.. Prise-en-compte-de-l-'environnement-arctique, 90 4.4.1 Conception et optimisation d'une régulation thermique de la source 90 4.4.2 Conception d'un, p.95

]. M. Clark and Q. V. Davis, Avalanche photo-diodes for high frequency applications, Optics & Laser Technology, vol.7, issue.1, 1975.
DOI : 10.1016/0030-3992(75)90092-4

G. Stewart, . Cober, A. George, A. V. Isaac, W. Korolev et al., Assessing cloud-phase conditions, Journal of Applied Meteorology, vol.40, issue.11, pp.1967-1983, 2001.

C. Us, Standard Atmosphere 1976. US Government Printing Office, 1976.

T. Ronald and . Collis, Lidar observation of cloud, Science, vol.149, issue.3687, pp.978-981, 1965.

N. Laurence, . Connor, W. Seymour, . Laxon, L. Andrew et al., Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice. Remote sensing of environment, pp.563-570, 2009.

C. Juan, H. Pierre, and . Flamant, Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements, Applied optics, vol.49, issue.12, pp.2232-2243, 2010.

A. Judith, . Curry, G. Ebert, and . Herman, Mean and turbulence structure of the summertime Arctic cloudy boundary layer, Quarterly Journal of the Royal Meteorological Society, vol.114, issue.481, pp.715-746, 1988.

A. Judith, . Curry, E. Elizabeth, and . Ebert, Annual cycle of radiation fluxes over the Arctic Ocean : Sensitivity to cloud optical properties, Journal of Climate, vol.5, issue.11, pp.1267-1280, 1992.

A. Judith, J. L. Curry, . Schramm, B. William, D. Rossow et al., Overview of Arctic cloud and radiation characteristics, Journal of Climate, vol.9, issue.8, pp.1731-1764, 1996.

Y. Daniel, A. Jeffrey, and . Fessler, Mean and variance of single photon counting with deadtime, Physics in medicine and biology, vol.45, issue.7, p.2043, 2000.

H. Dautet, P. Deschamps, B. Dion, D. Andrew, D. Macgregor et al., Photon counting techniques with silicon avalanche photodiodes, OE/LASE'93 : Optics, Electro-Optics, & Laser Applications in Science& Engineering International Society for Optics and Photonics, pp.240-250, 1993.
DOI : 10.1364/AO.32.003894

]. David, A. Miffre, B. Thomas, and P. Rairoux, Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols, Applied Physics B, vol.25, issue.1, pp.197-216, 2012.
DOI : 10.1007/s00340-012-5066-x

G. Frederick, . Fernald, M. Benjamin, . Herman, A. John et al., Determination of aerosol height distributions by lidar, Journal of Applied meteorology, vol.11, issue.3, pp.482-489, 1972.

G. Frederick and . Fernald, Analysis of atmospheric lidar observations : some comments, Applied optics, vol.23, issue.5, pp.652-653, 1984.

. Flentje, J. Heese, . Reichardt, and . Thomas, Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmospheric Measurement Techniques Discussions, pp.3643-3673, 2010.
DOI : 10.5194/amtd-3-3643-2010

]. Flyckt, Photomultiplier tubes : principles and applications. Photonis, 2002.

]. , F. , and J. Secora, A 22-year dataset of surface longwave fluxes in the Arctic, Fourteenth ARM Science Team Meeting Proceedings, pp.22-26, 2004.

M. Volker-freudenthaler, M. Esselborn, B. Wiegner, M. Heese, A. Tesche et al., Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, vol.19, issue.1, pp.165-179, 2009.
DOI : 10.1111/j.1600-0889.2008.00396.x

. Am-fridlind, . Ackerman, . Mcfarquhar, . Zhang, . Poellot et al., Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results, Journal of Geophysical Research, vol.111, issue.60, 1984.
DOI : 10.1029/2007JD008646

J. Fuchs and J. Cermak, Where Aerosols Become Clouds???Potential for Global Analysis Based on CALIPSO Data, Remote Sensing, vol.7, issue.4, pp.4178-4190, 2015.
DOI : 10.3390/rs70404178

M. Cecilia, D. Galvez, C. Minella, T. Alarcon, and . Kobayashi, Angstrom coefficient of tropospheric cloud and aerosol derived from a three-wavelength Mie lidar system CLEO/Pacific Rim'99. The Pacific Rim Conference on, Lasers and Electro-Optics, pp.939-940, 1999.

