S. Jonda, M. Fleischer, and H. Meixner, Temperature control of semiconductor metal-oxide gas sensors by means of fuzzy logic A Model for the Operation of a Thin?Film SnOx Conductance?Modulation Carbon Monoxide Sensor, [I.2] H. Windischmann and P. Mark, pp.1-3, 1979.

A. Hayakawa and . Ono, A p-type semiconductor thick film gas sensor Evaluation of the efficiency of deodorants by semiconductor gas sensors, Sensors and Actuators Sensors and Actuators B: Chemical, vol.12, issue.32 3, pp.263-273, 1987.

M. A. Martí-n, J. P. Santos, H. Vásquez, and J. A. Agapito, Study of the interferences of NO2 and CO in solid state commercial sensors, Sensors and Actuators B: Chemical, vol.58, pp.1-3, 1999.

X. Vilanova, E. Llobet, R. Alcubilla, J. E. Sueiras, X. Correig et al., Analysis of the conductance transient in thick-film tin oxide gas sensors An integrated gas sensor based on tin oxide thin-film and improved micro-hotplate Study of the effect of the sensor operating temperature on SnO2-based sensor-array performance Modelling of SO2 detection by tin dioxide gas sensors, [I.9] D. Girardin, F. Berger, A. Chambaudet, and R. Planade, pp.175-180, 1995.

[. Romppainen, V. Lanttp, and S. Leppävouri, Effect of water vapour on the CO response behaviour of tin dioxide sensors in constant temperature and temperature-pulsed modes of operation, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.1-6, 1990.
DOI : 10.1016/0925-4005(90)80175-Y

[. I. Heilig, N. Bârsan, U. Weimar, M. Schweizer-berberich, J. W. Gardner et al., Interactions of tin oxide surface with O2, H2O and H2 Tin dioxide-based gas sensors for SO2 detection: a chemical interpretation of the increase in sensitivity obtained after a primary detection Diode-like SnO2 gas detection devices Prototype chemical sensors for the selective detection of O2 and NO2 in gases Theory and experiments on r.f. sputtered tin oxide thin-films for gas sensing applications Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends The effect of humidity on an SnO2 thick-film planar resistor Low temperature NO2 sensitivity of nano-particulate SnO2 film for work function sensors, [I.14]. [I.18] S. G. Ansari, pp.1-3, 1920.

M. C. Horrillo, P. Serrini, J. Santos, and L. Manes, Influence of the deposition conditions of SnO2 thin films by reactive sputtering on the sensitivity to urban pollutants, Sensors and Actuators B: Chemical, vol.45, issue.3, pp.193-198, 1921.
DOI : 10.1016/S0925-4005(97)00293-1

A. Katsuki, K. Fukui, X. Zhou, Y. Xu, Q. Cao et al., H2 selective gas sensor based on SnO2 Metal-semiconductor ohmic contact of SnO2-based ceramic gas sensors Low power thick film CO gas sensors, [I.22], pp.30-37, 1924.

G. Li, X. Zhang, S. Kawi-]-l, L. E. Sangaletti, A. Depero et al., Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors Microstructure and morphology of tin dioxide multilayer thin film gas sensors Micromechanical fabrication of robust low-power metal oxide gas sensors Grain size effects on gas sensitivity of porous SnO2-based elements, [I.27] C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, pp.64-70, 1991.

M. Radecka, K. Zakrzewska, and M. R?kas, SnO2???TiO2 solid solutions for gas sensors, Sensors and Actuators B: Chemical, vol.47, issue.1-3, pp.194-204, 1998.
DOI : 10.1016/S0925-4005(98)00023-9

F. Quan, R. Liu, L. Liu, Y. Chen, B. He et al., Study on Formaldehyde Gas Sensor Based on SnO2 with La2O3-ZnO Doping [I.31] L. A. Patil and D. R. Patil Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors?Operando studies A novel process for fabrication of SnO2-based thick film gas sensors, Rare Metal Materials And Engineering Sensors and Actuators B: Chemical Catalysis Today Sensors and Actuators B: Chemical, vol.35, issue.123 1, pp.129-131, 2006.

[. I. Dong, H. Su, J. Xu, and D. Zhang, Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films, Sensors and Actuators B: Chemical, vol.123, issue.1, pp.420-428, 1935.
DOI : 10.1016/j.snb.2006.09.018

G. Korotcenkov, I. Blinov, V. Brinzari, and J. R. Stetter, Effect of air humidity on gas response of SnO2 thin film ozone sensors, Sensors and Actuators B: Chemical, vol.122, issue.2, pp.519-526, 2007.
DOI : 10.1016/j.snb.2006.06.025

P. Capone and . Siciliano, Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application, Sensors and Actuators B: Chemical, vol.122, issue.2, pp.564-571, 2007.

