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Andrii Voshchepynets
Interaction faisceau-plasma dans un plasma
aleatoirement non-homogene du vent solaire

Résumé : Dans cette thése nous avons présenté un modéle probabiliste auto cohérent décrivant
la relaxation d’un faisceau d'électrons dans un vent solaire dont les fluctuations aléatoires de la
densité ont les mémes propriétés spectrales que celles mesurées 3 bord de satellites. On a supposé
que, le systéme possédait différentes échelles caractéristiques en plus de I'échelle caractéristique des
fluctuations de densité. Ceci nous a permis de décrire avec précision |'interaction onde-particule a
des échelles inférieures a I'échelle caractéristique des fluctuations de densité en supposant que des
paramétres d'onde sont connus: notamment, la phase, la fréquence et I'amplitude. Cependant,
pour des échelles suffisamment plus grandes que |'échelle caractéristique des irrégularités de densité,
I'interaction des ondes et des particules ne peut étre caractérisée déterminé que par des quantités
statistiques moyennes dans |'espace des vitesses a savoir: le taux de croissance/amortissement et
le coefficient de diffusion des particules. En utilisant notre modéle, nous décrivons I'évolution de la
fonction de distribution des électrons et d'énergie des ondes de Langmuir. Le schéma 1D suggérée
est applicable pour des paramétres physiques de plasma du vent solaire a différentes distances du
Soleil. Ainsi, nous pouvons utiliser nos calculs pour décrire des émissions solaires de Type Ill, ainsi
que les interactions de faisceau avec le plasma, a des distances d'une Unité Astronomique du Soleil
dans I'héliosphére et au voisinage des chocs planétaires.

Mots clés : accélération des particules, plasma, vent solaire

Beam-plasma interaction in randomly inhomogeneous solar wind

Résumé : This thesis is dedicated to effects of plasma density fluctuations in the solar wind on the
relaxation of the electron beams ejected from the Sun. The density fluctuations are supposed to
be responsible for the changes in the local phase velocity of the Langmuir waves generated by the
beam instability. Changes in the wave phase velocity during the wave propagation can be described
in terms of probability distribution function determined by distribution of the density fluctuations.
Using these probability distributions we describe resonant wave particle interactions by a system of
equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion
coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown
that the process of relaxation of electron beam is accompanied by transformation of significant part
of the beam kinetic energy to energy of the accelerated particles via generation and absorption of
the Langmuir waves. We discovered that for the very rapid beams the relaxation process consists of
two well separated steps. On first step the major relaxation process occurs and the wave growth rate
almost everywhere in the velocity space becomes close to zero or negative. At the seconde stage
the system remains in the state close to state of marginal stability enough long to explain how the
beam may be preserved traveling distances over 1 AU while still being able to generate the Langmuir
waves. Keywords : acceleration of particles, plasma, solar wind
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Chapter 1

Introduction

1.1 Solar electron beams

The Sun is most efficient accelerator of the charged particles in the solar system. Solar
flares and their associated coronal mass ejections are the most violent examples of the
acceleration of electrons. Solar flares are the manifestation of a sudden, intense and
spatially concentrated release of energy in the solar corona, causing localized heating up
to temperatures of ~ 107K, as evidenced by the copious emissions of short-wavelength
(soft X-ray, 0.1—10 nm) radiation. The association of largest flares with magnetic active
regions, and their very short onset time, leave little doubt that magnetic reconnection
is the mechanism responsible for the dynamical release of magnetic energy [see, for
instance, Kulsrud, 1998, Priest and Forbes, 2000].

All solar flare models involve magnetic reconnection in one or the other form [see
Aschwanden, 2002, as review|. Magnetic reconnection changes the topology of the
magnetic field by reconfiguring the connectivities between opposite magnetic polarities.
During magnetic reconnection, the connectivity between opposite polarities is switched
and the new-configured field lines snap back into a lower energy state. Reconfiguration
of the unstable magnetic field configuration of the solar atmosphere to lower energy
states results in the acceleration of charged particles up to relativistic energies. Over
a period of tens of seconds to minutes, energy up to 1032 ergs can be transferred into
accelerated electrons. [e.g., Emslie et al., 2012].

Accelerated electrons can escape the Sun before they lose their energy and slow
down. In situ observations in the heliosphere provide the opportunity to directly detect
solar flare accelerated electrons [e.g., van Allen and Krimigis, 1965, Anderson and Lin,
1966]. From the in situ observations in the interplanetary medium near 1 AU it was
shown that solar impulsive ~ 1 — 100 keV electron events occur 103 times per year
near solar maximum over the whole Sun [see Lin, 1985]. An analysis of the detailed
observations of energetic electrons from the ISEE 3 spacecraft has revealed that electron
distribution is highly anisotropic and is beamed along the background magnetic field

lines. The impulsive electron events often show a clear scatter-free velocity dispersion
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Figure 1.1: Example of a typical solar impulsive electron event observed from the keV
range up to 500 keV. Left: time profiles at different energies as indicated. The top
panel shows data from the electrostatic analyzer (EESA-H) and the bottom panel shows
data from the SST. Note the much higher sensitivity of SST. Right: derived electron
peak flux spectrum of the same event. EESA-H data are shown in gray (asterisk),
while the SST measurements are given in black (crosses). The thin curves below give
an estimate of the background emission. The red and blue curves are the power-law
fits to the data, with a pronounced break around 60 keV [from Krucker et al., 2009].

when the higher energy electrons arrive earlier than electrons at lower energy |[Krucker
et al., 2007, 2009]. This is consistent with a simple ballistic transport model, when
after simultaneous injection the electron beams propagate near scatter-free along the
interplanetary Archimedean spiral field line to 1A.U. [Lin, 1985].

Example of typical solar impulsive electron event observed by WIND spacecraft
is shown in Figure 1.1[from Krucker et al., 2009]. Observed electron spectra show a
broken power law dependencies. The break in the spectrum is around 60 keV and
the spectra above break are significantly steeper. The values of the power-law index
below the break, d;,,, is 1.8 and above the break, dpign, is 3.7. A statistical study of
the observations from the IMP 6, 7, and 8 spacecrafts |Lin et al., 1982] showed ;4
between 0.6 and 2.0 and dpgp 2.4 and 4.3, while the values obtained from the WIND
observations |Krucker et al., 2009| were 6o,y = 1.9 £ 0.3 and pign, = 3.6 £ 0.7. The
observed energies of the break lie in the range from 30keV to 100keV but typically
are of approximately ~ 60keV . It is speculated that the observed breaks in spectrum

are direct signatures of the acceleration mechanism [Wild et al., 1963, van Allen and



Krimigis, 1965, Anderson and Lin, 1966, Lin, 1974|. However, many processes such
as energy losses in the electric field induced by electrons during precipitation into the
flaring atmosphere and associated Ohmic heating of the ambient electrons [e.g Haydock
et al., 2001, Zharkova and Gordovskyy, 2006],nonuniform ionization |e.g Kontar et al.,
2002], albedo Compton backscattering [e.g Kasparova et al., 2007], could influence the
spectral shape as well. The observed spectral breaks therefore do not necessarily have
to be a signature of the acceleration mechanism.

Remote sensing, hard X-ray observations provide the electron spectra near the Sun.
Near the Sun, nonthermal electrons produce bremsstrahlung emissions in the hard X-
ray (HXR) range. Inversion of the observed photon spectrum provides information on
the spectrum of the non-thermal electrons. The electron spectra derived from these
observations show power-law or broken-power shapes [e.g., Lin and Schwartz, 1987,
Krucker and Lin, 2002, Conway et al., 2003]. Comparison of the statistical proper-
ties of electron spectra near the Sun and near Earth showed two main differences: (1)
the number of escaping electrons is much lower, and (2) the escaping electrons have
flatter/harder spectra [Krucker et al., 2009]. It was shown [Krucker et al., 2007| that
spectral indices, and number of the escaping electrons with energies above 50 keV and
electrons producing the HXR emission near the Sun are correlated. This may indicate
the single process accelerating both the escaping and HXR-producing electrons. The
spectral shape of the electrons near 1 A.U. could be altered by an energy-dependent es-
cape and/or transport effects. For instance, wave-particle interactions during the beam
propagation within the interplanetary medium could distort the spectrum significantly
le.g., Kontar, 2001b].

1.2 Solar type 1II radio bursts

Electron beams, ejected from the Sun during solar flares, are widely accepted to be
responsible for the generation of solar Type III radio bursts [Lin, 1970, Alvarez et al.,
1972, Frank and Gurnett, 1972, Ergun et al., 1998]. These bursts are amongst the
strongest radio emissions found within the solar system. Radio bursts have a char-
acteristic frequency near the fundamental frequency (local electron plasma frequency)
and/or its harmonic. Both the fundamental and the harmonic emissions are character-
ized by a rapid drift, from high frequency to low, that can be assigned to the decreasing
electron density of the solar wind |Lin et al., 1981|. Since they can provide an impor-
tant information about the acceleration and transport of Solar energetic electrons, as
well as information regarding the conditions of the background plasma, Type III radio
bursts have been the object of scientific study for the past 60 years [see the review of
Reid and Ratcliffe, 2014].

Ginzburg and Zhelezniakov [1958] were the first to propose a generation mechanism

for Type III radio bursts. The theory was later refined by many authors [Goldman,



1072 | 40 keV

66 keV

frequency [MHz]

1073} 108 keV

f\’
N 1 181 keV
. \“'M\\ A WA N V
N 510 keV

\J ~ ‘\'\J»\/ﬂ“
1074 MMJ‘\I/'MWV\WW

2130 2200

electron flux [s™ cm™ ster” eV']

frequency [Hz]

Figure 1.2: Left panels: An expanded view of the WIND /WAVES data including low
frequency observations. Right panel: In situ observed energetic electrons from 30 to
500 keV detected by WIND /3DP[from Krucker et al., 2007].

1983, Dulk, 1985, Melrose, 1987]. Today, it is widely accepted that the Type III radio
bursts are the result of a two steps process. In the first step, electrostatic plasma
waves (Langmuir waves) are generated by electron fbeam. In the second step, due to
scattering on plasma ions or density fluctuations, Langmuir waves can be converted to
an electromagnetic emission with a plasma frequency, while harmonic emissions appear
as a result of the coalescence of two Langmuir waves. Figure 1.2 shows simultaneous
observations from WIND spacecraft of the electron beam and electro-magnetic emission.

The Langmuir waves have been observed and studied on many spacecrafts, because
they are known to be responsible for converting accelerated electron beam energy into
the electromagnetic energy of type III radio bursts [Gurnett et al., 1978, Lin et al.,
1981, Mangeney et al., 1999, Kellogg et al., 1992, Ergun et al., 2008|. Analysis of the
measurements of the three-dimensional structure of solar wind Langmuir waves made
by the STEREQO spacecraft showed that the waves can be classified into three major
types having different three-dimensional electric field hodograms [Malaspina and Ergun,
2008|. Omne-dimensional wave structures are observed aligned with the local magnetic
field and compose nearly 75% of the 2000 waveforms of Langmuir waves captured by
time domain sampling instrument. Two- and three-dimensional wave structures are
also observed, and make up a minority of the total samples.

The canonical plasma emission mechanism is the nonlinear wave-wave interaction of
Langmuir, ion-acoustic, and electromagnetic waves [Melrose, 1980a]. In the wave-wave
mechanism, existing Langmuir waves L couples with the backward propagating ion-
acoustic wave S and these two waves generate an electromagnetic wave t = L+ 5 = t.
It is worth noting here that the process also often observed is the decay of the primarily
generated by the beam Langmuir wave onto another backward propagating Langmuir

wave and ion acoustic wave. However so generated acoustic wave in general can not be
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directly involved onto generation of the electromagnetic emission, its k-vector typically
is too large to ensure the satisfaction of the resonant condition k; = kp + kg. As ky
~ wp/c, and kr, ~ wp/vp >> ke, the kg o~ —kp, thus the presence of intense density
fluctuations in the plasma can make the coupling sufficiently more efficient.

Harmonic emissions appear as a result of the coupling of forward and backward-
propagating Langmuir waves. There were several alternative mechanisms proposed to
explain electromagnetic emissions, between those, the direct conversion of the beam-
driven Langmuir waves into electromagnetic radiation in the presence of the inhomo-
geneities, [Hinkel-Lipsker et al., 1992], quasi-mode processes [Yoon et al., 1994], and the
radiation by localized bunches of the Langmuir waves by means of the antenna radi-
ation [Papadopoulos and Freund, 1978, Goldman et al., 1980]. The antenna radiation
mechanism considers the radiation by nonlinear currents at twice plasma frequency,
driven by plasma oscillations. Recently, an alternative formulation based of the idea
that a significant fraction of solar wind Langmuir waves are localized as eigenmodes of
solar wind density cavities was proposed [Ergun et al., 2008, Malaspina et al., 2012].
In this mechanism, eigenmode-localized Langmuir waves drive localized, nonlinear elec-
trostatic modes at 2f,, which, in turn, emit coherent electromagnetic radiation with
an efficiency dependent on local plasma parameters and wave packet characteristics
such as amplitude and length scale. However one should take into account the theorem
shown in Landau and Lifshitz [1960] course that there are no dipolar emission in non-
relativistic case if only electron motions are taken into account due to the fact that for
the particles with the same ratio of e/m, the dipolar moment is equal to zero. Thus
only quadrupole emission can exist. Further discussion of this topic comes beyond the

scope of our consideration.

1.3 Beam plasma interaction

A long standing theoretical problem corresponds to the question how the electron beam
may be preserved while traveling distances over 1AU still being able to generate Lang-
muir waves. The standard quasi linear (QL) theory, which describes the relaxation of
the electron beams in a homogeneous plasma [Vedenov et al., 1962, Drummond and
Pines, 1964| , considers the interaction of Langmuir waves with beam particles under
conditions of exact resonance: the phase velocity of the waves should be equal to the
velocity of the electrons. As a result, waves are stated to only grow in the domain of
the velocity space where the electron velocity distribution function has a positive slope.
Relaxation finishes when the back-reaction of waves on particles forms a plateau type
distribution and stops wave growth. An application of the QL theory to conditions of
the solar corona indicated that the spatial length for the saturation of beam-plasma
instability was about several hundreds kilometers [Sturrock, 1964].

Detailed in situ measurements from ISEE 1 and 2 [Anderson et al., 1981] and from
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ISEE 3 [Lin et al., 1981] spacecrafts at 1 AU have indicated the simultaneous presence of
the positive slope for the electron distribution function and the growth of plasma waves
above the background level. The positive slope on the electron distribution function,
f(v), was observed in the range of velocities from 3 - 10"ms™! to 13- 10"ms~!. Typi-
cal observed values of 0 f(v)/0v were in the range from 10718m =252 to 107 14m =552
Strong positive slopes ~ 10719m 2572 were observed to persist for periods of > 10 min-
utes. The plasma wave intensity showed close correlation with variations in 9f(v)/0v.
However, the observed plasma waves level was many orders of magnitude below the
the level predicted by the QL theory for parameters of observed beams. This fact in-
dicates that some physical mechanism should be present that can decrease the level of
generated Langmuir waves and suppress the beam relaxation process.

Zaitsev et al. [1972] considered the time-of-fly effects on the relaxation process.
At the given distance from the source of the energetic electrons, the bump in the
distribution function moves from high to low velocities with time. The relaxation can
be slowed down because the plasma waves produced by the positive slope portion of the
distribution function may not build up to sufficient amplitudes to cause back-reaction on
the bump before the bump has moved to the lower velocities. Also the Langmuir waves
produced by a positive slope at time ¢; may be reabsorbed at the later time 9 when a
negative slope is present. Reabsorption allows a reduction in the energy losses of beam
particles and, as a result, the process of ’plateauing’ is slowed. However, numerical
simulations |Takakura and Shibahashi, 1976] have demonstrated that the spatial scale
of the relaxation is still too small to explain the observations of the positive slope for
the electron distribution at 1AU.

To explain smaller levels of wave energy density than those predicted by QL theory,
additional physical processes were invoked that could evacuate Langmuir waves from
the velocity range resonant with particles. Such an outflow of wave energy to other
regions of velocity space could be related to nonlinear processes. They could also play an
important role in the evolution of generated Langmuir waves [Melrose, 1980b]. During
1970's, beam plasma interaction was studied in the framework of weak [Sagdeev and
Galeev, 1969, Kaplan and Tsytovich, 1973] and strong [Zakharov, 1972, Papadopoulos
et al., 1974, Galeev et al., 1977a| turbulence theory. In the frame of weak turbulence
theory the process of electrostatic decay of Langmuir waves, consisting of the decay
of a primary Langmuir wave on a secondary Langmuir wave and an ion sound wave,
was considered. Since a secondary Langmuir wave is far from the resonance with
the beam particles, the wave energy density in the resonance region of the velocity
space significantly decreases. The strong turbulence theory ensures an even more rapid
outflow of wave energy from the resonant interaction region. The theory is based on
modulation instability and wave collapse. The modulational instability, also known as

the oscillating two stream instability, excites a low-frequency ion density perturbation
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which can be either a freely propagating ion sound wave or a strongly damped quasi-
mode. This can beat with two of the initial pump Langmuir waves and produce high-
frequency down-shifted and up-shifted sidebands. The spatial collapse, on the other
hand, occurs due to intensification of the localized Langmuir wave packet in the self-
generated shrinking density cavity. The level of wave saturation becomes smaller and
the corresponding beam relaxation length longer [Galeev et al., 1977b|. The first semi-
quantitative models for type III solar radio bursts in the solar wind from 0.1 to 1 AU
were developed on the basis of these models [Smith et al., 1976]. Recently, [Thejappa
et al., 2012, 2013] has presented observational evidence for the oscillating two stream
instability and spatial collapse of Langmuir waves in the source region of a solar type I11
radio burst. However, Graham et al. [2012] has analyzed the same event using all three
electric components and showed that, while the wave packet has structure consistent
with collapse simulations and theory, the field strength is well below that required for

collapse to proceed.

1.4 Langmuir waves clumping

From the very first measurements onboard satellites it was determined that Langmuir
waves were not homogeneously distributed in space but rather clumped into spikes with
peak amplitudes typically three orders of magnitude above the mean level |Gurnett
et al., 1978]. Smith and Sime [1979] after analyzing plasma waves in the source region
of solar type III ratio bursts, argued that no evidence existed in the data regarding non-
linear processes such as a wave collapse or soliton formation and proposed a clumping
phenomenon associated with the presence of density irregularities in plasma. Density
irregularities can cause changes in the phase velocity of Langmuir waves, and, as a
result, can lead to a rapid break-down in the conditions for beam-plasma instability. If
the characteristic spatial scales of the inhomogeneities are comparable with the spatial
growth rate, a wave along its path can consequently pass regions where it can grow
and regions where the resonance conditions for wave-particle interactions are violated.
As a result, sufficient amplification may only occur along certain paths where the
successive inhomogeneities present allow significant amplification for the formation of
spikes [Muschietti et al., 1985, Melrose et al., 1986, Robinson, 1992]. Waveforms of
large-amplitude Langmuir oscillations recorded by the Wind spacecraft are shown in
Figure 1.3.

The observations of the large scale electron density fluctuations in the solar wind
gave strong argument in favor of such an interpretation. In situ measurements of the
density fluctuations spectrum onboard ISEE 1 and 2 satellites |Celnikier et al., 1983]
revealed that characteristic density fluctuations as high as 1072 may exist on the scale
range of the order of 100km, while interplanetary scintillations measurements from ex-

tragalactic radio sources give an average value for density fluctuation of the order of
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Figure 1.3: Typical Langmuir waveforms for various amplitudes. Panels (a), (b), and
(c) show large amplitude Langmuir waves. Weaker Langmuir wave packets are shown
in panels (d) and (e) [from Bale et al., 1997].

1073 [Cronyn, 1970]. The electron density power spectrum can be presented in the form
of a double-power with different spectral indices, with a breaking frequency of approxi-
mately 6-102H 2 [Celnikier et al., 1983|. In the low frequency (long wavelengths) part of
the spectrum, it can be approximated quite well using the Kolmogorov power law. The
power index for high frequencies is variable, typically lying in the rage —0.39 ~ —0.94.
The spectrum was found to be isotropic, indicating that the direction of the magnetic
field is irrelevant. The result was obtained by Celnikier et al. [1987], making use the
technique of active sounding between two satellites. Similar results were obtained by
Kellogg and Horbury [2005] by deducing density fluctuation spectra from EFW probe
potential variations measured aboard Cluster spacecraft in the free solar wind.

The presence of such fluctuations can result in several physical effects that can affect
beam-plasma interaction dynamics. Certain effects were identified recently making use
of direct measurements of high frequency electric fields in space. Bale et al. [1998]
and Kellogg et al. [1999] have reported that the waves observed in the vicinity of the
electron foreshock region have quite often elliptical polarization, rather than linear,
and can belong to the Z-mode rather than the Langmuir mode. They suggested that
the transformation of primarily generated Langmuir waves to the slow electromagnetic

mode can occur due to plasma inhomogeneities.
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1.5 Beam-plasma interaction in the non-homogeneous so-
lar wind

A very similar problem related to the interaction of electron beam with a nonhomo-
geneous plasma was studied in laboratory plasma. Breizman and Ryutov [1970] con-
sidered the case of plasma with a monotonously increasing/decreasing density profile
along the path of beam propagation and indicated that due to changes in the k vector
of Langmuir waves the presence of density inhomogeneity leads to effective outflow for
the wave energy from regions of the velocity space where the waves are primarily gen-
erated. As a result, the efficiency of beam-plasma instability is significantly reduced.
For the case of monotonously increasing density, the beam was also determined to
spread not only to lower but also to higher velocities. The outcome is the formation
of a tail of accelerated electrons. Ryutov [1969] proposed a model describing electron
beam relaxation in a plasma with relatively deep density cavities. He argued that if
the depth of the potential hole formed by the cavity is sufficiently deep, wave activity
is mainly localized to an area near the bottom of the well. The k vector of waves
undergoes oscillations around zero. For this case, beam instability can be stopped even
when a positive slope on the beam particle velocity distribution occurs [Ryutov, 1969,
Voshchepynets and Krasnoselskikh, 2013]. Nishikawa and Ryutov [1976] considered the
development of beam-plasma instability in a plasma with weak random density fluctu-
ations. The amplitudes of the density irregularities were thought to be small enough to
exclude possible wave reflection. The angular diffusion of Langmuir waves on density
fluctuations on timescales smaller than the typical growth time were shown to be able
to strongly suppress the beam-plasma instability.

Relaxation of the electron beam in the non-homogeneous solar wind has been inves-
tigated by many authors in the framework of QL theory, week and strong turbulence
theories [Kontar, 2001a, Li et al., 2006, Krasnoselskikh et al., 2007, Reid and Kon-
tar, 2010, Ziebell et al., 2011|. Recent numerical simulations take into account various
effects, including Landau and collisional damping, the reflection of waves on large den-
sity gradients, angular scattering, non-linear wave processes, expansion of the solar
magnetic field from the corona to the interplanetary space, the generation of the elec-
tromagnetic emissions, etc [Reid and Kontar, 2010, Krafft et al., 2013, 2014, Ratcliffe
et al., 2014, Reid and Kontar, 2015]. These studies confirm that density irregularities
strongly affect the dynamics of beam and plasma wave activity.

Numerical simulations of the beam plasma interaction in a monotonically inho-
mogeneous plasma containing negative gradient of the plasma density profile [Kontar,
2001a, Kontar and Reid, 2009, Reid and Kontar, 2010, 2013] indicate that electron
beams ejected from the Sun lose their energy much more slowly than for the homo-

geneous case and can propagate over distances larger than 1 AU. The relaxation is
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slowed down because the waves driven by the beam are refracted in decreasing plasma
density towards high wave numbers (lower phase velocities), thereby reducing the level
of waves that can react with the beam [Kontar, 2001b|]. The results are in a good
agreement with the recent observations from the STEREO spacecraft [Krupar et al.,
2015]. Additionally, in the presence of large scale density fluctuations, a shift of the
k-vector for primarily generated waves to the lower k has been demonstrated [Reid and
Kontar, 2010]. Subsequent reabsorption by energetic electrons can provide quite an
efficient mechanism of particle acceleration. Several recent numerical simulations for
beam-plasma interactions by means of different techniques in randomly inhomogeneous
plasmas [Ratcliffe et al., 2012, Krafft et al., 2013, Ratcliffe et al., 2014| have shown that
significant portion of the beam energy can be transferred to accelerated particles.

Kontar and Reid [2009] have investigated the corresponding energy spectrum of the
electron beam after it has propagated 1 AU [see also Reid and Kontar, 2010, 2013].
It was shown that the level of density fluctuations has a direct effect on the spectral
characteristics of the electron beam near the Earth. Authors have found a direct
correlation between the spectrum of the double power-law below the break energy and
the turbulent intensity of the background plasma. The numerical simulations allowed
to reproduce two-knee power electron energy spectrum observed near the Earth. The
effects of the diffusion of Langmuir waves in wave-number space was considered in
[Ratcliffe et al., 2012, 2014, Kontar et al., 2012]. It was found that this effect has the
potential to suppress the beam-plasma instability when the diffusion is sufficiently fast,
namely, when the timescale for diffusion of Langmuir waves in wave-number space is
close to the quasi-linear time.

The idea that the local growth rate of Langmuir waves in a plasma with random den-
sity irregularities can behave as a random variable was suggested by Robinson [1992].
Stochastic growth theory (SGT) [Robinson et al., 1993, Robinson, 1995, Cairns and
Robinson, 1999|, deals with an electron beam that propagates through the solar wind
close to the state of marginal stability. For such a case, the growth rate of waves only
depends on the local characteristics of the plasma. SGT suggests that a significant
amplification of waves may only take place along certain paths that contain many re-
gions where the local growth rates for waves are positive, thus, the total growth rate
characterizing a gain in wave energy should behave in a manner similar to that of the
sum of random variables. By applying the central limit theorem to the sum of growth
rates, SGT predicts a log-normal distribution for the wave amplitudes. Different exper-
imental data registered onboard various spacecraft and in laboratory plasma [Cairns
and Robinson, 1999, Cairns and Menietti, 2001, Austin et al., 2007] have indicated that
the observed distributions for Langmuir wave amplitudes are rather similar to the log-
normal distribution. Recent simulations, which include Langmuir-beam evolution in an

inhomogeneous plasma background, incorporate angular scattering, and take into ac-

16



count nonlinear wave processes, demonstrate the evolution of the beam plasma system
to a final state predicted by the stochastic growth theory |Li et al., 2006]. However, a
statistical study of the large database onboard Cluster satellites [Krasnoselskikh et al.,
2007] unambiguously demonstrated that deviations from the log-normal distribution
are rather significant [Vidojevi¢ et al., 2011, see also].

Recently, Voshchepynets et al. [2015] proposed a self-consistent probabilistic model
that describes beam-plasma instability in a plasma with random density fluctuations. In
contrast to the model proposed by Nishikawa and Ryutov [1976], density fluctuations
were thought to be high enough to cause changes in the k in the direction of wave
propagation. As a result, the wave phase velocity can change, allowing the wave to
resonantly interact with beam electrons that have different velocities within a quite
large range. An assumption that the phase velocity is a random quantity that obeys
a predetermined distribution allows one to describe the energy exchange between the
waves and the beam in terms of an averaged in the velocity space growth rate of the
waves, and the similarly averaged electron velocity diffusion coefficient (Chapter 3).
The averaged growth rate and diffusion coefficient depend on the form of distribution
function for the wave phase velocity that is determined by the distribution function of
the density fluctuations. We have proposed a technique for evaluating the distribution
function of density fluctuations using density fluctuations obtained from measurements
onboard satellites. We used the Pearson technique for classifying different distributions
[Pearson, 1895| in order to determine what type of distribution can represent the best
fit for observed variations in the solar wind plasma density and how it’s form affects the
beam relaxation process. Using the Pearson type II distribution found to be the best
fit, we determined the distribution function of wave phase velocities and applied this
distribution in our model for beam plasma interaction (Chapter 4). The model, applied
for a realistic conditions in solar wind, allowed us to investigate how key parameters
of the relaxation process, such as the energy of particles at the end of relaxation, the
saturation level of the wave energy density, the characteristic time of the relaxation,
etc., depend on the level of density fluctuations and on the initial velocity of the beam.
It is worth noting that the results obtained in the model are in a good agreement with
weak turbulence theory.

At the end we have investigated the statistical properties of the amplitudes of the
Langmuir waves in the clumping regions by making use of our model and of the Hamil-
tonian based approach taking data of simulations by Krafft et al. [2013|(Chapter5). The
Hamiltonian models are used to describe self-consistently wave-particle and wave-wave
interactions in homogeneous or inhomogeneous magnetized plasmas. Various physi-
cal problems could be efficiently studied by such methods, concerning nonlinear and
turbulent stages of different instabilities of electron or ion distributions, wave-particle

interactions at multiple resonances, quasi-linear diffusion processes of particles interact-
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ing with waves, wave turbulence in randomly inhomogeneous plasmas, wave focusing,
scattering, reflection and decay |Krafft et al., 2015]. Recently, [Volokitin et al., 2013,
Krafft et al., 2013, 2014, 2015| the self-consistent model was applied to the problem of
the resonant interaction of an electron beam with Langmuir wave packets in plasma
with density fluctuations under conditions close to the typical solar type III bursts
region. A Hamiltonian model describes the properties of the waves propagating in a
plasma with large and random density fluctuations by the Zakharov’s equations and the
energetic beam by means of particles moving self-consistently in the fields of the excited
Langmuir waves. The approach supposes that the particles’ distribution is split into (1)
a so-called non-resonant bulk formed by the background plasma, which interacts weakly
with the waves and can be described using linear theory, and (2) the resonant beam
particles, which experience strong energy exchanges with the waves and whose motion
follows the Newton equations. Comparison of the wave-form of the Langmuir waves
obtained in the simulations with recent measurements by the STEREO and WIND
satellites shows that their characteristic features are very similar [Krafft et al., 2014].
The remainder of the manuscript is organized as follows. Chapter 2 provides a
brief introduction to essentials of beam-plasma interaction in homogeneous plasma as
well as in plasma with large scale density irregularities. Part of this material can be
found in various textbooks dedicated to plasma physics [Artsimovich and Sagdeev, 1979,
Akhiezer, 1975, Melrose, 1980b| and in original papers [Breizman and Ryutov, 1970,
Ryutov, 1969, Vedenov and Ryutov, 1975|. In the Chapter 3 we present recently pub-
lished statistical model for beam plasma interaction in a plasma with relatively small
scale (102XAp-10°\p) density fluctuations [Voshchepynets et al., 2015]. The model, ap-
plied for a case with a normal distribution for the fluctuations, allowed us to investigate
how key parameters of the relaxation process, such as the energy of particles at the end
of relaxation, the saturation level of the wave energy density, the characteristic time
of the relaxation, etc., depend on the level of density fluctuations and on the initial
velocity of the beam. In Chapter 4 we perform a statistical study of density fluctua-
tions, deduced from measurements onboard satellites when they were in the solar wind.
Our analysis indicates that on spatial scales of approximately 102Ap, the distribution
of the fluctuations obeys a Pearson type II distribution. Numerical simulations for
the electron beam plasma interaction for both cases of the Gaussian and non-Gaussian
distribution does not lead to substantial difference. In Chapter 5 we present prelimi-
nary statistical analysis of the results of simulations carried out using equations derived
in our probabilistic model of beam plasma interaction with probability distribution of
density fluctuations corresponding to observed in solar wind. The results we obtain
in our simulations are statistical distributions of the wave intensities in the process of
development and evolution of the beam plasma instability in inhomogeneous plasma.

It was shown that the statistical characteristics of wavefields strongly depends on the
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levels of density fluctuations.

1.6 Resume in French

Pendant plusieurs décennies, les ondes de Langmuir dans le vent solaire et en amont du
choc de la Terre et d’autres planétes ont fait 'objet d’études intensives [Kellogg, 2003,
Brain, 2004, Soucek et al., 2009]. 11 est largement admis que les faisceaux d’électrons
éjectés du soleil pendant les éruptions solaires sont responsables de la génération d’ondes
de Langmuir par intermédiaire de I'instabilité de faisceau-plasma [Anderson et al., 1981,
Lin et al., 1981]. Les premiéres études mettant en évidence ce processus étaient effec-
tuées dans la région source des émissions radio de type III qui sont parmi les émissions
radio les plus intenses observées dans le systéme solaire. Ginzburg et Zhelezniakov
[1958] ont suggéré que des ondes électromagnétiques peuvent étre générées lorsque des
ondes électrostatiques de Langmuir sont diffusées par des ions ou par des fluctuations
de densité. Dans ces conditions, la fréquence d’émission sera égale & la fréquence de
plasma locale. Les émissions d’harmoniques (ayant une fréquence d’environ deux fois
la fréquence de plasma) apparaissent a la suite de la coalescence de deux ondes de
Langmuir. La théorie d’un mécanisme en deux étapes de la génération des émissions
solaire de type III a été affinée par de nombreux auteurs [Cairns and Melrose, 1985,
Melrose, 1987, Yoon et al., 1994, Malaspina et al., 2012].

Il reste encore un probléme théorique de longue date, notamment, comment un
faisceau d’électrons peut étre préservé jusqu’a des distances plus grandes que 1 AU,
en restant capable de générer des ondes de Langmuir. La relaxation d’un faisceau
d’électrons dans un plasma homogéne est décrit par la théorie quasi linéaire |[Vedenov
et al.,, 1962, Drummond and Pines, 1964], qui ne prend en compte que l'interaction
des ondes de Langmuir avec les particules du faisceau se trouvant sous la condition de
résonance exacte: c’est-a-dire, la vitesse de phase des ondes doit étre égale & la vitesse
des électrons. En conséquence, les ondes sont supposées a croitre seulement dans le
domaine de I’espace des vitesses ol la fonction de distribution des électrons posséde une
pente positive. La relaxation prend fin lorsque la réaction des ondes sur les particules
résonantes formera une distribution de type plateau et la croissance d’onde s’arréte.
Une application de la théorie QL aux conditions de la couronne solaire a donnée un
résultat trés surprenant, la longueur spatiale de la saturation de 'instabilité faisceau-
plasma se produit & une distance de quelques centaines de kilomeétres [Sturrock, 1964].
Des mesures in situ a la distance de 1 AU [Anderson et al., 1981, Lin et al., 1981]
ont indiqué la présence simultanée de pente positive de la fonction de distribution
d’électrons et des ondes de Langmuir de niveau au-dessus du niveau de bruit.

Zaitsev et al. [1972] a considéré un effet supplémentaire, notamment, la possibilité,
pour que I'onde de Langmuir générée par le faisceau soit ensuite réabsorbée par des

groupes d’électrons retardataires. Le processus de réabsorption permet de réduire les
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pertes d’énergie des particules du faisceau et, par conséquent, le processus de formation
du plateau est ralenti. Cependant, des simulations numériques |Takakura and Shiba-
hashi, 1976] ont démontré que P'échelle spatiale de relaxation reste encore trop petite
pour expliquer les phénoménes observés.

Une explication possible peut étre liée au développement de processus non linéaires
qui peuvent limiter la croissance des ondes en enlevant des ondes linéairement insta-
bles de la région de résonance de 1'espace des vitesses [Papadopoulos et al., 1974]. Ce
processus réduit ainsi la contre-réaction des ondes sur les particules du faisceau. Dans
le cadre de la théorie de la turbulence faible [Sagdeev and Galeev, 1969, Kaplan and
Tsytovich, 1973] le processus de décroissance de 'onde de Langmuir en onde électrosta-
tique secondaire et onde ionique-sonore peut jouer un réle important sur la limitation
de I'énergie des ondes résonantes. Dans ce scénario, 'onde de Langmuir secondaire est
loin de vérifier la condition de résonance avec les particules du faisceau, et la densité
d’énergie des ondes dans la région de résonance de l’espace des vitesses diminue de
maniére significative. Une autre étape consiste en un développement de la turbulence
forte. La théorie est basée sur l'instabilité de modulation et pendant la phase non-
linéaire, sur 'effondrement d’onde [Zakharov, 1972, Papadopoulos et al., 1974, Galeev
et al., 1977b]. La théorie de la turbulence forte assure une fuite encore plus rapide de
I’énergie des ondes de la région d’interaction résonante. Les modéles semi-quantitatifs
décrivant les émissions solaires radio de type III dans le vent solaire de 0.1 AU 4 1 AU
ont été développés en prenant en compte cet effet [Smith et al., 1976].

Dés les premiéres mesures & bord de satellites, il a été observé que les ondes de
Langmuir ne sont pas réparties de maniére homogéne dans 'espace, mais elles ont
plutot tendance & s’agglutiner en épis avec des amplitudes de pics généralement de
trois ordres de grandeur au-dessus du niveau moyen. |[Gurnett et al., 1978|. Sime et
Smith [1979] partant d’analyse des ondes de plasma dans la région source des émissions
radio solaire de type III, sont arrivés a la conclusion qu’aucun élément dans les données
ne permet d’avancer 'argument en faveur d’une présence de processus non- linéaires
tels que l'effondrement de 'onde ou de la formation de solitons. Ils ont suggéré que le
phénoméne d’agglutination doit étre associé a la présence de fluctuations irréguliéres
de densité dans le plasma. Ces irrégularités de densité peuvent causer des changements
dans la vitesse de phase des ondes de Langmuir, et, par la suite, elles peuvent entrainer
un effondrement rapide des conditions pour le développement de I'instabilité faisceau-
plasma. Si les échelles caractéristiques spatiales des inhomogénéités sont comparables
au taux de croissance spatiale, une onde peut donc passer d’'une région ol elle peut
subir un accroissement vers une autre région oul les conditions de résonance du type
interaction onde-particule sont violées. Par conséquent, une forte amplification peut
se produire seulement le long de certains trajets ot les inhomogénéités successives sat-

isfont aux conditions permettant une amplification significative de 'amplitude d’onde
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[Muschietti et al., 1985, Melrose et al., 1986, Robinson, 1992].