B. Gao, W. Han, S. C. Tsay, F. North, and . Larsen, Cloud Detection over the Arctic Region Using Airborne Imaging Spectrometer Data during the Daytime, Journal of Applied Meteorology, vol.37, issue.11, pp.1421-1429, 1998.
DOI : 10.1175/1520-0450(1998)037<1421:CDOTAR>2.0.CO;2

P. Robin, L. Gardner, and . Liu, On extending the accurate and useful counting rate range of GM counter detector systems Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes, Cité en page 57.) [Garrett 2006] Timothy J Garrett et Chuanfeng Zhao, pp.1605-1615, 1997.

S. Gassó, . Da-hegg, . Covert, . Collins, . Noone et al., Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2 Microphysical and optical properties of Arctic mixed-phase clouds. The 9 case study, Tellus B Atmospheric Chemistry and Physics, vol.52, issue.9 17, pp.6581-6595, 2000.

V. Irina, L. Gorodetskaya, and . Tremblay, Arctic cloud properties and radiative forcing from observations and their role in sea ice decline predicted by the NCAR CCSM3 model during the 21st century, Arctic Sea Ice Decline : Observations, Projections, Mechanisms, and Implications, pp.47-62, 2008.

R. Goyer and . Watson, The laser and its application to meteorology, Bulletin of the American Meteorological Society, vol.44, issue.9, pp.564-575, 1963.

J. Graul and T. Lilly, Coherent Rayleigh-Brillouin scattering measurement of atmospheric atomic and molecular gas temperature, Optics Express, vol.22, issue.17, pp.20117-20129, 2014.
DOI : 10.1364/OE.22.020117

]. Gu and B. Witschas, Rayleigh???Brillouin scattering profiles of air at different temperatures and pressures, Applied Optics, vol.52, issue.19, pp.4640-4651, 2013.
DOI : 10.1364/AO.52.004640

H. Roland, . Haitz, . Goetzberger, W. Scarlett, and . Shockley, Avalanche Effects in Silicon p-n Junctions. I. Localized Photomultiplication Studies on Microplasmas, Journal of Applied Physics, vol.34, issue.6, pp.1581-1590, 1963.

H. Freeman and . Jr, A Physical Model of Cirrus 8?13-µ Infrared Radiance, Applied optics, vol.7, issue.11, pp.2264-2269, 1968.

M. Hansen, R. Sato, and . Ruedy, Radiative forcing and climate response, Journal of Geophysical Research: Atmospheres, vol.351, issue.D6, pp.6831-6864, 1984.
DOI : 10.1029/96JD03436

]. Hansen and L. Nazarenko, Soot climate forcing via snow and ice albedos, Proceedings of the National Academy of Sciences, vol.101, issue.2, pp.423-428, 2004.
DOI : 10.1073/pnas.2237157100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327163

E. Harrison, . Minnis, . Barkstrom, R. Ramanathan, G. Cess et al., Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment, Journal of Geophysical Research, vol.28, issue.D11, pp.18687-18703, 1984.
DOI : 10.1029/JD095iD11p18687

H. and K. Shine, The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget, Geophysical Research Letters, vol.22, issue.5, pp.603-606, 1995.

H. and K. Shine, Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model, Quarterly Journal of the Royal Meteorological Society, vol.123, issue.543, pp.1907-1930, 1997.

M. Isaac, . Held, J. Brian, and . Soden, Water vapor feedback and global warming 1, Annual Review of Energy and the Environment, vol.25, issue.1, pp.441-475, 2000.

