasticity

and scalability of cloud are of notable features of ThinkAir. Kosta et al. [73] tried to make a

virtual image of the complete smartphone on the cloud and adopt online method level o�oading

to overcome the problems that exist in other o�oading middleware such as the lack of scalability

(in MAUI [32]) and the limitations of the program condition and of the environment (in Clone

Cloud [28]). Building, resuming and destroying VMs take place in the cloud, dynamically and

based on the needs. Consequently, ThinkAir can support parallelization.

As shown in the �gure 2.5, the execution environment, application server and pro�lers are the

25



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

main components of the ThinkAir Framework which will be brie
y explained in the following.

Figure 2.5: The architecture of ThinkAir

ThinkAir requires minor modi�cations to the code. Since the developer has indirect access to

the execution environment, it can easily mark o�oadable methods using the environment provided

for him. Then, the ThinkAir code generator generates the new o�oadable codes by using these

marks. Management of transferable methods as well as o�oading decisions to local or remote

execution based on the current environment and the previous executions are undertaken by the

Execution Controller. Execution time and energy are parameters based on which four decision

policies are de�ned. The Application Server is responsible for managing the cloud of the o�oaded

code. Communication protocol execution, connection management, reception and execution of

o�oaded code and transfer of the results are all performed by the Client Handler. There are

six VM models with di�erent speci�cations for o�oading that are managed by VM manager. If

26



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

necessary, more than one VM can be assigned to one task. The primary server is always online

while secondary servers can be powered-o�, paused or running. Parallel executions are supported by

ThinkAir that is usually suitable for recursive algorithms and algorithms with heavy data volume.

The pro�ling part is also of the utmost importance and its accuracy can lead to better decisions

for o�oading. Hardware pro�ler, software pro�ler and network pro�ler are three parts that deal

with collecting information such as CPU usage, connection type, the number of calling methods,

overall time of method execution and RTT in order to feed an Energy Estimation Model. ThinkAir

estimates energy consumption and based on its estimation make o�oding decisions.

Among the advantages of ThinkAir, it can be referred to taking into account of the energy

consumption at the time of decision-making, supporting on demand resource allocation, and par-

allelizing implementation that reduces delays. In addition, ThinkAir compliance with the environ-

ment rapidly and e�ectively while environmental changes are taken into consideration at its design.

In order to show these cases, programs such as image merging, virus scanner, face detection and

N-Queens Puzzle are used for testing. Besides these positive aspects, changing the code with a

modicum of programming that can make mistakes in marking methods, and the overhead that

pro�le creates for a smartphone can be regarded as weaknesses of the framework.

Adaptive code o�oading [50]

In order to bene�t from the CC paradigm advantages including performance metrics, paralleliza-

tion of tasks and elasticity in o�oading which have been neglected in some o�oading middlewares,

[50] has introduced a fuzzy decision engine for thread level o�oading on Android handset that con-

siders dynamic variables of cloud in addition to mobile device variables. Furthermore, the decision

making process has been strengthened with the help of evidence based learning methods based on

a general understanding of mobile cloud infrastructure. This learning code o�oading approach is

able to turn raw code o�oading traces into a knowledge that can be used to address the issues

such as device diversity, adaptive application execution and unpredictable code pro�ling. This

method uses fuzzy logic to determine when to o�oad. Therefore, with the use of variables derived

from the mobile cloud architecture, a degree of accuracy is assigned to an o�oading decision that

can be analyzed on the basis of di�erent intervals and rules. The information required to prepare

and de�ne the rules are provided by a mobile pro�ler and a cloud analyser that are updated pe-

27



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

riodically for local variables and asynchronously for external variables. Virtualization is a way to

run o�oaded components and code o�oading traces are restored along with device information,

application information and data component information. Figure 2.6 shows the fuzzy logic model

used for code o�oading that is, according to the usual form of fuzzy logic system (FLS), composed

of four main sections of fuzzi�er, rules, reasoning engine and de�uzzier.

Figure 2.6: Fuzzy logic system

A crisp set is an input that is at �rst turned into a linguistic variable, and then analyzed in

linguistic terms that are assigned to a speci�c membership function. The reasoning engine uses the

input sets and builds an interface based on the rules and �nally the output set is mapped on the

crisp set. On this middleware, fuzzy sets include bandwidth, data transfer, CPU instance and video

execution. For example, the network bandwidth can often be divided into intervals of low speed,

normal speed and high speed distributed.Remote processing = speed high AND data smallis a

sample of the applied rules in [50]. It can be said that a Mobile Cloud Middleware framework covers

the problems of interoperability across multiple clouds, transparent delegation and asynchronous

execution of mobile tasks with the need to resource-intensive processing, a dynamic allocation

of cloud infrastructure and Android mobile cloud messaging framework (decision engine is used

in testing and it can be said that it is designed speci�cally for this task.) The delivery rate of

Google Cloud Messaging which is the enhanced noti�cation service provided by Google for sending

asynchronous messages to Android devices is considered in the implementation of a video processing

request to review the performance of this middleware and the results show that the grade of truth

28



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

is between 60 and 78 percent. The consideration of the strengths of the cloud in the process of

o�oading, decision o�oading at runtime and the possibility of learning from previous performances

are among the important points in this middleware. However with regard to the implementation

of only some parts the proposed solution, it is not possible to be sure of the quality of its full

implementation. Furthermore, the security of data transfer between mobile device and cloud is not

considered.

2.3.2 Local Cloudlet Based Middleware

The o�oading destination used in local Cloudlet-based middlewares is a collection of one or more

resource-rich Ethernet-connected stationary computers that are usually located in public places.

This group, though less powerful than the remote cloud, reduces the latency and network tra�c

because of the proximity to mobile device with a distance of generally one hop. \Cloudlet" is a

name proposed by Satyanarayanan [110] for the proximate immobile clouds. In the middlewares

such as [52] and MOCHA [42] Cloudlet is used.

VM-Based Cloudlets [110]

Cloudlet-based, resource-rich, mobile computing is the name given by Satyanarayanan et al. to

the strategy used in [110] for the o�oading process. In their proposed architecture, a resource-rich

computer or cluster of computers called Cloudlet is used. It is available for nearby mobile de-

vices and mobile device usually as a thin resource-intensive client, o�oad its tasks on this Cloudlet.

Cloudlet physical proximity to the user in a 1-hop distance facilitates access to interactive response.

Another advantage is the availability of the Cloudlet through low-latency high-bandwidth wireless

connections. These features provide the opportunity of taking advantage of CC without the lim-

itations of WAN, i.e.delay and long response time if Cloudlet is used instead of DS. Of course,

when such Cloudlet may not be available near the mobile device, it can use a DS again to o�oad

resource-intensive tasks. Virtual machine migration and VM synthesis are two methods applied in

this article for computation o�oading. However, the present article has focused on VM synthesis.

During VM migration, the application execution is suspended, the state of the processor, disk and

memory are stored and then the application execution is resumed exactly from the point where it

has been stopped. Using VM synthesis, a small VM overlay that is derived from mobile device is

29



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

sent to Cloudlet. As shown in the �gure 2.7, VM overlay is used in base vm to start the execution

exactly from the point it has already been stopped. The feasibility of vm synthesis is demonstrated

by the use of a prototype called prototype Kimberley. Among the advantages of Satyanarayanan's

Figure 2.7: VM synthesis

model is the less fragility of vm-based model than alternatives such as process migration or soft-

ware virtualization. Furthermore, VM-based models have less limitation and more generality than

language-based virtualization approaches that require writing the programs in a speci�c language.

Despite these strong points, when the user relies on the use of Cloudlet, the speed of VM synthe-

sis becomes more important due to increased latency for service initiation. In addition, Cloudlet

hand o� must be equal to WiFi access point hand o�, fast, invisible and seamless. Unfortunately,

60 and 90 seconds that is needed for VM synthesis is not enough for real-time tasks. Also, the

power consumption and the amount of computation in mobile device increase when the overlay is

extracted and compressed. The lack of a solution to increase security and protect the user from

malicious VMs can also be seen. And �nally, the proposed model is not scalable anywhere due to

lack of Cloudlets.

From Mobile Devices to Clouds [52]

The possibility of code/task o�oading in order to reduce work
ows' energy costs is examined

by [52] when mobile devices cooperate in a network that is equipped with Cloudlets. To de�ne the

problem, Gao et al. [52] have used two graphs. The �rst one is a directed acyclic graph that displays

mobile work
ow as a series of tasks and their relationships. The second graph displays a hardware

platform on which the work
ow runs in a way that vertices and edges denote processing nodes and

30



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

data links between them, respectively. Using two mapping functions, the mobile work
ow graph

is mapped on to a hardware graph. Once the objective functions have been modelled, a heuristic

algorithm is used to create statistical and dynamic o�oad plans.

The algorithm proposed in [52] consists of two parts, the �rst part that implements on the

smartphone helps to pick the best o�oad point, taking into account the environmental parameters

in real time. The second part is located on the server. The key point of the decision making process

is the trade-o�s between time and energy. Every smartphone node is able to make decisions on

itself based on the environment in which it is located. It is also considered that o�oading two tasks

on a Cloudlet reduces power consumption in the communication between the tasks.

The e�ect of the pairs of communication size/network connectivity and computation size/-

Cloudlet processing speed on o�oading decision is investigated using simulation. Di�erent hard-

ware and communication characteristics are attended in experiments. The results show that when

the code repository is not available on the server, the large size of the executable parts has a neg-

ative impact on the ability to o�oad. The high volume of communication between the tasks also

makes the o�oading less feasible. The saving obtained from o�oading is also directly related to

hardware metrics.

2.3.3 Proximate Cloud Based Middleware

More recently, in some o�oading approaches, mobile devices in the vicinity make their resources

to run resource-intensive tasks available to each other. In this case that is based on the principles

of CC, di�erent mobile devices such as smartphones, tablets, notebooks or even IoT play the role

of server for executing remotable parts of the application. The main advantage of the method is

the physical proximity of resources to the mobile device, however the processing power is decreased

compared with DS. Also, since it is more likely that mobile devices in the role of servers are

damaged, lost or stolen, the method is less secure than the previous ones. Hyrax [83], virtual

cloud provider [60], VMCC [67] and MOMCC [29] are among the middlewares that bene�t their

neighbours for o�oading.

31



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

Hyrax [83]

Hyrax is a platform that is derived from Hadoop [9] which allows CC to be used on Android

smartphones. Using Hyrax, client applications can easily apply a network of smatphones or het-

erogeneous phone and servers to perform their task. By changing the number of devices, Hyrax

allows applications to make an abstract use of the distributed resources, regardless of the physical

nature of the cloud. In fact, Hyrax makes it possible to use a cluster of smartphones as a resource

provider and shows that this proximate cloud is practical and operational.

Apache Hadoop is an open source implementation of MapReduce [34] that provides a virtualized

interface to a cluster of computers that have been randomly scaled. In Hyrax, a central server is

responsible for coordinating the data and jobs of mobile devices and the relationship between

smartphones is established via the isolated network of 802.11g. On the central server, just like a

typical implementation of Hadoop, a NameNode and a JobTracker that have access to each client

mobile devices are running. The central server only coordinates the data and jobs and does not

perform any processing. Each mobile device instance of the DataNode and the TaskTracker runs

the separate Android service. In addition, the threads which store the phones' multimedia data

on the Hadoop Distributed File System(HDFS) and those which record sensor data run on the

smartphone. JobTracker and NameNode are called by TaskTrackers and DataNodes and their

response sent by Periodic heartbeat call and heartbeat response through RPC.

Sort, Random Writer, Pi Estimator, Grep, and Word Count which are derived from Hadoop

examples as well as a sample application called HyraxTube are benchmarks used to evaluate the

performance of Hyrax. HyraxTube is a simple distributed mobile multimedia search and sharing

program that allows users to browse the videos and pictures stored on the network of smartphones

and search them based on time, quality and location.

Among the strengths of Hyrax is that it can avoid the use of remote services to share data when

data is available on the local network. It also has an acceptable performance in local peer-to-peer

data sharing. Hadoop which is the base of Hyrax provides the features that are necessary for the

MCC infrastructure. It also helps Hyrax, with its mechanisms, to support fault-tolerance. After

all, due to high overhead imposed on the system as a result of running MapReduce, Hyrax is very

heavy for the current smartphones. In addition, it is applicable only for the smartphones that

are connected through TCP/IP sockets, while in real terms, all smartphones' IP addresses are not

32



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

without limitation or connected to a local network.

Virtual Cloud Provider [60]

Given to the fact that cloud resources are not always available or access to them is very ex-

pensive, Virtual Cloud Provider [60] suggests to build a virtual CC platform using nearby mobile

devices. This framework is designed so that o�oading occurs when both the mobile device that

needs o�oading and mobile devices in its vicinity are in the stable mode, i.e. they stay in the same

area or follow the same movement pattern.

The o�oading manager sends and receives jobs from one node to the other adjacent mobile

device via the peer to peer connection and manages them, and in this regards, it enjoys the Ap-

plication manager, Resource manager and Context manager's help. The �rst step of o�oading is

to make the changes necessary to prepare the application to be o�oaded. For example, adding

the capabilities of the proxy creation and RPC support which is done by the Application manager.

Pro�ling and resource monitoring is the responsibility of the resource manager. The pro�le of the

application is composed of the number of devices required for building the virtual cloud and the

resources needed for o�oading. The Context manager synchronizes contextual information and

makes it available in some way for other processes. The context is the location and the number of

near devices.

The framework's performance is assessed with the help of a prototype implemented in Java and

based on Hadoop. Taking advantages of the pervasiveness of mobile devices is the main advantage

of this framework but the inherent mobility is not taken into consideration. Given the dynamic

environment and high mobility, the need for stable mobile devices that are responsible for o�oading

and mobile devices that produce the virtual cloud are of its limitations. The lack of attention to

security issues and in particular authentication in the interaction between mobile devices is also

one of its de�ciencies.

2.4 Middleware Classi�cation Based on Decision Making Process

In the previous sections, we classify application o�oading middlewares based on the application

engineering architecture and the communication model with the remote resource as well as their

destination types. However, each of above mentioned categories has a signi�cant impact on the per-

33



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

formance of o�oading regarding to their characteristics, their choice is usually done statically and

at middleware design time; where deciding for what and when to o�oad based on network connec-

tivity, available bandwidth, available resources of mobile device and cloud, partitioning granularity,

context or other a�ecting factors (�gure 2.2) is done at runtime. Identi�cation of the remotable

parts that should be sent to the remote resource and its exact time is the most important part of

every o�oading middleware and its responsibility is to the decision engine. Di�erent approaches ap-

ply several decision making algorithms to make o�oading decisions in order to augment application

performance in terms of energy consumption, execution time or resource consumption concerning

di�erent criteria. Figure 2.8 illustrates a thematic taxonomy of existing o�oading middlewares.

Figure 2.8: Thematic taxonomy of application o�oading middlewares

The o�oading nature indicates the main mechanisms employed for application o�oading. Mid-

dlewares that apply VM migration encapsulate the running application into a VM instance of the

mobile device and migrate it to cloud for execution. Entire application o�oading means that the

middleware o�oads the entire processing job to cloud servers. Using application partitioning, the

34



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

Middleware O�oading Decision making Granularity Objective Destination
nature approach function

Application Component Energy saving
Spectra Partioning - Reduce execution Cloud

time
Application Energy saving

Cuckoo partitioning - bundle Reduce execution Cloud
time

MAUI VM migration ILP method Save energy Cloud
Improve performance

VM Energy saving
Think Air migration - methods Reduce execution Cloud

time
VM-Based VM Migration VM Synthesis - Reduce end to end Cloudlet
Cloudlet response time

Distributed Reduce execution time Mobile
Hyrax - data processing job fault tolerant devices

Virtual Cloud Partitioning - job Execution time Mobile
provider devices

Clone Application save energy Cloud
Cloud partitioning ILP thread seduce execution

time
Calling Application All/k-step Minimize interaction Cloud

the cloud partitioning algorithm bundle latency
Chroma Application Tactic - Reduce execution Cloud

partioning based time

Table 2.1: A classi�cation of application o�oading middlewares

resource intensive partitions of an application o�oad to cloud servers. Application partitioning

could be performed statically either at compile time or runtime, or dynamically at runtime by fol-

lowing a dynamic evaluation of the current context and situation. These partitions that represent

the o�oadable parts of an application could have di�erent granularity levels. For instance, a class

level granularity indicate that classes of an application o�oad to cloud for execution. The primary

objective of an application o�oading framework is shown by its objective function. Saving energy

and processing power are examples of the objective function. To meet these objectives, di�erent

middlewares proposed approaches such as linear programming, fuzzy logic and genetic algorithms.

O�oading decisions could be made dynamically at run time, statically at development or a combi-

nation of these two. We compared some of the existing approaches based on the above mentioned

taxonomy. The result of this comparison is illustrated in table 2.4

In this thesis, we propose a �ne-grain application o�oading middleware that applies bio-inspired

35



CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

algorithms for making o�oading decisions. The o�oadable parts of the application could be exe-

cuted either on DS or nearby mobile devices. The design and implementation of this middleware

in explained in the following chapters.

36



Chapter 3

An Automated Application O�oading

Middleware

3.1 Main Contributions of Designing O�oading Middleware . . . . . . . . . . . . . . . 38

3.2 An Overview of Mobile Applications from an Application Engineering Perspective 40

3.2.1 Mobile Application Architecture . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Mobile Application Transformation . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 An Overview of Application O�oading Middleware from a Runtime Perspective . 47

3.3.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Service-oriented Architecture for ACOMMA . . . . . . . . . . . . . . . . . . 50

3.3.2.1 Service Description . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2.2 Service Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 52

In this chapter, we propose the mobile device to be a gateway to connect the IoT with the

Cloud and a component of a Spontaneous Proximity Cloud at the same time. Like a DS, the

Spontaneous Proximity Cloud could be used to defeat resource and processing power limitations

of mobile devices via o�oading. Our goal is to provide an application o�oading middleware

that responds to the challenging points de�ned in the previous chapter. We explain our main

contributions for designing such a middleware and investigate mobile application and middleware

architecture as the two main parts involved in o�oading process. We �rst present our mobile

application construction choices from an application engineering point of view as well as how to

transform a normal mobile application to be ready to be o�oaded by our designed middleware.

Then, we introduce our middleware, explain its general service based architecture that makes it

an easy to use open middleware and show how it respects our objectives: Making individual bi-

37



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

objective or collaborative decisions automatically to o�oad mobile application onto a DS or SPC

while bene�ting from a learning feature.