Des observations des fluctuations de densité d’électrons dans le vent solaire ont été
faites en utilisant les mesures de scintillations interplanétaires en visant une source
extragalactique |Coles and Harmon, 1978|. Les résultats ont indiqué que pour des
échelles de 'ordre de 100 km, les fluctuations peuvent atteindre un niveau moyen d’ordre
de 1073, Les mesures in situ des spectres des variations de densité & bord des satellites
ISEE 1 et 2 [Celnikier et al., 1983| ont révélé que les fluctuations observées dans le vent
solaire peuvent atteindre un niveau moyen supérieur & 1072, La présence de fluctuations
d’une telle amplitude peut avoir un impact important sur la propagation des ondes de
Langmuir qui & son tour affecte la dynamique d’interaction entre le faisceau et le plasma
[Bale et al., 1998, Kellogg et al., 1999, Malaspina and Ergun, 2008].

Dans le cadre de la théorie de la turbulence faible le mouvement des électrons issus
du soleil traversant le vent solaire non homogéne a été étudié par de nombreux auteurs
[Kontar and Pécseli, 2002, Li et al., 2006, Krasnoselskikh et al., 2007, Kontar and Reid,
2009, Ziebell et al., 2011, Krafft et al., 2014]. Les simulations numériques récentes
tiennent compte différents effets. On peut citer 'amortissement de Landau, 1'effet de
collisions, la réflexion des ondes par de forts gradients de densité, la diffusion angulaire,
les processus non linéaires d’interactions d’ondes, l'’expansion du champ magnétique
solaire de la couronne vers I'espace interplanétaire, la génération d’émissions électro-
magnétiques, etc. |[Reid and Kontar, 2010, Krafft et al., 2013, Ratcliffe et al., 2014,
Reid and Kontar, 2015]. Ces études confirment le fait que les irrégularités de densité
affectent fortement la dynamique et I’évolution des ondes. Pour un plasma admettant
un profil de densité monotone décroissant similaire aux conditions héliosphériques, les
électrons éjectées par le Soleil perdent trés progressivement leur énergie, ce qui permet
au faisceau de s’étendre sur des distances beaucoup trés grandes devant 1’échelle relative
au cas du plasma honogéne. En outre, il a été prouvé que la relaxation est accompa-
gnée d’une augmentation de la population de particules énergétiques. L’accélération
de ces particules est associée a une diminution du niveau de I’énergie des ondes, ce
qui implique le fait que les fluctuations de densité peuvent annihiler tout processus
non-linéaire d’interaction d’ondes.

Récemment, Voshchepynets et al. [2015] ont proposé un modéle probabiliste auto-
cohérent pouvant décrire 'instabilité faisceau-plasma dans un plasma subissant des
fluctuations aléatoires de densité. Les fluctuations de densité ont été supposées suff-
isamment élevées pour produire une variation sur le vecteur k dans la direction de
propagation de I'onde. En conséquence, la vitesse de phase de 'onde peut changer,
permettant a cette derniére d’interagir avec les électrons du faisceau dans une trés large
gamme de vitesses. L’hypothése selon laquelle la vitesse de phase est une grandeur aléa-
toire, qui obéit & une distribution prédéterminée, permet de décrire 1’échange d’énergie

entre les ondes et le faisceau en termes du taux moyen de croissance des ondes dans
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I’espace des vitesses. La méme hypothése est prise afin de déterminer le coeflicient
moyen de diffusion de vitesses des électrons. Le taux moyen de croissance et le coeffi-
cient de diffusion dépendent de la forme de la fonction de distribution des vitesses de
phase de 'onde qui, elle-méme, est controlée par la fonction de distribution des fluc-
tuations de densité. Nous avons proposé une technique d’évaluation de la fonction de
distribution de densité en utilisant les variations des fluctuations de densité obtenues
A partir des mesures & bord de satellites. Nous avons utilisé la technique de Pearson
pour classer les différentes fonctions de distribution |Pearson, 1895]. Le but est alors
de déterminer quel type de distribution aboutit au meilleur ajustement sur les varia-
tions de densité de plasma observées dans le vent solaire et de voir comment leur forme
affecte le processus de relaxation du faisceau. En utilisant la distribution de Pearson
de type II, celle qui se rapproche la plus des données, nous avons déterminé la fonction
de distribution des vitesses de phase des ondes. La méme distribution a été également
appliqué a notre modeéle d’interaction de faisceau avec un plasma. Appliqué & des con-
ditions réalistes dans le vent solaire, le modéle nous a alorspermis d’étudier comment
les paramétres clés du processus de relaxation, comme 1'énergie des particules & la fin
de la relaxation, le niveau de saturation de la densité d’énergie des ondes, le temps
caractéristique de la relaxation, etc., dépendent du niveau de fluctuations de densité
et de la vitesse initiale du faisceau. Il convient de noter que les résultats obtenus dans
le modéle sont dans un bon accord avec ceux prédits par la théorie de la turbulence
faible.

Le manuscrit est organisé comme suit. Le Chapitre 2 fournit une bréve introduction
a Dessentiel de la physique de l'interaction faisceau-plasma dans le plasma homogéne
ainsi que dans le plasma avec des irrégularités de densité & grande échelle. Certains su-
jets décrits dans ce Chapitre sont proposés dans différents manuels dédiés & la physique
des plasmas [Artsimovich and Sagdeev, 1979, Akhiezer, 1975, Melrose, 1980b] et dans
des articles originaux publiés dans des revues scientifiques [Breizman and Ryutov, 1970,
Ryutov, 1969, Vedenov and Ryutov, 1975|. Dans le Chapitre 3 nous présentons le
modele probabiliste [Voshchepynets et al., 2015|) récemment publié d’interaction d’un
faisceau avec un plasma comprenant des fluctuations de densité de relativement petite
échelle spatiale (102Ap-105Ap). Appliqué & un plasma dont la distribution de probabil-
ité des fluctuations de densité obéit & la loi normale, ce modéle nous a permis d’étudier
comment les paramétres clés du processus de relaxation, tels que ’énergie des partic-
ules & la fin de la relaxation, le niveau de saturation de la densité d’énergie des ondes,
le temps caractéristique de relaxation, etc., dépendent du niveau de fluctuations de la
densité et de la vitesse initiale du faisceau. Dans le Chapitre 4 nous réalisons une étude
statistique des fluctuations de la densité, et nous en déduisons la distribution proba-
biliste de fluctuations de densité & partir de mesures & bord des satellites explorant le

vent solaire. Notre analyse indique que pour des fluctuations ayant des échelles spa-
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tiales de I'ordre de 102\ p, la répartition dés les fluctuations obéit & une distribution de
Pearson de type II. Les simulations numériques de l'interaction du faisceau d’électrons
avec un plasma pour les deux distributions différentes, une distribution Gaussienne et
une autre non Gaussienne n’ont pas montré de différence importante. Dans le Chapitre
5 nous présentons une analyse statistique préliminaire des résultats de simulations réal-
isées A l'aide des équations établies dans notre modéle probabiliste d’interaction du
faisceau-plasma avec la distribution de probabilité de fluctuations de densité corre-
spondante & celle observée dans le vent solaire. Les résultats que nous avons obtenus
dans nos simulations sont des distributions statistiques d’intensités d’ondes pendant le
développement et ’évolution de I'instabilité du faisceau dans un plasma homogéne et
non-homogéne. Il a été montré que les caractéristiques statistiques des champs d’ondes

dépendent fortement du niveau de fluctuations de densité.
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Chapter 2

Quasi-linear theory of the
beam-plasma instability

2.1 Introduction

For the sake of logical completeness we shall begin from a brief introduction to essentials
of plasma physics necessary for the further presentation. The following chapter aims
to provide a description of main variables, concepts and processes considered in our
model. Part of this material can be found in various textbooks dedicated to plasma
physics [Artsimovich and Sagdeev, 1979, Akhiezer, 1975, Melrose, 1980b].

The model we propose deals with the interaction of the weak electron beam with
Langmuir waves, so we should use the kinetic description of the plasma. Thus, the de-
scription of plasma by Vlasov’s system of equations, allowing to describe self-consistent
electric fields in plasma is of special interest. Application of this self-consistent theory
to the high frequency electrostatic oscillations allows one not only to obtain dispersion
relations for this type of waves, in other words, to describe the propagation Langmuir
wave within the plasma, but also to describe the processes of wave-particle interaction.

The propagation of waves in plasma perturbs the trajectories of all particles, but
only some relatively small part of particles population, that satisfies certain resonance
conditions is responsible for the processes of the amplification and damping of the
waves. In the case of the Langmuir waves, the main contribution is provided by the
electrons satisfying the Cherenkov resonance: velocities of the particles are close to
the wave phase velocity. Wave-plasma resonant interaction of such type results in the
wave growth/damping. The damping rate in homogeneous plasma is proportional to
the derivative of the electron distribution function in the vicinity of the resonance.
The natural feature of such relation consists in damping of Langmuir waves in the
Maxwellian plasma (Landau damping) that corresponds to thermal equilibrium state.

If the wide spectrum of waves would be excited in the plasma out of equilibrium as
a result of the development of some instability, the turbulent state of plasma oscilla-

tions can occur. The quasi-liner (QL) theory describing evolution of instabilities and
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wave particle interactions in turbulent plasmas is based on important assumption that
all waves have small amplitudes. This assumption allows one to neglect all types of
non-linear wave-wave interactions, and the only nonlinear effects taken into account in
the model are related to resonant interaction of the waves with particles. Beam-plasma
instability is one of the first kinetic instabilities described using QL theory [Vedenov
et al., 1962, Drummond and Pines, 1964|. In the case of homogeneous plasma, QL
theory predicts a formation of the plateau on the electron velocity distribution func-
tion in the range of velocities smaller than the velocity of the beam. The process of
"plateauing" is accompanied by the transfer of the free kinetic energy of the electrons
to the potential energy of the Langmuir waves.

The presence of the density inhomogeneity in the plasma may causes several im-
portant effects that influence the developments of the beam-plasma instability. In the
following chapter we consider only one of them, namely, the change in magnitude of
the wave vector of the primarily generated Langmuir wave in the direction of its prop-
agation. These changes, in their turn, lead to the changes in the wave phase velocity,
and consequently, they may cause the shift of the Langmuir waves from the region of
the velocity space where they were primarily generated [Breizman and Ryutov, 1970].
Monotonically decreasing profile of the plasma density results in the outflow of the
wave energy toward lower velocities, while increasing density profile causes the shift of
the wave phase velocities toward larger values. When there are many inhomogeneities
in plasma, there can occur regions with humps and depletions of the density. These
last can form plasma density cavities [Ryutov, 1969], and waves can be captured by
this cavities, if their depth is sufficiently large. As a result the Langmuir wave may be
trapped inside one of the density depletions, and it will oscillate between turning points
where the wave vector of wave is equal to zero. The phase velocity will vary between
its minimum value (in the vicinity of the bottom of density cavity) and infinity (in the
vicinity of the turning point).

Below in the chapter, we present the results of computer simulation of the beam
plasma interaction when the wave trapping dominates the dynamics of Langmuir waves.
As a result of simulation we obtain estimations of the key parameters of the relaxation
of the electron beam in inhomogeneous plasma, such as characteristic time and spatial
scales of the relaxation, wave spectral density and electron distribution function during
and at the end of the relaxation, etc, in a similar way as it was done in original papers
[Breizman and Ryutov, 1970, Ryutov, 1969, Vedenov and Ryutov, 1975]. The results
of the numerical simulations of the beam relaxation in the plasma with density cavities

were obtained and published by Voshchepynets and Krasnoselskikh [2013].
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2.2 Kinetic theory

Ideal plasma is described by kinetic equation for particle distribution function in the
phase space. Full kinetic description requires distribution functions for each sort of
particles in a plasma, such as electrons, protons, ions, etc. The distribution function,
f(z,y, 2,03, vy, v;,t), determines the number of particles per unit volume of the phase
space, that are in the vicinity of the coordinates z, y, z, and have velocities close to
Uy, Uy, U, at moment of time ¢. One can use vectors 7(x,y, 2) and U(vg, vy, v;) instead
of coordinates. Integration of the moments of the f(7,9,t) over the velocity space
provides different macroscopic moments of the distribution, such as density, particle
flow vectors, second order and higher order moments, including plasma temperature,
heat fluxes, at a given point of coordinate space.

Let us consider a simplest case when the changes in the distribution functions for
each sort of particles in plasma are caused by macroscopic electric fields E (7 t). Tt
might be the external fields or fields produced by charge separation in some volume
within the plasma. When we say, macroscopic, we mean that the spatial scales of
the processes under consideration are much larger then the Debye length, Ap. The
Debye length characterizes the scale of the quasi-neutrality of the plasma. The sphere
having the radius equal to Debye length is a sphere outside which any external charge is
screened. Thus, at the scales larger than Ap plasma can be considered as quasi-neutral.

For the considered macroscopic fields, one can apply the Liouville’s theorem to
describe an evolution of the distribution function under the reaction of the fields. This
implies that the number of the particles in a volume of the phase space moving with
this particles is constant in time. As a result, an equation describing evolution of the

distribution function can be written as follows:

d ... 0, oF o . . . o7 9
— (T7/U7t) - =~ (T‘,U,t) + E%’f(r’v’t) _|_ E%

By making use of the equations of motion: 97/dt = ¥ and 07/dt = qE(F,t)/m,

F(F0,8) =0 (2.1)

where ¢ and m are charge and mass of current sort of the particles, one can obtain
equation 2.1 in following form:

O ooy 0GB
—f(ru,t) +v—=f(7,v,¢ —_—
gel (10D + VGl (0,8 + =0

Under the action of the electric fields on the plasma particles, the charge separation

aagf(ﬁﬁ,t) =0 (2.2)

may occurs in some volume within the plasma. This, in turns, leads to the fact that the
charged density of the volume becomes nonzero. Contribution of the charged density

to the electric filed can be estimated by the Gauss’s law as follows:
VE(Ft) = 4re ( / fidv — / fedv> (2.3)
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where f; and f. are the distribution function of the ions and electrons, respectively. For
this case, the electric field is called self-consistent, because interrelationship between
the E(7,t) and f(F,,t) exists. It is worth noting that we neglect all collisional effects.
Such an approximation is valid for the processes with characteristic times much larger
than time of collision between the particles. The system of equations 2.2, 2.3 describes

behavior of the collisionless plasma and is known as Vlasov equations.

2.2.1 Langmuir waves

One can use system of equations 2.2, 2.3 to describe propagation of different types of
waves in the plasma. Let us consider propagation of the monochromatic electrostatic
plane wave with frequency w and wave vector k. For one dimensional case, the potential

of the self-consistent electric field can be written as follows:

Y = P exp(ika — iwt) (2.4)

Assuming that the amplitude of the wave is small, one can use the perturbation
theory to describe the behavior of particles distribution functions. This implies that
the distribution function of k sort of particles (electrons or ions) can be written as

follows:

fe = Jfok + 6k (2.5)

where for is unperturbed distribution function and 4 f; is a small term related to the
presence of the wave. By keeping terms up to the first order of accuracy, an equation

2.2 for ions can be rewritten as follow:

ot v ox m; Ox Ov

The term Jf; is dependent upon v, and thus one can expect that it will show

0ofi 00fi e 0% 0foi _ (2.6)

similar dependence on time and space coordinate as ©. By substituting d f; in a form

6fi exp(ikx — iwt) to equation 2.6, one can obtain:

—i(w—kv)df; — mizkgz a@{[})i

By making use of equation 2.7 an estimation of the perturbation in the ion density

=0 (2.7)

caused by the wave can be obtained:

on; = /dﬂ-dv = —njkn/;/afoi/&]dv (2.8)

w — kv
In a similar way the perturbation in the electron density, dn., can be found. As-
suming that 9/0z ~ ik and taking into account that F ~ iki, one can rewrite equation

2.3 as follows:
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k2 = Amkap(6n; — one) (2.9)

By substituting én; and dn. into equation 2.9 one can obtain following equation:

2o _Amet, (/ Ofio/Ov 11, ¢ W/afeo/avdv> (2.10)

m; w— kv Me w—kv
Equation 2.10 contains in an implicit form the relation between wave vector and
wave frequency and thus can provide the dispersion relation for such perturbation in
a plasma. Let us consider fast oscillations of the electric field potential caused by
oscillations of the electron density (Langmuir waves). For such a case, the first term in
equation 2.10 can be neglected. Assuming the frequency of the oscillations to satisfy
the condition: w > kv;, where v; is the thermal velocity of electrons, the denominator
in the second term can be presented in the form of power series on (kv/w), as follows:
1 1 kv k%% E3?

B R, 2.11
w — kv w+w2+w3 +w4 ( )

The substitution 2.11 onto dispersion relation 2.10 allows one to perform integra-
tion explicitly. Assuming that the distribution of electrons is Maxwellian, feo(v) =

exp —v?/v?, and by performing integration by parts one can obtain the following re-

sult:
= [ A~ fafoo) — faf-o¢) = 0 (2.12)
% vafg;(v)dv = —Lf;/feo(v)dv = _(é)nev (2.13)
sz v28fg;(v) dv = —Z::Z /U3f€0(v)dv =0, (2.14)
(since integrant is odd function) and

Finally, by making use of these results, one can find from equation 2.10 the well

known Bohm-Gross dispersion relation as follows:

w? = wi(1+3k*AD) (2.16)

where w), = 4re®ne /me is a plasma frequency and Ap = viwy is the Debye length.
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2.2.2 Landau damping

Now let us consider an interaction of the monochromatic Langmuir wave with the
electrons. Under action of the electric field of the wave, the velocity of the major
part of the electrons will oscillate in time with a frequency w. The magnitude of the
oscillation is approximately of the order of (Ee)/(mw), and taking into account that
the frequency of oscillations is large, the magnitude of the velocity of these electrons
can be considered as a constant. However, for those electrons, that have a velocity, v,
close to the phase velocity of the wave, V = w/k, the situation is quite different. This
phenomenon determines the criterium for the Cherenkov resonance.

To consider an interaction of wave with such electrons it is convenient to use coor-
dinate system that is moving with velocity equal to a phase velocity of the wave. It
allows one to treat these electrons in terms of trapped inside the potential well created
by the Languir wave. Figure 2.1 provides a schematic illustration of the motion of the
electrons with velocity v ~ V under the action of the electric field potential. The width
of the resonance in the velocity space can be obtained by comparing the kinetic energy
of the electrons in the moving coordinate system with the potential energy of the well.

Namely, the electrons with velocities that satisfy condition v — V| < (ep/m.)/?

can
be considered as trapped. The motion of such an electron in the velocity space can
be described as oscillations between the turning points. During the reflection from the
borders of the well around the turning points electrons can exchange energy with the
wave.

Depending of the initial velocity, two species of resonant electrons can be distin-
guished: with velocities larger than V' and velocities lower then V. Point P; in Figure
2.1 corresponds to the first class of the electrons while point P»- to the second. As a
result of the reflection the velocity of the both types of the electrons in the moving
coordinate system change its sign. However, for the first type, the velocity after re-
flection, v1 =V — v 4 V is less than the velocity before the reflection. As a result the
electron transfers part of its kinetic energy to the wave. For the second type of the
electrons the situation is opposite. As a result of the reflection kinetic energy of the
electron increases. The increase is accompanied by decreasing of the potential energy
of the wave. For the Maxwellian plasma, the number of the electrons of the second
type is always larger than the number of electrons corresponding to the first type, and
thus, the Langmuir waves should damp in such a plasma. Damping of the Langmuir
waves as a result of resonant interaction with electrons is well known effect called the
Landau damping.

To estimate characteristic time of the damping one can use Liouville equation for

the wave energy density, W:

— =W (2.17)



Figure 2.1: Schematic illustration of the resonant interaction of Langmuir wave with
electrons. Solid line represents potential well of the wave electric field. Dashed lines
correspond to the trajectories of the resonant electrons [adapted from Artsimovich and
Sagdeev, 1979].

where v characterizes the growth/damping rate of the Langmuir wave energy density.
It is not difficult to calculate the energy losses of one electron of the first type after

single reflection from the border of the potential well:

v? (2w/k —v)? w\ w
AW, = meE - mef =2m (v - %) = (2.18)

The number of the reflections per second can be estimated from the velocity of the
electron in the moving coordinate system and the width of the potential well, deter-
mined by wave length, A, as follows: (v — w/k)/A. Thus, the energy transferred from

the electron to Langmuir wave per time unit may be evaluated as:

—om— (v— 2=
N

The change in the kinetic energy of the electron of the second type is described

AW, d ( “’)2 (2.19)

by the same equation. To evaluate total gain/damping of the wave energy density one
should sum the contributions from all electrons that are in the resonance with the wave.

This procedure can be performed as follows:

w/k+((2eEe0)/ (kme))'/?

% - 2]:;\6 (U - w/k)2f60(v)d’0 —
w/k
w/k
2]:/1\@ / (v = w/k)? feo(v)dv (220)

/k=((2¢EBe0)/ (kme))'/2

where, Ey is an amplitude of the Langmuir wave, and feo is unperturbed electron
velocity distribution function. The first therm in equation 2.20 corresponds to the
gain of the wave energy density, as a result of interaction with the electrons of the
first type, while the second therm describes the damping of the wave energy, caused
by acceleration of the electrons of the second type. We also took into account that

the half-width of the resonance in the velocity space is ((2eEq)/(kme))'/?. Regarding
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that the amplitude of the wave is small, the velocities of the resonant electrons are
oscillating in time in the vicinity of the wave phase velocity, V. As a result one can

write feq in a form of Taylor series around the V, as follows:

oo = Feol/b) + 29 (02 (2:21)

By substituting f.y from equation above into equation 2.20 one can obtain Liou-

ville’s equation in following form:

d7W2 2¢” ﬁEzaf(U)
dt Tme k270 v

By taking into account that wave energy density related to the wave amplitude as:

’v:w/k (222)

W = E?/(87), equation 2.22 can be used to estimate wave growth/damping rate, -, as

follows:

wy w f (v)

_ 2.2
mk2 Ov |v—w/k ( 3)

As one can notice, 7y is proportional to the derivative of the electron velocity distri-

bution function, in the direction of the wave propagation. Now it is clearly seen that
for the case of Maxwellian plasma Langmuir waves damp in the all ranges of phase
velocities, since the 0feo/0v ~ —(v/v}) feo is always negative. More over, the damping
of Langmuir waves appears in any sort of plasmas, if the velocity distribution function
of the electrons decreases with increase of the |v|. However, it is worth noting that for
waves with phase velocities V' > 3v; the damping is rather weak, because the number
of the electrons that satisfies the resonant conditions is small.

However, in a plasma with several populations of electrons, for instance, the core
plasma electrons, and fast electron beam with beam velocity much larger then v; the
situation is quite different. For such a case the velocity distribution function has a
positive slope in some range of the velocities, and thus the beam can generate waves

with phase velocities in this range.

2.3 Quasi-linear theory: homogeneous plasma

It is convenient to consider an interaction of the resonant particle with Langmuir waves
in a framework of quasi-linear approximation. QL theory suggests that the Langmuir
waves are distributed in some range of the phase velocities, (w/k)maez <V < (W/k)min
in such a way, that the borders of the intervals for trapped particles for the neigh-
bor waves overlap. The condition required for overlapping of the interval of resonant

interaction can be written as follow:

S(w/k) < ((e/mk;)(Egak)l/?)l/ ’ (2.24)
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where 0(w/k) and dk are difference between two neighbors harmonics in phase velocity
and wave vectors, respectively, and Elz is spectral energy density. Factor (E,%(Sk:)k‘
corresponds to the energy density of the wave in the interval dk. The criteria 2.24 can
be interpreted also as overlapping of borders of the potential wells created by neighbor
Langmuir waves.

QL theory also deals with additional important assumption, namely, the amplitudes
of the Langmuir waves are supposed to be low. This assumptions allows one to neglect
all non-linear effects related to wave-wave interactions. Thus the resonance interac-
tion of Langmuir waves with electrons is the only non-linear effect considered in the
model. For this case electron distribution function can be divided into two parts: slowly
changing part, m, and fast oscillating part 0 f(x,v,t). Let us assume that averaged
functions f(v,t) and 6 f(v,t) satisfy conditions (f(v,t)) = fe(v,t) and (5 f(z,v,t)) = 0.

By averaging here is meant a spatial averaging over large scales, much larger then the

wavelength of the Langmuir waves. Equation for f(v,t¢) can be obtain from the kinetic

equation 2.2 by making use the procedure of averaging, as follows:

of(v,t) e 00 f(x,v,t)
o m T,

Equation 2.25 describes slow temporal evolution of the electron velocity distribution

) (2.25)

function caused by the averaged contribution of the fast oscillations of the ¢ f(¢,v) and
E(t). Tt is convenient to present the electric field and related oscillating part of the

distribution function in the form of the Fourier series, as follows:

E(z,t) =) Ey(t) expi(ka) (2.26)
k

Sf (x,v,t) =) 0 fu(v,t) expi(ka) (2.27)
k

By substitution d f(z, v,t) and E(z,t) to equation for f(v,t) and taking into account
that components with Ey(t) and E_(t), as well as 6 fx(v,t) and § f_(v,t) are complex

conjugate, the equation 2.25 can be rewritten as follows:

af(‘(;;’ 2 = % Zk: (Er(t)d fr(t,v) + Ep(t)0 fr(v, 1)) (2.28)

where asterisk indicates complex conjugate. By subtracting equation 2.28 from the
original kinetic equation 2.2 one can obtain following equation for each component

0 fr(v,t) (keeping only terms up to the second order on E):

95 7 ‘ Er(t) 0f (v,
f’é(tvt) + ikvd fi (v, ) = 71;(75) fg; .

Now let us define & fi(v,t) and Ej(t) as 0f (t)exp(—ikvt) and E, (t)exp(—iwt),

where 8f'(t) and E,;(t) are slowly varying function of time, and frequencies wy are

(2.29)
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related to the wave vectors k by dispersion relation 2.16. By making substitution
8fi(v,t) and Ej(t) into equation 2.29 and integrating the equation over time, 0 f ()

can be obtained as follows:

t

Sfi(t) = / ;E,;(t)afg)v’t/)expi(kv — )t dt (2.30)

0

Complex conjugate component § f,;* (t) can be estimated from the equation 2.30 after

substitution £k = —k and w_j; = —wy, as follows:
t 5 .
51 (t) = / ;E,;*(t)fg;’t) exp —i(kv — wy)t dt’ (2.31)
0

Now, by making use of 6 f(v,t) and 6 f;;(v,t), one can obtain the equation for the

slowly varying part of electron velocity distribution function as follows:

Of (v,t)
ov

+ce | (2.32)

— t

8f(7),t) - ¢’ 9 /% . _ N

o mgzk: %Ek(t)Ek (t)/expz(k:v wi)(t—t)dt
0

(here we also used that fact that £, (t) and f(v,t) are slowly varying in time, and thus
they can be moved outside the integral). Finally, taking into account that the integral

in the equation 2.32 is a Dirac delta-function:

¢
2o (vk — wi) = /expi(kzv —wp)(t —t)dt + c.c. (2.33)
0

one can rewrite the equation 2.32 in following form:

of(v,t) _ 2me? 9 (Z (E,;(t)ré(kv _Wk)@f(v,t)) (2.34)
k

ot m2 Ov Ov

Equation 2.34 describes diffusion of the electron velocity distribution function in
the velocity space, caused by the interaction of particles with the set of the Langmuir
waves. The diffusion results in the uniform distribution in the velocity space for the
electrons in the range of velocities where the interaction occurs, i.e., in the range of
velocities of the wave spectrum: (w/k)maz < V < (W/k)min. To describe temporal
evolution of the electric field component E;C(t) one can use the set of equations similar

to the equation 2.23:

OEZ() _ m 2 0f (v, 1) /2
v=wp,
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The resonant nature of the interactions can be affected by any physical mechanism
which is able to destroy coherence resulting in broadening of the resonance. To take
into account these effects the Dirac delta-function in equation 2.34 should be replaced

by so called resonance function R(w — kv, Aw):

w0 (vk — wi) = R(vk — wg, Aw), (2.36)

where Aw is the lifetime of the wave in the resonance. Both, R(vk — wy, Aw) and
Aw, depend on the appropriate mechanism that provides resonance broadening. For
instance, recently this framework was applied to take into account effects of scattering
Langmuir waves in fluctuating plasmas on the wave-particle interaction |Bian et al.,
2014].

2.3.1 Relaxation of the electron beam

The system of equations 2.34 and 2.35 can be used to describe the interaction of the
weak electron beam with wide spectrum of the Langmuir waves. However, it is conve-
nient to make slight modification in the equations. First, the sum, ) k in the equation

2.34 can be replaced by the integration over k: Y7, = (1/7) [,_,dk. Second, one can

, 2
use wave spectral energy density, Ws(k), instead of term ’Ek(t)‘ . For particular case

of Langmuir waves it can be written as follows: Ws(k) = ‘E,;(t)f /(8m). It is worth
noting that Ws(k)dk is the wave energy density concentrated in the part of the spec-
trum from k to k£ + dk. Third, integration over wave vector, k, can be replaced by the
integration over wave phase velocity, V', by making use of relation & = wy/V, and thus
dk ~ (wi,/V?)dV.

As we already seen, the typical electron beams in the interplanetary space and in
the vicinity of collisionless shocks have densities, 1y, much smaller than the background
plasma density and they propagate along the magnetic field lines. This justifies an
assumption that the problem can be considered as one-dimensional. Assuming that
the condition of the overlapping of the resonances is satisfied, the equations for the
beam electrons velocity distribution function and waves spectral energy density can be

obtain from equations 2.34 and 2.35 as follows:

of(v,t) 0 Of(v,t)

B T e Gl (2:37)
oW, (V,t

AL LA (2.38)

here, D is the velocity diffusion coefficient, determined as follows:
8m2e? (W(V,t)
D = : 2.

o = (R (2.39)
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and y(v,t) is the waves growth rate:

y(v,t) = gwp% <1)26fg;,t)> . (2.40)

where beam electron velocity distribution function, f(v,t), is normalized to one: fooo flu,t) =
1.

As one can see from the dependence of v upon electron distribution function the
waves start growing from initial thermal noise level only in the region of the velocity
space where Of(v,t)/0v > 0. Namely, this mean that the electron beam propagating
in the plasma, generates only the Langmuir waves with phase velocities, V', less than
the beam velocity v. This waves will determine a backward reaction on the beam.
It is worth noting that the contribution of waves with V' > v, can be neglected. This
implies that the diffusion coefficient D(v,t) is close to 0 in the range of velocities v > vy.
Thus, in this approximation the process of the relaxation will run only toward lower
velocities.

The saturation of the beam instability occurs when the wave growth rate became
close to 0 or negative for all phase velocities. This implies that the stable equilibrium
state for the electron velocity distribution function in the range of phase velocities of
waves is a plateau, since this distribution leads to vanishing derivative of f(v,t) and
as a result to v = 0. Thus the relaxation process consists of plateau formation of
the velocity distribution function in the range of velocities less than vy (solid line at
Figure2.2). One can find that in the end of the relaxation f(v,t) can be described as

follows:

B for v < vy
Npfend = 2 (2.41)
0 for v > vy

It is worth noting that during the relaxation process described by the of equations
2.37 and 2.38 a system of waves and particles conserves its total energy. Moreover the

system has addition specific quasi-linear constant of motion:

% [nbf(v,t) - 2%% <W/‘(/V3:t)> Vq):| = 0. (2.42)
If we consider the Langmuir waves as an ensemble of the quasi-particles with energy
distribution W(V)/V, the equation 2.42 can be interpreted as a conservation of the
total number of particles and quasi-particles in the system. By making substitution of
fena into equation 2.42 one can obtain the spectrum of the waves energy density in the

end of relaxation:

mny V2 for V<w

b
Wena(V) = Zopve 2.43
end( ) {0 for V > v, ( )
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Figure 2.2: Left panel: forms of the electron distribution function at the beginning
(dashed line) and in the end of the relaxation process (solid line). Right panel: snap-
shots of the electron velocity distribution function in the consequent moments of time:
t1 < tg < t3. The core distribution, that corresponds to the cold electrons of back-
ground plasma has not been considered [adapted from Vedenov and Ryutov, 1975].

The asymptotic solutions fe,q(v) and We,q(V) represent a well known result for
monochromatic electron beam relaxation in homogeneous plasma: the beam preserves
only third part of its initial free energy, while two-thirds of the particles energy is

transferred to the Langmuir waves.

2.3.2 Characteristic scales of the relaxation

As one can notice from the equation 2.38, the gain of the wave energy density, AW,
is proportional to the wave energy density W itself. The substantial gain of the waves
energy occurs in some regions of the velocity space where the growth rate is high enough
to ensure sufficient amplification. Namely, the left border of this region, u, is determined
by the initial thermal width of the beam, Awy. Since the initial spectral energy density
of the wave is very low, Wi, /We,q < 1, at the beginning of the relaxation the waves
with phase velocities V' that satisfy condition © < V' < v, will grow, while the waves
with phase velocities less than u will be maintained on a level about W;,. Thus, one can
expect that the backward reaction of the waves on the beam, will plateau the velocity
distribution function in the range of velocities from w to v,. Subsequently, the left
border u(t) of the plateau will move toward the lower velocities (right panel of Figure

2.2), and the temporal evolution of the f(v,t) can be roughly described as follows:

0 for v < u(t)
npf(v,t) = ubfizi(t) for u(t) < v < vy (2.44)
0 for v > vy

The function u(t) can be found from equation 2.38 by substituting solution f(v,t)
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Figure 2.3: Position of the left border of the distribution function as a function of the
time [adapted from Vedenov and Ryutov, 1975].

defined be equation 2.44 and integration over V. This procedure allows one to write

equation for u(t) as follows:

du(t)  m™ mp u?(t)
dt Apro vp — u(t)

here A is well known Coulomb logarithm. Figure 2.3 shows a solution of the equation

(2.45)

2.45. The relaxation stops, when the velocity distribution function of the beam electrons
reaches a region of the velocity space occupied by the background plasma. As one can

notice, the characteristic time of the relaxation, t;, can be estimated as follows:

g~ AL No (2.46)

- .
™ Wp Np
In the simple manner, an estimate of a characteristic spatial scale of the relaxation,

Ts, can be obtained by multiplying ¢, by a initial beam velocity, vy

’]"S ~N —— (247)

2.4 Plasma with monotonically decreasing density profile

Let us consider a propagation of the Langmuir wave packet generated by the beam in
a plasma with monotonically decreasing density along the wave’s path. Decreasing of
the density results in the decreasing of the plasma frequency and thus the propagation
in such a plasma differs from the case of homogeneous plasma. The effect related to the
density inhomogeneity should be included in the dispersion relation for the Langmuir

wave. If the spatial change of the density is slow, the k(z) vector of wave will change in
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such a way that the dispersion relation should be satisfied with the condition that the
wave frequency remains constant while plasma frequency varies according to variation
of the density. The changes of the k vector, in their turn, result in the changes of the
wave phase velocity. Suggesting that the condition above is satisfied, equation 2.16 can

be rewritten:

3 v?
w = wp(x) <1 + 2‘/2(33)> . (2.48)
By making use of equation 2.48 one can estimate the variation of the phase ve-
locity of the wave, AV, after passing the distance Axz. Using the condition that the
frequency of the wave, w remains constant along the trajectory, the equation 2.48 leads
to following;:

2
3 v

d 2 A
(14_,7)& v; V:

d;m — 3wz = 0 (2.49)

As one can notice, a decrease of the plasma frequency results in a decrease of the
phase velocity of the wave. As a result, in the plasma with monotonically decreasing
density profile, the Langmuir waves are shifted from the region of the velocity space,
where they were generated by the beam instability, toward lower phase velocities. Thus,
such inhomogeneity do not cause an appearance of the waves with phase velocities larger
than v, and the asymptotic solution for the electron distribution function fe,q(v) is the
same as for homogeneous plasma. Assuming that phase velocities of the waves are
close to the velocity of the beam, V' ~ v, and that dw,/dx ~ wp/Lyy, where Ly, is a

characteristic scale of the density inhomogeneity, AV can be obtained from equation
2.49 as follows:

AV ~ vbflez. (2.50)

un U
As we have already seen in the previous section, the effective gain of the waves
energy occurs in the range of the phase velocities from v, — Avy to vp. Due to the shift
of the phase velocity, the wave leaves this region and the amplification of wave amplitude
stops. This happens on a characteristic spatial scale Az, that can be obtained from

equation 2.50 as follows:

2
Az, ~ Lyy—2—L. (2.51)

A characteristic time scale of the shift of the waves from the region of effective
growth, t., can be estimated taking into account that the wave packet propagates with
the group velocity v, = v7/vp. Thus:

Lun A’Ub

te ~ ———. 2.52
¢ Vp Uy ( )

38



To obtain the growth of waves during the time t. up to a level significantly larger

than noise level the following condition should be satisfied:

yte > A (2.53)

To estimate the gain of the wave one can use the simplified form of the equation
2.40, as follows:

2

Ny Uy

~ MWy~ 5 2.54
0 ™ pNO A'Ug ( )
By substituting v from equation 2.54 and ¢, from equation 2.52, one can rewrite

inequality 2.53 as follows:

ny TwWpLun vy
— = " >A 2.55
Ny vy  Avy ( )

As one can notice the left side of the inequality 2.55 decreases as Av increases.
When the beam is wide enough and the condition 2.55 is not satisfied anymore, the
relaxation stops, because the gain of the wave is very low, namely about the thermal

noise level. Corresponding Awv, can be estimated as follows:

Avyp T Np Wp
=0 o Lyp——22
Up AN() Uy

Equation 2.56 can be used to illustrate a peculiarity of the beam relaxation process

(2.56)

in the plasma with decreasing density profile. Let us assume that the characteristic
spatial scale of the density inhomogeneity is about the distance that the Langmuir
waves are able to pass during the time of the relaxation in homogeneous plasma, ..