J. Hendrick, F. Pommereau, . Goutail, D. Evans, A. Ionov et al., NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations, Atmospheric Chemistry and Physics, vol.11, issue.12, pp.5975-5995, 2011.
DOI : 10.5194/acp-11-5975-2011

URL : https://hal.archives-ouvertes.fr/hal-00512237

M. Benjamin and . Herman, Multiple scatter effects on the radar return from large hail, Journal of Geophysical Research, vol.70, issue.5, pp.1215-1225, 1965.

M. Herrero and . Polo, Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions, Hydrology and Earth System Sciences, vol.16, issue.9, pp.3139-3147, 2012.
DOI : 10.5194/hess-16-3139-2012

J. Andrew, C. Heymsfield, and . Platt, A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content, Journal of the atmospheric sciences, vol.41, issue.5, pp.846-855, 1984.

]. Hu, Depolarization ratio???effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination, Geophysical Research Letters, vol.72, issue.80, 2007.
DOI : 10.1029/2007GL029584

A. Lampert, Airborne lidar observations of tropospheric arctic clouds Berichte zur Polar-und Meeresforschung (Reports on Polar and Marine Research, 2010.

]. Lampert, C. Ritter, A. Hoffmann, J. Gayet, . Mioche et al., Lidar characterization of the Arctic atmosphere during ASTAR 2007: four cases studies of boundary layer, mixed-phase and multi-layer clouds, Atmospheric Chemistry and Physics, vol.10, issue.6, pp.2847-2866, 2010.
DOI : 10.5194/acp-10-2847-2010

L. Michael, A. Larsen, S. Katharine, A. Law, . Stohl et al., Simple dead-time corrections for discrete time series of non-Poisson data Arctic Air Pollution : New Insights from POLARCAT-IPY Sang Hoon Lee et Robin P Gardner. A new G?M counter dead time model, Cité en page 240.)Cité en page 8.) [LeeCité en page 57.), pp.95101-1873, 2000.

K. Leontyeva and . Stamnes, Estimations of Cloud Optical Thickness from Ground-Based Measurements of Incoming Solar Radiation in the Arctic, Journal of Climate, vol.7, issue.4, pp.566-578, 1994.
DOI : 10.1175/1520-0442(1994)007<0566:EOCOTF>2.0.CO;2

. Lesins, . Bourdages, . Tj-duck, E. Drummond, . Eloranta et al., Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka, Atmospheric Chemistry and Physics, vol.9, issue.6, pp.1847-1862, 2009.
DOI : 10.5194/acp-9-1847-2009

B. Lin, P. Minnis, A. Fan, A. Judith, H. Curry et al., Comparison of cloud liquid water paths derived from in situ and microwave radiometer data taken during the SHEBA/FIREACE, Geophysical Research Letters, vol.33, issue.6, pp.975-978, 2001.
DOI : 10.1029/2000GL012386

Z. Jd-lindeman, I. Boybeyi, and . Gultepe, An examination of the aerosol semi-direct effect for a polluted case of the ISDAC field campaign, Journal of Geophysical Research, vol.36, issue.D1, pp.2011-2025, 1984.
DOI : 10.1029/2011JD015649

. Kuo-nan, . Liou, M. Richard, and . Schotland, Multiple backscattering and depolarization from water clouds for a pulsed lidar system Laser sensing of cloud composition : a backscattered depolarization technique, Cité en page 32.) [Liou 1974] Kuo-nan Liou et Henry Lahore, pp.772-784, 1971.

. Kn-liou, Y. Ou, F. Takano, T. Valero, and . Ackerman, Remote Sounding of the Tropical Cirrus Cloud Temperature and Optical Depth Using 6.5 and 10.5 ??m Radiometers during STEP, Journal of Applied Meteorology, vol.29, issue.8, pp.716-726, 1990.
DOI : 10.1175/1520-0450(1990)029<0716:RSOTTC>2.0.CO;2

. Kuo-nan and . Liou, An introduction to atmospheric radiation Academic press, 2002.