3.1 Main Contributions of Designing O�oading Middleware

Nowadays, we face incredibly small computing with embedded sensors in our everyday objects,

that are close to user but su�er from a weak execution environment and greatly large with data

and service clouds accessible anytime, anywhere but far from user. In the middle, there are mobile

devices with the available resources and execution power neither weak as IoT nor powerful as cloud

(�gure 3.1). We consider mobile devices are set to become the universal interface between the

IoT and CC worlds. Instead of their short battery life time, new generation of mobile devices are

usually powerful enough for personal usage but may not be enough to be a gateway to close DS

and IoT. We propose mobile devices to create aSpontaneous Proximity Cloudthat could overcome

resource limitations of IoT and/or nearby devices as their o�oading surrogate.

A SPC is a collaborative group of moving mobile devices in proximity that its members oc-

casionally join and leave. Geographically nearby mobile devices are in physical proximity while

mobile devices with the same interest such as printer discovery are in semantic proximity.

Figure 3.1: Mobile devices as IoT gateway and SPC

The main purpose of any o�oading middleware is to use the capabilities of one or a group

38



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

of resource-rich machines for overcoming the processing limitations of a resource-poor handheld

mobile device through delegating a mobile application totally or partially to execute on it. The

mobile device can use remote resources in three di�erent ways:

� Extending mobile device's access to cloud services: In this technique in which the cloud is

often considered in SaaS (Software as a Service) format, computation and data handling are

usually performed by the cloud. Software/applications as services provided by the cloud are

accessed and used by users via the mobile device and often by using the web processors.

� Increasing processing power of the mobile device by total or partial execution of mobile ap-

plication on the cloud: The cloud in this method is in the form of IaaS (Infrastructure as a

Service) or PaaS (Platform as a Service) that increases the power and capacity of the mobile

device by executing its resource-intensive or computation-intensive parts through code/appli-

cation/computation o�oading.

� Making mobile devices collaborate to provide cloud-like services: In this method, which is

more appropriate for environments with ad-hoc networks with no access or limited access to

the Internet or the cloud, a set of mobile devices in the vicinity constitutes a virtual mobile

cloud in order to run their mobile applications with lower cost bene�ting each other's facilities.

We are interested in the second and third approaches where the mobile device is responsible

for its computation and data handling. We introduce ACOMMA, an Ant-inspired Collaborative

O�oading Middleware for Mobile Applications, that makes adaptive o�oading decisions at runtime

using its bio-inspired algorithm. ACOMMA provides the possibility of classic o�oading onto DS

as well as collaborative o�oading onto SPC. It also could make learning based o�oading decision

using already taken decisions either by the mobile device itself or its neighbour devices. Our main

contributions while designing ACOMMA are as follows:

� Our �rst contribution is designing and developing an automated o�oading midddleware that

is easy to use for any mobile device without any special requirement by virtue of our proposed

open architecture based on services. To respond to the issue of what to o�oad in a dynamically

changing environment where the mobile device pro�le, context, and server properties play a

considerable role in o�oading e�ectiveness we propose a bi-objective decision making process

39



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

that easily re-adapts to environment modi�cations. We have also added a learning feature in

the decision making process to avoid re-execution of decision making algorithms when there

exists already taken o�oading decisions in a similar situation.

� The second contribution is making collaborative o�oading on a SPC. If many middlewares

dealing with the issues of o�oading, few proposed an approach in response to what and where

to o�oad at the same time. In designing ACOMMA, we aim on o�oading to the SPC and

we improve our decision making algorithms to be able to decide on where to o�oad exactly

between SPC nodes as well as what to o�oad in collaboration with other mobile devices.

The characteristics of a mobile application that needs o�oading and the architecture of middle-

ware itself have a signi�cant role in achieving such a middleware and its performance and quality

of o�oading. In the next section, we explain how to model a mobile application �rstly and then

while mentioning di�erent existing options for mobile applications from an application engineering

point of view, we introduce and justify our selected options due to meet ACOMMA requirements.

The section 3.3.2 is devoted to ACOMMA architecture.

3.2 An Overview of Mobile Applications from an Application En-

gineering Perspective

The main objective of ACOMMA, such as any other o�oading middleware is bene�ting from

remote resource executing capabilities to overcome mobile device processing shortages. We are

interested in partial application o�oading; executing the mobile application in a distributed form

between the mobile device and remote cloud resources. To this end, same as any other distributed

system the application should be partitioned. Application partitioning is the task of breaking up

the functionality of an application into distinct entities that can operate independently, usually in

a distributed setting [119], [77].

Depending on the usage of application partitioning, there are di�erent manners of performing

it. For mobile application o�oading in general, there are three models that could be used for

application partitioning: graph based model, linear-programming based model and hybrid based

model which is a combination of the previous ones, however there are some other approaches which

do not �t in these three categorise. [78]

40



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

Figure 3.2: A sample call graph

We use a graph to model a mobile application where the nodes represent the application com-

ponents and the edges show their relationships. Based on the interesting o�oading granularity,

these components could be tasks, methods, objects, classes etc... .

Flexibility and lightweight are two essential characteristics for a collaborative o�oading mid-

dleware. To add more 
exibility and lightweight to our middleware, we apply �ne-grain application

o�oading at the method level so we consider mobile application modelled as a graph where vertices

and edges represent methods and their dependencies in term of method calls respectively. Such a

directed graph that shows a calling relationship between the procedures of a program is called acall

graph in which loops imply recursive calls. A sample call graph is shown in �gure 3.2. The graph

partitions represent the executing environments of partition members. For instance in this graph

there is just one cut that breaks apart two partitions where all methods execute locally except

methods b and e that execute remotely on a distant execution environment.

Based on the main concept of application o�oading in MCC the components of the application

which are the nodes in the graph model and application methods in our method-level graph, could

be executed either on the mobile device itself or a remote cloud. How an application is built from

an application engineering point of view de�nes the way that its components on di�erent executing

machines should communicate, and following that the communication protocol and communication

data format will be speci�ed. In the rest of this section, we explain existing application architec-

tures, communication protocols and data formats and their characteristics. Then we present our

choices for mobile applications highlighting the advantages based on them we did our choices.

41



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

3.2.1 Mobile Application Architecture

The Choice of Application Architecture

Client-Server is the architecture style that we consider for designing mobile applications where

a mobile device acts as a client and the cloud bears the server role. Between client-server model

and virtual machine migration our main reason for choosing a client-server architecture is that it

makes �ne-grain application o�oading possible. Although the �ne-grain application partitioning

is performed by some other approaches such as MAUI [32], o�oading process based on virtual

machine migration architecture in
uences �ne-grain o�oading because what is transmitted to the

server is a virtual machine which is much bigger than mobile application partitions.

One of our contributions is making mobile application o�oading possible between several collab-

orating mobile devices. These devices are limited in term of resources and there are also limitations

at the network communication level. Fine granularity is important to make mobile device collabo-

ration feasible because with shortages of resources and network bandwidth coarse grain application

components may not be able to o�oad with good performance. It seems that more �ner o�oading

granularity more 
exible choices, and the more it is lightweight more higher the total performance.

We are interested in �ne granularity for both invocation and migration level so we choose the

client-server application architecture that supports it.

In such a client-server model, an application component starts execution on the client side

(mobile device), based on the o�oading strategy the next component could be executed either on

the mobile device itself or on the server if o�oading is required. In this case, the remote component

is invoked by sending a request with all required data. Execution will be suspended on the mobile

device until receiving the remote component execution result. After that application execution

continues normally on the client until the next o�oading decision happens.

The choice of API

The request-response messaging pattern is used by the mobile device and cloud server to ex-

change messages. RMI (Remote Method Invocation), RPC (Remote Procedure Call), SOAP(Simple

Object Access Protocol) and REST (Representational State Transfer) are options to choose as a

communication protocol between the client and server. The most important factors for the choice

of this protocol are its openness and simplicity of use. It makes the middleware usable for any

42



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

mobile device without any special requirement. This feature is necessary to have a collaborative

o�oading process between mobile devices in the vicinity. In addition, the openness of the applied

communication protocol, simplify communication between the mobile device and sensor network

when middleware works as a gateway between IoT and cloud. The communication protocol that

is used in sensor networks is usually intra-network and can be used only by members of the same

network. Since o�oading middleware must be able to communicate with triple and heterogeneous

environments of cloud, mobile network and IoT, it is necessary to have an open communication

protocol.

Our choice for communication protocol is Representational State Transfer. Although REST,

SOAP, RMI and RPC are interrelated options, they are not directly comparable. However, we try

to explain the advantages of REST which are important and useful for our system considering its

requirements.

RPC is to invoke a program procedure on a remote server. The main problem in RPC program

is that the client will be tightly coupled with service implementation, which in turn causes prob-

lems when service implementation changes are required. The resource-oriented thinking of REST

without getting involved in implementing how the relationship between the client and server is

established makes REST simpler than RPC. Some researches investigated the advantages of REST

over RPC. RMI is a java speci�c implementation of RPC that during its use we must ensure that

class de�nitions remain in sync in all instances of the application and so even if only one of them

changes all have to be redeployed. It also appears that when there is a �rewall between the client

and the server, the tra�c between them using RMI will be blocked, while HTTP tra�c and con-

sequently REST are open in most �rewalls. In addition, REST does not require a Java client and

it can be regarded as one of its bene�ts when compared with RMI.

Compared to SOAP, REST is selected because it is more simple. SOAP relies on XML that

imposed an overhead on the system, a feature that cannot be seen in REST. Of course, this overhead

can be sometimes of bene�ts. It may happen that the SOAP being generic in using any transport

can be regarded as one of its advantages, while REST uses HTTP/HTTPS. MCC, however, does

not need to be generic because communication is established via the Internet and HTTP protocol.

Furthermore, REST works very well when there are limitations in bandwidth and resources.

With the comparisons made, with due regard to the requirements of our o�oading middleware

43



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

and also with respect to the researches that have considered REST to be more appropriate in

mobile applications and mobile devices [58], we also use REST for the communication between the

mobile device and the remote cloud server.

The Choice of Data Format

As a data format that should be sent over REST/HTTP from the mobile device to the remote

server and vice versa, we chose two mechanisms of java serialization and JSON as the primary

options. Java serialization is a mechanism that converts Java objects into a sequence of byte codes

including speci�cations and data of an object that is suitable for transmission. Unlike JSON, this

series is unreadable for human. JSON is a syntax for the storage and exchange of data whose

prominent features are its language independency and self-describing feature. Although it seems

that java serialization, due to its binary data, is faster in comparison with JSON.

Figure 3.3: Mobile application architecture of ACOMMA from application engineering point of
view

Figure 3.3 illustrates our choice of application architecture where a mobile device (client) sends

its o�oading request to DS (server) using the JSON data format and over REST/HTTP commu-

nication protocol.

3.2.2 Mobile Application Transformation

Since there may exist some components in any mobile application that have inherent dependencies

to the mobile device and must be executed locally, an initial step to start an o�oading process is

de�ning o�oadable parts of the application. Many o�oading approaches rely on developer anno-

tations to identify o�oadable components. Its is clear that in this way the quality of o�oading is

44



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

highly dependent on knowledge, expertises and experience of the developers who annotate applica-

tions. Any small issue in annotating may cause big changes in the o�oading process. Some other

approaches such as MAUI [32] and ThinkAir [73] have tried to minimize the developer intervention

by applying rules for the detecting device dependent parts of an application. Our interest is to

eliminate any need for manual annotation and modi�cations.

To coordinate with the client-server architecture and supporting REST/HTTP communication

in service oriented model, there are also some modi�cations required in normal mobile applications.

The application methods which are o�oadable parts in our method-level application o�oading

should be modi�ed in a form where methods act as services and are accessible via REST. In

this thesis, servicizing is the process of changing methods into service form or creatingservicized

methods.

We designed a totally automated application transformer which distinguishes o�oadable meth-

ods and then imposes servicizing process on those methods that are not limited to be run on the

server. The process of creating a new mobile application with o�oadable servicized methods that

is adapted for o�oading is a full automated process with no need of any developer or user interven-

tion. The developer provides a mobile application normally without observing o�oading tips. The

transformer picks this application as input to create a modi�ed application output. Furthermore,

to be located on the server, a version of the application is provided that adds the accountability to

services to any method. Depending on the circumstances, this transformer can be run directly on

the mobile device or on any other machine and the modi�ed application in output is transferred to

the mobile device for executing.

Figure 3.4 illustrates the 
ow of a mobile application execution with transformer. The applica-

tion transformer gets the source code and generates a new version of it with o�oadable servicized

method calls. This new source code is transformed to bytecode by the compiler and the virtual

machine interprets the stream of bytecode as a sequence of instructions and then executes it to

produce desired output.

In many cases, the source code is not available and only the binary version of an application

is accessible to be installed on the mobile device. To handle such cases, we add an agent to the

execution 
ow. This agent transforms the bytecode into a sevicized bytecode before the interpreting

by virtual machine. We use JooFlux [65] for bytecode modi�cation. JooFlux is a Java agent

45



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

Figure 3.4: Mobile application execution 
ow with servicization modi�cations

for dynamic aspect-oriented middlewares that allows both the dynamic replacement of method

implementations and the application of aspect advices.

The presented application transformer is an automated approach that dynamically converts

method calls into services that can be used by the o�oading middleware. This servicizing process

can be done from both source code and bytecode which makes our transformer generic and 
exible

at input.

Although the ability to change the bytecode makes the approach more general and dynamic, it

complicates the modi�cation process and reduces the e�ciency because the agent must be present

on the mobile device. The availability of the source code, however, allows the application trans-

formation process to be done on a system other than the mobile device and the bytecode of the

modi�ed application to be installed on the mobile device. Having the development chain before

the mobile device increases the e�ciency and performance, but decreases the dynamism while the

system is no longer able to exert next changes during the execution.

The terms method and service are interchangeably used in the rest of the present study and we

mean an application with o�oadbale servicized methods by the words mobile application.

46



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

3.3 An Overview of Application O�oading Middleware from a

Runtime Perspective

In the previous section, we modelled a mobile application with servicized method calls as a service

graph. Now we focus on designing an o�oading middleware to delegate this mobile application

partially to execute on a DS or a virtual mobile network of nearby mobile devices to overcome the

processing limitations of its resource-poor handheld mobile device.

We propose an open architecture based on services which is easy to use for any mobile device

without any special requirement. In addition the inherent features of service oriented architecture

provide some more bene�ts to our middleware.

� Location transparency is one of the main features of service oriented architecture that adds

the ability of code mobility to it, i.e. the user can use the service regardless of its location.This

feature is useful while o�oading on di�erent surrogates. In the midddleware collaboration

mode, the mobile device can invoke a service from a DS or any mobile device of a virtual

mobile cloud without any need to implement and execute a separate code for each surrogate

type.

� The existence of a simple and standard format for accessing the services in service oriented

architecture may make our middleware 
exible and scalable. Thanks to this access format,

each mobile device that is able to access the web services can make use of this o�oading

middleware without any need for speci�c changes and installation of new facilities. Any

mobile device that supports web services could join the virtual mobile cloud to collaboratively

execute its application bene�ting from the pool of shared resources.

To design our service based middleware, we �rst review the important functionalities that it

should have and then we propose the correspondent services to provide these features and func-

tionalities. After that, we describe the proposed services and their interactions.

3.3.1 Design Objectives

As the main objective we aim to design ACOMMA, an o�oading middleware that e�ciently decides

for:

47



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

1. which parts of the mobile application should remotely execute to improve performance in

terms of two selected subjective?

2. where these o�oadable components should execute? DS or virtual mobile network?

The e�ectiveness of the decision making process highly depends on how the middlewear deals

with the issues of changing environment where the mobile device, communication network, context

and cloud status may constantly change. We believe that to be a useful, practical and e�cient

o�oading middleware which dynamically decides for above mentioned points concerning its dynamic

environment, ACOMMA should be equipped with the following features and functionalities:

(a) ACOMMA should be aware of what the user needs

(b) ACOMMA should consider the application type in terms of resource-intensive, data intensive,

computation intensive, etc

(c) ACOMMA should be able to �nd mobile devices in the vicinity and notify their hardware

properties

(d) ACOMMA should know the abilities and features of a DS as well as its cost

(e) ACOMMA should pay attention to available networks and their coverage as well as communi-

cation conditions

(f) ACOMMA should be a lightweight and low consumption middleware

To this end we propose the decision making 
ow illustrated in �gure 3.5. The availability of

cloud resources to provision the required resources as well as mobile devices resources to execute

the o�oading process play a considerable role in o�oading quality [20]. Similarly user dependent

factors such as his preferences, limitations and requirements impact the decision making process.

For instance, the application execution should be performed locally without bene�ting remote ex-

ecution or be terminated in the absence of enough local resources, if the user did not agree with

o�oading. The o�oading process could also be terminated in sharp increase of latency, signi�cant

reduction of o�oading quality or user security and privacy menace cases. The execution environ-

ment characteristics such as the distance from the mobile device to a cloud, network technologies

and coverage, available bandwidth and etc, highly a�ect the usefulness of the o�oading process [38].

48



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

Figure 3.5: A general execution 
ow of o�oading middleware

In addition, performing o�oading on di�erent applications do not result in the same performance.

For instance, o�oading a data intensive application in a low-bandwidth network a�ects perfor-

mance due to the imposed large latency which is greatly di�erent from o�oading a computation

intensive application in the same network status.

49



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

3.3.2 Service-oriented Architecture for ACOMMA

To ful�l the requirements and objective mentioned in the previous section, we propose a service

based architecture illustrated in �gure 3.6. In this architecture, all features are proposed in the

form of services which could be accessed by any device that has the ability of accessing web services

if needed. In the rest, we describe the various services and their interactions.

Figure 3.6: Layered architecture of application o�oading middleware

3.3.2.1 Service Description

� O�oading service : This service that constitutes the core of our middleware, partitions

mobile applications and determines o�oadable parts that should be executed remotely. Con-

sidering the current condition of the mobile device, communication network and cloud, the

decision engine decides for o�oading focusing on performance improvement in terms of exe-

cution time, energy saving, etc.

We are interested in bio-inspired decision making algorithm that could bene�t from a learning

feature. We develop an Ant Colony Optimization algorithm as well as string matching for

decision making process. This process could be done individually by the mobile device itself

or corporately in collaboration with nearby mobile devices.

50



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

� Collaboration service : This service makes the cooperation between several mobile devices

possible. In order to overcome mobile device limitations, a group of mobile devices in the

vicinity that prepare cloud-like services could be used as well as a DS. A mobile device can

make use of the hardware resources of its adjacent devices by migrating its o�oadable parts

onto them instead of make o�oading on a DS. This feature is more outstanding when a DS

in not accessible or costly.

Collaboration is also interesting from a data sharing point of view where nearby mobile devices

share their made decisions with each other in order to enrich the learning database of the

decision making process.

� Pro�ling service : This service creates a pro�le of user dependent points consisting of his

preferences, limitations and requirements as well as application properties and usage form.

