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Summary in English

Introduction

Forest structure measurements are widely needed nowadays for both civil and military
applications, such as the estimation of the biomass and the detection of hidden targets in
forest environment. Radar remote sensing techniques show very promising performances at
both regional and global scales. They provide temporal �exibility and more dynamic forest
representations, complementing the ground-based measurements. Radars are able to operate
under any weather conditions and emit electromagnetic waves which interact with elements
having dimensions of the same magnitude as the wavelengths. In particular, if low frequency
microwave radiation is selected (≤ 2 GHz), the waves are able to penetrate within the forest
and be scattered by large elements such as the branches and the trunks. If the microwaves have
high frequencies, only the tree crowns contribute in the scattering events. Therefore, radars can
support a thorough forest investigation by examining all layers and providing sometimes data
well correlated with certain forest parameters.

Nevertheless, the acquisition of the forest radar signature is quite a challenging task. Forests
constitute complex media with diverse contributions to the wave backscattering, depending on
the radar con�guration and on the physical characteristics of the scatterers. As a consequence,
in order to characterize a forest, to identify its signature and to detect a hidden target within it,
a thorough understanding of the forest scattering is essential. The di�culties of this task are the
lack of an one-to-one correspondence between the forest parameters and the radar data and the
fact that forest radar observations rarely take into account the e�ect of the environment in real-
time. In this work, the use of statistical methods from Sensitivity Analysis and Metamodeling
are used on an electromagnetic scattering numerical model, in order to suggest an innovative way
to design radar campaigns over forests. A way which includes the organization and analysis of
the already obtained data to extract information on the scene, which will be subsequently used
in the design of the new signal to be emitted.

Radar and simulation studies of forested areas

Radar is believed to be the most appropriate tool for remote sensing observations of forested
areas. It can �see� through conditions such as haze, fog, rain and snow and there is no limitation
on where it can be located; on an airplane, a satellite, a ship, or placed on the ground. After
the introduction of the Synthetic Aperture Radar (SAR) principle especially, which improved
the azimuth resolution, more detailed observations like the ones necessary for the vegetation
investigation were possible. During the interactions of the radar EM waves with the scatterers,
there are three wave properties of interest. The intensity and the phase of the emitted wave and
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Summary in English

its polarization state. These properties and their variations are directly related to the scatterer's
characteristics, i.e. the range, the shape, the size, the orientation and the permittivity.
Therefore, information on these characteristics can be extracted from the received radar signal.
The main quantity describing how a radar target or surface feature scatters EM energy, is the
scattering matrix. In our work, since forest are complex media and distributed targets, we also
studied the backscattering coe�cients in all polarizations and used the Pauli decomposition
of the scattering matrix, to extract additional information on the scattering mechanisms. In
particular, under the Forward Scattering Alignment (FSA) convention adopted by our numerical
model, the three Pauli vector components correspond to the double bounces, the single bounces
and the volume scattering respectively.

To carry out our simulation studies, a scattering model applied to the electromagnetic study of
the forest backscattering called COSMO, was used. COSMO is a coherent and descriptive model.
Coherent since it calculates the complex responses providing information on both the amplitude
and the phase of the received signal and descriptive because it is based on the generation of the
trees and the forest. COSMO operates in the frequency domain and provides both the scattering
matrix and the polarization signature. Its results are extensively validated at P- and L-band, for
the temperate (maritime pine trees) forests we considered and for polarimetric purposes. For our
experiments, the generated simulation scenes were based on a 2-layer discrete model, containing
only trunks and primary branches. The data used to estimate and predict the dimensions and
the distributions of the forest elements were derived from allometric equations. The ground
was assumed plane and the permittivities were derived from widely validated empirical models.
The quantities we selected to study were the received electric �elds under all polarizations, the
backscattering coe�cients and the Pauli vector components. These were subsequently analyzed
to obtain the forest signature and each forest element's e�ect.

Sensitivity analysis of COSMO

The statistical methods of Sensitivity Analysis (SA) for numerical models are widely used in
the domain of Design of Experiments. They can facilitate the identi�cation of the factors which
a�ect signi�cantly the model overall and each one of its outputs and detect possible non-linear
e�ects and interactions between the inputs. The knowledge obtained from the SA can be
subsequently used for model analysis and reconsideration. In radar forest studies, empirical
sensitivity analyses are sometimes performed over real data. Nonetheless, since sensitivity
analyses of real data are based on the sparse datasets available and cannot be performed for
numerous di�erent scenarios, they are far from being thorough and complete. It is exactly where
the statistical SA methods applied on numerical models can complement these studies and
open the ground for a better understanding of the forest response. We applied these methods
on COSMO to identify its most important parameters, in order to study and analyze the
parameters e�ects in a next step. It was the �rst time, to the best of our knowledge, that such
a mathematical technique was applied to radar studies of forests. Our SA study of COSMO
aspired to provide new information on the dependence of the di�erent COSMO outputs on the
input factors. It aimed also to assist in designing an innovative way to perform radar cam-
paigns based on these information and utilizing the cognitive radar principle in an upcoming step.

A qualitative SA method called the Elementary E�ects (EE) method (or the Morris screening
method), was preferred. This method can determine model inputs that have e�ects which can be

x



considered as negligible, or linear and additive, or non-linear and involved in interactions with
other factors. It uses only a few model runs, calculates a number of incremental ratios, the EE,
for each input variable and studies their distributions. The information on the inputs e�ects
are extracted from the statistical measures of these distributions, the mean µ of the EE, their
standard deviation σ and the mean µ∗ of their absolute values. In COSMO we examined di�erent
cases concerning fully or quasi-periodical forests, having trunks only or trunks and branches. A
wide domain was investigated for each of the inputs under consideration. By performing this
SA on COSMO, we succeeded in assessing the importance of its main input factors, by their
e�ects on the several di�erent outputs. The frequency and the incidence angle of the emitted
signal were identi�ed as the most important COSMO parameters overall, as seen for example
in Fig. 1 for a forest of trunks only. They were followed by the age of the forest and the
permittivity of the vegetation, as the most important forest characteristics. On the contrary,
the radar height, the temperature and the ground synthesis parameters showed negligible e�ects
and can in most of the experiments be set at constant values to lighten COSMO, without largely
a�ecting its performances. The case of the phase di�erence where the positioning parameters
were of considerable importance was highlighted also. In addition, we discovered the fact that
the angle can sometimes be the most important factor of the model, showing highly non-linear
behavior and interactions with the frequency mostly - maybe due to the Brewster angle e�ect.
These new information on COSMO and forest radar studies that the SA came with, needed to
be further veri�ed. In saying so, distinct COSMO simulation studies for each important factor
were performed subsequently, in order to con�rm its importance and examine the extent of the
e�ect.
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Figure 1 � The aggregate screening results for all normalized outputs considered at the whole COSMO
frequency band [0.35, 2 GHz] and angles from 5◦ to 85◦ in the µσ-plane (left) and the µ∗σ-plane (right).
A periodical forest of trunks only was examined. High µ and/or µ∗ show high overall importance and high
σ shows strong non-linear e�ects. The frequency F and the angle of incidence θ are the most important
parameters, followed by the age A and the permittivity mv of the forest.

Analysis of the forest backscattering with COSMO

One of the objectives of this work was to organize the radar simulation datasets, analyze them
with respect to the scene changes and thus extract complementary information during radar
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observations of forests. The purpose of the analysis was not to fully exploit COSMO and go
deeply into the physics of the forest scattering, but rather to justify and study the results
of the SA and identify the exact e�ect of each parameter and forest element. In saying so,
�rstly to examine the in�uence on the output of the most important parameters (frequency,
angle, age and vegetation humidity) variations, the e�ects of the branches as well as that of
the target existence. The analyses were performed in both frequency and time domains - the
latter for the �rst time in radar studies of forests. The physical interpretation of the parameters
e�ects was assessed, whenever possible, in terms of the scattering mechanisms or the geometry
of the scene. In addition, appropriate radar con�gurations for an easier identi�cation of the
discovered e�ects were suggested, based on the analysis results. The present analysis would be
complemented later on by checking the applicability and the utility of the metamodel in the �rst
step, while using the con�gurations suggested here. So that the use of the metamodel would pro-
vide a fast and real-time analysis to be carried out during our future adaptive radar observations.

The analyses done on the COSMO results, concerned the backscattering coe�cients and the
components of the Pauli feature vector in frequency domain and the amplitude of the received
signal in time domain. In the frequency domain, the certain e�ects of the four important pa-
rameters were identi�ed. To wit, the way the quantities were a�ected by the change of the input
values and the behavior of the distinct scattering mechanisms. Also, the way the branches, the
target and the forest arrangement respond within the whole frequency spectrum was discovered.
In Fig. 2 for instance, we can see that the branches contribute mostly for frequencies higher
than 1 GHz to the co-polarizations and for all frequencies to the cross-polarization. The time
signal analysis resulted in the extraction of supplementary information on the forest geometrical
structure. As seen for example in Fig. 3, the number of the signal peaks, the duration of the
pulse and the peaks mutual distance correspond to the number of the tree lines in site dimension,
the length of the scene and the distance between the tree lines respectively. The discovery of
the certain e�ects which could be undoubtedly assigned to their corresponding sources, led us
to �de�ne� some matchings between them which could be subsequently used in the planning of
more focused radar campaigns. Speci�c frequencies or polarizations could be favored in each
observation, with respect to the e�ect under study. Last but not least, the Brewster angle e�ect
in COSMO simulations was also examined. The cases where it can be signi�cant, causing a big
di�erence between the HH and V V backscattering, were highlighted.
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Figure 2 � The backscattering coe�cients of the received signal in HH polarization (left), in V V (middle)
and in V H (right) for the cases of a forest with trunks only and the same trunks with branches added.
The branches contribute to the co-polarized signal after 1 GHz and to the cross-polarized one within the
whole spectrum. The incidence angle of the emitted wave was 40◦.
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Figure 3 � The amplitude of the received time signal from a fully periodical forest in HH had seven peaks
(right), corresponding to the trunk lines along the site dimension of the forest arrangement (left). The
length of the whole pulse is proportional to the site dimension of the scene and the space between the peaks
to the distance between the tree lines.

Surrogate modeling and approximation of COSMO

The second statistical method selected for our radar simulation studies is Surrogate Modeling (or
Metamodeling). The SA statistical method applied on COSMO, provided valuable information
on the model factors importances. These information were subsequently veri�ed, in order to
discover the exact parameters and forest elements e�ects, attribute their physical interpretations
and recommend the optimal con�gurations for their identi�cation during radar studies. The
latter aims to be integrated in the radar observation practice at an upcoming step, in order to
supplement it. Unfortunately, the necessary fast real-time analysis of the radar data is almost
impossible, even when using numerical codes like COSMO. It is the use of a metamodel that
can help us surpass this di�culty. A model like this, can approximate the numerical code
values in very low computational time, based on a few simulation results only. Therefore it
could substitute COSMO in the design of an adaptive, in real-time, radar observation strategy
for forests. In addition, the metamodel operating frame could serve in designing an innovative
adaptive strategy for future radar observations.

Among the various metamodeling techniques in practice today, the kriging interpolation
method was selected to be applied to the COSMO approximation. This method, apart from the
real values prediction with few simulation points, it provides also a measure of the prediction's
uncertainty. This uncertainty can be subsequently used to construct more e�cient adaptive meta-
models. In our studies we constructed a metamodel like this, which was sequentially reducing
the prediction uncertainty, each time we were adding a new point to the input sample. In ap-
proximating COSMO, we applied the metamodel to the backscattering coe�cients and the Pauli
vector components only. The metamodel succeeded in predicting the outputs corresponding to
the cases studied during the analysis of the previous chapter, with few simulations and very low
uncertainty. As seen for example in Fig. 4 and 5, the main variations of the V V backscattering
coe�cient were well approximated and the point where the change of the dominant scattering
mechanism takes place, was detected with a very high accuracy. Therefore, the possibility to
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detect the e�ects of the important inputs and the forest elements on the outputs was veri�ed.
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Figure 4 � The backscattering coe�cients in V V for the two forest arrangements having trunks only and
trunks with 10 branches each (left) and their kriging predictions based on 20 adaptively chosen frequency
points (right). The metamodel can provide a satisfactory approximation showing the overall behavior of
the σ0

V V values and the branches e�ect on it after 1 GHz, in less than 1/40 of the time required for the
full simulation.
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Figure 5 � The single and double bounces as represented by the �rst two Pauli components values (left)
and their kriging predictions based on 20 adaptively chosen simulation points (right). The metamodel
approximation provides the overall behavior of the two �rst Pauli vector components and also the frequency
where the dominant scattering mechanism changes from double to single bounces, with a certain but very
small error.

Cognitive radar principle in forest investigation

The cognitive radar is an innovative type of radar, envisaged by S. Haykin in 2006. Its main
principle is that a radar system has to adjust the emitted signal, with respect to the environment.
In saying so, each new signal to be emitted will be dependent on the previous radar returns
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and the results from their analyses. So far, no system like this has been materialized, due
to several technical limitations. In our work, we aspired to incorporate the cognitive radar
principle in a radar observation strategy, conceived using COSMO as the simulator, the two
statistical methods applied to it and the knowledge acquired in the previous chapters. The
analogies between the metamodel and the cognitive radar general principles, led us to �t the
cognitive radar idea to the global metamodel operating frame. The metamodel also assisted in
accelerating the analysis done on the radar responses, as it was proven capable of identifying
fast some of the scene characteristic e�ects. The results from the analysis chapter and the
suggested radar con�gurations served the processing of the received signal and the extraction
of the scene information, before designing the new signal to be emitted. The outcome was a
new adaptive-cognitive strategy for radar simulation studies, which could adjust the signal with
respect to the illuminated scene, in very low computational time. This proposed strategy, could
hopefully open the ground for reconsidering and improve the way radar observations are carried
out nowadays and to lead to an integrated realization of a cognitive radar.

The general �owchart of our proposed strategy based on COSMO simulations, can be seen
in Fig. 6. After the initial observation, we quickly approximate the forest response with the
metamodel and then proceed to the analysis step. There, intermediate objectives of the study can
be put, with respect to the conclusions already extracted. The corresponding radar con�gurations
are then selected and a new signal is designed and emitted, in order to update our knowledge on
the scene. As soon as our objective is achieved, the whole loop closes or the observations continue
until enough frequencies are emitted to construct the time signal. The strategy described above
was successfully applied to four di�erent examples, corresponding to the forest e�ects already
studied in the analysis chapter. An example of the application of this strategy can be seen in
Fig. 7 and 8. In the �rst �gure the initial predictions of the backscattering coe�cients and the
Pauli vector components are presented, which indicated the existence of branches. By adaptively
choosing new frequencies to be emitted along the narrowed frequency interval [0.8, 1.3 GHz], we
arrived at a �nal prediction for the Pauli vector components which provided the frequency where
the change of the dominant scattering mechanism took place with an accuracy of 99.82%. The
time needed to complete this adaptive investigation was less than 1/50 of the computational
time required for the whole investigation done in the analysis chapter.
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Figure 6 � The general �owchart representing the proposed adaptive-cognitive strategy, based on the meta-
model operating frame.
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Pauli vector components (right). The change of the dominant scattering mechanism observed in the right
plot, is a sign of the branches existence.
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Résumé en français

Introduction

Des mesures de la structure d'une forêt sont largement nécessaires aujourd'hui pour des
applications civiles et militaires, comme l'estimation de la biomasse et la détection de cibles
cachées dans l'environnement forestier. Les techniques de la télédétection par radar montrent des
performances très prometteuses à petite et grande échelle. Elles o�rent une �exibilité temporelle
et des représentations de la forêt plus dynamiques, en complément des mesures au sol. Les
radars sont capables de fonctionner dans toutes les conditions météorologiques et d'émettre des
ondes électromagnétiques qui interagissent avec des éléments ayant des dimensions du même
ordre de grandeur que les longueurs des ondes. En particulier, si des basses fréquences sont
sélectionnées (≤ 2 GHz), les ondes sont capables de pénétrer dans la forêt et d'être dispersées
par les grands éléments tels que les branches et les troncs. Si les ondes ont des fréquences plus
hautes, seules les couronnes des arbres contribuent à la di�usion. Par conséquent, les radars
peuvent permettre une exploration approfondie de la forêt, en examinant toutes les couches et
en fournissant parfois des données bien corrélées avec certains paramètres de la forêt.

Néanmoins, l'acquisition de la signature radar de la forêt est un travail très di�cile. Les forêts
constituent des milieux complexes avec des contributions diverses à la rétrodi�usion des ondes,
en fonction de la con�guration du radar et des caractéristiques physiques des di�useurs. En
conséquence, a�n de caractériser une forêt, d'identi�er sa signature radar et de détecter une cible
qui y serait cachée, une compréhension approfondie de la dispersion des forêts est essentielle.
Les di�cultés de cette tâche sont l'absence d'une correspondance claire entre les paramètres
de la forêt et les données radar ainsi que le fait que les observations radar des forêts prennent
rarement en compte l'e�et de l'environnement en temps réel. Dans ce travail, une combinaison
de méthodes statistiques de l'analyse de sensibilité et de métamodélisation est appliquée sur
un modèle numérique de di�usion électromagnétique, a�n de proposer une façon innovante de
concevoir des campagnes radar des forêts. Cette méthode inclut l'organisation et l'analyse des
données déjà obtenues pour extraire des informations sur la scène, puis leurs utilisations pour la
conception du nouveau signal à émettre.

Études de zones forestières par radar et simulations

Le radar est considéré comme l'outil le plus approprié pour les observations de télédétection des
zones forestières. Il peut � voir � à travers des conditions telles que la brume, le brouillard, la
pluie et la neige et il n'y a pas de limitation sur l'endroit où il peut être situé : sur un avion,
un satellite, un bateau, ou placé au sol. En particulier, après l'introduction du principe de
radar à synthèse d'ouverture (SAR), qui a amélioré la résolution en azimut, des observations
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plus détaillées comme celles nécessaires à la caractérisation de la végétation, étaient possibles.
Concernant les interactions des ondes électromagnétiques radar avec les di�useurs, il y a
trois propriétés d'intérêt d'une onde : son intensité, sa phase et son état de polarisation. Ces
propriétés ainsi que leurs variations sont directement liées à la dispersion caractéristique, c'est
à dire la distance, la forme, la taille, l'orientation et la permittivité du ou des di�useurs. Par
conséquent, des informations sur ces caractéristiques peuvent être extraites à partir du signal
radar reçu. La quantité principale décrivant la façon dont une cible radar ou une surface di�use
l'énergie électromagnétique est la matrice de di�usion. Dans notre travail, comme les forêts sont
des milieux complexes et des cibles distribuées, nous avons également étudié les coe�cients de
rétrodi�usion dans toutes les polarisations et utilisé la décomposition de Pauli de la matrice
de di�usion, pour extraire des informations supplémentaires sur les mécanismes de la di�usion.
En particulier, en vertu de la convention de l'alignement � dans le sens de l'onde � sélectionnée
pour notre modèle numérique, les trois composantes du vecteur de Pauli correspondent aux
double rebonds, aux simple rebonds et aux interactions de volume.

Pour réaliser nos études de simulation, un modèle cohérent et descriptif de dispersion ap-
pliquée à l'étude électromagnétique de la rétrodi�usion de forêt appelée COSMO, a été utilisé.
Cohérent car il calcule les réponses complexes fournissant alors des informations sur l'amplitude
et la phase du signal reçu et descriptif, car il est basé sur la génération des arbres et de la
forêt à partir d'un ensemble de paramètres géométriques et électromagnétiques bien identi�é.
COSMO fonctionne dans le domaine fréquentiel et fournit à la fois la matrice de di�usion et
la signature de polarisation. Ses résultats sont largement validés aux bandes P et L pour les
forêts tempérées (pins maritimes) que nous avons considérées. Pour nos expériences, les scènes
de simulation générées étaient basées sur un modèle discret à deux couches, ne contenant que des
troncs et des branches primaires. Les données utilisées pour estimer et prévoir les dimensions et
les distributions des éléments forestiers ont été obtenus à partir d'équations allométriques. Le sol
était supposé plan et les permittivités constantes dans chaque scène et dérivées de modèles em-
piriques largement validés. Les quantités que nous avons sélectionnées pour notre étude étaient
les champs électriques reçus sous toutes les polarisations, les coe�cients de rétrodi�usion et les
composantes du vecteur de Pauli. Celles-ci ont ensuite été exploitées pour obtenir la signature
de la forêt et de l'e�et de chaque élément de la forêt.

Analyse de sensibilité de COSMO

Les méthodes statistiques de l'Analyse de Sensibilité (AS) pour les modèles numériques sont
largement utilisés dans le domaine des plan d'expériences. Elles peuvent faciliter l'identi�cation
des facteurs qui a�ectent de manière signi�cative le modèle en general et chacune de ses sorties
et détecter les e�ets non linéaires possibles et les interactions entre les entrées. Les connaissances
acquises à partir de l'AS peuvent être ensuite utilisées pour l'analyse du modèle. Dans les études
radar des forêts des analyses de sensibilité empiriques sont parfois e�ectuées sur des données
réelles. Néanmoins, comme ces analyses s'appuient sur un ensemble de données disponibles
réduits elles sont loin d'être exhaustives et complètes. C'est pourquoi les méthodes statistiques
de l'AS appliquées sur les modèles numériques peuvent compléter ces études et ouvrir la voie à
une meilleure compréhension de la réponse radar de la forêt. Nous avons appliqué ces méthodes
sur COSMO pour identi�er les paramètres les plus importants, a�n d'étudier et d'analyser les
e�ets des paramètres dans une étape ultérieure. Ce fut la première fois, pour autant que nous
sachions, qu'une telle technique mathématique a été appliquée aux études radar des forêts.
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Notre étude de l'AS appliquée à COSMO aspire à fournir de nouvelles informations sur la
dépendance des di�érentes sorties de COSMO aux facteurs d'entrée. Elle vise également à aider à
la conception innovante des campagnes de radar grace à l'utilisation du principe du radar cognitif.

Une méthode qualitative de l'AS intitulée la méthode des E�ets Élémentaires (EE) (ou la
méthode de criblage de Morris), a été choisie. Elle permet de déterminer les entrées du modèle
qui ont des e�ets considérés comme négligeables, ou linéaire et additif, ou non-linéaire et impli-
qués dans les interactions avec d'autres facteurs. Elle utilise seulement quelques simulations du
modèle, calcule un certain nombre de ratios incrémentaux les EE, pour chaque variable d'en-
trée et étudie leurs distributions. Les informations sur les e�ets des entrées sont extraites des
mesures statistiques de ces distributions, la moyenne des EE, leur écart-type et la moyenne de
leurs valeurs absolues. Avec COSMO, nous avons examiné di�érents cas de forêts périodiques
ou quasi-périodiques, ayant des troncs seuls ou des troncs et des branches. Dans cette étude
un large domaine a été étudié pour chacun des paramètres d'entrée. En e�ectuant cette AS de
COSMO, nous avons réussi à évaluer l'importance des principaux facteurs d'entrée par leurs
e�ets sur plusieurs sorties di�érentes. La fréquence et l'angle d'incidence du signal émis ont été
identi�és comme les paramètres les plus importants de COSMO en général, comme on le voit
par exemple dans la Fig. 9 pour une forêt de troncs seulement. Ils sont suivis par l'âge de la
forêt et la permittivité de la végétation, comme les caractéristiques les plus importantes de la
forêt. Au contraire, la hauteur du radar, la température et les paramètres de synthèse de sol ont
montré des e�ets négligeables et peuvent dans la plupart des expériences être �xés à des valeurs
constantes a�n d'alléger COSMO sans en a�ecter signi�cativement ses performances. Le cas de
la di�érence de phases où les paramètres de positionnement avaient une importance considérable,
a été soulignée également. En outre, nous avons découvert le fait que l'angle peut parfois être le
facteur le plus important du modèle, montrant un comportement fortement non linéaire et les
interactions avec la fréquence la plupart du temps � en raison de l'e�et de l'angle de Brewster
peut-être. Ces nouvelles informations sur COSMO et les études radar des forêts apportées de
l'AS, doivent être véri�ées. À cette �n des simulations de COSMO distinctes pour chaque facteur
important ont été e�ectuées a�n de con�rmer leur importance et véri�er l'ampleur de l'e�et sur
la sortie.

