A. Zebda, C. Gondran, A. L. Goff, M. Holzinger, P. Cinquin et al., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nature Communications, vol.272, p.370, 2011.
DOI : 10.1016/S0008-6223(00)00155-X

URL : https://hal.archives-ouvertes.fr/hal-00685244

E. Katz, A. N. Shipway, and E. I. Willner, Handbook of Fuel Cells: Fundamentals, Technology, Applications, Wolf Vielstich, 2003.

M. Rasmussen, S. Abdellaoui, and S. D. Minteer, Enzymatic biofuel cells: 30 years of critical advancements, Biosensors and Bioelectronics, vol.76, pp.91-102
DOI : 10.1016/j.bios.2015.06.029

M. C. Potter, Electrical Effects Accompanying the Decomposition of Organic Compounds, Proceedings of the Royal Society B: Biological Sciences, vol.84, issue.571, pp.571-260, 1911.
DOI : 10.1098/rspb.1911.0073

S. D. Minteer, B. Y. Liaw, and M. J. Cooney, Enzyme-based biofuel cells, Enzyme-based biofuel cells », pp.228-234, 2007.
DOI : 10.1016/j.copbio.2007.03.007

J. N. Roy, H. R. Luckarift, S. R. Sizemore, K. E. Farrington, C. Lau et al., Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10, Enzyme and Microbial Technology, vol.53, issue.2, pp.123-127, 2013.
DOI : 10.1016/j.enzmictec.2013.03.014

J. W. Lee, A microbial biofuel cell with an air-breathing cathode for in vivo glucose sensing applications, Anal. Methods, vol.114, issue.8, 2015.
DOI : 10.1039/C5AY00075K

T. Brányik, G. Kuncová, and J. Páca, Demnerová, « Encapsulation of Microbial Cells into Silica Gel, Journal of Sol-Gel Science and Technology, vol.13, issue.1/3, pp.283-287, 1998.
DOI : 10.1023/A:1008655623452

J. M. Graham and D. Rickwood, Subcellular Fractionation : A Practical Approach: A Practical Approach, 1997.

R. Arechederra and S. D. Minteer, Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes, Electrochimica Acta, vol.53, issue.23, pp.6698-6703, 2008.
DOI : 10.1016/j.electacta.2008.01.074

Y. Hubenova and M. Mitov, Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells, Bioelectrochemistry, vol.106, 2014.
DOI : 10.1016/j.bioelechem.2014.06.005

A. T. Yahiro, S. M. Lee, and D. O. Kimble, Bioelectrochemistry, Biochimica et Biophysica Acta (BBA) - Specialized Section on Biophysical Subjects, vol.88, issue.2, pp.375-383, 1964.
DOI : 10.1016/0926-6577(64)90192-5

G. Davis, H. A. Hill, W. J. Aston, I. Higgins, and E. A. Turner, Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase, Enzyme and Microbial Technology, vol.5, issue.5, pp.383-388, 1983.
DOI : 10.1016/0141-0229(83)90013-3

A. Pizzariello, M. Stred, and E. S. Miertu?, A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix, Bioelectrochemistry, vol.56, issue.1-2, pp.99-105, 2002.
DOI : 10.1016/S1567-5394(02)00026-9

C. M. Halliwell, E. Simon, C. Toh, A. E. Cass, and P. N. Bartlett, The design of dehydrogenase enzymes for use in a biofuel cell: the role of genetically introduced peptide tags in enzyme immobilization on electrodes, Bioelectrochemistry, vol.55, issue.1-2, pp.21-23, 2002.
DOI : 10.1016/S1567-5394(01)00172-4

F. Davis and S. P. Higson, Structured thin films as functional components within biosensors, Biosensors and Bioelectronics, vol.21, issue.1, pp.1-20, 2005.
DOI : 10.1016/j.bios.2004.10.001

M. Holzinger, A. L. Goff, E. S. Cosnier, and . Carbon-nanotube, Carbon nanotube/enzyme biofuel cells, Electrochimica Acta, vol.82, pp.179-190
DOI : 10.1016/j.electacta.2011.12.135

URL : https://hal.archives-ouvertes.fr/hal-00685244

J. Kim, H. Jia, and E. P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnology Advances, vol.24, issue.3, pp.296-308, 2006.
DOI : 10.1016/j.biotechadv.2005.11.006

V. Coman, R. Ludwig, W. Harreither, D. Haltrich, L. Gorton et al., A Direct Electron Transfer-Based Glucose/Oxygen Biofuel Cell Operating in Human Serum, Fuel Cells, vol.24, issue.1, pp.9-16, 2010.
DOI : 10.1002/fuce.200900121

F. Kazenwadel, M. Franzreb, and B. E. Rapp, Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades, Anal. Methods, vol.16, issue.10, pp.4030-4037, 2015.
DOI : 10.1039/C5AY00453E

K. Macvittie, J. Halámek, V. Privman, and E. E. Katz, A bioinspired associative memory system based on enzymatic cascades, Chemical Communications, vol.100, issue.62, pp.62-6962, 2013.
DOI : 10.1039/c3cc43272f

P. K. Addo, R. L. Arechederra, and S. D. Minteer, Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based on NAD+-Dependent Enzymes, Electroanalysis, vol.5, issue.18, 2010.
DOI : 10.1002/elan.200980009

I. Ivanov, T. Vidakovi?-koch, E. K. Sundmacher, and . Recent, Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling, Energies, vol.3, issue.4, pp.803-846, 2010.
DOI : 10.3390/en3040803

D. Gervasio and J. Thomson, « Self Assembled Monolayer (SAM) of Metallomacrocycle as a Synthetic Cathode Catalyst for a Hybrid Biofuel-Cell, Meet. Abstr, vol.2008, issue.01 7, pp.251-251, 2008.