By substituting L = v4t, into equation 2.56 one can obtain:

Avy, 0?2
b Uy

This lead to the conclusion that in the inhomogeneous plasma, the process of the
relaxation is much slower. During a period of time ¢, the electron velocity distribution
function in homogeneous plasma relaxes to the form of the plateau, while according
to equation 2.57 in the inhomogeneous plasma f(v,t) after time ¢, has only a small
dispersion about v/ vg < 1. Thus, the outflow of the wave energy from the resonance
region of the velocity space, caused by decrease of the background density of the plasma,
slows down the relaxation, however the velocity distribution of the electrons in the end

of the relaxation is the same as in homogenous plasma.

2.5 Plasma with monotonically increasing density profile

Relaxation of the electron beam in a plasma with monotonically increasing density

profile has a characteristic peculiarity that differs this case from the two considered
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before. An increase of the plasma density along the path of the waves propagation
leads to decrease of the k vectors of waves, and thus to increase of the waves phase
velocities. As a result, the waves generated by a beam instability are shifted to the
region of the velocity space, where 0f(v)/Jv < 0 and the growth rate of the wave is
negative. Process of decrease of the wave energy is accompanied by the transfer of
wave’s energy to the particles. Such energy transfer from the electrons with velocities,
v < Uy, to the electrons with velocities v > vy via generation and reabsorption of the
Langmuir waves leads to the formation of the tail of the energetic particles on the
velocity distribution function in the end of the relaxation process.

For a sake of simplicity let us consider an electron beam with small initial thermal
dispersion Awvy/v, < 1 propagating within the plasma with a very slow spatial density
gradient. In this case, two characteristic spatial scales could be noticed: the scale of
the relaxation in the homogeneous plasma, 75, and the scale of the change of the phase
velocity of the Langmuir waves, 7g,;5;. A rough estimate of rg,;r¢ can by done by

making use of equation 2.51:

2
Ut

Tshift = Lunﬁ (258)
Yp

Above mentioned condition implies that 75 /7sp; ¢+ < 1. This inequality allows one to
describe the process of the relaxation of the beam in a two steps. At the first step, with
characteristic scale z, relaxation runs as in homogeneous plasma, namely runs toward
lower velocities and ends with a plateau formation of the electron velocity distribution
function in the rage of velocities 0 < v < v,. Spectral energy density of the waves in
the end of the first stage corresponds to We,4(V') obtained by making use of equation
2.43. At the second step, with much larger scale rgp,; ¢, the waves generated at the
first stage propagate within a plasma until decay due to the Landau damping on the
electrons with v > v,. Reabsorption of the wave by the particles leads to the shift of
a right border of the electron distribution function toward larger velocities. In the end

of the relaxation the distribution function can be described as follows:

oy forv<w
nbfend = v ' end (259)
0 for v > vepg

where v, is new position of the right border of the velocity distribution function and
Vend > Up.

To estimate ve,q One can use the energy conservation law. If the all energy of the
waves is reabsorbed by the electrons, than total energy of the electrons in the end of
relaxation should be equal to the initial energy of the beams. This implies following

equation:
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Vend

%mnb V% fopadv = %mnbvg (2.60)
0

By substituting f.,q determined by equation 2.59 into equation 2.60 one can ob-

tain that ve,g = V2u. Now one can use obtained v,,q to estimate an energy of the

accelerated particles in the end of the relaxation, E,, as follows:

Vend
E, = %mnb / V2 fonadv (2.61)
Vp
In a case of the initially thin beam FE, is about 65% of the initial energy of the
beam. The estimation is rather high. In more realistic cases it can be much smaller if
take into account several additional physical processes, such as, collision losses, decay
of primary Langmuir waves on secondary Langmuir waves and ion-sound waves, the

generation of electromagnetic emissions.

2.6 Plasma with random density cavities

In this section, we describe the effects of background plasma random density fluctua-
tions on the relaxation of electron beams. For this end, we assume that the level of
fluctuations is so high that the majority of Langmuir waves generated as a result of
beam-plasma instability are trapped inside density depletions. The k vector of waves
undergoes oscillations from zero (in the reflection points) to some maximum value (in
the point with minimal density). An appropriate approach to such a problem consists
in consideration of the problem in terms of spatial averaged wave growth rate, 7, and

electron velocity diffusion coefficient , D.

2.6.1 Procedure of averaging

For the problem under consideration we assumed that the initial velocity of the beam,
vp, significantly exceeded the plasma thermal velocity, v;. The second assumption is
that the initial width (variance) of the velocity, Av, of the beam is small as compared to
the beam velocity, vp. The density of a plasma is supposed to depend on the coordinates
as follows: n(x) = Ny + An(z), where An(z) describes small deviations from Nj.
An important additional condition is that the spatial scale of inhomogeneities, a, is
supposed to be much larger than the wavelength of the Langmuir waves generated by
the beam: aw,/v, > 1. For such a case the dispersion relation of the Langmuir wave

can be modified as follows:

. An(x)) S (2.62)

kox) = wpo [ 1+ =
wik,) “’1’°< TN 2 w,0
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where wpo is unperturbed plasma frequency. It is worth noting, that the change of
the wave spectral energy density, at the timescale of one period of oscillation between
turning points, a/vg,, is small, and thus one can use averaged over this period waves

growth rate. Let us begin from Liouville equation for W(z, k, t):

OWs(x, k,t) n Ow OWs (2, k,t)  Ow OWs(z, ki 1)

ot ok oz 9oz 0Ok = 2yW(x, k, 1) (2.63)

(equation 2.63 can be obtained from equation 2.22 by taking into account that d/dt =
0/0t + (0xz/0t)(0/0x) + (0k/0t)(0/0k) and by making use of Hamiltonian equations
for the Langmuir waves: dx/0t = Ow/0k and 0k /0t = —0w/0z). Equation 2.63 can be
simplify by substitution of wave energy spectral density as a function of the w instead

of k (relation between w and k is determined by dispersion relation 2.62), as follows:

OWs(z,w, t) N Ow OW;s(z, w, 1)
ot ok oz

In order to find the solution of the equations above, one can use the perturbation

= 29Ws(z,w,t) (2.64)

theory Wy = Wy + YWy and taking into account that % ~ 27Wso one can obtain

in the first order approximation:

6W1 o 2’7W0 — 8W0/8t
oxr Ow Ok '

Integrating equation 2.65 over close trajectories of the Langmuir waves between

(2.65)

their turning points, and taking into account that Wy does not depend on x, one cane

obtain the following equation:

aWSO (w, t)
ot

where 7 is averaged wave growth rate

7= (0 Lan) /(4 a2, (2.67)
forg) (f i

If the level of fluctuations is sufficiently high, main wave activity is localized in the

= 2 W,o(w, 1), (2.66)

vicinity of the bottom of the density well with coordinate, xg. For this case the density

profile can be assumed to be similar to parabolic:

1 _ 2
An(z) = Ang + 1] An| &2 (2.68)
2 ag
where Ang = An(zg) and
1 9%An

1
SR 2.
at  |Ang| 0x? (2.69)
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Then the dispersion relation of the Langmuir waves reads:

Y |An| (z — 20)? §k:2Ut2

=W .
P 9n0 ag 2 wy

(2.70)

The term Ow/0k in the equation 2.67 is a group velocity of the Langmuir waves
and thus: Ow/0k = 3v?/v. Also it is convenient to determine the term (z — z0)? from

the dispersion relation 2.70 as follows:

2,,2 2
(& — a0)? = 10 <1 ~ 1) 72: =3, (2.71)

e \u? ? v
where u = w,/k(z0) is a phase velocity of the wave in the bottom of the density well. By
making substation dw/dk and (x—1z¢)? into equation 2.67 and by making use of the new
variable of integration V' = w/k(z) (can be defined from condition w(z, k) = const),

one can obtain averaged growth rate of the wave as follows:

[e.o]

) = [ (- v12>_édv‘ 27

In a similar way, the equation describing evolution of the electron velocity distri-
bution function can be obtained from the corresponding QL equation 2.37 by making
spatial integration over the closed trajectories of the waves. By taking into account
that the oscillations in each single cavity are independent on those in the other cavities,

one can derive the averaged diffusion coefficient as follows:

du, (2.73)

— .1 /3 No

2.6.2 Evolution of the beam velocity distribution function and wave
spectral energy density

where

The complete system of equations that describes relaxation of the electron beam in the

plasmas with random density cavities in a quasi-linear approximation is

3? _ 0 —3?
where
— 8r2e? [ w
D= m2 Ut/UQ\/mdU, (276)

0
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Figure 2.4: The dynamics of the electron distribution function obtained from the nu-
merical simulation (shown in the central panel). The small panels provide snapshots
of the distribution function. The values of the distribution function and the velocity
are provided in arbitrary units. The width of the initial Gaussian is Av = 0.2v; [from
Voshchepynets and Krasnoselskikh, 2013].

and 57
W _
— =27 2.77

where 7 is

1 . oov@f/@v
2P N, ¢ ) VT

It is worth noting that velocity diffusion coefficient and waves growth rate in the plasma

5= ——dv. (2.78)

with density cavities (defined by 2.76 and 2.78) differ strongly from the corresponding
coefficients in homogeneous plasma (deﬁned by 2.39 and 2.40).

After substitution of variables f — W= Zﬁumzf W, t— nb t V= UpU, U = VpU

one can notice that the system conserves 1ts total energy:

o0 oo
% %/v27dv+/gdu = 0. (2.79)
0 0
The first term corresponds to the particle kinetic energy €, the second - to the wave
energy €.

The dynamic of f obtained from the numerical simulation based on the system
above is shown in Figure 2.4. On the right and left panels one can see the snapshots
of f for different moments of time. In a homogeneous plasma, relaxation stops when
within the entire range of velocities the distribution satisfies the condition df/dv < 0
corresponding to the absence of instability. The time of relaxation in dimensionless
units is on the order of 7 &~ 1 . As it is shown in Figure 2.4, at the end of the period

of beam evolution the relaxed beam distribution, f, in our case still has a positive
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Figure 2.5: The dynamics of the averaged wave spectral power obtained using the
numerical simulation, as shown in the central panel. Small panels provide snapshots of
the wave spectral power. The values of the wave spectral power and the velocity are
provided in arbitrary units [from Voshchepynets and Krasnoselskikh, 2013].

slope. The dynamics of W obtained in the simulation is shown in Figure 2.5. The
maximum value of W obtained in simulation was W, = 0,15 in dimensionless units
determined above. We normalized W to W, in Figure 2.5. By comparing the
dynamics of f and the wave energy €, one can notice that the process of the positive
slope decrease corresponding to conventional formation of the plateau of the electron
distribution ("plateauing") continues to operate while €, continues to grow (in Figure
2.4 and Figure 2.5 it corresponds to time interval ¢ = 0.0, ¢ = 0.5). After this time, €,
begins to decay but particle diffusion is still at work for some time. For the conditions

of simulation as presented in the Figure 2.4 the relaxation process ends after 7 ~ 1.4.

2.6.3 Waves growth rate

In Figure 2.6 the dependencies of the distribution function and the growth rate on
velocity are presented for two moments of time. As one can see, the impact of wave
trapping in randomly inhomogeneous plasma as described by the averaged 7 results in
significant reduction of the range of phase velocities u where waves can be generated.
Very important difference between beam plasma interaction in homogeneous and in-

homogeneous plasmas consists in the direct relation of the slope of distribution with
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Figure 2.6: The electron distribution function f (black) and the related Langmuir wave
growth rate 7 (red) (the X and Y axis are same as in Figure 2.4) [from Voshchepynets
and Krasnoselskikh, 2013].

the positiveness of growth rate in homogeneous plasma and absence of such relation in
inhomogeneous. Indeed the waves can damp in the areas of the velocity space where
the distribution function has positive slope. The effect appears due to the variation of
the wave’s phase velocity in inhomogeneous plasma. The majority of waves that are
trapped pass a significantly longer time in areas where they are damped than in areas
where they can grow. Therefore, the effect of averaging along the wave’s trajectory
explains the change in the relationship between the slope of the velocity distribution
and wave growth/damping. The process of plateau formation can take place only if
the wave intensity in the corresponding region is strong. Thus, relaxation of the beam
significantly slows down due to the shrinking of the region where waves grow v > 0.
The region becomes narrower with time and from the moment shown in the left panel in
Figure 2.6, we have v < 0 for all waves. After 7 = 0.8 the waves could only be damped
and the formation of the plateau eventually is stopped, electrons begin to reabsorb the
energy of Langmuir waves allowing the diffusion process to be supported until the wave

energy is completely reabsorbed.
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Figure 2.7: f for different moments of time (in arbitrary units). The initial electron
beam distribution, f, is plotted in black and the final distribution, f, is plotted in
brown. The right and left panels correspond to the different width of the beam Av
(Av = 0.2v, and Av = 0.08v) [from Voshchepynets and Krasnoselskikh, 2013]

2.6.4 Acceleration of the electrons

As seen from equation 2.76, all the waves with phase velocities u < v were involved
in the acceleration of particles with a velocity v. Therefore, acceleration was basically
provided by waves that were grown in a region with a positive growth rate. Wave prop-
agation in plasma with density fluctuations suggests that part of the time waves pass
in the region where their phase velocity is larger than the phase velocity of primarily
generated waves, resulting in an interaction with particles having velocities higher than
the velocity of particles of the beam that transfers part of their energy to waves.

Such an action allows the transfer of part of the wave energy to energetic particles
forming the tail of the distribution with energies larger than the beam energy. We
used this process to describe the diffusion process toward higher energies. From Figure
2.7 one can see that the population of fast electrons within the tail of the distribution
function grows during beam relaxation (the filled areas). Therefore, electrons could be
efficiently accelerated. Calculations with different initial conditions indicated that the
energy of energetic particles depend on the initial Av.

For Av < 0.1v,, more than 50% of the initial €, might be transferred to a higher
energy tail due to the wave energy absorption by particles having energies higher than

the energy of the beam.

2.7 Conclusions

Relaxation of the electron beam in the plasma with density inhomogeneities differs

from the relaxation in the homogenous plasma. In this chapter we considered the
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effects produced by the changes in magnitude of the wave vector of the Langmuir
waves, generated by the beam instability, in the direction of the wave propagation.
The changes in the wave vector lead to changes in the wave phase velocity, and cause
the outflow of the wave spectral energy density from the resonant region in velocity
space.

For the case of monotonically decreasing density profile in the direction of the beam
propagation, the outflow of the wave energy going toward lower phase velocities. As a
result, the wave energy in the volume of the velocity space resonant with electron of the
beam is reduced. This in turn, reduces the back reaction of the wave on the electron
distribution function, and the relaxation is slowed down in comparison to relaxation in
the homogeneous plasma. On the spatial scale, on which in homogeneous plasma the
electron velocity distribution function already takes form of the plateau, in the plasma
with decreasing density, the beam electrons are characterized by a small spread of the
velocities on the order of v;/v,. However, asymptotical solution are the same as in
homogeneous plasma.

In a plasma with monotonically increasing density profile, the wave phase velocity
is shifted toward larger velocities. Thus, the waves generated with phase velocities
around beam velocity consistently enter to the region of the velocity space where,
Of(v,t)/0v < 0 where the increment of the instability is negative. As a result of
interaction with electrons, the wave energy decreases with time, while the kinetic energy
of this electrons increases. For the case of small density gradient, the relaxation of the
beam in such inhomogeneous plasma can be separated into two stages. On the first
stage, relatively short in time, the electron velocity distribution function takes a form
of the plateau, and significant part of the kinetic energy of the electrons transfers to the
energy of the wave. At the second stage, the waves slowly move in the velocity space
toward region with v < 0 and decay. Relaxation stops when all energy of the waves is
absorbed by the fast electrons, that form the energetic tail on the electron distribution
function.

If the plasma contains random density cavities with sufficiently large depth, the
overwhelming majority of the generated waves are trapped by density depletions. Un-
der these conditions the growth rate can be averaged along the wave path in the vicin-
ity of the bottom of density wells. Two important features were observed during the
relaxation of the beam that were different from the beam-plasma interaction in a homo-
geneous plasma. The relaxation process stops prior to the formation of a plateau-like
distribution function because wave growth stops even when the slope of the distribution
function remains positive locally in the velocity space. The relaxation process causes a
transfer of a portion of the energy of waves to the high energy part of the electron veloc-
ity distribution. For the narrow beam (Av < 0.1vp) the energy of accelerated electrons

can reach up to 50% of the total initial energy of the beam. However, the presence of
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wave damping by the background distribution in the plasma, as well as a number of
other effects, such as, decay of primary Langmuir wave on secondary Langmuir wave
and the ion-sound wave, the generation of electromagnetic emissions, and others, may
also have an important impact on availability of wave energy that can be reabsorbed

by the higher energy electrons.

2.8 Resume in French

Nous allons commencer par une bréve introduction de physique des plasmas. Ces
points seront nécessaires pour la compréhension du manuscrit et de la logique de la
présentation. Dans ce chapitre nous allons définir les principales variables du probléme,
décrire les concepts et les processus mis en jeu dans notre modéle. Une partie assez
importante de cette description peut étre trouvée dans des différents ouvrages dédiés
a la physique des plasmas [Artsimovich and Sagdeev, 1979, Akhiezer, 1975, Melrose,
1980b].

Le modéle que nous proposons a pour objet de décrire l'interaction de faisceau
d’électrons de faible densité avec des ondes de Langmuir, donc nous devrions a cet effet
utiliser la description cinétique du plasma. La description du plasma par le systéme
d’équations de Vlasov nous permet de déterminer les champs électriques qui y régnent
de facon auto-consistante. L’application de cette théorie auto-consistante aux oscilla-
tions électrostatiques de hautes fréquences nous fournira non seulement les relations de
dispersion pour ce type d’ondes, en d’autres termes, la description de la propagation des
ondes de Langmuir dans le plasma, mais aussi plus de compréhension sur les processus
d’interaction onde-particule.

La propagation des ondes dans un plasma perturbe les trajectoires de toutes ses par-
ticules, toutefois une population relativement petite de ces particules, notamment celle
qui satisfait la condition de résonance est responsable de phénomeénes d’amplification et
d’amortissement des ondes. Dans le cas des ondes de Langmuir, la principale contribu-
tion & ces phénoménes est fournie par les électrons répondant & la résonance Cherenkov:
les vitesses des particules sont proches de la vitesse de phase de 'onde. L’interaction
résonante onde-plasma de ce type permet d’expliquer la croissance et I’amortissement
de l'onde. Dans un plasma homogeéne, le taux d’amortissement /croissance est propor-
tionnel & la dérivée de la fonction de distribution électronique aux voisinages de la
résonance. La caractéristique naturelle d’une telle relation consiste & produire tou-
jours Pamortissement des ondes de Langmuir dans les plasmas Maxwellien (grace a
lamortissement de Landau) qui correspond a I'état de I'équilibre thermique.

Suite & des instabilités, si un spectre d’ondes de large bande est excité dans le plasma
hors I’équilibre, un état turbulent des oscillations de plasma peut se produire. La théorie
quasi linéaire (QL) décrivant ’évolution des instabilités et de I'interaction des particules

avec les ondes dans des plasmas turbulents est basée sur une hypothése importante:
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celle que toutes les ondes ont de faibles amplitudes. Cette hypothése conduit & négliger
tous les types d’interactions onde -onde non linéaires. Le seul effet non linéaire pris
en compte dans ce modéle se rapporte & l'interaction résonante des ondes avec des
particules. L’instabilité faisceau-plasma est I'une des premiéres instabilités cinétiques
étudiée par l'utilisation la théorie QL [Vedenov et al., 1962, Drummond and Pines,
1964]. Dans le cas du plasma homogeéne, la théorie QL prédit la formation de plateau
de la fonction de distribution des vitesses d’électrons dans la plage de vitesses inférieures
a la vitesse du faisceau. Le processus de formation de plateau est accompagné par le
transfert d’une partie de I’énergie cinétique des électrons en une énergie potentielle des
ondes de Langmuir.

La relaxation du faisceau d’électrons dans un plasma de densité électronique non-
homogeéne se développe d'une maniére différente comparée a celle d’un plasma homogéne
[Breizman and Ryutov, 1970, Ryutov, 1969, Vedenov and Ryutov, 1975]. Dans ce
chapitre, nous avons examiné les effets liés aux changements de la magnitude du vecteur
d’onde des ondes de Langmuir, générées par I'instabilité de faisceau, dans la direction
de propagation de I'onde. Une variation du vecteur d’onde a comme conséquence une
variation de la vitesse de phase de 'one ceci engendre alors une diminution de la densité
spectrale d’énergie de 'onde de la région résonante dans l'espace des vitesses. Cette
derniére est due & des pertes d’energie a partir du domain de génération.

Lorsque le profil de densité décroit de maniére monotone dans la direction de prop-
agation du faisceau, le flux d’énergie des ondes se dirige vers des vitesses de phase
inférieures. En conséquence, ’énergie des ondes dans le volume de 'espace des vitesses
résonantes avec électron du faisceau diminue. Ceci, & son tour, réduit la contre-réaction
de l'onde sur la fonction de distribution des électrons, et la relaxation se trouve at-
ténuée, c’est-a-dire, le temps de relaxation est plus long par rapport & celui du plasma
homogéne. En ce qui concerne I’échelle spatiale, on considére la distance sur laquelle
dans le plasma homogéne d’une part,la fonction de distribution de vitesse des électrons
commence & prendre la forme de plateau, et dans le plasma ayant le profil de la densité
décroissante d’autre part, la fonction de distribution des électrons présente une varia-
tion traduisant un petit effet de diffusion dans 'espace des vitesses de l'ordre de v;/vy,.
Dans les deux cas, toutefois, les solutions tendent vers la méme forme asymptotique.

Dans un plasma avec le profil de la densité monotone et croissant, la vitesse de phase
de 'onde augmente et dépasse la vitesse du faisceau. Ainsi, les ondes générées avec des
vitesses de phase voisines de la vitesse du faisceau se déplace systématiquement dans la
région de l'espace des vitesses ot 9f(v,t)/0v < 0, Ponde se trouve alors amortie. Suite
a I'interaction avec les électrons, I’énergie des ondes diminue avec le temps, tandis que
I’énergie cinétique des électrons énergétiques augmente. En présence de petit gradient
de densité, la relaxation du faisceau dans un tel plasma non-homogéne peut étre séparée

en deux phases. Dans une premiére phase, relativement bref dans le temps, la fonction
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de distribution des vitesses des électrons prend une forme dotée de plateau, et une
partie significative de I’énergie cinétique des électrons est transférée vers de 'onde. Au
cours de la deuxiéme phase, les ondes se déplacent lentement dans I’espace des vitesses
vers la région v > v, ou v < 0 et leur énergie est absorbée par les particules. La
relaxation s’arréte quand toute I'énergie des ondes est absorbée par les des électrons
rapides. Ce processus aboutit & la formation de queue de la fonction de distribution,
du coté des électrons énergétiques.

Si le plasma renferme des cavités suffisamment profondes de densité, réparties de
maniére aléatoire, I’écrasante majorité des ondes générées sont piégées dans ces cavités
de densité. Dans ces conditions le taux de croissance peut étre évalué comme une
moyenne sur le trajet de 'onde oscillant au voisinage de fond de puit de densité. Deux
caractéristiques importantes du processus de relaxation de faisceau différentes de celles
de l'interaction faisceau-plasma dans un plasma homogéne ont étaient trouvées dans
ce cas. Premiérement, le processus de relaxation peut s’arréter avant la formation
d’un plateau la raison en est que la croissance d’onde s’arréte alors que la pente de
la fonction de distribution reste encore positive localement dans ’espace des vitesses.
Deuxiémement, le processus de relaxation est accompagné d’un transfert d’une partie
de Iénergie d’ondes aux particules de plus haute énergie et de la formation de queue
dans la distribution de vitesses des électrons. Pour un faisceau étroit (Av < 0.1vy)
I’énergie des électrons accélérés peut atteindre jusqu’a 50% de I'énergie totale initiale

du faisceau.
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Chapter 3

Probabilistic model of
beam-plasma interaction in
randomly inhomogeneous plasma.

3.1 Introduction

In this chapter we present recently published model for beam plasma interaction in a
randomly inhomogeneous plasma [Voshchepynets et al., 2015]. We replace the contin-
uous spatial interval by discrete one of finite (but very large) length and divide it into
a set of finite equally sized sub-intervals of size a. Such discretization allows one to
apply in a simpler way the probabilistic approach. The scale a is stated to be much less
than the characteristic scale of changes for the electron distribution function, L.. We
consider an interaction of a coherent small amplitude wave with a particle on such a
small interval by assuming that the density profile on this interval is linear. However, it
is supposed that it is sufficiently larger than the wave’s wavelength. Our assumptions
allow one to describe the action of the field of a wave with a known frequency on a
particle using a necessary degree of accuracy to calculate the effect of wave particle
interaction on any particular interval with chosen densities at the ends. The key point
of our description is that, on each interval, we assume that the values for the density
in the center of the interval are random and independent, and they are described by a
predetermined known statistical distribution. The density profile is continuous without
discontinuities being skewed at the ends of neighboring intervals. The distribution can
be chosen either by taking it to correspond to real observations or choosing a model
distribution that allows calculations to be performed in a simpler manner. Based on
this knowledge, the statistical distribution for the phase velocities of waves can be
derived for any given frequency. The last distribution is uniquely determined by the
distribution of the density fluctuations. This probability allows one to calculate the av-
erage energy exchange between particles with a given velocity and a wave with a given

frequency. While calculating particle motion under the action of a chosen wave, we
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consider its phase to be determined, although, afterwards, we shall perform statistical
averaging over the phases by assuming that they are random and uniformly distributed
in the interval from 0 to 2. We also assume that the wave particle interaction at each
interval is independent of wave particle interactions at previous intervals. Using such
assumptions, we calculate the probability that a particle having at initial time ¢ veloc-
ity vg after @) interactions that occur during a time interval (¢ —¢y) will have a velocity
v, where the number of steps, @, should be large enough to justify statistical averaging.
We replace time averaging by averaging over an ensemble with a given probability dis-
tribution. Such an assumption allows one to determine an averaging procedure over a
predetermined distribution that is related to the statistical distribution of the density
fluctuations, suggesting the number of steps, ), to be large. An assumption of ran-
dom and independent interactions corresponding to an uncorrelated Marcovian process
leads to a description of the evolution of the particle distribution function based on
an equation of diffusion similar to the Fokker-Planck equation in the velocity space.
Under such assumptions, the diffusion coefficient so determined is dependent on the
probability distribution of the density fluctuations. To calculate the growth rate of a
wave, we use the energy change of particles energy and take into account the fact that
on a small interval with a linear profile of density, the gain/loss of energy by the particle
is equal to the energy loss/gain by the wave. Local conservation of energy occurs on
small intervals and allows one to calculate an average energy change for wave energy

density and the increment of instability or damping for a wave having given frequency.

3.2 Lungmuir waves in the plasma with density fluctua-
tions

Here, we consider a one dimensional problem where the Langmuir wave packet gen-
erated by the beam propagates in an inhomogeneous plasma. The density inhomo-
geneities of the background plasma with density Ny are stated to have a relatively
small amplitude, dn < Ny and their characteristic scales, L, (even the smallest) are
much larger than the wavelength, A, of the waves generated by the beam and propagat-
ing in a plasma: L > A. Our goal is to describe the process of beam-plasma interaction
in inhomogeneous plasma with density fluctuations described by the probability den-
sity distribution, P(dn). Assuming the conditions above are satisfied, the propagation,
amplification, and damping of waves can be described either using Zakharov’s equa-
tion |Zakharov, 1972] for the envelope of an electric field or by means of a Liouville
description for the spectral energy density, Ws(k,z,t). For our purposes, these two

descriptions are equivalent. Let us begin with the Zakharov’s equation

OF 0*E n .
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where E(k, z,t) is the electric field amplitude, w, is the average plasma frequency, Ap is
the Debye length, dn indicates density fluctuations, and 7 is an operator describing the
local growth/damping rate of waves. The first two terms on the left-hand side of the
equation (3.1) describe a propagating wave having some frequency and a wave-vector in
a homogeneous plasma. The two terms on the right-hand side of the equation (3.1) are
dependent on random density fluctuations. The equation (3.1) provides an appropriate
dynamic description for wave field evolution and propagation on relatively small scales,
smaller or comparable to the characteristic scale of variations in density fluctuations.
The first term on the right-hand side of the equation (3.1) describes variations in the
wave vector due to variations in the density. The second term on the right-hand side of
the equation (3.1) describes wave-particle interactions that vary along the wave path
due to changes in the wave phase velocity.

By considering a simplified model when inhomogeneities can be presented in the
form of localized regions where the density is different from an "averaged background",
the presence of the following characteristic scales can be identified for our problem: 1)
a characteristic scale for the localized inhomogeneity, which we denote with L, and 2)
a sufficiently larger characteristic scale, L., where the electric field of the wave can be
considered as "statistically averaged" over a long path with many inhomogeneities. It
should include multiple interactions of wave with different groups of particles having
velocities equal to the local phase velocity of wave. In each localized region, the phase
velocity of the wave undergoes relatively small variations. Thus, characterization us-
ing a local phase velocity is justified and locally determines the growth/damping rate.
The evolution of the averaged wave amplitude can be characterized by some averaged
growth/damping rate when the wave traverses many localized regions. The short time
scale is related to wave dynamics in the localized region corresponding to the char-
acteristic scale L. On this scale, the evolution of the wave can be described using a
quite precise description with quite accurate precision. The evolution of the wave is
determined by variations of the wave vector and a change in the wave amplitude due to
the presence of an instability or dissipation provided by wave particle interaction. The
approach is similar to the SGT proposed by Robinson Robinson et al. [1993]. How-
ever, the SGT does not address the question how wave energy is dissipated by particles
and how it affects the distribution function of beam generating waves. The SGT only
defines the asymptotic characteristics of wave amplitudes that are independent of the
statistics of density fluctuations. Here, we refine the SGT by taking into account the
statistical properties of density fluctuations that we characterized using the probability
density distribution. The second important goal of our study is the description of the
relaxation of the beam particles. In other words, here, we describe how wave parti-
cle interactions influence the beam and how the process of relaxation depends on the

characteristics of the beam and the statistical characteristics of density fluctuations.
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3.3 Characteristic scales of the density fluctuations

Several important scales are known from studies of beam plasma interaction in homo-
geneous plasma and plasma with monotonically changing density as compared with
density inhomogeneity scale.

Characteristic scales of the beam plasma interaction depend on the characteristic
growth rate v. To obtain the growth of waves up to a level significantly larger than

noise level one should satisfy the following condition:

L
y— > A. (3.2)
Vg

Here L is the characteristic scale of the density inhomogeneities; vy ~ v?Z /vy is the group
velocity of the Langmure wave; v; is the thermal velocity of the background plasma; and
vy is the velocity of the beam; A is the so called Coulomb logarithm and A = In NoA%,,
where Ap is the characteristic Debye length. If L is smaller than (vy/v)A, the growth
of the waves is stopped on such a level that nonlinear phenomena such as wave particle
interactions can be neglected. The linear growth rate of the beam plasma instability

reads:

N EAYEIA.
7= NO Avb ’

where w), is the characteristic plasma frequency, Awvy, is the characteristic beam width
in the velocity space, and ny is the density of the beam electrons. Then the condition

above can be presented as follows:

Avy\? N
Lmin = < Ub) JEA)\D
Vp Ny Vp

For parameters relevant to solar Type III electron beam and background plasma at
1 AU, the following parameters are applicable [Ergun et al., 1998] : Ng ~ 5 x 105m~3;
wp/2m ~ 20kHz; ny/No ~ 107°; Ap ~ 15m ; Av/v, &~ 0.05; v, ~ 15v; and A =~ 15;
Linin results in 250\ p or 3750m.

Density fluctuations having very large spatial scales, larger than the beam relaxation
length in homogeneous plasma, can not significantly influence the process of the beam
plasma interaction. Relaxation stops with a plateau formation when Av/v, ~ 1. Then,

L.nae can be estimated, as follows:

N
=200 M.
Ny vy

Lmaz
For the parameters mentioned above, L4, results in 10°Ap or 1.5 x 105m.
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For the case of a quiet solar wind with vgy = 450kms™t, Ly and Lya, can yield
two characteristic frequencies in a frame of spacecraft f;, = 120Hz and f; = 0.3Hz.
Herein, we consider density fluctuations with characteristic spatial scales, L, that satisfy

conditions: L < L < Liygz.

3.4 Procedure of discretization. Separation of scales

To apply the statistical approach to our system, below we describe our continuous
system, making use of the procedure of discretization. To this end, we divide the
continuous spatial interval on a set of equally sized subintervals of a length a. The size
a is supposed to be match smaller than the characteristic scale of the change of electron
distribution function. Moreover, it is supposed to be smaller than the characteristic
scale of the density gradient but sufficiently larger than the wavelength of Langmuir

waves generated by the election beam:
A<a< L.

Another important limitation for a can be obtained by considering velocity change
on an interval with an inhomogeneity having linear profile: N(xz) = Ny + Anx/L.
The dispersion relationship for the Langmuir wave can be written as follows: w =
wp(x)(1+(3/2)(v7/V?)). Here w and V are the frequency and the phase velocity of the
wave. Assuming that the frequency of the wave and the thermal velocity of particles

are constant, the following equation can obtained:

307\ dwpy(z) v AV
B = (1 " 2v2> o S0 Ry =0

where AV is the deviation of the phase velocity on the scale Az caused by a density

gradient. Since

Ldwp(e) _1d (zAny 1 An
wp, dr  2dx \LNy/) 2L Ny’

and taking into account the fact that V' ~ vy > vy, AV can be estimated as follows:

Ax |An| vy
AV ~ gy 22120
AV~ o1,

Langmuir waves can grow or decay due to the interaction with the electron beam,
while the phase velocity, V, remains in the interval v, — Avy, < V < vy + Avy. The
interaction will stop when AV ~ Aw, and when the resonant conditions are not satisfied
anymore for beam particles. Such deviation of phase velocity occurs on the following

spatial scale:
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No Avy v?

Ar,=L———=.
e An v vg

For the condition mentioned before (Av,/v, = 0.05, v, = 15v;) and An/Ny = 0.01,
waves escape from resonance on the scale Az, ~ 0.02L. In our model, the change of
velocity on one single interval should be much smaller than a velocity variation that
would lead to a violation of the resonant condition. This implies that the characteristic
scale for subinterval a is sufficiently smaller than Ax.. In this case a wave can be
considered to remain in resonance with the electron beam on a single interval without

a loss of coherence.

3.5 Evaluation of the contribution from the angular dif-
fusion

Two major physical effects are caused by density fluctuations, lead to changes in the
wave phase velocity. Both result in changing of the conditions of resonance and con-
sequently shift wave-particle interaction in another part of the phase space. Thus, the
wave with frequency w and unperturbed wave vector kg will interact with particles,
that have velocities different from w/ko.

The first effect consists in angular diffusion of the direction of wave propagation and
the angular deviation of the wave vector from its supposed trajectory in a homogeneous
plasma. The process becomes extremely important, for density fluctuations with a
spatial scales, [, that are small compared to vy/7, and with amplitudes, that are not
to large |An/No| < v7/vi. The first of inequalities implies that the angular deflection
on each scattering event is much smaller than unity, so that process can be described
by angular diffusion. The second of inequalities states that the k vector magnitude of
the Langmuir waves is conserved (see Nishikawa and Ryutov [1976] and Krasnoselskikh
et al. [2007] for additional details).

The second effect consists of a change in magnitude of k£ in the direction of wave
propagation. Density fluctuations should have amplitudes that satisfy condition |An/Ny| >
v/ vg to be involved in this process. As shown earlier, the most important impact on
beam relaxation is provided by fluctuations with spatial scales, L, that lie within the
range Lyin < L < Lpae. Tt is worth noting that inequality (3.2) leads to conclusion
that L is much larger than, the spatial scale, [, of the fluctuations that are the most
important for the process of angular diffusion.

Thereby, the process of angular diffusion is dominant, when density fluctuations
have relatively "small" scales and amplitudes, while the effect of a change of k& magni-
tude prevails for the fluctuations with larger scales and amplitudes. Our goal hereafter
is to study the role of the density fluctuations of the second type in the beam plasma

interactions.
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Let us evaluate contribution from the angular diffusion of the scale Ax,.. These effect
is described by the diffusion equation [Nishikawa and Ryutov, 1976, Krasnoselskikh
et al., 2007] , and the corresponding process is characterized by a diffusion coefficient

that can be estimated to be of the order of:

2

D l 1 Anad
Pl (k2X2) | N

Here k is the characteristic wave vector of the primary Langmuir wave generated due to
beam-plasma interaction, An,q and [, amplitude and spatial scale of an inhomogeneity
involved in the process of the angular diffusion. To significantly reduce the instability
growth the wave vector should deviate from its initial direction to the angle 6, as
determined by the following condition:

Avy

1—-cosf = —.
Vp

If Avy/vy < 1 then 6 ~ (Awy/vp)'/2. Thus, the characteristic time of angular diffusion

in the velocity space can be estimated as follows:

A
DTad ~ ﬂa
Uy
and
1 A’Ub 1 (k‘z)\%) A’Ub
~— | —) = kl .
Tad D < U ) wp ‘Anad 3 ’[)b
No

Now one can compare the time of the angular diffusion, 7,4, and the time of a

propagation, 7,,(Axz.), of a Langmuir wave through the interval Az,

Tud { An \? 912 No vpk
> E2)\ bl
Anacl

Tor (Az,) I D An Wp
Taking into account that vyk/w, ~ 1, /L < 1/A, An/Angg > 1, and An/Ny >
k2)\2D one can find: 7,4/7p(Az.) > 1. Thereby, the effect of the angular diffusion is too
'slow’ to make significant influence on the wave-particle interactions on the subinterval,
a < Az.. Observations of the Langmuir waves in the solar wind show that most Lang-
muir waves have angles with background magnetic field smaller than 20° [Ergun et al.,
2008, Malaspina and Ergun, 2008, Krasnoselskikh et al., 2011], that gives additional

argument validating the weakness of angular diffusion of waves.