J. R. Liu, . Key, A. Richard, . Frey, A. Steven et al., Nighttime polar cloud detection with MODIS. Remote sensing of environment Estimating random errors due to shot noise in backscatter lidar observations, Cité en page 21.), pp.181-194, 2004.

]. Liu, A. Steven, . Ackerman, C. Brent, . Maddux et al., Errors in Cloud Detection over the Arctic Using a Satellite Imager and Implications for Observing Feedback Mechanisms, Journal of Climate, vol.23, issue.7, pp.1894-1907, 2010.
DOI : 10.1175/2009JCLI3386.1

]. Liu, R. Jeffrey, . Key, A. Steven, . Ackerman et al., Arctic cloud macrophysical characteristics from CloudSat and CALIPSO, Remote Sensing of Environment, vol.124, pp.159-173, 2012.
DOI : 10.1016/j.rse.2012.05.006

]. Liu and Z. Wang, Improved calibration method for depolarization lidar measurement, Optics Express, vol.21, issue.12, pp.14583-14590, 2013.
DOI : 10.1364/OE.21.014583

C. Michael, . Maccracken, D. Robert, . Cess, L. Gerald et al., Climatic effects of anthropogenic arctic aerosols : An illustration of climate feedback mechanisms with one-and two-dimensional climate models, Journal of Geophysical Research : Atmospheres, vol.91, issue.D13, pp.14445-14450, 1984.

R. T. Th-maiman and . Wetiierald, Optical and microwave-optical experiments in ruby Essentials of Lasers : The Commonwealth and International Library : Selected Readings in Physics Thermal equilibrium of the atmosphere with a given distribution of relative humidity, Cité en page 231.) [Manabe 1967] Syukuro Manabe, p.129, 1967.

. Gm-martin, A. Johnson, and . Spice, The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds, Journal of the Atmospheric Sciences, vol.51, issue.13, pp.1823-1842, 1994.
DOI : 10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2

V. Matthais, A. Freudenthaler, I. Amodeo, D. Balin, J. Balis et al., Georgius Chourdakis, [Mishchenko 1998] Michael I Mishchenko et Kenneth Sassen Depolarization of lidar returns by small ice crystals : An application to contrails, Geophysical research letters, vol.25, issue.3, pp.309-312, 1998.

T. Kohei-mizutani, M. Itabe, T. Yasui, S. Aoki, Y. Ishii et al., NICT Lidar Systems at Poker Flat Research Range, Journal of the National Institute of Information and Communications Technology, vol.54, 2007.

]. Morrison, G. Gijs-de-boer, J. Feingold, . Harrington, D. Matthew et al., Resilience of persistent Arctic mixed-phase clouds, Nature Geoscience, vol.113, issue.1, pp.11-17, 2012.
DOI : 10.1038/ngeo1332

. Moss, . Sica, . Mccullough, K. Strawbridge, . Walker et al., Calibration and validation of water vapour lidar measurements from Eureka, Nunavut using radiosondes and the Atmospheric Chemistry Experiment fourier transform spectrometer, Atmospheric Measurement Techniques Discussions, vol.5, issue.4, pp.5665-5689, 2012.
DOI : 10.5194/amtd-5-5665-2012

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen et al., Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer, Journal of Geophysical Research: Atmospheres, vol.27, issue.D11, 1984.
DOI : 10.1029/2003JD004200

]. D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger et al., Aerosol-type-dependent lidar ratios observed with Raman lidar, Journal of Geophysical Research, vol.107, issue.D21, 2007.
DOI : 10.1029/2006JD008292

R. Ryan, I. Neely, M. Hayman, R. Stillwell, P. Jeffrey et al., Polarization Lidar at Summit, Greenland, for the Detection of Cloud Phase and Particle Orientation, Journal of Atmospheric and Oceanic Technology, vol.30, issue.8, pp.1635-1655, 2013.