L'analyse de la rétrodi�usion de la forêt avec COSMO

Un des objectifs de ce travail était d'organiser les données de simulation de radar, les analyser
par rapport aux changements de la scène et ainsi extraire des informations complémentaires au
cours des observations radar des forêts. Le but de l'analyse était de ne pas exploiter pleinement
COSMO et aller profondément dans la physique de la dispersion de la forêt, mais plutôt de
justi�er et d'étudier les résultats de l'AS et d'identi�er l'e�et exact de chaque paramètre et
chaque élément de la forêt. En disant cela, tout d'abord d'examiner l'in�uence sur la sortie des
paramètres les plus importants (la fréquence, l'angle, l'âge et l'humidité de la végétation) les
variations, les e�ets des branches, ainsi que celui de l'existence de la cible. Les analyses ont été
e�ectuées à la fois dans le domaine fréquentiel et le domaine temporel �celui-ci pour la première
fois dans les études de COSMO. L'interprétation physique des e�ets des paramètres a été évaluée,
chaque fois que possible, en termes de mécanismes de la di�usion ou de géométrie de la scène. En
outre, des con�gurations de radar appropriées pour une identi�cation plus facile des e�ets décou-
verts ont été proposés à partir des résultats d'analyse. La présente analyse devra être complétée
en véri�ant l'applicabilité et l'utilité du métamodèle développé lors de la première étape, tout
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Figure 9 � Les résultats agrégés du criblage pour toutes les sorties normalisées examinées à l'ensemble
de la bande de fréquence COSMO [0.35, 2 GHz] et les angles de 5◦ à 85◦ dans le plan µσ (gauche) et dans
le plan µ∗σ (droit). Une forêt périodique ne contenant que des troncs a été examinée. Des valeurs élevées
pour µ et/ou µ∗ montrent une importance globale élevée et pour σ montrent des e�ets non linéaires forts.
La fréquence F et l'angle d'incidence θ sont les paramètres les plus importants du modèle, suivis par l'âge
A et la permittivité mv de la forêt.

en utilisant les con�gurations proposées ici. L'utilisation du métamodèle devrait alors permettre
de fournir une analyse en temps réel réalisable au cours de futures observations radar adaptatives.

Les analyses e�ectuées sur les résultats de COSMO concernent les coe�cients de rétrodi�usion
et les composantes du vecteur de Pauli dans le domaine fréquentiel et l'amplitude du signal reçu
dans le domaine temporel. Dans le domaine fréquentiel, les e�ets de certains de ces quatre
paramètres importants ont été identi�és. À savoir, la façon dont les quantités sont a�ectées par
les changements des valeurs d'entrée et le comportement des mécanismes de di�usion distincts.
En outre, la façon dont les branches, la cible et l'arrangement de la forêt réagissent sur tout
le spectre de fréquences a été étudié. Fig. 10 par exemple, nous pouvons voir que les branches
contribuent aux co-polarisations surtout pour les fréquences supérieures à 1 GHz et pour toutes
les fréquences à la polarisation croisée. L'analyse du signal temporel a donné lieu à l'extraction
d'informations supplémentaires sur la structure géométrique de la forêt. Comme on le voit par
exemple Fig. 11, le nombre de pics du signal, la durée de l'impulsion et les distances entre pics
correspondent respectivement au nombre de lignes d'arbres en portée, à la longueur de la scène
et à la distance entre les lignes d'arbres. L'identi�cation de certains e�ets qui peuvent être,
sans aucun doute, attribuée à leurs sources correspondantes, nous a conduit à � dé�nir � des
couplages entre eux qui pourraient être utilisées par la suite dans la plani�cation des campagnes
de radar plus ciblées. Des fréquences ou des polarisations spéci�ques pourraient être favorisées
dans chaque observation, en fonction de l'e�et à étudier. Dernier point, mais pas le moindre,
l'e�et de l'angle de Brewster dans les simulations COSMO a également été examinée. Les cas où
il peut être important (identi�és par une grande di�érence entre la rétrodi�usion en HH et en
V V ) ont été mis en évidence.
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Figure 10 � Les coe�cients de rétrodi�usion du signal reçu en polarisation HH (à gauche), en V V (au
milieu) et en V H (à droite) pour les cas d'une forêt avec des troncs seulement et les mêmes troncs avec
des branches ajoutées. Les branches contribuent au signal copolaire après 1 GHz et en V H sur l'ensemble
du spectre. L'angle d'incidence de l'onde émise était 40◦.
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Figure 11 � L'amplitude du signal temporel reçu d'une forêt périodique en HH a sept pics (à droite),
correspondant aux lignes d'arbre de l'arrangement de la forêt en portée (à gauche). La longueur de l'en-
semble de l'impulsion correspond à la taille de la scène et la distance entre les pics à la distance entre les
lignes d'arbre.

La modélisation de substitution et l'approximation de COSMO

La deuxième méthode statistique choisie pour nos études de simulation de radar est la Mo-
délisation de Substitution (ou Métamodélisation). La méthode statistique de l'AS appliquée
sur COSMO, a fourni des informations précieuses sur les importances des facteurs du modèle.
Ces informations ont été véri�ées par la suite, a�n de découvrir les e�ets des paramètres
et des éléments forestiers, attribuer leurs interprétations physiques et de recommander les
con�gurations optimales pour leur identi�cation au cours des études radar. L'analyse rapide de
données radar en temps réel est presque impossible, même en utilisant des codes numériques
comme COSMO. En revanche l'utilisation d'un métamodèle qui peut nous aider à surpasser
cette di�culté. Un tel modèle approché permet d'obtenir des résultats à un très faible coût de
temps de calcul à partir de quelques résultats de simulation numérique exacte seulement. Par
conséquent, il peut remplacer COSMO dans la conception d'une stratégie d'observation radar
adaptative et temps réel des forêts De plus, le cadre de fonctionnement du métamodèle pourrait
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servir dans la conception d'une stratégie adaptative innovante pour les futures observations radar.

Parmi les di�érentes techniques de métamodélisation, la méthode d'interpolation krigeage a
été sélectionnée pour être appliquée à l'approximation de COSMO. Cette méthode, en dehors de
la prédiction de valeurs réelles avec quelques points de simulation, fournit également une mesure
de l'incertitude de la prédiction. Cette incertitude peut ensuite être utilisée pour construire des
métamodèles adaptatifs plus e�caces. Dans nos études, un tel métamodèle est proposé, il est
construit de manière manière séquentielle de façon à réduire l'incertitude de prédiction chaque
fois qu'un nouveau point est ajouté aux échantillons d'entrée. En rapprochant COSMO, nous
avons appliqué le métamodèle aux coe�cients de rétrodi�usion et les composantes du vecteur
de Pauli seulement. Le métamodèle a réussi à prédire, à partir de quelques simulations COSMO
et avec une très faible incertitude, les sorties correspondantes aux cas étudiés lors de l'analyse
du chapitre précédent Comme on le voit par exemple Fig. 12 et 13, les principales variations du
coe�cient de rétrodi�usion V V sont bien approximées et le point où le changement de mécanisme
de di�usion dominant a lieu est détecté avec une bonne précision. Par conséquent, la possibilité
de détecter les e�ets des paramètres importants et les éléments de la forêt sur les sorties a été
véri�ée.
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Figure 12 � Les coe�cients de rétrodi�usion en V V pour les deux arrangements forestiers ayant des
troncs seulement et les troncs avec 10 branches chacune (à gauche) et leurs prévisions de krigeage basé
sur 20 points de fréquence choisis d'une façon adaptative (à droite). Le métamodèle peut fournir une
approximation satisfaisante montrant le comportement global des valeurs σ0

V V et l'e�et des branches
après 1 GHz, en moins de 1/40 du temps requis pour la simulation complète.

Le principe du radar cognitif dans l'étude des forêts

Le radar cognitif est un type innovant de radar, envisagé par S. Haykin en 2006. Son principe
essentiel est qu'un système radar doit ajuster le signal émis à son environnement. En disant
cela, chaque nouveau signal à émettre dépendra des échos radar précédents et des résultats
de leurs analyses. Jusqu'à présent, aucun système de ce genre n'a été réalisé, en raison de
plusieurs limitations techniques. Dans notre travail, nous aspirions à intégrer le principe du radar
cognitif dans une stratégie d'observation radar en utilisant COSMO comme simulateur, les deux
méthodes statistiques appliquées et les connaissances acquises dans les chapitres précédents.
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Figure 13 � Les rebonds simples et doubles, représentés par les deux premières valeurs de composants
du vecteur de Pauli (à gauche) et leurs prévisions de krigeage basées sur 20 points de simulation choisis
d'une façon adaptative (à droite). L'approximation de métamodèle fournit le comportement global des deux
premières composantes du vecteur Pauli et également la fréquence à laquelle le mécanisme de di�usion
dominant change du double rebonds au rebonds simples, avec une certaine mais petite erreur.

L'analogie entre les principes généraux du métamodèle et ceux du radar cognitif nous ont
amenés à adapter l'idée de radar cognitif sur le cadre de fonctionnement de métamodèle.
Ce dernier a également contribué à l'accélération de l'analyse e�ectuée sur les réponses de
radar, comme il a été prouvé par sa capacité à identi�er rapidement une partie des e�ets
caractéristiques de la scène. Les résultats du chapitre de l'analyse et les con�gurations radar
proposées ont servi le traitement du signal reçu et l'extraction de l'information de la scène, avant
de concevoir le nouveau signal à émettre. Le résultat a été une nouvelle stratégie adaptative-
cognitive pour les études de simulation radar, ce qui pourrait permettre de dé�nir le signal
radar par rapport à la scène étudiée en un très faible temps de calcul. La stratégie proposée
pourrait préparer, espérons-le, le terrain pour réexaminer et améliorer la façon dont les ob-
servations radar sont réalisées aujourd'hui et conduire à la réalisation intégrée d'un radar cognitif.

L'organigramme général de notre stratégie proposée sur la base de simulations de COSMO,
est présenté Fig. 14. Après l'observation initiale,la réponse de la forêt est rapidement approchée
via le métamodèle, puis nous passons à l'étape d'analyse. Là, les objectifs intermédiaires de
l'étude peuvent être dé�nis en fonction des conclusions déjà extraites. Les con�gurations radar
correspondantes sont alors sélectionnées et un nouveau signal est conçu et émis, a�n de mettre
à jour nos connaissances sur la scène. Une fois l'objectif atteint soit le processus stoppe soit les
observations continuent jusqu'à ce que su�samment de fréquences soient émises pour construire
le signal en temps. La stratégie décrite ci-dessus a été appliquée avec succès à quatre exemples
di�érents, correspondant aux e�ets de la forêt déjà étudiés dans le chapitre de l'analyse. Un
exemple de l'application de cette stratégie est présenté Figs. 15 et 16. Dans la première �gure,
les prévisions initiales des coe�cients de rétrodi�usion et les composantes du vecteur de Pauli
sont présentées, ce qui indique l'existence de branches. En choisissant de manière adaptative
des nouvelles fréquences à émettre dans l'intervalle [0.8, 1.3 GHz], nous sommes arrivés à une
prédiction �nale pour les composantes du vecteur de Pauli qui a fourni la fréquence à laquelle
le changement du mécanisme de di�usion dominant a eu lieu avec une précision de 99.82 %. Le

xxv



Résumé en français

temps nécessaire pour achever cette estimation adaptative était inférieure à 1/50 du temps de
calcul nécessaire pour l'ensemble de l'estimation e�ectuée dans le chapitre de l'analyse.
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Figure 14 � L'organigramme représentant une réalisation du radar cognitif, basé sur la boucle fermée du
métamodèle.
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Figure 15 � Les prédictions de métamodèle initiales pour les coe�cients de rétrodi�usion (à gauche) et
les deux premières composantes du vecteur de Pauli (à droite). Le changement du mécanisme de di�usion
dominant observé dans le graphique de droite est un signe de l'existence de branches.
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du mécanisme dominant arrive est prédit avec une précision d'environ 99.8 %, même si seulement 8 ré-
sultats de simulation ont été utilisés.
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Introduction

Timely and accurate measurements of forest structure are increasingly needed across large
areas of scienti�c - and not only - interest. They can support a variety of activities either civil
such as the estimation of the forest canopy height and the above ground biomass, or military
such as the detection of targets in forest concealment. In particular, the biomass observation
is a key parameter in forestry and ecology nowadays, as it can help quantifying the carbon
emissions resulting from deforestation and land-use changes. However, ground-based forest
inventories1 - the most direct way to obtain information on forests - are limited in their spatial
extent, expensive and di�cult to perform. Fortunately, remote-sensing-based techniques for
obtaining comprehensive measurements of forest structure, showed very promising performances
at both regional and global scales. In addition, their temporal �exibility allows the planning
and the accomplishment of several observations to examine the natural and human-induced
changes, thus providing a more dynamic forest representation which was not feasible before. It
is currently widely believed that remote sensing is the most practical tool for detailed studies of
forested areas [Behan and Woodhouse, 1999].

Several types of remote sensing data, including aerial photography, radar and laser data
have been used over forests to detect, identify, classify, evaluate and measure various forest cover
types and their changes [Stellingwerf and Hussin, 1997]. The di�erent remote sensing techniques
can be used depending on the level of detail required and the extent of the area under study.
As far as large areas are concerned for example, satellite imagery has been shown e�ective for
forest classi�cation and consequently mapping [Stellingwerf and Hussin, 1997]. Optical remote
sensing was until recently the most commonly applied method. Its most recent implementation,
the laser sensor system called Lidar (light detection and ranging), can even measure the tree
height, and in some cases detect di�erent types of vegetation, i.e. trees, grass, shrubs and
herbacies plants and delineate them [Jakubowski et al., 2013]. However, optical remote sensing
has some important limitations starting with the inability to penetrate clouds and rain. In
addition, they can acquire only foliar biomass information [Ferrazzoli and Guerriero, 1995] and
they are not always capable of di�erentiating between various forest cover types of interest
[Stellingwerf and Hussin, 1997]. On the other hand, radar sensors are able to operate under any
weather conditions, and their waves can penetrate into the lower forest layers, thus providing
supplementary information.

Since 1990 and the comprehensive work of Ulaby and Elachi (see [Ulaby and Elachi, 1990]),
radar remote sensing became from a promising tool for earth observation, a widely applied
technique supporting international global campaigns like the upcoming BIOMASS mission (see

1Destructive measurements performed on location by forestry scientists. A detailed protocol for this type of
measurements can be found in [Porté et al., 2000].
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[Le Toan et al., 2011]). Due to their nature, electromagnetic waves can interact with elements
having dimensions of the same magnitude as their wavelengths. In particular, when microwaves
(frequencies from 300 MHz and higher) are emitted, the wavelegths λ ≤ 1 m are of the same
order as the forest elements' dimensions. If low frequency is selected, i.e. less than 2 GHz,
the waves are able to penetrate within the forest and be scattered by large elements such as
branches and trunks, which constitute the major part of the biomass [Le Toan et al., 1992].
If the radiations have a frequency over 2 GHz, no penetration occurs and only the top part
of the tree crowns plays a role in the scattering events. Therefore, radar remote sensing can
facilitate a thorough investigation of a forest by examining all of its layers and in several cases
it provides data showing good correlation with certain forest parameters [Le Toan et al., 1992].
The forest signature acquired during radar observations, can be subsequently used for both
the military and civil applications desired: detection of targets concealed by forest, or forest
biomass estimation. So, the interest of radar investigations to study the forest, is well established.

Nevertheless, the acquisition of the forest signature is quite a challenging task. Forests
constistute complex media, including several di�erent types of scatterers of various dimensions
and orientations. This results in diverse contributions to the wave backscattering, depending on
the radar con�guration and the physical characteristics of the scatterers. Previous studies have
shown that these contributions can result in a signi�cant alteration of the emitted waveform, as
roughly depicted in Fig. 1. The emitted signal se (t) is highly perturbed by the forest, resulting
in the transmitted signal st (t). In a typical monostatic con�guration in addition, the signal
received by the radar will be altered a second time on its way back through the forest again. As
a consequence, in order to characterize a forest, to identify its signature and to discover a hidden
target within it, a thorough understanding of this modi�cation is essential. However, since forest
are complex media, there is rarely a one-to-one correspondence between their parameters and
the data obtained by the radar [Bucci and Isernia, 1997]. For this reason, the radar observation
campaigns have to be carefully designed and conducted.

Figure 1 � A radar emits the signal se (t) which the forest strongly modi�es to st (t), before it reaches the
target. A thorough understanding of the forest modi�cation is essential, to identify the waveform of the
transmitted signal st (t) and then extract information from its response.

Radar scientists, in order to deal with the complicated problem of identifying the forest
modi�cation of the signal and each element's behavior, perform several investigations of the same
scene. These investigations are conducted under di�erent radar con�gurations (frequency, angle
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and polarization), at di�erent times and often under unalike weather conditions. This leads
to quite di�erent datasets di�cult to be analyzed and compared, as e.g. studies on the angle
e�ect show (see [Mladenova et al., 2013]). In addition, there exist constraints which obstruct an
optimal design of the radar forest campaigns. On the one hand, technical issues as the critical
antenna size of the radar, the disturbing ionospheric e�ects, the unauthorized low frequencies
for earth observation [Dechambre et al., 2003] and the extremely high cost of radar campaigns.
On the other hand, forest radar observations almost never take into account the e�ect of the
environment in real-time and in addition they provide a huge amount of data whose interpre-
tation is rarely simple [Woodhouse, 2005]. Moreover, this interpretaton apart from di�cult can
be sometimes even misleading, as shown in [Brigui, 2010] regarding the construction of a SAR
image. It is thus more than obvious that, in order to identify the way forests modify the incident
electromagnetic waves before arriving back to the receiver or reaching a hidden target (see
Fig. 1), more sophisticated and innovative strategies have to be developed. Strategies based on
comprehensive studies of the di�erent forest elements behavior, when illuminated by microwaves
and which could take into account the information of the scene under study, acquired in real-time.

In the present dissertation, a sequential and adaptive way to study a forest
using radar techniques to better characterize it, is proposed. This method is
based on the use of COSMO, a numerical model for forest backscattering (see
[Thirion et al., 2006]), and mathematical tools extensively employed in the Design
of Experiments. The numerical model on the one hand, aims to substitute the
real radar experiments, by providing simulation data for a multitude of scenarios
- combinations of factor values - even for cases not observed in nature. The use
of the mathematical tools on the other hand, intends to both assist in organizing
and analyzing the vast amount of simulation data obtained and to accelarate
and facilitate the model operation, via a surrogate model. Furthermore, the
sequential design of the surrogate model could serve as a frame for incorporating
the similarly operating cognitive radar principle, in our adaptive strategy. This
principle addresses the idea that the waveform emitted from a radar at time t + 1
will be dependent on the radar returns at times t, t− 1, . . . and on the analysis that
has been done on these returns [Haykin, 2006].

Since radar campaigns are usually designed without taking into account the
e�ect of the environment under study, a certain waveform is generated and emitted
corresponding to the technical requirements and a prede�ned objective. During
the observation, several pulses are sent towards the scene, all of the same initial
con�guration. The response and the knowledge extracted from it are not involved in
the emission procedure. What Haykin suggested, was to realize a radar which could
be able to analyze the received signal and send the feedback to the transmitter.
This idea has not been yet applied, to the best of our knowledge, to any radar
studies. In this work, we combined the cognitive radar idea with the similar one
of the sequential statistical procedures, i.e. the observations are analyzed before
the next input combination is selected [Kleijnen, 2008], to design and attempt
an elementary cognitive radar observation strategy. In doing so, we aspire both
to open the ground for reconsidering the way radar observations are performed
and to introduce mathematical tools which would organize these observations and
facilitate the analysis of their results, while keeping the physics of the phenomenon.
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Introduction

This dissertation begins in Chapter 1 with the presentation of the state of art of forest radar
measurements, in both real life experiments and in model simulations. The most common ways
the forests are modeled and generated in simulation experiments are presented, together with
the speci�cations for the ground characteristics and the dielectric constants of the elements. The
chapter closes with the presentation of COSMO, the numerical model which will be employed
in the simulations studies throughout this work.

Continuing in Chapter 2, the Sensitivity Analysis methods for assessing sensitivity to a
model's input factors are reviewed. In particular, the qualitative Screening method which will be
applied to our numerical model, is thoroughly analyzed and tested on an appropriate function.
Next, the method is applied for a �rst time to COSMO, in order to examine the sensitivity of
the outputs on most of the model numerical inputs, for certain scenarios. The most important
model factors are thus identi�ed and the knowledge obtained on the model, can be subsequently
exploited and used in the upcoming chapters.

Sensitivity Analysis came up with some additional information concerning COSMO and the
forest radar signature. So in Chapter 3, in order to verify these information, a detailed analysis is
carried out on several forest scenes. The e�ects of the most important radar parameters and the
various forest components on the outputs are examined, by trying di�erent input combinations.
In addition, their physical interpretation is provided, whenever possible, and con�gurations
that could favor the investigation of each e�ect are proposed. During the aforementioned
analyses, the Brewster angle e�ect on the backscattering appeared as a signi�cant one and so it
is examined separately at the end of this chapter.

Chapter 4 introduces the second statistical method to be used, Surrogate Modeling.
Surrogate modeling is a way to construct models of other models, which are in a next step used
to analyze, approximate and redesign the original models. The kriging method quali�ed for the
treatment of our problem, is described in details and validated on the approximation of two toy
functions. Then its applicability to the COSMO analysis conducted in Chapter 3, is examined.
Where the metamodel can be used in substituting COSMO, to accelerate this analysis, and
where it cannot. The last part of the chapter includes a discussion about the drawbacks of this
prediction method and the limitations of its capabilities.

The main matter of this work closes in Chapter 5. This chapter addresses the attempt to
integrate the cognitive radar principle in the design of an innovative sequential radar observation
strategy. This attempt was achieved using the mathematical techniques and their results
already introduced in the previous chapters. In particular, the surrogate model from which
it borrows the operating frame and the analysis conclusions. The latter are used to identify
and interpret the obtained information in real-time and to select the appropriate con�guration
for our purposes. Our sequential strategy is presented in details before being applied to four
di�erent examples, concerning di�erent objectives of a forest investigation.