[. Salehi and M. Gholizade, Gas-sensing properties of indium-doped SnO2 thin films with variations in indium concentration, Sensors and Actuators B: Chemical, vol.89, issue.1-2, pp.173-179, 1939.
DOI : 10.1016/S0925-4005(02)00460-4

G. S. Coles, G. Williams, and B. Smith, The effect of oxygen partial pressure on the response of tin (IV) oxide based gas sensors, [I.40] M. Egashira, Y. Shimizu, Y. Takao, and S. Sako, pp.633-634, 1941.
DOI : 10.1088/0022-3727/24/4/017

I. Sayago, J. Gutiérrez, L. Arés, J. I. Robla, M. C. Horrillo et al., The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO H2 gas-sensing characteristics of SnOx sensors fabricated by a reactive ionassisted deposition with/without an activator layer CO-gas-induced resistance switching in SnO2/ultrathin Pt sandwich structure Highly sensitive MISFET sensors with porous Pt?SnO2 gate electrode for CO gas sensing applications Compatibility of CO gas sensitive SnO2/Pt thin film with silicon integrated circuit processing, Sensors and Actuators B: Chemical Sensors and Actuators B: Chemical Sensors and Actuators B: Chemical Sensors and Actuators B: Chemical Sensors and Actuators B: Chemical, vol.26, issue.64, pp.19-23, 1995.

Y. Hsing, ]. Wang, G. Schmitte, and . Wiegleb, An integrated gas sensor technology using surface micromachining Gas-sensing characteristics of SnO2?x thin film with added Pt fabricated by the dipping method Conductivity behaviour of thick-film tin dioxide gas sensors Effects of thickness and additives on thin-film SnO2 gas sensors, [I.49] J. Klöber, M. Ludwig, and H. A. Schneider, pp.277-283, 1989.

[. D. Schierbaum, U. K. Kirner, J. F. Geiger, and W. Göpel, Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2, Sensors and Actuators B: Chemical, vol.4, issue.1-2, pp.87-94, 1951.
DOI : 10.1016/0925-4005(91)80181-I

M. Sauvan and C. Pijolat, Selectivity improvement of SnO2 films by superficial metallic films, Sensors and Actuators B: Chemical, vol.58, issue.1-3, pp.295-301, 1989.
DOI : 10.1016/S0925-4005(99)00147-1

URL : https://hal.archives-ouvertes.fr/emse-00432774

A. Senulien?, W. ?etkus-endres, R. Göttler, S. Hartinger, W. Drost et al., A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation Tin dioxide sol?gel derived thin films deposited on porous silicon Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium Effects of additives on semiconductor gas sensors, Peculiarities of surface doping with Cu in SnO2 thin film gas sensors. [I.57] N. Yamazoe, Y. Kurokawa, and T. Seiyama, pp.1-3, 1983.

P. Ivanov, E. Llobet, F. Blanco, A. Vergara, X. Vilanova et al., On the effects of the materials and the noble metal additives to NO2 detection, Sensors and Actuators B: Chemical, vol.118, issue.1-2, pp.311-317, 2004.
DOI : 10.1016/j.snb.2006.04.036

[. Davazoglou and K. Georgouleas, Low Pressure Chemically Vapor Deposited WO[sub 3] Thin Films for Integrated Gas Sensor Applications, Journal of The Electrochemical Society, vol.145, issue.4, pp.1346-1350, 1998.
DOI : 10.1149/1.1838463

C. Cantalini, M. Pelino, H. T. Sun, M. Faccio, S. Santucci et al., Cross sensitivity and stability of NO2 sensors from WO3 thin film A thin-film sensing element for ozone, humidity and temperature Fabrication and evaluation of thin-film solid-state sensors for hydrogen sulfide detection The optimization of a tungsten trioxide film for application in a surface acoustic wave gas sensor Surface chemistry of H2S-sensitive tungsten oxide films, [I.65] B. Frühberger, M. Grunze, and D. J. Dwyer, pp.112-118, 1996.

[. P. Barrett, G. C. Georgiades, and P. A. Sermon, The mechanism of operation of WO3-based H2S sensors, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.1-6, 1990.
DOI : 10.1016/0925-4005(90)80184-2

W. Qu, V. V. Wlodarski, I. L. Khatko, S. Emelianov, and K. Choi, A thin-film sensing element for ozone, humidity and temperature, Sensors and Actuators B: Chemical, vol.64, issue.1-3, pp.42-48, 1998.
DOI : 10.1016/S0925-4005(99)00481-5

M. Yi, K. Lee, and . Chung, Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition, Sensors and Actuators B: Chemical, vol.60, issue.1, pp.49-56, 1999.

[. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, and H. J. Jung, Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor, Sensors and Actuators B: Chemical, vol.62, issue.2, pp.102-108, 2000.
DOI : 10.1016/S0925-4005(99)00360-3

G. Faglia and . Sberveglieri, Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol?gel, thermal evaporation and r.f. sputtering techniques, Sensors and Actuators B: Chemical, vol.64, issue.13, pp.182-188, 1972.