S. Nemesure, R. Wagener, E. Stephen, and . Schwartz, Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity, Journal of Geophysical Research, vol.33, issue.D12, pp.26105-26116, 1984.
DOI : 10.1029/95JD02897

M. Nicolet, On the molecular scattering in the terrestrial atmosphere : An empirical formula for its calculation in the homosphere, EUMETSAT Meteorological Satellite Conf. and the 15th AMS Satellite Meteorology and Oceanography Conf, pp.1467-1468, 1984.
DOI : 10.1016/0032-0633(84)90089-8

R. Edson, K. Peck, and . Reeder, Dispersion of air, JOSA, vol.62, issue.8, pp.958-962, 1972.

V. Pedrós, M. Estellés, J. Sicard, M. P. Luis-gómez-amo, . Utrillas et al., Climatology of the aerosol extinction-to-backscatter ratio from sun-photometric measurements. Geoscience and Remote Sensing, IEEE Transactions on, vol.48, issue.1, pp.237-249, 2010.

. Pilinis, N. Spyros, . Pandis, H. John, and . Seinfeld, Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition, Journal of Geophysical Research, vol.44, issue.D4, pp.18739-18754, 1984.
DOI : 10.1029/95JD02119

. Pinnick, P. Jennings, C. Ch-`-ch-`-ylek, . Ham, and . Grandy, Backscatter and extinction in water clouds, Journal of Geophysical Research, vol.15, issue.C11, pp.6787-6796, 1978.
DOI : 10.1029/JC088iC11p06787

N. Gilbert, . Plass, W. George, and . Kattawar, Reflection of light pulses from clouds, Applied optics, vol.10, issue.10, pp.2304-2310, 1971.

. Platt, Lidar and Radioinetric Observations of Cirrus Clouds, Journal of the Atmospheric Sciences, vol.30, issue.6, pp.1191-1204, 1973.
DOI : 10.1175/1520-0469(1973)030<1191:LAROOC>2.0.CO;2

K. Platt and . Bartusek, Structure and Optical Properties of Some Middle-Level Clouds, Journal of the Atmospheric Sciences, vol.31, issue.4, pp.1079-1088, 1974.
DOI : 10.1175/1520-0469(1974)031<1079:SAOPOS>2.0.CO;2

. Platt, G. Nl-abshire, and . Mcnice, Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals, Journal of Applied Meteorology, vol.17, issue.8, pp.1220-1224, 1978.
DOI : 10.1175/1520-0450(1978)017<1220:SMPOAI>2.0.CO;2

. Platt, Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns, Journal of the Atmospheric Sciences, vol.38, issue.1, pp.156-167, 1981.
DOI : 10.1175/1520-0469(1981)038<0156:RSOHCI>2.0.CO;2

. Kinne, Physical and radiative properties of Arctic atmospheric aerosols, Science of the total environment, vol.160, pp.811-824, 1995.

. Sharma, L. Andrews, J. Barrie, D. Ogren, and . Lavoue, Variations and sources of the equivalent black carbon in the high Arctic revealed by longterm observations at Alert and Barrow : 1989?, Journal of Geophysical Research : Atmospheres, vol.111, issue.D14, 1984.

J. Sharma, . Ogren, . Jefferson, . Eleftheriadis, P. Chan et al., Equivalent black carbon in the arctic, pp.2007-2023, 2007.

. Shindell, . Chin, . Dentener, . Doherty, . Faluvegi et al., A multi-model assessment of pollution transport to the Arctic, Atmospheric Chemistry and Physics, vol.8, issue.17, pp.5353-5372, 2008.
DOI : 10.5194/acp-8-5353-2008

URL : https://hal.archives-ouvertes.fr/hal-00328325

. Kp-shine, Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo, Quarterly Journal of the Royal Meteorological Society, vol.37, issue.465, pp.747-764, 1984.
DOI : 10.1002/qj.49711046511

D. Matthew, . Shupe, M. Janet, and . Intrieri, Cloud radiative forcing of the Arctic surface : The influence of cloud properties, surface albedo, and solar zenith angle, Journal of Climate, vol.17, issue.3, pp.616-628, 2004.