3.6 Probabilistic model of the beam plasma interaction in
plasma with density fluctuations

Let us assume that a change in the density, An = dn(z;, + a) — on(x;y), for each

subinterval satisfies the condition An/Ny < 1. Now we can consider the problem of
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wave particle interaction on the interval with the density profile so determined. We shall
consider the interaction of a small amplitude coherent wave, with a known frequency
w and an amplitude E,,, with a particle with known velocity v, on such an interval.
These assumptions allow one to calculate changes in the particle velocity, Av and in
the wave amplitude, AFE,,, with necessary degree of accuracy.

We now consider deviations of the plasma density, én, from Ny at the ends of the
subintervals as random and independent with a predetermined statistical distribution,
Py, (dn). This last distribution uniquely determines the distribution of the wave phase
velocity P, (V). Efficient variations for Av and AE,, only occur if the condition of exact
resonance, V = v, is satisfied inside the selected interval. Change in the velocity of an
electron depends on F,,, a phase difference between an electron and a wave, ¢, and the
wave phase velocity on the selected subinterval. Without loss of generality, the initial
phase ¢ can be suggested to be a random variable with a uniform distribution. Thus,
variations in both Av and AFE, on ensemble of subintervals are determined by the
random variables with the known probability distributions. An important additional
assumption that allowed us to solve the statistical problem is an assumption that wave
particle interactions on each subinterval are independent of wave particle interactions
on the previous interval. The result indicates that the process can be considered to
be a series of random and independent interactions, which allows one to describe the
process of beam relaxation in terms of the uncorrelated Marcovian process. Another
simplification that we used is based on the smallness of the changes in electron velocity:
Av/ve < 1.

Under such conditions, one can define the probability density function, U(v, t|vo, to),
that determines the probability U (v, t|vg, to)dv that a particle having a velocity vy at a
moment of time tg will have a velocity v after @) interactions that occur during the time
interval t — tg. By suggesting that the number of steps, @), be large enough to justify
statistical averaging, the Fokker-Planck equation can be used to describe the evolution

of U(v,t|vy, tp), as follows:

aU(U7t|U07t0) _ 9

g = = AW)U (v, oo, to) + (3.3)
82
WB(U)U(UaﬂUOvtO)v

where A(v) and B(v) are drift and diffusion coefficients that indicate the averaged

characteristics for variations in the velocity and its dispersion:

< Av > 1< Av? >
At ’B(v)_i At

To obtain the drift and diffusion coefficients, the change in velocity that an electron

A(v)

undergoes within subinterval a should be estimated, as described above. Time averaging

should then be replaced by the average over the ensemble, which allows calculation of
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the averaged characteristic variation, (Av) and the dispersion (Av?) of the particle’s
velocity. The averaging means averaging over phase ¢ and over phase velocity of the
wave, that are supposed to be the random variables with the known distributions
Py(¢) and P,(V), respectively. As discussed before, it is reasonable to assume that
¢ is uniformly distributed within the interval [0, 27], while P, (V') can be determined
using the distribution of the density fluctuations. To obtain an equation describing an
evolution of an electron distribution function, f(v,t), one should integrate U (v, t|vo, to)
multiplied on f(vg, tg) over vy, where f(vg,to) is the electron distribution function at a
moment .

Following substitution of (Av) and (Av?), equation (3.4) can be written as follows

(for more details see Appendix A.2):

of _ 27T262WQUP (v)g
o miw v o’
where W = EZ2 /(8) is the wave energy density, and f(v,t) is normalized to one. The

(3.4)

next step consists of considering a spectrum of waves with different frequencies. For
the sake of simplicity and without losing generality in the description, we considered
it to be comprised of a set of discretized equidistant frequencies, w;. To describe the
interaction of the beam with several monochromatic waves with frequencies, w;, and
energy densities, W;, the contribution of each wave in equation (3.4) should be summed.

To study the evolution of wave energy density, one can use the fact that on each
subinterval, a, the change in wave energy density for any wave, W;, is equal to a
change in the total energy density of the electrons involved in a resonant wave-particle
interaction taken with an opposite sign. By assuming that the change in W; after
passing one subinterval is small, AW;/W; < 1, one can use (Av) and (Av?) in order
to characterize the averaged change in particle energy (for more details see Appendix
A.1). Using this approach allows one to derive an equation for the variation of W; over

a larger (statistical) scale:

dw;
dt

o g [1200
— map g W, / v2il e, vy, (3.5)
0

where ny, is the density of the electron beam. For a homogenous plasma, there are no
variations in the wave phase velocity and P,(V) may be replaced by the Dirac delta
function. For such a case, equation (3.5) takes a form similar to the corresponding
equation in QL theory [Vedenov et al., 1962]. The wave’s growth rate, -, only depends
on the value of the derivative of the electron distribution function at a single point
within the velocity space. The presence of density fluctuations leads to variations in
the wave’s phase velocity, and, as a result, the wave can interact with different parts of
the electron distribution function on different subintervals. Integration into equation

(3.5) corresponds to the procedure of averaging the local growth rate ~.
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Equations (3.4) and (3.5) allows one to describe beam-plasma interactions in the
presence of random density fluctuations. Here, the reader should note that the system
conserves the total energy of particles and waves (Appendix A.3). Key parameters of
the model are the probability distribution function of the wave phase velocity, P, (V),
derived from the probability distributions of the density fluctuations, Pj,(dn) .

3.7 Probability distribution function of the wave phase
velocity

Considering density variations to be linear on scale a, a linear approximation can be
said to be valid for an electron plasma frequency with the same degree of accuracy, caus-
ing changes in the wave phase velocity. Using the dispersion relationship for Langmuir
waves, one can obtain a relationship between the plasma frequency and the correspond-
ing phase velocity, as follows: wg(n) = w?(1 — 3v?/V?), where w,(n) depends on the
density fluctuations.

Knowledge of the distribution function for density fluctuations at the edges of subin-
terval a allows one to find the distribution function of the corresponding plasma fre-
quencies, f,, (wp). To evaluate the probability that resonant conditions for wave particle
interactions are satisfied on any selected interval having a known density, the common
probability that the wave phase velocity on one of the subinterval is larger than the
particle velocity and smaller on the other end should be calculated. The probability

can be found by making use of the following expression:

PM(V) = P(uil < V) . P('U,Z‘Q > V),

Here, P(u;; < V) is the probability that the phase velocity u;; on one end of the interval
is less than the given value of the wave phase velocity, V, as follows: P(u;; < V) =
Ior V) Juwp (Wp)dwy. In a similar manner, P(u;z > V') is the probability that on the other
end of the subinterval the phase velocity w;s is larger than V', and can be calculated
as follows: P(ujp > V) = f(j;(v) Juw,(Wp)dw,. We consider that a change in phase

velocity on an interval caused by the inhomogeneity is much less than its magnitude
AV (An)/V <« 1. After normalizing P,(V) to 1, P,(V)dV can be interpreted as the
ratio of a number of subintervals a on the characteristic scale L. > L to the total
number of subintervals where a wave with constant frequency w has a phase velocity
V.

Another important effect to be taken into account is the probability that a wave
can be reflected from a region where the plasma frequency becomes equal to the wave
frequency. The result can occur one or many times. For the sake of simplicity we
calculate the total probability that the wave is reflected, including all multiple possible
reflections. In terms of the probability, the probability of the single reflection can
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be written as follows: P,(w) = [ ° fo, (wp)dw,. The generated wave maintains its
initial direction if there are no reflections at all, or if the reflections compensate for one
another. In the limit L./a — oo the total probability that the wave keeps its initial
direction after multiple reflections can be estimated as follows: P (w) =1 — Pr(w) +
P} (w)(1 - Py(w)) + PXHw)(1 — P-(w)) + ... = 1/(1 + P.(w)). The probability that the
wave moves in the opposite direction is Pppy(w) = Pr(w)/(1 + P (w)).

To derive a complete description in terms of the probability distributions, an as-
sumption should be made regarding the statistics of the density fluctuations. For the
sake of simplicity, hereafter, we use the Gaussian distribution for the magnitudes of
plasma frequency at the ends of subintervals f,,, (wp) = exp —(wp — wyo)?/Q?, where
wpo is the plasma frequency of the unperturbed plasma and €2 is the dispersion of
the distribution. A ratio Q/wyo can easily be rewritten as (1/2)(((0n2))'/2/Ny), where
((6n2))'/2 is the dispersion of the density fluctuations. Obviously, the probability distri-
bution function that corresponds to observed spectrum of density fluctuations [Celnikier
et al., 1987, Kellogg and Horbury, 2005, Chen et al., 2012] is non-Gaussian. However,
it seems to be reasonable to use Gaussian distribution as a first step approximation.
A detailed study of effects related to a deviation from Gaussian statistic is beyond the
scope of the present chapter. Here, it is worth mentioning, that rare, large-amplitude
fluctuations (that correspond to non-Gaussian 'wings’ of the distribution function) can
be included into the proposed model, because spatial scale of subinterval is still small
enough to ensure that Langmuir wave remain in resonance with a beam on subinterval.
Figure 3.1 provides examples of P, (V) for a wave with a ratio of w/ky = 7v:, where
ko corresponds to the wave vector of the resonant Langmuir wave in a plasma with-
out density fluctuations having an average density of Ny for a various levels of density
fluctuations.

An increase in the magnitudes of the density fluctuations results in a broadening
of the probability distribution function in the velocity space. Density fluctuations
with larger magnitudes should change the plasma frequency stronger, leading to larger
variations of the wave vector and, hence, resulting in an increase in the dispersion of the
phase velocity of the wave. In the case of ({(6n2))'/2/Ny — 0, the probability function
P, (V) tends toward the Dirac delta function, corresponding to a homogeneous plasma

where the wave can have only a fixed phase velocity, V = w/kg.

3.8 The growth rate of the wave

To evaluate the effects of density fluctuations on the wave generation, we compare
wave growth rates obtained in the framework of different approaches. In QL theory,

the growth rate can be written as follows:
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Figure 3.1: Examples of the probability distribution functions, P, (V'), for the var-
ious fluctuation levels. P, (V)dV is the probability that a wave with a ratio of
w/ko = Tv, will have a phase velocity V' at a given interval. P, was normalized to
1 using: [;° P, (V)dV = 1. Colors correspond to various fluctuation levels, as follows:
((0n2)Y/2 /Ny = 0.005 , blue; ((6n2))'/2 /Ny = 0.01, green; ((6n?))*/?/Ny = 0.015, red;
((6n2))1/2 /Ny = 0.02, cyan.

L af (v)
v_ﬂﬁo <v2 5 )vw/k. (3.6)

QL theory considers only resonant interaction between waves and particles. As a result,
waves grow in region of the phase space where f(v) has a positive slope and decay in
region where the derivative of the electron distribution function is negative.

Using the probability distribution function of the wave phase velocity, the averaged

growth rate of a wave can be calculated as follows:

0o
o =gt [viele,war (3.7)
0

Averaging is used to account for the effects of density inhomogeneities in the plasma

on wave evolution. In a homogeneous plasma, waves with a frequency, w;, will have a
uniquely determined phase velocity, V; = w;/k; and P,, = 6(V — V;), where ¢ is the
Dirac delta function. Density fluctuations cause variations of k£ along the path of wave
propagation. As a result, the phase velocity of a wave changes following changes in
the plasma density. Waves can interact with different parts of the electron distribution
function and the growth rate at some points in the velocity space can be negative

(which is really damping), despite the fact that the slope of the distribution function

63



300

200¢
T 100}
£ 0
=
-100¢
‘ ‘ -200 ‘ ‘
5 10 5 10 15 20
velocity|vy] velocity [vy]

Figure 3.2: Left panel: Examples of the growth rate of waves for the various
fluctuation levels. Different colors correspond to the different levels, as follows:
((0n2))Y/2 /Ny = 0.005, blue; ((6n2))*/2/Ny = 0.01, green; ((6n2))'/2/Ny = 0.02, cyan;
((6n2))1/2 /Ny = 0.04, magenta. Black line corresponds to the growth rate obtained in
the QL approximation for a case of a homogeneous plasma. The driven beam has a
Gaussian velocity distribution with v, = 6v; and Av, = 0.5v;. Right panel: The growth
rate of waves in the QL approximation obtained for the different thermal velocities of
the beam. The black line corresponds to Avp = 0.5v¢, the blue line to Avpy = luvg, the

red line to Avy = 2v;. For all cases vy = 10v;. All results are provided for a ratio of
ny/Ng = 107,

is positive.

In our simulations, we use a set of 2000 waves with uniformly distributed phase
velocities, V;, in the range from 3v; to 40v, in order to construct (y(w;)) as a function
of the wave frequency. The left panel of Figure 3.2 provides examples of (y(w;)) for
various levels of the density fluctuations, obtained by making use equation (3.7). The
black curve corresponds to the wave growth rate obtained from the QL approximation
using equation (3.6). To this end, we use a Gaussian distribution with beam velocity
vp, = 6v; and beam thermal velocity Avy = 0.5v; as the initial velocity distribution
function for beam electrons.

An increase in the level of density fluctuations, ((6n2))/2/Ny, leads to a decrease in
the maximum wave growth rate. Even fluctuations with a small amplitude, ((6n?)) 12 _
0.005Ny, (blue curve in Figure 3.2) result in a substantial reduction in (y(w;)). Thus,
one should expect that the characteristic time of the growth of a wave significantly
increases in a plasma with random density fluctuations. Another notable effect is a

shift in the maximum growth rate in the velocity space toward lower phase velocities.
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The shift is accompanied by a decrease of the region where the growth rate is positive.
As a result, an increase in the level of density fluctuations reduces the volume of the
velocity space where waves could grow efficiently.

Another important parameter that causes a change in the growth rate is the beam
thermal dispersion, Awy, or the width of the electron velocity distribution function.
The right panel of Figure 3.2 provides the examples of v obtained from the QL approx-
imation for beams with the same v, for different values of the thermal dispersion, Auvy,.
As expected, an increase in the thermal dispersion of the beam results in a decrease in
the maximum growth rate. From equation (3.6), for the case of a Gaussian distribution
of electrons, the simple relationship between 7 and Awv, could be determined. The
well-known relationship for kinetic beams, v ~ (vp/Awp)?, remains valid for our case.
Here, it is worth noting, that a change in the thermal dispersion of a beam does not
lead to a change in the region of the velocity space where waves can grow.

To evaluate, which quantity, Awvy/v, or ((6n2))'/2/Np, is more important for the
process of the generation, we calculated growth rate of the waves for different values
of Avy/v, and ((6n2))'/2/Ny. Results shown at left panel of Figure 3.3 was obtained
for a beam with beam velocity v, = 6v; and different Awv, (shown with various colors).
For most of cases, the ratio Avy/v, is larger than ((6n2))Y/2/Ny, except the case of
Av, = 0.5v; (shown with black color). As one can see, for this cases, an increase in
the level of the density fluctuation does not change the growth rate significantly. From
the other hand, an increase in Awy, result in substantial decrease in . Thus, one may
conclude, that for the slow and wide beams, presence of the density fluctuations has no
substantival influence on the generation of the Langmuir wave.

Middle panel of Figure 3.3 shows results for a beam with beam velocity vy = 12v;.
As previously, an increase in ((3n2))/2/Ny results in decrease of wave growth rate. As
one can notice, for the cases of Avy/vy < ((6n?))/2/Ny an increase in Awv, leads to
increase in 7. For instance, starting with ((6n?))'/2/Ny > 0.2, beam with Av, = 2v;
(blue line) has maximum in v larger than beams with Av, = 0.5v; and Av, = v,
(shown with black and red colors respectively). Thus, the thermal dispersion of the
beam, reduces efficiency of the effects related to the density fluctuations.

Right panel of Figure 3.3 provides results for a beam with v, = 16v;. It is clearly
seen that there is no significant difference in a waves growth rates, that correspond to
different Awy. At the same time, changes in ((6n2))Y/2/Ny, result in substantial reduce
of v. For instance, an increase of the level of density fluctuations from 1% to 2%,
reduces the maximum of the growth rate more than in 10 times. For the fast beams,
with beam velocities higher that 15v;, the process of growth and decay of the Langmuir

waves is completely determined by the density fluctuations.
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Figure 3.3: Logarithm of the maximum in the averaged growth rate as a function of
the level of density fluctuations. The driven beam has a Gaussian velocity distribution
with different beam velocities: v = 6wy, left panel; vy, = 12v,, middle panel; vy, = 16wy,
right panel. Colors correspond to the various thermal velocities of the beam, as follows:
Avy, = 0.5y, black; Avy = vy, red; Avy = 2vy, blue; Avy, = 4vy, green.

3.9 Relaxation of the electron beam in the plasma with
density fluctuations

To consider the interaction of the beam with several monochromatic waves with energy
densities, W;, and frequencies w; the contributions from each wave in Equation (3.4)

should be summed. For this case, the system of equations can be written, as follows:

of 0 & of
ot~ ot 2 WPl g, (38)
and
dw, [ ,0f
e / w2 e, (v)av (3.9)
0

To better adapt equations (3.8) and (3.9) for the numerical simulations it is worth
introducing the dimensionless variables, as follows: ¢ = (1/(mwy0))(No/mp)t, T = vy,
f=f/ve, Po(V) = Py(V) /vy, and W = 2nymo?W. We omitted the tildes to simplify
form of the equations.

The system conserves the total energy, as follows:

d 171 i

o 3 /v fv)dv + ZWZ 0. (3.10)
0 =1

The first term in equation (3.10) corresponds to the electron energy. The second

term corresponds to the total energy of the waves (for details see Appendix A.3).
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For this study we performed numerical simulations of the system using equations
(3.8) and (3.9) and present results in the next section. We used a set of 1: 2000 waves,
with w/kg uniformly distributed in the range from 2v; to 38v;. To solve the system we
applied a Leapfrog method. We used Simpson’s rule in order to obtain the integration
in equation (3.9).

Results of the numerical simulation for ((6n2))'/2/Ny = 0.02 are presented in Fig-
ure 3.4. We use Gaussian distribution by employing the beam velocity v, = 10v; and
the dispersion Av, = 0.5v; as the initial condition for the electron distribution func-
tion. The case presented corresponds to the condition (1/2)(((6n?))'/2/Ng) = v} /v,
when density fluctuations play a significant role in the relaxation process. As can be
seen, beam relaxation results in plateau formation in the velocity range of v < v, as
for a homogeneous plasma. One can expect such a result, since for Langmuir waves
with large k vector (and correspondingly small phase velocity) that satisfy condition
v?/VZ > (1/2)(((6n2))?/Ny) the influence of the density fluctuations on beam re-
laxation is negligible. However, the number of particles with velocities v > v}, grows
during the relaxation process. The energy transfer to energetic particles is possible be-
cause fluctuations of plasma density change the wave phase velocity and the resonant
condition for wave-particle interactions. Thus, a wave generated with a phase velocity
of Vp can be reabsorbed by electrons with velocities v, > Vj and even v, > Vj. The
reabsorption of generated waves also leads to an increase in the relaxation time.

Figure 3.5 provides the initial electron distribution function, f;,(v), and the dis-
tribution function, fe,q(v), at the end of the relaxation process. To consider the
influence of density fluctuations on the acceleration of particles, we selected parti-
cles with velocities larger than v, + 3Av,. Thus, the number of accelerated elec-
trons was determined as a difference between the integrals [ ° (v)dv and

vp+3Avy, fend

fvio+3Avb fin(v)dv. In a similar manner, the energy of the accelerated particles can

be found from %[fvio-i-?)Avb U fena(V)dv — [ gn,, V7 fin(v)dv].

The left panel of Figure 3.6 provides the ratio for the energy of accelerated particles,
E,, to the initial energy of the beam, Ejg, for beams with different beam velocities and
different levels of density fluctuations. The right panel of the Figure 3.6 provides the
relative numbers, n,/ny, of accelerated electrons. For instance, for the beam velocity
vy, = 6v¢ and density fluctuation level 0.005, the energy of accelerated particles is less
than 0.1% from the initial energy of the beam. For the same level of fluctuations but for
a beam with v, = 12v; the ratio of the energy of accelerated particles increases to 29%.
An increase in the beam velocity leads to an inequality (1/2)(((6n2))'/2/Ng) > v? v}
and, thus, results in a more effective acceleration of the particles. Similar results can
be obtained by increasing the level of the density fluctuations. For instance, for a beam
with vy, = 8v; the number of accelerated particles for ((6n2))'/2/Ny = 0.01 is 7%mns,
and 30%n;, for a case with ((9n?))1/2/Ny = 0.035. Therefore, all cases can be separated
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F?gure 3.4: Evolution of the electron distribution function. The initial condition for
beam electrons is the Gaussian distribution with a beam velocity of v, = 10v; and a
velocity dispersion of Awv, = 0.5v;. The core distribution, that corresponds to the cold
electrons, has not been considered. The dimensionless electron distribution function was
normalized to 1. Axes: velocities normalized to the thermal velocity of the background
plasma v¢; the time normalized to the backward plasma frequency (1/wp). The beam
density ny/Ng = 2.5 x 107°. The level of fluctuations is ((6n2))'/2/Ny = 0.02 [from
Voshchepynets et al., 2015].

68



—_—

o
o

o
(2

o
~

O
N

Ub

vy, + 3Ay,

distribution function

(=)
(0))

7 8 9 10 11
velocity |v]

Figure 3.5: The electron distribution function at the beginning of relaxation (blue line)
and at the end (green line). The level of fluctuation is 1%. The beam velocity v, = 8uvy,
and the thermal velocity of the beam is 0.5vs; ny/Ng = 2.5 x 1075, The filled area
corresponds to accelerated particles [from Voshchepynets et al., 2015].
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Figure 3.6: The energy, E,, (left panel) and the number, n,, (right panel) of accelerated
particles as a function of the density fluctuation level. Eyy and ng are the initial energy
of the beam and the density of the beam electrons. Colors correspond to the various
velocities of the beam, as follows: v, = 6vy, blue; vy, = 8v, green; v, = 12v4, red;
vy = 16wy, cyan; and v, = 20vs, magenta. The thermal velocity of all beams Awv, = 0.5v;
[from Voshchepynets et al., 2015].
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into the following three classes: (1) (1/2)(({(6n?))'/2/Np) < v?/v2- corresponding to
homogeneous plasma, fluctuations too small to influence the relaxation process; (2)
(1/2)(({(6n%))}/2/No) ~ v}/v3- an intermediate regime, characterized by a presence but
containing a small quantity of accelerated particles; and (3) ((1/2)(({(6n?))*/?/Ng) >
v/ vg— fluctuations resulting in an effective energy transfer to both cold and energetic
particles where the energy of the accelerated electrons can reach up to 70% of the initial
beam energy. Both quantities, ng/n, and E,/Epy, manifest the same tendency with
increasing fluctuation levels. For cases of the third class a simple relationship can be
determined, as follows: n4/n, Eq/E ~ +/((0n2))1/2/Ny.

Figure 3.7 provides the evolution of the total energy of waves for the case of v, = 8v;
and various fluctuation levels. The blue line corresponds to ((6n?))*/2/Ny = 0.005 and
for this case we have (1/2)((6n?))'/2/Ny < v?/vZ. As for a homogeneous plasma, the
energy of the waves grows in time until a plateau formation is obtained. An increase
in the level of density fluctuations results in larger dispersion of the phase velocities,
and makes the absorbtion of generated waves more effective. Such can be seen in the
case of ((0n?))Y/2/Ny = 0.04 (the red line shown in Figure 3.7). Following a period of
growth, waves begin to decay, corresponding to a phase of electron acceleration.

Ratios for the total energy of waves, Fy,, to the initial beam energy as a function of
the fluctuations are provided in the left panel of Figure 3.8. Colors correspond to the
various beam velocities. As one can see, in the limit of a homogeneous plasma (v, = 6v;
and ((6n?))/2 /Ny = 0.005) a ratio of 30% is in good agreement with QL approximation.
An increase in the magnitude of the density fluctuations leads to a decrease in the wave
energy. For instance, for the same beam, but for a case of ({(6n?))/2/Ny = 0.04, the
ratio E,/Epy is two times less than for the previously mentioned case. For cases with
(1/2)(((6n2))*/2/No) > v? /v (the right bottom portion of the plot) the energy of the
waves is less than 10% of the initial beam energy. The results are consistent with
values for energy transferred to beam accelerated particles, as estimated above. Thus,
density fluctuations can result in an "inverse" energy flux. Energy can be transferred
from "slow" electrons to "fast" electrons through the generation and absorption of
Langmuir waves.

To estimate the characteristic time of wave energy growth, t., we consider the
difference in time between the moment when the total wave energy reaches 1% of
the initial energy of the beam and the another moment of time when the wave en-
ergy for different levels of fluctuations reaches some energy level the same for all
simulation set that we choose to be equal to min(Emae(((6n2))*/?)). We define this
min(Epmaz (((0n2))1/2)) as the smallest level of all of the maximum energies of waves
achieved in the set of simulations with the same v, and different levels of fluctuation (for
instance, see the Figure 3.7). The right panel of Figure 3.8 displays t, as a function of

((6n2))/2 /Ny for different values of the beam velocity. As can be seen from the figure,
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Figure 3.7: The evolution of the total energy of waves, FE,,, for different levels of
fluctuations (((0n2))Y/2/Ny = 0.005, the blue line; ((6n2))*/2/Ny = 0.04, the red line).

The beam velocity v, = 8vy; Avy = 0.5v4; and ny /Ny = 2.5 X 107° [from Voshchepynets
et al., 2015].

71



001 002 003 004 5 -45 -4 -35
({(6n*))V/2/ Ny log ({0n?))*/?/Ny

Figure 3.8: The maximum of the total energy of the waves, E,,, (left panel) reached in
the relaxation process as a function of the density fluctuation level. FEjyg is the initial
energy of the beam. Different colors correspond to the different velocities of the beams
(the same as in Figure 3.6). Right panel: The time of growth, ¢,, normalized to 1/w,
as a function of ((#n2))/2/Ny on the log-log scale. Colors correspond to different wj.
The beam density ny/No = 2.5 x 107° [from Voshchepynets et al., 2015]

for cases with (1/2)(((6n?))'/2/No) < v?/v} (the blue line in Figure 3.8), an increase
in the fluctuation level results in a slight increase in the characteristic time of growth.
However, for cases with (1/2)(((0n2))Y/2/Ny) > v?/v?, t. increases significantly with
an increase in ((6n2))/2/Ny. When fluctuations strongly affect the relaxation pro-
cess (1/2)({6n)/No) > v?/v? a simple approximation for ¢, can be found, as follows:
t; ~ (((9n?))'/2/No)?.

All the results provided above were obtained for the same value of the velocity
dispersion of the beam, Av,/v; = 0.5. Now let us consider the role of the initial
thermal velocity of the beam. The left panel of Figure 3.9 provides a ratio of the
energy of accelerated particles to the initial energy of the beam for different initial beam
velocities and different initial thermal velocities of the beam particles. The energy of
the accelerated particles displays typical behavior- an increase in the density fluctuation
level and/or the initial velocity of the beam resulting in an increase in the energy of
accelerated particles. However, an increase in the initial thermal velocity of beam
electrons leads to a decrease in E,. For instance, for the case with v, = 10v; and an
initial thermal velocity of Av, = 0.5v; (the red solid line in Figure 3.9), the ratio E,/Epg
at the end of the relaxation is equal to 58% for (dn)/Np = 0.04. An increase in the
beam thermal velocity to v; results in a decrease of E,/Epy to 43% (the red dashed line

in Figure 3.9). For a beam with the same v, and for the thermal velocity, Av, = 2y,
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Figure 3.9: The energy of the accelerated particles, E,, (left panel) and maximum of the
total energy of the waves, E, (right panel) reached during relaxation as a function of
the level of the density fluctuations. Colors correspond to the different initial velocities
of the beam, as follows: red color, v, = 10vy; and blue color, v, = 14v;. Line styles
correspond to the different initial thermal velocities of the beam, as follows: solid line,
Avy, = 0.5v¢; dashed line, Avy, = lvg; and dotted line, Av, = 2v; [from Voshchepynets
et al., 2015].
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Figure 3.10: The ratio of times ¢, for various thermal velocities of the beam as a function
of the level of density fluctuations. Colors correspond to the various initial velocities
of the beam, as follows: red color, vy, = 10v;; and blue color, v, = 14v;. Line styles
correspond to the various initial thermal velocities of the beam, as follows: solid line,
t.(Avy = 0.5v;) [t (Avy = 1uvy); dashed line, t,.(Avy = 0.5v;) /t,(Avy = 2v;); and dotted
line, ¢, (Avy = 1vy)/t, (Avy = 2v;) [from Voshchepynets et al., 2015].
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the energy of accelerated particles decreases to a value of only 15% from the initial
energy of the beam (the red dotted line in Figure 3.9). The result is expected, since
we defined the accelerated particles as particles with velocities larger than vy + 3Awy,.
According to this definition, for beams with v, = 14v; and Avy = 0.5v, only particles
with velocities larger 15.5v; may be considered as accelerated. At the same time, for
a case with v, = 14v; and Av, = 2v;, electrons considered as accelerated should have
velocities larger than 20v;. For both cases, the energy of particles with velocities larger
than 18v; differs slightly.

The right panel of Figure 3.9 provides the maximum for total wave energy reached
during the relaxation process as a function of the level of density fluctuations for beams
with a different initial v, and a different thermal velocity, Avy. The growth rate of waves
depends on the derivative of the distribution function. Thus, a change in the initial
thermal velocity of the beam should cause changes in the region of the phase space
where waves can grow effectively. On the other hand, the presence of density fluctua-
tions results in a broadening of the resonant conditions of the wave-particle interactions
and a modification of the region where waves can be generated. As a result, two pa-
rameters that determine the efficiency of wave growth during relaxation (for the same
initial velocity of the beam) are provided. The red lines in Figure 3.9 correspond to re-
laxation of a beam with v, = 10v;. As can be seen, while (1/2)(((6n?))Y/2/Np) < v? /v}
(({(6n%))/2 /Ny < 0.025 for the present beam), changes in the initial thermal velocity of
the beam lead to significant changes in the rate of wave generation. For instance, for
a beam with Avy, = 2v; (the red dotted line in Figure 3.9) and ((6n2))Y/2/Ny = 0.02,
the maximum for total wave energy is equal to 15% of the initial energy of the beam.
A decrease of Avy to 0.5v; results in a decrease in F,, to 10%. However, an increase
in the density fluctuation level reduces the role of the initial thermal dispersion of the
beam. For a beam with v, = 14v; (the blue lines in Figure 3.9), beginning with level of
density fluctuation equal to 0.015, there is no significant difference in the F,, for cases
with a different initial Awvy. Thus, for fluctuation levels corresponding to condition
(1/2)(({(6n?))}/2/No) > vZ/v?, resonance broadening plays a major role in the process
of wave generation.

In a homogeneous plasma, the time of wave growth can be written in the following

form:

_ Wend 1 No A’Ug
e )
Winit wpo np Ug

where We,,q and Wj,;; are the energies of the waves at the end and beginning, respec-
tively, of the relaxation process. One can note that an increase in the initial thermal
velocity of the beam should lead to an increase in the time of growth. For two beams

with thermal velocities Avp; and Awvye and the same vy, the ratio of ¢,.1 and t,o is, as
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follows:

n=(5m)
tro Auvyy )

Figure 3.10 provides the ratio of the times of wave growth for beams with different
vp and Awy, as a function of the level of density fluctuations. As can be seen, when the
level of fluctuations is high enough, ((1/2)(((6n2))'/2/No) > vZ/v?), the change in the

initial velocity of the beam does not strongly affect the time of wave growth.

3.10 Conclusions

Here, we propose a statistical model that describes the relaxation of an electron beam
in a plasma with relatively small scale (102Ap-10°Ap) density fluctuations. Using the
model, we describe the evolution of the electron distribution function and the energy
of Langmuir waves. The suggested 1D numerical scheme is applicable for physical
parameters of the solar wind plasma at different distances from the Sun (e.g. ~ 1 AU).
Thus, we can use our computations to describe Type III solar bursts, as well as beam
plasma interactions, within the vicinity of the heliosphere and planetary shocks.

Using the model, computations require much less computer resources than PIC
simulations or the Zakharov technique. However, the proposed numerical scheme
is 1D and, thus, the effects of the angular diffusion of Langmuir waves on density
fluctuations were ignored. At this stage the model does not include the effects of
collision losses, ion-sound waves, and the generation of electromagnetic emissions.
For this reason, the system conserves the total energy that can be transferred from
the beam to waves and backward during the relaxation process. The relationships
between energy or the number of accelerated particles and the levels of the den-
sity fluctuations, n4/ny, Eq/Ep ~ /((6n2))1/2/ Ny, are quite simple for cases with
(1/2)(({(6n%))Y/2/No) > v}/vE. The goal of the present work is to show the impor-
tance of small scale density fluctuations and to propose a self-consistent and closed
description of the beam relaxation process.

In the study, numerical simulations indicated that there are three key parame-
ters that influence the relaxation process- the ratio of the initial beam velocity vy to
the thermal velocity v; of a background plasma, the level of the density fluctuations
((0n2))Y/2 /Ny, and width of the beam in velocity space. Depending on the values
of v /v} and ((6n?))Y/?/Ny three different scenarios for the beam relaxation can be
noticed.

1) (1/2)(((6n?))'/2/Ny) < vE/v2- the wave excitation process is very similar to the
one taking place in the homogeneous plasma. Relaxation results in plateau formation
of the electron distribution function without a significant increase in the population of

energetic particles. The total energy of waves at the end of the relaxation equals 30%.
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2) (1/2)(((6n2))*/2/No) ~ v} /vE- corresponds to the intermediate regime. Density
fluctuations can affect the phase velocity of waves. Thus, reabsorption of a portion of
the wave energy by energetic electrons occurs but the number of accelerated particles
is still relatively low.

3) Under the condition (1/2)(((6n2))"/2/Np) > v?/v? the process of beam relaxation
is totally determined by the density fluctuations. The resonance broadening caused
by density fluctuations allows the wave to interact with particles over a wide range of
velocities. There is very efficient energy transfer from electrons with velocities of v < v
to higher energy electrons with v > v, via the generation and reabsorption of Langmuir
waves. The case is characterized by a low level of total wave energy at the end of the
relaxation process. In contrast, the energy of accelerated electrons can reach up to 70%
of the initial energy of the beam for cases of a small initial spread for a beam in the
velocity space. However, as in a homogeneous plasma, relaxation runs mainly toward
low velocities and finishes with the formation of a plateau.

An increase in the density fluctuation level results in an increase in the time char-
acterizing wave energy growth, ¢.. The average growth rate of the waves, v, and
the diffusion coefficient, D, strongly depend on the magnitude of the fluctuations.
High amplitude fluctuations can strongly impact the resonant condition of the wave-
particle interaction that leads to broadening of the resonance in the phase space and
the wave damping. This, in turn, significantly slows down the relaxation. In the case
of the Gaussian distribution for the fluctuation magnitudes and for high level of den-

sity fluctuations, a simple relationship between ¢, and ((6n2))'/? was found, as follows:

tr(((0n%))1/2) ~ (on?).

3.11 Resume in French

Dans ce chapitre, nous présentons un modéle récemment publié décrivant I'interaction
d’un faisceau avec un plasma renferme des inhomogénéités aléatoires. Nous remplagons
Iintervalle spatial continu par un intervalle de grande longueur, fini et discret, et
nous le séparons en un ensemble de sous-intervalles de tailles égales et d’échelle a.
Cette discrétisation permet d’appliquer de fagon plus simple une approche probabiliste.
L’échelle, a, est supposée étre beaucoup plus petite que ’échelle caractéristique de vari-
ation de la fonction de distribution électronique, L., et suffisamment plus grande que
la longueur d’onde de 'onde de Langmuir générée par le faisceau. Nous considérons
I'interaction d’une onde cohérente de petite amplitude avec une particule qui traverse
cet intervalle en supposant que le profil de la densité est linéaire sur cet intervalle. Nos
hypothéses permettent de décrire 'action du champ d’une onde ayant une fréquence
connue sur une particule en utilisant le degré de précision nécessaire pour évaluer I'effet
de l'interaction des particules avec une onde sur un intervalle particulier avec des den-

sités fixées aux extrémités.
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Le point-clé de notre description est que, sur chaque intervalle, nous supposons
que les valeurs de la densité au centre de I'intervalle sont aléatoires et indépendantes,
et elles sont décrites par une distribution statistique connue. Le profil de la densité
est continu. La distribution peut étre choisie soit de facon i correspondre a des ob-
servations réelles, soit choisie comme une distribution artificielle de facon a faire des
calculs simplifiés. Ainsi, la distribution statistique des vitesses de phase des ondes peut
étre obtenue quelque soit la fréquence. Cette probabilité permet d’effectuer des calculs
de caractéristiques moyennes, tels que I’échange d’énergie entre les particules & une
vitesse donnée et 'onde & une fréquence donnée. En faisant le calcul du mouvement
des particules sous ’action d’une onde choisie, nous considérons que la phase d’onde est
déterminée au départ. Ensuite, nous évaluons la moyenne statistique en supposant que
les phases sont aléatoires et uniformément répartie dans 'intervalle entre 0 et 2. Nous
supposons également que l'interaction des particules avec une onde a chaque intervalle
est indépendante des interactions des particules avec I'onde aux intervalles précédents.