Y. Zhao, Z. Feng, and Y. Liang, Pulsed laser deposition of WO3-base film for NO2 gas sensor application, [I.73] X. Wang, N. Miura, and N. Yamazoe, pp.171-173, 2000.
DOI : 10.1016/S0925-4005(00)00326-9

[. Chen and S. C. Tsang, Ag doped WO3-based powder sensor for the detection of NO gas in air, Sensors and Actuators B: Chemical, vol.89, issue.1-2, pp.68-75, 2001.
DOI : 10.1016/S0925-4005(02)00430-6

G. Wang, K. Sakai, N. Shimanoe, N. Miura, and . Yamazoe, Spin-coated thin films of SiO2???WO3 composites for detection of sub-ppm NO2, Sensors and Actuators B: Chemical, vol.45, issue.2, pp.141-146, 1997.
DOI : 10.1016/S0925-4005(97)00286-4

K. Galatsis, Y. X. Li, W. Wlodarski, E. Comini, G. Sberveglieri et al., Comparison of single and binary oxide MoO3, TiO2 and WO3 sol?gel gas sensors, Sensors and Actuators B: Chemical, vol.83, pp.1-3, 1979.

L. Zheng, M. Xu, T. K. Xu80-]-r, M. C. Sharma, G. L. Bhatnagar et al., TiO2?x thin films as oxygen sensor Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor Single-crystal metal oxide gas sensors Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb [I.83] I. Hayakawa Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor Titanium dioxide thin films prepared for alcohol microsensor applications NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties Low and high temperature TiO2 oxygen sensors A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components, [I.82]. [I.87] N. Yamamoto, S. Tonomura, T. Matsouka, and H. Tsubomara, pp.28-30, 1980.

G. Sangaletti and . Sberveglieri, Preparation and micro-structural characterization of nanosized thin film of TiO2-WO3 as a novel material with high sensitivity towards NO2 The TiO2-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method, Sensors and Actuators B: Chemical Sensors and Actuators B: Chemical, vol.36, issue.65, pp.381-383, 1996.

M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, G. O. Sberveglieri-]-n et al., Gas-sensing applications of W???Ti???O-based nanosized thin films prepared by r.f. reactive sputtering, [I.92] S. R. Morrison Wiley: Semiconductor Sensors -Simon M. Sze, pp.499-502, 1994.
DOI : 10.1016/S0925-4005(97)00173-1

[. M. Sze, W. , and O. T. Sorensen, Semiconductor Sensors -Simon M. Sze Gas sensing properties of rf sputtered WO3 thin films Universitat Politècnica de Catalunya, 2004. [I.95] A. Cirera Hernández New Technologies and their Characterization for Nanostructured SnO2 Gas Sensor Devices Oxygen sensors based on semiconducting metal oxides: an overview, Sensors and Actuators B: Chemical, vol.65, pp.1-3, 1994.

S. Iijima, M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, J. Kong et al., Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. [I.100] Nanotube Molecular Wires as Chemical Sensors, Thermal conductivity of carbon nanotubes, pp.56-58, 1991.

C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J. M. Kenny et al., Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD Selective gas detection using a carbon nanotube sensor Nanotube electronics for radiofrequency applications, [I.102] Sep. 2003. [I.103] C. Rutherglen, Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, E. Suhir, Y. C. Lee, and C. P. Wong, pp.195-202, 2003.

K. Banerjee, H. Li, and N. Srivastava, Current Status and Future Perspectives of Carbon Nanotube Interconnects, 2008 8th IEEE Conference on Nanotechnology, pp.432-436, 2008.
DOI : 10.1109/NANO.2008.132

D. Li, M. Mann, W. Rolandi, A. Kim, S. Ural et al., Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method, [I.108] L. Ding, pp.317-321, 2004.
DOI : 10.1021/nl035097c

C. Liu, W. Ren, Z. Zhang, Z. Xu, P. Zhu et al., Thermal Conductivity of Single- Walled Carbon Nanotubes under Axial Stress Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes, Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes Carbon Nanotubes, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, pp.800-805, 2007.

[. I. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature Conductivité thermique, Nano Lett. Thermal Transport Measurements of Individual Multiwalled Nanotubes Phys. Rev. Lett, vol.6113, issue.87 21, pp.96-100, 2001.

[. I. Tang, L. Sun, J. Zhou, W. Zhou, S. Xie-]-s et al., Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation, Carbon, vol.43, issue.13, pp.2812-2816, 2002.
DOI : 10.1016/j.carbon.2005.05.034

L. Miki?yoshida, J. G. Rendón, Y. H. Santiesteban, J. Wang, C. H. Lin et al., Catalytic growth of carbon microtubules with fullerene structure Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition, [I.117], pp.202-204, 1993.

. Haddon, Solution Properties of Single-Walled Carbon Nanotubes, Science, vol.282, issue.5386, pp.95-98, 1998.

[. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge et al., Fluorination of single-wall carbon nanotubes Functionalization of Carbon Nanotubes Using Atomic Hydrogen from a Glow Discharge Band gap engineering of a carbon nanotube by hydrogen functionalization, [I.121], pp.188-194, 0123.