Considering di�erent places and conditions, the user may be interested in o�oading or not,

he may also not accept to use nearby resources for o�oading. Various applications with

di�erent intensiveness a�ect o�oading conditions. In addition, the same application may be

used di�erently by di�erent users. For instance, Facebook could be used for gaming, photo

sharing, etc based on its users' interests and needs. A pro�le created by the pro�ling service

consists of information about the user and application to perform o�oading.

� Discovery service : This service is responsible for �nding other mobile devices existing in

the vicinity of the o�oader device. Since mobility and dynamism are inherent characteristics

of any mobile device, even if the o�oader mobile device does not change its position for a

while, in its highly changing environment there may be other devices that appear/disappear.

Being aware of nearby mobile devices is an important point for a mobile device which needs to

bene�t from its neighbours. The discovery service periodically evaluates the mobile device's

environment in order to �nd other devices in its vicinity. To have more accurate information

about nearby mobile devices, there exit approaches that model the mobility trace of mobile

devices and predict its next position.

� Context monitoring service : This service is responsible to give a context awareness to

mobile device. Like pro�ling and discovery services, the context monitoring service oversights

the mobile device's environment, although from another point of view. For this service, the

51



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

context consists of resource availability in mobile devices, cloud characteristics and commu-

nication conditions between the mobile device and an o�oading surrogate. Information such

as mobile device battery level, CPU usage and available memory, available resources on the

cloud or virtual mobile network and their cost, available networks and their coverage, avail-

able bandwidth are prepared for the o�oader mobile device using the context monitoring

service.

3.3.2.2 Service Interactions

After giving a brief description of each component of the middleware in the previous section, in

this section we explain how they interact between them.

� The o�oading service is in relation with the context monitoring, pro�ling and collaboration

services. A mobile application modelled as a service graph constitutes the main entrance

to the o�oading service. To make an e�cient decision for o�oading, this service requires

information about the mobile device itself and its environment as well as user. Context

monitoring and pro�ling services are responsible for meeting these requirements.

Although the main output of this service is the partitioned call graph to determine remote

and local execution, the results of this decision and the way the program is partitioned can be

used in other devices to enrich its learning data for making collaborative decisions. Therefore

the o�oading service is closely related to the collaboration service. The history of partitions

performed in di�erent mobile devices of what is dislocated between o�oading and collabo-

ration service. After deciding for o�oadable parts of an application, the o�oading service

communicates with either a DS or mobile network to execute o�oadable parts remotely.

� The collaboration service has interaction with the o�oading and discovery services. It could

also communicate with collaboration services of nearby mobile devices. To this end, the

collaboration service should �rstly contact the discovery service to be informed of the identi-

�cation of mobile devices in the vicinity. Then it will transfer the received data from other

devices to local o�oading service.

� The discovery service communicates with o�oading and collaboration services. In addition

to give neighbours identi�cations to the collaboration service, the discovery service feeds

52



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

Figure 3.7: Service interactions of middleware architecture

53



CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

o�oading service with the same information. This information is used by the o�oading service

in a collaboration mode when it is deciding for the executing device of each o�oadable part

between mobile network members. The discovery service, similarly to collaboration service,

is a communication bridge between the middleware and other devices from a communication

point of view.

� The context monitoring service is in relation with the discovery and o�oading services as well

as cloud resources. It prepares the contextual information in terms of available resources of

the cloud, the mobile device and other devices in the vicinity and the network status for the

o�oading service.

� the pro�ling service communicates with the o�oading service to provide it user and applica-

tion information. The pro�ling service is an internal service that does not have any relation

with services on external devices.

After introducing ACOMMA and its architecture in this chapter, we focus on the o�oading

service and explain our proposed individual/collaborative learned based decision making process

to make o�oading depend on the context in the next chapter. Then, in chapter 5, we describe

our proposed algorithms for the collaboration service as well as the discovery and pro�ling services

where ACOMMA bene�ts from a SPC for both decision making and task migration.

54



Chapter 4

Individual O�oading Decision

Making in ACOMMA

4.1 An Introduction of Decision Making Process for Application O�oading . . . . . . 55

4.1.1 Di�erent Aspects of O�oading Decision Making . . . . . . . . . . . . . . . 56

4.1.2 Application Partitioning Problem Considered as Shortest Path Problem . . 60

4.1.3 Solving Shortest Path Problem Using Bio-Inspired Algorithms . . . . . . . 63

4.2 Decision Making Process of ACOMMA for Application O�oading . . . . . . . . . 65

4.2.1 Application O�oading Flow of ACOMMA . . . . . . . . . . . . . . . . . . . 65

4.2.2 Bi-Objective O�oading Decision Making Using Ant Colony Optimization
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Learning-Based O�oading Decision Making Using String Matching Algorithm 71

In this chapter, we describe o�oading decision making as an application partitioning issue and

explain how ACOMMA considers it as a Shortest Path Problem. Then we focus on our proposed

bio-inspired algorithm to solve this problem. We justify Ant Colony Optimization as a suitable bio-

inspired algorithm to determine where to execute application partitions. Finally, we introduce the

learning based decision making process of ACOMMA bene�ting from a String Matching algorithm.

4.1 An Introduction of Decision Making Process for Application

O�oading

Is o�oading possible and bene�cial given the current situation? An a�rmative answer to this

question in fact allows us to discuss application o�oading at �rst and the other issues after that.

55



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

To make a yes/no decision in this area, which is the most important issue in mobile application

o�oading, is the main responsibility of the decision engine. Hence decision making can be consid-

ered as the core section of any o�oading middleware. The other blocks gain importance due to

either the ful�lment of this section's primary needs or performing the next o�oading step based

on its decisions.

In the next stage, after the usefulness of o�oading has been con�rmed by the decision engine,

questions such asWhat to o�oad , When to o�oad and Where to o�oad should be answered.

From another point of view, although the usefulness of o�oading is the key point that should be

paid attention to, its answer depends on the answer to the second question set and every one of

them may play a decisive role in the e�ciency, quality and feasibility of o�oading. Answers o�ered

for the second set of questions form the basis of o�oading middleware performance in conducting

the application outsourcing process. It implies the signi�cant role played by the decision making

section in every o�oading middleware. Although di�erent middlewares, according to their intended

approach, focus on �nding answers to only somee f the questions, the decision making section

constitutes the core section any way. In the following, how to answer these questions as well as

the possible solutions are dealt with, and then our proposed o�oading middleware and its used

approach will be introduced from this perspective.

4.1.1 Di�erent Aspects of O�oading Decision Making

What to o�oad

Among studies conducted on MCC and of di�erent o�oading middlewares that have been of-

fered in this area, what to o�oad is the principal issue that has attracted most attentions. As

mentioned in Chapter 1, VM migration, complete application o�oading and partial application

o�oading are general answers obtained for this question but the decision in this case is made

later by the middleware designer while designing the system architecture. What is relevant to the

decision-making block is rather the time intended for the partial application o�oading. Therefore

the decision engine determines how to partition the application as well as which of these parts or

partitions should be run locally on the mobile device or remotely on cloud resources. [78] classi-

�ed application partitioning approaches into three general categories: graph-based, LP-based and

hybrid.

56



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

� Graph-based application partitioning: In the graph-based approach, a directed graph is used

for modelling the executive states, costs, dependencies, control 
ow and data 
ow in a way

that vertices and edges of the graph show the parameters or context of an application. The

number of vertices and edges of the graph may di�er depending on the granularity based

on which the application is modelled. In this case, the decision maker aims to divide the

graph into two or several parts to be run on di�erent resources. An appropriate graph can be

useful in making appropriate decisions and a�ect the e�ciency and quality of o�oading. A

variety of approaches of graph partitioning have been introduced and implemented in di�erent

researches. [125] for example, employed a parametric partitioning algorithm for application

partitioning. Authors of [123] designed a multilevel graph partitioning algorithm.

Graph-based partitioning approaches do not necessarily provide the best partitioning solutions

and their e�ciency depends completely on the application behavior such as being or not being

modularized, but it decreases the coupling e�ect and migration cost in distributed application

processing [78]. These approaches are not suitable for applications with numerous components

because high resource overhead may lead to a decreased performance.

� LP-based application partitioning: A Linear Programming-based approach is a mathematical

approach used for �nding the best amount that can, considering the limitations, maximize

or minimize an objective function based on power consumption or execution time. In this

approach, the intended objective is at �rst formulated as a mathematical optimization prob-

lem and is then calculated using the technique of linear programming for the best options

for achieving the objective. The obtained optimal solution forms the basis of application

partitioning decisions as well as the o�oading process.

The LP-based approach is applied in a considerable number of o�oading middlewares. Of

course, there are various techniques for solving it. [130, 56], for example, made use of In-

teger Linear Programming (ILP) to solve optimization equations, while [115] and [129]

used zero-one Linear Programming (0-1LP) and Mixed Integer Linear Programming (MILP)

respectively.

LP-based approaches are mainly characterized by the ability to �nd optimized solution for

a given objective function, although solving such problems demands a lot of computational

time [92]. Furthermore, the optimized performance in producing the most realistic parti-

57



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

tioning creates a lot of overhead because extra pro�ling and resource monitoring are needed.

LP-based partitioning algorithms, however, are dynamic. Since they are lightweight in han-

dling a large number of users, they could reduce the operating costs of the cloud [78].

� Hybrid application partitioning: This partitioning approach is in fact a combination of the

�rst two approaches. Attempts have been made in this model to improve the quality of

application partitioning through taking advantage of the strengths of graph-based and LP-

based models. In MAUI [32], for instance, 0-1LP has been deployed to deal with graph

optimization in the application call graph. CloneCloud [28], also, models the application as

control 
ow graph before applying ILP optimization.

Unlike the approaches classi�ed in two former categories with almost the same performance,

di�erent hybrid-based approaches do not have any strength and weakness in common. For

example, some algorithms endure less overhead for analytical techniques, while some others

bear unnecessary overhead. It seems based on [78] conclusion, the most ideal hybrid algorithm

is a combination of ILP and data 
ow graph.

There are, of course, some exceptions for application partitioning models that can be included in

none of the above mentioned options. For instance, it can be referred to the approach proposed

by [24] in which the concept of partitioning applications of J-Orchestra into units of dynamic

updates is used.

We focus on what to o�oad in our o�oading middleware as a key issue raised in o�oading.

We use service graph to model mobile applications and apply partitioning techniques to determine

o�oadable parts. Graph based application partitioning makes �ne-grain application o�oading

possible that leads to 
exibility and lightweight of o�oading process. It also is more e�cient

compared with LP-based approaches because it consumes less resource [94]. Unlike many previous

approaches that have made single-criteria o�oading decisions, we propose a bi-constraint algorithm

for application partitioning.

When to o�oad

As posed at the beginning of the chapter, the second question raised during application o�oad-

ing is when to o�oad. Although it is of utmost importance to specify the time appropriate for a

bene�cial o�oading, this issue is dealt with just by a few o�oading middlewares. The changes in

58



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

network communication conditions such as bandwidth and latency, changes caused by the use of

mobility, a sudden increase or decrease in CPU load in the mobile device and the variation of user

inputs or how to execute the application that can in
uence its performance, are issues that have

been neglected.

The general approach used for considering the mentioned items and �nding the proper o�oading

time is the prediction of future conditions with regards to what happened before. Based on the

predictions and with due consideration to the current situation, the decision engine can determine

the best possible time for o�oading or even disregard it. Among a few studies done on this issue

are [54], [23], [127]. Since most of the changes result from the user motion, [71] presented a user

motion model that allows the implicit prediction of the user's next state.

As for appropriate o�oading time, our proposed middleware also takes decisions implicitly.

In addition to its online, dynamic and context aware decision making process lead to takes into

account the current state while o�oading, the learning feature refers to using previous decisions

to take new ones. Making bi-objective decision using CPU usage and execution time as objectives

which include battery consumption and network conditions as well, leads to the involvement of

internal and environmental conditions of the mobile device in the decision making process which

forms the basis of middlewares' focus on when to o�oad.

Where to o�oad

The third important stage in the o�oading process is to �nd the answer to the question where

to o�oad and determine the appropriate surrogate - cloud/ cloudlet/ mobile network. In addition

to the possibility of choosing between di�erent clouds to o�oad and though the cloud itself consists

of a collection of machines, it is possible in some cases to choose between cloud, cloudlet and mobile

networks. Although a �xed server, cloud or cloudlet has been used as a surrogate in most studies

on o�oading, in few ones more options have been proposed to choose from while the o�oading

middleware is executing. [113], by the use of Dijsktra routing algorithm, presented a task allocation

algorithm for the distribution of jobs on adjacent mobile devices. [45], also, exploited a collection

of mobile devices as a cloud but dealt with them as a single surrogate.

We consider both a cloud server and the Spontaneous Proximity Cloud as o�oading destinations

and proposed a collaborative decision making algorithm to be able to choose appropriate destination

59



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

from several cloud servers, several adjacent mobile devices or a combination of the two considering

the current situation.

Dealing with the issues of what, when and where to o�oad could be done statically at deploy-

ment, dynamically at execution time or a combination of the static and dynamic phases.

Although the static o�oading decisions make it possible to use more complex heuristics, the

risk of a wrong evaluation of the application behaviour and of the environmental conditions is

augmented. [105] and [55] tackled the problem of static code o�oading using o�ine pro�ling of

applications.

On the other hand, although the dynamic performance can increase execution time and pro-

cessing costs, it enhances the adaptability and accuracy, and consequently the quality of o�oading.

Dynamic approaches have attracted more attention recently [32], [28], [102].

Our proposed middleware, ACOMMA, dynamically deals with issues of what and where to

o�oad as its main contribution while implicitly answers to when to o�oad. According to the studies

conducted in this area, our middleware is the only middleware with such a broad functionality.

In this chapter, we explain how ACOMMA deals with the issues of application partitioning to

determine what to o�oad. Then in Chapter 5, we describe the collaborative decision making

process to make o�oading either on a DS or a Spontaneous Proximity Cloud.

4.1.2 Application Partitioning Problem Considered as Shortest Path Problem

In order to determine what to o�oad, the o�oading decision making process of ACOMMA aims to

perform graph based application partitioning as we mentioned in the previous section. We believe

that the issues of graph partitioning and application o�oading can be viewed as di�erent classical

problems:

� Classi�cation problem: in which the application components are classi�ed into two classes

that are run on a cloud server and the mobile device or into several classes when several

servers exist.

� Clustering problem: where the application components are required to be divided into two

or several clusters to be run on server/ servers and the mobile device.

60



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

� Task assignment problem: each application component is regarded by this model to be a task

which should be assigned to server/ servers and the mobile device.

� Multi-objective optimization problem: the aim in this case is to obtain the best partition-

ing based on several criteria. Therefore, a series of possible answers appears instead of an

optimized one.

� Routing problem: it intends to discover the appropriate path for the consequent execution of

application components by passing through the mobile device and server.

We propose the application partitioning problem investigate as a Shortest Path Problem where

the application call graph is modi�ed in a way that its nodes belong to at least two local and remote

executing environments. The constituent nodes and vertices of the SP between the start and end

points of the application represent the remote and local executions of each task. Since we have

focused on a bi-criteria application partitioning, the problem is de�ned as a BSP problem.

The required modi�cation of the service graph to transform the partitioning problem into a

SP problem is illustrated in �gure 4.1. In the transformation process, all graph nodes instead of

start and end ones and consequently their coupling vertices duplicate. As the nodes represent the

methods, the original nodes show methods on mobile device and the duplicated ones refer to the

corresponding methods on the cloud.

Figure 4.1: Transforming call graph to be compatible to SP problem

For instance in the original graph of �gure 4.1, edges1-2 and 2-3 show that method1 calls

method2 and method2 calls method3 respectively. Assuming method1 and method3 to be start

and end points that should run locally, the transformation process duplicatesnode2 where the �rst

one representsmethod2 on mobile device and the second one is the same method on the cloud.

61



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

In modi�ed graph 1-2local and 1-2remote edges represent local method call and remote method

invocation of method2. The choice of the SP betweenpath1 and path2 is in fact an o�oading

decision where they mean local and remote executions ofmethod2 respectively.

The goal of SP Problems is �nding a path between two nodes in a weighted graph such that the

sum of the weights of its constituent edges is minimized. As we want to take bi-criteria o�oading

decisions, there are two attributed weight for each edge. We consider CPU usage and execution

time as constraints of the decision making and aim to �nd an o�oading solution to minimize both

of them. For the same mobile device and cloud, any change in the network conditions directly

a�ects the execution time, for example, more network load leads to an increase in the execution

time. There is also a direct relationship between the CPU usage and the battery consumption, the

more an application uses CPU power, the more it consumes battery. Therefore, although it seems

that the applied criteria are just the execution time and CPU usage, the network communication

conditions and the amount of battery consumption also in
uence the o�oading decision making

process.

Figure 4.2 is an example of bi-weighted service graph whereTi and Ci represent the execution

time and CPU consumption of method i.

In this graph, the choice of start-L1-L2-R2-R3-end as SP between the start and end points

concerning the cost of each edge implies that in addition to the start and end points which are

inherently local, method1 should run locally and method2 and method3 are decided to execute

remotely on DS.

ACOMMA decides for remote or local execution of each method at its beginning, whenever

it is called and before its execution. In the graph, the edge between each local method and its

corresponding remote method shows passing from local execution of method on the mobile device

to its remote execution on a DS. For instance at the beginning ofmethod1, ACOMMA decides

where to execute it and the edgeL1-R1 is travelled only if method1 should be o�oaded. In this

case, the local execution costs written in the input edge ofL1 are not involved in the total cost

calculation.

Based on our knowledge this is the �rst time that an application partitioning problem in of-


oading decision making process is considered as a SP problem. Whenever we refer to a service/call

graph in the rest of this document we consider a modi�ed graph transformed in the above men-

62



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Figure 4.2: A weighted call graph with local and remote paths

tioned form. In the next section, we introduce our proposed algorithm to solve the SP problem in

this graph.

4.1.3 Solving Shortest Path Problem Using Bio-Inspired Algorithms

Nature inspired computing (NIC) has emerged, taking inspiration from the nature, to develop new

computer techniques for solving di�cult problems. Biological inspired computing is also a subset

of NIC that can be helpful in solving di�erent problems. This approach has been widely used in

CC and MCC. Having used a combination of genetic algorithm and fuzzy theory, [63] suggested

an approach for job scheduling in CC. For the same problem, [81] made use of a mixture of ACO

and arti�cial bee algorithm. [22] applied a modi�ed ACO approach for service allocation and

scheduling in MCC.

Recently, bio-inspired algorithms have attracted attention as an approach for application parti-

tioning in a few number of o�oading middlewares. [35] made some changes in a genetic algorithm-

based optimization approach and used it for taking o�oading decisions. In this approach, a pop-

63



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

ulation of solutions is used to �nd a globally optimized solution. Finding the optimized solution

referred as an optimization problem, classically can be dealt with by exact methods (logical, mathe-

matical, programming) and heuristic approaches. Bio-inspired algorithms are heuristic approaches

composed of three general categories of evolutionary, swarm- based and ecology algorithms [25].