J. Martinez-ortiz, R. Flores, and R. Vazquez-duhalt, Molecular design of laccase cathode for direct electron transfer in a biofuel cell, Biosensors and Bioelectronics, vol.26, issue.5, pp.2626-2631
DOI : 10.1016/j.bios.2010.11.022

G. Strack, H. R. Luckarift, S. R. Sizemore, R. K. Nichols, K. E. Farrington et al., Power generation from a hybrid biological fuel cell in seawater, Bioresource Technology, vol.128, pp.222-228, 2013.
DOI : 10.1016/j.biortech.2012.10.104

C. Barrera, I. Zhukov, E. Villagra, F. Bedioui, M. A. Páez et al., Trends in reactivity of unsubstituted and substituted cobalt-phthalocyanines for the electrocatalysis of glucose oxidation, Journal of Electroanalytical Chemistry, vol.589, issue.2, pp.212-218, 2006.
DOI : 10.1016/j.jelechem.2006.02.009

P. Girard, J. Pécréaux, G. Lenoir, P. Falson, and J. Rigaud, A New Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles, Biophysical Journal, vol.87, issue.1, pp.419-429, 2004.
DOI : 10.1529/biophysj.104.040360

URL : https://hal.archives-ouvertes.fr/hal-00314159

C. Y. Yu, G. Y. Ang, K. G. Chan, K. K. Singh, and Y. Y. Chan, Enzymatic electrochemical detection of epidemic-causing Vibrio cholerae with a disposable oligonucleotide-modified screen-printed bisensor coupled to a dry-reagent-based nucleic acid amplification assay, Biosensors and Bioelectronics, vol.70, pp.282-288, 2015.
DOI : 10.1016/j.bios.2015.03.048

A. Zebda, L. Renaud, S. Tingry, M. Cretin, F. Pichot et al., Microfluidic Biofuel Cell for Energy Production, Microfluidic Biofuel Cell for Energy Production, pp.824-828, 2009.
DOI : 10.1166/sl.2009.1156

URL : https://hal.archives-ouvertes.fr/hal-00448518

S. E. Ichi, A. Zebda, J. Alcaraz, A. Laaroussi, F. Boucher et al., Bioelectrodes modified with chitosan for long-term energy supply from the body, Bioelectrodes modified with chitosan for long-term energy supply from the body, pp.1017-1026, 2015.
DOI : 10.1039/C4EE03430A

URL : https://hal.archives-ouvertes.fr/hal-01412089

R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, Biofuel cells and their development, Biofuel cells and their development, pp.2015-2045, 2006.
DOI : 10.1016/j.bios.2006.01.030

I. Kelly, C. Melhuish, and . Slugbot, A Robot Predator, European Conference on Artificial Life (ECAL), 2001.

«. Sony and G. Develops, Bio Battery " ». [En ligne] Disponible sur: http://www.sony, Consulté le, pp.31-2015, 200708.

H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda et al., A high-power glucose/oxygen biofuel cell operating under quiescent conditions, Energy Environ. Sci., vol.405, issue.3, pp.133-138, 2008.
DOI : 10.1039/B809841G

F. Davis and S. P. Higson, Biofuel cells???Recent advances and applications, Biofuel cells?Recent advances and applications, pp.1224-1235, 2007.
DOI : 10.1016/j.bios.2006.04.029

A. G. Hoa, Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings, Biosensors and Bioelectronics, vol.24, issue.10, pp.3043-3051, 2009.
DOI : 10.1016/j.bios.2009.03.021

D. Samanta and A. Sarkar, Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications, Chemical Society Reviews, vol.13, issue.285, pp.2567-2592, 2011.
DOI : 10.1039/c0cs00056f

Y. Meng, X. Xu, H. Li, Y. Wang, E. Ding et al., Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method, Carbon, vol.70, pp.103-110, 2014.
DOI : 10.1016/j.carbon.2013.12.078

G. Pagona and N. Karousis, Aryl diazonium functionalization of carbon nanohorns, Carbon, vol.46, issue.4, pp.604-610, 2008.
DOI : 10.1016/j.carbon.2008.01.007

A. M. Nowicka, M. Fau, A. Kowalczyk, and M. Strawski, Electrografting of carboxyphenyl thin layer onto gold for DNA and enzyme immobilization, Electrochimica Acta, vol.126, pp.11-18
DOI : 10.1016/j.electacta.2013.07.135

I. Migneault, C. Dartiguenave, K. C. Waldron, M. J. Bertrand, and . Glutaraldehyde, behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, BioTechniques, vol.37, pp.790-802, 2004.

S. Romo-sánchez, M. Arévalo-villena, E. G. Romero, H. L. Ramirez, and A. B. Pérez, Immobilization of ??-Glucosidase and Its Application for Enhancement of Aroma Precursors in Muscat Wine, Food and Bioprocess Technology, vol.590, issue.5, pp.1381-1392
DOI : 10.1007/s11947-013-1161-1

M. Mohammadi, M. Ashjari, S. Dezvarei, M. Yousefi, M. Babaki et al., Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production, RSC Adv., vol.94, issue.41, pp.41-32698
DOI : 10.1039/C5RA03299G

S. Aquino-neto, D. P. Hickey, R. D. Milton, A. R. De-andrade, and E. S. Minteer, High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes, High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes, pp.247-254
DOI : 10.1016/j.bios.2015.05.011

L. B. Crepaldi, S. A. Neto, F. P. Cardoso, P. Ciancaglini, and A. R. De-andrade, Ferrocene Entrapped In Polypyrrole Film and PAMAM Dendrimers as Matrix for Mediated Glucose/O2 Biofuel Cell, Ferrocene Entrapped In Polypyrrole Film and PAMAM Dendrimers as Matrix for Mediated Glucose/O2 Biofuel Cell, pp.52-58, 2014.
DOI : 10.1016/j.electacta.2014.05.049

A. Heller, Electrical connection of enzyme redox centers to electrodes, The Journal of Physical Chemistry, vol.96, issue.9, pp.3579-3587, 1992.
DOI : 10.1021/j100188a007

S. Calabrese-barton, J. Gallaway, and E. P. Atanassov, Enzymatic Biofuel Cells for Implantable and Microscale Devices, Enzymatic Biofuel Cells for Implantable and Microscale Devices, pp.4867-4886, 2004.
DOI : 10.1021/cr020719k

S. Shleev, A. Jarosz-wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov et al., Direct electron transfer reactions of laccases from different origins on carbon electrodes, Direct electron transfer reactions of laccases from different origins on carbon electrodes, pp.115-124, 2005.
DOI : 10.1016/j.bioelechem.2005.02.004

W. Putzbach and N. J. Ronkainen, Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review, Sensors, vol.13, issue.4, pp.4811-4840, 2013.
DOI : 10.3390/s130404811

W. Feng and P. Ji, Enzymes immobilized on carbon nanotubes, Enzymes immobilized on carbon nanotubes, pp.889-895, 2011.
DOI : 10.1016/j.biotechadv.2011.07.007

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

S. Iijima, Carbon nanotubes: past, present, and future, Physica B: Condensed Matter, vol.323, issue.1-4, pp.1-5, 2002.
DOI : 10.1016/S0921-4526(02)00869-4

T. J. Simmons, D. Hashim, R. Vajtai, and P. M. Ajayan, Large Area-Aligned Arrays from Direct Deposition of Single-Wall Carbon Nanotube Inks, Journal of the American Chemical Society, vol.129, issue.33, pp.33-10088, 2007.
DOI : 10.1021/ja073745e

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. De-la-chapelle et al., « Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, vol.388, pp.6644-756, 1997.