D. T. Lee, R. E. Colbert, and . Smalley, Fullerene Pipes, Science, vol.280, issue.5367, pp.1253-1256, 1998.

[. N. Khare, M. Meyyappan, A. M. Cassell, C. V. Nguyen, and J. Han, Functionalization of Carbon Nanotubes Using Atomic Hydrogen from a Glow Discharge, Nano Letters, vol.2, issue.1, pp.73-77, 2002.
DOI : 10.1021/nl015646j

J. Grimes, Y. Li, Q. Lu, M. Ye, J. Cinke et al., Gas sensing characteristics of multi-wall carbon nanotubes Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Sensors and Actuators B: Chemical Nano Lett, vol.81, issue.3 7, pp.32-41, 0127.

C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny et al., NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, Sensors and Actuators B: Chemical J. Phys. D: Appl. Phys, vol.93, issue.36 21, pp.333-337, 0129.

I. Sayago, E. Terrado, E. Lafuente, M. C. Horrillo, W. K. Maser et al., Hydrogen sensors based on carbon nanotubes thin films, Synthetic Metals, vol.148, issue.1, pp.15-19, 0130.
DOI : 10.1016/j.synthmet.2004.09.013

C. Cantalini, L. Valentini, I. Armentano, J. M. Kenny, L. Lozzi et al., Carbon nanotubes as new materials for gas sensing applications Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation Multi-walled carbon nanotube-based gas sensors for NH3 detection Synthesis of multi-walled carbon nanotubes for NH3 gas detection Direct growth of the multi-walled carbon nanotubes as a tool to detect ammonia at room temperature, Physica E: Low-dimensional Systems and Nanostructures, pp.1405-1408, 0135.

J. Huang, M. Li, Z. Huang, J. Liu-lee, W. Cho et al., Gas sensing properties of printed multiwalled carbon nanotubes using the field emission effect A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol) Sensors for organic vapor detection based on composites of carbon nonotubes functionalized with polymers Adsorption of NH3 and NO2 molecules on carbon nanotubes Gas molecule adsorption in carbon nanotubes and nanotube bundles Ab initio study of CNT NO2 gas sensor Ab Initio Study of Doped Carbon Nanotube Sensors Study of Adsorption Properties of O2, CO2, NO2 and SO2 on Si-doped Carbon Nanotube Using Density Functional Theory Orientation and purification of carbon nanotubes using ac electrophoresis Optical anisotropy of dispersed carbon nanotubes induced by an electric field Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment Aligning single-wall carbon nanotubes with an alternating-current electric field, Sensors and Actuators A: Physical. [I.138]. [I.146] T. Prasse, J.-Y. Cavaillé, and W. Bauhofer. [I.147] X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige, pp.467-471, 0148.

X. Liu, J. L. Spencer, A. B. Kaiser, and W. M. Arnold, Electric-field oriented carbon nanotubes in different dielectric solvents, Current Applied Physics, vol.4, issue.2-4, pp.4-125, 2004.
DOI : 10.1016/j.cap.2003.10.012

[. Wakaya, T. Nagai, K. Gamo, R. Krupke, F. Hennrich et al., Position control of carbon nanotube using patterned electrode and electric field Contacting single bundles of carbon nanotubes with alternating electric fields Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, [I.150], pp.27-31, 2002.

[. I. , C. S. Huang, B. R. Huang, Y. H. Jang, M. S. Tsai et al., Threeterminal CNTs gas sensor for N2 detection, Diamond and Related Materials, vol.14, pp.11-12, 2005.

T. Jang, S. Moon, J. Ahn, Y. Lee, and B. Ju, A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes, Sensors and Actuators B: Chemical, vol.99, issue.1, pp.118-122, 0154.
DOI : 10.1016/j.snb.2003.11.004

S. Talapatra, R. Kar, P. M. Vajtai, and . Ajayan, Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes, Small, vol.29, issue.8, pp.1021-1025, 0155.

V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain et al., All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide Flexible, All-Organic Chemiresistor for Detecting Chemically Aggressive Vapors Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors, [I.156], pp.2154-2157, 2003.

J. Sippel-oakley, H. Wang, B. S. Kang, Z. Wu, F. Ren et al., Carbon nanotube films for room temperature hydrogen sensing Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature, Nanotechnology Diamond and Related Materials, vol.16, issue.17, pp.2218-2225, 2005.

L. Valentini, C. Cantalini, I. Armentano, J. M. Kenny, L. Lozzi et al., Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection, Diamond and Related Materials, vol.13, issue.4-8, pp.1301-1305, 2004.
DOI : 10.1016/j.diamond.2003.11.011

D. Hou, B. Xu, . Cai, N. Modi, E. Koratkar et al., Ionization gas sensing in a microelectrode system with carbon nanotubes [I.163] A Miniaturized gas ionization sensors using carbon nanotubes A Carbon Nanotube Field-Emission Electron Source High brightness electron beam from a multi-walled carbon nanotube, [I.164] W. A. de Heer, A. Châtelain, and D. Ugarte. [I.165] N. de Jonge, pp.213502-171, 1995.