The last chapter of the dissertation is just concluding the main points treatised and provides
a list of perspectives for future work. By reviewing the di�erent steps of the project together, as a
whole, the main ideas and the interconnections are highlighted. The constraints and de�ciencies
of our method are also mentioned, since they suggest - together with the intuition acquired on
the subject - the list of the possible short and long-term perspectives.
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1.1 Introduction

The objective of this �rst chapter of the dissertation is not to go deeply into the way radar
observation and simulation investigations are conducted, but rather to recall the key elements.
So that an appropriate background is constructed, to better understand the rest of this work.
For more details, the interested reader is invited to refer to the books from the general literature
on radar systems, like [Skolnik, 1980] and [Peebles, 1998]. Radar polarimetry and its main tools
are explained. Then, the most common ways forested areas can be modeled for microwave
simulation practice, are reviewed. How to describe the vegetation and the ground and also how
to evaluate the corresponding permittivities. Finally, our numerical model for the simulation
studies of forest, COSMO, is described in details. In saying so, the way it generates the medium,
the assumptions made and the way calculations of the forest backscattering are performed.
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Chapter 1. Radar and simulation studies of forested areas

The chapter closes with the presentation of both unprocessed and processed simulation results,
coming from a simple COSMO experiment.

1.2 Basics of radar remote sensing

Let us start by de�ning Remote Sensing , which �is the science and art of obtaining information
about an object, area, or phenomenon through the analysis of data acquired by a device that is
not in contact with the object, area, or phenomenon under investigation� [Lillesand et al., 2004].
It can be performed by using optical, radar or acoustic sensors - which make use of electro-
magnetic (EM) waves the �rst two and acoustic waves the latter - depending on the desired
applications. For the investigation of forested areas, which is the subject of our work, optical
and radar remote sensing are employed. In what follows, we are going to focus only on radar
techniques which provide some key advantages explained below.

Radar technology, which was mainly introduced during the World War II for military
target detection, is nowadays widely used in vegetation observations. The latter applications
emerged in the last quarter of the 20th century and mostly because of the signi�cant progress
carried out in radar techniques. In particular, detailed land observations resulted from the
development of the Synthetic Aperture Radar (SAR) technology and the polarimetric radars,
which will be presented later on. These radar systems, when operating at low frequencies from
350 − 2000 MHz, represent a promising tool for earth observation [Ulaby and Elachi, 1990].
Nevertheless, despite the big steps forward already accomplished in the �eld, there are still
problems to be solved as the critical antenna size of the radar, the disturbing ionospheric e�ects
and also the unauthorized low frequencies for earth observation [Dechambre et al., 2003]. In
addition, SAR instruments are particularly heavy, power consuming and data proli�c and also,
as we will see later on, the interpretation of their data is rarely simple [Woodhouse, 2005].

The term Radar , which stands for Radio Detection And Ranging, refers to an electronic
device employed for the detection and location of objects usually called targets. This device
is designed to receive and analyze EM waves re�ected from these potential targets, in order
to determine their existence and exact position (range). A radar can act as an active system,
which means that it does not require any external illumination and it can be engineered to �see�
through conditions impervious to optical sensors, such as darkness, haze, fog, rain and snow.
In addition, there is almost no limitation on where it can be located, as it can be mounted on
an airplane, a satellite, a ship and of course placed on the ground. Last but not least, is the
fact that it can monitor repeatedly large areas over a period of time, giving better resolutions
than the optical instruments. Radar seems therefore to be the most appropriate tool for remote
sensing applications, to study the responses of objects of interest and acquire information on
their characteristics.

There exist various types of radars with respect to their characteristics, but two main
classi�cations stand for all of them. The �rst distinguishes the active radars which radiate
their own signal to be re�ected on the target, from the passive ones which act only as receivers
of re�ected waves. The second classi�cation concerns the positioning of the transmitting and
receiving antennas. If the same antenna is occupied for both transmission and reception the
radar is called monostatic, while it is called bistatic if two distinct antennas are needed, one for
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1.2. Basics of radar remote sensing

Figure 1.1 � A monostatic radar, where just one antenna is used for both transmitting (Tx) and receiving
(Rx) (left) and a bistatic radar with two distinct antennas (right).

the transmission and the other for the reception of the EM waves (see Fig. 1.1). From now on,
we suppose that the radar under consideration is an active and monostatic one, emitting in the P
and L low frequency bands (see Table 1.1). The frequencies of these bands, as already mentioned
in the Introduction of the dissertation, are widely employed in radar forest observations.

Radar band Frequency (GHz) Wavelength in free space (cm)

P-band2 0.3 - 1 100 - 30
L-band 1 - 2 30 - 15
S-band 2 - 4 15 - 7.5
C-band 4 - 8 7.5 - 3.8
X-band 8 - 12 3.8 - 2.5
Ku-band 12 - 18 2.5 - 1.7
K-band 18 - 27 1.7 - 1.1
Ka-band 27 - 40 1.1 - 0.75
V-band 40 - 75 0.75 - 0.4
W-band 75 - 110 0.4 - 0.27
mm-band 110 - 300 0.27 - 0.1

Table 1.1 � The standard Frequency Letter-Band Nomenclature for EM radiation, used for radar appli-
cations.

1.2.1 The SAR principle

The radar platform moves along the azimuth direction, with the antenna generally focused on
a direction orthogonal to the azimuth: range (or slant-range). If the direction of observation is
along the platform nadir (i.e. straight below the platform), the system is de�ned as boresight.
On the other hand, when the direction is inclined with an angle θ (θ is called look angle) from
the zenith, as seen in Fig. 1.2, it is de�ned as side-looking (for airborne radars it is called side
looking airborne radar or SLAR). A side-looking solution is conventionally to be preferred to

2This band is known as the Ultra High Frequency (UHF) band in the IEEE standard letter designation. The
letter P stands for Previous, since early British radars were using this band.
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boresight, for the rejection of range ambiguities. The �rst simple radar systems were called Real
Aperture Radars (RAR) and they were usually sending a pulse of a temporal length τ and a
frequency bandwidth BW . A major disadvantage of these radars, was the poor resolution in
both the range and azimuth directions. In this basic arrangement, the resolution in range δr is
proportional to the length of the pulse or inversely proportional to the bandwidth:

δr =
cτ

2
=

c

2BW
(1.1)

where c is the speed of light in vacuum. Two scatterers can be separated if their distance is
bigger than half the duration of the pulse, otherwise the two pulses will overlap each other.
In order to achieve a better range resolution and distinguish nearby targets, the bandwidth
must increase, leading to very short e�ective pulses. This problem was solved with the
introduction of a frequency modulation which increases the bandwidth, resulting thus in a
higher resolution, without decreasing the pulse duration. The pulse obtained like this is called
a chirp [Curlander and McDonough, 1991].

Figure 1.2 � The geometry concerning the SLAR radar observations. Image taken from:
http://www.radartutorial.eu/20.airborne/ab06.en.html

Concerning the azimuth resolution now, all the points illuminated by the beam-width are
collected together, hence they are inseparable. So the azimuth resolution δa is dependent on the
beam-width (or aperture) da of the antenna:

δa =
λ

da
· r (1.2)

where λ is the wavelength and r the range. When these radars are mounted to airborne or
spaceborne platforms, with a range varying from a few kilometers up to 500 km, they show
very poor azimuth resolution, as the antenna size also cannot exceed a few meters. It was
the introduction of the Synthetic Aperture Radar (SAR) principle that improved the azimuth
resolution [Skolnik, 1980], allowing more detailed observations like the ones necessary for the
vegetation investigation. The basic idea of SAR is that a point on the ground is illuminated
by the antenna not just with one single pulse, but with a sequence of pulses (see Fig. 1.3). If
all the acquisitions for the same point are collected, it will be similar to having performed a
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1.2. Basics of radar remote sensing

single acquisition with an antenna array with length equal to the whole footprint. Thus, the
azimuth resolution becomes invariant under the range changes and proportional to the antenna
length δa = da/2. Conversely to (1.2), the resolution improves when the e�ective dimension of
the antenna is reduced. This seems to contradict common sense, since a smaller antenna has
a larger beam width (hence a larger footprint). In actual fact, when the aperture decreases,
the footprint increases and with it the synthetic length of the antenna (see Fig. 1.3). As a
consequence, the array becomes larger and the �nal beam-width sharper.

Figure 1.3 � The SAR principle: the radar emits a sequence of pulses to illuminate the scene and combine
these acquisitions to reconstruct the signal, which would have been obtained by a several times longer
antenna. The SAR works similarly to a phased array, but instead of the several antenna elements of
a phased array, SAR uses only one antenna in time-multiplex. The di�erent geometric positions of the
antenna elements are resulting from the move of the platform where the antenna is mounted. Image taken
from: http://www.radartutorial.eu/20.airborne/pic/sar_principle.print.png

1.2.2 Polarimetric SAR radars

Apart from the intensity and the phase of the emitted �eld, the alignment of the electric �eld
in the perpendicular plane to the propagation direction, the so-called polarization state of the
wave, can be changed also during the interactions with the scatterers. In the forest case the
types of interactions are the scattering through the forest and the re�ection on the ground. The
polarization information thus contained in the backscattered wave, is directly related to the
scatterer's geometrical structure i.e. shape, size orientation and to the geophysical properties
like the dielectric constant. These information can be valuable in estimating the forest ecological
characteristic and also in detecting potential man-made hidden targets, due to the contrast
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between the forest and the target scattering. However, as already mentioned, the link between
the measured polarimetric data and their interpretation is not obvious, because it depends on
the tree species, structure, acquisition con�guration, etc. As the structure information is very
important, any additional information can be useful to learn the characteristics of clutter, and
the foliage scattering that a�ects the signal propagation. For this to be accomplished, numerous
observations under di�erent conditions, concerning both the radar con�guration (e.g. di�erent
angles) and the forest parameters (e.g. with or without branches, di�erent humidity values)
are necessary. Nevertheless, till nowadays radar technology does not support these require-
ments, either because of the cost of radar campaigns or because of technical limitations. And it
is exactly this gap that numerical models can �ll and help as extending our knowledge on forests.

Despite the fact that the frequency modulation and the SAR principle solved the problem
of the poor resolution of primary radars, reliable vegetation observations could not have been
possible before the appearance of the polarimetric radars. Traditional radars were transmitting
and receiving signals with the same polarization3 states i.e. the same alignments of the electric
�eld in the perpendicular plane to the direction of the wave propagation. The main disadvantage
of this kind of radars is that they cannot facilitate the determination of the complete vector
nature of the scattered signal. If the scattered signal is depolarized because of multiple or
anisotropic scattering, there is a loss of information regarding the target. In certain cases
when the two polarizations states are orthogonal, the target can even be completely missed by
the radar. On the other hand, polarimetric radars can transmit and receive signals with two
orthogonal polarization states. Thus, it o�ers the possibility to determine and/or distinguish
di�erent types of targets, as for instance di�erent structures in an environment (vegetation,
constructions, etc). The most common polarization basis consists of the horizontal linear (H)
and the vertical linear (V) polarizations depicted in Fig. 1.4. Orthogonal circular polarizations
are also in use e.g. in weather radars, but we are only interested in linear ones. Whatever
polarization a signal has, it can be decomposed into two di�erent signals using the polarization
states of the selected basis.

The polarization state of these incident electromagnetic waves can be changed as they pass
through the medium between the radar and the target, as well as when they strike the target.
This may cause the scattered waves to have completely di�erent polarization state than that
of the incident ones. Then a polarimetric radar can measure four di�erent signals, the co-
polarized HH and VV and the cross-polarized HV and VH, where the �rst letter refers to the
polarization of the received wave and the second to that of the transmitted one. Note that there
are single polarized radars, capable to treat just one of the above-mentioned signals each time,
dual polarized that can treat two of them and fully polarized radars that can deal with all these
four signals. The latter ones are the most useful as the measurement of all co-polarized and cross
polarized signals facilitates the complete characterization of the scatterer, since any change in
the polarization state depends upon the characteristic features of the scene under study. A radar
receiving and processing the scattered waves can determine object features such as the size, the
shape and the dielectric properties, by comparing the properties of the received waves with these
of the emitted ones4. The primary description of how a radar target or surface feature scatters
EM energy is given by the scattering matrix , which in full polarimetry takes the form:

3Polarization is a property of transverse waves and it describes in which way the oscillations are taking place.
For EM waves in particular, it traces the path of the tip of the electric �eld vector.

4This is the object of the so-called Radar Polarimetry.
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1.2. Basics of radar remote sensing

Figure 1.4 � The oscillation of the electric �eld vector in horizontal linear and vertical linear polarizations.
These two polarizations form a basis and thus, all possible signal polarizations can be expressed by these
two.

[S] =

(
SHH SHV
SV H SV V

)
(1.3)

The elements of [S] are the four complex amplitudes Spq = |Spq|eiφpq . Apart from these ampli-
tudes, the relative phases φpq − φmn are also of interest in polarimetry. The scattering matrix
describes the transformation of the two-dimensional incident plane wave vector Ei into the scat-
tered one Es, performed by the scatterer and in the far �eld approximation is given by the
equation:

Es =
e−ik0r

r
[S]Ei ⇔

(
Esv
Esh

)
=
e−ik0r

r

(
SHH SHV
SV H SV V

)(
Eiv
Eih

)
(1.4)

where r is the distance between the target and the radar (range) and k0 = 2π/λ the wavenum-
ber of the incident wave. For [S] to be measured, the radar has to transmit in both H and V
polarizations and also receive in both of them (fully polarimetric systems are needed)5. Hav-
ing measured this matrix, the strength and polarization of the scattered wave for an arbitrary
polarization of the incident wave can be reconstructed as a linear combination of the elements
of [S]. In the monostatic case which is preassumed, the reciprocity stands in most conditions
encountered in Earth observations and SV H = SHV , so the scattering matrix in (1.3) becomes
complex symmetric and there are only three components of interest for the measurements, which
can be represented by the target vector :

k =

SHHSV H
SV V

 (1.5)

5The circular polarization can be used instead, since the scattering matrix is independent of the basis used for
its derivation.
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For a more accurate estimate, it is often assumed that SV H = 1/2 (SV H + SHV ), to reduce the
e�ect of the noise. The three quantities of the target vector provide in addition the total power
backscattered by the target, which in the case of a polarimetric radar it is called Span and is
given by:

Span = |SHH |2 + |SV V |2 + 2|SV H |2 (1.6)

If only the energy scattered from the target at range r and arriving to the radar is considered,
the Radar Cross Section (RCS) is calculated, which for a point target is given by:

σpq = lim
r→∞

4πr2
|Esp|2

|Eiq|2
(1.7)

The RCS characterises the backscattering property of the illuminated target and it depends on
its size, shape and orientation as well as on the wavelength and the polarization of the incident
signal. For the case of a distributed target, the (normalized) backscattering coe�cient σ0pq is
calculated instead, which is actually the RCS normalized by the area A of the target:

σ0pq = lim
r→∞

4πr2

A

|Esp|2

|Eiq|2
(1.8)

The target vector is more convenient to use in place of the scattering matrix in the monostatic
cases, but it is not always the most e�cient way to deal with the polarimetric data. For example,
if a point-like scatterer is observed, [S] can fully describe it, but in cases of distributed scatterers
(as forests) it fails. In these cases, decomposition techniques are employed in order to express
the scattering matrix as a combination of the scattering responses of simpler objects. That way,
additional physical information of the target can be extracted from the radar measurements. A
commonly used decomposition method, is the so-called Pauli decomposition. It uses the Pauli
basis {[σ0], [σ1], [σ2], [σ3]} given by the four following 2× 2 matrices [Lee and Pottier, 2009]:

[σ0] ≡ I2 =
1√
2

(
1 0
0 1

)
, [σ1] =

1√
2

(
1 0
0 −1

)
, [σ2] =

1√
2

(
0 1
1 0

)
, [σ3] =

1√
2

(
0 −i
i 0

)
(1.9)

If the reciprocity is assumed, this basis can be reduced to the form {[σ0], [σ1], [σ2]} and [S] can
be written as:

[S] =

(
SHH SHV
SV H SV V

)
= a[σ0] + b[σ1] + c[σ2] (1.10)

where a, b, c are:

a =
SHH + SV V√

2
, b =

SHH − SV V√
2

, c =
2SV H√

2
=
√

2SV H (1.11)

After the Pauli decomposition, the three quantities of interest given in (1.11), can be presented
in a vector form which is called the Pauli feature vector :

kP =
1√
2

SHH + SV V
SHH − SV V

2SV H

 (1.12)

The components of this vector have a physical interpretation as they are linked to the di�erent
scattering mechanisms of the wave scattering. If the Forward Scattering Alignment (FSA)
convention is assumed, which claims that the z-axis of the coordinate system describing the wave
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propagation is always de�ned by the direction of the wave propagation6, the �rst element of the
Pauli vector corresponds to the �even� bounce backscattering. An example of such a scattering
is the one from a dihedral corner re�ector. In our case, SHH + SV V will correspond to the
double bounces mechanism. The second component refers to the �odd� bounce scattering, like
scattering from a plane surface or a trihedral corner re�ector and in our case it stands for the
single bounces mechanism. The last Pauli vector element corresponds to the so-called volume
scattering, scattering caused by the break of the symmetry. For more information on the physical
interpetation of the Pauli vector, the interested reader can refer to [Papathanassiou, 1999] or
[Lee and Pottier, 2009].

All the abovementioned expressions refer to the fully polarimetric operational mode. Never-
theless, to simplify the technology demanded and reduce the data volume, dual polarimetry is
often prefered in practice. The dual polarimetric systems operate in HH − V V , HH −HV or
HV − V V modes. In these cases, the scattering matrix and the Pauli vector given in Eq. 1.3
and 1.12 are taking a reduced form. For instance, if HH − V V is employed which can be an
alternative to fully polarimetric SAR (see [Ji and Wu, 2015]), we have:

[S] =

(
SHH 0

0 SV V

)
, kP =

1√
2

(
SHH + SV V
SHH − SV V

)
For both full and dual polarimetry, other polarimetric and interferometric tools and

decomposition techniques exist also, such as for example the Coherency Matrix and the H-a

decomposition. These methods are commonly used depending on the purpose of the study, but
they are beyond the scope of this dissertation. More information on radar polarimetry can be
found in [Cloude, 2009] and [Lee and Pottier, 2009].

1.3 A review of forest modeling for microwave studies

As presented in the previous section, radar forest investigations constitute a well established do-
main, with a variety of tools designed with respect to the objectives. However, radar campaigns
have the disadvantage of being very costly and in addition it is almost impossible to be per-
formed under the same conditions. This is the reason why the explosive growth of the computer
technology during the last 20-30 years, resulted in a trend of substituting in several cases the real
radar experiments with simulated ones. The latter are based on a model representation of the
physical phenomenon with its existing factors and mechanisms. In the case of simulations of the
land and vegetation backscattering, the mathematical formulation of the wave propagation and
scattering and a detailed representation of the scene are necessary. In particular, when forests
are considered, since they constitute very complex media consisting of various types of elements
such as trunks, branches, needles and leaves, a detailed description of their constituents concern-
ing the positions and geometric characteristics is imperative. These parts are of di�erent orders
of magnitude and orientations and so they contribute di�erently to the overall tree emissivity
and wave extinction. Therefore, a radar simulation model has to take into account these struc-
tural characteristics, while respecting the ground truth data and the necessity for a reasonable
computational load. There are still no generic and optimal ways to model a microwave forest

6For more information on the FSA and BSA conventions and how to go from one convention to the other see
[Ulaby and Elachi, 1990] or [Lee and Pottier, 2009]
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investigation. Di�erent types of microwave models exist that are currently employed with re-
spect to the objective and the real data available. They are di�erentiated in the way the forests
are generated and the ground and dielectric constants are described. The most important and
commonly used models among them, will be presented in the following paragraphs.

1.3.1 The discrete models

The most common models used to generate a forest for simulation studies in the microwave
region are the so-called discrete models. The overall philosophy of these models is to provide
a tool to simulate the electromagnetic interactions (emission, attenuation, scattering, etc.)
occurring in the soil-vegetation system, through a detailed representation of the system elements.
These interactions are modeled depending on the geometric and dielectric properties of the soil
and the canopy constituents [Saleh et al., 2005].

Multilayer models

There are various types of discrete models with the most widespread to be the multilayer model .
In this model, the forest is described as a superposition of continuous layers embedded with
scatterers, which are subsequently represented by canonical geometric shapes7. Finite length
dielectric cylinders are used for trunks, branches, twigs and needles, and elliptical disks or
ellipsoids for the leaves. With this representation, both the canopy emission (passive case), and
the backscatter (active case) can be covered. Following, the geometric properties of the scatterers
are estimated from allometric equations, which provide the forest geometric description (FGD).
These equations are relationships derived from forestry scientists using ground truth data8 and
they are commonly used to estimate and predict the amounts and the distributions of foliage
or crown wood in trees ([Porté et al., 2000]). The crowns of the trees can also be described
through simpli�ed geometrical shapes such as spherical, ellipsoidal, or conical, depending on the
tree species [Castel et al., 2001]. If coherent backscattering models (which provide estimates for
both the amplitude and the phase) are considered, the orientation and the density of the various
components have to be incorporated in the model - which is generally di�cult to accomplish.
Although the discrete approach is a very simpli�ed description of the actual structure of the
forest canopy, a good agreement has been obtained between simulations and remote sensing
observations, especially when considering low frequency radiation, which penetrates the canopy
and interacts with the big tree elements [Woodhouse, 2005]. It is also, due to its simplicity
and �exibility, the most widely validated method (see for instance [Ferrazzoli et al., 2002] and
[Thirion et al., 2006]). On the other hand, the main disadvantages of this method are the rough
description of the canopy and the poor portability of most classical forest characterizations.
Every new model requires its own adapted in situ measurements.

Vectorization and fractal based models

Two more recent approaches in discrete forest modeling, in order to reduce the e�ort required
in collecting and analysing the real forest data, is the use of vectorization and the mathematical

7The representation of the forest parts by canonical shapes is adopted because the analytical computation of
their electromagnetic backscatter is possible.

8The ground truth data are obtained during destructive sampling measurements performed on location by
forestry scientists. A detailed protocol for this type of measurements can be found in [Porté et al., 2000].

28



1.3. A review of forest modeling for microwave studies

fractal models. The vectorization method is a �ne 3-D-tree architecture reconstruction. The
goal of the method is to reconstruct a statistically accurate 3-D representation of canopy
components, by means of judicious subsampling [Fournier et al., 1997]. Rather detailed ground
measurements, concerning the dimensions and the spatial organization of trunks, di�erent types
of branches and leaves, are necessary. Then, the reconstruction of the trunks and primary
branches (branches inserted directly to the trunk) takes place by incorporating these data and
simulating data corresponding to the nonsampled segments, using some self-similarity principles.
The new branches are simulated as a scaled replicate of the primary ones of the same trunk
section, thus resulting in a �nal 3-D modeled distribution of the basic components. An ex-
ample of using this method for constructing jack pine trees can be found in [Fournier et al., 1997].

The mathematical models on the other hand, are used in the computer graphics domain,
where algorithms based on fractals and Lindenmayer systems (L-systems) already exist (see
[Prusinkiewicz and Lindenmayer, 1990]). In these techniques, trees are viewed as recursive
structures, where the development begins with a single stem that carries later buds, which
in turns give rise to new branches. When the generation of the fractal tree is completed, the
tree geometry is modeled using generalized cylinders, as seen in Fig. 1.5. If needed, organs
such as leaves, �owers and small branches can be added to the tree. These methods have the
ability to generate a wide variety of trees and shrubs [Runions et al., 2007]. For example, Lin
and Sarabandi in [Lin and Sarabandi, 1999] applied L-systems with data from ground truth
measurements incorporated in their model, to generate a forest of maple trees with branching
structure. They treated the trees as clusters of scatterers composed of canonical shapes
(cylinders and disks), in order to feed their coherent scattering model. These approaches are
promising and interesting from an algorithmic as well as a graphic point of view. However, the
disadvantage of these methods is their lack of physics as well as their low current outspread and
thus their limited domain of validity, since there are not many studies using these models and
compared with real data.