K. P. Jong and J. W. Geus, Carbon Nanofibers: Catalytic Synthesis and Applications, Catalysis Reviews, vol.130, issue.4, pp.481-510, 2000.
DOI : 10.1081/CR-100101954

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1998.
DOI : 10.1142/p080

S. Banerjee, T. Hemraj-benny, and E. S. Wong, Covalent Surface Chemistry of Single-Walled Carbon Nanotubes, Advanced Materials, vol.15, issue.1, pp.17-29, 2005.
DOI : 10.1002/adma.200401340

C. Journet and P. Bernier, Production of carbon nanotubes, Production of carbon nanotubes, pp.1-9, 1998.
DOI : 10.1007/s003390050731

M. José-yacamán, H. Terrones, L. Rendon, and J. M. Dominguez, Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles, Carbon, vol.33, issue.5, pp.669-678, 1995.
DOI : 10.1016/0008-6223(94)00154-R

E. T. Thostenson, Z. Ren, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol.61, issue.13, pp.1899-1912, 2001.
DOI : 10.1016/S0266-3538(01)00094-X

T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-222, 1992.
DOI : 10.1038/358220a0

J. Salvetat, G. A. Briggs, J. Bonard, R. R. Bacsa, A. J. Kulik et al., Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, pp.944-947, 1999.
DOI : 10.1103/PhysRevLett.82.944

H. D. Lourie, Evaluation of Young's Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy, Journal of Materials Research, vol.4, issue.09, pp.2418-2422, 1998.
DOI : 10.1103/PhysRevB.51.10048

R. S. Ruoff and D. C. , Lorents, « Mechanical and thermal properties of carbon nanotubes », Carbon Nanotub, p.143, 1996.

. Null-yu, . Null-lourie, . Dyer, . Null-moloni, and . Kelly, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, vol.287, issue.5453, pp.637-640, 2000.

S. Iijima, C. Brabec, A. Maiti, and E. J. Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, pp.2089-2092, 1996.
DOI : 10.1063/1.470966

N. Hamada, Electronic band structure of carbon nanotubes: toward the three-dimensional system, Materials Science and Engineering: B, vol.19, issue.1-2, pp.181-184, 1993.
DOI : 10.1016/0921-5107(93)90185-P

M. S. Dresselhaus, G. Dresselhaus, and E. R. Saito, Physics of carbon nanotubes, Physics of carbon nanotubes, pp.883-891, 1995.
DOI : 10.1016/0008-6223(95)00017-8

C. T. White and T. N. Todorov, « Carbon nanotubes as long ballistic conductors, Nature, vol.393, pp.6682-240, 1998.

Z. Yao, C. L. Kane, and C. Dekker, High-Field Electrical Transport in Single-Wall Carbon Nanotubes, Physical Review Letters, vol.84, issue.13, pp.2941-2944, 2000.
DOI : 10.1103/PhysRevLett.84.2941

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Extraordinary Mobility in Semiconducting Carbon Nanotubes, pp.35-39, 2004.
DOI : 10.1021/nl034841q

H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set, 1999.

X. Xie, Y. Mai, and X. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering: R: Reports, vol.49, issue.4, pp.89-112, 2005.
DOI : 10.1016/j.mser.2005.04.002

L. Vaisman and H. D. Wagner, Marom, « The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci, vol.128, issue.130, pp.37-46, 2006.

O. Lourie, D. M. Cox, and H. D. Wagner, Buckling and Collapse of Embedded Carbon Nanotubes, Physical Review Letters, vol.81, issue.8, pp.1638-1641, 1998.
DOI : 10.1103/PhysRevLett.81.1638

L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.62, issue.19, pp.13104-13110, 2000.
DOI : 10.1103/PhysRevB.62.13104

P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, and D. A. Kessler, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, vol.52, issue.21-22, pp.5090-5101, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2009.04.029

M. Strano, V. Moore, and E. M. Miller, The Role of Surfactant Adsorption during Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.3, issue.1, 2003.
DOI : 10.1166/jnn.2003.194

R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur et al., Comparative study of carbon nanotube dispersion using surfactants, Journal of Colloid and Interface Science, vol.328, issue.2, pp.421-428, 2008.
DOI : 10.1016/j.jcis.2008.09.015

K. G. Dassios, P. Alafogianni, S. K. Antiohos, C. Leptokaridis, N. Barkoula et al., Optimization of Sonication Parameters for Homogeneous Surfactant-Assisted Dispersion of Multiwalled Carbon Nanotubes in Aqueous Solutions, The Journal of Physical Chemistry C, vol.119, issue.13, pp.13-7506, 2015.
DOI : 10.1021/acs.jpcc.5b01349

W. H. Duan, Q. Wang, and E. F. Collins, Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective, Chemical Science, vol.117, issue.7, pp.1407-1413, 2011.
DOI : 10.1039/c0sc00616e

J. Hilding, E. A. Grulke, Z. G. Zhang, and E. F. Lockwood, Dispersion of Carbon Nanotubes in Liquids, Dispersion of Carbon Nanotubes in Liquids, pp.1-41, 2003.
DOI : 10.4028/www.scientific.net/KEM.132-136.743

B. Kim, Y. Lee, R. Jee-hyun, and K. Suh, Enhanced colloidal properties of single-wall carbon nanotubes in ??-terpineol and Texanol, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.273, issue.1-3, pp.161-164, 2006.
DOI : 10.1016/j.colsurfa.2005.08.024

A. D. Crescenzo, E. Valeria, and . Fontana, Non-covalent and reversible functionalization of carbon nanotubes, Beilstein Journal of Nanotechnology, vol.5, pp.1675-1690, 2014.
DOI : 10.3762/bjnano.5.178

M. Monthioux, D. E. Luzzi, B. W. Smith, A. Burteaux, J. E. Claye et al., Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation, Carbon, vol.39, issue.8, pp.1251-1272, 2001.
DOI : 10.1016/S0008-6223(00)00249-9

S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh et al., Effect of Nanoscale Curvature of Single-Walled Carbon Nanotubes on Adsorption of Polycyclic Aromatic Hydrocarbons, Effect of Nanoscale Curvature of Single-Walled Carbon Nanotubes on Adsorption of Polycyclic Aromatic Hydrocarbons, pp.583-587, 2007.
DOI : 10.1021/nl0622597

M. N. Bougot, T. M. Dang, N. N. Le, and M. C. Dang, Realization of stable and homogenous carbon nanotubes dispersion as ink for radio frequency identification applications, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol.4, issue.2, 2013.
DOI : 10.1088/2043-6262/4/2/025008

A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, and M. G. Kiselev, « Dissolution of single-walled carbon nanotubes in alkanol-cholic acid mixtures », Russ, J. Phys. Chem. A, vol.89, issue.9, pp.1628-1632, 2015.