[. J. Kim and S. Kim, Gas sensors based on Paschen's law using carbon nanotubes as electron emitters, 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp.3026-503, 2006.
DOI : 10.1088/0022-3727/39/14/022

[. I. Wadhawan, R. E. Stallcup, K. F. Stephens, J. M. Perez, and I. A. Akwani, Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes, Applied Physics Letters, vol.79, issue.12, pp.1867-1869, 2001.
DOI : 10.1063/1.1401785

[. Zhang, J. Liu, X. Li, C. Zhu, S. Chopra et al., The structure optimization of the carbon nanotube film cathode in the application of gas sensor, [I.171]. [I.173] H. Lee, K. Naishadham, M. M. Tentzeris, and G. Shaker 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp.278-289, 2002.
DOI : 10.1016/j.sna.2006.01.027

C. Paragua, K. Frigui, S. Bila, D. Baillargeat, and S. Pacchini, An equivalent circuit model of CNT inkjet printed paper-based structures, 2014 44th European Microwave Conference, pp.528-531, 2014.
DOI : 10.1109/EuMC.2014.6986487

URL : https://hal.archives-ouvertes.fr/hal-01293721

R. G. Sweet, On The Instability Of Jets High Frequency Recording with Electrostatically Deflected Ink Jets Progress and Trends in Ink-jet Printing Technology Ink jet recorder, [II.3]. [II.5] C. H. Hertz and S.-I. Simonsson, pp.1-10, 1878.

R. Beeson, Desktop Inkjet Products Performance Study, " presented at the IS&T Non-impact Printing Conference, 2002.

J. Hosida, E. Sachs, M. Cima, P. Williams, D. Brancazio et al., Electronic Engineering Times Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model [II.10] X A review of rapid prototyping technologies and systems Chemical Solid Free-Form Fabrication: Making Shapes without Molds Optimization of Dispersion and Viscosity of a Ceramic Jet Printing Ink Freeforming Ceramics Using a Thermal Jet Printer Microfabrication of conducting polymer devices by ink-jet stereolithography, [II.14] D. Pede, G. Serra, and D. De Rossi, pp.481-488, 1990.

P. Calvert-noh, N. Zhao, M. Caironi, H. Sirringhaus, H. Sirringhaus et al., Downscaling of selfaligned , all-printed polymer thin-film transistors [II.17] High-Resolution Inkjet Printing of All-Polymer Transistor Circuits Dewetting of conducting polymer inkjet droplets on patterned surfaces Low-cost fabrication of submicron all polymer field effect transistors, Inkjet Printing for Materials and Devices. [II.18], pp.3299-3305, 2000.

C. W. Sele, T. Von-werne, R. H. Friend, and H. Sirringhaus, Lithography-Free, Self-Aligned Inkjet Printing with Sub-Hundred-Nanometer Resolution, Advanced Materials, vol.81, issue.8, pp.997-1001, 1921.
DOI : 10.1002/adma.200401285

M. Noh, X. Cheng, H. Sirringhaus, J. I. Sohn, M. E. Welland et al., Inkjet printed copper source/drain metallization for amorphous silicon thin-film transistors Organic transistors manufactured using inkjet technology with subfemtoliter accuracy Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry Particulate dispersion and freeform fabrication of BaTiO3 thick films via direct inkjet printing Combinatorial Screening and Optimization of Luminescent Materials and Organic Light-Emitting Devices Desktop inkjet printer as a tool to print conducting polymers Inkjet Printing of Oxidants for Patterning of Nanometer-Thick Conducting Polymer Electrodes Film thickness dependency of the emission colors of PPE?PPVs in inkjet printed libraries Bright Inkjet Printed Organic Light Emitting Diodes using Iridium Based Macromolecules Electroluminescence from printed stellate polyhedral oligomeric silsesquioxanes Inkjet printing of light emitting quantum dots Electrostatic Inkjet Printing of Carbon Nanotube for Cold Cathode Application Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction Ink-Jet Printing of Electron Donor/Acceptor Blends: Towards Bulk Heterojunction Solar Cells High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends Polymer based organic solar cells using ink-jet printed active layers CIGS-based solar cells for the next millennium, [II.27] T. X. Sun and G. e. Jabbour. [II.28. [II.29 presented at the Materials Research Society Fall Meeting & Exhibit 2008, Symposium G: Organic and Hybrid Materials for Large-Area Functional Systems Feb. 2005. [II.38] E. Holder, B. M. W. Langeveld, and U. S. Schubert, " New Trends in the Use of Transition Metal?Ligand Complexes for Applications in Electroluminescent Devices. [II.39] C. N. Hoth, S. A. Choulis, P. Schilinsky,. [II.40] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans. [II.41] H.-W. Schock and R. Noufi Progress in Photovoltaics: Research and Applications. [II.42] M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, and R. Noufi, " ACCELERATED PUBLICATION: Diode characteristics in state-of-the-art ZnO. [II.43, pp.43710-043109, 2000.