Architectural plant models (AMAP)

Another category of discrete forest models are the architectural plant models (AMAP9).
These models were introduced to cover the limitations of the previous ones, which are either
restricted to a single species and age, or are unable to describe the tree taking into account its
growth process. AMAP models, which rely on both qualitative and quantitative architectural
plant growth description, can provide realistic 3-D computing plants as seen in Fig. 1.6. The
connection between tree architecture and growth process has been developed relatively recently,
especially with the qualitative concept of architectural model. More recently, the AMAP
models focus on the development of a quantitative approach of modeling and simulating plant
architecture. This approach integrates previous botanists and computer scientists results and
combines them with measurements on real plants, in order to deduce the parameters of their
growth process. A basic approach of the AMAP tree development is based on three main steps
[Castel et al., 2001]: 1) architectural analysis; 2) growth and branching processes modeling; and
3) simulation.

9AMAP is an abbreviation coming from the Atelier de Modélisation de l'Architecture des Plantes which in
english can be translated as Architectural Plant Model.

29



Chapter 1. Radar and simulation studies of forested areas

Figure 1.5 � Di�erent types of trees generated using the L-Systems fractal al-
gorithms (left) and a 3-D arrangement of them (right). Image taken from:
https://generativelandscapes.wordpress.com/2014/10/07/fractal-trees-basic-l-system-example-9-4/

Figure 1.6 � Two growth steps of a poplar tree built with the use of AMAP. Image taken from:
http://pma.cirad.fr/MJ_PICS/SelectedPics/Amap_Oldies_WF/slides/Poplars_Lines.html
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1.3.2 Alternative models - Random volume over ground (RVoG)

Apart from the discrete forest models, there exist alternative types of models also. One of the
most widespread ones, is the analytical model called Random Volume over Ground (RVoG). This
is a simple model that do not consider and construct each scattering element separately. In the
most basic case, the forested area is modeled as a set of possible overlapping volume vegetation
layers, above an impenetrable ground. The most common RVoG models comprise two or three
levels as for example in [López-Martínez et al., 2011] and [Cloude and Papathanassiou, 1998]
respectively. If two layers are assumed, the �rst one corresponds to the vegetation layer, with a
height hv with respect to the ground height z0 (see Fig. 1.7). This layer represents the volume
scattering contibution of the forest canopy and it is assumed as a homogeneous volume of
randomly oriented scatterers. The second and lowest layer, refer to the ground response and
describes the backscattering of the wave by scatterers located at the ground level and by the
ground-tree double-bounce interactions. Further simpli�cation hypotheses can also be made for
these models, as for instance to consider the concentration of the scatterers along the vertical
direction as constant and/or to assume an isotropic distribution for the randomly oriented
scatterers [Arnaubec et al., 2014]. These models serve as a good starting point for considering
some radar investigation and inversion problems, but they do not account for the di�erent
scattering mechanisms and the contribution of each type of the tree elements as the discrete
models do.

z0+hv

hv

z0

Figure 1.7 � A two-level Random Volume over Ground (RVoG) analytical forest model. The vegetation
layer corresponds to the above ground tree elements, i.e. trunks and canopies with their individual scat-
terers and extends in a height of hv above the ground. The second layer corresponds to the ground which
is found at a reference height z0.

1.3.3 Forest under study

As seen in the previous paragraphs, the architectural plant models and the fractal based ones
seem able to provide the most sophisticated and realistic forest models up to now. However,
their limited use and validation in the microwave simulation experiments domain and our
lack of access to them, prevented us from using these models in the present work. A discrete
model, already accessible to us, based on a forest geometric description was adopted, despite its
more rough forest description. This kind of models, has been already proven suitable for low
frequency studies in P- and L-bands (see for example [Thirion, 2003] and [Thirion et al., 2006]).
In these frequency bands, where λ ≥ 15 cm, the electromagnetic �eld is weakly scattered by
small branches and leaves. Trunks and primary branches - to wit, branches inserted directly in
the trunk - contribute most to the tree emission and wave extinction at these frequensies. It is
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due to the fact that the wavelength is of an order of magnitude comparable to these elements'
dimensions [Woodhouse, 2005]. So despite the sometimes strong attenuation that needles or
leaves can cause due to their large number [Chauhan et al., 1991], we are not going to consider
them at all. As if the measurements were done in winter, when almost no leafage exist on the
trees. Thus, a 2-layer discrete model considering only trunks and primary branches will be
addressed in our simulations to follow. This representation is similar to the one successfully used
and validated in [Thirion et al., 2006], where the numerical model to be used in this dissertation
was introduced.

The ground truth data used to generate the forest during the simulations, come from the Les
Landes forest located in southwest France (44 42 N, 0 46 W). This forest consists of maritime
pine trees (Pinus Pinaster Aït) as seen Fig. 1.8, a native species to the western and south-
western Mediterranean region. For this forest, several ground truth and radar campaigns have
been performed, as for instance the PYLA 2001 experiment (see [Dechambre et al., 2003]) and
extended datasets exist. The data used to estimate and predict the dimensions of the elements
and the distributions of crown wood in the trees, are based on allometric equations taken from
[Saleh et al., 2005]. In these equations the tree age was used as input information to simulate
the forest geometric characteristics. The quantities estimated were the diameters and the heights
concerning only the trunks and the primary branches. The trunk diameter at breast height (dbh),
de�ned as the diameter at 1.30 m, was given by:

db̂h = 0.169 · log (age)− 0.257 [m] (1.13)

The trunks total height was derived from the dbh by:

Ĥ = 56.618 · db̂h+ 0.646 [m] (1.14)

The height C of the naked trunks (bottom layer) when branches existed was obtained by:

Ĉ =
(
Ĥ − 1.30

)
· exp

−
(
p1 + p2

age

)
· db̂h

Ĥ − 1.30

 [m] (1.15)

where p1 = 12.43, p2 = 347.96. The �hat� (̂·) over the symbols above, denotes the mean of each
quantity taken from a population of even-aged trees.

As far as the branches were concerned, when existing, they were uniformly distributed around
the trunks in the upper layer of the forest. Their dimensions, as sampled in [Saleh et al., 2005]
from three di�erent stands 5, 26 and 32 years old, were corresponding to certain distribution
functions. To simplify our studies and focus on the branches e�ect on the signal when necessary,
we chose to make all branches of coeval forests equal. Their radii and lengths selected were the
mean ones for each age, resulting from an interpolation of the values given in [Saleh et al., 2005],
in order to cover all ages to be examined.

1.3.4 Permittivity and ground description

Last but not least in forest modeling, is the modeling of the ground and the permittivities of
the scatterers. During low frequency radar observations, penetration of the wave to the lower
forest levels takes place. Subsequently, there are wave re�ections from the ground and double
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Figure 1.8 � A picture of the maritime pine forest at Les Landes. This coniferous species gives medium-
sized long and thin trees, with needles as leaves, which can be found in the western Mediterranean. Im-
age taken from: http://a402.idata.over-blog.com/3/69/76/43/Quizz/Juin-2011/Foret-des-landes---pin-
maritime---Mimizan.jpg

bounce scattering between the ground and the vegetation. It is thus of high importance to
interpret well the ground surface and consider both the soil and the vegetation permittivities.
For the permittivities especially, which describe the re�ectivity of the illuminated materials,
extra attention has to be paid since they have a strong impact on the forest emissivity
and backscattering, e.g. the wetter the soil, the higher the permittivity and the scattering
[Woodhouse, 2005]. Moreover, the permittivity governs certain important phenomena such as
for instance the Brewster's angle e�ect, addressed later in section 3.4. In most of the previously
mentioned models for forest studies, the ground is considered as an arbitrary horizontal or tilted
plane with a given dielectric constant and surface roughness. The roughness of a random ground
can be described by two parameters, the Root Mean Square (RMS) height s and the correlation
length l. The RMS height describes the vertical surface roughness, while l is the distance where
the spatial correlation function decays by 1/e ≈ 37% 10. In our case, a plane rough surface was
selected to model the ground, with its s and l parameter values given during the presentation
of the simulation results later on.

As far as the permittivity of the ground is concerned, it depends on the soil's textural com-
position (sand, silt and clay fractions11), the bulk density (the weight of the dried soil divided

10For more details about the ground description in models serving radar simulation studies see
https://earth.esa.int/documents/653194/656796/Description_Of_Natural_Surfaces.pdf

11Sand, from �ne to coarse, includes particles with diameters in the range between 0.02 and 2.0 mm, silt includes
particles with diameters in the 0.002 − 0.06 mm range, and clay includes particles with diameters smaller than
0.002 mm [Daniels, D.J and Institution of Electrical Engineers, 2004].
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by its volume), the gravimetric (or volumetric) moisture content of the soil, the dielectric con-
stant of the water, the physical temperature and of course the frequency of the emitted signal.
The permittivity model adopted for this study is the one also used and validated in the forest
backscattering studies in [Thirion et al., 2006]. The analytical expression of this model is given
by [Peplinski et al., 1995b] and [Peplinski et al., 1995a]:

εg =

[
1 +

ρb
ρs

(εas − 1) +mβ′

volε
′α
fw −mvol

]1/α
− i
(
mβ′′

volε
′′α
fw

)1/α
(1.16)

where ρb is the bulk density, ρs and εs are the speci�c density and relative permittivity of the
solid soil particles, mvol the volumetric moisture content related with the gravimetric one mgrav

by the expression mvol = ρbmgrav, ε′fw the real part and ε′′fw the opposite imaginary part12 of
the relative permittivity of the free water, α = 0.65 a constant and β′, β′′ are soil-type dependent
constants determined by the sand S and clay C content in % by the equations:

β′ = 1.2748− 0.519S − 0.152C, β′′ = 1.33797− 0.603S − 0.166C (1.17)

In Fig. 1.9, we can see the variation of the permittivity values with respect to f and mgrav given
a temperature T = 10◦C, S = 20% of sand percentage, C = 50% of clay percentage and a bulk
density of ρb = 1.1, corresponding to a clayey type of ground. The jump observed for both the
real and the imaginary part at 1.3 GHz is due to the di�erent empirically derived models for the
e�ective conductivity for frequencies lower and higher than 1.3 GHz (see [Peplinski et al., 1995b]
for more information). The real part of the dielectric constant increases sharply with the
humidity and declines slightly with the frequency, whereas the imaginary part increases in
general with both parameters, apart from the aforementioned jump.

In order to have an idea of how the soil permittivity varies, we will now give some reference
permittivity values. For the fresh water ε′ = 81, for the air ε′ = 1 and for a dry sandy soil
ε′ ∈ [4, 10] at f = 100 MHz [Daniels, D.J and Institution of Electrical Engineers, 2004]. The
water content has the biggest in�uence on the dielectric properties of soil, as for example the ε′

of saturated soil13 approaches that of the liquid water (∼ 80) at & 1 GHz [Woodhouse, 2005]

On the other hand, the permittivity of the vegetation depends mainly upon the gravimetric
moisture content mgrav of the vegetation and the emitted frequency f in GHz via the permit-
tivities of the free and bounded water and is estimated by [Ulaby and El-Rayes, 1987]:

εv = εr + ufwεf + ubεb (1.18)

where εr is a non-dispersive residual component, ufw the volume fraction of free water, εf is the
permittivity of the free water, ub the volume fraction of the bulk vegetation-bound water mixture
and εb the permittivity of this mixture. The temperature as well as the salinity of the free water
are a�ecting also the permittivity values, but much less with respect to mgrav and f . More
information on the estimation of these quantities can be found in [Ulaby and El-Rayes, 1987].
In Fig. 1.10, we can see the variation of the permittivity values with respect to f and mvol given
a temperature T = 10◦C and a percentage of salinity less than 10%�. As the vegetation gets

12A complex relative permittivity ε is usually expressed as ε = ε′ − iε′′ and it is the opposite imaginary part
−ε′′ variations that are being treated and presented.

13Saturated is called the soil for which the entire pro�le is saturated with water [Patel et al., 2008]. All pores
between the saturated soil particles are temporarily or permanently �lled with water.
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Figure 1.9 � The surface plots of the ground's relative permittivity real part values
(
ε′g
)
(left) and the

imaginary part values
(
−ε′′g

)
(right), with respect to the frequency and the gravimetric moisture content

mgrav
g . The ambient temperature was T = 10◦C, the sand content of the ground 20%, the clay content

50% and the bulk density ρb = 1.1.

wetter the real part of the permittivity rises, while a raise in frequency makes it to decrease. The
imaginary part on the other hand, as for the case of the ground, it increases with both parameters.
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Figure 1.10 � The surface plots of the vegetation's relative permittivity real part values (ε′v) (left) and the
imaginary part values (−ε′′v) (right), with respect to the frequency and the volumetric moisture content.
The ambient temperature was T = 10◦C.
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1.4 An example of a forward model: COSMO

As presented in the previous paragraphs, radar remote sensing is a powerfull tool for investigating
forests and vegetation in general. Nevertheless, radar technology, as every evolving technology,
has still many limitations in its applications, such as the unauthorized low frequencies for
earth observation [Dechambre et al., 2003] or the fact that SAR instruments are particularly
heavy and power consuming [Woodhouse, 2005]. For some of these limitations we are obliged
to wait radar scientists to construct more sophisticated hardware to extend them, whilst other
constraints can be surpassed by using techniques from other domains. One of these domains
is Numerical Modeling, which can provide us codes that can simulate a wide range of radar
observations in computer experiments. What these codes can provide to the earth studies
practice is the low cost of the simulation experiments, the possibility to consider numerous
scenarios and the opportunity to extend the radar capabilities and implement innovative
strategies.

In the particular case of forested areas, one simulates the behavior of the environment either
to predict the level of the radar response in amplitude and/or in phase, or to discriminate the
relevant scattering mechanisms. The use of scattering models aims at a better understanding of
the electromagnetic interactions. Improving our knowledge over the forest scattering can assist
in the design of upcoming radar campaigns, as well as in facilitating the retrieval studies of
the forest parameters. However, extended validation of the model results with respect to real
data are mandatory, in order to properly utilize the model. An ideal modeling tool must have
been tested for di�erent radar con�gurations (incidence angles, frequencies and polarizations),
for di�erent purposes (radiometry, polarimetry, interferometry) and must have been applied to
various types of forested areas. A model like this, introduced in 2006 by Thirion et al. (see
[Thirion et al., 2006]), is available in our laboratory. It is the so-called COherent Scattering

Model (COSMO) and it will be presented in details in the upcoming paragraphs, before applied
to our work in the following chapters.

1.4.1 General presentation of COSMO

COSMO is a descriptive coherent scattering model, applied to the electromagnetic study of the
backscattering by forested areas. Descriptive because it is based on the generation of the trees
and the forest, in opposition to the analytical models such as the RVoG (see Paragraph 1.3.2).
Analytical models consider forests as homogeneous media and they cannot facilitate low
frequency and low vegetation density scenarios. On the other hand, the descriptive models
generate the trees as groups of canonical elements, with dimensions derived by allometric
equations. COSMO is also a coherent model, which means that it calculates the complex
response providing information on both the amplitude and the phase of the received signal.
Therefore, the construction of the Stokes matrix and the polarization signature retrieval from
its results, are both possible.

Since COSMO is a descriptive model, the scene under study i.e. a virtual forest of a given
arrangement - periodical or random - has �rst to be generated. This forest is subsequently treated
as a multilayer medium, in order to suit to the format of the available ground truth data. Then
the illumination of the forest by EM waves under a certain con�guration is simulated, while
considering the contributions of all scatterers, namely the ground, the trunks, the branches and
the leaves, if existing. In that way, we can also study how these scatterers interact with each
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other. COSMO operates in the Frequency Domain (FD) and sends a monochromatic wave for
each frequency selected. COSMO performs all calculations using the FSA convention and it
is able to produce outputs that can be treated with the same polarimetric and interferometric
tools as those applied to real Synthetic Aperture Radar (SAR) images (see [Thirion et al., 2006]).
Therefore, these outputs can be directly compared and validated with respect to real data. Up
to now, extended validations at P- and L-bands, for both temperate (maritime pine trees) and
tropical (mangrove) forests and for all purposes as radiometry, interferometry, and polarimetry
have been performed (see [Thirion et al., 2006]).

1.4.2 Generation of the medium

As a descriptive model COSMO, starts by constructing the scene of the simulation experiment.
A whole forest is generated within the range and azimuth dimensions given, having either a
random or a periodical positioning for the trunks. Random forests have a structure similar to
the natural ones, while periodical forests refer mostly to arti�cial ones (see Fig. 1.11). Trees
are described as groups of canonical elements - cylinders and ellipsoids - corresponding to the
trunks, the branches and the leaves, that are distributed in several layers. In our case two layers
are concerned, where the bottom one contains the naked trunks and the top one the crowns
(see Fig. 1.12). The geometrical characteristics of the forest elements, i.e. height and radius,
are obtained by the allometric equations (1.13)-(1.15). The modeling of the shape of the crown
can be also described, and it can be a sphere, an ellipsoid or a cone, depending on the type
of forest we want to study. As far as the permittivities of the vegetation and the ground are
concerned, they are supposed to be constant inside the trees and along the ground respectively.
Finally, the ground is assumed to be a �at surface having a roughness with a given RMS height
and correlation length. Once the forested area is generated, the scene is divided into cells along
azimuth, distance and z- axes forming a 3-D grid consisting of voxels (volume pixels).

Figure 1.11 � Modeling the forest: generation of a tree (left) and of a whole forest where trees are regularly
positioned (right). For the building of a tree several parameters are taken into account such as the height
h, the trunk radius r, the eulerian angles α, β, the permittivity ε etc.
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Figure 2.1: The radar configuration: above view (top) and side view (bottom). A cell is
the intersection of a pixel (bounded with a red line) and a layer. The boundary of a layer
is denoted with a blue line. Figure is taken from [2].

scatterers inside with given position, orientation and size. The attenuation and phase shift
is individually considered for each scatterer, and then the scattered field of a given pixel is
computed as a coherent sum of the contributions of all scatters in the corresponding cells.

As stated, all of the scatterers are considered in the simulation, but some simplifications
have been made to speed up the computations. In the simulations only the main scattering
mechanisms, like direct and the double bounce scatterings are taken into account (see
Fig. 2.2), and the scatterers are assumed to be independent, so no mutual interactions are
considered. Furthermore, in the calculation of the scattered field, the attenuation of a pixel
is calculated with the estimated attenuation of the cells.

The output data of COSMO are the fully polarimetric backscattered fields. These fields
are then used to calculate the backscattering coefficients of the forest as follows.

spq “ 4πr2

A

|Espq|2
|Eip|2

, (2.1)

5

Figure 1.12 � Radar con�guration: above view (top) and side view with the separation of the scene into
layers (bottom). The intersection of a layer and a pixel, bounded with the red line, is a cell of the scene.

1.4.3 Evaluation of the forest backscattering

Since a whole forest is generated, as previously described, the contributions of all scatterers
(trunks, branches and leaves) and their interactions can be considered for the calculations.
That way, the computational load of the simulations will be very heavy. In order to reduce it,
some hypotheses are necessary. Firstly, only the main scattering mechanisms are taken into
account. In saying so, as depicted in Fig. 1.13, the direct backscattering where the EM wave
hit the particle under the direction of incidence î and is scattered back under the direction ŝ
and the double bounces which refer to the ground-scatterer (gs), scatterer-ground (sg) and
ground-scatterer-ground mechanisms. In addition, scatterers are assumed to be independent,
therefore no mutual interactions are considered. Concerning the cylindrical elements, if they
have small radii r compared to their semi-heights h and k0h >> λ, where k0 is the wavenumber
and λ the wavelength, the In�nite Cylinder Approximation is used (see [Thirion, 2003]). If
not, the Physical Optics Approximation is used instead. The coherent scattered �elds are
then computed by considering each of the voxels of the scene as an ensemble of scatterers,
with their speci�c positions, orientations and sizes. The attenuation and phase shift within
the forest are taken into account to compute the �eld scattered by each individual particle.
Finally, the scattered �eld for each pixel of given azimuth and distance, is the coherent sum
of the contributions of all the scatterers embedded in the voxels having the same location in
azimuth and distance. The way COSMO separates the scene in cells and voxels and calcu-
lates the outputs, is designed so that the latter suit the format of the available ground truth data.

All the contributions of the di�erent mechanisms and the di�erent types of scatterers together
with the attenuation for each voxel, are available in the outputs of COSMO and they can help
us understand how the total response is built. For the previous studies ([Thirion et al., 2006])
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1 2 3 4
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k̂gs k̂sg
n̂

Figure 1.13 � The scattering mechanisms taken into account in COSMO evaluations of the backscat-
tered �eld: 1: direct scattering, 2: ground-scatterer contribution, 3: scatterer-ground contribution and 4:
ground-scatterer-ground contribution.

and for this one, the focus was mostly put on the outputs concerning the received electric �eld
and the backscattering coe�cients. In the latest COSMO versions, access to other kind of data
like the attenuation and the interferometric heights is also possible. However, for our purpose we
will not deal with these two recent contributions. We remind that the backscattering coe�cient
for an emitted signal with q polarization and scattered in p polarization as de�ned in Eq. (1.8)
is:

σ0pq = lim
r→∞

(
4πr2

A

〈
|Esp|2

〉
|Eiq|2

)
and to be evaluated in dB we use the common logarithm:

σ0pq = lim
r→∞

(
10 log10

(
4πr2

A

〈
|Esp|2

〉
|Eiq|2

))
(1.19)

Whenever Pauli decomposition was utilized to extract information about the scattering mech-
anisms, the spatially averaged Pauli vector components were calculated, normalized by the area
A:

4π

A

〈
(SHH + SV V )2

〉
,

4π

A

〈
(SHH − SV V )2

〉
,

4π

A

〈
(2SV H)2

〉
(1.20)

and evaluated in dB (10 log10 (·)). The area normalization was done so that these quantities
could be comparable between scenes of di�erent sizes. From now on, the symbols SHH + SV V ,
SHH−SV V , 2SV H and kPi concerning the Pauli vector components, will refer to these quantities
in Eq. 1.20.

1.4.4 Presentation of the outputs

In this section we will present the data obtained after running COSMO under a certain forest
and radar con�guration. The scene under study was a 30 years old maritime pine forest,
distributed semi-periodically within a scene of 40 m× 50 m. There were 56 totally vertical trees
generated, having a 6 m mutual distance between them in both directions. The distribution
was semi-periodical since a maximum displacement of 2 m from the exact periodical positions
was allowed, as depicted in Fig. 1.14. Only trunks were considered and their dimensions were
derived from the tree age, using the allometric equations already presented in Paragraph 1.3.3.
The trunks dimensions together with the other parameters of the scene and the radar are given
in Table 1.2.
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Figure 1.14 � The semi-periodical positioning of the trunks in the scene under study. 56 trees were
generated, having trunks only, a mutual distance of 6 m and a maximum displacement from the exact
periodical position of 2 m.