A. Poorsolhjouy and M. H. Naei, Effects of carbon nanotubes' dispersion on effective mechanical properties of nanocomposites: A finite element study, Journal of Reinforced Plastics and Composites, vol.34, issue.16, pp.16-1315, 2015.
DOI : 10.1177/0731684415590676

M. J. O-'connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang et al., « Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett, vol.342, pp.3-4, 2001.

Y. Kang, T. A. Taton, and . Micelle, Micelle-Encapsulated Carbon Nanotubes:?? A Route to Nanotube Composites, Journal of the American Chemical Society, vol.125, issue.19, pp.5650-5651, 2003.
DOI : 10.1021/ja034082d

M. Yudasaka, M. Zhang, C. Jabs, and E. S. Iijima, Effect of an organic polymer in purification and cutting of single-wall carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.71, issue.4, pp.449-451, 2000.
DOI : 10.1007/s003390000688

M. Zhang, M. Yudasaka, A. Koshio, C. Jabs, T. Ichihashi et al., Structure of single-wall carbon nanotubes purified and cut using polymer, Structure of single-wall carbon nanotubes purified and cut using polymer, pp.7-10, 2002.
DOI : 10.1007/s003390100983

F. H. Gojny, M. H. Wichmann, B. Fiedler, W. Bauhofer, and E. K. Schulte, Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites, Composites Part A: Applied Science and Manufacturing, vol.36, issue.11, pp.1525-1535, 2005.
DOI : 10.1016/j.compositesa.2005.02.007

E. N. and -. Shvartzman-cohen, Selective Dispersion of Single-Walled Carbon Nanotubes in the Presence of Polymers:?? the Role of Molecular and Colloidal Length Scales, Journal of the American Chemical Society, vol.126, issue.45, pp.14850-14857, 2004.
DOI : 10.1021/ja046377c

T. Blythe and D. Bloor, Electrical Properties of Polymers, 2005.

A. J. Blanch, C. E. Lenehan, and J. S. Quinton, Optimizing Surfactant Concentrations for Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solution, The Journal of Physical Chemistry B, vol.114, issue.30, pp.30-9805, 2010.
DOI : 10.1021/jp104113d

A. H. Korayem, M. R. Barati, S. J. Chen, G. P. Simon, X. L. Zhao et al., Optimizing the degree of carbon nanotube dispersion in a solvent for producing reinforced epoxy matrices, Powder Technology, vol.284, pp.541-550
DOI : 10.1016/j.powtec.2015.07.023

J. Park, H. Yang, and M. Seong, Comparative study on raman and photoluminescence spectra of carbon nanotubes dispersed in different surfactant solutions, Journal of the Korean Physical Society, vol.60, issue.8, pp.1301-1304
DOI : 10.3938/jkps.60.1301

L. Vaisman, G. Marom, and H. D. Wagner, Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers, Advanced Functional Materials, vol.34, issue.3, pp.357-363, 2006.
DOI : 10.1002/adfm.200500142

M. D. Clark, S. Subramanian, and E. R. Krishnamoorti, Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes, Journal of Colloid and Interface Science, vol.354, issue.1, pp.144-151
DOI : 10.1016/j.jcis.2010.10.027

F. B. Richard, Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes, Science, vol.300, issue.5620, pp.5620-775, 2003.
DOI : 10.1126/science.1080848

K. Yurekli, C. A. Mitchell, and E. R. Krishnamoorti, Small-Angle Neutron Scattering from Surfactant-Assisted Aqueous Dispersions of Carbon Nanotubes, Journal of the American Chemical Society, vol.126, issue.32, pp.32-9902, 2004.
DOI : 10.1021/ja047451u

V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley et al., Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants, Nano Letters, vol.3, issue.10, pp.1379-1382, 2003.
DOI : 10.1021/nl034524j

E. Seibert and T. S. Tracy, Different Enzyme Kinetic Models, Different enzyme kinetic models, pp.23-35, 2014.
DOI : 10.1007/978-1-62703-758-7_3

J. A. Cracknell, T. P. Mcnamara, E. D. Lowe, and C. F. Blanford, Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction, Dalton Transactions, vol.10, issue.25, pp.25-6668, 2003.
DOI : 10.1039/c0dt01403f

K. Piontek, M. Antorini, and E. T. Choinowski, Crystal Structure of a Laccase from the Fungus Trametes versicolor at 1.90-A Resolution Containing a Full Complement of Coppers, Journal of Biological Chemistry, vol.277, issue.40, pp.40-37663, 2002.
DOI : 10.1074/jbc.M204571200

D. Ivnitski and P. Atanassov, Electrochemical Studies of Intramolecular Electron Transfer in Laccase fromTrametes versicolor, Electroanalysis, vol.35, issue.22, pp.2307-2313, 2007.
DOI : 10.1002/elan.200703983

M. T. Meredith and S. D. Minteer, Biofuel Cells: Enhanced Enzymatic Bioelectrocatalysis, Annual Review of Analytical Chemistry, vol.5, issue.1, pp.157-179, 2012.
DOI : 10.1146/annurev-anchem-062011-143049

P. M. Wilde, M. Mändle, M. Murata, and E. N. Berg, Structural and Physical Properties of GDL and GDL/BPP Combinations and their Influence on PEMFC Performance, Fuel Cells, vol.4, issue.3, pp.180-184, 2004.
DOI : 10.1002/fuce.200400022