D. Matthew, . Shupe, P. Von, E. Walden, T. Eloranta et al., Clouds at Arctic atmospheric observatories. Part I : Occurrence and macrophysical properties, Journal of Applied Meteorology and Climatology, vol.50, issue.3, pp.626-644, 2011.

. Wgn-slinn, . Hasse, . Hicks, . Hogan, . Lal et al., Some aspects of the transfer of atmospheric trace constituents past the air-sea interface, Atmospheric Environment (1967), vol.12, issue.11, pp.2055-2087, 1967.
DOI : 10.1016/0004-6981(78)90163-4

. Soloman, . Qin, . Manning, . Chen, K. Marquis et al., Contribution of working group I to the fourth assessment report of the intergovernmental planel on climate change Intergovernmental Panel on Climate Change, 2007.

M. Stein, . Del-guasta, . Kolenda, . Morandi, . Rairoux et al., Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE Geophysical research letters The CloudSat mission and the A-Train : A new dimension of space-based observations of clouds and precipitation, pp.1311-1314, 1994.

]. R. Stone, S. Sharma, A. Herber, K. Eleftheriadis, and D. W. Nelson, A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements, Elementa: Science of the Anthropocene, vol.2, p.27, 2014.
DOI : 10.12952/journal.elementa.000027.s001

C. Julienne, V. Stroeve, A. Kattsov, M. Barrett, T. Serreze et al., Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geophysical Research Letters, vol.39, issue.16, p.2012, 2012.

. Cj-stubenrauch, S. Wb-rossow, . Kinne, . Ackerman, . Cesana et al., Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel, Bulletin of the American Meteorological Society, vol.94, issue.7, pp.1031-1049, 2013.
DOI : 10.1175/BAMS-D-12-00117.1

A. Sugimoto, I. Shimizu, and . Matsui, Development of a two-color dual-polarization pulsed bistatic lidar for measuring water cloud droplet size CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference on, Lasers and Electro-Optics, 2001.

]. Sun and Z. Li, Depolarization of polarized light caused by high altitude clouds 2: Depolarization of lidar induced by water clouds, Applied Optics, vol.28, issue.17, pp.3633-3638, 1989.
DOI : 10.1364/AO.28.003633

. Talbot, . Mej-friese, . Wang, . Brereton, H. Heckenberg et al., Linewidth reduction in a large-smile laser diode array, Applied Optics, vol.44, issue.29, pp.6264-6268, 2005.
DOI : 10.1364/AO.44.006264

. Pp-tans, . Thoning, . Elliott, and . Conway, Background Atmospheric CO2 patterns from weekly flask samples at Barrow, Alaska : Optimal signal recovery and error estimates, in The Statistical Treatment of CO2 Data Records, 1989.

M. Tjernström, C. Leck, C. Birch, . Bottenheim, . Brooks et al., The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design, Atmospheric Chemistry and Physics, vol.14, issue.6, pp.2823-2869, 2014.
DOI : 10.5194/acp-14-2823-2014

R. Treffeisen, P. Tunved, J. Ström, A. Herber, J. Bareiss et al., Arctic smoke &ndash; aerosol characteristics during a record smoke event in the European Arctic and its radiative impact, Atmospheric Chemistry and Physics, vol.7, issue.11, pp.3035-3053, 2007.
DOI : 10.5194/acp-7-3035-2007

E. Kevin, . Trenberth, T. John, J. Fasullo, and . Kiehl, Earth's global energy budget, Bulletin of the American Meteorological Society, vol.90, issue.3, pp.311-323, 2009.