It seems that in complex problems, better results can be achieved using bio-inspired algorithms.

Since many researches have published reports about the success of these approaches, it can be con-

cluded that bio-inspired algorithms are among the strongest algorithms that solve the optimization

problems [25]. In addition, the usage of bio-inspired solutions provides the opportunity to make

competitive/collaborative decisions. It also improves capabilities such as self-organization and au-

tonomy. The dynamic, robust and complex phenomenon with the capability of �nding optimal

solution is the trust behind bio-inspired computing [25]. As a result, we decide to use bio-inspired

algorithms to take o�oading decisions.

From di�erent categories of bio-inspired approaches, we are interested in swarm-based algo-

rithms. Swarm intelligence can be described as the collaborative conduct of a group of animals,

especially insects such as ants, bees and termites, that are each following very basic rules but when

seen in the �eld of computer science, swarm intelligence is a simulated way for problem solving

using algorithms formed on the concept of self managed collective behaviour of social insects [38].

Here are some characteristics of swarm-based algorithms that make them well suited to achieve our

middleware goals:

� Finding a solution with cooperative work between individuals in swarm-based algorithms

could be useful for ACOMMA while making collaborative o�oading decisions and/or execut-

ing o�oadable application parts on a SPC.

� While designing and developing an automated middleware, we could bene�t from decentral-

ized and self organized coordination of individuals in these colony-based algorithms.

� In population based algorithms individuals, in their behaviour, take into account what their

neighbour did. They move in the same direction as their neighbour while remaining close

to them and avoiding collision [82]. In ACOMMA, this is useful to make learning based

o�oading decision.

Between di�erent swarm-based approaches, we apply ACO algorithms to solve the SP Problem.

64



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

ACO is inspired by the behaviour of ants in �nding paths from the colony to the food. It is a

probabilistic method for solving computational problems, which can be reduced to �nding good

paths through graphs. We found SP �nding in a graph is close enough to the behavior of ants when

seeking their route to food. In addition, as far as our study shows, in spite of rapid progress in

the �eld of bio-inspired optimisation approaches and specially swarm-based algorithms, although

many approaches applied ACO to solve SP problems, no studies have claimed that one approach

is superior to the others in solving the problem of the SP �nding. Furthermore, the studies are not

conducted in similar conditions and they cannot be relied on.

In next section, we explain the decision making block of ACOMMA and describe how it uses

ACO as well as SM algorithms to make learning based o�oading decisions.

4.2 Decision Making Process of ACOMMA for Application Of-


oading

4.2.1 Application O�oading Flow of ACOMMA

As an o�oading middleware, ACOMMA is expected to deal e�ciently with the issues of mobile

devices' resource limitations bene�ting from the power of a DS. It applies its decision making

policies on a mobile application modelled as a service graph to determine o�oadable parts of the

application and then continue the o�oading process by handling the remote execution of o�oadable

parts. We assume that a servicized version of s mobile application is installed on the mobile device

before ACOMMA starts the o�oading process. We also assume that the server side application

exists on a DS. Figure 4.3 demonstrates the building blocks of ACOMMA involved in the o�oading

process as well as their interactions.

The o�oading manager and decision engine are components of the o�oading service of

ACOMMA where context monitoring and pro�ling blocks correspond to the services with the same

name. The decision engine determines the o�oadable nodes of the service graph what their remote

execution on the cloud results in performance improvement. The decision engine may simply make

bi-constraint o�oading decision concerning the current internal and environmental status of the

mobile device prepared by the context monitoring service using an ACO algorithm. It may also

make learning-based o�oading decisions bene�ting from its previous decisions in the same situa-

65



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Figure 4.3: An architectural view of o�oading building blocks in ACOMMA

tions archived by the pro�ling service with the help of a SM algorithm. At this step, there are just

two available executing platforms for application execution: mobile device and DS.

The detail of the o�oading process for each application method is shown in �gure 4.4 as a 
ow

diagram. During application execution, whenever a method call occurs, the o�oading manager

intervenes and asks the decision engine to decide about the remote or local execution of that

method. Based on the requested decision making mode, simple or learning based, the decision

engine applies ACO or SM algorithms to determine where to execute this method to increase the

total application performance. Based on this decision, the o�oading manager handles the method

execution for local execution on the mobile device itself or remote execution on a DS.

If the decision is to run the method locally, the application execution continues on the mobile

device; however, when a remote execution is required, the parameters needed for the method

execution are converted into JSON data format by the o�oading manager and transmitted to

the server via REST/HTTP protocol. The execution of the application on the mobile device is

suspended until the reception of the method execution output on the DS. The remote execution

66



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Figure 4.4: O�oading process in ACOMMA

manager in the cloud sends the obtained values of parameters to the corresponding method on

the server side application and when the execution is over, sends back the execution results with

the same format to the o�oading manager on the mobile device. The local application execution

resumes from a spot after method execution and after receiving its remote execution output. This

is what happens for each method call during application execution.

After explaining the o�oading process of ACOMMA, in the following sections we describe how

ACO and SM algorithms operate respectively.

4.2.2 Bi-Objective O�oading Decision Making Using Ant Colony Optimization

Algorithm

For the �rst time, [79] introduced an Ant Colony Optimization algorithm as a solution for the

travelling salesman problem in 1991. To do so, they took inspiration of ants' behaviour when they

search for the shortest possible path to get to their food source. In such problems that are often

shown by graphs, an ant detects the best path to the food in a heuristic-based method using the

67



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

pheromone trail of previous ants. The pheromone augmentation after the same path has been

travelled by the other ants and the evaporation of the pheromone indicate the learning desirability

between the starting point and the food resource. In every stage, it is more likely that nodes

with more amount of pheromone trail are selected. In recent years, procedures for updating the

pheromone trail and evaporation as well as di�erent transition rules have been applied in various

ACO algorithms to solve problems such as the travelling salesman problem, telecommunication or

vehicle routing problem, production scheduling, etc.

Due to the success of ACO algorithms in the single-objective areas [116], [41], made use of

them, of course after a little modi�cation, is taken into consideration to resolve multi-objective

problems [62], [40].

Unlike single-objective optimization problems resulting in a scaler optimal solution, in multi-

objective optimization problems the solution is a Pareto optimal solution set which is the set of

all non-dominated solutions within the entire search space. Given the solution set ofx1 and x2,

x1 is a non-dominated solution if x1 dominates x2, and x1 dominates x2 if x1 is no worse than

x2 in all objective solutions and x1 is strictly better than x2 in at least one objective. In fact,

multi-objective optimization algorithms focus on �nding a trade o� between problem constraints.

We are interested in bi-objective ACO to solve the graph partitioning problem with two con-

straints modelled as BSP problem. Coming to our BSP problem, a non-dominated set consists of

the paths where the values of the objective functions are such that it is not possible to �nd another

feasible path better than the current one in at least one objective function without worsening the

value of at least another objective [31]. For example, in �gure 4.5, there exist the four following

paths between the start and end points, `start-A-D-end', `start-A-C-end', `start-A-C-E-end' and

`start-B-E-end' with their respective related objective functions of (5, 5), (4, 5), (6, 6) and (6, 4).

In this graph, theobjective functions (5,5) and (6,6) are dominated by (4,5), however between (4,5)

and (6,4) the best path cannot be chosen because none is dominated by another. As a result, the

non dominated paths are 'start-A-C-end' and 'start-B-E-end' with (4,5),(6,4) as objective functions.

The Bi-objective ACO proposed by [53] has been employed in the decision engine of ACOMMA

to �nd the SP between the start and the end points of a mobile application modelled as a service

graph. The pseudo-code of this algorithm is shown in algorithm 1.

Multi-objective ACO algorithms are classi�ed into three general categories: the algorithms that

68



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Figure 4.5: Non dominated solutions for Shortest Path Problem

use one colony for every objectives, algorithms that make use of one pheromone trail for every

objectives and algorithms that apply a heuristic information for every objectives. The proposed

algorithm in [53] belongs to the second category in which two pheromone matrices that are intended

for two objectives are updated at the end of each iteration separately based on the generated results.

In addition when an ant moves from one node to another, the pheromone trail is locally updated

according to the evaporation rate. An arti�cial ant moves from one node to the next one based on

a series of transition rules and with the help of two heuristic parameters.

We apply this algorithm on application service graph to have non-dominated set of SPs from

start to end point of the application. Each path of non-dominated set may lead to di�erent executing

platform for each application method.

When an application starts, as an initialization phase, ACOMMA creates application's service

graph in aforementioned form where both costs of cpu usage and execution time of each method

is zero. For �rst method call, when ACO executes for the �rst time, non dominated set in consists

of all possible paths. ACOMMA randomly select one of these solutions and execute application.

Then weights of all edges of selected path update into real values of each method execution costs so

in next algorithm execution, this selected path as well as the paths within common edges wont be

in non-dominated set. After several execution all graph vertices will have real weighs progressively

and ACO by applying local and global updates of pheromone trail gives di�erent non-dominated

69



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Algorithm 1 Bi-objective Ant Colony Optimisation
1: start
2: Initialisation :
3: init solution set, heuristic parameter and pheromone matrix
4: create new ant colony
5: loop:
6: an ant start from start node
7: ant move to next node using transition rule
8: make local update
9: if Ant reaches destination nodethen

10: update non-dominated solution sets
11: if All ants generate solutionthen
12: make global update
13: else
14: goto 8
15: else
16: goto 9
17: print non-dominated set
18: end

set at each execution.

ACOMMA runs ACO algorithm for each method call of application separately. However chosen

non-dominated path shows local or remote execution of all application methods, ACOMMA applies

this decision just for the current method and for the next one, it makes use of an ACO algorithm

again to �nd new solution set. Making o�oading decision for all the application methods when it

starts may a�ect the context adaptability of ACOMMA as well as its performance while evaluating

this path for the entire application at each method call makes the decision engine to take into

account the mobile environment and results in dynamic decision making.

The nature of a method may cause considerable changes in the network or device state, for

example due to the local execution of a method that consumes a large amount of resource, the

available local resources on the mobile device greatly diminish and this may cause another decision

for executing the next method di�ering from the previous one. In addition, considering a highly

changing environment, there may happen great changes during a method execution, specially if its

execution takes a long time and ACOMMA needs new a o�oading decision for new conditions.

For example, a high network tra�c causes large execution time of the o�oading method and new

weights on the corresponding edge, so ACO execution may result in di�erent solution paths.

We also assume that the executing thread continues on the same machine for nested methods.

70



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

So after starting the remote execution of a method on the cloud, its internal method could not be

executed on the mobile device even if, based on the selected path, it should execute locally. So the

o�oading manager waits for receiving the execution result of the o�oaded method including its

nested functions and then restarts ACO for the next method call.

To avoid an execution of the ant colony algorithm for each decision making process and to make

more accurate and e�cient decisions, we propose using previous decisions for a current situation

similar to a previous one. We explain this learning-based decision making process in the next

section.

4.2.3 Learning-Based O�oading Decision Making Using String Matching Al-

gorithm

Although o�oading based on decisions made by an ACO algorithm leads to improving perfor-

mance in terms of total execution time and CPU usage, the execution of the ACO itself imposes

a processing load onto the mobile device. We aim to �nd a solution to decrease the ant colony

algorithm execution cost as much as possible while pro�ling it for o�oading decision making. To

this end, we establish a learning-based decision making process that uses previous decisions made

using the ACO algorithm for the same application and the same situation. We save the history of

each application run as a string of executed methods and their execution platform (mobile device,

cloud) and develop a simple SM algorithm to �nd the appropriate execution string in this history.

We consider the decision saving as system training phase.

SM �nds place where one or several strings (also called patterns) are found within a larger

string or text [121]. Exact matching and approximate matching are two principal techniques in

SM. We are interested in the former while developing ACOMMA.

The 
ow of the decision making process while using SM is illustrated in �gure 4.6. Whenever an

application starts, the o�oading manager checks if the training phase has been done before. If not,

the entire decision making process for this application runs inevitably using the ACO and the result

save in cache. For application runs that happen after the training phase, for each method call, the

decision engine searches whether there is any decision made at the same step of the application

execution using the SM algorithm to execute the method in the same way as its previous execution.

At any point, if the SM algorithm does not �nd any exact match, it means that there is no similar

71



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Figure 4.6: Decision making process using String Matching

situation saved in cache and the ACO algorithm takes the responsibility of decision making for the

current method based on the current status. This sequence continues for all application methods

and �nishes by the end of the application run.

At any step, if there are several matches in the cache for a searched pattern, the decision engine

may choose one of them using di�erent policies. There are also some policies to apply for emptying

the cache to avoid the exponential augmentation of its size that would result in more required

storing space as well as more processing time for match �nding.

72



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Match search policies

Here are some simple policies for multiple matching cases.

� FIFO selection: Means that the cache is considered as a �rst in last out queue where the

decision engine chooses the �rst matched string. To avoid one string to be always selected, it

will be marked as used until all same matches are used once.

� Random selection: One on the matches option randomly select by decision making engine

� Weighted selection: The strings in the cache are weighted and the similar ones are selected

based on their weight. The weight could be the total execution time of that run or the number

of times that the application executes this way.

Cache invalidation policies

Some simple invalidation policies to avoid the cache to enlarge progressively are listed:

� Duplicate Prohibition: in this case, duplicate execution trails are not permitted to be added

to the cache

� Periodic Invalidation: the cache gets empty periodically by applying this policy. This period

could be a prede�ned time interval or a number of application runs.

We explain the procedure of SM with a simple example. Suppose thata, b, c, d, e are methods

of an application, aL means local execution ofmethod a on the mobile device whereaR means its

remote execution on the cloud. Figure 4.7 shows available cache. Again suppose thatmethod a

and method b already execute on local and remote respectively and the decision engine is in the

process of decision making formethod c. It searches for pattern aL bR in the cache using the FIFO

selection policy.

There are three matches for this pattern in rows 2, 3 and 5. The �rst one is selected andmethod

c executes locally, and row 2 is marked as used. While deciding formethod d, the decision engine

searches for patternaL bR cL and �nd two matches in rows 2 and 5 of the cache. Row 2 is marked

as used so it selects row 5 andmethod d executes remotely. Formethod e, the decision engine

selects row 5 again even though it is marked as used because it is the only match. At the end, the

73



CHAPTER 4. INDIVIDUAL OFFLOADING DECISION MAKING IN ACOMMA

Figure 4.7: A sample of String Matching Cache

string of this application run, aL bR cL dR eL will be added to the cache with the current pro�le

and execution time.

Although using SM algorithm could complete cache progressiveness, there is a little chance to

�nd a new solution at each step. So we make use of a stochastic combination of ACO and SM

algorithms for decision making. We can set in ACOMMA the percentage of each algorithm usage.

This learning-base decision making process could be used in a cooperative way while mobile

devices collaborate to create a cache. The behavior of mobile devices' collaboration in ACOMMA

is described in the next chapter.

74



Chapter 5

Collaborative Application O�oading

5.1 An Introduction of Collaboration-based Application O�oading . . . . . . . . . . . 75

5.2 Collaborative O�oading in ACOMMA . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Collaboration-Based Resource Sharing in Application O�oading . . . . . . 80

5.2.1.1 Creating Service Graph for Multi Destination Application O�oading 82

5.2.1.2 Applying ACO for Multi Destination Decision Making . . . . . . . 84

5.2.2 Collaboration-Based Decision Sharing in Application O�oading . . . . . . . 86

5.2.2.1 Collaborative Decision Sharing . . . . . . . . . . . . . . . . . . . . 86

5.2.2.2 Decision Cache Management . . . . . . . . . . . . . . . . . . . . . 87

In this chapter, we start with the introduction and motivations of collaborative application

o�oading by using a SPC instead of a DS. Then we explain how ACOMMA provide collaborative

o�oading by illustrating its architecture. We consider that mobile devices collaborate either for

using neighbours' resources as o�oading surrogates or using their already made o�oading decisions

by cache sharing. We expand the usage of the ACO and SM algorithms for collaborative application

o�oading.

5.1 An Introduction of Collaboration-based Application O�oad-

ing

In the recent years and following the rapid development of MC and MCC, beside bene�ting from

clouds and cloudlets to overcome resource and processing constraints of mobile devices, making

them collaborating to meet their requirements in term of resources attracted the attention of

researchers.

75



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

Although the use of cloud resources can deal with mobile device's shortcomings in terms of

processing power and memory, the physical distance between them could cause some problems and

impose some expenses. The use of a cloudlet which is closer to the mobile device and its results

demonstrate the advantages of using a close surrogate to mobile device while o�oading. This is an

incentive point for using even closer surrogate such as our proposed SPC or other cooperative mobile

networks such as Transient Clouds [97], mClouds [85] and Mobile Device Cloud (MDC) [87], [88].

Although the use of mobile devices in vicinity as surrogates for mobile application o�oading is

still in its infancy, as an ideal for the future and though much research is still needed, there are

signi�cant factors that are encouraging for the entrance to such a category.

Cloud is not always helpful

Mobile devices di�er greatly; the consumer market includes users with di�erent requirements

and budgets leading to great diversity in designing and manufacturing mobile devices in terms of

hardware features such as processing power, available memory, and battery life time as well as

sensors. Although DSs could ful�l mobile devices' needs for more processing power and exceeding

memory by the help of application o�oading, they might not be able to respond to all demands

such as contextual information raised from local sensors. This information may be collected by the

SPC. For instance, a mobile device that needs environmental information such as temperature and

humidity could send a request to its nearby device that is equipped with the required sensors. In

fact, the common context of mobile devices make their cooperation easier.

Cloud is not always accessible

� Regardless of the tra�c in the network and the cost for accessing the cloud, its availability

is also questionable. Despite numerous developments in the �eld of 3G, 4G communication

networks, and the expansion of their coverage, access to the cloud is not possible always and

everywhere. This lack of access, especially in certain areas and areas farther from the center

of the city and also under special circumstances such as wars, earthquakes or other natural

disasters that disrupted communications are more noticeable. Using peer-to-peer connections

in the mobile network, for example through Bluetooth, without the need for backbone network

can be useful when the cloud is not available.

76



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

� With the assumption of providing permanent access to the remote resource in terms of open

communication platform, the communication with the cloud may not be possible due to its

limitations. In addition to natural and man-made disasters that may damage the data center,

signi�cant technical failures such as that of the Amazon Elastic Computing Cloud (EC2) and

Amazon (S3) cloud [15] can make cloud temporarily unavailable.

� Against the di�culties for accessing a cloud or even in the absence of a cloud or cloudlet,

the high frequency of mobile devices and their increasing growth show that a group of mobile

devices are always near each other in most cases. In addition to the increasing number of

mobile devices, their average number for every user or household is also increasing [16], [70].