S. Escribano, J. Blachot, J. Ethève, A. Morin, and E. R. Mosdale, Characterization of PEMFCs gas diffusion layers properties, Journal of Power Sources, vol.156, issue.1, pp.8-13, 2006.
DOI : 10.1016/j.jpowsour.2005.08.013

S. Park, J. Lee, and B. N. Popov, Effect of PTFE content in microporous layer on water management in PEM fuel cells, Journal of Power Sources, vol.177, issue.2, pp.457-463, 2008.
DOI : 10.1016/j.jpowsour.2007.11.055

L. Cindrella, A. M. Kannan, J. F. Lin, K. Saminathan, Y. Ho et al., Gas diffusion layer for proton exchange membrane fuel cells???A review, Journal of Power Sources, vol.194, issue.1, pp.146-160, 2009.
DOI : 10.1016/j.jpowsour.2009.04.005

K. Jiao and X. Li, Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, vol.37, issue.3, pp.221-291, 2011.
DOI : 10.1016/j.pecs.2010.06.002

C. Lim and C. Y. Wang, Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell, Electrochimica Acta, vol.49, issue.24, pp.24-4149, 2004.
DOI : 10.1016/j.electacta.2004.04.009

C. S. Kong, D. Kim, H. Lee, Y. Shul, and T. Lee, Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells, Journal of Power Sources, vol.108, issue.1-2, pp.185-191, 2002.
DOI : 10.1016/S0378-7753(02)00028-9

M. Eikerling and A. A. Kornyshev, Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry, vol.453, issue.1-2, pp.89-106, 1998.
DOI : 10.1016/S0022-0728(98)00214-9

H. Lee, J. Park, D. Kim, and T. Lee, A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC, Journal of Power Sources, vol.131, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/j.jpowsour.2003.12.039

J. Park, H. Oh, T. Ha, Y. I. Lee, and K. Min, A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation, Applied Energy, vol.155, pp.866-880
DOI : 10.1016/j.apenergy.2015.06.068

E. S. De and . Castro, High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies " », -BASF Fuel Cell, Inc, 2011.

L. K. Bagal, J. Y. Patil, M. V. Vaishampayan, I. S. Mulla, and S. S. Suryavanshi, Effect of Pd and Ce on the enhancement of ethanol vapor response of SnO2 thick films, Effect of Pd and Ce on the enhancement of ethanol vapor response of SnO2 thick films, pp.383-390, 2015.
DOI : 10.1016/j.snb.2014.10.021

E. Crouch, D. C. Cowell, S. Hoskins, R. W. Pittson, J. P. Hart et al., Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase, Analytical Biochemistry, vol.347, issue.1, pp.17-23, 2005.
DOI : 10.1016/j.ab.2005.08.011

L. Gonzalez-macia, A. Morrin, M. R. Smyth, and A. J. Killard, Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices, The Analyst, vol.36, issue.68, pp.845-867, 2010.
DOI : 10.1039/b916888e

S. Mukherjee, A. Bates, S. C. Lee, D. Lee, and E. S. Park, A Review of the Application of CNTs in PEM Fuel Cells, International Journal of Green Energy, vol.254, issue.5, pp.787-809, 2015.
DOI : 10.1109/NEMS.2006.334797

Y. H. Yun, J. D. Kim, B. K. Lee, Y. W. Cho, and H. Y. Lee, Polymer inkjet printing: Construction of three-dimensional structures at micro-scale by repeated lamination, Macromolecular Research, vol.61, issue.3, pp.197-202, 2009.
DOI : 10.1007/BF03218679

P. Calvert, Inkjet Printing for Materials and Devices, Inkjet Printing for Materials and Devices, pp.3299-3305, 2001.
DOI : 10.1021/cm0101632

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet Printing-Process and Its Applications, Inkjet Printing?Process and Its Applications, pp.673-685, 2010.
DOI : 10.1002/10.1039/B903531A

Y. Xu, I. Hennig, D. Freyberg, A. J. Strudwick, M. G. Schwab et al., Inkjet-printed energy storage device using graphene/polyaniline inks, Journal of Power Sources, vol.248, pp.483-488, 2014.
DOI : 10.1016/j.jpowsour.2013.09.096

T. Boland, T. Xu, B. Damon, and E. X. Cui, Application of inkjet printing to tissue engineering, Biotechnology Journal, vol.272, issue.9, pp.910-917, 2006.
DOI : 10.1002/biot.200600081

A. A. Khalate, X. Bombois, R. Babu?ka, H. Wijshoff, and E. R. Waarsing, Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method, Control Engineering Practice, vol.19, issue.8, pp.771-781, 2011.
DOI : 10.1016/j.conengprac.2011.02.007

P. R. Chiarot and T. B. Jones, Dielectrophoretic deflection of ink jets, Journal of Micromechanics and Microengineering, vol.19, issue.12, p.125018, 2009.
DOI : 10.1088/0960-1317/19/12/125018

G. D. Martin, S. D. Hoath, and I. M. Hutchings, Inkjet printing - the physics of manipulating liquid jets and drops, Journal of Physics: Conference Series, vol.105, issue.1, p.12001, 2008.
DOI : 10.1088/1742-6596/105/1/012001

B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution, Annual Review of Materials Research, vol.40, issue.1, pp.395-414, 2010.
DOI : 10.1146/annurev-matsci-070909-104502

C. Chang, K. Limkrailassiri, and E. L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns, Applied Physics Letters, vol.93, issue.12, p.123111, 2008.
DOI : 10.1063/1.2975834

L. Setti, A. Fraleoni-morgera, B. Ballarin, A. Filippini, and D. Frascaro, An amperometric glucose biosensor prototype fabricated by thermal inkjet printing, Biosensors and Bioelectronics, vol.20, issue.10, pp.2019-2026, 2005.
DOI : 10.1016/j.bios.2004.09.022

J. R. Mckenzie, A. C. Cognata, A. N. Davis, J. P. Wikswo, and D. E. , Real-Time Monitoring of Cellular Bioenergetics with a Multianalyte Screen-Printed Electrode, Analytical Chemistry, vol.87, issue.15, pp.15-7857, 2015.
DOI : 10.1021/acs.analchem.5b01533

D. Elkington, M. Wasson, W. Belcher, P. C. Dastoor, and E. X. Zhou, Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element, Applied Physics Letters, vol.106, issue.26, pp.26-263301, 2015.
DOI : 10.1063/1.4923397

D. Lee, J. S. Choi, H. Chae, C. Chung, S. M. Cho et al., Screen-printed white OLED based on polystyrene as a host polymer, Current Applied Physics, vol.9, issue.1, pp.161-164, 2009.
DOI : 10.1016/j.cap.2008.01.004

M. Härting, J. Zhang, D. R. Gamota, and D. T. Britton, Fully printed silicon field effect transistors, Applied Physics Letters, vol.94, issue.19, p.193509, 2009.
DOI : 10.1063/1.3126958

R. Xu, A. Lei, C. Dahl-petersen, K. Hansen, M. Guizzetti et al., « Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting, pp.383-388, 2012.