The scene was illuminated by a wave emitted by a radar found in a height of 3.6 km
and the angle of incidence was 50◦. Since COSMO operates in frequency domain and sends
monochromatic waves, 826 di�erent frequency values were selected, forming a rectangular pulse
ranging from 350 MHz to 2 GHz (wavelengths from 86 cm to 15 cm) and having a frequency step
df = 2 MHz. The large bandwidth, comparable to that of the ultra wideband radars, led to a
high range resolution δr ≈ 10 cm. The advantages of a �ne resolution like this, will become
obvious when the signal will be analyzed in the time domain later on. The unprocessed COSMO
results as obtained in frequency domain, are presented in Fig. 1.15 and 1.16. In the �rst �gure,
the amplitude of the received electric signal in HH and VH polarizations are presented. The
results are highly oscillating, since no average or smoothing �lter is applied yet. The huge
di�erence observed between the order of the HH and the VH amplitudes, is due to the high
symmetry of the scene. Only vertical trunks exist, so the co-polarizations are favored in general.

The last �gure of the chapter, Fig. 1.17, presents some processed COSMO outputs. In the
left plot we can see the three backscattering coe�cients and in the right one the components
of the Pauli feature vector. The former correspond to the smoothened, via the logarithm,
amplitude values, while the latter correspond to the main scattering mechanisms, namely the
double bounces, the single bounces and the volume scattering. The similar way of evaluating
the σ0V H and the 2SV H quantities (see Section 1.4.3), makes the second one redundant in most
of the following applications. The majority of the conclusions concerning the volume scattering
can be also derived by the study of the σ0V H values.

1.5 Conclusions

In this �rst chapter of the thesis, we provided the necessary radar background for this dissertation.
We started by presenting the basics of radar polarimetry with the focus on the quantities and
the methods employed in the upcoming chapters. Since our purpose was neither a full physical
analysis of the forest scattering phenomenon nor the exploitation of the COSMO numerical
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Parameters Values

Trunk height 18.6 m

Trunk radius 15.9 cm

Temperature 15 ◦C

Gravimetric humidity of the ground 40%

Sand content 50%

Clay content 30%

Silt content 20%

Re (εg) [33.6, 38.5]

Im (εg) [−5.8,−2.5]

Volumetric / gravimetric humidity of the vegetation 40% / 35.7%

Re (εv) [9.9, 13.1]

Im (εv) [−5.9,−3.3]

RMS height of ground roughness 5 cm

Correlation length of ground roughness 1 m

Table 1.2 � The ground and vegetation parameters of the COSMO simulation.
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Figure 1.15 � The amplitude of the received electric �eld with respect to the frequency in HH polarization
(left) and in VH (right). The angle of incidence was 50◦. The values presented here are the unprocessed
values obtained by COSMO. No average or smoothing �lter was performed. The huge di�erence between
the two amplitudes' values is due to the symmetry of the scene, as just the vertical trunks exist in it.

model, we selected a few tools, such as the Stokes matrix, the backscattering coe�cients and
the Pauli vector, upon which we applied our mathematical methods. It is obvious that other
choices of tools were possible which could provide new directions in this study and complement
the results obtained. Next, the various ways a forest can be modeled for microwave studies were
explained. The AMAP, the vectorization and the fractal based models, the RVoG and the 2-
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Figure 1.16 � The phase of the received signal with respect to the frequency in HH polarization and under
an angle of incidence of 50◦. No average �lter is performed and so the phase values are highly oscillating.
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Figure 1.17 � The backscattering coe�cients for all polarizations (left) and the Pauli feature vector el-
ements (right), with respect to the emitted frequency. Trunks only were considered and a 50◦ angle of
incidence was chosen. The similar way of evaluating the σ0

V H and the 2SV H values is re�ected in the
corresponding curves.

layer discrete model we �nally adopted, were all presented. The description of the speci�c forest
under study, the way its elements dimensions are calculated via allometric equations and the
permittivity values are derived, followed. All these were necessary to understand how the forest
was going to be generated, during our numerical simulation studies. The chapter continued with
the presentation of our descriptive microwave model COSMO. Its general characteristics, the way
it realizes the forest and the radar con�guration and the evaluation of its outputs, concerning the
forest backscattering, were discussed. The chapter closed with the presentation of the COSMO
results acquired from a simulation example.
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Sensitivity analysis of COSMO
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2.1 Introduction

In this chapter, the statistical methods employed in Sensitivity Analysis (SA) of numeri-
cal models will be presented. These methods are widely used in Design and Analysis of
Simulation Experiments (DASE), in order to understand the overall behavior of a model
[Saltelli et al., 2004]. They can facilitate the identi�cation of the factors which a�ect signif-
icantly the model overall and each one of its outputs. Moreover, they can detect possible
non-linear e�ects and interactions between the inputs. The knowledge obtained from the SA can
be subsequently used for model analysis and reconsideration. In our work however, a di�erent
and more integrated approach was attempted. This approach involved a uni�ed strategy which
started from the SA of the numerical model, to identify its most important parameters, and
continued with the study and the analysis of these parameters e�ects at a next step. In doing
so, we wanted to organize our radar simulation datasets, study them with respect to the scene
changes and extract complementary information on radar observations of forests.
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Chapter 2. Sensitivity analysis of COSMO

In radar forest studies, empirical sensitivity analyses are sometimes performed over real data.
In [Huang et al., 2015] for instance, they are conducted to investigate the in�uence of the inci-
dence angle and ground moisture on SAR backscatter. The results aimed to be used for checking
the feasibility and applicability of normalized backscatter data. Nonetheless, since sensitivity
analyses of real data are based on the sparse datasets available and cannot be performed for
numerous di�erent scenarios, they are far from being thorough and complete. It is exactly where
the statistical SA methods applied on numerical models can complement these studies and open
the ground for a better understanding of the forest response. The present SA study of COSMO,
aspired to provide new information on the dependance of the di�erent COSMO outputs to the
input factors. It aimed also to assist in designing an innovative way to perform radar campaigns
based on these information and utilizing the cognitive radar principle in an upcoming step. After
presenting the aims of the COSMO SA, we will now proceed in a fast review of the SA methods
and in a thorough presentation of the particular method selected for our purpose. The interested
reader can �nd more information in the relevant bibliography, e.g. in [Saltelli et al., 2004] and
[Saltelli et al., 2008].

2.2 De�nitions and Methods of Sensitivity Analysis

Sensitivity Analysis can be de�ned as �The study of how the uncertainty in the output of a

model (numerical or otherwise) can be apportioned to di�erent sources of uncertainty in the

model input� [Saltelli et al., 2004]. It is of prior importance in the modeling procedure, because
it can provide objective criteria of judgement for di�erent phases of the model-building pro-
cess such as model identi�cation and discrimination, model calibration and model corroboration
[Saltelli et al., 2000]. SA can also reveal overparameterization by detecting parameters or pa-
rameter combinations to which the outputs are insensitive. Another reason why SA is essential in
modeling, is the need to infer uncertainty in the model's predictions from the uncertainties in its
parameters, forcing and boundary conditions. SA in addition can be used to check the extent of
nonlinearity, helping assess the credibility of model results, indicating what extra data are needed
to repair model de�ciencies and seeing how much aggregation can be employed [Norton, 2009].
For our purposes we will discriminate the SA methods, based on the type of their results and
their computational load, in two main categories (see [Campolongo et al., 2011]):

(i) the Screening methods that provide qualitative sensitivity measures, i.e. they rank the
input factors in order of importance, but they do not quantify how much a given factor is
more important than another and

(ii) the Quantitative methods, that estimate which percentage of the output variance each
factor is responsible for, due to its �rst order component and/or its interactions with the
other factors.

The methods of the �rst category share the philosophy of Max Morris (see [Morris, 1991])
who wanted to determine model inputs that have e�ects which can be considered as:

(i) negligible

(ii) linear and additive

(iii) non-linear or involved in interactions with other factors.
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Morris' goal was to identify the subset of non-important factors in a model with just a few
model runs. So the Screening methods seem more appropriate for large models but they do
not quantify how much a given factor a�ects the output, or how much more important it is
than another factor. On the other hand, the Quantitative measures give a comprehensive
SA of the model, but in the price of a high number of model evaluations. For complicated
models, where the number of involved factors is large and/or the model is time consuming, the
estimation of quantitative sensitivity measures could be unfeasible and Screening methods are
preferable [Campolongo et al., 2011]. As far as COSMO is concerned, we have seen that it has
several numerical input parameters resulting in long simulations. For example, to simulate 1000
frequency points, for the case of a 100 × 100 m periodical forest consisted of vertical trunks
and 10 equal branches per trunk, at least 40 hours are needed. In that case, global sensitivity
methods are regarded as una�ordable. They require numerous simulations to obtain the full
sensitivity measures, and also a di�erent SA study for every qualitative input (e.g. polarization).
Screening methods seem more plausible as they provide prioritization of the inputs concerning
their importance, which de�nitely corresponds to our main objective. The most common ones
are the Morris Elementary E�ects method (see [Morris, 1991]) and the Sequential Bifurcation
(see [Kleijnen, 2008]). For our purpose, the �rst method which is the most popular will be used,
because of the separate investigation of each factor and the visualization of the results it provides.

2.3 The Morris Elementary E�ects method

The Elementary E�ects (EE) method originates from Morris' work in 1991 (see [Morris, 1991])
and it was implemented by Campolongo et al. in 2007 (see [Campolongo et al., 2007] and
[Campolongo and Cariboni, 2007]). It is based on calculating a number of incremental ratios,
the EEs, for each input variable in several random points within the input space 14. The EE of
the input factor xi for a given point of the input space x, is de�ned as follows:

EEi (x) =
f (x + ei∆)− f (x)

∆

where x = (x1, x2, . . . , xn)T is any selected vector in the sample space, x + ei∆ is the
transformed vector which has also to be in the sample space for every index i = 1, 2, . . . , n,
ei = (0, 0, . . . , 1, . . . , 0)T are the standard basis vectors of the euclidean space Rn, f is the
forward (I/O) function and ∆ is the step by which we move each factor. To calculate the EEs,
sampling several di�erent points x in the input space is needed. For each of these points the
I/O function both for x and x + ei∆ needs to be evaluated.

2.3.1 Constructing the EEs sample space

If r random points are simply chosen for the computation of the EEs, the computational cost
will be 2rn model runs. In order to reduce this cost, Morris proposed a di�erent sampling
where he used each simulation in computing more than one EEs [Morris, 1991]. He considered
trajectories of n+ 1 points, each one starting from a random point and moving a di�erent factor

14Each input factor is being scaled, so that the input sample space for the EE is included in the unit hypercube
[0, 1]n, where n is the dimension of the model's parameter space. Later the factors are transformed again to be
distributed in their original intervals before evaluating the I/O function values.
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at a time by ±∆ on a p-level discrete grid of the input space, till all factors are moved. Every
point on a trajectory therefore di�ered from the previous or the next one by ∆, in only one
component. The result was a set of points x, designed in a way that each evaluation of the
forward function will participate in the calculation of two EEs.

For the j-th trajectory generated with the Morris method, the EEs were represented
as EEi,j , where i indicated the corresponding model factor. The trajectories were �rst
constructed within the unit hypercube [0, 1]n, where the ∆ step could only take values in
{1/(p − 1), . . . , 1 − 1/(p − 1)}. p was the number of levels in which the unit hypercube have
been separated in order to be "discretized" it by constructing a n-dimensional p-level grid as
an experimental area (see Fig. 2.1). The xi inputs were not regarded as continuous in this
method, they could only take the values 1/(p − 1), 2/(p − 1), . . . , 1, which are always found on
the p-level grid of the unit hypercube. As suggested in [Morris, 1991], an even p (e.g. p = 4)
and ∆ a multiple of 1/ (p− 1) are better to be chosen. After constructing the trajectories, the
unit hypercube was expanded to the original input space before the calculation of the EEs.

 6

used to generate all the trajectory points, which are obtained from x* by increasing 

one or more of its k components by Δ. The first trajectory point, )1(x , is obtained by 

increasing by Δ one or more components of x*, in such a way that )1(x  is still in Ω. 

The second trajectory point, )2(x , is generated from x* with the requirement that it 

differs from )1(x  in its ith component that has been either increased or decreased by Δ. 

In formula Δ+= )1()2(
ii xx  or Δ−= )1()2(

ii xx . The index i is randomly selected in the 

set {1,2, ..., k}. The third sampling point, )3(x , is generated from x* with the property 

that )3(x  differs from )2(x  for only one component j, for any j≠i. It can be either 

Δ+= )2()3(
jj xx  or Δ−= )2()3(

jj xx . And so on until )1( +kx , which closes the trajectory.  

The design produces a trajectory of (k +1) sampling points )1()2()1( ,..,, +kxxx  with the 

key properties that two consecutive points differ in only one component and that any 

component i of the "base vector" x* has been selected at least once to be increased by 

Δ. An example of trajectory for k=3 is illustrated in Figure 1. 

 

 
 

Figure 1: An example of trajectory in the input factor space when k=3 

 

Figure 2.1 � An example of a trajectory in a 3-D input factor space with p = 5. One step is done each
time, in a di�erent direction, but always on a vertex of the grid. All the points of each trajectory rest in
the same voxel.

A main drawback of the Morris trajectory plan was that the number r of the trajectories
generated and used for the calculation of the the EEs was small and the only prerequisite was
that the initial points should be randomly selected. However, this plan did not not guarantee
that the points used for the EEs represent e�ectively the input space. Campolongo et al.
suggested in 2007 a way to spread better the trajectories in the input space by introducing a
trajectory distance (see [Campolongo et al., 2007]). A large number of trajectories is generated,
their mutual distances are calculated and the r most distant ones are quali�ed for the EEs
calculation. This plan was far too heavy from a computational point of view for our purpose, so
in our work a di�erent alternative was prefered. A maximin Latin Hypercube Sampling (LHS)

(see [Santner et al., 2003]) was chosen for the initial trajectory points, so that these points were
as representative as possible of the input space. After this selection, a p-level grid was introduced
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2.3. The Morris Elementary E�ects method

around each of the initial points and each trajectory was constructed on its corresponding grid,
by moving each factor by ∆ at a time (see Fig. 2.2). The trajectories constructed that way were
su�ciently spread and thus representing the whole input space, making the results trustworthy
enough, as we will see in the next section.
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Figure 2.2 � An example of our proposed set of Morris trajectories in the 3-D unit hypercube, based on a
LHS for the initial points and on a distinct grid around each point.

2.3.2 Statistical measures of the EEs

After realizing the trajectory construction, the EEs are evaluated and their �nite distributions
for each input are obtained. For the i-th input, the EEs values distribution is denoted by
Fi, i.e. EEi,r (x) ∼ Fi. Morris studied only the central tendency and the spread of these
distributions. Nevertheless, in order to obtain better results, Campolongo et al. proposed in
[Campolongo et al., 2007] the additional study of the mean of the EEs absolute values distribu-
tion, i.e. |EEi,r (x)| ∼ Gi. That way, the cancellation of EEs having both positive and negative
signs during the calculation of the distribution's mean value, a common error of the Morris
method, can be avoided. Finally, the three measures under consideration in this enhanced EEs
method are the following:

• µ - the mean of Fi, which assesses the overall in�uence of the factor on the output:

µi =

∑r
j=1EEi,j

r

• σ - the standard deviation of Fi, which estimates the ensemble of the factor's higher order
e�ects, i.e. non-linear and/or due to interactions with other factors:

σi =

√∑r
j=1 (EEi,j − µi)2

r
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• and µ∗ - the mean of Gi, which implements µ in detecting factors with EEs of both signs
(non-monotonic):

µ∗i =

∑r
j=1 |EEi,j |

r
.

Despite the local nature of the EEs, by averaging them the method can be regarded as a
global one. It can be also linked theoretically to the global but expensive variance based
measures like the Total Sensitivity Index, by expressing µ∗ in terms of conditional variances
[Campolongo et al., 2005].

2.3.3 Interpretation of the statistical measures

Taking a closer look on the distribution moments considered, we can attribute an intuitive
explanation to their meanings. The �rst moment µ is the mean of the EEs distribution. This
measure shows the overall importance of a factor, since a high mean implies high EEs values, i.e.
big di�erence for the I/O function between two adjacent trajectory points. However, if the I/O
function takes non-monotonic values and the EEs have both signs, µ alone can be misleading. It
is exactly where µ∗, concerning the absolute values of the EEs, can complement our knowledge
over a factor. The meaning of µ∗ is exactly the same as that of µ, apart from the fact that
it is stronger as a measure and more reliable. On the other hand, the standard deviation σ
of the EEs can demonstrate the way the EEs values are distributed around the mean µ. The
higher σ is, the further from the mean the EEs values are distributed. In so saying, the location
of the points used for the evaluation of the EEs is important either because of the non-linear
e�ect of the factor to the I/O function, or because of the interaction of this factor with the others.

If two of the EEs statistical measures are combined, extra information on the sensitivity of
the model can be extracted. Morris in [Morris, 1991] recommended considering at the same
time the values of µ and σ. He even adopted a graphical representation in the µσ-plane, which
allowed the interpretation of the results by taking into account both sensitivity measures. If
both µ and σ of an input factor xi have large or small values, then xi is a very important factor
or non-signi�cant respectively. High µ and high σ show a factor with large EEs values which
are widely distributed from the mean and thus sensitive to the input combinations changes,
i.e. non-linear and/or with interactions with other factors. If now µ is small while σ has a
considerable value, then the factor probably has EEs of di�erent signs which cancel each other
and its overall importance is not re�ected with µ. It is where µ∗ can supplement our knowledge
on the factor by showing the mean value of its EEs absolute values, to identify if the factor is
�nally important or not.

When µ and µ∗ are combined, information on the signs of the e�ects that the factor has
on the output, is provided. If for example µ is low while µ∗ is high, it means that the factor
examined has e�ects of di�erent signs depending on the point of the space at which the e�ect
is computed [Campolongo and Cariboni, 2007]. If µ and µ∗ are both high, then the sign of the
e�ect is almost always the same, i.e. the output function is monotonic with respect to that factor.
When µ∗ is combined with σ, linear and non-linear e�ects can be identi�ed. If both µ∗ and σ
are low the factor show negligible e�ects, if µ∗ is high while σ is low the factor is important but
its strong e�ect on the output is close to linear. If both µ∗ and σ have high values, the factor
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shows non-linear e�ects and/or interaction e�ects with the other inputs. In Table 2.1, the e�ects
that an input parameter can have on the forward function with respect to the EEs statistical
measures, are gathered and roughly presented. Concerning the EEs statistical measures' results,
in what follows both representation in the µσ- and µ∗σ-planes will be adopted. In Fig. 2.3, the
di�erent steps of our screening method are depicted.

Values of statistical moments E�ect of the factor

High µ⇒ high µ∗ High overall importance of the factor
High σ High non-linear and/or interaction e�ects

Low µ and high µ∗ Non-monotonic e�ects, EEs of both signs
High µ∗ and low σ Strong linear e�ects, weak interactions
High µ∗ and high σ Strong e�ects including interactions and non-linearities

Table 2.1 � The di�erent values and combinations of values for the statistical moments of the EEs and
their corresponding e�ects on the I/O function.

Generating the r initial points
via maximin LHS within [0, 1]n

Constructing the trajectories starting from
the initial points and using ∆ as a step

Expanding the trajectories in the original
input space and run simulations on their points

Evaluation of the EEs and their
statistical measures for each input

Plotting the statistical measures' re-
sults in the µσ- and µ∗σ-planes and

identi�cation of the factor importances

Figure 2.3 � The �owchart representing the step of the screening SA procedure.

2.4 Test with a toy function

After presenting the selected screening method, we will test it on a toy function to demonstrate
its performance. The g-function introduced by Sobol' will be used for this test. This is a fairly
complex function, which is commonly used as a toy function for SA. It can be de�ned for as
many input variables necessary and for n dimensions it is given by the following formula:
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g (x) =
n∏
i=1

gi (xi) (2.1)

where:

gi (xi) =
|4xi − 2|+ ai

1 + ai
(2.2)

with x = (x1, . . . , xn)T ∈ [0, 1]n and ai ∈ [0,∞) for all i = 1, . . . , n. Using (2.2) and the fact
that 0 ≤ xi ≤ 1 we can determine the range of variation of each gi (xi), which depends on its
corresponding ai value:

1− 1

1 + ai
≤ gi (xi) ≤ 1 +

1

1 + ai
(2.3)

It is obvious that the higher the ai is, the less important the xi is for the g-function
[Campolongo and Cariboni, 2007]. Whilst for a small ai value, the range of the corresponding
gi (xi) is wider, resulting in large EEs values and a strong e�ect on the g-function. For the test
case presented here we considered n = 6 inputs and the corresponding ai values used together
with the ranges of variation for the gi (x1) are given in Table 2.2. The levels of the discretization
of the input space were p = 20, in order to have a �ner study of that space, similar to the one
performed on COSMO later on, and ∆ = 1/ [2(p− 1)] ≈ 0.0263. There were 50 trajectories of
n + 1 = 7 points generated and the whole simulation time was 0.2 s, using a common laptop.
The results obtained by the SA of the g-function are presented in Fig. 2.4.

Factor ai Range of gi (xi)

x1 0.0001 [0.0001, 1.9999]

x2 0.01 [0.0099, 1.9901]

x3 1 [0.5, 1.5]

x4 5 [0.8333, 1.1667]

x5 40 [0.9756, 1.0244]

x6 100 [0.9901, 1.0099]

Table 2.2 � The values of the ai parameters and the corresponding gi (xi) ranges of the 6-dimensional
g-function. The larger the ai, the narrower the domain of its gi (xi) is and thus the less important the
factor is for the function.

As expected, the �rst 2 variables x1, x2, having the smallest ai values and thus the widest
ranges of variation for the corresponding gi's, are the most important factors of the function15.
This is demonstrated by the high µ∗ values, implying high EEs values and the high σ values
implying strong interactions with the other factors and non-linear behavior. The x3, x4 are
following, showing e�ects of medium and relatively minor importance. The last two variables
have e�ects with almost zero values for all 3 moments of interest, being thus characterized as
negligible for the model. It is also obvious from the di�erences between the µ and µ∗ values,
that all the factors produce EEs of both positive and negative signs, according to their overall
importance, something expected because of the non-monotonic nature of the g-function. It can

15Since the Screening methods are not as detailed as the quantitative ones, variables that are of similar impor-
tance on the model's output are often grouped together. They are de�nitely separated from the other variables,
but their position within their �group� don't always re�ect their exact importance, as it happens in this example.
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Figure 2.4 � The statistical measures of the EEs for the 6-D g-function in the µσ-plane (left) and in the
µ∗σ-plane (right).

be therefore concluded that this enhanced Morris method, despite the fact that it does not
exploit the function under study, provides accurate and detailed enough results about the nature
and the sensitivity of this function. So, we can proceed in applying this method to COSMO and
examine the sensitivity with respect to a certain number of its input factors.

2.5 Application: Screening of COSMO

COSMO is able to generate many di�erent forest arrangements and simulate their investigation
under several radar con�gurations. It employs up to 40 numerical and non-numerical inputs.
Because of the purpose of our study and in order to reduce the computational cost, which
can be relatively high even for a rough screening study, we imposed some limitations. Firstly,
only periodical or semi-periodical forests were examined, so that the tree positioning e�ect
was highlighted. Random arrangements were not investigated, since they are represented only
by the tree density parameter, which can be examined in the fully or semi-periodical cases
also. Secondly, as already mentioned trunks and primary branches were only considered in this
project and so the parameters concerning twigs, leaves and the tree crown were ignored. The
non-numerical parameters could not be treated obviously. Finally, 12 factors concerning the
radar con�guration and the forest characteristics were quali�ed for the screening and they are
listed, together with their corresponding symbols, in Table 2.3.