Figure 5.1 shows a motivating scenario where for instance nodesCand E may not reach neither

cloud nor cloudlet resources. They are, however, able to collaborate/communicate with each other

to run tasks that transcend an individual devices' capabilities. They may also be able to bene�t

from cloudlet/cloud resources by collaborating/communicating with node B.

Figure 5.1: A motivating scenario to make mobile devices collaborate

Cloud is costly

� Economically, accessing a cloud imposes the cost of networking communication between the

mobile device and the cloud besides the cost of the provider's resources. Although the net-

77



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

working cost varies according to the type and amount of user's usage and for di�erent opera-

tors, it is important for the user in any way. Furthermore, although the cost of accessing cloud

resources is not high, it is expected that the cost increases in the higher levels of uptime for

better support, while the use of resource providers with a higher level of security and quality

is more expensive [44].

� Another signi�cant cost imposed by the use of the cloud and its communication with the mo-

bile device is associated with the power consumption that absolutely contrasts with the most

important goal of MCC that is o�oading for saving power. Sending data to the cloud and

receiving them not only demand a large part of bandwidth, but also lead to higher consump-

tion of battery. Studies show that the energy consumption of a 3G cellular data interface

(which is associated with the cloud) is 3 to 5 times much higher than WiFi transmissions

(which can be used between mobile devices) [32], [85].

Cloud may be disadvantageous/ O�oading has side e�ects

� New wireless technologies, due to the continuous tra�c growth, experience the shortage of

capacities primarily. In this case, the use of a cloud for o�oading necessitates a considerable

part of the bandwidths to be allocated to the process of sending and receiving the data

required for the remote execution. This considerable bandwidth allocation can lead to the

production of overhead and increased e�ciency of the network, while the use of a SPC can, in

addition to the ful�lment of mobile device's needs, prevent the imposition of such an overhead

which itself su�ers from an additional load.

� Exponential growth of data centres and cloud infrastructures that lead to its ever-increasing

energy usage are challenging points of the use of CC and therefore MCC that a�ect the

environment in addition to creating economic challenges [66], [64]. In return, the use of

pervasive computing and especially SPC is a perfect replacement for a greener computing

where individual devices are powered by existing local renewable energy resources such as

residential solar panels or wind turbines, or by harvesting the kinetic energy of the human

body [15].

We �nd the above mentioned points strongly motivating for making use of a SPC for appli-

78



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

cation o�oading. ACOMMA could take decisions to o�oad to several mobile devices bene�ting

from its adaptable decision making service. It creates a service graph concerning the number of

proximate devices and applies its ACO algorithm to determine where to execute each part of a

mobile application.

By the help of ACOMMA, in addition to using resources of a SPC, a mobile device could

also enjoy other devices to make a mimetic collaborative o�oading decisions. To this end, mobile

devices share their decision cache instead of their resources and use o�oading decisions already

made by others for thr same application o�oading and the same context.

In the rest of this chapter we explain how ACOMMA works with a SPC and supports collabo-

ration of mobile devices for resource sharing as well as decision/cache sharing.

5.2 Collaborative O�oading in ACOMMA

To be able to bene�t from a SPC either for resource sharing or cache sharing, a mobile device needs

to communicate with its neighbours. In chapter 3, we proposed a service based communication to

make ACOMMA usable for any mobile device that supports services without any special require-

ment. To communicate with a SPC, the mobile device uses the same communication protocol as

with the DS. It sends and receives data in JSON format with the REST protocol over HTTP. There

is just a conceptual di�erence between communications to DS and SPC (Figure 5.2).

Figure 5.2: Centralized client-server vs. decentralized peer-to peer communication

A DS is a centralized system and mobile devices use a client-server model to communicate with

it while a SPC is a peer to peer network in which two or more mobile devices (peers) pool their

79



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

resources and communicate with each other in a decentralized system. In peer to peer networks,

the clients provide and at the same time consume resources. In such circumstances, there is no need

for high availability in mobile devices because in case of unavailability of one of the SPC members,

the resources shared with other members can still be exploited.

To make such a communication and collaborate with others, a mobile device needs to know

devices in its vicinity as the �rst step. We developed a discovery service that helps ACOMMA to

�nd the mobile device's neighbours. Service discovery works in a decentralized way. The mobile

device broadcasts a message about its proposed service as soon as it joins a SPC and in response

it receives the port numbers as well as information on the proposed services of all devices in the

vicinity.

The building blocks of ACOMMA for supporting collaborative o�oading and the communica-

tion between two mobile devices in the vicinity that are using ACOMMA as well as their com-

munications with DS is illustrated in �gure 5.2. The collaboration service of a mobile device is in

charge of making nearby devices to collaborate using the neighbours information prepared by the

discovery service while the o�oading manager is responsible for o�oading to a DS. The context

and pro�le information could help ACOMMA to choose the SPC if the DS is not accessible or

a�ordable.

The execution 
ow of ACOMMA in collaboration mode is shown in �gure 5.4. After discovering

its neighbours, and based on the selected mode for resource or cache sharing, ACOMMA applies

di�erent algorithms to make use of its adjacent devices. In the following, we �rstly focus on

bene�ting from a SPC instead of a DS for o�oading some parts of the application. We give a short

history of researches already done in this domain and continue with how ACOMMA deals with this

issue. Then we concentrate on the decision sharing process while using the decision cache of other

mobile devices in the vicinity.

5.2.1 Collaboration-Based Resource Sharing in Application O�oading

Among lots of proposed o�oading middlewares, only a few of them have focused on the use of adja-

cent mobile devices as o�oading surrogates. Transient clouds [97] employ the collective capabilities

of nearby devices that form an ad-hoc network to meet the needs of the mobile device. A modi�ed

Hungarian method has been applied as an assignment algorithm to assign tasks to devices that are

80



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

Figure 5.3: Building blocks of ACOMMA for collaborative o�oading

to be run according to their abilities. The execution of each task by any device imposes some cost

and the assignment algorithm aims to �nd the minimum total cost assignment. In this regard, [97]

has proposed the dynamic cost adjustment to balance the tasks based on costs between devices.

Miluzzo et al. [85] have suggested an architecture named mCloud that runs resource-intensive

applications on collections of cooperating mobile devices and discuss its advantages. Kassahun et

al. [15], however, have gone a step further and have formulated a decision algorithm for global

adaptive o�oading. They have implemented the program components on mobile devices set to

optimize Time to Failure (TTF) while taking into account the limitations of the e�ectiveness of

the program. Having highlighted the bene�ts of collaboration for mobile task o�oading, Mtibaa

et al. also implemented computational o�oading schemes to maximize the longevity of mobile

devices [87], [88].

ACOMMA allows a mobile device to o�oad onto adjacent devices. To this end, after discovering

nearby devices, ACOMMA creates a modi�ed version of the service graph for which the application

partitioning problem for o�oading decision making could be modelled as a SP problem. Then

81



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

Figure 5.4: General 
ow of collaborative o�oading

ACOMMA applies an ACO algorithm to determine which part of an application should execute on

which mobile device. In the following, we explain these steps in detail.

5.2.1.1 Creating Service Graph for Multi Destination Application O�oading

Such as application o�oading to the cloud that we explained in the previous chapter, for o�oading

onto several devices in the vicinity, the o�oading decision making phase could be done using an

application partitioning algorithm resulting to several partitions instead of two major parts for

remote and local execution. The number of these partitions is at least two for executing on the

82



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

mobile device itself and up to the number of discovered nearby devices where the mobile device

makes use of all neighbours for o�oading. Figure 5.5 shows a sample graph portioning for o�oading

onto three nearby devices.

Figure 5.5: Application partitioning for multi destination o�oading

Based on this partitioning, nodesa, c, f execute locally where nodeb executes on mobile device

A, node e and g execute on mobile deviceB and �nally mobile device C executes noded.

To be able to evaluate our proposed decision making algorithms also for multi destination

o�oading, we need to create an application service graph adaptable to the SP Problem. To this

end, instead of duplicating each node of the call graph, ACOMMA adds for each method several

nodes based on the number of discovered devices. In other words, it adds a new node to the

graph for executing each method on each device. The edges between the nodes represent method

invocations on the owner of that method. For instance in �gure 5.6, for o�oading onto mobile

devicesA, B and C, three nodes are created formethod 2 which is the only o�oadable method in

the original call graph.

Passing through path1, path2 and path3 makes themethod 2 to be executed on mobile device

A, B and C respectively.

ACOMMA creates such a graph automatically at runtime after discovering nearby devices.

The created graph remains static during one run of an application and is regenerated for the next

executions. The following section describes how ACOMMA applies an ACO to �nd the shortest

83



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

Figure 5.6: Call graph modi�cation for multi destination o�oading

path in this graph between the start and end points of the application.

5.2.1.2 Applying ACO for Multi Destination Decision Making

The ACO algorithm that we proposed for single destination o�oading could be used also for multi

destination o�oading. In fact, this algorithm is not aware of the destinations and just searches for

the shortest path with regard to the weights of the edges. These weights correspond to the execution

time and CPU usage of a method execution on di�erent devices. This algorithm is applicable for

di�erent graph sizes.

Whenever a method call happens, the o�oading manager runs the ACO algorithm to decide

where to execute this method. It randomly selects one of the paths from the non-dominated

path set found by the optimization algorithm. The weights of the edges in the graph are all zero

at initialization phase. After each method execution, the weight of the correspondent edges are

updated with real values. These updates make the ACO algorithm result in more realistic non-

dominated path set.

To make decisions that are adaptable to changing environments, ACOMMA runs the ACO

algorithm on the total call graph for each method call. This helps the o�oading manager to take

into account environmental changes specially the disappearance of nearby devices while o�oading.

Although, the service graph remains static during an application run, several executions of the

ACO during one application execution, make ACOMMA be noti�ed about devices that are no

84



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

longer available. When the o�oading manager sends an execution request to a device that already

left the SPC, it will not receive any response before expected time out. So it updates the weight

of the edge leading to a failed method on the left device node into a large value and re execute its

optimization algorithm. In the new execution, the left device will not be selected because of the

big weight of its related edges. Using the ACO, a mobile device could be aware of leaving devices

during o�oading even with its static graph, although it could not bene�t from the new arriving

devices during one application run.

In our proposed approach, the service graph size depends on the number of nearby devices. Any

increase in the size of the SPC enhances the graph size and consequently more space is required

for storing it. In addition, the bigger the graph size the more execution time of ACO algorithm

which decrease ACOMMA's e�ciency. Despite this limitation, we apply the ACO algorithm as a

solution for the Shortest Path Problem for both single and multi destination o�oading in order to

be able to verify its e�ciency in di�erent situations. In addition, concerning the policy and privacy

issues making mobile devices to collaborate is easier in domestic areas where the number of mobile

devices and consequently the graph size is not so large that it would impose considerable overhead.

A mobile device could bene�t from both single and multiple destination o�oadings depending on

the context.

Overcoming this issue is possible by using a new approach such as task assignment or load

sharing solutions; however, we could not �nd any evidence that shows the better performance of

such algorithms compared with our proposed solution. Modifying the current approach could be

also helpful, for instance we could consider some limitations for the destination devices in terms of

their distance to o�oading source or their total number. Another possible modi�cation is making

a two phase o�oading decision making. In this case, the SPC is divided into smaller sub-clouds

where, in the �rst o�oading phase, the o�oading manager decides for o�oading to these small

clouds instead of mobile devices, and in the second phase the header of each sub-cloud decides

for execution of this method on one of its member devices. Using this two-phase decision making,

mobile devices, in addition to share their resources, assume a part of the decision making cost.

Another solution is making learning based decisions while devices collaborate in term of decision

cache sharing. The usage of already made decisions prevents the reproduction of graphs and the

execution of the ACO algorithm for every decision.

85



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

In the following, we explain how ACOMMA makes cache sharing between nearby mobile devices

possible.

5.2.2 Collaboration-Based Decision Sharing in Application O�oading

The cooperation between mobile devices is used in many researches to achieve goals such as speech

recognition [26], face detection and photography task [46], sharing Internet access [39] and data

o�oading [36].This cooperative working named collaborating or crowdsourcing.

We proposed mobile devices, in addition to share their resources and work load, to also share

their decision cache that make collaborative decision making possible. This is an extension of

the learning based decision making where mobile devices could apply the same decision as their

neighbour in similar situation.

Although learning is one of the primary functions of dynamic systems such as sensor networks

and mobile networks, it is mainly used for the establishment of a network with all its connections

and the adaptation to the environment, but not for collaborative decision making. A handful of

researches has been conducted on the usage of learning in o�oading on a SPC. For example, [118]

considers mobile devices as a series of experts temporarily coupled in a particular time and place

in a way that the recent action of a mobile device in
uences its next state and the machines that

are connected to it. Having a state, the experts available at the time should get together to pick

the best available action. Therefore, online learning algorithms have been used in this framework.

Using ACOMMA, nearby mobile devices could share their decision's cache that includes the

history of o�oading decisions made for each application run. Sharing these caches is a type of

training that makes mobile devices to know where to execute an application method in di�erent

situations without running its ACO Algorithm. The next chapter explains how the o�oading

manager of ACOMMA bene�ts from this information to o�oad application methods.

5.2.2.1 Collaborative Decision Sharing

ACOMMA makes use of the already introduced learning based decision making algorithm for

mimetic collaborative decision making where the decision engine �nds a solution in the cache using

a SM algorithm. In fact, in both cases it decide to execute a method either locally on mobile device

or remotely on a DS based on its cache. The important advantages of collaborative decision making

86



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

is bene�ting from the experiences of the others while o�oading. In a highly changing environment,

it is helpful to have a richer cache for di�erent situations. It may prevent to make several tries and

errors in such a changing environment to �nd new solutions adapted to current changes.

Since mobile devices vary in terms of hardware characteristics and maybe contextual conditions

and their decisions depend on their status at o�oading time, adding contextual information to the

cache could help to �nding more adaptable decisions. For example, to take into account the amount

of battery while o�oading as well as the network status, we could de�ne three di�erent ranges for

each parameters as follows:

Battery: low-battery , medium-battery , high-battery

Network speed: low-speed, medium-speed, high-speed

These intervals could have any prede�ned border.

The execution trail of the application in addition to this contextual information creates more

realistic cache in which SM could �nd more adapted decisions. Figure 5.7 illustrates such a complete

cache for making collaborative decisions using a SM algorithm.

Figure 5.7: A decision cache composed of decision trails and contextual information

While the same SM algorithm is used for both individual and collaborative learning based

o�oading decision making, the performance of collaborative decision making is extremely dependent

on the cache.

How the cache gets �lled, managed and emptied are the important points that we explain in

the next section.

87



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

5.2.2.2 Decision Cache Management

Cache request

As the �rst step, the mobile device needs to access the cache of its neighbours assuming that,

with the help of the discovery service, it already knows them. To this end, there are three di�erent

possible ways:

� On demand: In this method, a mobile device broadcasts a cache request to the nearby devices

whenever it needs. In response, it will have cache if there is any in its neighbourhood.

� Periodically: In this method, each mobile device periodically sends its decision cache to its

neighbours without concern to their requirement. They may keep or delete this information

based on their needs.

� On changed: In this way, a mobile device sends its decision cache whenever it is modi�ed

either by adding a new execution trail or deleting old ones.

ACOMMA applies on changed cache broadcasting for decision sharing.

Cache merge

Depending on the number of devices in its vicinity a mobile device may receive several number

of decision caches that should be merged to be ready for use for decision making. Some simple

merging policies are listed here:

� Simple merge: in this way all received pieces of information are added to the local cache one

by one, that may cause large local cache size related to the number of received data. This

merging method is suitable for small groups of mobile devices.

� Unique merge: In this method, a local cache just keeps one copy of each application execution

trail even if there exists several copies of it in the received data.

� Weighted merge: In this method, a local cache keeps one copy of each application execution

trail while it attributing a weight that shows the number of times that the application executed

this way. This may help the decision engine to learn more appropriate and useful execution

trails while more occurrences means more e�ciency of this selected execution trail.

88



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

� Categorized merge: Since the origin of this received cache are mobile devices with di�erent

hardware characteristics that made decisions in di�erent contexts, the already taken decision

may be kept in a categorized way that shows each execution trail category that is suitable for

such a context. Using this categorized cache, the decision engine could start searching for a

category that is more similar to the current situation of the mobile device

While testing a collaborative decision making with a few number of mobile devices, we apply

simple merge for creating the local cache.

Cache invalidation

To avoid the cache size to augment exponentially we need to apply some invalidation policies

to delete its data and keep it in a limited size. Some of these policies are as follows:

� Periodic invalidation: the cache is cleared with a prede�ned period of time using this invali-

dation policy

� On changed invalidation: since the received caches are those of the devices in the the current

state of mobile device, while mobile device changes its place, start working between a new

group of devices, so it is better to clear its cache and starts working with new information

related to new neighbours.

� Categorized invalidation: it is possible that the mobile device keeps decisions that are more

related to its current status, for example when having a fully charged battery, mobile devices

could delete decisions taken in low battery situations since they may be less useful to lead to

make e�cient o�oading decision.

Applying di�erent combinations of these policies for cache management may greatly change the

performance of ACOMMA for o�oading using collaborative decision making.

In the next chapter, we evaluate ACOMMA for performing single and multiple destination

o�oading as well as individual and collaborative decision making.

89



CHAPTER 5. COLLABORATIVE APPLICATION OFFLOADING

90



Chapter 6

Implementation and Evaluation of

ACOMMA

6.1 Validation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.2 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.3 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Evaluation of Individual Decision Making for Single Destination O�oading 94

6.2.1.1 Ant Colony Optimization Performance . . . . . . . . . . . . . . . 95
6.2.1.2 String Matching Performance . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Evaluation of Collaborative O�oading . . . . . . . . . . . . . . . . . . . . . 101
6.2.2.1 Decision Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2.2 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

This chapter starts with details of ACOMMA's implementation as well as its testbed and bench-

marks and continues with ACOMMA's evaluation. We study the performance of ACOMMA in dif-

ferent scenarios for making single/collaborative o�oading decisions to o�oad onto single/multiple

destinations. The results of several tests and their analysis are presented in this chapter.

6.1 Validation Approach

6.1.1 Applications

To evaluate the design of ACOMMA, we started with four simple micro benchmarks and extend

our tests with two macro benchmarks that are representative of popular applications. As micro

91



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

benchmarks, we developed simple mathematical functions as follows:

� Fibonacci sequence: It can be represented as shown below

a0 = 1 ; a1 = 1

an = an� 1 + an� 2

This function gets an integer number as input and calculates its Fibonacci sequence.

� Determinant: It generally can be calculated by the following formula

det(M n� n ) =
n� 1X

i =0

Minor 0;i

Minor 0;i = ( � 1)i � M 0;i � det(MinorMatrix 0;i )

where Minor matrix i, j is a matrix of size (n-1) which is a copy of matrix M where row i

and column j are removed. This function gets the size of the matrix in terms of numbers of

columns and rows and generates a random square matrix for calculating its Determinant.