O. Morton, M. Robinson, and C. Leidholm, Solar energy: Silicon Valley sunrise, Nature, vol.443, issue.7107, pp.19-22, 2006.
DOI : 10.1038/443019a

[. K. Ii.-45-]-v, M. Kapur, R. Fisher, S. Roe, U. Hauschild et al., Direct Preparation and Loading of Lipid and Polymer Vesicles Using Inkjets Electrohydrodynamic Jet Processing: An Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells Three-dimensional printing in pharmaceutics: Promises and problems Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures Flexible plastic-based inkjet printed CPW fed dipole antenna for 60 GHz ISM applications Ink-Jet Printing of Wax-Based Alumina Suspensions Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors The computer aided manufacture of ceramics using multilayer jet printing Desktop microfabrication -initial experiments with a piezoceramic, Nanoparticle Oxides Precursor Inks for Thin film Copper Indium Gallium Selenide (CIGS) Solar Cells Symposium H ? II-IV Compound Semiconductor Photovoltaic Materials. [II.47]. [II.48] 2014 IEEE Antennas and [II.66]. [II.68 Direct Ink-Jet Deposition of Ceramic Green Bodies: I -Formulation of Build Materials, " in Symposium V ? Solid Freeform and Additive FabricationII.69] P. F. Blazdell, pp.1177-1180, 1971.

M. Mott, J. R. Evans, W. Shen, Y. Zhao, and C. Zhang, Inkjet Printing of Polymers: State of the Art and Future Developments The preparation of ZnO based gas-sensing thin films by ink-jet printing method Deposition of micropatterned coating using an ink-jet technique, [II.74] R. Danzebrink and M. A. Aegerter. [II.75] Q. F. Xiang Proceedings of the Institution of Mechanical Engineers, pp.344-352, 1976.

X. Zhao, J. R. Evans, M. J. Edirisinghe, J. H. Song, M. Lejeune et al., Ceramic Freeforming Using an Advanced Multinozzle Ink-Jet Printer Ink-Jet Printing of Ceramic Micro-Pillar Arrays Advances in Science and Technology Direct Ink Jet Printing of Alumina Components Micro-jet printing of polymers and solder for electronics manufacturing, Mise au point de suspensions thermofusibles compatibles avec un procédé de prototypage rapide de type impression pour la réalisation de structures céramiques de formulation 0,9PbMg0,33Nb0,66O3(PMN)-0,1PbTiO3(PT) Thèse de l. [II.81 Printable organic and polymeric 8.-Réferences [III.1] P. J. Burke, " An RF circuit model for carbon nanotubes Proceedings of the 2002 2nd IEEE Conference on Nanotechnology, pp.319-327, 1998.

G. W. Hanson, C. Brun, C. C. Yap, D. Tan, S. Bila et al., Fundamental transmitting properties of carbon nanotube antennas, Microwave Symposium Digest (MTT) IEEE MTT-S International, pp.3426-3435, 2005.
DOI : 10.1109/TAP.2005.858865

C. Brun, D. Baillargeat, Y. C. Chong, D. Tan, P. Coquet et al., Carbon nanostructures dedicated to RF interconnect management, European Microwave Integrated Circuit Conference (EuMIC), pp.504-507, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01281624

C. Brun, C. C. Yap, S. Bila, D. Baillargeat, and B. K. Tay, Measurement and modeling of carbon nanotubes-based flip-chip RF device, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), pp.1-4, 2013.
DOI : 10.1109/MWSYM.2013.6697486

URL : https://hal.archives-ouvertes.fr/hal-00922470

S. Pacchini, K. Frigui, C. Paragua, E. Flahaut, S. Bila et al., CNTs effects on RF resonators printed on paper, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), pp.1-4, 2013.
DOI : 10.1109/MWSYM.2013.6697794

S. Pacchini, K. Frigui, C. Paragua, E. Flahaut, S. Bila et al., Impact of CNT-film printed on conformal resonator on paper, 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp.1-4, 2014.
DOI : 10.1109/MWSYM.2014.6848649

URL : https://hal.archives-ouvertes.fr/hal-00947106

J. Song, Y. Kim, B. Yoon, J. Choi, C. Kim et al., Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern, Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, pp.95702-95703, 2008.
DOI : 10.1088/0957-4484/19/9/095702

R. De-paolis, T. Le, F. Coccetti, G. Monti, L. Tarricone et al., A novel circuit model of nanotechnology-enabled inkjet-printed gas sensors using multi-wall carbon nanotubes, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), pp.1-4, 2013.
DOI : 10.1109/MWSYM.2013.6697790

M. Balde, F. Jacquemoud-collet, B. Charlot, P. Combette, and B. Sorli, Microelectronic technology on paper substrate, 2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2012, pp.140-143

[. Bhattacharyya, C. Floerkemeier, S. Sarma, V. Lakafosis, A. Rida et al., Low-Cost, Ubiquitous RFID- Tag-Antenna-Based Sensing Progress Towards the First Wireless Sensor Networks Consisting of Inkjet- Printed, Paper-Based RFID-Enabled Sensor Tags, [III.14]. [III.15] M. C. Lessard, L. Van Nifterik, M. Masse, J. F. Penneau, and R. Grob Thermal aging study of insulating papers used in power transformers, pp.1593-1600, 1996.