. Tsaknakis, . Papayannis, . Kokkalis, . Amiridis, . Kambezidis et al., Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmospheric Measurement Techniques Discussions, vol.4, issue.1, pp.73-99, 2011.
DOI : 10.5194/amtd-4-73-2011

K. Si-chee-tsay, K. Stamnes, and . Jayaweera, Radiative Energy Budget in the Cloudy and Hazy Arctic, Journal of the Atmospheric Sciences, vol.46, issue.7, pp.1002-1018, 1989.
DOI : 10.1175/1520-0469(1989)046<1002:REBITC>2.0.CO;2

D. David and . Turner, Arctic mixed-phase cloud properties from AERI lidar observations : Algorithm and results from SHEBA, Journal of applied meteorology, vol.44, issue.4, pp.427-444, 2005.

A. Mark, . Vaughan, A. Kathleen, . Powell, M. David et al., Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements, Journal of Atmospheric and Oceanic Technology, vol.26, issue.10, pp.2034-2050, 2009.

. Verlinde, . Harrington, . Gm-mcfarquhar, . Vt-yannuzzi, . Avramov et al., The mixed-phase Arctic cloud experiment (M-PACE), 2007.

. Mo-vieitez, . Ivanov, . Ubachs, . Lewis, and . De-lange, On the complexity of the absorption spectrum of molecular nitrogen, Journal of Molecular Liquids, vol.141, issue.3, pp.110-117, 2008.
DOI : 10.1016/j.molliq.2008.01.014

R. Vihma, . Pirazzini, . Fer, J. Ia-renfrew, M. Sedlar et al., Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmospheric Chemistry and Physics, vol.14, issue.17, pp.9403-9450, 2014.
DOI : 10.5194/acp-14-9403-2014

M. Mora, J. Costa-surós, J. Calbó, and . González, Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height, Journal of Geophysical Research: Atmospheres, vol.112, issue.D12, pp.199-214
DOI : 10.1029/2006JD008159

. Bl-volodin, E. Sv-dolgy, . Melnik, . Downs, V. Shaw et al., Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings, Optics Letters, vol.29, issue.16, pp.1891-1893, 2004.
DOI : 10.1364/OL.29.001891

. Walling, H. Peterson, . Jenssen, E. Morris, and . Dell, Tunable alexandrite lasers, IEEE Journal of Quantum Electronics, vol.16, issue.12, pp.1302-1315, 1980.
DOI : 10.1109/JQE.1980.1070430

. Wandinger, . Tesche, . Seifert, D. Ansmann, D. Müller et al., Size matters: Influence of multiple scattering on CALIPSO light-extinction profiling in desert dust, Geophysical Research Letters, vol.26, issue.D12, pp.2010-2042, 2010.
DOI : 10.1029/2010GL042815

J. Wang, J. Reagan, M. Dobler, and . Rubio, Cabannes versus Rayleigh scattering and terrestrial backscatter ratio revisited in LITE in support of CALIPSO, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), pp.4407-4409, 2003.
DOI : 10.1109/IGARSS.2003.1295530

]. , W. Jeffrey, and R. Key, Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I : Spatial and temporal characteristics, Journal of Climate, vol.18, issue.14, pp.2558-2574, 2005.

G. Stephen and . Warren, Optical properties of snow. Rapport technique, DTIC Document, 1982.

K. Ja-weinman and . Ueyoshi, The Effect of the Phase Function at Forward Angles on Light Pulses Scattered Backward from a Thin Turbid Medium, Journal of the Atmospheric Sciences, vol.26, issue.3, pp.600-603, 1969.
DOI : 10.1175/1520-0469(1969)026<0600:TEOTPF>2.0.CO;2

J. Ellsworth, . Welton, R. James, . Campbell, D. James et al., Global monitoring of clouds and aerosols using a network of micropulse lidar systems, Second International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space International Society for Optics and Photonics, pp.151-158, 2001.

J. Ellsworth, . Welton, R. James, . Campbell, A. Timothy et al., The NASA micro-pulse lidar network (MPLNET) : co-location of lidars with AERO- NET sunphotometers and related earth science applications, 2005.