� Integral function: It is calculated using the following formula

Z b

a
f (x) dx =

(b� a)=hX

i =0

h � f (a + i � h)

for the function of:

f (x) =
1

jcos(x) + sin (x)j

where the function input represents the intervals.

� Matrix Multiplication: It applies on two randomly generated square matrices in the following

way

R = A � B

Ri;j =
nX

k=0

A i;k � Bk;j

Same as Determinant, this function gets the size of matrix as input.

92



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Although these functions are short and simple, they are di�erent enough to allow us to do vari-

ety of tests in a �rst step. Fibonacci and matrix multiplications are both composed of a few number

of methods but with di�erent mathematical complexities. Fibonacci repeats a basic mathematical

operation many times where matrix multiplications do some more complicated calculations. De-

terminant and integrate have some more number of methods that could be o�oaded where the

Determinant works recursively. Varying the inputs of each of these functions leads to interesting

results.

We use macro benchmarks as examples of computation-intensive and interactive applications

that are more currently used. We consider chess game and image processing applications and

instead of a complete application, we implement their core algorithms. The number of o�oadable

methods in these benchmarks are much higher than for the micro benchmarks. Micro benchmarks

are composed of 1 upto 5 methods while the average number of methods is 28 in macro benchmarks.

The used algorithms are:

� The Monte Carlo algorithm is a randomized algorithm whose running time is deterministic,

but whose output may be incorrect with a certain (typically small) probability [11]. This

algorithm could be used for the choice of the next move in a chess game. Our developed

algorithms make search in a tree and as input they get the number of nodes to start and the

depth of search.

� The Face Recognition algorithm tries to match a given face image to a set of given face images

using a number of eigenfaces [3] and is representative of image processing applications. The

size of the input image in pixels and the number of searching images to match are the inputs

of this algorithm.

These applications are all installed and run on Android smartphones and their service graph is

created by ACOMMA at runtime.

6.1.2 Experimental Platform

We used a MacBook Pro with 8 GB of memory, a 250 GB hard disk and a 2,53 GHz Intel processor

dual-core as our remote server. This server has OS X 10.9.5 Mavericks as operating system.

93



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

We used two di�erent clients to evaluate the decision making process, the �rst one is a Samsung

Galaxy SII with 1,2 GHz dual-core processor and 2GB of memory running Android version 4.1.2

(Jelly Bean). The second is Asus Google Nexus 7 Tablette with quad-core 1.2 GHz processor and

1GB of memory running Android version 5.1.1 (Lollipop).

6.1.3 Success Criteria

To successfully validate ACOMMA, we need to show the following things:

� ACOMMA is able to make a correct and e�cient o�oading decision to improve application

performance by selecting an appropriate execution path on the application service graph using

the ACO algorithm. It may also ameliorate its performance while making o�oading decisions

bene�ting from its SM algorithm.

� ACOMMA is able to discover the neighbours of a mobile device and bene�ts from their

decision cache to make o�oading decisions.

� ACOMMA is able to correctly take multi destination o�oading decisions to execute resource

intensive application methods onto the nearby devices in an e�cient way in the absence of

server/cloud.

The validation of these three parts will justify our claim that ACOMMA is valuable.

6.2 Evaluation

6.2.1 Evaluation of Individual Decision Making for Single Destination O�oad-

ing

To evaluate the decision making process of ACOMMA, we ran several tests on each benchmark and

we compared the total execution time and CPU usage of an application execution when it executes

locally on mobile devices with its execution when o�oaded by ACOMMA. To be able to compare

the o�oading gain in di�erent execution complexities we ran each application with di�erent inputs

25 times for each. Inputs of micro and macro benchmarks are listed in table 6.1.

94



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Fibonacci Multiplication Determinant Integrate Face Recognition Monte Carlo
Serie 1 500 50x50 2 1.0-1.5 100000x1 10-5
Serie 2 1000 60x60 3 1.0-2.0 100000x2 20-7
Serie 3 1500 70x70 4 1.0-2.5 100000x3 30-9
Serie 4 2500 80x80 5 1.0-3.0 100000x4 40-11

Table 6.1: Test inputs for individual decision making using ACO

In the following, we evaluate the performance of ACOMMA for taking individual decisions

using ACO and SM algorithms.

6.2.1.1 Ant Colony Optimization Performance

Since the execution time and CPU usage of application methods are decision making criteria that

ACO uses for graph weights while solving the BSP problem, we show the gain in terms of these

parameters while o�oading.

Execution Time

Figure 6.1 shows the total execution time of local execution and o�oading by ACO for dif-

ferent benchmarks running on Galaxy SII. The results of the four series of inputs are illustrated

continuously.

As it shown in this �gure, however Fibonacci and Matrix multiplications gains in terms of

execution time using ACO, the gain of Determinant and Integral is much higher. Fibonacci and

matrix multiplication use simple calculations that do not consume considerable resources. In addi-

tion their consumption growth rate is very small. So o�oading is less e�cient for them compared

with more consuming applications and even in some runs, o�oading execution take more time than

local execution. Contrariwise, Integral and Matrix Determinant are consuming benchmarks with

a considerable consumption growth rate as input changing peaks are visible on the �gures. Using

ACO the most consuming parts of the application execute on the server and while the execution

time of these parts with di�erent inputs on the server is almost the same, the total execution time

using o�oading is in a same range while the local execution time grows exponentially with more

consuming inputs. In fact, the more the application is resource consuming the more we gain using

o�oading.

95



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Figure 6.1: Local and ACO o�oading execution time of micro benchmarks on Galaxy SII

The successful runs are the runs with their o�oading execution time less than their local

execution time, in other word, a run is successful if it gains in terms of execution time while

o�oading. The average success rate of Fibonacci and Matrix multiplication is 62% and %59.5

respectively while they augment to 94% and 96% for Determinant and Integral.

The peaks in the these �gures where the red line exceeds the blue line show the unsuccessful

test with much higher number of ACO executions than normal. The result of the same tests on

Google Nexus 7 Tablette that are shown in �gure 6.3 are also conform to the above mentioned

results.

After testing ACO on micro benchmarks, we ran tests again for di�erent inputs of Monte carlo

and Face recognition algorithms again for 25 runs. Since these algorithms are resource-consuming

96



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Figure 6.2: Local and ACO o�oading execution time of micro benchmarks on Google Nexus 7
Tablette

ones, ACO works with an acceptable error rate for them as expected. The results of these executions

on Galaxy SII is shown in �gure 6.3.

The results show that the gain in terms of time for Face recognition and Monte carlo is less than

for Integral and Determinant. These applications are all consuming but Face recognition and Monte

carlo have a larger service graph that needs more time to �nd non dominated solutions. It seems

that the e�ciency of ACO depends on the graph complexity as well as the resource consumption

of its nodes.

However ACO is not always e�cient even for Integral and Determinant calculations and some

o�oading execution time is higher than the local execution time because ACO checks more paths to

�nd a solution, it works well in general with a signi�cant success rate. The time gained using ACO

97



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Figure 6.3: Local and ACO o�oading execution time of macro benchmarks on Galaxy SII

is so great that ACOMMAS's overhead is negligible specially for more consuming runs. Figure 6.4

gives examples of ACOMMAS's overhead in terms of execution time compared with the time gained

using ACO-based o�oading for successful runs of Determinant and Integral.

Figure 6.4: ACOMMA's overhead running ACO for successful runs of Determinant and Integral

CPU Usage

Coming to CPU usage as the second decision making criterion gives us almost the same results

since ACO focuses on optimizing both of them. The unit of CPU usage measurement is the CPU

cycle that is prepared by OS functions and is an integer number. So for methods that consume less

than a cycle it maybe 0 or 1. On the same test runs, we evaluate the gain of CPU and again we

have almost same results on both device models. Figures 6.5 is an example that shows the CPU

usage of four micro benchmarks executed on Galaxy SII.

98



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Figure 6.5: Local and ACO o�oading CPU usage of micro benchmarks on Google Nexus 7 Tablette

Same as execution time evaluation, the ACO algorithm is less e�cient for Fibonacci and Ma-

trix multiplication compared with Determinant and Integral. Running the same tests on macro

benchmarks result in the same conclusion.

As a summary of this section, we prepared tables that show the success rate, time gain and

CPU gain of ACO while applying on di�erent applications running on di�erent devices. They also

show the growth rate of the gain for larger inputs in Integral an Determinant. Table 6.3 and 6.2

are corresponding to the results of macro and micro benchmarks respectively.

Concerning these data we conclude that ACO is highly evaluated in gaining time and CPU

usage with an average success rate of 77.87%.

99



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Fibonacci Multiplication Determinant Integrate
Success Time CPU Success Time CPU Success Time CPU Success Time CPU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Galaxy SII Serie 1 60 40.54 20 48 7.6 -16.66 72 31.43 66.67 96 93.97 86.55

Serie 2 64 29.7 18.75 60 11.93 0 100 66.20 93.73 96 96.99 99.49
Serie 3 52 27.25 15.38 52 13.06 0 100 92.82 97.36 96 97.78 99.55
Serie 4 56 31.08 7.14 52 8.37 15.38 100 98.23 99.54 96 98.59 99.81

Nexus 7 Tablette Serie 1 76 13.34 10.53 48 9.74 -8.33 88 32.88 30.30 96 96.84 98.44
Serie 2 52 18.98 23.08 44 7.03 0 96 83.78 82.97 96 98.39 98.65
Serie 3 80 24.38 53.67 56 4.30 -7.14 96 96.23 98.53 96 98.85 99.18
Serie 4 56 13.23 13.69 48 3.72 8.33 100 98.86 99.30 96 99.15 99.55

Table 6.2: Summary of individual decision making using ACO on micro benchmarks

Face Recognition MonteCarlo
Success Time CPU Success Time CPU

(%) (%) (%) (%) (%) (%)
Galaxy SII Serie 1 100 83.92 81.43 96 81.66 99.74

Serie 2 100 87.89 60.47 100 83.72 97.74
Serie 3 100 88.52 75.23 96 94.68 99.92
Serie 4 100 89.98 77.89 96 96.05 99.88

Nexus 7 Tablette Serie 1 96 83.74 89.68 96 95.28 96.73
Serie 2 92 82.09 91.71 100 94.39 97.36
Serie 3 100 80.77 84.82 96 98.64 99.15
Serie 4 96 78.40 75.42 96 99.01 99.34

Table 6.3: Summary of individual decision making using ACO on macro benchmarks

6.2.1.2 String Matching Performance

Although the overhead of ACO is negligible compared to its gain in terms of execution time, we

apply a simple SM algorithm to verify if passing through the paths that are already determined by

ACO in previous runs is bene�cial. To this end, the already passed paths are saved in a cache. In

the next runs, ACOMMA searches for matches in the cache �rstly, if not found, it runs ACO. We

used a naive SM function to �nd matches in the cache implemented in Java/Android.

For saving the paths in the cache we used a simple policy that just adds new paths at the end

of the cache. ACOMMA searches a match in this cache and takes the �rst found one. We have

tested SM without cache invalidation and with it. We applied periodically cache invalidation based

on prede�ned run numbers.

We have tested SM on benchmarks whose performance ameliorates using the ACO algorithm.

The average gain of SM with and without cache invalidation on both devices and for 100 runs, 25

for each series of inputs, is shown is table 6.4.

The results show that by using SM, the total execution time is only slightly improved. There is

also no big di�erences between SM improvements with and without cache invalidation. They may

happen for more complex applications with larger service graphs that imply a larger cache in terms

100



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Integrate Determinant Face Recognition MonteCarlo
Without Periodic Without Periodic Without Periodic Without Periodic

cache cache cache cache cache cache cache cache
invalidation reset invalidation reset invalidation reset invalidation reset

(%) (%) (%) (%) (%) (%) (%) (%)
Galaxy S2 1.89 1.81 2.16 2.02 2.93 3.14 3.01 3.21
Tablette 1.72 1.80 1.83 1.79 2.91 2.89 2.86 2.91

Table 6.4: Execution time gained bye SM algorithm compared with ACO

of both path size and number of paths.

For periodic cache invalidation, we try 5 and 10 as run step to reset the cache and the results

show that it does not change much. The results also show that for Face recognition and Monte

carlo algorithms, SM works better than Integral and Matrix Determinant. We could conclude that

SM is more adapted for the applications with more methods and more complicated service graphs

so that ACO needs more time to evaluate a suitable path in it. In such complex applications, cache

invalidation may also be more useful than for simple applications.

Based on the results shown in this section, we conclude that individual o�oading decision

making process of ACOMMA, either by ACO or SM algorithms, leads to a performance augmenta-

tion of resource constrained applications in terms of execution time and CPU usage, by o�oading

consuming methods onto a server.

6.2.2 Evaluation of Collaborative O�oading

In this section, we focus on evaluating ACOMMA when the mobile device is a member of a Sponta-

neous Proximity Cloud that collaborates with other devices for either resource or decision sharing.

To this end as the �rst step, the mobile device should be able to discover its neighbours and commu-

nicate with them. We developed a decentralized discovery protocol using the services that Android

o�ered. In this discovery method, all mobile devices register their services and port numbers re-

lated to them and then broadcast it. The device that needs to know its neighbours simply asks

for received services and in this way it could start communication with nearby devices using the

REST/HTTP protocol. Figure 6.6 shows a schema of 6 mobile devices that discover each other.

After the discovery phase, the mobile device could execute o�oadable parts of an application on

its neighbours or get their decision cache. In the following, we show the results of the collaboration

phase.

101



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Figure 6.6: Nearby device discovery

6.2.2.1 Decision Sharing

To share the decision cache between mobile devices, we apply a mimetic policy where each device

sends its cache to its neighbours once it changes. The received cache is merged with the old one

by deleting duplicate paths and taking their number as the path weight. The paths with higher

weight have more chances to be selected by the SM algorithm.

We have tested decision sharing with 3 Galaxy SII and with Determinant, Integral, Face detec-

tion and Mont carlo as benchmarks. We have ran each benchmark 10 times and for two series of

inputs as follows (table 6.5).

Determinant Integrate Face Recognition Monte Carlo
Serie 1 2 1.0-1.5 100000x1 10-5
Serie 2 3 1.0-2.0 100000x2 20-7

Table 6.5: Test inputs for collaborative decision sharing using ACO

In our scenario, a device has the role of source and two others are destinations. The source device

runs an application in ACO-Collaboration mode that performs o�oading using ACO algorithms

102



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Benchmark Determinant Integrate Face Recognition MonteCarlo
Gain (%) 25.30 33.60 56.4 60.67

Table 6.6: Execution time gained by SM using collaborative cache compared with local cache

and saves discovered paths in its cache. Once its cache changed, it sends a copy of the cache to its

neighbours. We ran an application 10 times on source devices resulting in a cache with a maximum

size of 10 rows. When a source device has �nished its execution, we ran the same application on

destination devices in Collaboration mode that take decisions using the received cache and by the

help of the SM algorithm.

Figure 6.7: Execution time of application o�oading, using SM by local or collaborative cache

The results show that applying SM for decision making based on collaborative cache is more

e�cient than making learning based decisions based on a local cache. Figure 6.7 shows a comparison

of the execution time of the decision making process using local or collaborative cache. It seems

that the gain in terms of time also depends on the graph size. Since Monte carlo implies more

methods and a larger service graph as result, using a richer cache to �nd appropriate running

solutions is more e�cient for this benchmark. The table 6.6 shows how much an application gains

in execution time while using collaborative cache compared with local cache.

103



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

Methods Method A Method B Method C Method D Method E
O�oading rate(%) 96 % 0 % 0 % 51 % 16 %

Devices d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4
O�oading portion(%) 32 29 23 16 0 0 0 0 0 0 0 0 36 31 18 15 28 29 26 17

Table 6.7: Execution trace of Determinant for multi destination o�oading

Methods Method A Method B Method C Method D
O�oading rate(%) 96 % 98 % 100 % 0 %

Devices d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4
O�oading portion(%) 36 28 18 18 27 26 24 23 26 26 30 18 0 0 0 0

Table 6.8: Execution trace of Integral for multi destination o�oading

6.2.2.2 Resource Sharing

It is obvious that using the cloud as o�oading destination is more e�cient compared with o�oad-

ing onto small mobile devices with limited resources. One of the main interests of using SPC for

o�oading is when the DS is not accessible for any reason. ACOMMA makes multi destination

o�oading possible using its ACO algorithm. In this section, we evaluate its dispatching between

devices and make a comparison of the execution time for local execution, single destination and

multi destination o�oading. To evaluate its e�ciency, we apply a scenario where 2 Galaxy SII

and 3 Google Nexus 7 Tablettes create a SPC where a Galaxy SII makes o�oading onto its neigh-

bours while running Integral and Determinant as benchmarks. We used these benchmarks since

ACOMMA works well for more consuming applications and the small number of their methods

helps us to trace their execution.

As expected using SPC, o�oading destination leads to less gain in terms of execution time as

compared with o�oading onto the cloud. The application execution time is also bigger than local

execution time since the destination devices have the same or less processing power as the o�oading

source. In addition, the time of sending and receiving data is added to local execution time while

o�oading. The SPC is useful when a DC is not accessible and the mobile device has not enough

resources for executing its applications. In this case, ACOMMA correctly selects destinations for

o�oading onto appropriate devices.

Tables 6.7 and 6.8 show the o�oading trace for Determinant and Integrate respectively while

using four nearby devices as destinations. In these tables, d1, d2, d3 and d4 are o�oading destina-

tion devices where the �rst three are Google Nexsus Tablettes and the last one is Samsung Galaxy

SII. The �rst raw shows how much a method is o�oaded during 10 runs and the second raw shows

the contribution of each device. For example as shown in table 6.7, method A gets o�oaded in

104



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

96% of runs that between them the execution share of d1, d2, d3 and d4 are 32%, 29%, 23% and

16% respectively. It means that, for example, in 23% of runs, method A o�oaded onto device 3. In

all traces, the tablettes have almost the same portion of execution which is more than the portion

of Galaxy SII and it is normal as all tablettes have the same hardware characteristics and are more

powerful than Galaxy SII.

These results show that ACOMMA is greatly e�cient to make multi destination o�oading. In

fact, based on all the above mentioned results, ACOMMA is evaluated as highly e�cient to make

dynamic o�oading decisions using ACO and SM to o�oad onto single and multiple destinations.

105



CHAPTER 6. IMPLEMENTATION AND EVALUATION OF ACOMMA

106



Chapter 7

Conclusion

7.1 Summary

The work presented in this thesis focuses on mobile application augmentation by o�oading on

remote resources in the context of MCC. Current improvement in mobile device usage makes them

more than a luxury but an essential part of human life that may connect every thing as well as

users. The large range of the capabilities of these always connected devices in addition to their

physical proximity to every day objects let them to be considered as go-between of users and their

environmental objects that currently could think, feel, and talk by the virtue of embedded sen-

sors. Although improvements in hardware platforms of mobile devices, make them almost powerful

enough for supporting today's complicated and resource consuming applications, the battery is

still a challenging point that maybe dealt with software solutions. In addition, the mobile device

needs more resources as it is not only a personal device but also a communication port to the IoT.