V. F. Galiazzo, Double printing of front contact Ag in c-Si solar cells », 25th Eur, Photovolt. Sol. Energy Conf. Exhib

J. A. Owczarek and F. Howland, A study of the off-contact screen printing process. I. Model of the printing process and some results derived from experiments, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.13, issue.2, pp.358-367, 1990.
DOI : 10.1109/33.56169

F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells, vol.93, issue.4, pp.394-412, 2009.
DOI : 10.1016/j.solmat.2008.10.004

K. X. Steirer, M. O. Reese, B. L. Rupert, N. Kopidakis, D. C. Olson et al., Ultrasonic spray deposition for production of organic solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.4, pp.447-453, 2009.
DOI : 10.1016/j.solmat.2008.10.026

G. S. Lonakar, M. S. Mahajan, S. S. Ghosh, and J. V. Sali, Modeling thin film formation by Ultrasonic Spray method: A case of PEDOT:PSS thin films, Organic Electronics, vol.13, issue.11, pp.2575-2581
DOI : 10.1016/j.orgel.2012.07.013

J. Kang, Y. Kang, S. Jung, M. Song, D. Kim et al., Fully spray-coated inverted organic solar cells, Solar Energy Materials and Solar Cells, vol.103, pp.76-79, 2012.
DOI : 10.1016/j.solmat.2012.04.027

K. X. Steirer, J. J. Berry, M. O. Reese, M. F. Van-hest, A. Miedaner et al., Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells, Thin Solid Films, vol.517, issue.8, pp.2781-2786, 2009.
DOI : 10.1016/j.tsf.2008.10.124

M. Shakutsui, T. Iwamoto, R. Maeda, T. Tsutsui, and E. K. Fujita, Fabrication of bulk heterojunction photovoltaic cells with controlled distribution of p-n components by evaporative spray deposition using ultradilute solution, Organic Photovoltaics IX, pp.705215-705215, 2008.
DOI : 10.1117/12.794319

F. Ely, A. Matsumoto, B. Zoetebier, V. S. Peressinotto, M. K. Hirata et al., Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices, Organic Electronics, vol.15, issue.5, pp.1062-1070, 2014.
DOI : 10.1016/j.orgel.2014.02.022

A. D. Willey, J. M. Holt, B. A. Larsen, J. L. Blackburn, S. Liddiard et al., Davis, « Thin films of carbon nanotubes via ultrasonic spraying of suspensions in N-methyl-2-pyrrolidone and N-cyclohexyl-2-pyrrolidone

C. Girotto, B. P. Rand, and J. Genoe, Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.4, pp.454-458, 2009.
DOI : 10.1016/j.solmat.2008.11.052

J. G. Tait, M. F. Volder, D. Cheyns, P. Heremans, and B. P. Rand, Absorptive carbon nanotube electrodes: Consequences of optical interference loss in thin film solar cells, Nanoscale, vol.24, issue.16, pp.16-7259
DOI : 10.1039/C5NR01119A

A. Abdellah, B. Fabel, P. Lugli, and E. G. Scarpa, Spray deposition of organic semiconducting thin-films: Towards the fabrication of arbitrary shaped organic electronic devices, Organic Electronics, vol.11, issue.6, pp.1031-1038, 2010.
DOI : 10.1016/j.orgel.2010.02.018

K. Kim, Y. Kim, W. Kang, B. Kang, S. Yeom et al., Inspection of substrate-heated modified PEDOT:PSS morphology for all spray deposited organic photovoltaics, Solar Energy Materials and Solar Cells, vol.94, issue.7, pp.1303-1306, 2010.
DOI : 10.1016/j.solmat.2010.03.013

C. N. Hoth, R. Steim, P. Schilinsky, S. A. Choulis, S. F. Tedde et al., Topographical and morphological aspects of spray coated organic photovoltaics, Topographical and morphological aspects of spray coated organic photovoltaics, pp.587-593, 2009.
DOI : 10.1016/j.orgel.2009.02.010

H. Kempa, U. Fügmann, U. Hahn, G. Schmidt, and E. B. Meier, « On the applicability of different mass printing methods for the deposition of organic functional materials. », présenté à Organic Electronics Conference., Frankfurt am Main, 2006.

F. Aziz and A. F. Ismail, Spray coating methods for polymer solar cells fabrication: A review, Materials Science in Semiconductor Processing, vol.39, pp.416-425
DOI : 10.1016/j.mssp.2015.05.019

W. Nie, R. C. Coffin, J. Liu, Y. Li, E. D. Peterson et al., High efficiency organic solar cells with spray coated active layers comprised of a low band gap conjugated polymer, Applied Physics Letters, vol.100, issue.8, p.83301, 2012.
DOI : 10.1063/1.3687911

C. Girotto, D. Moia, and B. P. Rand, High-Performance Organic Solar Cells with Spray-Coated Hole-Transport and Active Layers, Advanced Functional Materials, vol.90, issue.1, pp.64-72, 2011.
DOI : 10.1002/adfm.201001562

R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles et al., Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition, Applied Physics Letters, vol.92, issue.3, p.33301, 2008.
DOI : 10.1063/1.2836267

H. Kipphan, Handbook of Print Media -Technologies and Production Methods | Helmut Kipphan | Springer

C. Bois, P. J. Dumont, A. Blayo, R. Vincent, and C. Nayoze, Evaluating the Effectiveness of Using Flexography Printing for Manufacturing Catalyst-Coated Membranes for Fuel Cells, Fuel Cells, vol.12, issue.2, pp.614-625, 2014.
DOI : 10.1002/fuce.201300245

J. Benson, C. M. Fung, J. S. Lloyd, D. Deganello, N. A. Smith et al., Direct patterning of gold nanoparticles using flexographic printing for biosensing applications, Direct patterning of gold nanoparticles using flexographic printing for biosensing applications, p.127, 2015.
DOI : 10.1186/s11671-015-0835-1