During the SA of COSMO several cases were considered, but only four, having the most
representative results, will be presented here. These ones refered to a forest of trunks only and
the same forest with 25 equal primary branches per trunk, illuminated under incidence angles
within the [20◦, 70◦] and the [5◦, 85◦] ranges. The number of primary branches chosen was much
higher than the average number observed in ground truth experiments of this type of forests, as
seen in [Saleh et al., 2005]. This choice was done on purpose, so that the branches dimensions'
e�ects could be more obvious during the SA investigation. Fourteen di�erent COSMO outputs
were investigated and they are presented in Table 2.4. These miscellaneous outputs correspond
to the di�erent observables treated during radar forest investigations, for certain potential
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Physical quantity Symbol

Signal frequency F

Angle of incidence θ

Moisture of the ground in % mg

Moisture of the vegetation in % mv

Forest age A

Ambient temperature T

Sand content of the ground in % S

Clay content of the ground in % C

Radar height HR

Distance in range dimension dx

Distance in azimuth dimension dy

Maximum displacement of trunks from periodical position e

Table 2.3 � The 12 physical magnitudes considered for the screening of COSMO and their correspond-
ing symbols. They were parameters concerning the radar con�guration and the forest geometrical and
ecological characteristics.

objectives. Each output was examined separately, but also grouped with other similar ones, like
e.g. all the backscattering coe�cients together, and even all outputs as a whole. Whenever all
inputs were considered, the backscattering coe�cients were not included, since their sensitivities
are directly connected with these of the amplitudes of the received signal (see Eq. 1.8). The
screening study of the groups was performed by examining the aggregate e�ect of each input to
all the group outputs. However, when the grouped outputs were of di�erent nature and thus
magnitude, a normalization by the absolute value of their means before calculating the EEs was
necessary so that all the EEs would be comparable. Every time a separate SA was performed
for each output, or the outputs were of the same nature and magnitude, e.g. the phases, the
values were not normalized. By running these di�erent SA for COSMO, we aimed to identify
the sensitivity of each output, as well as the overall sensitivity of the model.

As far as the EE method parameters are concerned now, p = 20 was the number of the
inputs space levels and ∆ = 1/ [2(p− 1)] ≈ 0.0263 the step in the unit hypercube. The p
parameter was selected even, as recommended in [Campolongo and Cariboni, 2007], and big
enough to discretize �nely the input space. This �ne discretization was proven indispensable to
obtain trustworthy results. Since some input factors like the frequency have extended domains,
separating the [350 MHz, 2 GHz] interval into just 4 levels could be misleading. For the step ∆,
in order to have an idea about the real step of each factor, it has to be multiplied by the range
(maximum-minimum value) of each factor's domain. For the angle for example, considering the
[20◦, 70◦] domain, the real step was ∆θ = ∆ · (70◦ − 20◦) = 1.3◦. After providing the details
of our Screening study of COSMO, the presentation of the results for each case separately follows.

2.5.1 Study of a forest of trunks - Radar angles

In this �rst SA test for COSMO we investigated extended ranges for all 12 factors varying, for
the case of a forest of trunks only. There were actually 13 factors varying, in the other cases
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Physical quantity Symbol

Amplitude of the p-received q-emitted signal |Erpq|
Backscattering coe�cient of the p-received q-emitted signal σ0pq

HH − V V backscatter di�erence σ0HH − σ0V V
Absolute phase of the p-received q-emitted signal φpq

HH − V V phase di�erence φHH − φV V
First Pauli vector component SHH + SV V
Second Pauli vector component SHH − SV V
Third Pauli vector component 2SV H

Table 2.4 � The di�erent COSMO outputs examined during the screening and their corresponding symbols.

also, since the ground consists of sand, clay and slit, which all three have a �xed sum of 100%.
So, whenever the sand and the clay contents were varying, the slit content was varying also.
The ranges of variation for the 12 factors examined are presented in Table 2.5. For the sand and
clay values, their sums were always less than 95% so that even a small percentage of slit could
be present in the ground content. We did not examined thoroughly all possible cases for the
synthesis of the ground, since its in�uence did not appear important for the model's outputs, as
we will see in the following plots.

Variable Domain

Frequency (F ) [350, 2000] (MHz)

Angle of incidence (θ) [20◦, 70◦]

Moisture of the ground (mg) [10, 70] %

Moisture of the vegetation (mv) [10, 70] %

Age (A) [10, 50] y.o.
Temperature (T ) [0, 35] (◦C)

Sand content (S) [10, 80] %

Clay content (C) [10, 80] %

Radar height (HR) [200, 5000] (m)

Distance in range (dx) [3, 15] (m)

Distance in azimuth (dy) [3, 15] (m)

Displacement (e) [0.01, 5] (m)

Table 2.5 � Ranges of the inputs considered for the general Screening SA of COSMO.

Let us proceed now to the presentation and annotation of this SA results, depicted in the
plots of Fig. 2.5. The �rst remark which can be done is that the frequency is the model's most
important parameter, with respect to all three statistical measures, followed by the forest age.
It is also obvious that the frequency has non-monotonic e�ects, since µ and µ∗ values di�er
signi�cantly, while the age shows de�nite linear e�ects. These behaviors can be attributed to
the cylinder backscattering on the one hand and to the increasing backscattering of the trunks
as the age and subsequently their dimensions are augmenting. Continuing, the gravimetric
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humidity of the vegetation and the angle of incidence have average e�ects on the model and
the humidity of the ground and the displacement e minor e�ects. Apart from the moisture
of the ground which a�ects directly the permittivity and so the ground re�ectivity, the other
inputs show non-monotonic e�ects. The angle and the vegetation humidity show also a medium
non-linearity due to several phenomena as the cylinder e�ect and the variation in the VV
backscattering, with respect to the vegetation permittivity (probably because of the Brewster
angle e�ect, see Section 3.4). The rest of the parameters can be considered as negligible, since
they show EEs values very close to 0. If we focus on the SA of the separate outputs, the three
amplitudes of the backscattered �eld as well as the backscattering coe�cients in all polarizations
show very similar results between them, as expected, and also with the aggregate ones as seen
in Fig. 2.6. On the contrary, a very di�erent relation between the phase di�erence φHH − φV V
and the inputs is depicted in Fig. 2.7. Concerning this output, all the parameters a�ecting
the range, especially the height of the radar, the displacement and the distance along the site
dimension were the most important factors, together with the incidence angle and the frequency.
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Figure 2.5 � The aggregate screening results for all normalized outputs considered at the whole COSMO
frequency band and angles from 20◦ to 70◦ in the µσ-plane (left) and the µ∗σ-plane (right). A forest of
trunks only was examined. The frequency, the age, the vegetation moisture and the incidence angle are
the most important parameters overall.

2.5.2 Study of a forest of trunks - All angles

In this second screening test all parameters were varying as in the �rst case, apart from the angle
of incidence. In the previous analysis we focused on angles mostly used in radar campaigns,
while in this one we extended the angle range to [5◦, 85◦]. The aggregate results for all outputs
are shown in Fig. 2.8. An obvious change with respect to the previous case, is that the incidence
angle is now the second most important parameter showing high non-linear e�ects too. This
di�erence could be attributed to a fast decay of the backscattering observed for angles bigger
than 70◦ and certain low frequencies and to the Brewster angle e�ect. As we will see in details
in section 3.4, when just trunks are present, a big drop of the backscattered energy because of
this e�ect is taking place for certain low frequencies mainly and under an angle of incidence
around 15◦ − 20◦. These e�ects seem to a�ect signi�cantly the frequency also, as it is still

54



2.5. Application: Screening of COSMO

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10 F

θ

A

mg

mv

S
dx, C,HR, dy, T, C

e

µ∗

σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10 F

θ

A

mg

mv

S,HR, C, T

dx, dy

e

µ∗

σ

Figure 2.6 � The screening results for µ∗, σ of the received signal's amplitudes (left) and the backscattering
coe�cients (right) in all polarizations, considered at the whole COSMO frequency band and angles from
20◦ to 70◦. A forest of trunks only was examined. As expected, similar results are appearing in both plots
due to the way the backscattering coe�cients are calculated. These results are also similar to the ones of
Fig. 2.5.
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Figure 2.7 � The screening results for the phase di�erence φHH − φV V considered at the whole COSMO
frequency band and angles from 20◦ to 70◦. A forest of trunks only was examined. As expected, parameters
a�ecting the range are among the most important ones.

the most important parameter, but with stronger in�uence than in the previous case. This
stronger in�uence could be attributed mostly to the described mutual interactions with the angle.

Another important remark for this case is that while the humidity of the vegetation show
the same more or less behavior in both cases, the ground moisture has a much stronger e�ect in
the present case. This can be due to the fact that under large incident angles the double bounce
scattering mechanisms, where the ground interferes, dominate the backscatter. About the
separate outputs, the σ0pq show the same dependence on the inputs as the aggregated outputs,
while the phase di�erence is again highly a�ected by the positioning parameters. What is also
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Figure 2.8 � The aggregate screening results for all normalized outputs considered at the whole COSMO
frequency band and angles from 5◦ to 85◦ in the µσ-plane (left) and the µ∗σ-plane (right). A forest of
trunks only was examined. When expanding the angle domain of study, the angle becomes the second
most important parameter behind the frequency only.

evident is the existence of interactions of the angle with the F, dx, e parameters and the two
humidities. These interactions are re�ected on the increased σ values of these factors compared
to the ones corresponding to the radar angles, as seen in the right plots of Fig. 2.9 and 2.7.
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Figure 2.9 � The screening results for µ∗, σ of the backscattering coe�cients in all polarizations (left) and
of the phase di�erence φHH − φV V (right), considered at the whole COSMO frequency band and angles
from 5◦ to 85◦. A forest of trunks only was examined. The angle θ is the most important factor for the
phase di�erence and the second most important for the σ0

pq.

2.5.3 Study of a forest of trunks and branches - Radar angles

After studying the simple case of a forest of trunks, let us now examine the e�ect of the
branches addition to the model behavior. The same forest arrangements with the trunks
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only cases were studied, where each trunk had now twenty �ve primary branches uniformly
distributed around it. The number of the primary branches was selected bigger than in
reality, in order to make the branches e�ect more obvious. The branches dimensions, same
for all branches of the scene, were the average values derived from the age as explained in
Paragraph 1.3.3. This means that all coeval forests had the same dimensions for their trunks
and their branches. As far as the rest of the parameters were concerned, the same values and
angle domains were investigated as in the cases of trunks only. When the angles commonly used
by radars were considered, the screening aggregate results for all outputs can be seen in Fig. 2.10.
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Figure 2.10 � The aggregate screening results for all normalized outputs, considered at the whole COSMO
frequency band and angles from 20◦ to 70◦, in the µσ-plane (left) and the µ∗σ-plane (right). A forest
of trunks and branches was examined. Frequency and angle are the most important factors, with weaker
e�ects than in the trunks only case.

In that case, the radar frequency was again by far the most important model input followed
by the incidence angle. The e�ects though, seem much weaker than in the trunks only case.
This can be due to the much stronger forest backscatter in high frequencies when branches are
added, compared to the fast decay observed when just trunks were considered. This di�erence
was observed during the investigation of the forest elements e�ect on the backscatter and is
presented in details in Chapter 3. A characteristic example of this branches e�ect can be seen in
Fig. 2.11, where σ0HH decays much slower when branches exist. The e�ect is apparent even in a
forest where just 10 branches per tree were considered. The rest of the COSMO factors treated
are of rather small importance, with the vegetation moisture being the most in�uential among
them and the height of the radar, the temperature and the ground content the negligible ones.
In Fig. 2.12 the screening results for all three backscatter coe�cients and the phase di�erence are
also presented. As expected, for the σ0pq the results are very similar to the aggregate ones, while
φHH − φV V is a�ected a lot by the positioning factors. Nevertheless, the existence of branches
raised the signi�cance of frequency making it the most important parameter together with e
for the phase di�erence also. Branches increased in addition the vegetation moisture e�ects,
probably because of the large increase of the single bounce scattering observed via the second
Pauli vector component SHH − SV V (see Fig. 2.13).
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Figure 2.11 � The backscattering coe�cients of the received signal in HH polarization (left), in V V
(right) for the cases of a forest with trunks only and the same trunks with 10 branches added to each one.
The incidence angle of the emitted wave was 40◦. The decay of the backscattering for frequencies higher
than 1 GHz is faster when just trunks are considered, something that explains the stronger and non-linear
parameter e�ects observed in that case.
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Figure 2.12 � The screening results in the µ∗σ-plane, for the backscattering coe�cients of the received
signal in all polarizations (left) and the phase di�erence φHH − φV V (right), considered at the whole
COSMO frequency band and angles from 20◦ to 70◦. A forest of trunks and branches was examined.
There is a much weaker age e�ect on the σ0

pq, but stronger F and e e�ects on the phase di�erence.

2.5.4 Study of a forest of trunks and branches - All angles

If the angle domain is extended to the [5◦, 85◦] one, during the branches case study, a notable
change is observed with respect to the previous example. The incidence angle was for the �rst
time the most important model parameter followed by the frequency, in both the aggregate
results and the results concerning the backscattering coe�cients, as seen in Fig. 2.14 and 2.15.
It was probably due to the weaker backscattering decay with respect to the frequency, observed
when branches exist. For the phase di�erence, e and θ were still the most important factors.
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Figure 2.13 � The comparison of the SHH − SV V values obtained from a forest of trunks only and the
same trunks with 10 branches added on each one. The big di�erence observed for frequencies higher than
1 GHz, can be attributed to the branches signi�cant single bounce scattering.

Nonetheless, if we compare the results from the two angle cases, as depicted in the right plots of
Fig. 2.12 and 2.15, it is implied by the higher µ∗ and σ values that the angle showed much stronger
e�ects in the present case. The rest of the parameters did not appear to change behaviors, apart
from the higher moment values observed and attributed to the interactions with the angle.
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Figure 2.14 � The aggregate screening results for all normalized outputs, considered at the whole COSMO
frequency band and angles from 5◦ to 85◦, in the µσ-plane (left) and the µ∗σ-plane (right). A forest of
trunks and branches was examined. It is the �rst example where the angle becomes the most important
model factor.
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Figure 2.15 � The screening results in the µ∗σ-plane, for the backscattering coe�cients in all polarizations
(left) and the phase di�erence φHH − φV V (right), considered at the whole COSMO frequency band and
angles from 5◦ to 85◦. A forest of trunks and branches was examined. e remains the most important
parameter for the phase di�erence, followed by θ after the expansion of the angle domain of study.

2.6 Conclusions

In the previous pages, we quickly reviewed SA and its main methods, with more emphasis
given to the Morris screening method. This method, in its particular version implemented by
Camplolongo et al., was at a next step adjusted to �t our purposes and applied to COSMO. It
was the �rst time, to the best of our knowledge, that a mathematical technique from DASE was
applied to radar studies of forests. Di�erent cases concerning fully or quasi-periodical forests
of trunks only and of trunks and branches were examined. A wide domain was investigated
for each of the inputs under consideration. Finally, by performing this SA on COSMO, we
succeeded in assessing the importance of its main input factors, via their e�ects on the several
di�erent outputs. The frequency and the incidence angle of the emitted signal were identi�ed as
the most important COSMO parameters, followed by the age of the forest and the permittivity
of the vegetation. On the contrary, the radar height, the temperature and the ground synthesis
parameters showed negligible e�ects and can in most of the experiments be set at constant
values to lighten COSMO, without largely a�ecting its performances.

The case of the phase di�erence where the positioning parameters were of great importance
was highlighted also. In addition, we discovered the fact that the angle can sometimes be the
most important factor of the model, showing highly non-linear behavior and interactions with the
frequency mostly. This has to be further examined and considered during the angle normalization
methods for the backscatter comparison, which are mainly based on cosine models as seen in
[Huang et al., 2015]. These new information on COSMO and forest radar studies that the SA
came with, need to be further veri�ed. In saying so, distinct COSMO simulation studies for each
important factor are necessary, in order to con�rm its high importance and examine the extent
of the e�ect. These studies will be carried out in the upcoming chapter.
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3.1 Introduction

After presenting the Screening SA method and testing it on COSMO in the previous chapter,
we will now proceed to the validation of its conclusions, while analyzing the COSMO simulation
results. The purpose of this chapter is not to exploit COSMO and go deeply into the physics
of the forest scattering, but rather to justify and study on the one hand the results of the SA
concerning the model's most important parameters (the frequency, the angle of incidence, the
age and the humidity of the vegetation), and on the other hand to verify our proposed strategy.
In saying so:

(i) to check and analyze the e�ects of these important parameters, as well as the e�ects of the
di�erent forest elements and arrangements,
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(ii) to interpret and explain these e�ects in terms of the physics of the phenomenon, whenever
possible

(iii) and to suggest optimal radar con�gurations (frequency and polarization) for the detection
of these e�ects, during radar investigations.

In the next chapter, we will complement this analysis by checking the applicability and the
utility of the metamodel in step (i), while using the con�gurations suggested in step (iii). So
that the use of the metamodel would provide a fast and real-time analysis, to be carried out
during our future adaptive radar observations.

The analysis done in this chapter, consisted of the examination of the forest response in both
frequency and time domains. As far as the frequency domain is concerned, the analysis was per-
formed on the polarimetric quantities introduced in Chapter 1, i.e. the σ0pq and the components
kPi of the Pauli feature vector, as presented in Eq. 1.20. From the three components of kP ,
representing the double bounces, the single bounces and the volume scattering respectively, the
�rst two were mainly examined. The conclusions concerning the breaking of the symmetry and
thus the volume scattering provided by the third component, could be also derived by the σ0V H .
During the time domain analysis, only the amplitude of the received signal was investigated.
An IFFT was employed to transform the received signal from the frequency domain to the time
domain, using all the emitted bandwidth each time. An analysis like this took place for the
�rst time in the a radar study of forests. As a consequence, the extraction of supplementary
information on the forest geometrical structure was possible.

3.2 Frequency domain analysis

In this �rst part of the analysis, we will examine the received signals simulated by COSMO
in the frequency domain, which is the model's original domain. The identi�cation of the most
important factors by the SA, will be now validated and the factors speci�c e�ects will be checked.
Then, the investigation of the e�ects regarding the branches presence, their density, the addition
of a spherical target and the forest arrangement will follow. The whole COSMO frequency
spectrum (350 MHz− 2 GHz) will be used under all linear polarizations. In the �rst subsection,
the angles examined will vary within the [20◦, 70◦] interval. For the rest of the analysis though,
the results obtained under a constant angle of 40◦ will be presented only, for the sake of brevity
and the results relevance. An angle like this, is commonly used to normalize backscatter datasets
acquired for di�erent incidence angle values as e.g. in [Mladenova et al., 2013].

As far as the scene is concerned, it was a maritime pine forest, as described in Section 1.3.3,
distributed within a scene of about 40 m × 50 m. There were 63 trees generated, having their
trunks inclined up to 10◦ from the vertical position and the branches uniformly distributed
around them. In the generic case there were no branches, in order to focus on trunks which mainly
backscatter in the frequencies we use. Whenever branches were added, it will be explicitly stated.
The distribution of the trees was periodical, when not mentioned otherwise, having a 6 m mutual
distance between them in both directions. The age of the forest was 30 years in all experiments,
apart from these where the age e�ect on the forest scattering was studied, in Paragraphs 3.2.2
and 3.3.2. The rest of the scene parameters concerning the trunks, the branches when added,
the ground etc. are gathered in the Table 3.1. The choice of the parameters was arbitrary,
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respecting though the real data, the allometric equations concerning this type of forests - taken
from [Saleh et al., 2005] and presented in Section 1.3.3 - and the physical constraints. However,
there were various cases examined which could be regarded as far from being real, since for
instance forests with naked trunks do not exist in general. These theoretical examples were se-
lected on purpose, in order to serve in the isolation and identi�cation of certain scattering e�ects.

Parameters Values

Trunk height 18.6 m

Trunk radius 15.9 cm

Ambient temperature 15 ◦C

Gravimetric humidity of the ground mg 40%

Sand content 50%

Clay content 30%

Silt content 20%

Re (εg) [33.57, 38.47]

Im (εg) [−5.81,−2.53]

Branch length 93 cm
Branch radius 3.13 cm

Volumetric / gravimetric vegetation humidity 40% / 35.7%

Re (εv) [9.92, 13.1]

Im (εv) [−5.87,−3.28]

RMS height of ground roughness 5 cm

Correlation length of ground roughness 1 m

Table 3.1 � The ground and the vegetation parameters concerning the COSMO simulations analyzed in
this chapter. The values of the humidity of the vegetation and the corresponding permittivity stand for
all experiments, apart from the ones where these quantities were the subject of the study.

Before starting the analysis of the most critical model parameters, let us �rst present the
e�ects on the model outputs of two of the non-important parameters, the moisture of the
ground and the ambient temperature. During the SA in the previous chapter, these factors were
not among the essential ones, especially for the radar angles as seen in Fig. 2.5. By examining
di�erent values for these quantities and testing the change on the backscattering, we �nally
arrived in con�rming the SA conclusions. As presented in Fig. 3.1, the temperature shows
almost no e�ect on σ0HH . At the same time, the ground humidity shows a very small and linear
in�uence on σ0HH and a negligible one on σ0V H . To highlight these conclusions, we provided
both results for the ground moisture, because σ0V H was the most varying quantity in the other
forest parameters cases, as we will see later on. Similar results were discovered for the other
polarimetric quantities under study, but they will not be presented as these tests served rather
as a veri�cation of our SA results and they are not part of the upcoming analysis.

3.2.1 E�ects of the frequency and the angle

The analysis of the received signal generated by COSMO, will focus �rstly to the e�ect of the
two most important parameters of the model identi�ed by the SA, i.e. the frequency and the
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Figure 3.1 � The HH backscattering coe�cient for the same forest of trunks having three di�erent ambient
temperature values (left) the same quantity for three di�erent values of the ground humidity (middle) and
the VH backscattering coe�cient for the same three values of the ground humidity (right). The e�ects
present on the signals, con�rm the SA conclusions which stated that temperature is among the negligible
COSMO factors, while the humidity of the ground - with its weak and linear modi�cation - is among the
non-important ones.

angle of incidence of the emitted EM wave. As already mentioned, COSMO operates in P- and
L-bands within the [350 MHz, 2 GHz] frequency range and it can �emit� under all possible angles
of incidence from 1◦ to 89◦. Nevertheless, in this analysis we will examine only angles within
the [20◦, 70◦] interval, which are the most commonly used in radar observations, and the whole
frequency band. The e�ects on the backscattered signal of six di�erent angles of incidence will
be presented, those of 20◦, 30◦, 40◦, 50◦, 60◦ and 70◦. Variations of ∼ 10◦ or less are usually
assumed to produce negligible variability e�ects (see [Mladenova et al., 2013]) and they were
not examined. In this stage of the study, a forest of trunks only will be examined in order to
isolate and focus on the desired e�ects. The branches e�ect on the forest scattering will be the
subject of Subsection 3.2.3 later on.

Proceeding to the discussion of the results obtained, the corresponding plots for the backscat-
tering coe�cients and the Pauli vector elements are presented in Fig. 3.2 and 3.3. It is obvious
from these graphs, that the backscattered energy tends to decrease with the frequency for small
angles. When the angle gets steeper, this e�ect weakens and the signal �uctuates more around
the same values and even increases slightly for the 70◦. For the cross-polarization, the strong
decrease gets stabilized after 1 GHz. There is also a threshold around 1 GHz, after which the
scattering is stronger for angles ≥ 50◦ in the co-polarizations and in the two �rst Pauli vector
components.