F. Werner, . Ditas, . Siebert, . Simmel, . Wehner et al., Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus, Journal of Geophysical Research: Atmospheres, vol.118, issue.11, pp.1534-1545, 2014.
DOI : 10.1002/jgrd.50334

W. Cantrell, Fine particles, International Conference of Environmental Sensing and Assessment, p.37, 1976.

. Wiegner, . Madonna, . Binietoglou, . Forkel, . Gasteiger et al., What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET, Atmospheric Measurement Techniques Discussions, vol.7, issue.3, pp.2491-2543, 2014.
DOI : 10.5194/amtd-7-2491-2014

M. George, . Williams, A. Madison, . Compton, S. Andrew et al., High-speed photon counting with linear-mode APD receivers, SPIE Defense, Security, and Sensing, pp.732012-732012, 2009.

M. David, . Winker, H. Richard, M. Couch, and . Mccormick, An overview of LITE : NASA's lidar in-space technology experiment, Proceedings of the IEEE, pp.164-180, 1996.

M. David and . Winker, Accounting for multiple scattering in retrievals from space lidar, Lidar Multiple Scattering Experiments International Society for Optics and Photonics, pp.128-139, 2003.

M. David, . Winker, H. William, . Hunt, J. Matthew et al., Initial performance assessment of CALIOP, Geophysical Research Letters, vol.34, issue.19, 2007.

. Dm-winker, . Tackett, . Bj-getzewich, M. Liu, . Vaughan et al., The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmospheric Chemistry and Physics, vol.13, issue.6, pp.3345-3361, 2013.
DOI : 10.5194/acp-13-3345-2013

]. Wu, R. Wood, and P. Stott, Human influence on increasing Arctic river discharges, Geophysical Research Letters, vol.16, issue.24, 2005.
DOI : 10.1029/2004GL021570

Y. Wu, L. Cordero, C. Gan, B. Gross, F. Moshary et al., Retrieval of aerosol and cloud properties using multiwavelength elastic-Raman lidar, Remote Sensing of Clouds and the Atmosphere XVI, pp.2011-143, 2011.
DOI : 10.1117/12.916579

S. Wuttke and G. Seckmeyer, Spectral radiance and sky luminance in Antarctica: a case study, Theoretical and applied climatology, pp.131-148, 2006.
DOI : 10.1007/s00704-005-0188-2

Y. Xie, . Xie, K. Philip, P. Hopke, . Paatero et al., Identification of Source Nature and Seasonal Variations of Arctic Aerosol byPositive Matrix Factorization, Journal of the Atmospheric Sciences, vol.56, issue.2, pp.249-260, 1999.
DOI : 10.1175/1520-0469(1999)056<0249:IOSNAS>2.0.CO;2

Z. Yang, H. Wang, Y. Li, Q. Lu, W. Hua et al., A smile insensitive method for spectral linewidth narrowing on high power laser diode arrays, Optics Communications, vol.284, issue.21, pp.5189-5191, 2011.
DOI : 10.1016/j.optcom.2011.07.011

K. Zhang, S. Stamnes, and . Bowling, Impact of Clouds on Surface Radiative Fluxes and Snowmelt in the Arctic and Subarctic, Journal of Climate, vol.9, issue.9, pp.2110-2123, 1996.
DOI : 10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2

S. Zhou-ping, L. Qi-hong, D. Jing-xing, Z. Jun, and W. Yun-rong, Line-Width Reduction of a Laser Diode Array Using an External Cavity with Two Feedback Mirrors, Chinese Physics Letters, vol.24, issue.9, p.2587, 2007.
DOI : 10.1088/0256-307X/24/9/034

. Zhu, F. Ic-ruset, and . Hersman, Spectrally narrowed external-cavity high-power stack of laser diode arrays, Optics Letters, vol.30, issue.11, pp.1342-1344, 2005.
DOI : 10.1364/OL.30.001342

G. Figure, Exemple de profils contenus dans un fichier LiDAR lors d'observations de jour avec nuage pendant l'observation. En haut à gauche le profil de données brutes. En bas un zoom du profil d'écart type pour mettre en évidence l'absence des marches et la valeur élevée de l'écart type lié au bruit