En utilisant ces hypothéses, nous calculons la probabilité qu’une particule ayant au
temps initial ¢y une vitesse vy aura une vitesse v apreés () interactions qui se produisent
pendant un intervalle de temps (¢ —tp). Le nombre d’étapes d’interactions, @, doit étre
suffisamment grand pour justifier la statistique et la procédure de calcul de moyenne.
L’hypothése que des interactions sont aléatoires et indépendantes correspond a un pro-
cessus Marcovian non corrélé. Ceci permet d’aboutir & une description de I’évolution de
la fonction de distribution des particules basées sur une équation de diffusion similaire &
I’équation de Fokker-Planck dans ’espace des vitesses. Dans le cadre de ces hypothéses,
le coefficient de diffusion déterminé de cette facon dépend de la distribution de prob-
abilité des fluctuations de la densité. Pour calculer le taux de croissance d’une onde,
on utilise le fait que sur un petit intervalle le gain/perte d’énergie par la particule est
égal au gain/perte d’énergie par I'onde. La conservation locale de I'énergie se produit
sur de petits intervalles et permet de calculer un changement d’énergie moyenne de la
densité d’énergie des ondes.

En utilisant notre modéle, nous décrivons I’évolution de la fonction de distribution
des électrons et d’énergie des ondes de Langmuir. Le schéma 1D suggérée est applicable
pour des paramétres physiques de plasma du vent solaire & différentes distances du
Soleil (par exemple & ~ 1 AU). Ainsi, nous pouvons utiliser nos calculs pour décrire
des émissions solaires de Type III, ainsi que les interactions de faisceau avec le plasma,
a des distances d’une Unité Astronomique du Soleil dans I’héliosphére et au voisinage
des chocs planétaires.

En utilisant ce modéle, les calculs nécessitent des ressources informatiques beau-
coup plus faibles que des simulations avec des codes PIC ou la technique de Zakharov.
Toutefois, dans le cadre du schéma numérique 1D proposé, les effets de la diffusion

angulaire des ondes de Langmuir sur les fluctuations de la densité ont été ignorés. A
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cette étape le modéle n’inclut pas non plus les effets des pertes dues aux collisions, les
ondes ioniques et la génération d’émissions électromagnétiques. Pour cette raison, le
systéme conserve I'énergie totale qui peut étre transférée du faisceau aux ondes, ainsi
qu’aux particules plus rapides pendant le processus de relaxation. Les relations entre
la quantité d’énergie transférée aux particules énergétiques, ou le nombre de particules
accélérées, et le niveau des fluctuations de densité, nq/ny, Eo/Ey ~ \/((6n2))1/2 /Ny,
sont assez simples pour les cas o (1/2)(((6n2))Y/2/Ng) > v? /v?. Le but de ce travail
est de montrer le role et I'importance des fluctuations de densité de petites échelles et
de proposer une description auto-consistante du processus de relaxation du faisceau.

Dans notre étude, des simulations numériques ont démontré qu’il existe trois parameétres
clés qui déterminent les caractéristiques de processus de relaxation: 1)v?/ vg, ol v est la
vitesse initiale du faisceau, et v; la vitesse thermique de plasma thermique; 2) le niveau
des fluctuations de densité ((6n2))'/2/No; 3) la dispersion de vitesses des particules du
faisceau dans I'espace des vitesse Avp. En fonction de rapport entre les valeurs de vf Jv?
et ((0n2))'/2 /Ny trois scénarios difféSrents peuvent étre réalisés pour le processus de
relaxation du faisceau.

1) (1/2)(({(6n%))/2/Ny) < v?/v? - le processus d’excitation d’onde est trés sem-
blable & celui qui a lieu dans un plasma homogéne. La relaxation résulte de 1’évolution
de la fonction de distribution des électrons vers un plateau a des vitesses plus faibles
que la vitesse de faisceau, sans une augmentation significative de la population de par-
ticules énergiques. L’énergie totale des ondes a la fin de la relaxation est égale a 30%
de I'énergie initiale du faisceau.

2)(1/2)(({0n2))}/2/Ng) ~ v} vi- correspond au régime intermédiaire. Les fluctua-
tions de densité peuvent affecter assez fortement les variations de la vitesse de phase
des ondes. Ainsi, la réabsorption d’'une partie de 1’énergie des ondes par les électrons
énergétiques se produit mais le nombre de particules accélérées est encore relativement
faible.

3) Si la condition (1/2)(((0n2))}/2/Ny) > vZ/v} est satisfaite le processus de relax-
ation est déterminé par les fluctuations de densité. Chaque onde interagit avec des par-
ticules distribuées dans un large domaine de ’espace de phases grace a 1'élargissement
de la résonance dii aux fluctuations. La relaxation se developpe d’abord vers le do-
maine de vitesses plus petites que la vitesse de faisceau et elle s’arréte quand en espace
de vitesse un plateau est formé. Cependant, un autre processus se developpe, notam-
ment, une absorption d’énergie d’ondes par des électrons ayant des vitesses plus élevés
v > vp. En effet, ce dernier assure un transfert d’énergie d’électrons moins énergétiques
vers des électrons plus énergétiques. L’énergie des électrons accélérés peut ainsi attein-
dre jusqu’a 70% de ’énergie initiale du faisceau pour les cas d’une faible dispersion de
vitesses de faisceau Avy. Cependant, comme dans un plasma homogéne, la relaxation se

développe principalement vers des vitesses plus basses et elle s’arréte avec la formation
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d’un plateau.

Une augmentation du niveau de fluctuations de densité aboutit & une augmenta-
tion du temps caractéristique d’une croissance d’énergie des ondes, t,. Le taux de
croissance moyen des ondes, v, et le coefficient de diffusion, D, dépendent fortement
de 'amplitude des fluctuations. Les fluctuations de grande amplitude peuvent forte-
ment modifier la condition de résonance des interactions onde-particule. Ceci améne
un élargissement de la résonance dans l’espace de phase et & I'atténuation de I'onde.
Dans le cas d’une distribution Gaussienne des amplitudes de fluctuations et pour de

forts niveaux de fluctuations de densité, une relation simple entre ¢, et ((6n2))'/? a été
trouvée: t,.(((6n2))1/?) ~ (6n?).
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Appendix A

Appendices

A.1 Equation for the Wave

Here, we begin with a consideration of the interaction of a single electron with a

monochromatic wave. In a 1D case the equation of motion can be written as follows:

dv el ~
i cos(kz — wt + @),

where v is the electron velocity, E is the wave amplitude, and q~5 is the initial phase of
the wave.
Using perturbation theory for the velocity, v = vy 4+ v1 + va, where vy is the un-

perturbed velocity of the particle, one can write equations for the first two terms, as

follows:
dv el
ditl = —E COS((]{;’UO —W)t+¢), (Al)
and
d FE /
% = —e—[cos((kfuo —w)t+k / v1dt + ¢) — cos((kvg — w)t + ¢)],
m

0
where ¢ = ¢ + k.
Taking into account that the cos(k fg v1dt) ~ 1 and sin(k fot vidt) =~ kjvldt one
can re-write the second term as follows: "
t
dvy eF

T mk:/vldtsin((kvo —w)t+ ¢). (A.2)
0

Following integration in (A.1) over a small time interval ¢ — 0, the first term can

be rewritten, as follows:

81



el 1

R (kvg — w)

[sin((kvg — w)t + ¢) — sin(¢)]. (A.3)

Now, it is easy to find:

t

/vldt = ek 1 cos((kvg — w)t 4 ¢) — cos(¢)] + %

t
m (kv — w)2[
0

Thoo—w) sin(¢).

Following substitution of fg v1dt in (A.2) one can obtain

dvy  €*E?

At m2 (kv —w)z[

cos((kvg — w)t + ¢) — cos(p)] sin((kvo — w)t + ¢) +

e2E? kt

Wm sin(¢) sin((kvg — w)t + ¢). (A.4)

By keeping the terms to a second order of accuracy, the equation for changes in the

electron energy can be written as follows:

de dUl d’U2
i - —. A.
7 muvy i + muyg i (A.5)

Substituting v1, dvi/dt and dvy/dt in to (A.5) one can find:

2 12
% - ﬁ(kw)l_w[sin((kvo —w)t+ @) — sin(¢)] cos((kvg — w)t + ¢) +
e?E? vk
m (kvy — w)?

[cos((kvg — w)t + @) — cos(d)] sin((kvg — w)t + ¢) +

e?E? vkt
m  (kvy — w)

sin(¢) sin((kvg — w)t + ¢).  (A.6)

By taking into account that ¢ is a random variable with a uniform distribution, it

is necessary to average (A.6) over ¢, as follows:

d 2?1 2E? k
< 6> ° ° 0 sin((kvy — w)t) +
¢

EN 5 F T Gin((kve — w)E) —
dt 2m?2 (kvg — w) sin((kvo —w)t) 2m?2 (kvy — w)?
e?E? vkt

92 (hop — o) cos((kvy — w)t). (A.7)

Due to fluctuations of the plasma density, the phase velocity of the wave can have
various values at different intervals. With a probability distribution function B, (V),

one can average (A.7) over V, as follows:
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de e2 F2 1 ‘ . |
(). 2 0/ o=y S =0 = gy sk = VI +
vt

m cos(k(v = V)t)|P,(V)dV. (A.8)

Here we consider the particle ensemble with a given distribution function, f(v). The
change in the energy of a wave over time ¢ is equal to the total change of the particle

energy at a volume taken with am opposite sign, as follows:

ddlf R 7 <;l;>¢v F(v)dv. (A.9)

Changing the order of the integration in (A.9) and making a Taylor series expansion

for f(v), Equation (A.9) can be rewritten, as follows:

d7W2 62E2nb/[v2f(v) / sin((v—V)kt)dv+

dt 2m ) . (v—="V)2
‘f‘%ﬁfﬂvzv / de]Pw(V)dv (A.10)

The remaining terms in the expansion are proportional to ¢ and do not make any
contribution to the integrals. The first term in Equation (A.10) is equal to zero because
the integrand is an odd function. After simple calculations, the second term can be
written as [*_ (sin(z)/x)dz = 7. By taking into account the fact that W = E?/(8n)

and wpp = 47e® No/m, following equation can be obtained:

dCTW = Ty W/v2 OF p.(vyav. (A.11)

A.2 The equation for the electron distribution function

Here, we introduce a probability density function U (v, t|vg, tg) for the electron velocity.
The function provides the probability that a particle with a velocity vg in the moment
of time ty will have a velocity v at time ¢ and satisfies the following Fokker-Planck

equation:

8U(’U,t‘vo,t0) 8 82

= _7A( ) (U,t|v0,t0) + W

ot ov B(U)U(U7t‘v07t0)7 (A12)
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Here, functions A(V') and B(v) represent the averaged characteristics for variations in

the velocity and its dispersion, as follows:

where the brackets indicate averaging over ¢ and V.
To define an equation for the electron distribution function it is necessary to multiply

(A.12) by f(vo,t0) and integrate it over v, as follows:

of(v,t) 0 0?
5 ——%A(v)f(v,t)+WB(v)f(v,t)- (A.13)

Subsequent to integration in (A.2), one can write v, as follows:

€2E2
va(v,0) = 2m?2 (kvy — w)
2 cos(¢) cos((kvg — w)t + @) + 2sin(¢) sin((kvg — w)t + @) — 2) —

22 k
€m2 (oo _t WE sin(¢) cos((kvg — w)t + @).

3 (sin?((kvg — w)t + ¢) — sin?(p) +

Now, it is easy to determine (vi), and (ve)y, as follows:

e2E? k e2E? kt

(v2)p = mZ o — @) (cos((kvg —w)t) — 1) + 2m? (hvy — )2 sin((kvy — w)t),

62 2
o = o g (1 = cos( (v — ).

By taking into account that ¢ = a/v, A(v) and B(v) can be written as follows:

2E? [ v
Av) = mlg /[ak:Q(v v (cos((v—V)kt) — 1) + 21{:(1}1—1/)2 sin((v — V)kt)|P,(V)dV,
0
2E? [ v
B(v) = 2:32 / 2w V) (1 —cos((v—V)kt))P,(V)dV.
0

Here, it is also worth writing the following equation for 9B(v)/0v:
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v 62 2 v
"o = o Gy S ot = VIR =1+ il = V)V

By taking the first derivative of the second term of Equation (A.13) and substituting
A(v), B(v), and 0B(v)/0v, one can obtain an equation for the electron distribution

function in the following form:

o0

2 2
(?9{ 2752 e /ak2 (o vy cos((v = V)kt) = DP(V)aV f(v) +
0
/ kv(vl_v) sin((v — V)kt) P (V)dV f(v) —
0
/ tk:Q(le)Q(l —cos((v — V)kt))Pw(V)dVg;}j]‘ (A.14)
0

Through a Taylor series expansion of P,(V') at V = v, one can integrate the terms
n (A.14), as follows:

oo

| s sV = k) = DRVIV () =

0
o9

P02 [ sV = 05V ) = ~Puf) 5 f0),

/ /w(l sin((v — V)kt) P, (V)dV f(v) =

2w

/ L Sin((V = 0)kt)dV f(v) = Pu(v) 2 f(v),
0

/Mu — cos((v — V)kt)) Po(V)d gi

0
0o

2v 1 af
P,(v)= | ———sin®((V — AV == -—PF,(v)==.
() w / th(V — v)? sin”(( ) ) v 2w () v
0
After substitution of the results to (A.14), one can find the final equation for the

f(v,t) function, as follows:

of 2m2e?W 0 af
E = me %’UPUJ(U)%, (A].5)

where W = E?/(87).
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A.3 Conservation law

Equations (A.11) and (A.15) constitute the basic system of equations for our model.
To make this system more convenient for numerical simulation, here, we introduce
the following dimensionless variables: ¢ = (1/(mwpo))(No/mp)t, 7 = vv, f = f/uvs,
P,(V) = P,(V)/vs, and W = 2nymo?W. We omit tildes to simply the form of the

equations. The system takes the following form:

of _ 2UVVPW(U)%,

=5 (A.16)

aw [, 0f
t_/MMfmJuvmV (A.17)

One can easily determine that the system has a conservation law for total energy,

as follows:

917 1 [ L0f), oW
at[2/v2f(v)dv+W]—2/ By dv + T

0
17,0 02 20f _
2/ oW d+/Wv Py (V)dV =
0
—/WUQPW( “dv +/WV2 % p P,(V)dV = 0. (A.18)
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Chapter 4

Probabilistic model of

beam-plasma interaction in
randomly inhomogeneous solar
wind.

4.1 Introduction

In the previous chapter we proposed a self-consistent probabilistic model that describes
beam-plasma instability in a plasma with random density fluctuations. In contrast to
the model proposed by Nishikawa and Ryutov [1976], density fluctuations were sup-
posed to be high enough to cause significant changes in the £ magnitude in the direction
of wave propagation. As a result, the wave phase velocity undergo changes, allowing
the wave to resonantly interact with beam electrons that have different velocities within
a quite large range. An assumption that the phase velocity is a random quantity that
obeys a predetermined distribution allows one to describe the energy exchange between
the waves and the beam in terms of an averaged in the velocity space growth rate of the
waves, (7)y, and similarly averaged electron velocity diffusion coefficient, (D)y. The
(v)v and (D)y depend on the distribution function for the wave phase velocity that
is determined by the distribution function of the density fluctuations. The model was
initially applied for a case with a normal distribution for the density fluctuations. This
allowed us to investigate how key parameters of the relaxation process depend on the
level of density fluctuations and on the initial velocity of the beam. It is worth noting
that the results obtained in the model are in a good agreement with weak turbulence
theory. The goal of the present chapter is to determine what type of distribution repre-
sents the best fit for observed density variations in the solar wind plasma and how it’s
form affects the beam relaxation process. We shall also compare the results obtained
with those for the normally distributed density fluctuations.

In the present chapter we propose a technique for evaluating the distribution func-
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tion of density fluctuations using density fluctuations obtained from measurements
onboard satellites. We use the Pearson technique for classifying different distributions
[Pearson, 1895] in order to define the type of distribution corresponding to the ob-
servations. The Pearson classification allows one to obtain an analytical form for the
distribution function of density fluctuations for observed distributions depending on
four statistical parameters, namely, the mean value, the variance, the skewness, and
the kurtosis. Using the Pearson distribution type, we determine the distribution func-
tion of wave phase velocities and apply this distribution in our model for beam plasma
interaction. Finally we obtain the results of the numerical simulations of the relaxation
of the electron beams having different beam velocities, thermal spread and at different
levels of the density fluctuations in the plasma under conditions similar to those in the

solar wind.

4.2 Density fluctuations in the solar wind

Spectrum of the density fluctuations in the solar wind have been obtained from the in
situ spacecraft measurements [Neugebauer, 1975] and phase scintillations of the signals
transmitted from satellite to Earth [Woo and Armstrong, 1979] already in 70-ties.
Celnikier et al. [1983] analyzed data from ISEE propagation experiments and reported
that the spectral density of fluctuations, Wy, can be presented in the form of a double-
power law. In the low frequency (long wavelengths) part of the spectrum, it can be

approximated quite well using the Kolmogorov power law, as follows:

In the higher frequency range (shorter wavelengths) the power law was evaluated to

have different spectral index, as follows:

Wi ~ k™", v~ 0.64 % 0.01.

Here Ny is the background plasma density and An is the amplitude of the fluctuations.
The transition occurs at a frequency around 6 x 1072 Hz. Here, it is worth mentioning
that in this frequency range the wave dispersion is still negligible and that the relation-
ship between frequencies and wavelengths can be established by assuming the Taylor
hypothesis. The result was obtained by Celnikier et al. [1983], making use the technique
of active sounding between two satellites. Noteworthy, spectral indices depend on an
angle between solar wind and a background magnetic field [Forman et al., 2011]. In
some cases the low frequency part of the density fluctuations spectrum is measured to
be steeper than —5/3 [Celnikier et al., 1987]. Recently, a similar spectrum was deter-
mined onboard Cluster [Kellogg and Horbury, 2005|, Artemis [Chen et al., 2012| and
Spektr-R [Safrankova et al., 2015].
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Figure 4.1: A power spectrum of the density fluctuations in log — log scale. The blue
line corresponds to the spectrum of the density fluctuation observed in the solar wind.
The red circles- spectrum of the density fluctuations calculated from syntectic time
series of the density perturbations.

To obtain a probability distribution for density fluctuations, the time series should
be constructed that have the same statistical properties as data collected by satellites.
For this purpose, we divided the spectrum into 10* equally sized intervals and calcu-
lated the series in which the coefficients were equal to the square root of the power
spectrum multiplied by the width of the interval: A; = \/W . We used the
spectrum obtained by Celnikier et al. [1983] over a frequency range of 1072 Hz to 102
Hz (shown with blue line in Figure 4.1). For conditions of a quiet solar wind, the low-
est frequency corresponds to density variations with a spatial scale of approximately
3-10°\p, which is comparable to the length of relaxation for an electron beam in homo-
geneous plasma. The highest frequency corresponds to density variations with a spatial
scale of approximately 300Ap. At such scale, the gain of the wave energy produced
by resonant interaction with a typical electron beam is approximately about the noise
level. To obtain the growth of waves up to a level significantly larger than the noise
level, one should consider density fluctuations with larger spatial scales. To exclude
small scale fluctuations, we set all coefficients that corresponded to the spectrum within
the frequency domain above 10 Hz to be equal to zero.

These procedures were used to obtain synthetic density profiles corresponding to

these spectra, the above described series may be used as follows: n(t) = >, A; cos(27 fit + ¢;),

where ¢; is a random phase with a uniform distribution from 0 to 27. Averaged spec-
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Figure 4.2: A synthetic time series of density fluctuations reconstructed from the spec-
trum shown in Figure 4.1 (the blue curve) and a corresponding variations of the wave
phase velocity of the wave (the green curve) [from Voshchepynets and Krasnoselskikh,
2015].

trum of density fluctuations obtained from the synthetic time series is shown with red
circles in Figure 4.1. In Figure 4.2, the reconstructed time series for the density fluc-
tuations are shown. As a Langmuir wave propagates through a plasma with a varying
density, the frequency of the wave remains approximately constant. If spatial varia-
tions for the density fluctuations [see also Kellogg et al., 1999], the conservation of the
frequency implies that the k vector of the wave will change by satisfying the dispersion
relationship. Changes in the k vector result in variations in the phase velocity of the
wave (the green line in Figure 4.2). As one can notice, even small variations in the

plasma density may lead to significant changes in the wave phase velocity.

4.3 Pearson curves for approximation of statistical distri-
butions

Due to the central limit theorem, Gaussian distributions are often found in The Nature.
In the previous chapter we considered electron beam relaxation in a plasma with density
fluctuations that obey normal distribution. The purpose of present chapter is to define
the distribution that describes density fluctuations in the solar wind as precisely as
possible. To this end we suggest to use a powerful method proposed by K.Pearson to
study the distribution obtain from the synthetic time series. Pearson [1895] proposed
a classification of the distributions according to their first four moments, each class
corresponding to the well known distributions.

Here we perform a brief description of the Pearson’s curves family (more detailed
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information can be found in various textbooks|for instance Kendall and Stuart, 1977,

Tikhonov, 1982|. The Pearson distributions are defined by the differential equation:

dp(x) r—a
= 4.1
dx bo + biz + b2m2p($)’ (4.1)

where a and b; are constant parameters of the distribution. Depending on the values

of this parameters, 12 types of curves can be obtained, including famous distributions
such as normal, log-normal, x2, and others. As it was shown in [Pearson, 1895], the
parameters in equation 4.1 could be expressed in terms of the first four moments, p1-p4,

of the distribution p(z) as follows:

a = bl (4.2)
pio(4popa — 3p3)

b= 1022 — 18p3 — 1243

by — — —kaluat 3p3)
102419 — 183 — 12413

by —2uapig + 65 + 3u§

 10papo — 1813 — 1243

Analytical solution of equation 4.1 for the case of centered distribution can be

obtained as follows:

p(z) = Cexp (¢(z)) (4.3)
where

T

y—bi
)= | ———d 4.4
o) /bo+bly+b2y (4.4)
0

As can be seen, the features of the ¢(z) strongly depend on the roots of quadratic

equation: by + by + bay? = 0.
Since Pearson curves are determined by first four moments, and centered distri-
butions are concerned, the Pearson’s classification can done in the terms of Pearson’s

betas, #1 and By (shown in a form of diagram in Figure 4.3), defined as follows:

B = Mé, B = %1

H3 M3
Certain distributions are represented by a single point, for instance, the normal
distribution (corresponds to type VIII) and the exponential distribution (corresponds
to type X). It is worth noting that § distribution corresponds to type I, while the ~y dis-
tributions corresponds to type III. However, certain distribution can not be represented

at the diagram, if at least one of the moments does not exist.
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4.4 The probability distribution function of density fluc-
tuations

To obtain a probability distribution function for density fluctuations, we used Ky =
3500 synthetic data samples, each 100 seconds in duration. For each sample, we used
6400 equidistant points corresponding to a sampling frequency of approximately 60 Hz.
This frequency corresponds to a spatial resolution of approximately 500\p. At such
scales, variations in the phase velocity are negligible in comparison to the initial phase
velocity. On the other hand, the spatial intervals are large enough to provide sufficient
energy exchange between waves and beam electrons.

Following normalization for all the data samples using standard deviations, o, we
built a set of histograms for the density fluctuations using Kj - 50 bins spaced be-
tween —50 to bo. A histogram, averaged over all the K, ensembles, is provided in
Figure 4.4 (blue curve). The obtained distribution was characterized using an averaged
B =2-107% and B = 2.86. According to the Pearson classification [Pearson 1895],
the distribution corresponded to a Type Il Pearson distribution. This distribution is
described by a symmetric 8 function and depends on the following three parameters:
the mean, the standard deviation, and the kurtosis. Analytical form of the type II
Pearson distribution can be obtained by integrating equation 4.4 and substituting the

result in the equation 4.3 as follows:

p(z) = Ac |1 - xzab‘mb

4 4 Sy 3 —pa
w2 () (0-3) - (s)/ (557).
p2 3 3 =9 3

and factor A, can be estimated from the normalization of p(x) to one. It is worth noting

where

that, this distribution is very close to the normal distribution which is characterized by
f1 =0 and 3 = 3 [Tikhonov, 1982, Podladchikova et al., 2003].

To evaluate the goodness of fit for each distribution we used the x? squared stati-
cal test [Bendat and Piersol, 2000, Krasnoselskikh et al., 2007]. The x? test basically
consists of an assumption that if the data is distributed according to a predicted dis-

tribution function, f(z), the normalized error of fit, X?:

il N s —hi 2
X% = ; (f;[fzx)) (4.5)

is a random variable that follows a x? distribution with v = K, — K ¢ — 1, where v
is the number of free parameters in the x? distribution and K ¢ is the number of free

parameters in the fitted function. In equation 4.5 x; is the center of each bin, h; is
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Figure 4.4: A distribution function for the amplitudes of the density fluctuations.

The blue line corresponds to the averaged distribution function obtained from the
synthetic time series of the density variation. All of the time series was normalized to
its standard deviation. Red and green asterisks correspond to the distribution functions
obtained from the Pearson type II and the normal probability distribution functions,
respectively. Parameters of the fitting probability distribution functions were calculated
from synthetic data.

a number of observations in each bin, and N = Y h;. Thus, one can use the x? test
to validate a hypothesis that the data under consideration follows a given distribution
function based on a comparison of the value of X? with the percentage, Xz%,cw for the chi
squared distribution, x2, for a chosen significance level, o [Bendat and Piersol, 2000].

To obtain the required parameters for the Pearson type II distribution, we cal-
culated the first four moments of the time series. Figure 4.4 provides a comparison
of a distribution obtained using synthetic data with the Pearson type II distribution
(green asterisks) and the normal distribution (red asterisks). It was shown that the
distribution for the density fluctuations is close to the normal distribution but some
deviations occur and are clearly identifiable. For a distribution function of K} = 10, the
normalized error of the fit X2 for the normal distribution case is equal to 2.98. Thus, a
hypothesis that the density fluctuations distribution obeys a normal distribution cannot
be rejected at a significance level of 95%. On the other hand, for the Pearson Type II
distribution case, X? = 0.14, indicating that the hypothesis that distribution of density
fluctuations follows this distribution cannot be rejected at a level of significance above
99.99%. Therefore, one can conclude that the distribution indeed corresponds to a type

IT Pearson distribution.
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4.5 The probability distribution function of wave phase
velocities

Using obtained probability distribution function of the density fluctuations, Ps,(dn),
one can reconstruct a probability distribution function for the phase velocities of the
Langmuir waves on the borders of the subintervals, Py (V)dV. For this aim, we use
the following single value functional dependence for the plasma frequency on plasma
density: wg(én) = 4me?(Ng + 6n)/m. Thus, a distribution function for the plasma
frequencies P, (wp) could be found using a unique relationship: the probability to find
plasma frequency less than wy,(Ny + én) is equivalent to probability to find the density

fluctuation less than dn:

a6
P, (wp)dwy = Psp(dn(wp))don = Pgn(5n(wp))87dwp.
P

Then, using the dispersion relationship for Langmuir waves, one can obtain the
relationship between the local plasma frequency and the wave phase velocity, as follows:
w? = w2(6n)(1 + 3vE/V?). By taking into account that the frequency of the wave is
constant, the probability distribution function of the phase velocities Py (V) may be

determined in a similar manner, as was done for P, (wp):

o
Py(V)dV = P,,, (w,,(V))%dv.

It is worth reminding that Py (V)dV is the probability of finding a wave with a
phase velocity equal to V' at one of the edges of the subinterval. The probability of
finding a wave with a phase velocity equal to some value, V;, in some point inside
subinterval, P,(V;), can be obtained by making use of the procedure described in the
previous chapter.

Figure 4.5 provides examples of P,(V) for a wave with V' = 7v; (in homogeneous
plasma), where v; is the thermal velocity of the background plasma, for cases with
different levels of density fluctuations, ((6n2))'/2/Ny (shown with colors). Solid lines
correspond to the P, (V) obtained from the Pearson type IT distribution of the density
fluctuations, while dashed lines correspond to P, (V') calculated from the normal distri-
bution. As indicated, both types of Pj,(dn) result in a similar form for the probability
distribution function of the wave phase velocities. In both cases, P, (V') shows a similar
behavior with an increasing level of density fluctuations. An increase in the magnitude
of the density fluctuations causes wider broadening in the probability distribution func-
tion within the velocity space. A deviation in distribution of density fluctuations from
the normal distribution mainly consists in the presence of a higher amount of fluctua-
tions with amplitudes within the range of 0.30 < |0n| < 2.50. These fluctuations cause
significant changes in the wave phase velocity. As a result, P, (V), for a case of density

fluctuations with the non-Gaussian distribution, is characterized by wider broadening
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Figure 4.5: Examples of the probability distribution functions, P, (V), for various fluc-
tuation levels. P, (V)dV is the probability that a wave with a ratio of w/ky = Tv;
will have a phase velocity V' at a given interval. P, was normalized to one using:
JoS Po(V)dV = 1. Colors correspond to the various fluctuation levels, as follows:
((6n2))1/2 /Ny = 0.005 , red; ((6n2))*/2/Ny = 0.01, blue; ((5n?))/2/Ny = 0.015, green;
((6n2))1/2 /Ny = 0.02, magenta. Solid lines correspond to density fluctuations obtained
using the Pearson type II distribution and the dashed line to density fluctuations ob-
tained using the normal distribution.

of the region of resonance. Thus, for this case, the effects of density inhomogeneities in
the plasma on the electron beam relaxation process will be more important. However,
the difference between P,,(V'), corresponding to the Gaussian and non-Gaussian distri-
butions of the density fluctuations, decrease with an increase in the level of the density
fluctuations, ((6n2))'/2/Ny. When it reaches a level of approximately 1.5% or is larger
than this level (the green and magenta lines in Figure 4.5), no significant difference
occurred between the probability distribution functions of phase velocity for normal

and more realistic (for solar wind conditions) distributions of density fluctuations.

4.6 The evolution of Langmuir waves

To evaluate the importance of the non-Gaussian form for a distribution of density
fluctuations on the generation of Langmuir waves, we compare results obtained from
stimulations with non-Gaussian distribution of the density fluctuations with those ob-
tained using normal distribution. The left panel in Figure 4.6 provides the evolution
of the total energy density of waves, W; = > W;, generated by an electron beam with
an initial Gaussian velocity distribution function for v, = 6v; and Av, = v¢. The level
of the density fluctuations ((6n2))'/2/Ny was chosen to be 0.005. The energy density
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Figure 4.6: Evolution for the total energy density of waves, Wy, for different levels of
density fluctuations and different parameters for the driven beams. Blue lines corre-
spond to density fluctuations with a normal distribution for the density fluctuations
while red lines correspond to fluctuations that obey the Pearson type II distribu-
tion. Left panel: (1/2)((0n%)Y2/Ny = 0.005, v, = 6vs, Avy = v;. Middle panel:
(1/2)({(6n*))/? /Ny = 0.02, v, = 10v;, Avy = v;. Right panel: (1/2)((6n?))'/2/Ny =
0.03, v, = 16w, Avy = v;. All of the panels provide the wave energy density with
respect to the corresponding initial energy density of the beam, Fyg.

obtained for the Gaussian density fluctuations distribution is shown in blue, while the
energy density for the Pearson type II distribution is shown in red. For this study, the
term (3/2)(v¢/vp)? that corresponds to the thermal effects in the non-linear dispersion
relationship for Langmuir waves [Krafft et al., 2013] is significantly larger than the
term, (1/2)((6n2))'/2 /Ny, related to density fluctuations. Thus, one can expect that
the influence of the density fluctuations on the process of wave generation will be rather
low. For both cases, W; shows dynamics similar to those for a homogeneous plasma,
namely, the energy density of the waves increases with time, until it reaches a plateau.
However, the presence of even small amplitude fluctuations reduces the saturation level
of the waves. In stimulations, saturation occurs when the total energy of the waves
approximately reaches 15% of the initial energy of the beam, while conventional QL
theory predicts saturation at a level of approximately 67%.

The results, obtained for a beam with v, = 10v; and Av, = v, and a density
fluctuations level ((6n?))'/2/Ny = 0.02, are presented in the middle panel of Figure
4.6. For this case, the term proportional to (3/2)(v¢/v)? is slightly above the term
(1/2)({6n?))*/?/Ny. Thus, the presence of density fluctuations should have a more
significant effect on the evolution of waves. As for a previous study, the energy density
of waves initially increases with time until it reaches a maximum. After that, the wave
energy density, W, begins to decrease. A decay in wave energy can be explained in

terms of resonant broadening |Bian 2014|. Since density fluctuations lead to variations
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in the phase velocity of a waves, the very same wave can resonantly interact with
different parts of the electron distribution function. If a wave spends more time in
the region of the velocity space where the velocity distribution function has a negative
slope, it will provide more energy to particles than it can gain by being in a region
where the derivative of f(v) is positive. As a result, the decay of wave energy density
is associated with the acceleration of some parts of the electrons. In this study, we
observed quite unusual dynamics of the system. After a short intensive decrease in the
wave energy density, the system achieved a state of relatively marginal stability. During
this period, W; decays very slowly. The period of stability is followed by another period
of intensive decay. For the case of a Gaussian distribution of density fluctuations, the
wave energy density initially grows faster. At the same time, for the case of non-
Gaussian distribution, the waves loose their energy more rapidly.

The right panel of Figure 4.6 provides the results for a beam with v, = 16v; and
Avy = vy, The level of the density fluctuations is 3%. This regime corresponds to a
situation where the term (1/2)((6n2))'/2/Ny is sufficiently larger than (3/2)(v¢/vp)2.
Under such conditions, the processes of growth and decay are completely determined
by density irregularities. The wave energy density increases in the beginning, however,
the stage of the waves growth takes longer time and the absorption of wave energy
by electrons is significantly stronger. Making use of the non-Gaussian distribution of
the density fluctuations leads to a slight increase in the time of wave energy growth
and to a decrease of the time of the decay. Also it leads to a decrease in maximum of
the energy density of waves attained during the growth phase and the level of energy
density obtained at the end of relaxation.

The maximum level of Langmuir wave’s energy generated by the electron beams
depends on the level of density fluctuations. The right panel of Figure 4.7 presents
the dependence of maximum in total wave energy density that was reached during the
relaxation process, Winaz, as a function of ((6n?))'/2/Ny. Here, we show the results of
simulations for beams with different beam velocities (shown with various colors) and
different beam thermal dispersions (shown with various symbols). An important feature
to be noted for all the cases is that an increase in the level of density fluctuations leads to
a decrease in W,,4,. However, the initial thermal dispersion of the beam reduces effects
related to the density fluctuations. For a case with slow and wide beams (v, < 10v; and
Awvp > v¢), the presence of density fluctuations in a plasma does not cause any notable
effects. For fast beams with velocities larger than 10v;, the change in the initial thermal
beam dispersion does not lead to any substantial change in the results. For all cases, an
increase in ((6n2))'/2/Ny results in a significant decrease in the maximum total energy
density of the Langmuir waves.

To estimate the dependence of the wave growth efficiency on the level of density fluc-

tuations and the parameters of the driven beam, we introduced the following quantity
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Figure 4.7: The maximum for wave total energy density, Wy,qz, reached during the
relaxation process (left panel) and the effective growth rate of waves (right panel) as
a function of the level of density fluctuations. Wp,4, is provided with respect to the
energy density of the background plasma. W, and t,, in the right panel represent the
initial total energy density of waves and the period of time, over which the wave energy
density has grown from W;, to Wi,.., respectively. Results are provided for various
parameters of the beam. Colors correspond to the various velocities of the beam, as
follows: v, = 6vg, blue; vy, = 10v;, red; vy = 16v;, magenta. Different marks correspond
to various thermal dispersions of the beam, as follows: Awv, = 0.5v4- asterisk; Avy = vs-
circle; Avp = 3v- diamond.
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that characterizes the average time for the growth of waves: 7.5 = log(Winaz/Win)/ter
where W, and W4, indicate the initial and maximum values of the total wave en-
ergy density, respectively, and ¢4, is the time during which the energy density of waves
grows from W, to Wyu,. The right panel of Figure 4.7 shows 7.y as a function of
((6n2))/2 /Ny obtained in simulations for beams with different v, and Avy. As seen in
Figure 4.7, beams with a large initial thermal dispersion Av, > 3v; generate waves less
efficiently than narrow beams (with Awvy, < ;). A decrease in 7.f, was obtained using
an increase in the level of the density fluctuations. However, the increase in thermal
dispersion for the beam reduces effects related to the density fluctuations. On the other
hand, when the level of the density fluctuations is quite high, ({(6n2))Y/2 /Ny > Auv, /vy,
there is no notable difference in ~.y corresponded to beams with a different Av,. For
these cases, the efficiency of wave growth is significantly reduced by effects caused by
density fluctuations.

The left panel of Figure 4.8 provides the time of growth for the wave energy, t,,,
as a function of the level of density fluctuations. The results are for simulations with
electrons beams having beam velocities in the range of 10v; to 20v;, and the initial
thermal beam velocities in the range of 0.5v; to 3vs. For all of these beams (v;/vp)? <
((6n2))1/2/(3Np). One can clearly see that the presence of density fluctuations plays
a crucial role in the process of wave generation. For all considered cases, an increase
in the ((6n2))Y/2/Ny leads to an increase in t,. The results were expected since we
already knew that an increase in the density fluctuation level leads to a decrease in
the effective growth rate. Under a condition of ((6n2))/2/Ny > Auvy/vp, tg linearly
depends on changes in ((6n2))/2/(Ny) with a coefficient of approximately one.