Trends to overcome the shortages of mobile devices from one hand, and the considerable success of

CC on the other hand, lead to the emergence of MCC, a new paradigm that focuses on bene�ting

from cloud resources to overcome mobile device limitations through application o�oading. In this

scenario, the mobile device cloud be considered as a gateway that bridge IoT and CC.

In this thesis, we introduced the concept of SPC as a physically proximity cloud that could

be used as an o�oading destination instead of a DS whenever it is not accessible or very costly

in terms of money or communication time. SPC is a self-construct/self-destroy cloud composed of

nearby mobile devices that pool their resources and may join/leave the cloud irregularly.

107



CHAPTER 7. CONCLUSION

Deciding for what, where and how to o�oad in highly changing environments is the main focus

of any o�oading middleware and several researches have tried to answer at least one of them.

In this thesis, we introduce ACOMMA, an Ant-inspired Collaborative O�oading Middleware

for Mobile Applications that is equipped with several characteristics to deal with o�oading chal-

lenges such as mobility and heterogeneity. Since mobile application o�oading is a process between

mobile device and the clouds, its challenges come out from both CC and MC as well as the commu-

nication challenges between them. Dealing with the heterogeneity of mobile devices, the open and

service based architecture of ACOMMA makes it usable for any device that could support service

communications using the standard protocol HTPP/REST. This open architecture also permits the

mobile device to communicate easily with the IoT and SPC without any special API requirement.

In such a service based architecture, a mobile application is modelled as a service graph where its

nodes and vertices represent services and service invocations respectively. This graph is generated

by ACOMMA itself and there is no need for user intervention for code modi�cation or the addition

of annotations.

We consider an application partitioning algorithm to determine the o�oadable parts of an

application where the service graph breaks apart into two or several partitions that represent

di�erent execution platforms. To make more adaptive o�oading decisions, we proposed a �ne-

grained method-level application o�oading. The �ne granularity also makes it possible to o�oad

onto SPC as well as a DS while these tiny partitions are adapted to be executed on resource

constrained mobile devices in the vicinity.

In order to make adaptive o�oading decisions in highly changing environments, we proposed

bio-inspired algorithms and specially Bi-Objective ACO. Bi-objective decision making process of

ACOMMA makes this dynamic decision more adapted to the mobile context. Execution time and

CPU usage are the criteria that ACOMMA takes into account as decision making parameters that

also cover network speed and battery implicitly. The ACO algorithm searches for the SP between

the start and end points of the mobile application in the service graph where the selected nodes

show where to execute the corresponding service. In order to react appropriately to a changing

environment at runtime, ACOMMA applies ACO algorithm for each method call on the entire

application graph.

ACOMMA also supports multi destination o�oading that makes the collaboration of mobile

108



CHAPTER 7. CONCLUSION

devices possible, while pro�ting from the resources of one another through o�oading. By the help

of its discovery service, ACOMMA gets acquainted with its nearby devices and applies the same

ACO algorithm onto a modi�ed version of the service graph to �nd the SP that determines where

to execute o�oadable nodes among several devices.

To avoid running ACO for any application o�oading request, we proposed a learning based

decision making algorithm that searches an already taken decision in similar situation in previous

execution trails and applies it on the current o�oading process. To this end, ACOMMA saves

the execution trail of each run in a decision cache and uses a SM algorithm to search into this

cache if required. This learning based decision making could be done in a collaborative way while

nearby devices cooperate to create a collaborative cache which could be richer than a local one.

In this collaborative decision making process, ACOMMA makes mimetic decisions based on the

collaborative cache.

To evaluate ACOMMA, we developed a prototype and tested o�oading e�ciency for di�erent

applications and di�erent entries. The results show that ACOMMA works greatly for single des-

tination o�oading of the applications that are more consuming and augment greatly application

performance in terms of execution time and CPU usage. The more the application is consuming

the more performance is augmented. This gain is high enough to make the overhead of ACOMMA

negligible. The results also show that ACOMMA dispatches correctly the o�oadable parts between

SPC members based on their processing power while doing multi destination o�oading. Apply-

ing SM algorithm to make learning based decisions is also slightly ameliorating the performance

compared with ACO.

7.2 Short and Long Term Perspectives

Among our perspectives in the short and medium terms, we are interested in enlarging our evalua-

tion with o�oading more complex applications and specially multi-threads ones using ACOMMA

and with more learning based decision making policies taking into account the context.

Although the results show that ACOMMA works greatly for more complex and more consuming

applications, we do not have any threshold for this augmentation. Since the size of the call graph

grows for bigger applications and in consequent there is much more paths to be traversed by

ants, there maybe a limit above while the overhead of the decision making process dominates the

109



CHAPTER 7. CONCLUSION

o�oading gain. Supporting multi thread o�oading is also a feature that we are interested in adding

to ACOMMA to make simultaneous o�oadings of several methods to single/multiple destination(s)

possible.

While o�oading more complex applications with a large service graph, there is a chance that

performance augments much more using SM algorithm as traversing a large graph takes much more

time than searching in a cache. In this case, there is much more paths with larger size in the cache

emphasizing the importance of advanced policies for cache invalidation as well as cache merging

for collaborative cache creation. Considering the context while taking learning based o�oading

decisions may also improve the performance of learning based decision making.

We are also interested in changing decision making criteria and also evaluate ACOMMA's

performance in terms of energy consumption.

Coming to collaborative multi destination o�oading we would like to test with bigger SPC with

more devices to �nd the threshold of ACOMMA's success in this scenario.

As mobile devices are going to be more and more powerful even in terms of battery lifetime,

the application o�oading takes importance where mobile device plays the role of IoT gateway. The

�rst important long term perspective of our work is testing ACOMMA while o�oading received

data / requests of daily object in ambient intelligence onto other nearby devices or a remote cloud.

The way that it communicates with the objects and manages the o�oading process to make pro�t

of every things as well as itself through o�oading are the challenging points of this idea.

Coming to collaboration of mobile devices and also of objects, the mobility may cause problems

as there is no guarantee that a device stays available until the end of its dedicated task and it

is more important when a mobile device takes the responsibility of o�oading a group of objects.

Dealing with this issue by simulating movement patterns of devices and making an o�oading hand

over is another long term perspective of this work. This is more feasible in small and closed spaces

with a limited number of devices and objects.

In public areas, we place our interest on making mobile devices to collaborate to decision sharing

for common parts of di�erent applications. As di�erent applications could have some common

features so that their previous execution trail could be shared to help others while making o�oading

decisions, there may be some common applications that are used in di�erent ways by di�erent users.

We are interested in taking into account these di�erences while making collaborative cache as well

110



CHAPTER 7. CONCLUSION

as implementing collaborative decision making by applying algorithms such as consensus. We are

also interested in applying some incentive algorithms to motivate users to accept collaboration in

public areas.

111



CHAPTER 7. CONCLUSION

112



Publications

National Conferences

� R. Golchay, F. Le Mou•el, J. Ponge, and N. Stouls. Les smartphones comme passerelle de ser-

vices: peuvent-ils relier l'Internet des choses (IoT) et la virtualisation dans les nuages (Cloud)?

In Actes de la Conf�erence d'informatique en Parall�elisme, Architecture et Syst�emes (Com-

PAS'2013) - Conf�erence Fran�caise en Syst�emes d'Exploitation (CFSE'9), Grenoble, France,

January 2013.

� R. Golchay, F. Le Mou•el, S. Fr�enot and J. Ponge. Towards Bridging IoT and Cloud Ser-

vices: Enabling Smartphones as Mobile and Autonomic Service Gateways, In Actes des 7�eme

Journ�ees Francophones de la Mobilit�e et Ubiquit�e (UbiMob'2011), pp.45-48, Toulouse, France,

June 2011.

Research Report

� R. Golchay, F. Le Mou•el, J. Ponge and N. Stouls. From Mobile Cloud Computing to Tangible

Cloud Computing: A Survey, Research Report INRIA CITI Lab, INSA Lyon, 2013.

113



CHAPTER 7. CONCLUSION

114



Bibliography

[1] Amazon elastic compute cloud (ec2).Available:http://www.amazon.com/ec2/ . [Online;

Accessed December 10th, 2011.].

[2] Dropbox. Available:https://www.dropbox.com/fr/ .

[3] Face recognition algorithm. Available:https://code.google.com/p/javafaces/ .

[4] Facebook.Available:http://facebook.com . [Online; Accessed November 26th, 2011.].

[5] Facebook for business. Available:https://www.facebook.com/business/a/

local-awareness-ads .

[6] Flickr. Available:http://flickr.com . [Online; Accessed December 26th, 2011.].

[7] Google app engine. Available:http://appengine.google.com . [Online; Accessed 15

November 2011].

[8] Google for mobile. Available:http://www.google.com/mobile/mail/ .

[9] Hadoop. Available:https://hadoop.apache.org/ .

[10] Microsoft azure. Available:http://www.windowsazure.com . [Online; Accessed April 10th,

2012.].

[11] Monte carlo algorithm. Available:https://en.wikipedia.org/wiki/

MonteCarloalgorithm .

[12] Opennebulu. Available:http://http://opennebula.org/ .

[13] Twitter. Available:https://twitter.com/twittermobile .

115



BIBLIOGRAPHY

[14] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya. Cloud-based augmentation

for mobile devices: Motivation, taxonomies, and open challenges.Communications Surveys

Tutorials, IEEE , 16(1):337{368, First 2014.

[15] Kassahun Adem, Caspar Ryan, and Ermyas Abebe. Crowdsourcing the cloud: Energy-aware

computational o�oading for pervasive community-based cloud computing. In Proceedings of

the International Conference on Parallel and Distributed Processing Techniques and Appli-

cations (PDPTA) , page 415. The Steering Committee of The World Congress in Computer

Science, Computer Engineering and Applied Computing (WorldComp), 2015.

[16] Tomi Ahonen. Household penetration rates for technology across the digital divide, 2011.

[17] Pelin Angin and Bharat Bhargava. An agent-based optimization framework for mobile-cloud

computing. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable

Applications (JoWUA) , 4(2):1 { 17, 2013.

[18] Jo ao Sousa and David Garlan. Aura: An architectural framework for user mobility in ubiq-

uitous computing environments. In Software Architecture: System Design, Development, and

Maintenance (Proceedings of the 3rd Working IEEE/IFIP Conference on Software Architec-

ture) , pages 29{43, Montreal, Canada, August 2002.

[19] Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen, and Hen-I Yang.

The case for cyber foraging. InProceedings of the 10th Workshop on ACM SIGOPS European

Workshop, EW 10, pages 87{92, New York, NY, USA, 2002. ACM.

[20] Rajesh Krishna Balan. Simplifying cyber foraging. School of Computer Science, Carnegie

Mellon University, 2006.

[21] Rajesh Krishna Balan, Mahadev Satyanarayanan, So Young Park, and Tadashi Okoshi.

Tactics-based remote execution for mobile computing. InProceedings of the 1st International

Conference on Mobile Systems, Applications and Services, MobiSys '03, pages 273{286, New

York, NY, USA, 2003. ACM.

[22] Soumya Banerjee, Indrajit Mukherjee, and P Mahanti. Cloud computing initiative using mod-

i�ed ant colony framework. World academy of science, engineering and technology, 56:221{

224, 2009.

116



BIBLIOGRAPHY

[23] Roberto Beraldi, Khalil Massri, Abderrahmen Mtibaa, and Hussein Alnuweiri. Towards

automating mobile cloud computing o�oading decisions: An experimental approach.

[24] R. Bialek, E. Jul, J.-G. Schneider, and Yan Jin. Partitioning of java applications to support

dynamic updates. In Software Engineering Conference, 2004. 11th Asia-Paci�c, pages 616{

623, Nov 2004.

[25] S Binitha and S Siva Sathya. A survey of bio inspired optimization algorithms. International

Journal of Soft Computing and Engineering, 2(2):137{151, 2012.

[26] Yu-Shuo Chang and Shih-Hao Hung. Developing collaborative applications with mobile cloud-

a case study of speech recognition.Journal of Internet Services and Information Security

(JISIS) , 1(1):18{36, 2011.

[27] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile agents: Are they a good

idea? In Jan Vitek and Christian Tschudin, editors, Mobile Object Systems Towards the

Programmable Internet, volume 1222 ofLecture Notes in Computer Science, pages 25{45.

Springer Berlin Heidelberg, 1997.

[28] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.

CloneCloud: Elastic execution between mobile device and cloud. InProc. of EuroSys '11,

pages 301{314, New York, NY, USA, 2011. ACM.

[29] Byung-Gon Chun and Petros Maniatis. Dynamically partitioning applications between weak

devices and clouds. InProceedings of the 1st ACM Workshop on Mobile Cloud Computing

&#38; Services: Social Networks and Beyond, MCS '10, pages 7:1{7:5, New York, NY, USA,

2010. ACM.

[30] Cisco. Cisco Visual Networking Index: Global Mobile Data Tra�c Forecast

Update. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white_paper_c11-520862.html , 2014. [Online; accessed

February 5, 2014].

[31] Jo~ao Manuel Coutinho-Rodrigues, Jo~ao CN Cl��maco, and John R Current. An interactive bi-

objective shortest path approach: searching for unsupported nondominated solutions. 1999.

117



BIBLIOGRAPHY

[32] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer

Chandra, and Paramvir Bahl. MAUI: Making smartphones last longer with code o�oad. In

Proc. of MobiSys '10, pages 49{62, New York, NY, USA, 2010. ACM.

[33] Y. Cao D. Kovachev and R. Klamma. Mobile cloud computing: a comparison of application

models. arXiv preprint arXiv:1107.4940 , 2011.

[34] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on large clusters.

Commun. ACM, 51(1):107{113, jan 2008.

[35] S. Deng, L. Huang, J. Taheri, and A.Y. Zomaya. Computation o�oading for service work-


ow in mobile cloud computing. Parallel and Distributed Systems, IEEE Transactions on,

PP(99):1{1, 2014.

[36] Aaron Yi Ding, Bo Han, Yu Xiao, Pan Hui, Aravind Srinivasan, Markku Kojo, and Sasu

Tarkoma. Enabling energy-aware collaborative mobile data o�oading for smartphones. In

Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2013 10th Annual IEEE

Communications Society Conference on, pages 487{495. IEEE, 2013.

[37] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud

computing: architecture, applications, and approaches.Wireless Communications and Mobile

Computing, 13(18):1587{1611, 2013.

[38] Manish Dixit, Nikita Upadhyay, and Sanjay Silakari. An exhaustive survey on nature inspired

optimization algorithms. International Journal of Software Engineering & Its Applications ,

9(4), 2015.

[39] Ngoc Do, Cheng-Hsin Hsu, and Nalini Venkatasubramanian. Crowdmac: a crowdsourcing

system for mobile access. InProceedings of the 13th International Middleware Conference,

pages 1{20. Springer-Verlag New York, Inc., 2012.

[40] Karl Doerner, WalterJ. Gutjahr, RichardF. Hartl, Christine Strauss, and Christian Stum-

mer. Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio

selection. Annals of Operations Research, 131(1-4):79{99, 2004.

118



BIBLIOGRAPHY

[41] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning approach to the

traveling salesman problem. Evolutionary Computation, IEEE Transactions on , 1(1):53{66,

Apr 1997.

[42] Zuochao Dou. Bene�ts of Utilizing an Edge Server(Cloudlet) in the MOCHA Architecture.

Master's thesis, SUniversity of Rochester,Rochester, New York, 2013.

[43] C. Doukas, Thomas Pliakas, and I. Maglogiannis. Mobile healthcare information management

utilizing cloud computing and android os. In Engineering in Medicine and Biology Society

(EMBC), 2010 Annual International Conference of the IEEE , pages 1037{1040, Aug 2010.

[44] Dave Durkee. Why cloud computing will never be free.Commun. ACM, 53(5):62{69, May

2010.

[45] Afnan Fahim, Abderrahmen Mtibaa, and Khaled A. Harras. Making the case for compu-

tational o�oading in mobile device clouds. In Proceedings of the 19th Annual International

Conference on Mobile Computing &#38; Networking, MobiCom '13, pages 203{205, New

York, NY, USA, 2013. ACM.

[46] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Honeybee: A programming frame-

work for mobile crowd computing. In Mobile and Ubiquitous Systems: Computing, Network-

ing, and Services, pages 224{236. Springer, 2013.

[47] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Mobile cloud computing: A sur-

vey. Future Generation Computer Systems, 29(1):84 { 106, 2013. Including Special section:

AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures.

[48] R. Ferzli and I. Khalife. Mobile cloud computing educational tool for image/video processing

algorithms. In Digital Signal Processing Workshop and IEEE Signal Processing Education

Workshop (DSP/SPE), 2011 IEEE, pages 529{533, Jan 2011.

[49] Jason Flinn, SoYoung Park, and M. Satyanarayanan. Balancing performance, energy, and

quality in pervasive computing. In Distributed Computing Systems, 2002. Proceedings. 22nd

International Conference on, pages 217{226, 2002.

119



BIBLIOGRAPHY

[50] Huber Flores and Satish Srirama. Adaptive code o�oading for mobile cloud applications:

Exploiting fuzzy sets and evidence-based learning. InProceeding of the Fourth ACM Work-

shop on Mobile Cloud Computing and Services, MCS '13, pages 9{16, New York, NY, USA,

2013. ACM.

[51] R. Frederking and R. D Brown. The pangloss-lite machine translation system. In2nd Conf.

of the Assoc. for Mach. Trans. in the Americas, pages 268{272, 1996.

[52] Bo Gao, Ligang He, Limin Liu, Kenli Li, and S.A. Jarvis. From mobiles to clouds: Devel-

oping energy-aware o�oading strategies for work
ows. In Grid Computing (GRID), 2012

ACM/IEEE 13th International Conference on , pages 139{146, Sept 2012.

[53] Keivan Ghoseiri and Behnam Nadjari. An ant colony optimization algorithm for the bi-

objective shortest path problem. Appl. Soft Comput., 10(4):1237{1246, September 2010.

[54] Ioana Giurgiu, Oriana Riva, and Gustavo Alonso. Dynamic software deployment from clouds

to mobile devices. InProceedings of the 13th International Middleware Conference, Middle-

ware '12, pages 394{414, New York, NY, USA, 2012. Springer-Verlag New York, Inc.

[55] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso. Calling the

cloud: Enabling mobile phones as interfaces to cloud applications. InProc. of Middleware

'09, volume 5896 ofLNCS, pages 83{102. Springer Berlin / Heidelberg, 2009.