Physical interpretation As far as the physical interpretation is concerned, because of
the existence of the almost vertical trunks only, σ0HH is superior to σ0V V . In addition, the
cross-polarized received signal is very low, within the whole emitted bandwidth, since the scene
is highly symmetric. Concerning the scattering mechanisms, the graphs of Fig. 3.3 and 3.4 show
that the double bounces, as represented by SHH + SV V , decrease with the frequency for all
angles < 70◦. The single bounces decrease strongly for angles up to 50◦ and then they mainly
�uctuate. The double bounces stay almost always the dominant scattering mechanism, apart
from the case of the 20◦ where the trunks scatter equally in single and double bounces. This
was rather expected, since in our examination only trunks were present, which favor the double
bounces in general.
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Figure 3.2 � The three backscattering coe�cients for the whole COSMO frequency range and 6 di�erent
angles of incidence, ranging from 20◦ to 70◦.
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Figure 3.3 � The two �rst Pauli vector elements for the whole COSMO frequency range and 6 di�erent
angles of incidence, ranging from 20◦ to 70◦.
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Figure 3.4 � The comparison of the two �rst Pauli vector components corresponding to the double and
single bounces mechanisms respectively, for an incidence angle of 20◦ (left), 40◦ (middle) and 60◦ (right).
For the small angles the single backscattering is almost as strong as the double one, while for bigger angles
it is the double bounces mechanism that dominates the backscattering.

Another interesting e�ect observed was the low VV backscattering compared to the HH, for
an incidence angle of 20◦ principally and of 70◦ secondarily. It was observed directly from the
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σ0V V values in Fig. 3.2 and indirectly from the nearly equal values of SHH +SV V and SHH−SV V
in Fig. 3.4 which imply that SV V → 0. Taking a closer look and comparing the HH and V V
values in Fig. 3.5, we see that for large angles the VV and the HH polarizations show similar
behaviors, with a constant di�erence of at most 10 − 15 dB between their values. Nevertheless,
when the incidence angle is 20◦ this di�erence reaches up to almost 30 dB for low frequencies,
showing a steep drop of the VV values.

Physical interpretation This huge di�erence could be explained by the Brewster angle
e�ect due to the vegetation and it was actually the fact that triggered a more profound
analysis of this e�ect. However, we will not go further for the moment, as a speci�c part of
this chapter, Section 3.4, is attributed to the analysis and the results of the Brewster angle e�ect.

To close this section, we could say that the signi�cant alterations of the model behavior with
respect to both the frequency and the angle of the wave emission, con�rm the SA conclusions.
The non-linearities, the �uctuations and the steep drops of the studied values, imply factors
with a very strong overall in�uence on the model, as discovered in the previous chapter and
depicted in Fig. 2.5 and 2.8.
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Figure 3.5 � The comparison of the co-polarized backscattering coe�cients for an incidence angle of 20◦

(left), 40◦ (middle) and 60◦ (right). A di�erence between the co-polarized values is almost everywhere
existing and takes the highest values for the case of an angle of incidence of 20◦. The latter can be
attributed to the Brewster angle e�ect because of the vegetation scattering.

3.2.2 Study of the age and the humidity e�ect

After investigating the e�ect of the most important radar parameters, the frequency and the
incidence angle of the emitted signal, we will now continue with the study of the e�ect of the
two most essential forest parameters, the age and the humidity of the vegetation. These factors
do not a�ect the forest backscattering directly, but indirectly via other physical quantities. The
age controls the dimensions of the forest elements by the allometric equations (see Section 1.3.3)
and the humidity of the vegetation a�ects directly the dielectric property (see Section 1.3.4)
and therefore the re�ectivity of the trees. As mentioned before, all the e�ects will be examined
along the whole COSMO frequency band and under a constant incidence angle of 40◦. The
e�ects of the two parameters under study were investigated in a forest of trunks only, so that
their e�ects could be more isolated and identi�ed.
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The age e�ect

As far as the frequency domain analysis of the age e�ect is concerned, three di�erent forest stands
will be presented here. These forests had the same tree arrangement and an age of 10, 30 and
50 years respectively. The dimensions of the trunks corresponding to the three di�erently aged
stands and their ratio with respect to the wavelength are presented in Table 3.2. The results for
the σ0pq values and the �rst two components of kP are presented in Fig. 3.6 and 3.7. The �rst
conclusion that can be drawn is that the older the trunks were, the more they backscattered
and the less �noisy� the signal was. A more interesting result, that can be used for discerning
forests of di�erent ages, is the characteristic drops observed in the VH backscattering coe�cient
for di�erent frequency values (see right plot of Fig. 3.6). The older the forest was, the lower the
frequency where the �rst drop occurred and the more steep the drops were. The age seemed
to a�ect the signal a lot, showing weaker non-linear e�ects than the frequency and the angle
though.

Physical interpretation The older the trunks, the largest their dimensions are and thus the
forest backscattering. Concerning the scattering mechanisms, since just trunks exist, the double
bounces dominate the whole COSMO operating band, apart from a few high frequencies close
to 2 GHz, for all forest ages (see Fig. 3.8).

Age Trunk height height/λ Trunk radius radius/λ

10 y.o. 8.13 m 9.5�54 6.6 cm 0.07�0.44
30 y.o. 18.64 m 21.7�124.3 15.9 cm 0.185�1.06
50 y.o. 23.53 m 27.45�156.8 20.2 cm 0.236�1.35

Table 3.2 � The trunk dimensions corresponding to the forest age for the three virtual stands considered
in this section. The ratios of these dimensions with respect to the wavelength, are also presented next to
the column of each dimension.
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Figure 3.6 � The backscattering coe�cients in HH (left), in VV (middle) and in VH (right) for the whole
COSMO frequency range and for three di�erent forest ages. The older stands were backscattering more
energy in general.
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Figure 3.7 � The two �rst Pauli vector elements for the whole COSMO frequency range and for the three
di�erent forest ages of 10, 30 and 50 years.
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Figure 3.8 � The comparison of the �rst and second Pauli vector components for three forest of trunks
having 10 (left), 30 (middle) and 50 (right) years of age. The �rst component corresponding to the double
bounces mechanism is dominant along almost the whole frequency range for all three cases.

The humidity e�ect

The volumetric moisture of the vegetation was identi�ed as the fourth most important COSMO
parameter during the SA. It was showing in general less non-linear e�ects than the three more
important factors, the frequency, the angle and the age, as deduced by the low variance (σ)
values for its elementary e�ects (see for example Fig.2.8). These SA conclusions and the physical
intuition were both re�ected in the analysis of the humidity e�ect presented here. The forest
studied was a 30 years old one, with a volumetric percentage of the vegetation humidity varying
from 10% to 60%. From the test cases generated and simulated, only three will be presented
here, the ones assuming volumetric humidity values of 20%, 40% and 60% respectively. A
percentage of 60% for the humidity of the trunks could be regarded as a non realistic one16, it
was chosen though as an extreme case for a more integrated study of the e�ect. The gravimetric
humidities and the real and imaginary parts of the relative permittivities, corresponding to the
cases presented here, are contained in the Table 3.3.

16In [El-Rayes and Ulaby, 1987] the gravimetric content examined reached up to 50% in the centre of the trunk
while higher values were considered, but only as far as the leaves were concerning.
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mvol
v mgrav

v Re (εv) Im (εv)

20% 17.2% [3.59, 4.86] [−1.47,−0.94]

40% 35.7% [9.92, 13.4] [−6.25,−3.28]

60% 55.6% [19.54, 24.64] [−13.4,−6.14]

Table 3.3 � The gravimetric moisture (mgrav
v ) and the real and imaginary parts of the relative permittivity

corresponding to the volumetric moisture (mvol
v ) values examined in this section.

Concerning the results of the humidity e�ect now, let us start with the backscattering coe�-
cients as done before. It is obvious from Fig. 3.9, that the mvol

v values a�ected in a more or less
linear way the σ0HH values and the σ0V V values for the wetter vegetation cases. As the moisture
was increasing, so did the backscattered energy along the whole frequency band, with the gap be-
ing more important between 20% and 40% than between 40% and 60%. The existing non-linear
and non-monotonic e�ects of mvol

v were mostly shown in the dry case and the cross-polarized
response. It is mostly the trunks having a mvol

v = 20% that showed unexpected oscillations for
the VV and VH backscattering. These results can be extended to the Pauli vector elements also.
As seen in Fig. 3.10, between 40% and 60% the e�ect for both SHH + SV V and SHH − SV V
was almost linear, while the dry vegetation showed a more strange behavior especially in high
frequencies.
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Figure 3.9 � The three backscattering coe�cients with respect to the frequency and for 3 di�erent volu-
metric vegetation humidity values for the forest of trunks. The wetter the vegetation was, the more it
backscattered.

Physical interpretation The linear e�ect of the moisture increase in HH was expected,
as well as the same e�ect on the VV backscattering for the higher moisture values. As the
vegetation gets wetter, its permittivity and thus its re�ectivity increases, resulting in a stronger
signal received by the radar. On the contrary, the dry trunks tend to be more transparent to
the incident radiation. As far as the non-linear e�ect on the σ0V V is concerned, it takes place
for low moisture values and could be attributed to the Brewster angle e�ect, since it does not
exist in HH. The equal single and double bounces values, as seen in the left plot of Fig. 3.10
for frequencies from 1.4 GHz and more, verify this conclusion as they imply that SV V → 0.
More comments and an integrated analysis on that e�ect will be provided in Section 3.4. Apart
from the case and the sub-band showing this e�ect, the double bounces mechanism is always
dominant as expected since trunks only exist.
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Figure 3.10 � The comparison of the �rst and second Pauli vector components for three forests of trunks
having mv = 20% (left), mv = 40% (middle) and mv = 60% (right) respectively. The �rst component cor-
responding to the double bounces mechanism is dominant almost everywhere, especially when the humidity
increases.

The examination of the vegetation humidity e�ect con�rmed the SA conclusions. The factor
shows relatively average e�ects on the COSMO outputs, which are more or less monotonic.
The few non-linearities provide us the possibility to distinguish the di�erent moisture values for
the vegetation. In the case of the dry forests, the VV or the VH backscattering coe�cients or
the two �rst Pauli vector elements have to be examined together so that the non-linear drops
are detected or the similar co-polarized values. Humidity values of 40% and 60% showed very
similar behaviors, despite the di�erence in the backscattered energy, for all quantities treated.
Thus, when the arrangement was the same as in our case, they could be hardly di�erentiated.

3.2.3 The branches e�ect

After focusing on the most important COSMO factor e�ects for a forest of trunks only, in the
present section, the examination of the scattering behavior of the branches will be presented.
Several di�erent aspects of the branches e�ect were considered, but those who will be presented
here are the most signi�cant and discernible ones. The forest taken under consideration was
a periodical one, since the examined e�ects when the tree positions were semi-periodic with a
certain displacement from the periodical positions, were very similar to the ones corresponding
to the periodical forest and thus they will not be presented. This periodical forest had 30 years
of age and the same parameters values as those given in Table 3.1. The number of the added
branches was 10 per tree, corresponding to a density of 0.0422 branches/m3 for the upper
layer of the forest containing them. An incidence angle of 40◦ was selected as previously. In
order to better understand the branches scattering with respect to the emitted frequency, their
dimensions and the corresponding ratios with the wavelength are presented in Table 3.4. The
very small length/wavelength ratio for all frequencies (ratio < 10), led COSMO to simulate the
branches response via the Physical Optics Approximation, instead of the In�nite Cylinder one.

The e�ect of the branches in the frequency domain, as far as the backscattering coe�cients
are concerned, is presented in Fig. 3.11. It is apparent from these three plots, that the branches
addition a�ected signi�cantly the received signal in all polarizations. In the co-polarizations
the contribution took place in frequencies higher than 1 GHz. This e�ect was stronger for VV,
changing therefore the HH-VV ratio of the trunks. For frequencies close to 2 GHz, the di�erence
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Branch length lbr lbr/λ Branch radius rbr rbr/λ

93 cm 1.085�6.2 3.13 cm 0.037�0.21

Table 3.4 � The branches dimensions and their ratios with respect to the wavelength. We can see that all
ratios are <10.

0.5 1 1.5 2

−40

−30

−20

−10

0

Frequency (GHz)

σ
0 H
H

(d
B
)

 

 

trunks only
trunks+branches

0.5 1 1.5 2

−40

−30

−20

−10

0

Frequency (GHz)

σ
0 V
V

(d
B
)

 

 

trunks only
trunks+branches

0.5 1 1.5 2

−70

−60

−50

−40

−30

−20

Frequency (GHz)

σ
0 V
H

(d
B
)

 

 

trunks only
trunks+branches

Figure 3.11 � The backscattering coe�cients of the received signal in HH polarization (left), in V V
(middle) and in V H (right) for the cases of a forest with trunks only and the same trunks with branches
added. The branches contribute to the co-polarized signal after 1 GHz and to the cross-polarized one within
the whole spectrum. The incidence angle of the emitted wave was 40◦.

between the two signals with and without branches took its largest value, which reached 15 dB
for the HH polarization and 20 dB for VV. Concerning the cross-polarization now, the branches
addition resulted in an increase of the backscattered energy along the whole frequency band, by
16 dB at least. The di�erence of the two signals took its highest value close to 2 GHz, where it
exceeded 35 dB. Another characteristic e�ect of the branches existence on the VH backscattering,
was also the 10 dB drop observed around 1.5 GHz. The Pauli vector coe�cients on the other
hand, were also enhanced by the branches scattering, in a di�erent way though. As seen in
Fig. 3.12 and 3.13, SHH + SV V increased only after 1.6 GHz, while SHH − SV V and 2SV H were
a�ected along the whole spectrum used. This was due to the di�erent way branches scatter in
the various scattering mechanisms, as we will see in the next paragraph.

Physical interpretation As expected from the frequencies emitted, the branches contribute
mostly on the upper half of the selected spectrum, i.e. the L-band. In low frequencies, the waves
penetrate the canopy and the trunks dominate the co-polarized backscattering. The branches
response is so low that it is almost invisible up to 1 GHz - where their radius rbr ≤ 0.1λ. It is only
when the trunks co-polarized scattering becomes inferior to 15 dB, that the branches' contribution
is visible. In cross-polarization on the contrary, the e�ect is very strong for all frequencies. There
is always a 15−35 dB di�erence between the scattering from the trunks only and the one from the
whole trees, as seen in the right plot of Fig. 3.11. Because of their uniform arrangement around
the trunks and their various entry angles, the branches �break� the symmetry of the trunks and
contribute signi�cantly in the volume scattering of the forest, represented by σ0V H and 2SV H in
our plots (Fig 3.11 and 3.12). Apart from the volume scattering, branches contribute also in
both double and single scattering mechanisms, as obvious from Fig. 3.13. This contribution is
much stronger for the single bounces, than for the double ones. This e�ect can be attributed to
the fact that the branches apart from scattering back the emitted signal, they also attenuate the
scattering from the lower level. As a consequence, their e�ect on the single bounces is strictly
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Figure 3.12 � The three Pauli vector elements SHH + SV V , SHH − SV V and 2SV H for a forest of trunks
only (left) and the same forest with the trunks having 10 branches each one. The branches a�ect mostly
2SV H and SHH − SV V , while SHH + SV V is modi�ed after 1.6 GHz only.

additive, while in double bounces they both enhance and attenuate the trunks scattering. This
is why branches contribute to the SHH + SV V values, i.e. the double bounces scattering, after
1.6 GHz and to the SHH − SV V values, i.e. the single bounces scattering, in almost the whole
frequency range. The branches e�ect on SHH − SV V can reach up to 20 dB where the trunks
contribution decays fast, at frequencies higher than 1 GHz. And it is after this threshold - around
1.15 GHz - that the single bounces become the dominant scattering mechanism, as observed in
Fig. 3.14. Whereas for the trunks, the double bounces is everywhere dominant. In both cases the
scattering decays for double and single scattering, but the change of the dominant mechanism
is due to the di�erent decay rates. The volume scattering, as previously mentioned, is much
stronger when branches are added, but it is always at least 7.5 dB weaker than the dominant
mechanism as seen in Fig. 3.12.

Increasing the number of the branches

The previous results correspond to a forest of trees having 10 primary branches each one. If
the number of the branches is increased up to 20 or 30 per tree, with corresponding densities
of 0.0845 and 0.1267 branches/m3 respectively, the results for the backscattering coe�cients
are presented in Fig. 3.15. As far as the co-polarizations are concerned, there was more en-
ergy backscattered (up to 5 dB) in frequencies higher than 1 GHz, where the branches mainly
contribute. In lower frequencies, where the trunk scattering was dominant and the branches
scattered very weakly, there was almost no di�erence among the three cases. On the other hand,
the cross-polarized backscattering was stronger along the whole frequency range whenever the
number of the branches was getting larger. Regarding the Pauli vector now, the increasing num-
ber of branches resulted always in an increase of the �rst component values above 1.6 GHz and
of the single bounces along the whole spectrum, especially above 900 MHz (see Fig. 3.16).

Physical interpretation As expected from the theory, the main conclusion drawn from
Fig. 3.15 and 3.16 is that the more scatterers exist, the stronger the backscattered signal is.
This was also the case previously, when branches were added to the trunks (see Fig. 3.11),
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Figure 3.13 � The �rst Pauli vector element, SHH + SV V (left) and the second SHH − SV V (right), for
the cases of a forest with trunks only and the same trunks with branches added. The incidence angle
of the emitted wave is 40◦. The trunks dominate the double bounces scattering till 1.7 GHz, even when
branches exist, whereas the branches contribute to the single bounces scattering along the whole frequency
spectrum.
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Figure 3.14 � The comparison of the �rst and second Pauli vector components for a forest of trunks only
(left) and the same forest with 10 primary branches per tree (right). The existence of branches change the
rate of decay in both quantities causing a change of the dominant scattering mechanism from the double
bounces to the single ones, at a frequency of 1.134 GHz.

despite their relatively small dimensions with respect to these of the trunks. Another important
conclusion was extracted, when extra focus was put on the single and double bounces mecha-
nisms values. As seen in Fig. 3.17, the decrease with respect to the frequency decays when more
branches are added and the frequency where the change of the dominant scattering mechanism
from double to single bounces takes place, gets lower with the increase of the branches number.
This can be explained by the fact that dense forests act as high frequency, i.e. whatever the
situation is, the canopy scattering dominates, as if high frequencies were used.
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Figure 3.15 � The backscattering coe�cients of the received signal in HH polarization (left), in V V
(middle) and in V H (left) for the cases of a forest with trunks having 10, 20 and 30 primary branches
per tree. The incidence angle of the emitted wave is 40◦.
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Figure 3.16 � The �rst Pauli vector element, SHH + SV V (left) and the second SHH − SV V (right), for
the cases of a forest with trunks having 10, 20 and 30 primary branches per tree. The incidence angle of
the emitted wave is 40◦.
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Figure 3.17 � The comparison of the �rst and second Pauli vector components for a forest with 10 branches
per tree (left) 20 branches per tree (middle) and 30 branches per tree (right). As branches are increasing,
the frequency where the change of the dominant scattering mechanism takes place was decreasing.

Concluding the aforementioned comments, the existence of branches in a forest is de�nitely
obvious in cross-polarization and in the co-polarizations for frequencies above 1 GHz. So if
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3.2. Frequency domain analysis

the objective of a radar observation is to identify the existence of branches and study their
density and arrangement, it is probably better to exploit our results and focus on L-band, no
matter the polarization, or just use the cross-polarization in a single polarization system. If
the change of the dominant scattering mechanism needs to be studied, intermediate frequencies
(0.8-1.3 GHz) have to be selected. These recommendations will be validated in Chapter 5,
during the realizations of our proposed sequential strategy.

3.2.4 The target e�ect

One of the main objectives of the radar campaigns over forested areas, is the so-called FOPEN
(Foliage Penetration) detection of targets hidden in a forest concealment. So, this section is
devoted to the examination of the e�ect, caused by placing a target among the trees of a
periodical forest. The target was supposed to be a perfectly electric conducting sphere (PEC),
with a radius rt = 2 m. The radius was chosen to be su�ciently larger than the wavelength
(rt/λ ∈ [2.33, 13.33]), so that COSMO could easily estimate its backscattering contribution.
This sphere was positioned on the ground, in the empty space between the fourth and �fth
trunk lines along the site dimension, while generating the forest (see Fig. 3.18). Two cases were
again considered, a forest of naked trunks and one where 10 uniformly distributed branches
were added to each trunk.
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Figure 3.18 � The position and the size of the target hidden within a periodical forest. The target is
generated by COSMO between the fourth and the �fth trunk lines in the site dimension.

At �rst, let us examine the target e�ect on the COSMO simulation results, when just trunks
were considered. The addition of the target among the trees caused a signi�cant di�erence
- more than 20 dB - in the power backscattered in both co-polarizations, after 1 GHz (see
Fig. 3.19). For the VV polarization in addition, the signal was much more noisy when the target
was present and almost equal in power to the HH one for frequencies higher than 1.2 GHz. On
the contrary, the di�erence observed in the cross-polarized signal, as seen in the right plot of
Fig. 3.19, was almost negligible along the whole frequency range. As far as the Pauli vector
components are concerned, SHH + SV V was slightly inferior when the target was present, while
the SHH − SV V was signi�cantly enhanced and almost stabilized around −15 dB after 1 GHz
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Chapter 3. Analysis of the forest backscattering with COSMO

(see Fig. 3.20). When branches existed in the scene the target e�ect was much weaker, as
expected. It was again negligible for the co-polarizations in low frequencies and it became
stronger (∼ 5 dB) in high frequencies, as seen in Fig.3.21. In cross-polarization, the target
positioning in the forest resulted in a slight power decrease. Lastly, as seen in Fig. 3.22 the
SHH + SV V values were almost not a�ected at all, whereas the SHH − SV V ones were a little
enhanced for f ≥ 500 MHz. In all cases, the stronger target contribution was observed in 2 GHz.
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Figure 3.19 � The backscattering coe�cients of the received signal in HH polarization (left), in V V
(middle) and in V H (left), for the cases of a forest with trunks only and the same forest with a spherical
target hidden in it. The e�ect of the target is clearly visible in the co-polarizations for frequencies > 1 GHz.
The incidence angle of the emitted wave was 40◦.
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Figure 3.20 � The �rst Pauli vector element SHH + SV V , (left) and the second SHH − SV V (right), for
the cases of a forest with trunks only and the same forest with a target hidden among the trees. The target
response is far more obvious in SHH − SV V , i.e. the single bounces mechanism. The incidence angle of
the emitted wave was 40◦.