We indicated that the density fluctuations may cause a decay in the energy den-
sity of waves. The process becomes important when ((61n2))1/2/(Ny) is large enough
to strongly affect the non-linear dispersion relationship for Langmuir waves. Charac-
teristic times for the decay of the wave energy density, t4.., are shown in the right
panel of Figure 4.8. We designate t4.. as the time interval between the moment in
time when W; achieves its maximum, and the moment in time when W; decreases to
a level of Wy,4:/2. As can be seen, all the results can be separated into the following
two classes: (1) While the initial thermal dispersion of an electron beam is relatively
large Awy/vp > ((0n2))1/2/Ny, an increase in the level of density fluctuations leads to
a decrease in the time of decay. This result indicates that an increase in ((9n2))Y/2/N,
makes the process of the absorption of waves by electrons from the tail of the distri-
bution more efficient. (2) The inequality Avy/v, < ((6n2))'/2/Ny indicates that the
region in the phase space, where waves can effectively interact with beam electrons,
is almost completely determined by the level of density fluctuations. For this case, an

increase in the ((6n2))'/2/Ny results in the linear growth of the tge..
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Figure 4.8: A characteristic time for growth, ¢,,., and a characteristic time for decay, Z4ec,
for the total energy density of waves as a function of the level of the density fluctuation.
Different colors correspond to different beam velocities, as follows: v, = 10v;, red;
vp = 120, cyan; vy = 16v¢, magenta; and v, = 20vy, black. Different marks correspond
to various initial thermal dispersions of the beam (the same as for Figure 4.7)

4.7 Evolution of the electron velocity distribution func-
tion

In the following section we consider the influence of density fluctuations on dynamics
and the evolution of the electron velocity distribution function. First, we compare the
process of relaxation for cases with different distributions of the density fluctuations.
Figure 4.9 provides snapshots of the electron distribution function, f(v), at different
moments of time. Blue curves indicate simulations with density fluctuations described
by a Gaussian distribution. Electron distribution functions obtained from simulations
employing a non-Gaussian distribution for density irregularities are shown in red.

The top panels of Figure 4.9 provide the results for the relaxation of beams with a
beam velocity v, = 6v; and an initial thermal dispersion Av, = v;. The level of density
fluctuations is 0.005. The evolution for the total energy density of waves corresponding
to this study is presented in the left panel of Figure 4.6. The distribution function
shows a behavior typical for a homogeneous plasma: relaxation runs towards lower
velocities and stops with plateau formation. Accelerated particles are not observed. As
shown, for both the Gaussian and non-Gaussian density fluctuations distributions, the
results are very similar.

The middle panels of Figure 4.9 provides the results obtained for beams with a

vy = 10v;, a Avy = vy, and ((6n2))/2/Ny = 0.02. As stated previously, relaxation
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mainly evolves toward lower velocities. However, the process of relaxation is slowed as
compared to a case with a smaller ((6n2))!/2/Ny. Moreover, the number of particles
with velocities larger than the initial v, significantly increased during the process of
relaxation. Energy transfer to energetic particles is possible, due to resonance broaden-
ing. In the case with the Gaussian distribution of the density fluctuations the relaxation
runs faster than in the case with non-Gaussian distribution. However, at the end of
relaxation no substantial difference between the two cases was determined.

Results provided in the bottom panels of Figure 4.9 correspond to simulations with
beams having an initial beam velocity 16v; and a thermal velocity v;. The level of
density fluctuations is ((6n2))*/2/Ny = 0.03. Under such initial conditions, density
fluctuations play a very important role in the process of relaxation. Here, two aspects
should be emphasized: 1) Even after passing a time above 80 - 1047rw;1, the electron
velocity distribution function still contains a region with a small but positive slope. 2)
The efficiency of the acceleration mechanism significantly increased: particles with ve-
locities larger than 30v; are seen in the distribution function. As previously mentioned,
relaxation runs faster when the Gaussian distribution is used for density fluctuations.

To evaluate the efficiency of the acceleration process, we calculated the energy of
accelerated particles, i.e. particles with velocities higher than v, 4+ 3Awy, at the end of
the relaxation process. The left panel of Figure 4.10 provides the ratio of the energy
of accelerated electrons, E,, to the initial energy of the beam, Fyg, as a function of
the level of density fluctuations. Here, we present results obtained from simulations for
beams having different initial beam velocities (vy = 6vs, vy, = 10V, and v, = 16v;) and
different thermal dispersions (Av, = 0.5v;, Avy = v, and Av, = 3v;). An increase in
the level of the density fluctuations leads to an increase in the energy of accelerated
particles. Under a condition of (v:/vy)? < ((0n2))/2/(3Np), even density fluctuations
with a small amplitude cause a significant acceleration for electrons. For instance, for
the case of a beam with a beam velocity v, = 16v; (shown with magenta curves), the
energy of accelerated particles reached a level of approximately 60% of Ejyg, even for
cases for which the level of density fluctuations is quite small (e.g. 0.005). It is worth
noting that the increase in initial thermal dispersion of the beam noticeably reduces
the efficiency of the acceleration mechanism.

The left panel of Figure 4.10 provides the thermal dispersion, ((v, — v)?)'/2, of the
electron velocity distribution function over the range of velocities v > vy at the end of
relaxation as a function of the level of density fluctuations. As previously mentioned,
for slow and wide beams (with v, < 10v; and Avy, > v;) the effect of density fluctuations
on the acceleration of particles is negligible. For fast beams with beam velocities larger
than 10vy, the presence of density fluctuations in the plasma results in a significant
increase in thermal dispersion at the end of the relaxation process. For instance, a

beam that initially has a Avy, = 0.5v; and a v, = 16v; (the magenta line marked with
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tion that corresponds to cold electrons of the background plasma was not considered.

The dimensionless electron distribution function was normalized to one.

Each plot

provides a snapshot of the electron distribution function at different moments of time.
Colors correspond to simulations with various distributions for the density fluctuations,
as follows: blue, the Normal distribution and red, the Pearson type II distribution.
Results were obtained for various parameters of the beam and levels of the density
fluctuation. Up panel: ((6n?))Y/2/Ny = 0.005; v, = 6v;; and Av, = v;. Middle panel:
((0n2))1/2 /Ny = 0.02; v, = 10v¢; and Avy, = v;. Bottom panel: ((6n2))'/2/Ny = 0.03;
vy = 16vs; and Avy = vy
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Figure 4.10: The energy, E,, (left panel) for accelerated particles and the thermal
dispersion of the beam at the end of relaxation, ((vy —v)?), (right panel), as a function
of the density fluctuation level. Ejyq is the initial energy of the beam and the density of
the beam electrons. Colors and marks correspond to the various initial beam velocities
and the thermal dispersions of the beam (the same as in Figure 4.7).

asterisks) has a thermal dispersion above 5v; once relaxation stopped. As shown, for
a condition of Avy/vy, < ((6n%))'/?/Np, no substantial difference was determined in

simulations with beams having different initial Awvy,.

4.8 Two stage relaxation

As previously discussed, when the level of density fluctuations is high enough to strongly
affect the non-linear dispersion relationship of Langmuir waves, the electron velocity
distribution function can preserve a region in velocity space with a positive slope during
a period of time above 80 - 10%7 Jwp. The right panel of Figure 4.11 provides the distri-
bution function at two different moments of time, t; = 107 /w, (marked in blue) and
ty =50 - 1087 /w, (marked in red). The beam initially had a velocity v, = 20v; and a
thermal dispersion Avy = v;. The level of density fluctuations is 0.04. As shown, follow-
ing the major phase of the relaxation process, instability still occurs at some marginal
level and relaxation becoming very slow. As the distribution function evolves to form
a plateau, the number of energetic particles increases. However, relaxation occurs very
slowly, hundreds of times slower than during the major phase of relaxation. Based on
a rough estimate of the growth rate for this "marginal" instability, we concluded that
the distribution function is able to maintain a region with a positive gradient even for

a time period above 10107 /w,.
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After analyzing the data obtained in the simulations using different values of vy,
Auvy, and {((6n2))'/2 /Ny, we determined a simple criteria that indicates the end of the
active stage: the maximum growth rate of waves (7) becomes smaller than 25-10~9mw,,.
Therefore, a significant increase in the amplitude of waves in this stage requires a very
long time interval (above (y)~!). It is evident from our results that an important
criteria for the applicability of a conventional QL-type relaxation: yL./vy, > A, where
A is Coulomb logarithm, is not applicable in this case. As a result, it is difficult
to determine whether or not this stage of relaxation can be correctly described by any
model because small external factors that we did not take into account could completely
change our interpretation.

The left panel of Figure 4.11 provides two examples of distribution functions that
satisfy these criteria () < 25107 %7w,. Both results were obtained for a beam with
vp = 16v; and Avy, = v;. The blue curve indicates the electron velocity distribution
function at t = 40 - 10%7/w, for a case of ((6n?))"/2/Ny = 0.01. One can see that
under a condition of v?/v} > ((6n?))Y/2/(3Np), the first stage of relaxation results
in the formation of a plateau in the range of velocities less than v,. The red curve
is f(v) for a case of ((6n?))/2/Ny = 0.04 at a moment in time of approximately
1097 /w,. Despite the fact that for both cases the maximum (v) is equal, for a case
with ((6n2))/2/Ny = 0.04, the positive slope for f(v) is still clearly seen.

Hereafter, we refer to the time for the major phase of relaxation, namely %,, as the
characteristic time for the active stage of the relaxation process. The left panel of Figure
4.12 provides t, for beams with different initial vy and Aw, as a function of the level
of density fluctuations. As shown, beams with a relatively large thermal dispersion,
Avy /vy > ((6n2))/2 /Ny, have a time of relaxation that is longer than more narrow
beams. For all of these beams, the characteristic time of relaxation decreases with an
increase in ((6n2))'/2/Ny. In contrast, for beams that satisfy the condition Avy/vy <
((0n2))Y/2 /Ny, t, is longer in a plasma with a higher level of density fluctuations.

The characteristic often used to describe beam plasma interaction is the length of
beam relaxation. To evaluate a characteristic spatial scale for the relaxation process 7,
we first calculate the averaged velocity of the beam, (v(t)) = (vf(v,t)), as a function of
time. We then estimate 75 by integrating the corresponding function (v(t)) over ¢ from
0 to t,. Our results are provided in the right panel of Figure 4.12. As clearly seen, the
relaxation scale in the presence of density fluctuations is much larger than for the case of
a homogeneous plasma. Even for a relatively slow beam with a v, = 10v;, the r4 is above
105\p. For faster beams, with beam velocities larger than 15v;, the relaxation scale
can reach values of approximately 10" \p for cases of ((6n?))'/2/Ny > 0.02. However,
for all of the cases we considered, the first stage of relaxation finishes on the scale of
the order of the Solar radius.

One should note that the second slow stage of the beam relaxation evolved in quite
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Figure 4.11: Left panel: The results of a simulation with a beam with v, = 20v; and
Avp = v;. The level of the density fluctuation, 0.04. The red line indicates the form
of the electron distribution function at time ¢; = 20 - 10°7/w, and the blue line at
ta = 50107 /w,. Right panel: Examples of the electron velocity distribution functions
at the end of the first stage of the relaxation process. For both f(v) maximum of the (v)
is approximately 25 - 10~%w /7. Initially, the beams have a v, = 16v; and a Avy, = 1v.
The blue line corresponds to a simulation with a level of density fluctuations of 0.01;
the red line corresponds to a simulation with a ((0n2))/2/Ny = 0.04.
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Figure 4.12: A characteristic time for the relaxation, ¢,, and a characteristic spatial
scale for the relaxation, 75, as a function of the level of the density fluctuation. Colors
and marks correspond to the various initial beam velocities and the thermal dispersions
of the beam (the same as in Figure 4.7).

a similar manner to the evolution of beams, as suggested by the SGT. The distribution
functions obtained at this stage of the beam plasma interaction are very similar to those
observed in the solar wind at large distances from the Sun. One can assume that the
complete solution for the famous Sturrock paradox should account for this two-stage

process.

4.9 Conclusions

We presented a self-consistent probabilistic model for describing the relaxation of an
electron beam in a solar wind with random density irregularities having the same spec-
tral properties as measured onboard satellites and by means of other techniques. We
suppose that, the system has several characteristic scales related to the characteristic
scale of density fluctuations. On a scale lower than the characteristic scale of den-
sity fluctuations, wave-particle interaction can be precisely determined for waves with
known parameters: phase, frequency and amplitude. However, on scales sufficiently
larger than the characteristic scale of density irregularities, wave and particle dynam-
ics are described by their characteristics averaged over the velocity space, namely, by
the growth/damping rate and by the particle diffusion coefficient. The procedure of
averaging requires the knowledge of the probability distribution function of wave phase
velocities that can be determined from the probability distribution of density fluctua-

tions. To this end, we performed a statistical study of density fluctuations, deduced
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from measurements onboard satellites when they were in the solar wind. Our analysis
indicates that on spatial scales of approximately 102Ap, the distribution of the fluc-
tuations obeys a Pearson type II distribution. However, deviations from the normal
distribution are rather small. The closeness of the density fluctuation distributions
results in quite similar probability distribution functions for wave phase velocities. Nu-
merical simulations for the electron beam plasma interaction for both cases of the
Gaussian and non-Gaussian distribution does not lead to substantial difference. Thus,
one can conclude that the normal distribution of density fluctuations may be used as
a good approximation for studies of the beam relaxation in the solar wind.

Applying a model to the system having parameters relevant to typical solar type
ITT events, we determined that depending on v?/v? and ((9n?))/2 /Ny, three different
scenarios for the relaxation process can take place:

(1) When the level of density fluctuations is sufficiently low, ((6n?))'/2/(3Ny) <
v?/v?, the beam relaxation and the excitation of Langmuir waves are developed in a
manner similar to that of a homogeneous plasma. Relaxation only runs toward lower
velocities and after plateau formation there is no energy transfer to accelerated particles.
The energy of the waves increases in time until it reaches the saturation level, which is
typically above several tens of percent from the initial energy of the beam.

(2) ((6n?))/2/Ny ~ v}/vE- corresponding to the intermediate regime. The den-
sity fluctuations are high enough to impact the non-linear dispersion relationship of
Langmuir waves and to cause absorption of the waves by particles from the tail of the
electron velocity distribution function. As a result, the energy of waves decays after
reaching a maximum value. The wave decrease is accompanied by an increase in the
number of energetic particles.

(3) ((6n2))Y/2/No > v /v? - the presence of density fluctuations strongly slows down
beam relaxation. Resonant broadening allows a wave generated with a phase velocity,
V, to interact resonantly with particles having velocities v, smaller and larger than V,
even with particles having much larger velocities. As a result, the saturation level of
the wave energy is significantly reduced. The energy of waves at the end of relaxation
can be five times less than the maximum value achieved during the relaxation process.
The energy transfer from slow particles with velocities v < v to energetic particles
with velocities larger than vy, is very effective. The energy transferred to accelerated
particles can reach levels up to 60% of the initial energy of the beam.

Thus, we conclude that even small amplitude density irregularities with spatial
scales in the range of 103Ap — 10*Ap play an important role in the process of the relax-
ation of solar energetic beams with beam velocities larger than 15v;. The results are in
a good agreement with results obtained using computer simulations in the framework
of a Hamiltonian description for beam-plasma interaction in the presence of random
density fluctuations [Krafft et al., 2013|.

108



Our study revealed very important characteristics for the beam plasma interaction
for very energetic beams with beam velocities above 15v;. For these beams, the relax-
ation takes place in two stages process. The first stage has a relatively short duration,
with characteristic time, t,, typically below 1077T/wp. This stage is characterized by
an effective energy exchange between Langmuir waves and beam electrons. At the end
of the first stage the system achieves a quasi-stable state. Despite the fact that the
electron distribution function preserves a region with a positive gradient, the averaged
growth rate for waves is close to zero, however, it keeps a small positive value over a
very long time period. Even for very fast beams with beam velocities of approximately
20vy, the characteristic spatial scale of the first stage of relaxation is approximately
20 - 107 \p, indicating that this stage takes place in the solar corona. However, as
shown in our simulations, the second stage of relaxation is at least 500 times longer.
Thus, one can expect that the electron distribution function will have a positive slope
at distances up to several AU. This two stage process can explain the Sturrock paradox,
observations of weak beams and, associated with them, wave activity at distances from
the Sun up to 5 AU. This result also indicates that beams can only be registered by very
capable particle instruments, and provides an explanation as to why there are so few
direct observations of the positive slope of the electron distribution function onboard
satellites [Anderson et al., 1981, Lin et al., 1981, Fuselier et al., 1985].

4.10 Resume in French

Nous avons présenté un modéle probabiliste auto cohérent pour décrire 1 relaxation
d’un faisceau d’électrons dans un vent solaire rempli par les fluctuations aléatoires de
la densité ayant les mémes propriétés spectrales, que celles mesurées a bord de satel-
lites et en utilisant d’autres techniques. On suppose que, le systéme posséde plusieurs
échelles caractéristiques liées a I’échelle caractéristique des fluctuations de la densité. En
échelle inférieure a ’échelle caractéristique des fluctuations de la densité, 'interaction
onde- particule peut étre décrite avec une précision si des paramétres d’onde sont con-
nus: notamment, la phase, la fréquence et 'amplitude. Cependant, sur des échelles
suffisamment plus grandes que I’échelle caractéristique des irrégularités de la densité,
I'interaction des ondes et de particules ne peut étre déterminé que par leurs caractéris-
tiques moyennes dans l'espace des vitesses, & savoir, par le taux de croissance/ amor-
tissement et par le coefficient de diffusion des particules. La procédure d’évaluation de
moyenne nécessite la connaissance de la fonction de distribution de densité de probabil-
ité de vitesses de phase d’ondes de qui peut étre déterminée a partir de la distribution
de la densité de probabilité des fluctuations de densité électronique. A cette fin, nous
avons réalisé une étude statistique des fluctuations de densité, déduite de mesures a bord
des satellites quand ils étaient dans le vent solaire. Notre analyse indique que sur les

échelles spatiale d’environ 102\ p, la distribution des fluctuations obéit & la distribution
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de Pearson de type II. Cependant, les écarts entre cette distribution et la distribution
normale sont plutdt assez petits. La proximité de deux distributions de fluctuations de
la densité électronique se traduit en similarité assez proche de fonctions de distribution
de probabilités des vitesses de phase d’ondes. Des simulations numériques décrivant
Iinteraction d’un faisceau d’électrons avec un plasma pour les deux cas, celui d’une
distribution Gaussienne et celui d’'une distribution non-Gaussienne, ne démontrent pas
de différence importante. Ainsi, on peut conclure que la distribution normale des fluc-
tuations de la densité électronique peut étre utilisée comme une bonne approximation
pour I'étude de la relaxation de faisceau dans le vent solaire.

En appliquant un modéle utilisant des paramétres semblables a ceux des domaines
de sources des émissions radio solaires de Type III, nous avons déterminé que selon
le rapport entre vZ/v? et ((9n?))'/2/Ny trois scénarios différents pour le processus de
relaxation peuvent avoir lieu:

(1) ((0n2))Y/2/(3Ny) < vZ/v? - lorsque le niveau des fluctuations de densité est
suffisamment faible, la relaxation du faisceau et l'excitation des ondes de Langmuir
se développent de facon trés semblable au cas d’un plasma homogéne. La relaxation
et formation du plateau se développent seulement pour des vitesses inférieures a la
vitesse du faisceau; aprés la formation du plateau, il n’y & plus d’énergie transférée
aux particules accélérées. L’énergie des ondes augmente jusqu’d atteindre le niveau de
saturation, qui est typiquement de I'ordre de quelques dizaines de pourcent de ’énergie
initiale du faisceau.

(2) ((6n?))'/2/Ny ~ v? /v}- corresponde au régime intermédiaire. Les fluctuations
de densité sont suffisamment élevées pour avoir une influence sur la relation de disper-
sion non linéaire des ondes de Langmuir. Ceci provoque absorption des ondes par des
particules appartenant & la queue de la distribution de vitesses électroniques. En con-
séquence, ’énergie des ondes décroit aprés avoir atteint une valeur maximale. La baisse
de I'énergie d’ondes est accompagnée par une augmentation de nombre de particules
énergétiques.

(3) ((6n?))/2/Ny > v? /v? - la présence des fluctuations de densité ralentit forte-
ment le processus de relaxation du faisceau. L’élargissement du domaine de résonance
permet & une onde générée avec une vitesse de phase, V', d’entrer en résonance avec
des particules possédant des vitesses v, < V aussi bien qu’avec des particules beaucoup
plus rapides. En conséquence, le niveau de saturation de I’énergie des ondes est réduit
de maniére trés significative. L’énergie des ondes a la fin de la relaxation peut étre
cinq fois inférieure & la valeur maximale atteinte pendant le processus de relaxation.
Le transfert d’énergie & partir de particules lentes possédant des vitesses v < v, vers
les particules énergétiques de vitesse v > vy, est trés efficace. L’énergie transférée aux
particules accélérées peut atteindre des niveaux allant jusqu’a 60% de 1’énergie initiale

du faisceau.
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Ainsi, nous concluons que méme des irrégularités de densité de faible amplitude &
des échelles spatiales comprises entre 103\p et 10*Ap, jouent un réle trés important
dans le processus de relaxation des faisceaux de particules énergétiques solaires ayant
des vitesses supérieures a 15v;. Ces résultats sont en bon accord avec les résultats
obtenus en utilisant des simulations numériques utilisant une description Hamiltonienne
de l'interaction d’un faisceau avec un plasma en présence des fluctuations de densité
aléatoire [Krafft et al., 2013].

Notre étude a révélé les caractéristiques d’interaction d’un faisceau avec un plasma,
pour des faisceaux trés énergétiques ayant des vitesses supérieures a 15v;. Pour ces
faisceaux, la relaxation se développe en deux étapes. La premiére étape a une durée
relativement courte, avec un temps caractéristique, ¢,, typiquement inférieur 4 1077/ Wp.
Cette phase est caractérisée par un échange d’énergie trés efficace entre les ondes de
Langmuir et les électrons du faisceau. A la fin de la premiére étape, le systéme atteint
un état quasi stable. La fonction de distribution des électrons conserve malgré tout
une région possédant un gradient positif dans I'espace des vitesses, mais le taux de
croissance moyen pour les ondes est assez proche de zéro. Cette petite valeur positive est
cependant gardée pendant une période de temps trés longue. Méme pour des faisceaux
trés rapides avec des vitesses de 'ordre de 20v, I'échelle spatiale caractéristique de la
premiére étape de relaxation est environ de 20-107\p., ce qui indique que cette étape a
plutdt lieu dans la couronne solaire. Cependant, comme les simulations 'indiquent, la
seconde étape de relaxation est au moins 500 fois plus longue. Ainsi, on peut s’attendre
a ce que la fonction de distribution des électrons ait une pente positive & des distances
allant jusqu’a plusieurs AU. Ce processus en deux étapes peut expliquer le paradoxe
de Sturrock, c’est & dire, observation de faibles faisceaux d’électrons et d’activité des
ondes associées jusqu’a des distances d’environ 5 AU. Ce résultat indique également
que les pentes positives de la fonction de distribution des électrons ne peuvent étre
mesurées que par des instruments assez sensible. Ceci explique pourquoi il y a peu
d’observations directes de la pente positive de la fonction de distribution des électrons
a bord de satellites [Anderson et al., 1981, Lin et al., 1981, Fuselier et al., 1985].
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Chapter 5

Langmuir waves in the
fluctuating solar wind

5.1 Introduction

The Langmuir waves have been the object of intensive studies in the solar wind, within
the Earth’s electron foreshock, and in the vicinity of other planetary shocks over the last
6 decades. From the very beginning it was pointed out that plasma waves are clumped
into spikes with peak amplitudes typically three orders of magnitude above the mean.
Smith and Sime [1979] proposed the explanation of the clumping phenomenon based
on the idea that the plasma is inhomogeneous, and in most regions where the beam
could excite the waves the characteristic scale of the inhomogeneity is comparable with
the spatial growth rate. Based on this idea Robinson [1992], proposed the model that
describes interaction of the electron beam with Langmuir waves in such inhomogeneous
plasma. The beam propagates alternately through the regions where the wave growth
rate is alternately positive and negative, and as a result of interaction of the beam with
the waves, the slope of the electron distribution function oscillates close to the level of
marginal stability. In turns, the resulting wave’s growth rate has a form of the random
walk in logarithm of the wave energy density with an upper boundary approximately
equal to kinetic energy density of the beam. The proposed model allowed to explain
observed clumping phenomenon as well as made prediction regarding the probability
distribution of the magnitudes of the clumps. Due to the central limit theorem, the
Stochastic Growth theory predicts the log-normal distribution of the amplitudes of the
electric field of the Langmuir wave envelopes obeys the log-normal distribution.

Event studies using different experimental data registered onboard various space-
craft and in laboratory plasma [Cairns and Robinson, 1999, Cairns and Menietti, 2001,
Austin et al., 2007| found the distribution of the amplitudes close to the log-normal.
However, different non-linear physical process, such as electrostatic decay of the Lang-
muir waves, or other, result in deviation of the distribution from the log-norma. Re-

cently, Krasnoselskikh et al. [2007], proposed the model that describes the linear in-
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teraction of Langmuir wave packets with an electron beam and takes into account two
important effects caused by the density irregularities, namely the angular diffusion of
the wave vector due to wave scattering on small-amplitude density fluctuations, and
suppression of the instability caused by the removal of the wave from the resonance
with particles during crossing density perturbations of relatively large amplitude. The
authors showed that distributions for the logarithm of wave intensity can belong to
Pearson type IV rather than normal under some circumstances. The main reason for
deviations of distributions from the normal is that the effective number of regions where
the waves grow is not very large and, as a consequence, the central limit theorem fails
to be true.

The aim of the following chapter is to study the properties of the Langmuir waves
in the fluctuating solar wind by making use the numerical model based on the Hamilto-
nian description of the beam-plasma interaction. The Hamiltonian models describing
the self-consistent wave-particle and wave-wave interactions in homogeneous or inho-
mogeneous magnetized plasmas. Various physical problems could be efficiently studied
by such methods, concerning nonlinear and turbulent stages of different instabilities of
electron or ion distributions, wave-particle interactions at multiple resonances, quasi-
linear diffusion processes of particles on waves due to wave particle interaction, wave
turbulence in randomly inhomogeneous plasmas, wave focusing, scattering, reflection
and decay |[Krafft et al., 2015]. Recently, [Volokitin et al., 2013, Krafft et al., 2013, 2014,
2015| the self-consistent model was used for the problem of the resonant interaction of
an electron beam with Langmuir wave packets in plasma with density fluctuations un-
der conditions close to the typical solar type III bursts region. Comparison of the
wave-form of the Langmuir obtained in the simulations with recent measurements by
the STEREO and WIND satellites shows that their characteristic features are very
similar [Krafft et al., 2014]. In the following chapter we perform the study of the distri-
butions of the amplitudes of the Langmuir obtained from our probabilistic model and

from the Hamiltonian model as well.

5.2 Stochastic growth theory

The Stochastic Growth theory (SGT) was developed to describe origin of the clumping
of the Lungmuir waves in the source region of the type III solar radio bursts. An
important consequence of the SGT is prediction of the statistical distribution of the
amplitudes of the electric field in the clumps. The predicted log-normal distribution
was found in different experimental data registered onboard various spacecraft and in
laboratory plasma. In the following section we present a brief description of the basics
of SGT following the original papers [Robinson, 1992, Robinson et al., 1993, Robinson,
1995, Cairns and Robinson, 1999].

Initial problem treated in the model was related to the scattering of the Langmuir
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waves by the density fluctuations. The fluctuations in the solar wind have been inferred
to scatter the beam-driven Langmuir waves out of the resonance with the beam at
the typical rate of < 10s~!, while the largest growth rate for observed beams are
approximately of the order of < 1s~!. Thus, for these reasons the waves cannot grow
uniformly in the space. The authors showed that the observed time-averaged growth
rates can overcome 10s~! in localized clumps with spatial scale of approximately 100km.
The authors argued that at least in the regions where scattering is not too large, the
beam-driven growth rate can overcome the refraction of waves out from the growth
region in the velocity space.

The stochastic-growth model considers the beam propagating in the state close to
the marginal stability, predicted by QL theory. The beam passing through the type
IIT source releases part of it’s free energy to the energy of the Langmuir waves due to
the beam plasma instability, that results in plateau formation on the electron distribu-
tion function within some range of the velocities. However, between the interactions
with intensive clumps, the positive slope can be recovered because of the advection,
which transforms spatial gradients into velocity gradients as the electrons propagate
[Grognard, 1982, Melrose and Goldman, 1987, Robinson et al., 1993].

The presence of the density fluctuations affects the waves, allowing them to grow
effectively only in the certain clumps, while other clumps of waves corresponding to
unfavorable density fluctuations are damped. This, in turn, results in perturbation of
the beam (in the sense of spatial inhomogeneities in the electrons distribution function)
about its averaged state of the marginal stability on the time scales determined by the
characteristic time scales of the change of density fluctuations. These inhomogeneities
provide the fluctuations of the growth rate of the Langmuir waves, while the averaged
growth rate is close to zero. Under such consideration the growth rate of the waves
in a given clump (with characteristic spatial scale of the order of characteristic scales
of the density fluctuations) undergo a random walk until either the waves leave the
clump or the wave growth rate saturates via non-linear processes. The characteristic
time of the interaction, t4, can be obtained as [/v4, where [ is the clump size and v, is
the group velocity of the Langmuir waves (in the terms of the thermal velocity of the
background electrons, v, and beam velocity, vy, vy = 3v?/vp). During a time tg, the
beam propagating at velocity v, can propagate over a distance up to vyt and traverse
Uptg/(l) clumps in transit, where (I) is a mean clump size. The authors assume that
the ion-sound waves responsible for the density inhomogeneities in the solar wind, and
thus the characteristic lifetime of the clumps can be estimated as ts = (I)/cs, where ¢
is the typical ion-sound speed. This estimation indicates that a typical clump forms
and disperses (t;)/ts times near a particular location during time ¢,. Each formation
and dispersal of clump results in appearance of a corresponding inhomogeneities in

the part of the beam that interacts with given clump during ¢,. The total number of
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inhomogeneities on the electron distribution function was obtained as:

_ ugty (tg)  wpesl
ng(l) = W t <l>v§ (5.1)

It is worth noting that for the typical solar wind conditions, ny > 1. During the

time ¢t < t, the total number if inhomogeneities that pass trough the clump can be

estimated as:
nz(t) - — = - (52)

where t; is ((I)vg)/(csvp)-
The solution of the Liouville equation for the spectral energy density of the Lang-

muir waves packet, W, can be obtained as follows:

Wi (t) = Wi(to) exp (G) (5.3)

where Wy (t) and Wy(to) are the spectral energy density at the moments of time ¢ and
to, respectively, and G is the total growth of the wave during the time ¢ — t3. The
total growth of a given group of Langmuir waves is a sum over individual increments

AG; = v;t; as the waves are encountered by each inhomogeneity of the beam

G=> AG, (5.4)

where 7; is the growth rate provided by single inhomogeneity and varies between inho-
mogeneities. The mean and variance of G are thus related to corresponding quantities
of AG as:

(G) = (AG)ni(t) = (N1, (5.5)
o2(G) = *(AG)n,(t) = o*()tit, (5.6)
for time ¢ < ¢, and:
(@) = (A6}, = 2 5.7
ﬂ@:ﬁma%:ﬁ?ﬂ (5.8)
VpUg

for t = t,.
In the terms of (G) and o(G), the spatially averaged probability distribution func-
tion of G’ can approximately defined as follows:

_ 2
P(G) = #exp(i(G (G))

27’[’0’2(G) 20’2(G) )7 (59)

via central limit theorem (since ny > 1). Thus, by making use of solution 5.3 and

equations 5.5 and 5.6 one can obtain following equation:
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Figure 5.1: Probability distribution of wave amplitude for the electric field of the
selected waveform observed by Cassini WBR (Wideband Receiver). The gray dashed
line represent a fit of log-normal distributions. The red line shows the high amplitude fit
(from 0.25 to 1mV/m ) with a power low exponent. a) Overall amplitude distribution
using log-log scale. b) Detail of distribution function for amplitudes between 0.001 and
0.1mV /v using a linear scale [from PiSa et al., 2015].

(W (5) = eap([(x) + 50> (7)1l (5.10)

for t < t, [Robinson, 1992]. The effective growth rate of the waves, I'c¢r, was defined
by the authors as: )
Tepp = () + 50 (Mt (5.11)

This result allows one to resolve the paradox of wave growth despite that the mean
growth rate (7y) is negative because the I'cy¢ can be positive even for () < 0. Another
important result was obtained by taking into account that solution 5.3 leads to following
relation between G and amplitude of the waves electric filed: G = 21n (E/Ep) and thus

the distribution of the waves amplitudes should obeys the log-normal distribution:

o (8)] - e (PR ) e

Therefore the SGT predicts a parabolic profile for In P(In E') when it plotted as function

of In E. This theoretical prediction is in the good agreement with observations of
the Lagmuir waves amplitudes in the Earth’s foreshock [Cairns and Robinson, 1999|
and polar cap region [Cairns and Menietti, 2001]. For instance, Figure 5.1 provides
the evidence of the log-normal observed inside the Saturn’s foreshock by the Cassini
spacecraft [from PiSa et al., 2015]. One can see that deviation of the distribution from
the log-normal for amplitudes > 0.25mV/m are rather large. The power low exponent
distribution at the high amplitudes was explained by aggregated distribution, as a
result of a combination of many log-normal distributions for spatially limited regions
|Boshuizen et al., 2001].
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Figure 5.2: Theoretical distribution P(G) with and without the presence of a three-wave
decay threshold as given by equations 5.9 and 5.14, solid and dashed curves respectively
[from Robinson et al., 1993].

The SGT was refined to take into account the non-linear wave-wave interaction
[Lin et al., 1986, Robinson et al., 1993]. If the highest wave levels saturate via three-
wave decay (or via some other non-linear process) the distribution of G will fall rapidly
beyond the point G, corresponding to the the threshold magnitude of the electric field
E, for decay. Dynamically, the energy density of the waves that reached the threshold
rapidly decreases as product waves are generated, falling to an asymptotic level that is
exponentially decreasing function of the extent to which the threshold was exceeded.
The authors approximated the threshold as an absorbing boundary and solved the the
diffusion problem in G for the half-interval G < G, in order to calculate P(G). After

normalization to unit the probability function P(G) was obtained as follows:

P(G) = [\/mErf (%)]1 X (5.13)

oo () e ()

for G < G. and P(G) =0 for G > G.. Figure 5.2 shows the distributions 5.9 and 5.14

and illustrates the effect of the three-wave decay process.

5.3 Statistical properties of the small-amplitude Langmuir
waves in the plasma with density fluctuations.

Recently, the model that describes the linear interaction of Langmuir wave packets

with the electron beam and takes into account the angular diffusion of the wave vector
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due to the wave scattering on the small-amplitude density fluctuations, as well as a
suppression of the instability caused by the removal of the wave from the resonance
with particles during crossing density fluctuations with large amplitudes was proposed
by Krasnoselskikh et al. [2007]. The authors used the Pearson technique to classify the
distributions of the wave spectral energy density obtained from the numerical modeling.
They argued that under certain circumstances the effective number of the of the regions
where the waves can grow effectively is not very large, and thus the central limit theorem
fails to be true. For this cases the distribution of the logarithm of the wave energy
density corresponds rather to Pearson type IV distributions rather than normal. In
the following section we briefly describe main ideas and results of the original paper
[Krasnoselskikh et al., 2007].

The model considers to effects related to the density inhomogeneity on the interac-
tion of the electron beam with Langmuir waves, namely: the angular diffusion of the
waves and removal the wave from the resonance with the beam. Depending on their
magnitude the fluctuations are involved in one of these processes. The first process is

caused by a small-amplitude fluctuations, with amplitudes, An, that satisfy conditions:

An/Ny < 3kT/(mwze), (5.14)

where T is electron temperature and k is Boltzmann constant. The second effect
is provided by the large-amplitude fluctuations, with amplitudes, AN, that satisfy

inequality:

AN/Ny < 3kT/(mw},), (5.15)

In other words the wave vector can be changed significantly during crossing of such
inhomogeneities but the inhomogeneities are not large enough to reflect the packet
backward.

If the typical wave numbers ¢ and @), corresponding to the fluctuations of the first
and the second type, respectively, are relatively large as compared with wavelength of
the Langmuir waves:

Q<Tyy<q¢<k (5.16)

where I' is the growth rate, v, is the group velocity of the wave packet, and k is a
typical wave number of Langmuir waves, the waves spectral energy density, Wy, can
be performed as averaged in time and space on the characteristic intervals At and Ar

that satisfy the conditions:
1/(qug) < At < 1/T',1/(Quy) (5.17)

and
1/g < Ar < vy /T, 1/(Q) (5.18)
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For this case, the evolution of the averaged wave spectral energy density can be describe
by the Fokker-Plank equations, where the diffusion process due to the small-amplitude
fluctuations is considered as a stochastic process, while the interaction of the wave
packet with each large-amplitude density disturbances is considered in deterministic
approach. As it was shown in [Krasnoselskikh et al., 2007] the equations can be written

as follows:
oW
ot

It is worth noting that when the effect of the diffusion is negligible and some in-

+ (- V) Wy = ADW, +TW,. (5.19)

homogeneities are large enough to provide reflection of the wave packet backward, the
amplitude of the waves can also change due to the variations of the group velocity.