A. Rida, L. Yang, R. Vyas, M. M. Tentzeris, L. Yang et al., Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications Design and integration of inkjet-printed paper-based UHF components for RFID and ubiquitous sensing applications, Annual Report of the Conference on Electrical Insulation and Dielectric PhenomenaIII.16] Microwave Conference, pp.854-859, 1996.

[. Iii, D. Yang, R. Staiculescu, C. P. Zhang, M. M. Wong et al., A novel 'green' fully-integrated ultrasensitive RFID-enabled gas sensor utilizing inkjetprinted antennas and carbon nanotubes, IEEE Antennas and Propagation Society International Symposium, pp.1-4, 2009.

P. Guillon, Y. Garault, M. D. Janezic, and J. Baker-jarvis, Complex permittivity measurement of MIC substrate Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements, Archiv Elektronik und Uebertragungstechnik IEEE Transactions on Microwave Theory and Techniques, vol.35, issue.47 10, pp.102-104, 1921.

H. Alaaeddine, D. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak et al., Limoges Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz Monitoring of electromagnetic characteristics of split cylinder resonator and dielectric material for temperature caraterization, Contribution à la caractérisation de matériaux diélectriques par résonateurs submillimétriques en technologies planaire et LTCC. [III.23] J. Rammal, O. Tantot, D. Passerieux, N. Delhote, and S. Verdeyme Microwave Conference (EuMC), pp.1343-1352, 2004.

Q. Amin, L. Chen, H. Zheng, and . Tenhunen, Development and Analysis of Flexible UHF RFID Antennas for``for`` Green " Electronics New method for complex permittivity measurement of dielectric materials, Progress In Electromagnetics ResearchIII.26] P.-F. Combes, Micro-ondes : Tome 1, Lignes, guides et cavités, pp.1-15, 1986.

K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip Lines and Slotlines 2nd Ed, III.28] R. Badoual, Les micro-ondes, 1996.

C. Paragua, K. Frigui, S. Bila, D. Baillargeat, and S. Pacchini, An equivalent circuit model of CNT inkjet printed paper-based structures, 2014 44th European Microwave Conference, pp.528-531, 2014.
DOI : 10.1109/EuMC.2014.6986487

URL : https://hal.archives-ouvertes.fr/hal-01293721

Z. Murphy-arteaga, Y. , H. , A. , and T. , A New Analytical Method to Calculate the Characteristic Impedance of Uniform Transmission Lines Parameters Which Are Valid for Complex Source and Load Impedances, Computacion y Sistemas Conversions Between S IEEE Transactions on Microwave Theory and Techniques (Institute of Electrical and Electronics Engineers, vol.16, issue.42 2, pp.277-285, 1994.

-. Molina-lopez, D. Briand, N. F. De-rooij, and M. Smolander, Fully inkjetprinted parallel-plate capacitive gas sensors on flexible substrate, IEEE Sensors, pp.1-4, 2012.

. Schneider, Inkjet printed In2O3 and In2O3/CNT hybrid microstructures for future gas sensing application, " presented at the 14th International Meeting on Chemical Sensors, pp.791-794, 2012.

]. K. Crowley, A. Morrin, M. R. Smyth, A. J. Killard, R. Shepherd et al., Fabrication of chemical sensors using inkjet printing and application to gas detection, 2008 IEEE Sensors, pp.13-16, 2008.
DOI : 10.1109/ICSENS.2008.4716371

H. Lee, K. Naishadham, M. M. Tentzeris, and G. Shaker, A novel highlysensitive antenna-based " smart skin " gas sensor utilizing carbon nanotubes and inkjet printing, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp.1593-1596, 2011.

H. Lee, G. Shaker, K. Naishadham, X. Song, M. Mckinley et al., Carbon-Nanotube Loaded Antenna-Based Ammonia Gas Sensor, IEEE Conference on Cybernetics and Intelligent Systems, pp.2665-2673, 2004.
DOI : 10.1109/TMTT.2011.2164093

A. Yang, R. Rida, M. M. Vyas, L. Tentzeris, R. Yang et al., RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology, IEEE Antennas and Wireless Propagation Letters IEEE Antennas and Propagation Society International Symposium, pp.2894-2901, 2007.
DOI : 10.1109/TMTT.2007.909886

L. Yang, G. Orecchini, G. Shaker, H. Lee, and M. M. Tentzeris, Battery-free RFID-enabled wireless sensors, Microwave Symposium Digest (MTT), pp.1528-1531, 2010.