J. Olkkonen, K. Lehtinen, E. T. Erho, and . Flexographically, Flexographically Printed Fluidic Structures in Paper, Analytical Chemistry, vol.82, issue.24, pp.10246-10250, 2010.
DOI : 10.1021/ac1027066

N. G. Tsierkezos, U. Ritter, N. Wetzold, and A. C. Hübler, Disposable Multiwalled Carbon Nanotube Printed Film Electrochemical Determination of Acetaminophen, Dopamine, and Uric Acid, Analytical Letters, vol.6, issue.17, pp.17-2829
DOI : 10.1016/S0003-2670(97)00561-8

P. H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim et al., Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates, Nano Letters, vol.13, issue.8, pp.3864-3869, 2013.
DOI : 10.1021/nl401934a

Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen et al., @S-rGO interdigitated electrodes for flexible microsupercapacitors, Applied Physics Letters, vol.107, issue.1, pp.13906-2015
DOI : 10.1063/1.4926570

E. B. Secor and M. C. Hersam, Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics, The Journal of Physical Chemistry Letters, vol.6, issue.4, pp.620-626
DOI : 10.1021/jz502431r

A. L. Goff, M. Holzinger, and E. S. Cosnier, Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells, Cellular and Molecular Life Sciences, vol.136, issue.5, pp.941-952
DOI : 10.1007/s00018-014-1828-4

R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, and H. E. Unalan, Transparent and Flexible Supercapacitors with Single Walled Carbon Nanotube Thin Film Electrodes, ACS Applied Materials & Interfaces, vol.6, issue.17, pp.17-15434, 2014.
DOI : 10.1021/am504021u

A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and E. M. Chhowalla, Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells, Applied Physics Letters, vol.87, issue.20, pp.20-203511, 2005.
DOI : 10.1063/1.2132065

L. R. Shobin and S. Manivannan, Carbon nanotubes on paper: Flexible and disposable chemiresistors, Sensors and Actuators B: Chemical, vol.220, pp.1178-1185
DOI : 10.1016/j.snb.2015.06.030

L. Jabbour, M. Destro, D. Chaussy, C. Gerbaldi, N. Penazzi et al., Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries, Cellulose, vol.109, issue.1, pp.571-582
DOI : 10.1007/s10570-012-9834-x

P. S. and C. Huang, One-step spray processing of high power all-solid-state supercapacitors, Scientific Reports, vol.3, issue.8, p.2393, 2013.
DOI : 10.1038/srep02393

S. Azoubel and S. Magdassi, The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge, Carbon, vol.48, issue.12, pp.3346-3352, 2010.
DOI : 10.1016/j.carbon.2010.05.024

B. I. Kharisov, O. V. Kharissova, and U. O. Méndez, Methods for Dispersion of Carbon Nanotubes in Water and Common Solvents, Methods for Dispersion of Carbon Nanotubes in Water and Common Solvents, pp.109-114, 2014.
DOI : 10.1080/10601321003742097

H. Kato and A. Nakamura, Behavior of surfactants in aqueous dispersions of single-walled carbon nanotubes, RSC Adv., vol.180, issue.5, pp.2129-2136, 2014.
DOI : 10.1039/C3RA45181J

Y. Cheng, K. N. Sun, and A. M. Li, Different Carbon Nanotube Content and Dispersant on the Preparation of Fe<sub>3</sub>O<sub>4</sub> / CNTs, Advanced Materials Research, vol.1052, pp.79-85
DOI : 10.4028/www.scientific.net/AMR.1052.79

J. Yu, N. Grossiord, C. E. Koning, and E. J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, vol.45, issue.3, pp.618-623, 2007.
DOI : 10.1016/j.carbon.2006.10.010

T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich et al., Spectroscopy of Single- and Double-Wall Carbon Nanotubes in Different Environments, Spectroscopy of Single-and Double-Wall Carbon Nanotubes in Different Environments, pp.511-514, 2005.
DOI : 10.1021/nl050069a

V. Datsyuk, P. Landois, J. Fitremann, A. Peigney, A. M. Galibert et al., Double-walled carbon nanotube dispersion via surfactant substitution, Journal of Materials Chemistry, vol.44, issue.18, pp.18-2729, 2009.
DOI : 10.1155/2007/74769

URL : https://hal.archives-ouvertes.fr/hal-01339359

H. Kataura, . Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., « Optical properties of single-wall carbon nanotubes », Synthetic metals, pp.2555-2558, 1999.

N. Hamada and S. Sawada, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.68, issue.10, pp.1579-1581, 1992.
DOI : 10.1103/PhysRevLett.68.1579

A. G. Ryabenko, T. V. Dorofeeva, and G. I. Zvereva, UV???VIS???NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy, Carbon, vol.42, issue.8-9, pp.1523-1535, 2004.
DOI : 10.1016/j.carbon.2004.02.005

L. Jiang, L. Gao, and E. J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, Journal of Colloid and Interface Science, vol.260, issue.1, pp.89-94, 2003.
DOI : 10.1016/S0021-9797(02)00176-5

N. Grossiord, J. Loos, J. Meuldijk, O. Regev, H. E. Miltner et al., Conductive carbon-nanotube/polymer composites: Spectroscopic monitoring of the exfoliation process in water, Composites Science and Technology, vol.67, issue.5, pp.778-782, 2007.
DOI : 10.1016/j.compscitech.2006.01.035

Y. Shi, L. Ren, D. Li, and H. Gao, Yang, « Optimization Conditions for Single-Walled Carbon Nanotubes Dispersion, J. Surf. Eng. Mater. Adv. Technol, vol.03, issue.01, pp.6-12, 2013.