Such a picture corresponds to a WKB solution that can be written as:

Wi(t,7) = \I;Vki exp <—iwt +i/EdF>, (5.20)

where k is a complex wave vector describing variations in both the wave phase and
amplitude, and k,, is a component of the wave vector perpendicular to the surface of
the inhomogeneity.

The simplified stationary state problem was considered by Krasnoselskikh et al.
[2007], when the Langmuir waves enter the half space x > 0 occupied by unstable
nonuniform plasmas, and both the plasma parameters and the solutions of equation 5.19
depend only on the coordinate, x, and do not depend on time. The spatial evolution

of the wave packet can be described by following equation:

vgcos(e)aWS 1 9 (Dsin(9)8W8> + TWs, (5.21)

dx  sin(0) 80 a0

where T'(z, k,0) is effective growth/damping rate, 6 is an angle between the axis x
and wave vector, and D(x,k, ) is a diffusion coefficient that describes the effect of the
small-amplitude fluctuations.

To study the effects of different types of fluctuations on the behavior of the wave
packet it is convenient to introduce dimensionless quantities 61 = I'/D and Jy =
I'Ax/vg4, where Az is a characteristic length. The second quantity describes the spatial
growth rate for the case when the effect of angular diffusion is negligible. For 6 = 0,
the spatial growth rate I'(z,0) stays approximately constant over the distance Az, and
the wave spectral energy density at the points x1 and x5 spaced apart by Az, differs
by a factor of §s, i.e.,

Aln Wy

= Az——|p_p. 22
0o T Ax |p=0 (5.22)

Thus to evaluate the relative contribution of the growth/daping rate with respect

to diffusion it is convenient to consider a ratio
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Aln Wi

which can be introduced both for the spectral energy density Ws(x, 6) and for the total

wave energy density,

Wiot = QW/WS<$,9) sin 0d#, (5.24)
0

if the dependencies of Wy(z,0) and Wi, (x) on the distance Ax are approximately
exponential. For this case the growth rate depends only on 6 and can be describe for

instance as follows |Krassnoselskikh et all 2007]:

I(z,0) 1/ 6\
=—-01+11 — | —=
Tmas e [ 2 <A9>
The result of numerical solutions of the equation 5.21 with the growth rate profile
5.25 obtained by Krasnoselskikh et al. [2007] are shown in Figure 5.3 for the case of

A = 7/10. From the top panel it is clearly seen that when diffusion process dominates

. (5.25)

(small ratios of 'y, /D), the growth rate does not depend on 6, and thus the spectra
should be isotropic. However, the anisotropy of the spectra becomes apparent as ratio
[naz/D increases. When it reached a threshold value, the regions of k space with the
positive growth rate appear and the instability develops. It is worth noting that even
for large value of the ratio I'yq:/D (20 for instance) the growth rate of the instability
is sufficiently smaller than that without diffusion. To illustrate the dependence of the
isotropy of the spectra on the ration I'j,4,;/D the authors defined the angular half
width of the spectra, Afy;,, at the end of the simulation box, £ = Z;,4,. The results
are presented at the right panel of Figure 5.3. As already mentioned, the spectra is
quasi-isotopic for the small ratios I'y,q, /D and becomes more narrowed for larger values
of this ratio.

The large-amplitude fluctuations in the plasma result in change in the direction
of the wave vector of the wave packet and in it’s absolute value. For this case the
equation 5.21 should be replaced by a more general one. However, as it was shown in
[Krasnoselskikh et al., 2007|, some qualitative aspects of the problem could be studied
by making use of the equation 5.21, for the case when the spatial variation of the growth
rate are incorporated to take into account the effects of removing of the waves out from

the resonance with the driven beam as a result of crossing the inhomogeneity:

;@9)2 exp— [; (x;j‘))Q], (5.26)

where Ax is a characteristic scale of the inhomogeneity. The results obtained from the

I'(z,0)

Fmax

=—-01+11exp—

numerical simulation of the equation 5.21 with the growth rate given by 5.26 are shown

in Figure 5.4. By comparing the panels (a) and (b) the authors concluded that the
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Figure 5.3: a) The dependencies of normalized effective growth rates R (defined by 5.23)
on the ratio I'y,q /D for the Gaussian profile of I'(6) given be 5.25 with A = 7/10. The
black line shows the results for the total energy density Wy, (defined by 5.24). Red,
green and blue lines show represent the data derived for the spectral energy density
Ws(z,0)m where § = 0, 7/2 and 7 respectively. b) The dependence of the final angle
half~width of the wave spectra on the ratio I';,q,/D [from Krasnoselskikh et al., 2007].

spatial widths of the wave packets are more narrow than that of the growth rate and
that the relative position of the maximum in wave energy density depends on the ratio
[ynaz/D. Despite the fact that the spatial distribution of the wave energy density for
the cases of different ratios I'y,q,/D look similar some substantial differences could be
noticed. Panel (c) in Figure 5.4 shows the profiles after shifts such that the maximum
in the profiles coincide. It is clearly seen that for the small values of the I'y,4,/D the
packets are asymmetrical with respect to the maximum, while the increase in I'y,q,/D
results in the vanishing of the asymmetry.

To study statistical properties of small amplitude Lanfmuir waves in the plasma with
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Figure 5.4: The result of the numerical simulations of instability with a single large-
scale inhomogeneity. a) Spatial profile of the ratio I'/D for # = 0 and different values
of I'yyaz/D. b) Spatial dependencies of normalized wave energy densities obtained for
Ipaz/D = 10 (red line), 15 (green line) and 20 (blue line) ¢) The profiles shown in
panel (b) after spatial shifts such that the maximums of the curves coincide [from
Krasnoselskikh et al., 2007].
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density fluctuations, the authors considered the following boundary value problem for

equation 5.21 under assumption that all non-linear effects are negligible:

Wslz=0 = Ws(0) for 0<60<7/2, (5.27)
Wslz=gmae =0 for w/2 <0 <.

Second condition indicates that for the large x the instability stops and the Lang-
muir waves damp. For the numerical simulations, the authors used a growth rate I'(x, 0)
as a superposition of the shot-noise-like functions of the coordinates with random po-
sition. The mean number of the of the impulses was chosen to be equal to 50, but
the exact number was a random quantity that obeys the Poisson distribution. The im-
pulses was defined by equation 5.26 but had different amplitudes uniformly distributed
between zero and maximum value corresponding to 'y, /D = 15. The characteristic
scales of the inhomogeneities, Az, were chosen to be equal to the ratio of the total
width of the interval to the mean number of the impulses, 50. As a result, for any given
point there were only two overlapping impulses.

The results deduced from the numerical simulations are shown in Figure 5.5. The
diagram represents the statistical properties of the distribution of the logarithm of the
normalized wave energy density log;o W obtained in the simulations in 3, 82 plane.
Parameters 87 and By are Pearson parameters defined as 51 = ,u% / M% and B2 = pq/ ,u%,
where po, 13, 14 are second, third, and fourth moments of the distributions of log;, W.
Different data points correspond to the different distances from the boundary x = 0,
and as a consequence to a different number of the growth rate impulses, N;p,,. As it can
be seen, for the chosen profile of the growth rate, the distribution of log;o W almost
everywhere differs significantly from the normal distribution (represented as a black
cross in the both panels). According to the Pearson classification the distribution rather
corresponds to the Pearson type IV distribution than to log-normal. However, as Nj;,,
increases, the data points approach the point representing the normal distribution, in
accordance to the central limit theorem. For the Ny, as large as 45— 50 the differences
from the normal distribution are insignificant. The authors argued that the conditions
for the applicability of the limiting form of the pure SGT could be rather severe, at
least in the Earth’s foreshock where an estimate for a typical value of the number of

growth rate fluctuations is slightly higher than 10 [Cairns and Robinson, 1999].

5.4 Hamiltonian description of the beam-plasma interac-
tion in randomly inhomogeneous plasma.

The kinetic theory of plasmas, based on Vlasov-Poisson system of equations, considered

in Chapter 2, can effectively solve only some aspects of the extremely large panel of
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Figure 5.5: a) The diagram of the various types of Pearson distributions, together with
the results of the numerical simulations (red circles). The regions corresponding to
different distribution classes are denote by a roman numbers. A black cross corresponds
to the normal distribution. b) A small part of previous diagram. For several points
shown also are effective numbers of regions with positive growth rate, Njpy, [from
Krasnoselskikh et al., 2007].

problems involving wave-particle and wave-wave interaction processes in plasma. The
Hamiltonian approach allows to describe the dynamics of charged particles and waves
in self-consistent manner, and can be used as alternative to Vlasov-Poisson system of
equations when considering the wave-wave and wave-particle interaction in magnetized
or inhomogeneous plasma. This approach was successfully applied to study non-linear
stage of the interaction of the electron beam with an electrostatic waves [Onishchenko
et al., 1970, O’Neil et al., 1971]. Recently, the generalized model for the magnetized
plasma, that involves 3D geometry, wave-wave interactions, effects related to inhomo-
geneity of plasma was proposed in [Krafft and Volokitin, 2006, 2004, Zaslavsky et al.,
2008|. The authors derived the set of equations describing the wave-particle and wave-
wave interactions using Hamiltonian description and obtained the system of equations
allowing to study the Langmuir turbulence in the presence of particle fluxes stream-
ing in the plasma with density fluctuations [Volokitin et al., 2013, Krafft et al., 2013].
The present Hamiltonian model allowed to recover many characteristic features of the
observations performed by various satellites in the solar wind, concerning notably the
Langmuir waveforms generated in the source regions of type III solar bursts and emit-
ted by energetic electron beams accelerated in the solar corona during flares [Krafft
et al., 2014]. As a next step, in the present section we perform statistical analysis of
the distributions of the wave amplitudes obtained from the model under the conditions
relevant to source region of solar type III radio bursts. The basic ideas behind Hamilto-
nian model are described in numerous original papers [Krafft et al., 2013, 2014, 2015].
However, for the sake of logical completeness, here, we present a brief explanation of
the model.
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5.4.1 Hamiltonian model

The derivation of self-consistent equations for wave-particle systems can be performed
starting from Maxwell and Vlasov equations, under assumption that two types of the
particles can be selected and described separately by the velocity distributions, namely,
the the core of non-resonant particles forming the background plasma and the resonant
particles which interact strongly with the waves and whose density n,.s is much smaller
than that of the background plasma, i.e. n,.s < Ny. The first sort of the particles
is responsible for the wave propagation, while the second type is related to process
of the waves growth and damping. This approach allows to study linear, nonlinear
and turbulent processes involving wave-particle and wave-wave interactions, for various
particle distributions and types of waves, in magnetized homogeneous or inhomogeneous
plasmas. For the case of electrostatic waves in homogeneous plasma the equations that
describe Fourier component of the wave electric field potential, ¥k (k, wy), can be written

as follows (similarly to equation 2.9):

oy 8iren Z
k res . -
= ; exp —i(wit — k- 1), 5.28
ot k:QekZZp P —i{w ) (5.28)
where Z = n,.sV, V is a volume occupied by wave-particle system, 7, is position of
the particle p, € is the plasma dielectric function and e;c = Oey,/Owy. The electrons are

moving in the wave’s electric field according to the Newton equations:
N e - -
— 4+ —uv, Xx By = —Re kv expi(k - 7 — wit), 5.29
+ o P 0= % Vi expi(k - 7 Kt) ( )

where Bj is background magnetic field chosen to be directed along the axis z, ¢ is a
speed of light, and v, is a velocity of the particle. The equation 5.29 can be presented

as the Hamiltonian equations as

dP, My yp
—_ 5.30
dt or, (5-30)
wnd dr, oM
il A e R (5.31)

dt aﬁp

where P, = mv, — e/_f(f’p)/c is the generalized particle moment, /T(Fp) = (B) x p)/2
is the vector potential, and H,_, is the Hamiltonian of the wave-particle system. For

the case of absence of wave-wave interaction, the Hamiltonian is given as:
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Z 5 W
Hoy =3 (WW —eRe Y wrexpi(k - 7y - %k)) (5.32)
k

2m
P

o 2

, R

+V Z WE€y, 6
k

where two first terms represent the kinetic particle energy and the wave-particle inter-
action energy, respectively; the last term corresponds to the wave energy >, wy ]C’k|2
expressed through the normal wave amplitudes Cy, = at) exp —i(wyt) as

‘2

kb,
2 _ _ !
Zk:wk‘C]J —V;Wk—vzk:wkek 161 , (5.33)

where a = ky/ (Ve )/(16m). It is worth noting that equation 5.28 describing temporal
changes in wave’s potential can be obtained in the framework of Hamiltonian description

as follows:

0k __ OHuy
ot oC;

= —iwCy + 2580* Zexpz (wit — k- 7)) (5.34)

To consider the non-linear effects related to wave-wave interaction, an appropriate
Hamiltonian, describing interaction between waves, could be added to the H,,_,. For
the case of three-wave resonance process with matching and resonance conditions k=

E +k  and Wk = wys +wyr the Hamiltonian can be written as follows:

" > Vi s CiCCpr + e (5.35)

kk K"’

ww—T

where V, /. is the wave-wave interaction matrix element. Thus, the total Hamiltonian

of the system, Hiot = Hw—p + Hw—w, can be written in following form:

Z 2
Hiot = Z <m21) — Re Z ey exp i(lZFp)> (5.36)

p k

= 2
kir Kk k"
(sl s e

kK k”

A /e;c, E;C,, GZ/ka/k// wzwk/ wk” exp i(wk — Wy — wk//) =+ C.C)

The equation 5.34 describing the temporal evolution of the normal wave amplitudes

C}, for the case of three-wave process takes following form:
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8Ck . a (wap + waw)
= b (5.37)

The Hamiltonian description based on the equations 5.37 and 5.37 allows developing

the numerical code that involves symplectic method. From the numerical point of
view, the use of such method provides several advantages compared to the kinetic
Vlasov-Poisson approach, namely, it allows to calculate the dynamics of waves and
particles during very long time periods, to study the interaction of small relative density
particle distributions with waves and to collect large numbers of particles trajectories
that can be analyzed further using statistical algorithms. Moreover, it can be used
to investigate physical processes connected with the dynamics of individual particles
(as, for instance, the slow growth of wave energy density with time in the saturation
stage of the wave-particle interaction). Compared to Particle-In-Cell (PIC) codes, the
number of particles used in the simulations is drastically reduced, so that long time
computations in 3D magnetized plasmas can be carried out. Moreover, as the system
of equations involving wave-particle as well as wave-wave interactions terms have a
Hamiltonian form, symplectic integrators give the possibility to use larger time steps

and to accelerate strongly the calculations.

5.4.2 Model of plasmas with external density inhomogeneities

The appropriate model describing the interaction of the an electron beam with Lang-
muir waves packet in a plasma with density fluctuations was derived from the Za-
kharov’s equations. The equations for the electric field E and low frequency density

variations én can be written in following form:

OE  3)\3 . w0 o
E 2
9% Va =-V CSFO + T6rmNg (5.39)

where E = Re >k o expi(E -7 — wt) is electric field of the wave packet, on describes
the ion density fluctuations, m; is ion mass, and @ is the hydrodynamic flux potential.
The right hand side term of equation 5.38 describes the non-linear effect of density
perturbation that causes refraction of the Langmuir waves into low density plasma
region. The last therm in equation 5.39 corresponds to the ponderomotive force that
expels particles out of regions of larger wave energy density. In the 1D geometry the

continuity equation for ions reads:

0 on __avi _82£

Ot Ny 0z 022

(5.40)
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where z is a coordinate along the magnetic field line. By making use of equation 5.40,

equation 5.39 one can derive:

02 2\ on 0* |E]
g2 )0 A L/ , (5.41)
ot? 022 ) Nog  0z216mm;Ny
Equations 5.38 and 5.41 can be derived from the Hamiltonian
on |E)>  3)3 |0E|°
=[d —-— 5.42
H /L Z(2N0 8r | Tor | 02 (542)

+N0mi25—nQ+a—q)2 = const
5 %\ g o = const,

where the integration on z is performed over the length of the system L. It is worth

noting that the system has other time invariants, the total number of quanta of high-

frequency field
B
7y = | ——dz = const (5.43)
L 8

and the total momentum P

on 8 0® i oE* _ OF

Then E/./8mw, and E*/,/87wy,, as well as dn/Ny and —Nom;®P are canonically con-
jugated variables of hamiltonian H. Thus equations 5.38 and 5.39 could be recovered

by making use of Hamilton equations:

1 0E M 9 oA
8w, Ot ot 5(@)
No

(5.45)

where 0 is functional derivative.

The interaction of the beam electrons with the Langmuir waves in an inhomogeneous
plasma can be described by a total Hamiltonian H; = H +H,—p, where Hy,—p, is defined
by 5.33. Thus, the motion of the beam electrons is described by the Hamilton equations
5.30 and 5.31. The total Hamiltonian of the system, H;, reads [Krafft et al., 2013|:

1 mvf, .
Hi =H + Lny <Z ; 5 eRe;szk> = const (5.46)

where n; is density of the beam, Z = Lny is the number of the electrons in the beam,

and

1 .
Ji = 7 Zp:exp i(wpt — kzp). (5.47)

Applying the equations 5.45 to the Hamiltonian H; (5.46), the equation of Langmuir

turbulence driven by an electron beam was derived in [Krafft et al., 2013] as follows:
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E = 4mieny, Z %Jk exp (ikz) (5.48)
k

In the k space the equation 5.48 reads:

e () 3 99 Wp Amewpny,
where p = on/Np, ’y,(f) = —ImeS /(OReeS /Owy) is a damping factor and € is the

electronic part of the dielectric constant €, which gives the possibility to include the
damping effects of Langmuir waves due to their Landau resonance with the thermal
electrons. Equation 5.49 can be used to obtain a nonlinear dispersion relation of Lang-

muir waves as follows:

omn . ()

Introducing the dimensionless plasma velocity u = v;/cs , the Fourier transforms

3
Wi~ wp + §wpk2)\2D + wp

of equation 5.38, keeping the second order terms, and equation 5.39 can be written as

follows,
0 .
FPk = ikes(ug + (pu)k), (5.51)
E?
Auy, (i) : (‘ )k
CALI — ikes Tk 52
ot i Uk = G | P 167m; Noc? (5:52)

where damping effect due to the ions is introduced through the damping rate rate
'y,(:) = —Ime,(f)/(c?Ree,(f)/awk. Equations 5.48, 5.51, and 5.52 together with equations
5.29 5.30, and 5.31 form the complete set of equations of the model. In the subsection
presenting the numerical simulation’s results, we are using normalized values described
in detail in the Appendix B.1 [see also Krafft et al., 2013|.

5.4.3 Numerical simulations’ results

Here we present results of the simulations for a range of parameters relevant to solar
type III electron beams and plasma observed at 1 AU [Ergun et al., 1998|: T, =
10eV, No = 5-105 Ap = 15m, w,/(27) = 20kHz, and vg, = 450km/s. At first we
consider a case of small density fluctuations. Figure 5.6 shows the spatial profile of
the energy density |E|* superposed to the electric field envelope Re(E) and the density
fluctuations dn/Ny as well as the electron distribution function for the three moments
of time. The level of the density fluctuations is chosen to be 0.001 and the driven
beam has beam velocity, v, = 14v;, beam thermal velocity Av, = v, and density
ny = 5-107°Ny. The electron distribution function shows behavior very close to

predicted by QL theory for the homogeneous plasma. At the beginning, the relaxation
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Figure 5.6: Beam’s dynamics and the wave packet’s evolution at three moments of
time:tw, = 10,10%, and 3 - 10* (from upper to lower panels). The left panels: spatial
profile of the electric field envelope Re(FE) (upper panels) and the wave energy density
|E|* (shown with red), superposed to density fluctuations dn/Ny (shown with blue)
(lower panels). Right panels: electron velocity distribution function f(v) (shown with
blue). Dashed curves correspond to the initial electron distribution function. Main

parameters: v, = 14v;, Avy = v, (<5n2>)1/2 /No = 0.001, L = 10000Ap, ny/Nog =
5-107°.

results in the plateau formation in the most unstable region of the velocity space,
namely in the range of velocities v, — 3Awv, < v < vy, (see for instance right middle plot
in Figure 5.6). Subsequently, the left border of the distribution function moves toward
lower velocities, until reaches the region occupied by plasma of the solar wind. The
number of the energetic electrons with velocities larger than v, + 3Awv, at the end of the
relaxation is very low. The amplitudes of the Langmuir waves increase with time. As
one can notice, the |E \2 is mostly uniformly distributed in space, however some peaks
can be seen in the vicinity of the density gradients. This peaks with the magnitude
several times above the mean can indicate that even weak density fluctuations may
lead to observed clumping phenomena.

Figure 5.7 shows the evolution of the Langmuir wave energy density W = Y, E?
(left panel) and the total energy of the beam electrons superposed with the energy of
the energetic particles (right panel). The wave energy density monotonically increases

with time. At a moment of time of approximately tw, = 4- 10* the wave energy density
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Figure 5.7: Left panel: evolution of the wave energy density, W = >, E,% . Right
panel: evolution of the total kinetic energy of the beam, E;, (shown with blue), and
energy of the energetic electrons, E,, (shown with red). Main parameters are the same
as in Figureb.6.

reaches the saturation level, and the subsequent changes go very slow. At the contrast,
the total energy of the electrons decreases with time. It is worth noting that the at
the end of the relaxation the beam reveals of approximately 2/3 of it’s initial energy,
that is in good agreement with the predictions of the QL theory. The energy of the
accelerated particles at the end of the relaxation is less than 5% of the initial energy of
the beam.

To study the distribution of the electric field of the Langmuir waves we confined
ourselves by the time period when the wave energy density maintained approximately
constant. Namely we consider all the envelops obtained in the simulation after the time
tw, = 4 - 10%. The distribution of the electric field, P(E), is shown in Figure 5.8 (left
panel). To obtain, P(E), with used K}, = 128 bins spaced between —1.25 and 1.25. It
is worth noting that the wave electric field is normalized according to |E|? /(47 NoT,).
To classify P(E) we calculated corresponding Person’s [ parameters. The obtained
distribution is characterized by 31 = 10~ and B2 = 3.005 and according to Pearson
classification it corresponds to the normal distribution. The curve shown with red
circles represent fit of the function P(FE) by normal distribution with zero mean and
dispersion, o = 0.0286. It can be clearly seen that the distribution of the electric field
of the Langmuir wave packet of the present case obeys the normal distribution.

At the next step we selected from all the data only the values of the electric field, F,,
that correspond to the local maxima in |E[*>. The logarithm of the distribution of the
In (Eg) is shown at the right panel in Figure 5.8. It seems that obtained distribution re-
sembles the distribution predicted by SGT (for instance see Figure 5.2). The logarithm
of the distribution below it’s maximum behaves as parabola, that in fact indicates that
the distribution obeys log-normal distribution. The fit of the small amplitude part of
the distribution by the log-normal distribution with parameters (In(E2)) = —8 and
0% = 0.66 is presented. A deviation from the log-normal normal distribution for the

higher F), can be caused by decay process. Large amplitude waves are limited by three-
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Figure 5.8: Left panel: Distribution of the electric filed of Langmuir wave envelop
obtained in the numerical simulation (shown with blue). The distribution is normalized
to one. The fit of the obtained distribution with the normal distribution is shown
with red circles. Right panel: logarithm of the distribution of the logarithm of the
magnitudes of the electric field peaks (shown with blue). The red circles represent the fit
of the logarithm of distribution below the maximum with parabola. The approximation
of the large magnitude part of the distribution with exponentially decreasing function
P(ln(Eg)) =exp (—aln Eg —b), where a = —7.9 and b = 42.8 is shown with green.

wave decay process, the electric fields with magnitudes larger then the threshold for
the nonlinear process, F., are rarely seen in the data. Due to this fact, the distribution
of ln(Eg) falls rapidly beyond the point In E2. The distribution at the higher E, can
be approximated by an exponentially decreasing function (shown with green line).
Now let us consider a case when the density fluctuations play substantial role in the
processes of wave generation and propagation. Figure 5.9 shows spatial distributions
of the Re(E), |E?, and 6n/Ny at three moments of time. The right panels in Figure
5.9 complement consideration by electron velocity distribution function at the same
moments of time. In the contrast to previous study, the level of the density fluctuations
is chosen to be 0.03. For this case the term in the non-linear dispersion relation for
Langmuir waves 5.50 related to density irregularities exceeds the term (3/2)(v?/v}).
As one can see, the wave energy density profile shows the peaks that significantly
exceed the averaged level. The electric field of the Langmuir waves in the vicinity of
the peaks resemble corresponding clumping features, which are similar to waveforms
observed by STEREO and WIND satellites [Ergun et al., 2008|. This phenomenon can
be explained as the superposition of two non-linear effects: 1) the resonance interaction
of the waves with the beam electrons 2) the effects of the propagation of the wave in
strongly inhomogeneous medium. It is worth noting that the maxima of |E|* are not
localized at the bottom of the density wells. In the contrast, the positions of the

peaks are frequently observed in the vicinity of the maxima of the positive gradient of
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Figure 5.9: Beam’s dynamics and the wave packet’s evolution at three moments of
time:tw, = 10,3 - 104, and 7- 10 (from upper to lower panels). The left panels: spatial
profile of the electric field envelope Re(FE) (upper panels) and the wave energy density
10|-E|* (shown with red), superposed to density fluctuations én/Ny (shown with blue)
(lower panels). Right panels: electron velocity distribution function f(v) (shown with
blue). Dashed curves correspond to the initial electron distribution function. Main

parameters: v, = 14v;, Avy, = 1y, ((5n2>)1/2 /No = 0.03, L = 10000Ap, ny/Ny =
51075,

the density cavities. This points correspond to the conditions of wave reflection and
frequency shift below the averaged plasma frequency. The effect of self focusing of the
wave packet in the plasma with density cavities appears due to the coupling between
FE and dn described by non-linear term in equation 5.38. As a result the wave energy
density is focused spatially. Regarding the beam evolution, two moments should be
emphasized: 1) the relaxation runs slower than in the previous study, the positive slope
on the electron distribution function is clearly seen at the moment of time 3 - 10%w,t;
2) Presence of the high amplitude density fluctuations results in the acceleration of
the energetic electrons to velocities much larger that their initial velocity. The tail of
accelerated particles in clearly seen at the moment of time 7 - 104wpt

The left panel in Figure 5.10 presents the temporal evolution of the wave energy
density. In contrast to the case of small density fluctuations, in the present study, the
wave energy density decreases with time after it reached its maxima at the moment of

time of approximately 4 - 104wpt. The decrease in W is accompanied by the increase of
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Figure 5.10: Left panel: evolution of the wave energy density, W = >, Eg . Right
panel: evolution of the total kinetic energy of the beam, E;, (shown with blue), and
energy of the energetic electrons, E,, (shown with red). Main parameters are the same
as in Figureb.9.

the energy of the energetic particles (red curve in right panel in Figure 5.10). Asymp-
totically, the accelerated particles carried up to 20% of the initial kinetic energy of the
beam. The mechanism of the acceleration was already discussed in terms of the reso-
nance broadening: being decelerated, the beam looses energy that is transferred to the
waves with phase velocities smaller than v, than those waves can resonantly interact
with particles with velocities > v, and transfer energy to them, if the magnitudes of
the density irregularities are large enough to provide the necessary change in the waves
phase velocity.

As previously, to study the statistical distributions of the electric field we chose
time period when the the energy density of the Languir waves remains approximately
constant. In the present study this period corresponds to the time interval starting
from 6 - 10%w,t. The distribution function of the electric field envelops of the Langmuir
waves obtained in the simulation is shown in the left panel of the Figure 5.11. In
the contrast to the previous study with small level of the density fluctuations, the
obtained distribution shows significant deviation from the normal distribution. The
corresponding Pearson’s parameters are: 31 = 2- 1072 and 32 = 3.8. This indicates
that according to the Pearson classification, the distribution corresponds to the Pearson
type IV distribution. The fit of the P(E) by the Pearson type IV distribution is
shown with red circles. As one can see the obtained distribution obeys the predicted
distribution with a high order of accuracy. The distribution of the logarithm of the
peak magnitude of the electric field is shown in the right panel of the Figure 5.11.
Despite that fact that the P(E) is not normal, the P(In(E})) is still very close to the
log-normal distribution (fit of the obtained distribution by the log-normal distribution
is shown with red circles). It is worth noting that in the present study the (In (E2)) is
shifted toward the lower amplitudes comparing to the pervious case. This shift occurs
due to the decrease in the wave energy density because of the effective reabsorption of

the wave energy by the energetic electrons. Thus in the plasma the with higher density
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Figure 5.11: Left panel: Distribution of the electric filed of Langmuir wave envelop
obtained in the numerical simulation (shown with blue). The distribution is normalized
to one. The fit of the obtained distribution with Pearson type IV distribution is shown
with red circles. Right panel: logarithm of the distribution of the logarithm of the
magnitudes of the electric field peaks (shown with blue). The red circles represent the fit
of the logarithm of distribution below the maximum with parabola. The approximation
of the large magnitude part of the distribution with exponentially decreasing function
is shown with green.

fluctuations the averaged level of the energy of the Langmuir waves is lower compared
to the homogeneous plasma. However, is is still large enough to reach the threshold of
the non-linear decay process. As one can see, the distribution P(In (Eg)) falls rapidly
above its maxima and can be approximated by exponentially decreasing function for

the large E2 (shown with green line).

5.5 Probabilistic model

A pure probabilistic model described in Chapter 3 doesn’t provide any information
regarding spatial distributions of electric field of Langmuir waves. Hoverer it contains
information about the energy density of the waves. Thus, by making use WKB approx-
imation the propagation of the Langmuir waves within the plasma can be considered.
The equation 5.20 for the monochromatic Langnuir wave with frequency w; and wave

vector k; reads:

8mWi(t)

where W;(t) is the wave energy density obtained from the simulations, k;(z) is the wave

Ei(t,z) = exp (—iw;t + ik;(z)x) (5.53)

vector that satisfies dispersion relation for the Langmuir waves with plasma frequency
that changes spatially due to the density fluctuations. The equation 5.53 takes into

account an effect that the wave amplitude of the wave can also change during the
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Figure 5.12: Beam’s dynamics and the wave packet’s evolution at three moments of
time:tw, = 10,3 - 104, and 7- 10 (from upper to lower panels). The left panels: spatial
profile of the electric field envelope ) E;) (upper panels) and the wave energy density
5-1073 |E|* (shown with red), superposed to density fluctuations dn/Ny (shown with
blue) (lower panels). Right panels: electron velocity distribution function f(v) (shown
with blue). Dashed curves correspond to the initial electron distribution function.

Main parameters: v, = 14vy, Avy = vy, (<6n2>)1/2 /Ny = 0.003, L = 10000Ap, ny/Ny =
5-107°,

propagation because of the changes of group velocity. The spatial distribution of k;(x)
is determined by the spatial distribution of the density irregularities. To obtain spatial
profile of k;(x) we used syntectic time series of the density fluctuations that correspond
to the density fluctuations in solar wind. The time series ware reconstructed from the
spectrum of the density fluctuations observed in the solar wind by making use of the
procedure described in Chapter 4. After we have the spatial profile of én/Np, function
k;(x) was obtained by solution of the corresponding dispersion relation.

Figure 5.12 shows the reconstruction of the spatial distributions of the electric field
of the of the Langmuir waves E, together with spatial distributions of the wave energy
density |E|2, density fluctuations dn/Ny and electron velocity distribution function at
three moment of time. To compare these results with those obtained in the Hamiltonian
description we used a box with the same size, L = 10000Ap. The spatial profile of the
electric field was obtained as superposition of the 2000 waves with phase velocities

uniformly distributed in the range from 3v; to 40v, i.e. E(x) =) . E;j(x). As one can
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Figure 5.13: Left panel: evolution of the wave energy density, W. Right panel: evo-
lution of the total kinetic energy of the beam, FE;, (shown with blue), and energy of
the energetic electrons, F,, (shown with red). Main parameters are the same as in
Figureb.6.

see, the electric field of the envelope shows behavior that is very close to what we have
already seen in the results of the simulations based on the Hamiltonian description. The
maxima of |E|? are localized near the maxima of the positive density gradients. Since
the probabilistic model is operated by the averaged waves growth rate, v, the gain of
the wave energy takes place on the spatial scales much larger than the scale of the single
density irregularities. It can not describe the significant amplification of |E ]2 on scales
that correspond to the characteristic scales of the clumps. From this fact we conclude,
that observed clumping structures appear due to the effects related to the propagation of
the Langmuir waves in the inhomogeneous plasma rather than because of the resonance
interaction with beam electrons. It is worth noting that the temporal evolution of the
electron velocity distribution function obtained with probabilistic approach is in a good
agreement with the results obtained by making use of Hamiltonian description. The
characteristic times of the relaxation are about the same in the both models.

The temporal evolution of the wave energy density, W, the total kinetic energy of
the electrons E}, and the energy of energetic particles E, are shown in Figure 5.13.
As in the Hamiltonian model, the wave energy density increases with time during time
interval tw, < 4- 10, After this moment of time, the W decreases at least twice. In the
contrast to W, the total kinetic energy of the electrons shows different behavior. After
some period of decrease, the Fy starts to increase. The energy of the energetic particles
is twice higher than in the Hamiltonian model. Both these results can be explained by
that fact, that the probabilistic model considers only one mechanism of the decrease
in the W, namely, the absorbtion of the wave energy by the energetic electrons that
occupy region of the velocity space where waves growth rate is negative. Non-linear
decay of the Langmuir or another non-linear wave-wave process provides an outflow
of the wave energy from the resonance region, and leads to the decrease in both, the
energy of the accelerated particles and total kinetic energy of the beam particles.

Distribution of the electric field reconstructed from the numerical simulation based

136



0.09¢
0.08}
0.07}
0.06
Eﬂ\ 0.05}
E: 0.04}
0.03}
0.02}

0.01}

E
8
g
A
H

\

\

-12 -10 -8 -6
2
In(E;)

Figure 5.14: Left panel: Distribution of the electric filed of Langmuir wave envelop
obtained in the numerical simulation (shown with blue). The distribution is normalized
to one. The fit of the obtained distribution with Pearson type IV distribution is shown
with red circles. Right panel: logarithm of the distribution of the logarithm of the
magnitudes of the electric field peaks (shown with blue). The red circles represent the fit
of the logarithm of distribution below the maximum with parabola. The approximation
of the large magnitude part of the distribution with exponentially decreasing function
P(In(E})) = exp (—aln E2 — b), where a = —7.9 and b = 42.8 is shown with green.

on the probabilistic model is shown in the left panel in Figure 5.14. As in previous study
the level of the density fluctuations is chosen to be 0.03. The obtained distribution is
characterized by a Pearson parameters 1 = 0.05 and 82 = 10.02 and corresponds to
Pearson type IV distribution according to Pearson classification. Thus, both models
predict the same, non-normal distribution for the electric filed of the Langmuir waves
envelope in a plasma with high level of the density fluctuations. We suppose that this
fact can be used in future as an evaluation criteria of the level of inhomogeneity of
the plasma. Right panel in Figure 5.14 represents the logarithm of the P(In (E2)). As
one can see, the distribution can be considered as log-normal (the fit by log-normal
distribution is shown with red circles). In the contrast to the Hamiltonian model,
the probabilistic model doesn’t include the decay process, and as a result, the rapid
decrease in P(In (E7)) above its maxima is not observed. The deviation of the obtained
distribution from the log-normal for large values of Ef, rather resembles the deviation
observed by satellites in the planetary foreshocks (see also Figure 5.1). This power law
exponent distribution can be explained as a consequence of combination of many log-
normal distributions. Different log-normal distributions correspond to different spatial
profiles of the density fluctuations that we have used during the reconstruction of

electric fields of the Langmuir waves.
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5.6 Conclusions

We have performed preliminary statistical analysis of the results of simulations carried
out using equations derived in the probabilistic model of beam plasma interaction
with probability distribution of density fluctuations corresponding to observed in solar
wind. The results we obtain in simulations are statistical distributions of the wave
intensities in the process of development and evolution of the beam plasma instability in
inhomogeneous plasma. We do not calculate wave phases and their spatial distribution
in the system. To carry out the analysis of the statistical distribution of wave fields we
created an artificial data set taking pre-selected density profile having power spectrum
similar to that of the solar wind. To reconstruct the spatial distributions of the electric
field, on the scales smaller than the typical scales of the beam relaxation, we used the
WKB approximation. To take into account the influence of the density irregularities
we calculated spatial distributions of the wave vector from the spatial distributions
of the density fluctuations. On the next step we have chosen the wave phases to
be uniformly distributed on the interval [0,27] and then constructed spatio-temporal
series representing wave-fields. This was done by making use of non-linear dispersion
relation of the Langmuir wave, under assumption that the frequency of the wave stays
constant during the wave propagation. Slow temporal changes in E were taken from
the numerical simulation based of probabilistic model. So constructed data sets were
used for the data analysis.

The statistical analysis aiming to determine statistical characteristics of wavefields
for different levels of density fluctuations was performed for two levels of density fluctua-
tions, low level (<5n2>)1/2 ~ 0.001 Ny and (((5n2>)1/2 ~ 0.03Ny. The statistical analysis
of the distribution of the peaks in the electric field showed that in the case of small
density fluctuations (with averaged level of approximately 0.001Nyp) the distribution
of the P(Eg) is rather similar to log-normal distribution, corresponding to Gaussian
statistics for the increment as is supposed in the framework of SGT.

The distribution similar to log-normal was also observed in the case of large ampli-
tude density fluctuations ((((5n2>)1/ 2 /Nop = 0.03). An increase in level of the density
fluctuations results in the shift of the peak of the distribution toward lower values. The
shift occurs because the large amplitude density fluctuations can suppress the beam
instability, and thus, the amount of the energy gained by the waves is less in the plasma
with higher level of fluctuations.