S. Nikolaou, RFID-enabled ultrasensitive wireless sensors utilizing inkjet-printed antennas and carbon nanotubes for gas detection applications, IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, pp.1-5, 2009.

[. G. Hester, M. M. Tentzeris, Y. Fang14-]-r, S. Mangu, V. P. Rajaputra et al., Inkjet-printed, flexible, high performance, carbon nanomaterial based sensors for ammonia and DMMP gas detection, " presented at the 45th European Microwave Week MWCNT?polymer composites as highly sensitive and selective room temperature gas sensors Multiwalled carbon nanotube arrays for gas sensing applications MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process, Nanotechnology Nanotechnology Sensors and Actuators B: Chemical, vol.22, issue.194, pp.215502-345502, 2008.

. Baumann, Inkjet printing of chemiresistive sensors based on polymer and carbon nanotube networks, 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp.1-4, 2012.

[. Lorwongtragool, E. Sowade, T. Kerdcharoen, and R. R. Baumann, All inkjetprinted chemical gas sensors based on CNT/polymer nanocomposites: Comparison between double printed layers and blended single layer, 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2012, pp.1-4

[. Lorwongtragool, A. Wisitsoraat, and T. Kerdcharoen, An electronic nose for amine detection based on polymer/SWNT-COOH nanocomposites, Nanoelectronics Conference (INEC), pp.73-74, 2010.

P. Lorwongtragool, T. Seesaard, C. Tongta, and T. Kerdcharoen, Portable e-nose based on polymer/CNT sensor array for protein-based detection, 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp.1-6
DOI : 10.1109/NEMS.2012.6196709

]. A. Vena, L. Sydanheimo, M. M. Tentzeris, and L. Ukkonen, A novel inkjet printed carbon nanotube-based chipless RFID sensor for gas detection, Microwave Conference (EuMC), pp.9-12, 2013.

C. Paragua, K. Frigui, S. Bila, D. Baillargeat, S. Pacchini et al., Conception d'un capteur de gaz à transduction électromagnétique à base de nanostructures carbonées sur substrat flexible, Journées Nationales de Microondes, pp.2-5, 2015.

D. Baillargeat, CNTs effects on RF resonators printed on paper, Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International, pp.1-4, 2013.

S. Pacchini, K. Frigui, C. Paragua, E. Flahaut, S. Bila et al., Impact of CNT-film printed on conformal resonator on paper, 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp.1-4, 2014.
DOI : 10.1109/MWSYM.2014.6848649

URL : https://hal.archives-ouvertes.fr/hal-00947106

C. Paragua, K. Frigui, S. Bila, D. Baillargeat, and S. Pacchini, An equivalent circuit model of CNT inkjet printed paper-based structures, 2014 44th European Microwave Conference, pp.528-531, 2014.
DOI : 10.1109/EuMC.2014.6986487

URL : https://hal.archives-ouvertes.fr/hal-01293721

C. Paragua, K. Frigui, S. Bila, D. Baillargeat, and S. Pacchini, A Circuit Model of CNT Patterns for an Inkjet Printed Paper-Based Gas Sensor, Sensors Energy Harvesting Wireless Network & Smart Objects (SENSO). Gardanne / Aix en Provence, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01302167

C. Paragua, K. Frigui, S. Bila, and D. Baillargeat, Study and characterization of CNT Inkjet printed patterns for paper-based RF components, 2015 European Microwave Conference (EuMC), pp.861-864
DOI : 10.1109/EuMC.2015.7345900

URL : https://hal.archives-ouvertes.fr/hal-01293714

P. Bahoumina, H. Hallil, J. Lachaud, C. Dejous, D. Rebière et al., Ink-jet printed flexible gas sensors based on electromagnetic transduction and carbon materials, 2015 IEEE SENSORS, pp.1-4, 2015.
DOI : 10.1109/ICSENS.2015.7370403

URL : https://hal.archives-ouvertes.fr/hal-01302216

C. Nationales-avec-comité-de-lecture, C. Paragua, K. Frigui, S. Bila, D. Baillargeat et al., Un Circuit Equivalent des CNT Imprimés par Jet d'Encre sur Papier, Journées Nationales du Réseau Doctoral en Microélectronique (JNRDM), vol.2014, pp.26-28, 2014.

C. Paragua, K. Frigui, S. Bila, and D. Baillargeat, Étude et caractérisation de motifs de CNT imprimés par jet d'encre sur papier pour des structures RF, Journées Nationales du Réseau Doctoral en Micro-nanoélectronique (JNRDM) 2015, pp.5-7, 2015.

H. Happy, J. L. Hallil, P. Lachaud, C. Bahoumina, D. Dejous et al., Conception d'un capteur de gaz à transduction électromagnétique à base de nanostructures carbonées sur substrat flexible, Journées Nationales Microondes (JNM) 2015, pp.2-5