[56] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos, Slobodan Matic, Bodhi Priyantha, and

Feng Zhao. Energy-optimal software partitioning in heterogeneous multiprocessor embedded

systems. InProceedings of the 45th Annual Design Automation Conference, DAC '08, pages

191{196, New York, NY, USA, 2008. ACM.

[57] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z. Morley Mao, and Xu Chen. Comet:

Code o�oad by migrating execution transparently. In Proceedings of the 10th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI'12, pages 93{106, Berkeley,

CA, USA, 2012. USENIX Association.

[58] Hatem Hamad, Motaz Saad, and Ramzi Abed. Performance evaluation of restful web services

for mobile devices. Int. Arab J. e-Technol. , 1(3):72{78, 2010.

120



BIBLIOGRAPHY

[59] Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim Luo. Mobicloud: Building secure cloud

framework for mobile computing and communication. InService Oriented System Engineering

(SOSE), 2010 Fifth IEEE International Symposium on, pages 27{34, June 2010.

[60] Gonzalo Huerta-Canepa and Dongman Lee. A virtual cloud computing provider for mobile

devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &#38; Ser-

vices: Social Networks and Beyond, MCS '10, pages 6:1{6:5, New York, NY, USA, 2010.

ACM.

[61] Noha Ibrahim. Spontaneous Integration of Services in Pervasive Environments. PhD thesis,

National Institude on Applied Sciences of Lyon, 2008.

[62] Ste�en Iredi, Daniel Merkle, and Martin Middendorf. Bi-criterion optimization with multi

colony ant algorithms. In Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb, CarlosArtemio

Coello Coello, and David Corne, editors,Evolutionary Multi-Criterion Optimization , volume

1993 ofLecture Notes in Computer Science, pages 359{372. Springer Berlin Heidelberg, 2001.

[63] Saeed Javanmardi, Mohammad Shojafar, Danilo Amendola, Nicola Cordeschi, Hongbo Liu,

and Ajith Abraham. Hybrid job scheduling algorithm for cloud computing environment.

In Pavel K ~A{ mer, Ajith Abraham, and V ~A<clav Sn~A<�A<el, editors,Proceedings of the Fifth

International Conference on Innovations in Bio-Inspired Computing and Applications IBICA

2014, volume 303 ofAdvances in Intelligent Systems and Computing, pages 43{52. Springer

International Publishing, 2014.

[64] P Jones. Industry census 2012: Emerging data center markets, 2012.

[65] Fr�ed�eric Le Mou•el Julien Ponge. Joo
ux: Hijacking java 7 invokedynamic to support live code

modi�cations. Technical report, Technical report, CITI - Centre of Innovation in Telecom-

munications and Integration of services, 2012.

[66] James M Kaplan, William Forrest, and Noah Kindler. Revolutionizing data center energy

e�ciency. Technical report, Technical report, McKinsey & Company, 2008.

[67] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and H. Bal. eyedentify:

Multimedia cyber foraging from a smartphone. In Multimedia, 2009. ISM '09. 11th IEEE

International Symposium on, pages 392{399, Dec 2009.

121



BIBLIOGRAPHY

[68] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: A computation

o�oading framework for smartphones. In Martin Gris and Guang Yang, editors, Mobile Com-

puting, Applications, and Services, volume 76 ofLecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering, pages 59{79. Springer

Berlin Heidelberg, 2012.

[69] A.R. Khan, M. Othman, S.A. Madani, and S.U. Khan. A survey of mobile cloud computing

application models. Communications Surveys Tutorials, IEEE, 16(1):393{413, First 2014.

[70] Olga Kharif. Average household has 5 connected devices, while some have 15-plus.Bloomberg:

Tech Blog, August, 29, 2012.

[71] Lee Kilho and Shin Insik. User mobility model based computation o�oading decision for

mobile cloud. Journal of Computing Science and Engineering, 9(3):155{162, 2015.

[72] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda �le system.

ACM Trans. Comput. Syst., 10(1):3{25, February 1992.

[73] S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang. Thinkair: Dynamic resource

allocation and parallel execution in the cloud for mobile code o�oading. In INFOCOM, 2012

Proceedings IEEE, pages 945{953, March 2012.

[74] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. A survey of computation

o�oading for mobile systems. Mob. Netw. Appl., 18(1):129{140, February 2013.

[75] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation o�oading to save energy on handheld

devices: A partition scheme. InProceedings of the 2001 International Conference on Com-

pilers, Architecture, and Synthesis for Embedded Systems, CASES '01, pages 238{246, New

York, NY, USA, 2001. ACM.

[76] Zhiyuan Li and Rong Xu. Energy impact of secure computation on a handheld device. In

Workload Characterization, 2002. WWC-5. 2002 IEEE International Workshop on, pages

109{117, Nov 2002.

122



BIBLIOGRAPHY

[77] Nikitas Liogkas, Blair MacIntyre, Elizabeth D Mynatt, Yannis Smaragdakis, Eli Tilevich,

and Stephen Voida. Automatic partitioning: Prototyping ubiquitous-computing applications.

IEEE Pervasive Computing, (3):40{47, 2004.

[78] Jieyao Liu, Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, Rajkumar Buyya, and Ahsan

Qureshi. Application partitioning algorithms in mobile cloud computing: Taxonomy, review

and future directions. Journal of Network and Computer Applications, 48:99 { 117, 2015.

[79] A. Colorni M. Dorigo, V. Maniezzo. Ant system: An autocatalytic optimizing process,.

Technical report, Technical Report, Dipartimento di Elettronica e Informazione, Politec-nico

di Milano,, 1991.

[80] Chi Harold Liu M. Reza Rahimi, Jian Ren, Athanasios V. Vasilakos, and Nalini Venkata-

subramanian. Mobile cloud computing: A survey, state of art and future directions. Mobile

Networks and Applications, 19(2):133{143, 04 2014.

[81] Rakesh Madivi and S Sowmya Kamath. An hybrid bio-inspired task scheduling algorithm in

cloud environment. In Computing, Communication and Networking Technologies (ICCCNT),

2014 International Conference on, pages 1{7, July 2014.

[82] Rashmi A Mahale and SD Chavan. A survey: evolutionary and swarm based bio-inspired opti-

mization algorithms. International Journal of Scienti�c and Research Publications, 2(12):1{6,

2012.

[83] Eugene E. Marinelli. Hyrax: Cloud Computing on Mobile Devices using MapReduce. PhD

thesis, School of Computer Science Carnegie Mellon University Pittsburgh, 2009.

[84] Chonglei Mei, D. Taylor, Chenyu Wang, A. Chandra, and J. Weissman. Sharing-aware cloud-

based mobile outsourcing. InCloud Computing (CLOUD), 2012 IEEE 5th International

Conference on, pages 408{415, June 2012.

[85] Emiliano Miluzzo, Ram�on C�aceres, and Yih-Farn Chen. Vision: Mclouds - computing on

clouds of mobile devices. InProceedings of the Third ACM Workshop on Mobile Cloud

Computing and Services, MCS '12, pages 9{14, New York, NY, USA, 2012. ACM.

123



BIBLIOGRAPHY

[86] Jayadev Gyani.P.R.K.Murti M.Rajendra Prasad. Mobile cloud computing: Implications and

challenges.Journal of Information Engineering and Applications, 2(7), 2012.

[87] A. Mtibaa, M. Abu Snober, A. Carelli, R. Beraldi, and H. Alnuweiri. Collaborative mobile-

to-mobile computation o�oading. In Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2014 International Conference on, pages 460{465, Oct 2014.

[88] Abderrahmen Mtibaa, Afnan Fahim, Khaled A. Harras, and Mostafa H. Ammar. Towards

resource sharing in mobile device clouds: Power balancing across mobile devices.SIGCOMM

Comput. Commun. Rev., 43(4):51{56, August 2013.

[89] ABI Research News. More Than 30 Billion Devices Will Wirelessly Connect

to the Internet of Everything in 2020. https://www.abiresearch.com/press/

more-than-30-billion-devices-will-wirelessly-conne , 2013. [Online; accessed May

09, 2013].

[90] Gartner Newsroom. Gartner Says the Internet of Things Installed Base Will Grow to 26

Billion Units By 2020. http://www.gartner.com/newsroom/id/2636073 , 2013. [Online;

accessed December 12, 2013].

[91] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and Samuel Madden. Wish-

bone: Pro�le-based partitioning for sensornet applications. In Proc. of NSDI '09, pages

395{408, Berkeley, CA, USA, 2009. USENIX Association.

[92] Ralf Niemann and Peter Marwedel. An algorithm for hardware/software partitioning using

mixed integer linear programming. Des. Autom. Embedded Syst., 2(2):165{193, March 1997.

[93] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn,

and Kevin R. Walker. Agile application-aware adaptation for mobility. SIGOPS Oper. Syst.

Rev., 31(5):276{287, October 1997.

[94] Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. Context-aware computation o�oading

for mobile cloud computing: Requirements analysis, survey and design guideline.Procedia

Computer Science, 56:10 { 17, 2015. The 10th International Conference on Future Networks

and Communications (FNC 2015) / The 12th International Conference on Mobile Systems

and Pervasive Computing (MobiSPC 2015) A�liated Workshops.

124



BIBLIOGRAPHY

[95] Mazliza Othman and Stephen Hailes. Power conservation strategy for mobile computers using

load sharing. SIGMOBILE Mob. Comput. Commun. Rev., 2(1):44{51, January 1998.

[96] V.S. Pendyala and J. Holliday. Performing intelligent mobile searches in the cloud using

semantic technologies. InGranular Computing (GrC), 2010 IEEE International Conference

on, pages 381{386, Aug 2010.

[97] T. Penner, A. Johnson, B. Van Slyke, M. Guirguis, and Qijun Gu. Transient clouds: As-

signment and collaborative execution of tasks on mobile devices. InGlobal Communications

Conference (GLOBECOM), 2014 IEEE, pages 2801{2806, Dec 2014.

[98] Shanmuga Sundaram Senthil Rajan Kesavan Periyar Dasan, Agan Prabhu. A ubiquitous

home control and monitoring system using android based smart phone for iot.International

Journal of Computer Science and Mobile Computing, 2(12):188{197, 2013.

[99] Padmanabhan S. Pillai, Lily B. Mummert, Steven W. Schlosser, Rahul Sukthankar, and

Casey J. Helfrich. Slipstream: Scalable low-latency interactive perception on streaming data.

In Proceedings of the 18th International Workshop on Network and Operating Systems Support

for Digital Audio and Video , NOSSDAV '09, pages 43{48, New York, NY, USA, 2009. ACM.

[100] Han Qi and A. Gani. Research on mobile cloud computing: Review, trend and perspectives.

In Digital Information and Communication Technology and it's Applications (DICTAP), 2012

Second International Conference on, pages 195{202, May 2012.

[101] S.S. Qureshi, T. Ahmad, K. Ra�que, and Shuja ul islam. Mobile cloud computing as future

for mobile applications - implementation methods and challenging issues. InCloud Computing

and Intelligence Systems (CCIS), 2011 IEEE International Conference on, pages 467{471,

Sept 2011.

[102] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai, David Wetherall, and

Ramesh Govindan. Odessa: Enabling interactive perception applications on mobile devices.

In Proceedings of the 9th International Conference on Mobile Systems, Applications, and

Services, MobiSys '11, pages 43{56, New York, NY, USA, 2011. ACM.

125



BIBLIOGRAPHY

[103] Amol B. Bhande Rahul B. Mannade. Challenges of mobile computing: An overview.In-

ternational Journal of Advanced Research in Computer and Communication Engineering,

2(8):3109{3114, 2013.

[104] Amol B. Bhande Rahul B. Mannade. Challenges of mobile computing: An overview.Inter-

national Journal of Advanced Research in Computer and Communication Engineering, 2(8),

Augest 2013.

[105] Jan S. Rellermeyer, Oriana Riva, and Gustavo Alonso. Alfredo: An architecture for 
exible

interaction with electronic devices. In Proceedings of the 9th ACM/IFIP/USENIX Interna-

tional Conference on Middleware, Middleware '08, pages 22{41, New York, NY, USA, 2008.

Springer-Verlag New York, Inc.

[106] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geo�rey H. Kuenning. Saving portable

computer battery power through remote process execution. SIGMOBILE Mob. Comput.

Commun. Rev., 2(1):19{26, January 1998.

[107] Abdullah Gani Saeid Abolfazli, Zohreh Sanaei. Mobile cloud computing: A review on smart-

phone augmentation approaches. InInternational Conference on Computing, Information

Systems, and Communications(CISCO'12), Singapore, May 2012.

[108] M. Satyanarayanan. Fundamental challenges in mobile computing. InProceedings of the

Fifteenth Annual ACM Symposium on Principles of Distributed Computing, PODC '96, pages

1{7, New York, NY, USA, 1996. ACM.

[109] M. Satyanarayanan. Pervasive computing: vision and challenges.Personal Communications,

IEEE , 8(4):10{17, Aug 2001.

[110] Mahadev Satyanarayanan, P. Bahl, R Caceres, and N. Davies. The case for vm-based cloudlets

in mobile computing. Pervasive Computing, IEEE, 8(4):14{23, Oct 2009.

[111] Markus Sch~A 1
4ring. Mobile cloud computing-open issues and solutions, 2011.

[112] Mohsen Shari�, Somayeh Kafaie, and Omid Kashe�. A survey and taxonomy of cyber foraging

of mobile devices.Communications Surveys Tutorials, IEEE, 14(4):1232{1243, Fourth 2012.

126



BIBLIOGRAPHY

[113] Cong Shi, Vasileios Lakafosis, Mostafa H. Ammar, and Ellen W. Zegura. Serendipity: En-

abling remote computing among intermittently connected mobile devices. InProceedings of

the Thirteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing,

MobiHoc '12, pages 145{154, New York, NY, USA, 2012. ACM.

[114] M. Shiraz, A. Gani, R.H. Khokhar, and R. Buyya. A review on distributed application

processing frameworks in smart mobile devices for mobile cloud computing.Communications

Surveys Tutorials, IEEE, 15(3):1294{1313, Third 2013.

[115] Kanad Sinha and Milind Kulkarni. Techniques for �ne-grained, multi-site computation of-


oading. In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, CCGRID '11, pages 184{194, Washington, DC, USA, 2011. IEEE

Computer Society.

[116] Krzysztof Socha, Michael Sampels, and Max Manfrin. Ant algorithms for the university

course timetabling problem with regard to the state-of-the-art. In Stefano Cagnoni, ColinG.

Johnson, JuanJ.Romero Cardalda, Elena Marchiori, DavidW. Corne, Jean-Arcady Meyer,

Jens Gottlieb, Martin Middendorf, Agn ~A•s Guillot, G ~A 1
4ntherR. Raidl, and Emma Hart,

editors, Applications of Evolutionary Computing, volume 2611 ofLecture Notes in Computer

Science, pages 334{345. Springer Berlin Heidelberg, 2003.

[117] Wei-Tse Tang, Chiu-Ming Hu, and Chien-Yeh Hsu. A mobile phone based homecare man-

agement system on the cloud. InBiomedical Engineering and Informatics (BMEI), 2010 3rd

International Conference on, volume 6, pages 2442{2445, Oct 2010.

[118] Cem Tekin and Mihaela van der Schaar. An experts learning approach to mobile service of-


oading. In Communication, Control, and Computing (Allerton), 2014 52nd Annual Allerton

Conference on, pages 643{650. IEEE, 2014.

[119] Eli Tilevich and Yannis Smaragdakis. J-orchestra: Enhancing java programs with distribution

capabilities. ACM Transactions on Software Engineering and Methodology (TOSEM), 19(1):1,

2009.

127



BIBLIOGRAPHY

[120] A. Tuli, N. Hasteer, M. Sharma, and A. Bansal. Exploring challenges in mobile cloud com-

puting: An overview. In Con
uence 2013: The Next Generation Information Technology

Summit (4th International Conference), pages 496{501, Sept 2013.

[121] A. Rasool V. SaiKrishna and N. Khare. String matching and its applications in diversi�ed

�elds. International Journal of Computer Science Issues, 9(1):219{226, 2012.

[122] Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesi�nska, Rutger F. H. Hofman, Ceriel

J. H. Jacobs, Thilo Kielmann, and Henri E. Bal. Ibis: A 
exible and e�cient java-based

grid programming environment: Research articles.Concurr. Comput. : Pract. Exper. , 17(7-

8):1079{1107, June 2005.

[123] Tim Verbelen, Tim Stevens, Filip De Turck, and Bart Dhoedt. Graph partitioning algorithms

for optimizing software deployment in mobile cloud computing. Future Gener. Comput. Syst.,

29(2):451{459, February 2013.

[124] Alex Waibel. Interactive translation of conversational speech. Computer, 29(7):41{48, Jul

1996.

[125] Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computation o�oading. SIG-

PLAN Not. , 39(6):119{130, June 2004.

[126] Yating Wang, Ing-Ray Chen, and Ding-Chau Wang. A survey of mobile cloud computing

applications: Perspectives and challenges.Wirel. Pers. Commun., 80(4):1607{1623, February

2015.

[127] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using bandwidth data to make computa-

tion o�oading decisions. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on, pages 1{8, April 2008.

[128] Yejin Shin Wooseong Kim and Soonuk Seol. Smart phone assisted personal iot service.

Advanced Science and Technology Letters, 110:61{66, 2015.

[129] Lei Yang, Jiannong Cao, and Hui Cheng. Resource constrained multi-user computation

partitioning for interactive mobile cloud applications. Technical report, Technical report,

Department of Computing, Hong Kong Polytechnical University, 2012.

128



[130] Lei Yang, Jiannong Cao, Shaojie Tang, Tao Li, and A.T.S Chan. A framework for partitioning

and execution of data stream applications in mobile cloud computing. InCloud Computing

(CLOUD), 2012 IEEE 5th International Conference on , pages 794{802, June 2012.

[131] Xiaoyan Yang, Tiejun Pan, and Jingjing Shen. On 3g mobile e-commerce platform based

on cloud computing. In Ubi-media Computing (U-Media), 2010 3rd IEEE International

Conference on, pages 198{201, July 2010.

[132] Soonuk Seol Yejin Shin. Smartphone as a remote control proxy in automotive navigation

system. Contemporary Engineering Sciences, 7(14):683{689, 2014.

[133] Weiqing Zhao, Yafei Sun, and Lijuan Dai. Improving computer basis teaching through mobile

communication and cloud computing technology. In Advanced Computer Theory and Engi-

neering (ICACTE), 2010 3rd International Conference on, volume 1, pages V1{452{V1{454,

Aug 2010.

[134] Huawei: By Xing Zhihao and Zhong Yongfeng. Internet of Things and its future.http://www.

huawei.com/en/about-huawei/publications/communicate/hw-080993.html , 2010. [On-

line; accessed February , 2010].

129


	Introduction
	Mobile Device: From Personal Device to IoT Gateway

	Overview of the Application Offloading Middleware