In the contrast to the distribution of the Eg the distribution of the electric field
of the Langmuir waves undergone essential changes with increase in ((5n2>)1/2 /Np.
For the case of the low amplitude density fluctuation, the P(Re(E)) obeys the normal
distribution with the high level of accuracy. For the case of the plasma with higher
level of density fluctuations the obtained distribution is closer to the Pearson type IV

distribution.
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We carried out the very same analysis with the data of simulations carried out in
the framework of Hamiltonian approach obtained by Krafft et al. [2015]. The results
of the analysis for small amplitudes are very similar to those for probabilistic model,
however for larger amplitudes to begin from some critical electric field E. the distri-
bution rapidly falls in range of amplitudes large than F,.. The simulations of Krafft
et al. [2015] are carried out with very low Landau damping for low frequency density
fluctuations, this allowed to observe additional physical phenomenon, decay instability
of primary Langmuir wave on secondary Langmuir wave and ion sound wave. This
leads to restriction of the wave amplitude, the waves having amplitudes larger than the
threshold for decay instability decay. This effect explains the rapid cutoff of the distri-
bution for amplitudes larger than E.. For the data obtained in the same modeling with
larger level of density fluctuations ((<5n2>)1/2 /No = 0.03) the distribution was found
to be also similar to log-normal for small amplitudes and with a cut-off in larger E,.
An increase in level of the density fluctuations results in the shift of the (E?) toward
lower values. However, the E, still reaches the threshold for the three-wave decay.

It is interesting to notice that the results of our preliminary analysis are rather close
to those obtained analyzing the experimental data of observations onboard satellites
Cluster [Krasnoselskikh et al., 2007] and Wind [Cairns and Robinson, 1999].

It is worth noting that the results obtained in the framework of probabilistic model
are very similar to those obtained in the Hamiltonian model of the beam-plasma inter-
action in the inhomogeneous solar wind. These last were already compared with the
direct measurements of the waveforms onboard Wind and Stereo satellites, and were
shown to reproduce quite well the data of observations [Krafft et al., 2014]. These nu-
merical simulations show formation of the spikes of the electric field of Langmuir waves
with a peak magnitudes several times above the mean. The model considers two-non
linear effects, related to the presence of the density irregularities in the plasma, that
can caused observed clumping phenomena. First effect consist of the break up of the
conditions of the resonance interaction between electrons and Lanmguir waves. The
second effect is related to the features of the wave propagation in the plasma with den-
sity fluctuations, namely, in the variation of the waves group velocity. The clumping
effect is observed in both Hamiltonian model and in probabilistic model. Since the
probabilistic model is operated by the averaged waves growth rate, 7, the gain of the
wave energy takes place on the spatial scales much larger than the scale of the single
density irregularity, and the model can not describe the significant amplification of |E |2
on scales that correspond to the characteristic scales of the clumps. From this fact we
conclude, that observed clumping structures appear due to the effects related to the
propagation of the Langmuir waves in the inhomogeneous plasma rather than due to

the oscillations of the waves growth rate.
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5.7 Resume in French

Les ondes de Langmuir ont fait 'objet d’études intensives dans le vent solaire, en
amont de choc terrestre et au voisinage d’autres chocs planétaires au cours des 6
derniéres décennies. Dés le début, il a été remarqué que les ondes de plasma sont
concentrées en "bouffées" avec des amplitudes maximales de typiquement trois ordres
de grandeur au-dessus de la moyenne. Smith and Sime [1979] ont proposé une expli-
cation du phénoméne de concentration en bouffées basée sur I'idée que le plasma est
non-homogéne, et posséde, dans la plupart des régions ou le faisceau peut exciter les
ondes, des non-homogénéités dont la taille caractéristique est comparable & 1’échelle
caractéristique de croissance spatiale des ondes. En se basant sur cette idée, Robinson
[1992], a proposé une modéle qui décrit I'interaction du faisceau d’électrons avec des
ondes de Langmuir dans un tel plasma non-homogéne. Le faisceau se propage en alter-
nance dans des régions ou le taux de croissance des ondes soit positif soit négatif, et ceci
se traduit par des oscillations de la pente de fonction de distribution des électrons autour
du niveau de stabilité marginale. En conséquence, les variations de taux de croissance
ressemblent & une marche aléatoire. En prenant en compte que le taux de croissance
correspond au logarithme de la densité de I’énergie des ondes avec une limite supérieure
A peu prés égale & la densité de I’énergie cinétique du faisceau, on peut en déduire que
la statistique de cette caractéristique doit suivre une loi normale. Le modéle proposé
a permis d’expliquer le phénoméne observé de concentration en bouffées du champs
électrique des ondes, et permet ainsi de faire une prédiction sur la distribution de prob-
abilité des pics des amplitudes de ces bouffées. En utilisant le théoréme de la limite
centrale, on peut en déduire que la distribution des amplitudes maximales du champ
électrique des enveloppes d’ondes de Langmuir obéit & la distribution log-normale.
Des études statistiques des événements, effectuées sur différentes données expéri-
mentales obtenues a4 bord de plusieurs satellites et dans un plasma de laboratoire ont dé-
montré que la répartition des amplitudes peut ressembler & la distribution log-normale.
Cependant, différents processus non-linéaires, tels que la dégénérescence de 1'onde élec-
trostatique de Langmuir en une autre onde de Langmuir et une onde ionique sonore,
peuvent aboutir & une déviation de la distribution log- normale. Récemment, Krasnosel-
skikh et al. [2007] ont proposé un modéle qui décrit Uinteraction linéaire de paquets
d’ondes de Langmuir avec un faisceau d’électrons et qui prend en compte deux effets
importants causés par les irrégularités de la densité, a savoir: 1) la diffusion angulaire
du vecteur d’onde causée par la diffusion sur les fluctuations de densité de faible am-
plitude, et 2) la suppression de I'instabilité provoquée par le déplacement dans I'espace
des vitessesde 1'onde, qui s’éloigne de la région correspondant a la résonance avec les
particules pendant le passage de la perturbation de densité de relativement grande am-
plitude. Les auteurs ont montré que les distributions de logarithme de l'intensité de

I’onde peuvent appartenir & une distribution Pearson du type IV plutot qu’a la distri-
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bution normale comme c’est le cas dans certaines circonstances. La principale raison
la déviation des distributions par rapport a une distribution normale est due au faible
nombre des régions ot les ondes se développent qui empéche le théoréme de la limite
centrale de s’appliquer.

Nous avons effectué une analyse statistique préliminaire des résultats de simula-
tions. Ces simulations sont réalisées avec notre modeéle probabiliste de l'interaction
d’un faisceau avec un plasma et en appliquant une densité de probabilité de fluctu-
ations correspondante & celle observée dans le vent solaire. Les résultats que nous
obtenons dans nos simulations sont les distributions statistiques des intensités d’ondes
pendant le processus de développement et d’évolution de 'instabilité de faisceau avec
un plasma. Nous ne faisons pas de calculs de phases des ondes et de leur distribution
spatiale dans le systéme. Pour mener & bien I’analyse de la distribution statistique des
ondes, nous avons créé un ensemble de données artificielles en utilisant le profil de den-
sité ayant un spectre de puissance similaire & celui observé dans le vent solaire. Pour
reconstruire la distribution spatiale du champ électrique, sur des échelles plus petites
que I'échelle typique de la relaxation de faisceau, nous utilisons 'approximation WKB
pour décrire la propagation d’ondes.

L’analyse statistique ayant pour I'objectif de déterminer les caractéristiques statis-
tiques du champ d’onde pour différents niveaux de fluctuations de densité, a été réalisée
pour deux niveaux de fluctuations de densité: (<5n2>)1/2 ~ 0.001Np et (<5n2>)1/2 ~
0.03Ny. Cette analyse de la distribution des pics du champs électrique a montré que
dans le cas de petites fluctuations de densité (avec un niveau moyen d’environ 0.001Np),
la distribution de P (EI%) est assez semblable & une distribution log-normale, ce qui corre-
spond & une statistique gaussienne pour le taux de croissance en accord avec ’hypothése
de base de théorie SGT. Par contre, quand le niveau de fluctuations est grand, la dis-
tribution des taux de croissance s’écarte d’une distribution normale assez fortement.

La distribution semblable & une log-normale a également été observée dans le cas de
grandes fluctuations de densité d’amplitude (((6n?)) 1/2 /No = 0.03). Une augmentation
du niveau des fluctuations de densité se traduit dans les faites par un décalage du
pic de la distribution vers des valeurs plus faibles. Ce changement se produit parce
que les fluctuations de grande amplitude peuvent supprimer ou fortement affaiblir le
développement de l'instabilité du faisceau; par conséquence, ’énergie acquise par les
ondes dans ce cas est inférieure au cas d’'un plasma ayant un niveau de fluctuations
plus faible.

De fagon trés différente, la distribution du champ électrique des ondes de Langmuir
EP2 subit des modifications essentielles lorsque le niveau des fluctuations ((6n?)) 1/2 /Ny
augmente. Dans le cas de fluctuations de densité de faible amplitudes, P(Re(E)) obéit
a la distribution normale avec une précision assez élevée. Dans le cas d’un niveau de

fluctuations de densité plus grand la distribution statistique obtenue est plus proche de
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la distribution de type IV de la classification de Pearson.

Nous avons effectué la méme analyse avec les données de simulations obtenues en
utilisant le code basé sur 'approche Hamiltonienne publié par Krafft et al. [2015]. Les
résultats de I’analyse pour les champs de petites amplitudes sont trés similaires & ceux
obtenus avec le modéle probabiliste. Toutefois pour des amplitudes plus grandes et &
partir d’un certain champ électrique critique F., la distribution décroit trés rapidement
lorsque les amplitudes deviennent plus grandes que FE.. Les simulations de Krafft
et al. [2015] ont été réalisées avec un trés faible amortissement de Landau pour les
fluctuations la densité de basse fréquence, ce qui a permis d’observer un phénoméne
physique supplémentaire & savoir 'instabilité de décroissance des ondes de Langmuir
primaires en onde de Langmuir secondaire plus une onde ionique sonore.

Ceci résulte dans la limitation de 'amplitude des ondes. Quand l'onde atteint une
amplitude suffisament grande, et en particulier plus grande que le seuil de instabilité
de décroissance, ce processus se développe assez rapidement et limite 'amplitude de
I'onde. Cet effet explique la coupure et la décroissance rapide de la distribution quand
les amplitudes sont supérieures a E.. Pour les données obtenues dans la méme modéli-
sation avec un plus grand niveau des fluctuations de densité ((<5n2))1/2 /Ny = 0.03),
la distribution est similaire & une log-normale vers les petites amplitudes, et décroit
rapidement pour des amplitudes plus grandes que E.. Une augmentation du niveau
des fluctuations de densité résulte dans le déplacement du maximum de la distribution
(E;) vers des valeurs plus faibles. Le déplacement se produit parce que les grandes
fluctuations de densité peuvent supprimer I'instabilité du faisceau, et ainsi la quan-
tité d’énergie acquise par les ondes est inférieure quand le niveau de fluctuations est
plus élevé. Cependant, 'amplitude du champ électrique en cas de faible amortissement
atteint toujours le seuil de 'instabilité de décroissance.

Il faut noter que les résultats de notre analyse préliminaire sont assez proches de ceux
obtenus sur les données expérimentales des observations & bord des satellites Cluster
(|[Krasnoselskikh et al., 2007]) et Wind ([Cairns and Robinson, 1999]).

Il convient de souligner que les résultats obtenus dans le cadre du modéle prob-
abiliste sont trés semblables & ceux obtenus en utilisant le modéle Hamiltonien de
I'interaction faisceau-plasma dans le vent solaire non-homogéne. Ce dernier a déja été
comparé avec les mesures directes des formes d’onde & bord des satellites WIND et
STEREQ, et il a été montré que les simulations reproduisent bien ces observations
|[Krafft et al., 2014]. Ces simulations numériques montrent la formation des pics lo-
calisés du champ électrique des ondes de Langmuir, avec des amplitudes plusieurs fois
supérieures 4 la moyenne. Le modéle considére deux effets non-linéaires liés & la présence
des irrégularités de densité dans le plasma, qui peuvent causer les phénoménes observés
de formation de bouffées d’ondes. L’effet de concentration des ondes dans des paquets

est observé aussi bien dans le modéle Hamiltonien que dans le modéle probabiliste.
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Dans le modéle probabiliste, I’élément principal est le coefficient moyen du taux de
croissance des ondes, . Le gain d’énergie des ondes a lieu sur des échelles spatiales
plus grandes que I'échelle caractéristique de la fluctuation de densité localisée, et ceci
indique que ce modéle ne peut pas décrire 'amplification significative de I"amplitude
d’onde sur I’échelle de seul fluctuation. Finalement, nous concluons que les structures
de bouffée d’ondes observées apparaissent a4 cause d’un effet lié & la propagation des
ondes dans le plasma non-homogeéne, et que leffet d’oscillations de taux du croissance

est moins important.
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Appendix B

Appendix

B.1 Normalization and numerical scheme

In the numerical simulations as well as in the presentation of the simulations results, the
variables are normalized according to wyt , z/Ap, v/v, and Ey/+/4mNoT. so that the
normalized wave energy density is |E|* /(4w NoT.), where T, is electron temperature.
Then Equations Equations 5.48, 5.51, 5.52 together with equations 5.30, 5.31 and 5.29
can be written in dimensionless form as, respectively (with the normalized damping

factors '7,536) and i,(:) included),

0 . E .
<0t — 'ylg )> E,=—i <wkEk + (,02)k + ZBkeLk;) ) (B.1)
E?
Ouy, (@) g (‘ )k
o 27y, ug, = ikcs | pr + 1 ) (B-2)
0 .
&pk = ikés(uk + (pu)), (B.3)
dz dv .
S S T

where @, = 3k%/2, Bi(ny/No)/k and &5 = cs/vy ~ m/m;.

Whereas equations B.4 are solved with the help of the classical leapfrog scheme, the
numerical solution of equations B.1 - B.4 is performed using the following discretization
schemes involving the Fourier components Fy, ug, and pg of the electric field, the plasma

velocity, and the density fluctuations, respectively,

pn _ Lo 502 ir [<pE>

.- (e) L .~ (e) 9 i +ZB]€JI€:| ) (B5)
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~(7) ~ \2 1~
1 — (kéyT)2/4 3 n
uZ—H = uy, +%Ei) kesr)”) - (Z-)ch . (PZ + 1 (’E‘2> ) , (B.6)

1— 3" + (kéer)2/4 1— 4" + (kéer)?/4 4 k

144



o w4 n
pitt = pp — ikesT (’“2’“ + (m%‘) : (B.7)

where the subscript n (resp. n + 1) indicates that the value is considered at time ¢,
(resp. tn41), with t,41 —t, = 7 ; 7 is the time step. To check the validity of the
numerical procedures and their accuracy, the invariants presented in equations 5.43

and 5.46 have been monitored.
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Chapter 6

General conclusions

6.1 Conclusions in English

We presented a self-consistent probabilistic model for describing the relaxation of an
electron beam in a solar wind with random density irregularities having the same spec-
tral properties as measured onboard satellites and by means of other techniques. We
suppose that, the system has several characteristic scales related to the characteristic
scale of density fluctuations. On a scale lower than the characteristic scale of den-
sity fluctuations, wave-particle interaction can be precisely determined for waves with
known parameters: phase, frequency and amplitude. However, on scales sufficiently
larger than the characteristic scale of density irregularities, wave and particle dynam-
ics are described by their characteristics averaged over the velocity space, namely, by
the growth/damping rate and by the particle diffusion coefficient. The procedure of
averaging requires the knowledge of the probability distribution function of wave phase
velocities that can be determined from the probability distribution of density fluctua-
tions. To this end, we performed a statistical study of density fluctuations, deduced
from measurements onboard satellites when they were in the solar wind. Our analysis
indicates that on spatial scales of approximately 102Ap, the distribution of the fluc-
tuations obeys a Pearson type II distribution. However, deviations from the normal
distribution are rather small. The closeness of the density fluctuation distributions
results in quite similar probability distribution functions for wave phase velocities. Nu-
merical simulations for the electron beam plasma interaction for both cases of the
Gaussian and non-Gaussian distribution do not lead to substantial difference. Thus,
one can conclude that the normal distribution of density fluctuations may be used as
a good approximation for studies of the beam relaxation in the solar wind.

Applying a model to the system having parameters relevant to typical solar type
ITI events, we determined that depending on v?/vZ and ((9n?))!/2 /Ny, three different
scenarios for the relaxation process can take place:

(1) When the level of density fluctuations is sufficiently low, ({(6n2))'/2/No < v? /vZ,

the beam relaxation and the excitation of Langmuir waves are developed in a manner
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similar to that of a homogeneous plasma. Relaxation only runs toward lower velocities
and after plateau formation there is no energy transfer to accelerated particles. The
energy of the waves increases in time until it reaches the saturation level, which is
typically above several tens of percent from the initial energy of the beam.

(2) ((0n2))Y/2/Ny ~ v?/v}- corresponding to the intermediate regime. The den-
sity fluctuations are high enough to impact the non-linear dispersion relationship of
Langmuir waves and to cause absorption of the waves by particles from the tail of the
electron velocity distribution function. As a result, the energy of waves decays after
reaching a maximum value. The wave decrease is accompanied by an increase in the
number of energetic particles.

(3) ((6n2))Y/2/No > v2/v2 - the presence of density fluctuations strongly slows down
beam relaxation. Resonant broadening allows a wave generated with a phase velocity,
V', to interact resonantly with particles having velocities v, smaller and larger than V/,
even with particles having much larger velocities. As a result, the saturation level of
the wave energy is significantly reduced. The energy of waves at the end of relaxation
can be five times less than the maximum value achieved during the relaxation process.
The energy transfer from slow particles with velocities v < v, to energetic particles
with velocities larger than vy is very effective. The energy transferred to accelerated
particles can reach levels up to 60% of the initial energy of the beam.

Thus, we conclude that even small amplitude density irregularities with spatial
scales in the range of 103\p — 10*\p play an important role in the process of the relax-
ation of solar energetic beams with beam velocities larger than 15v;. The results are in
a good agreement with results obtained using computer simulations in the framework
of a Hamiltonian description for beam-plasma interaction in the presence of random
density fluctuations [Krafft et al., 2013].

Our study revealed very important characteristics for the beam plasma interaction
for very energetic beams with beam velocities above 15v;. For these beams, the relax-
ation takes place in two stages process. The first stage has a relatively short duration,
with characteristic time, t,, typically below 1077r/wp. This stage is characterized by
an effective energy exchange between Langmuir waves and beam electrons. At the end
of the first stage the system achieves a quasi-stable state. Despite the fact that the
electron distribution function preserves a region with a positive gradient, the averaged
growth rate for waves is close to zero, however, it keeps a small positive value over a
very long time period. Even for very fast beams with beam velocities of approximately
20vy, the characteristic spatial scale of the first stage of relaxation is approximately
20 - 107 \p, indicating that this stage takes place in the solar corona. However, as
shown in our simulations, the second stage of relaxation is at least 500 times longer.
Thus, one can expect that the electron distribution function will have a positive slope

at distances up to several AU. This two stage process can explain the Sturrock paradox,
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observations of weak beams and, associated with them, wave activity at distances from
the Sun up to 5 AU. This result also indicates that beams can only be registered by very
capable particle instruments, and provides an explanation as to why there are so few
direct observations of the positive slope of the electron distribution function onboard
satellites [Anderson et al., 1981, Lin et al., 1981, Fuselier et al., 1985].

At the end We have performed preliminary statistical analysis of the results of
simulations carried out using equations derived in our probabilistic model of beam
plasma interaction with probability distribution of density fluctuations corresponding
to observed in solar wind. The results we obtain in our simulations are statistical
distributions of the wave intensities in the process of development and evolution of the
beam plasma instability in inhomogeneous plasma. To carry out the analysis of the
statistical distribution of wave fields we created an artificial data set taking pre-selected
density profile having power spectrum similar to that of the solar wind. To reconstruct
the spatial distributions of the electric field, on the scales smaller than the typical
scales of the beam relaxation, we used the WKB approximation. To take into account
the influence of the density irregularities we calculated spatial distributions of the wave
vector from the spatial distributions of the density fluctuations. Slow temporal changes
in F were taken from the numerical simulation based of probabilistic model.

The statistical analysis aiming to determine statistical characteristics of wavefields
for different levels of density fluctuations was performed for two levels of density fluc-
tuations, low level (<5n2>)1/2 ~ 0.001Ny and (<5n2>)1/2 ~ 0.03Ny. The statistical
analysis of the distribution of the peaks in the electric field showed that in the case
of small density fluctuations (with averaged level of approximately 0.001Np) the dis-
tribution of the P(Ef,) is rather similar to log-normal distribution, corresponding to
Gaussian statistics for the increment as is supposed in the framework of SGT. On larger
amplitudes the distribution deviates rather strongly.

The distribution similar to log-normal was also observed in the case of large ampli-
tude density fluctuations (((6n2>)1/ 2 /Ny = 0.03). An increase in level of the density
fluctuations results in the shift of the peak of the distribution toward lower values. The
shift occurs because the large amplitude density fluctuations can suppress the beam
instability, and thus, the amount of the energy gained by the waves is less in the plasma
with higher level of fluctuations.

In the contrast to the distribution of the EZ the distribution of the electric field
of the Langmuir waves undergone essential changes with increase in ((6n2>)1/ 2 /No.
For the case of the low amplitude density fluctuation, the P(Re(E)) obeys the normal
distribution with the high level of accuracy. For the case of the plasma with higher
level of density fluctuation the obtained distribution is closer to the Pearson type IV
distribution.

We carried out the very same analysis with the data of simulations carried out in
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the framework of Hamiltonian approach obtained by Krafft et al. [2015], 2015. The
results of the analysis for small amplitudes are very similar to those for probabilistic
model, however for larger amplitudes to begin from some critical electric field E. the
distribution rapidly falls in range of amplitudes large than E.. The simulations of Krafft
et al. [2015] are carried out with very low Landau damping for low frequency density
fluctuations, this allowed to observe additional physical phenomenon, decay instability
of primary Langmuir wave on secondary Langmuir wave and ion sound wave. This
leads to restriction of the wave amplitude, the waves having amplitudes larger than
the threshold for decay instability decay. This effect explains the rapid cutoff of the
distribution for amplitudes larger than E.. For the data obtained in the same modeling
with larger level of density fluctuations (((5712})1/ 2 /Ny = 0.03) the distribution was
found to be also similar to log-normal for small amplitudes and with a cut-off in larger
E.. However, the E, still reaches the threshold for the three-wave decay.

It is interesting to notice that the results of our preliminary analysis are rather close
to those obtained analyzing the experimental data of observations onboard satellites
Cluster [Krasnoselskikh et al., 2007] and Wind [Cairns and Robinson, 1999].

It is worth noting that the results obtained in the framework of probabilistic model
are very similar to those obtained in the Hamiltonian model of the beam-plasma inter-
action in the inhomogeneous solar wind. These last were already compared with the
direct measurements of the waveforms onboard Wind and Stereo satellites, and were
shown to reproduce quite well the data of observations [Krafft et al., 2014]. These nu-
merical simulations show formation of the spikes of the electric field of Langmuir waves
with a peak magnitudes several times above the mean. The model considers two-non
linear effects, related to the presence of the density irregularities in the plasma, that
can caused observed clumping phenomena. First effect consist of the break up of the
conditions of the resonance interaction between electrons and Lanmguir waves. The
second effect is related to the features of the wave propagation in the plasma with den-
sity fluctuations, namely, in the variation of the waves group velocity. The clumping
effect is observed in both Hamiltonian model and in probabilistic model. Since the
probabilistic model is operated by the averaged waves growth rate, 7, the gain of the
wave energy takes place on the spatial scales much larger than the scale of the single
density irregularity, and the model can not describe the significant amplification of |E |2
on scales that correspond to the characteristic scales of the clumps. From this fact we
conclude, that observed clumping structures appear due to the effects related to the
propagation of the Langmuir waves in the inhomogeneous plasma rather than due to

the oscillations of the waves growth rate.
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6.2 Conclusions in French

Dans cette thése nous avons présenté un modéle probabiliste auto cohérent décrivant
la relaxation d’un faisceau d’électrons dans un vent solaire dont les fluctuations aléa-
toires de la densité ont les mémes propriétés spectrales que celles mesurées & bord de
satellites. On a supposé que, le systéme possédait différentes échelles caractéristiques
en plus de I’échelle caractéristique des fluctuations de densité. Ceci nous a permis de
décrire avec précision l'interaction onde-particule & des échelles inférieures a I'échelle
caractéristique des fluctuations de densité en supposant que des paramétres d’onde
sont connus: notamment, la phase, la fréquence et 'amplitude. Cependant, pour des
échelles suffisamment plus grandes que I’échelle caractéristique des irrégularités de den-
sité, I'interaction des ondes et des particules ne peut étre caractérisée déterminé que
par des quantités statistiques moyennes dans l'espace des vitesses a savoir: le taux
de croissance/amortissement et le coefficient de diffusion des particules. La procédure
d’évaluation de la moyenne nécessite la connaissance de la fonction de distribution de
densité de probabilité des vitesses de phase des ondes, laquelle peut étre déterminée &
partir de la distribution de la densité de probabilité des fluctuations de densité électron-
ique. A cette fin, nous avons réalisé une étude statistique des fluctuations de densité,
déduites de mesures effectuées a bord des satellites dans le vent solaire. Notre analyse
indique que, pour les échelles spatiale supérieures ou égales a environ 102\ p, la distribu-
tion des fluctuations obéit a la distribution de Pearson de type II. Cependant, les écarts
entre cette distribution et la distribution normale sont plutot petits. La proximité des
distributions de fluctuations de la densité électronique se traduit par une relative simi-
larité des fonctions de distribution de probabilités des vitesses de phase des ondes. Les
simulations numériques décrivant 'interaction d’un faisceau d’électrons avec un plasma
pour les deux cas ( distribution Gaussienne et non-Gaussienne) ne montrent pas de dif-
férences notables. On en conclut, que la distribution normale des fluctuations de la
densité électronique peut étre utilisée comme une bonne approximation pour I’étude de
la relaxation d’un faisceau d’électrons dans le vent solaire.

En appliquant au systéme un modéle ayant des paramétres semblables & ceux typ-
iques pour des sources d’émissions radio solaires de type III, nous avons déterminé
que, suivant le rapport entre vZ/v? et ((6n?))'/2/Ny, trois scénarios différents pour le
processus de relaxation peuvent avoir lieu:

(1) Lorsque le niveau des fluctuations de densité est suffisamment faible, ((dn2))'/2/Ny <
v/ vg, la relaxation du faisceau d’électrons et 'excitation des ondes de Langmuir se font
d’une fagon trés semblable & cequise produit dans un plasma homogéne. La relaxation
et la formation du plateau se développent seulement vers les vitesses plus petites que la
vitesse du faisceau et, aprés la formation du plateau, il n’y a pas de transfert d’énergie
aux particules accélérées. L’énergie des ondes augmente au cours du temps jusqu’a

atteindre le niveau de saturation, lequel est typiquement est de 'ordre de quelques
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dizaines de pourcent de I’énergie initiale du faisceau.

(2) Le niveau ((6n2))'/2/Ny ~ v? /v}- correspond au régime intermédiaire. Les fluc-
tuations de densité sont suffisamment élevées pour influencer la relation de dispersion
non linéaire des ondes de Langmuir. Ceci produit un effet d’absorption des ondes par
les particules de la queue de la fonction de distribution des vitesses électroniques. En
conséquence, ’énergie des ondes décroit aprés avoir atteint une valeur maximale. La
baisse de 'énergie des ondes est accompagnée par une augmentation de nombre de
particules énergétiques.

(3) En fin, pour ((6n?))/2/Ny > v?/v?, la présence des fluctuations de densité
ralentit fortement le processus de relaxation du faisceau. L’élargissement du domaine
de résonance permet & une onde générée avec une vitesse de phase, V, d’interagir et
d’étre en résonance avec des particules ayant des vitesses vp, plus petites que V' aussi
bien qu’avec des particules plus rapides (méme avec des particules ayant des vitesses
beaucoup plus grandes). En conséquence, le niveau de saturation de I’énergie des ondes
est réduit de maniére trés significative. L’énergie des ondes & la fin de la relaxation
peut étre cing fois inférieure a la valeur maximale atteinte pendant le processus de
relaxation. Le transfert d’énergie des particules lentes (avec des vitesses v < vp) aux
particules énergétiques (avec des vitesses plus grandes que vp) est trés efficace. L’énergie
transférée aux particules accélérées peut atteindre des niveaux allant jusqu’a 60% de
I’énergie initiale du faisceau.

On en conclut que méme les irrégularités de densité de petite d’amplitude, avec
échelles spatiales dans la gamme de 103\p — 10*Ap, jouent un réle trés important
dans la relaxation de faisceaux d’électrons énergétiques solaires caractérisés par des
vitesses plus grandes que 15v;. Ces résultats sont en bon accord avec les résultats
des simulations numériques utilisant la description Hamiltonienne de I'interaction de
faisceau-plasma en présence de fluctuations de densité aléatoires [Krafft et al., 2013].

Notre étude a révélé une caractéristique trés importante de I'interaction faisceau-
plasma dans le cas des faisceaux trés énergétiques ayant des vitesses au-dessus de 15v;.
Pour ces faisceaux, la relaxation se développe en deux étapes. La premiére étape a une
durée relativement courte, avec un temps caractéristique, t,, typiquement inférieure
a 1077T/wp. Cette phase est caractérisée par un échange d’énergie trés efficace entre
les ondes de Langmuir et les électrons du faisceau. A la fin de la premiére étape, le
systéme atteint un état quasi stable. En dépit du fait que la fonction de distribution
des électrons conserve une région de gradient positif dans I'espace de vitesses, mais le
taux de croissance moyenne pour les ondes est assez proche de zéro. Cependant, cette
petite valeur positive est gardée pendant une période de temps trés longue. Méme
pour les faisceaux d’électrons trés rapides avec des vitesses d’environ 20vg, 1'échelle
spatiale caractéristique de la premiére étape de relaxation est de Pordre de 20 - 107 \p,

ce qui indique, que pour des éjections des particules dans des conditions solaire; cette
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étape a lieu plutot dans la couronne solaire. Comme les simulations I'indiquent, la
seconde étape de la relaxation a une durée au moins 500 fois plus longue. On peut
donc s’attendre & ce que la fonction de distribution des électrons garde une petite
pente positive jusqu’a des distances allant jusqu’a plusieurs AU. Ce processus en deux
étapes peut expliquer le paradoxe de Sturrock, notamment, les observations de faibles
faisceaux d’électrons et d’ondes associées a des distances du Soleil allant jusqu’a 5 AU.
Ce résultat indique également que les pentes positives de la fonction de distribution
d’électrons ne peuvent étre mises en évidence que par des instruments particules trés
sensibles. Ceci explique sans doute pourquoi il y a tellement peu d’observations directes
de la pente positive de la fonction de distribution des électrons & bord de satellites
[Anderson et al., 1981, Lin et al., 1981, Fuselier et al., 1985].

Nous avons effectué une analyse préliminaire des résultats de simulations basées sur
notre modéle probabiliste de I'interaction faisceau-plasma dans le cas d’une distribution
de la densité de probabilité des fluctuations correspondant & celle observée dans le vent
solaire. Nous avons ainsi pu obtenir les distributions statistiques des intensités d’ondes
pendant le processus de développement et d’évolution de I'instabilité de faisceau-plasma,
dans le cas d’un plasma non-homogéne. Pour mener a bien I’analyse de la distribution
statistique du champ d’ondes, nous avons créé un ensemble de données artificielles base
sur le profil de densité présélectionné et présentant un spectre de puissance similaire &
celui observé dans le vent solaire. Pour reconstruire la distribution spatiale du champ
électrique sur des échelles plus petites que 1’échelle typique de la relaxation de faisceau,
nous utilisons I'approximation WKB pour décrire la propagation des ondes.

L’analyse statistique ayant pour objectif de déterminer les caractéristiques statis-
tiques du champ d’onde pour différents niveaux de fluctuations de densité, 'etude a été
réalisée pour deux niveaux de fluctuations de densité. Un premier niveau relativement
faible (<5n2>)1/2 ~ 0.001Nj et un deuxiémeplus fort (<5n2>)1/2 ~ 0.03Np. L’analyse de
la distribution des pics du champ électrique a montré que, dans le cas de petites fluctu-
ations de densité (avec un niveau moyen d’environ 0.001Vp), la distribution de P(Eg)
est assez semblable & la distribution log-normale pour de faibles amplitudes du champ.
Cette statistique Gaussienne pour le taux de croissance est en accord avec I’hypothése
de base de la théorie SGT. Pour des amplitudes plus grandes, la distribution des taux
de croissance s’écarte assez fortement de la distribution normale.

La distribution semblable & la distribution log-normale a également été observée
dans le cas des fluctuations de densité plus fortes (d’amplitude ((5n2>)1/2 /No = 0.03).
Une augmentation du niveau des fluctuations de densité se traduit en fait par un dé-
calage du pic de la distribution vers des valeurs plus faibles. Ce changement se produit
parce que les fluctuations de grande amplitude peuvent supprimer ou fortement affaiblir
le développement d’instabilité du faisceau. La conséquence, c’est que I’énergie acquise

par les ondes dans ce cas est inférieure a celle acquise dans le cas du plasma avec le
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niveau de fluctuations plus faible.
Par contre, la distribution du champ électrique des ondes de Langmuir Eg subi
1/2
/No
augmente. Dans le cas des fluctuations de densité de faible amplitude, P(Re(E)) obéit

des modifications trés importantes lorsque le niveau des fluctuations (<5n2>)

& la distribution normale avec un niveau de précision assez élevé. Quand le niveau des
fluctuations de densité est plus grand, alors la distribution statistique obtenue est plus
proche de la distribution du type IV de classification de Pearson.

Nous avons effectué la méme analyse avec les données de simulations basées sur
lapproche Hamiltonienne de Krafft et al. [2015]. Les résultats de 'analyse pour les
champs de petites amplitudes sont trés similaires & ceux de modéle probabiliste. Toute-
fois, pour des amplitudes plus grandes et & partir d’un certain champ électrique critique
E., les distributions obtenues dans ces simulation montrent une décroissance trés rapide
pour les amplitudes supérieures & E.. Les simulations de Krafft et al. [2015] étaient
réalisées avec un trés faible amortissement de Landau pour les fluctuations la densité
de basse fréquence. En fait, ceci a permis d’observer un phénoméne physique supplé-
mentaire: l'instabilité de décroissance des ondes de Langmuir primaires en onde de
Langmuir secondaire et onde ionique sonore.

Au final, il en résulte un effet de limitation de Pamplitude des ondes. Quand
I’amplitude des ondes devient plus grande que le seuil de I'instabilité de décroissance,
ce processus se développe assez rapidement ce qui & pour effet delimite 'amplitude des
ondes. Cet effet explique la coupure et la décroissance rapide de la distribution quand
les amplitudes du champ électrique sont supérieures a E.. Pour les données obtenues
avec la méme modélisation mais avec un plus grand niveau des fluctuations de densité
(((on2)) 1z /No = 0.03), la distribution obtenue se trouve étre similaire a la distribution
log-normale obtenue pour les petites amplitudes, et rapidement décroissante pour des
amplitudes plus grandes que E.. Une augmentation du niveau des fluctuations de
densité abouti au déplacement du maximum de distribution <Eg) vers des valeurs plus
faibles. Ce déplacement se produit parce que les grandes fluctuations de densité peuvent
supprimer l'instabilité du faisceau, et ainsi, la quantité d’énergie acquise par les ondes
est inférieure & celle acquise quand le niveau de fluctuations est plus élevé. Cependant,
I’amplitude du champ électrique en cas de faible amortissement atteint toujours le seuil
de l'instabilité de décroissance.

Il faut noter que les résultats de notre analyse préliminaire sont assez proches de
ceux obtenus & partir des données expérimentales mesurées a bord des satellites Cluster
[Krasnoselskikh et al., 2007] et Wind [Cairns and Robinson, 1999].

Il convient aussi de souligner que les résultats obtenus dans le cadre du modéle
probabiliste sont trés proches de ceux obtenus en utilisant le modéle Hamiltonien de
I'interaction faisceau-plasma dans le vent solaire non-homogéne. Ces derniers avaient

déja été comparés avec les mesures directes des formes d’onde faites & bord de satellites
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WIND et STEREO. Ces comparaisons avaient permis de démontrer que les simulations
reproduisent bien, on peut méme dire en détail, les données d’observations |[Krafft et al.,
2014]. Ces simulations numériques mettent en évidence la formation de pics localisés
du champ électrique d’ondes de Langmuir ayant des amplitudes plusieurs fois au-dessus
de la moyenne. Le modéle considére deux effets non-linéaires, liées & la présence des
irrégularités de densité dans le plasma, qui peuvent causer le phénoméne de formation
de bouffées d’ondes. L’effet de concentration d’ondes dans des paquets est observé
dans le modéle Hamiltonien aussi bien que dans le modéle probabiliste. Dans le modéle
probabiliste, ’élément important est le coefficient moyen du taux de croissance des
ondes, 7. Le gain en ’énergie des ondes est obtenu via des échelles spatiales plus grandes
que I’échelle caractéristique de la fluctuation de densité localisée, ce qui implique que
ce modéle ne peut pas décrire 'amplification significative de 'amplitude des ondes a
partir d’une échelle de fluctuation unique. En conséquence, nous pouvons conclure que,
les structures de bouffée d’ondes observées sont principalement dues & 'effet 1lié & la
propagation des ondes dans un plasma non-homogéne, et que I'effet des oscillations du

taux de croissance joue un role moins important.
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