J. I. Paredes and M. Burghard, Dispersions of Individual Single-Walled Carbon Nanotubes of High Length, Langmuir, vol.20, issue.12, pp.5149-5152, 2004.
DOI : 10.1021/la049831z

J. Liu and W. A. Ducker, Self-Assembled Supramolecular Structures of Charged Polymers at the Graphite/Liquid Interface, Langmuir, vol.16, issue.7, pp.3467-3473, 2000.
DOI : 10.1021/la9911335

S. D. Feyter, A. Gesquière, M. M. Abdel-mottaleb, P. C. Grim, F. C. De-schryver et al., Scanning Tunneling Microscopy:?? A Unique Tool in the Study of Chirality, Dynamics, and Reactivity in Physisorbed Organic Monolayers, Scanning Tunneling Microscopy: A Unique Tool in the Study of Chirality, Dynamics, and Reactivity in Physisorbed Organic Monolayers, pp.520-531, 2000.
DOI : 10.1021/ar970040g

B. Vigolo, A. Pénicaud, P. Poulin, E. C. Coulon, and . Sauder, Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, pp.1331-1334, 2000.
DOI : 10.1126/science.290.5495.1331

J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul et al., Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates, Controlled deposition of individual singlewalled carbon nanotubes on chemically functionalized templates, pp.125-129, 1999.
DOI : 10.1016/S0009-2614(99)00209-2

T. Lee and H. Park, The effect of MWCNTs on the electrical properties of a stretchable carbon composite electrode, Composites Science and Technology, vol.114, pp.11-16, 2015.
DOI : 10.1016/j.compscitech.2015.03.020

P. Angelikopoulos and H. Bock, « Directed Self-Assembly of Surfactants in Carbon Nanotube Materials, J. Phys. Chem. B, vol.112, pp.44-13793, 2008.

F. W. Starr, J. F. Douglas, and S. C. Glotzer, Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology, The Journal of Chemical Physics, vol.119, issue.3, pp.1777-1788, 2003.
DOI : 10.1063/1.1580099

M. M. Cross, Relation between viscoelasticity and shear-thinning behaviour in liquids, Rheologica Acta, vol.11, issue.5, pp.609-614, 1979.
DOI : 10.1007/BF01520357

R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S. N. Kazi et al., An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes, An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes, p.151, 2014.
DOI : 10.1063/1.1580099

N. Singh, G. Chand, and E. S. Kanagaraj, Investigation of Thermal Conductivity and Viscosity of Carbon Nanotubes???Ethylene Glycol Nanofluids, Heat Transfer Engineering, vol.13, issue.9, pp.821-827
DOI : 10.1016/0008-6223(96)89470-X

B. Ruan and A. M. Jacobi, Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Research Letters, vol.7, issue.1, p.127, 2012.
DOI : 10.1186/1556-276X-7-127

Y. Ding, H. Alias, D. Wen, and R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, vol.49, issue.1-2, pp.240-250, 2006.
DOI : 10.1016/j.ijheatmasstransfer.2005.07.009

L. Tian, G. Ahmadi, Z. Wang, and P. K. , Transport and deposition of ellipsoidal fibers in low Reynolds number flows, Journal of Aerosol Science, vol.45, pp.1-18, 2012.
DOI : 10.1016/j.jaerosci.2011.09.001

R. Bourbonnais, D. Leech, and M. G. Paice, Electrochemical analysis of the interactions of laccase mediators with lignin model compounds, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1379, issue.3, pp.381-390, 1998.
DOI : 10.1016/S0304-4165(97)00117-7

A. Majcherczyk and C. Johannes, Oxidation of Polycyclic Aromatic Hydrocarbons (PAH) by Laccase of Trametes Versicolor, Enzyme and Microbial Technology, vol.22, issue.5, pp.335-341, 1998.
DOI : 10.1016/S0141-0229(97)00199-3

P. Champagne, M. E. Nesheim, and J. A. Ramsay, Effect of a non-ionic surfactant, Merpol, on dye decolorization of Reactive blue 19 by laccase, Enzyme and Microbial Technology, vol.46, issue.2, pp.147-152, 2010.
DOI : 10.1016/j.enzmictec.2009.10.006

D. Otzen, Protein???surfactant interactions: A tale of many states, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1814, issue.5, pp.562-591, 2011.
DOI : 10.1016/j.bbapap.2011.03.003

L. Giehm, C. L. Oliveira, G. Christiansen, J. S. Pedersen, and D. E. Otzen, SDS-Induced Fibrillation of ??-Synuclein: An Alternative Fibrillation Pathway, Journal of Molecular Biology, vol.401, issue.1, pp.115-133, 2010.
DOI : 10.1016/j.jmb.2010.05.060

C. Chuang, S. P. Sharma, J. Ting, H. Lin, H. Teng et al., Preparation of sea urchin-like carbons by growing one-dimensional nanocarbon on mesoporous carbons, Diamond and Related Materials, vol.17, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.diamond.2007.12.005

K. Ren, W. Dai, J. Zhou, J. Su, and E. H. Wu, Whole-Teflon microfluidic chips, Proceedings of the National Academy of Sciences, vol.108, issue.20, pp.20-8162, 2011.
DOI : 10.1073/pnas.1100356108

R. Kumar and V. Radhakrishnan, Haridoss, « Effect of electrochemical aging on the interaction between gas diffusion layers and the flow field in a proton exchange membrane fuel cell, Int. J. Hydrog. Energy, vol.36, pp.12-7207, 2011.

D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, vol.13, issue.8, pp.1741-1747, 1969.
DOI : 10.1002/app.1969.070130815

Z. Jr, Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers), J. Power Sources, vol.160, issue.2, pp.1156-1162, 2006.

C. Bois, « Fabrication de piles à combustible par procédés d'impression », 2012.

W. Ko, J. Su, C. Guo, S. Fu, C. Hsu et al., Highly conductive, transparent flexible films based on open rings of multi-walled carbon nanotubes, Thin Solid Films, vol.519, issue.22, pp.22-7717, 2011.
DOI : 10.1016/j.tsf.2011.05.064

W. Aloui, A. Ltaief, and E. A. Bouazizi, Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications, Superlattices and Microstructures, vol.64, pp.581-589
DOI : 10.1016/j.spmi.2013.10.027

Y. Cohen, J. Mathiesen, and E. I. Procaccia, Drying patterns: Sensitivity to residual stresses, Drying patterns: Sensitivity to residual stresses, p.46109, 2009.
DOI : 10.1103/PhysRevE.79.046109

R. Haddad, M. Holzinger, R. Villalonga, A. Neumann, J. Roots et al., Pyrene-adamantane-??-cyclodextrin: An efficient host???guest system for the biofunctionalization of SWCNT electrodes, Carbon, vol.49, issue.7, pp.2571-2578, 2011.
DOI : 10.1016/j.carbon.2011.02.049

M. M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, vol.20, issue.5, pp.417-437, 1965.
DOI : 10.1016/0095-8522(65)90022-X

K. and B. Azouz, Relation entre propriétés rhéologiques et structure microscopique de dispersions de particules d'argile dans des dispersions de polyméres, 2010.