Physical interpretation The target, because of its spherical shape, �increases� the symmetry
of the scene in all cases. This explains the strong contribution in the co-polarizations and the
decrease in VH even when branches exist. The co-polarized scattering was not increasing in
any case, but rather decaying much slower, hardly falling under −20 dB. The noisy variations
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Figure 3.21 � The backscattering coe�cients of the received signal in HH polarization (left), in V V
(middle) and in V H (left), for the cases of a forest with trunks and 10 primary branches per trunk and
the same forest with a target hidden among the trees. The incidence angle of the emitted wave was 40◦.
The e�ect of the target is much weaker when branches exist and it is visible in high frequencies only.
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Figure 3.22 � The �rst Pauli vector element SHH + SV V , (left) and the second SHH − SV V (right), for
the cases of a forest with trunks and branches (10 branches/tree) and the same forest with a target hidden
among the trees. The incidence angle of the emitted wave is 40◦. The target contributes only in the single
bounces scattering of the scene.

observed in the VV response are linked to the radius of the sphere. Regarding the scattering
mechanisms, the target backscatters via the single bounces mechanism only and stabilizes it
around −15 dB in high frequencies. This fact corresponds to the polarimetric signature of a
sphere. In double bounces, the target slightly �blocks� the ground-trunk contributions and
causes an average small reduction to them along the whole frequency range. When trunks
exist only, the target is responsible for the change of the dominant scattering mechanism (see
Fig. 3.23). The single bounces become the dominant mechanism after ≈ 1.1 GHz. When
branches are added, the change of the dominant mechanism takes place in a lower frequency. As
seen in Fig. 3.24, in this case the single bounces dominate the scattering in the whole L-band.
Another important target e�ect is the σ0HH and σ0V V convergence observed for frequencies
after 1.2 GHz (see Fig. 3.25). This convergence neutralizes the Brewster angle e�ect in high
frequencies, as we will see in an upcoming paragraph.
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Figure 3.23 � The comparison of the �rst and second Pauli vector components for a forest of trunks only
(left) and the same forest with a target hidden in it (right). The target contributes in the single bounces
along almost the whole COSMO frequency band, making them the dominant mechanism in more than half
of it.
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Figure 3.24 � The comparison of the �rst and the second Pauli vector components for a forest of trunks
having 10 branches/trunk (left) and the same forest with a target concealed in it (right). The target con-
tributes mostly to the single bounces, smoothing their decrease and making them the dominant mechanism
in a frequency slightly lower than that of the branches or the target alone.

Summarizing the points above, we can say that the target e�ect on the scattering of a forest
of naked trunks is a very strong one and can be easily identi�ed. The situation becomes more
di�cult when branches exist. Since branches share some common scattering properties with
the target, as for example the favor to single bounces or the strong co-polarized backscatter
after 1 GHz, the target e�ect is not very distinguishable. It could be easily attributed to an
increase of the branches density. However there exist more speci�c characteristics which are
representative of the target. These are mainly the noisy response in VV and the convergence of
the co-polarized backscattering coe�cients for frequencies ≥ 1.2 GHz. Among the two, since the
VV oscillations are closely related to the sphere, the HH, VV convergence is preferred. So, in
order to discover if a target is hidden in a forest during a future radar observation, emissions in
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Figure 3.25 � The co-polarized backscattering coe�cients of the received signal for a forest of trunks alone
having a target hidden in it (left), the same forest with 10 branches added on each trunk and the target
present (middle) and the forest with the trunks and branches without the target (right). Whenever the
target is added, the co-polarized σ0

pp are comparable in the 1.2 − 2 GHz frequency band. The incidence
angle of the emitted wave was 40◦.

high frequencies using both co-polarizations are recommended.

3.2.5 E�ect of the forest arrangement

In radar observations of forests, the e�ect of the forest arrangement on the backscattered signal,
cannot be fully examined. The natural forests have in general a random tree distribution, while
the man-made ones tend to be more periodical. However, even for the periodically distributed
ones, we cannot fully control the exact positioning of the trees, their mutual distance and their
orientations. On the other side, our numerical model COSMO provides us the freedom to
construct the forest and choose several of its spatial distribution parameters. In that way, we can
examine various di�erent forest arrangements and identify what di�erences each one causes to
the backscattered signal. In the present study, four di�erent arrangements were examined. One
totally periodical, two semi-periodicals having 1 m and 2 m of displacement from the periodical
positions respectively and a totally random one. The forest under consideration was 30 years
old and it consisted of 63 trees distributed within an area of around 40 m × 50 m17. The exact
positions of the 63 trees of the forest for each distribution are presented in Fig. 3.26 and 3.27,
whereas the simulation parameters are these of the Table 3.1. The chosen angle of incidence
was the reference one of 40◦.

The e�ect of the positioning of the trees within the forests described above, was examined
in two distinct cases. Forests of trunks alone and forests of trunks and branches - 10 branches
per trunk - were investigated separately. The outputs analyzed were, as in the previous cases,
the backscattering coe�cients and the Pauli vector elements. Let us start with the cases
of the forests having the trunks only. As seen in Fig. 3.28 and 3.29, the four arrangements
shared very similar scattering behaviors, especially the periodical and the semi-periodical
ones, despite the sometimes signi�cant di�erence in the tree positions with respect to the
wavelength - up to almost 7λ for the 2 m displacement when f = 1 GHz. The random forest
was backscattering more energy than the others in general and the periodical one less. The

17Because of the displacement of the trees in the semi-periodical and random arrangements, the �active� scene
is a bit longer in these cases, than in the periodical one. And so a periodical forest distributed within a scene
of approximately 40 m × 50 m, when having a 6 m mutual distance between the trees it extends in an area of
36 m× 48 m, while when having a 2 m of displacement it covers an area of 40 m× 52 m.
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Figure 3.26 � Three periodical and semi-periodical forest arrangements. The totally periodical forest
with a 6 m mutual distance between the trees in both directions (left), the same arrangement with a 1 m
displacement from the original tree positions (middle) and the same arrangement with a 2 m displacement
from the original tree positions (right). Each of the three forests consisted of 63 trees.
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Figure 3.27 � The totally periodical arrangement of 63 trees in the scene (left) and a random distribution
of the same trees (right).

most signi�cant e�ect was the much stronger co-polarized backscattering of the random
forest in high frequencies. When the branches were added, this e�ect was normalized, as
seen in Fig. 3.30 and 3.31. The four responses were even more complicated and hard to
distinguish and only in the VH backscattering there was a characteristic lower response from
the random forest. It is obvious from these results, that it is a hard task to try to discern
forest having di�erent tree arrangements. If the di�erences are very small, as for periodical and
semi-periodical ones, this is almost impossible. The only thing that seem feasible to be done, is
the di�erentiation between an organized arti�cial forest and a natural, randomly distributed one.

Physical interpretation The periodical and semi-periodical forests show very similar
scattering behavior, due to their similar tree arrangements. On the other hand, the random
forest was backscattering more (∼ 5 dB) under the co-polarizations in high frequencies, because
of its stronger single bounces. When the branches are added, this di�erence is normalized and
all four responses variations are found within a range of 2−2.5 dB. The only exception is in
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VH, where the random trunk arrangement seem not to favor the volume scattering as the more
organized ones do.
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Figure 3.28 � The backscatter coe�cients for the HH polarization (left), the VV polarization (center)
and the VH polarization (right) for four di�erent forest arrangements. The three �rst arrangements were
periodical and semi-periodical with a displacement from the periodical position of 1 m and 2 m and the
last arrangement was a random one. The forests were consisting of 63 trees, represented by their trunks
only. In all cases the forest response was similar, especially for the periodical and semi-periodical cases.
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Figure 3.29 � The Pauli vector elements SHH +SV V (left) and SHH−SV V (right) for four di�erent forest
arrangements. The three �rst arrangements were periodical and semi-periodical with a displacement from
the periodical position of 1 m and 2 m and the last arrangement was a random one. The forests were
consisting of 63 trees, represented by their trunks only. As for the backscattering coe�cients, in all cases
the Pauli vector elements were similar, especially for the periodical and semi-periodical cases.

3.3 Time domain analysis

After investigating the forest e�ect on the simulated received signal in the frequency domain, it
was now the turn of the time domain analysis. It was the �rst time an analysis like this was
performed on the COSMO results and in radar studies of forests in general. Since COSMO
operates in the frequency domain, an Inverse Fast Fourier Transform (IFFT) was applied to
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Figure 3.30 � The backscatter coe�cients for the HH polarization (left), the VV polarization (center)
and the VH polarization (right) for four di�erent forest arrangements. The three �rst arrangements were
periodical and semi-periodical with a displacement from the periodical position of 1 m and 2 m and the
last arrangement was a random one. The forests were consisting of 63 trees with trunks and branches.
In all cases the forest response was similar, especially for the periodical and semi-periodical cases.
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Figure 3.31 � The Pauli vector elements SHH +SV V (left) and SHH−SV V (right) for four di�erent forest
arrangements. The three �rst arrangements were periodical and semi-periodical with a displacement from
the periodical position of 1 m and 2 m and the last arrangement was a random one. The forests were
consisting of 63 trees with trunks and branches. As for the backscattering coe�cients, in all cases the
Pauli vector elements were similar, especially for the periodical and semi-periodical cases.

extract the time signal. The whole frequency spectrum [350 MHz, 2 GHz] and the frequency step
df = 2 MHz between the emitted frequencies were used for this transform. The only quantity
analyzed and presented here was the amplitude of the received time signal, in all polarizations.
This quantity was apparently a�ected by the input parameter variations and the forest elements.
The way it was a�ected each time, provided supplementary information about the scene under
study. The time domain analyses will start with the study of the four most important parameters
e�ects, to continue with the forest elements ones and �nish with the forest arrangements.

82



3.3. Time domain analysis

3.3.1 E�ects of the frequency and the angle

In this �rst analysis, the e�ects of the frequency and the angle on the time signal will be
investigated. Since it is the �rst attempt to analyze the signal in time domain, other comments
concerning the polarization e�ect and the signal structure are going to be mentioned also. As
the time signal is extracted from the frequency one, all simulation parameters were the same as
in Paragraph 3.2.1. A periodical forest of trunks only was examined and the results concerning
the amplitude of the received time signal in all three polarizations are presented in Fig. 3.32. As
seen in these plots, the co-polarized signals show a certain and similar structure which is directly
connected to the geometrical characteristics of the scene. In saying so, the pulses have seven
(7) distinct peaks, corresponding to the tree lines in the site dimension (see Fig. 3.33). Since
the forest was totally periodical, each tree line was backscattering as a single object resulting
in these signal peaks. Since no other scatterers were existing, there is no signal between each
pair of peaks and the peaks mutual distance was re�ecting the mutual distance between the
trunk lines. The whole length of the pulse was also proportional to the site dimension of the scene.
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Figure 3.32 � The amplitude of the received time signal from a forest of periodically positioned trunks in
HH polarization(left), in VV (middle) and in VH (right). The energy backscattered was more in HH than
in VV and it was really low in VH, because of the symmetry of the scene.

The wide frequency band was responsible for the very good resolution achieved in all
polarizations. We remind the the whole COSMO frequency band [350 MHz, 2 GHz] results in
a very �ne range resolution of δr ≈ 10 cm. As far as the cross-polarization is concerned, the
signal was more noisy and it seemed less useful for information extraction with respect to the
co-polarized ones. As in the frequency domain, the power backscattered in HH was more than
in VV and the VH backscattering was very low, due to the symmetry of the scene. The peaks of
each signal had di�erent intensities, probably due to the fact that during the separation of the
scene, not the same number of trunks were put in each resolution cell (see Fig. 3.34). And that
is why the relative intensities of the peaks in the co-polarized signals were the same, despite the
di�erent total energy backscattered.

If we narrow the frequency bandwidth, the time signals obtained after the IFFT correspond
to di�erent frequency bands and are suitable for comparisons. Signals like these are presented
in Fig. 3.35. It is obvious from this �gure, that when using low frequencies, the structure of the
received signal in time domain was still highly correlated with the geometry of the scene and
similar enough to the full bandwidth one. The energy backscattered was less and the signal was
also a little noisy. However, the capability to extract the geometrical scene information was not
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Figure 3.33 � The amplitude of the received time signal from a fully periodical forest in HH had seven
peaks (right), corresponding to the trunk lines along the site dimension of the forest arrangement (left).
The length of the whole pulse corresponded to the site dimension of the scene and the space between the
peaks to the distance between the trunk lines.

Figure 3.34 � The separation of the scene into layers and resolution cells in COSMO. The intersection
of a layer and a pixel, bounded with the red line, is a cell of the scene. As the incidence angle increases
the cells tend to become parallelepiped.

a�ected. If for the responce of a less periodical or a totally random scene this capability will
be more a�ected, we will see it in Section 3.3.5. When a narrow band in the upper part of the
frequency domain is selected, the energy backscattered is around 100 times less than in the low
frequency case. This was expected, since for the in�nite cylinder approximation an increase in
frequency is translated in a decrease of the scattering amplitude (see [Ulaby and Elachi, 1990]).
As also seen in the right plot of the Fig. 3.35, the signal is much more noisy and extended with
respect to the full band one. The distinct peaks are less than the trunk lines and no certain and
valuable information on the geometry of the scene can be subsequently obtained.

As far as the incidence angle is concerned, the e�ect of the angle increase on the time
signal in HH polarization, is presented in Fig. 3.36. When the angle was increasing, the range
of the distributed target was increasing also and so the length of the received pulse in time
domain. The main structural properties of the received pulses were the same under all angles of
incidence, since they were strongly related to the geometrical characteristics of the scene. Only
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Figure 3.35 � The amplitude of the received time signal from a periodical forest in HH polarization, when
used the whole COSMO band (left), a narrow low frequency band (middle) and a high frequency narrow
band (right). The signal corresponding to the high frequency narrow bandwidth is much weaker and more
noisy than the others. No geometrical information of the scene can be extracted from it.

the relative peaks intensities were di�erent for the di�erent angles, as a change in the angle
causes a change in the resolution cell shape and to the number of the elements contained in it
(see Fig. 3.34). As observed in the frequency domain also, the backscattered energy in HH was
decreasing with the angle and so did the amplitude of the signal peaks.
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Figure 3.36 � The amplitude of the received time signal from a periodical forest of trunks in HH polar-
ization for an incidence angle of 20◦ (left), 40◦ (middle) and 60◦ (right). The number of the peaks (7) is
the same under all angles with less intensity for the steeper ones. The length of the pulse and the space
between the peaks, which correspond to the size of the scene and the distance between the trunk lines, were
expanding as the incidence angle was increasing.

3.3.2 Study of the age and the humidity e�ects

As already seen in the previous section, the time domain analysis of the received signal, comes
with results on the geometric characteristics of the scene. It is the distribution of the trunks
within the forest that is re�ected in the signal transformed by the IFFT. Subsequently, in this
case where just the age and the volumetric humidity of the trunks were varying among the
forest parameters, no big di�erences were expected to be observed in the di�erent time signals.
Indeed, as seen in Fig. 3.37, only the amplitude of the received pulse peaks and their relative
intensities were changing. The older the stand was, the stronger it backscattered in general.
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Chapter 3. Analysis of the forest backscattering with COSMO

For some of the weaker peaks, the energy seemed to decrease with the age, something that
contradicted common sense and the results in frequency domain (see Fig. 3.6). However, this
could be explained by the fact that the change of the age caused a change in the dimension of
the elements and probably a change in the number of elements contained in each resolution cell.
The length of the pulse, the number of the peaks and their mutual distances were identical for
all ages. Similar results were observed for the di�erent humidity values also. Since the forest
arrangement was not changed, the signal was just showing stronger peaks as the vegetation was
getting wetter and re�ected more energy back to the radar (see Fig. 3.38).
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Figure 3.37 � The amplitude of the received signal in the HH polarization for 3 di�erent ages of the
forest. The position of the peaks was exactly the same, as the trunk positions in all three forests. The
only di�erence observed was in the backscattered energy, which was rising in general as the forest age was
increasing and so the dimensions of the trunks.

3.3.3 The branches e�ect

In the time domain analyses of the previous sections, we saw that the amplitude of the received
time signal contained some information about the geometry of the illuminated scene. In all
cases the tree (just trunks) arrangement was the same and so were the basic characteristics of
the received pulse. Let us now examine what kind of di�erences the addition of 10 branches per
tree caused on the geometry of the forest and on the received signal. If we go through Fig. 3.39
we can see that in the case of a totally periodical forest the addition of the branches did not have
a very signi�cant in�uence on the amplitude of the received signal. Most of the backscattered
energy was still concentrated on the seven peaks representing the scattering of the site trunk
lines. The branches e�ect was that of extending the signal and making it more noisy, as in the
case of the high frequency observations (see Fig.3.35). In addition, when the number of the
branches per tree was doubled or tripled, the signal was becoming more noisy, and the peaks
amplitudes were slightly decreasing (see Fig. 3.40. These conclusions could be attributed to the
fact that in P- and L-bands trunks dominate the backscattering because of their large dimensions.
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Figure 3.38 � The amplitude of the time signal in the HH polarization for 3 di�erent forest of trunks having
mv = 20%, mv = 40% and mv = 60% respectively. The position of the peaks was exactly the same, as
the trunk positions in all three forests. The only di�erence observed was the backscattered energy, which
was rising as the vegetation was getting wetter and the vegetation re�ectivity was increasing.
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Figure 3.39 � The amplitude of the received time signal in HH for the periodical forest of trunks only
(left) and for the same forest with 10 branches per trunk (right). The positions of the peaks were exactly
the same, as the trunk positions were the same in both forests. The only di�erence observed was that the
right signal was more noisy and the amplitude of the peaks was slightly smaller with respect to the left
one.

3.3.4 The target e�ect

The positioning of the target within a forested area, could be regarded as a signi�cant change
in the geometry of the scene. Apart from the seven distinct tree lines along the site dimension,
there was also a spherical target with a 2 m radius placed between the fourth and the �fth
tree lines (see Fig.3.18). Consequently, we expected a distortion on the received time signals
of Fig. 3.39 concerning both cases of a forest with trunks only and with the branches added.
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Figure 3.40 � The amplitude of the time signal in the HH polarization for the same periodical forest
of trunks having 10 branches/tree (left), 20 branches/tree (middle) and 30 branches/tree (right). The
position of the peaks was the same, as the trunk positions also, in all three forests. The more branches
were added to the trees, the more noisy the signal became and the less the amplitudes of the peaks were
in general.

Indeed, as evidenced by Fig. 3.41, the target backscattering resulted in an extra peak in
the amplitude of the time signal in the HH polarization. This peak was found between the
fourth and the �fth peak of the pulse, as the target was placed between the corresponding
tree lines in the site dimension. Even when branches existed, which were rather hiding the
target e�ect in frequency domain, the target peak in time domain was still quite obvious.
The time signal could be therefore considered as a potential valuable tool for the target detection.
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Figure 3.41 � The e�ect of the target addition on the amplitude of the received time signal in HH when
trunks only exist (left) and when trunks and 10 branches/trunk exist (right). In both cases an extra peak
was observed between the fourth and the �fth peak of the signal, in a position corresponding to the position
of the target in the scene (see Fig. 3.18).
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3.3.5 E�ect of the forest arrangement

As we saw in Paragraph 3.2.5, the exact positioning of the trunks within the forest a�ected
little the backscattering coe�cients and the Pauli vector elements in the frequency domain.
It is mostly the tree density that governed the signal modi�cations in that case. In the time
domain case however, it is the tree positioning that is directly re�ected on the time signal
structure. So the investigation of the forest arrangement e�ect on the time signal is of major
importance. We remind that the four di�erent arrangements examined were varying from a
totally periodical one, to semi-periodicals having a displacement of 1 m and 2 m, and �nally to a
totally random one. The four time signals in HH polarization, corresponding to the four di�erent
forest arrangements, are presented in Fig. 3.42. As we can see, the pulse duration was more or
less the same in all cases, around 1.7 ms, corresponding to the scene size. The little variations
were due to the small extension of the scene in the non-periodical forests (see Fig. 3.26 and 3.27).

The pulses themselves were becoming more noisy as the trunks were displaced from the
periodical site lines. In particular, if we observe the signal corresponding to the semi-periodical
forest with the 2 m displacement, we can see that it showed more similarities with the
random forest signal than with the other ones. This was expected, as the 2 m displacement
could be translated into several wavelengths in the upper part of the frequency domain (e.g.
f = 1 GHz ⇔ λ = 30 cm and e = 2 m ≈ 7λ). As far as the signal peaks were concerned, there
were appearing stronger and more clear in the periodical forest (due to the coherent addition)
than in the other arrangements. Whenever the trunks were displaced from a site trunk line,
the dominant peaks were losing intensity and shorter peaks were appearing between them,
making the energy to be more uniformly distributed along the pulse length. In such cases, little
geometrical information could be extracted from the signal. To conclude, despite the weak
in�uence of the forest arrangement on the signal in the frequency domain, in the time domain
its e�ect is a very signi�cant one. Therefore, we could use the time signal to distinguish natural
forests from man-made ones.

3.4 The Brewster angle e�ect

De�nition of the Brewster angle

In this last section of the chapter, the �marginal� conclusions concerning the Brewster angle
e�ect will be treated. Marginal, because they were beyond the scope of this dissertation initially.
However, the signi�cant results discovered in the meantime, led us to dedicate a whole separate
section on this e�ect. The Brewster angle is de�ned in Electromagnetics as the angle of incidence
at which the re�ection of the vertically polarized waves from a planar interface, between two
loseless materials with di�erent permittivities, vanishes [Balanis, 1989]. This angle depends only
on the permittivities of the two materials and assuming a su�ciently smooth medium it is given
by:

θB = tan−1
(√

εt
εi

)
(3.1)

where εi and εt are the relative permittivities of the material in which the wave travels and in
which it is transmitted respectively. Furthermore, in radar observations the incident wave is
often in free space and so εi = 1 [Cloude, 2009] and equation (3.1) becomes:

θB = tan−1
√
εt (3.2)
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Figure 3.42 � The amplitude of the received signal in HH polarization for the periodical forest (top left),
the semi-periodical with the 1 m displacement from the exact periodical positions (top right), the semi-
periodical with the 2 m displacement (bottom left) and the randomly distributed one (bottom right).

In the particular case of a monostatic con�guration, the Brewster angle e�ect is present in
both re�ections of the double bounce scattering mechanisms. For example, in the case of double
bounce scattering with the ground and the trunk, assuming they are both lossless, there are two
V V backscattering drops present because of the geometry of the interface depicted in Fig. 3.43.
The two distinct angles related to these e�ects are θgB for the scattering on the ground and θvB
for the scattering on the trunks/vegetation. The latter stands for the complementary angle of
the real Brewster angle because of the geometry of the scene. As previously mentioned, these
angles depend only on the surfaces characteristics as described by their dielectric constants, εg
for the ground and εv for the vegetation:

θgB = tan−1
√
εg, θvB =

π

2
− tan−1

√
εv (3.3)

Whenever the permittivity of the ground or the vegetation is increasing (e.g. because of the
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3.4. The Brewster angle e�ect

humidity), the Brewster angle θgB is increasing also, whereas the complementary angle θvB is
decreasing.

θi

θi θi

π
2 − θi

εg

εv

Figure 3.43 � The double bounce mechanism representing the ground-trunk scattering of a wave, under a
θi angle of incidence. Each surface is characterized by its relative permittivity, εg for the ground and εv
for the trunk.

For the previous ground-trunk double bounce scattering problem, we assumed that the
materials are loseless, so that the Brewster angle de�nition could apply. However, the Brewster
angle e�ect can be observed also when the materials of the interface are lossy and not lossless.
Examples can be found even in real radar data, as seen in[Freeman, 2007]. In that case, as the
relative permittivities of the lossy materials are complex, the Brewster angle evaluated from
Eq. (3.1) will be complex also. It means that there is no real angle for which the re�ectance
of the vertically polarized waves becomes zero, as it does for a lossless material. Instead, there
is always an angle for which the energy re�ected reaches to a minimum and it is called the
pseudo Brewster angle θ′B. This pseudo Brewster angle is in the cases of lossy media directly
related to the real part of the permittivity (see [Freeman, 2007]). This angle will be mentioned
as the Brewster angle from now on, since no lossless materials exist neither in radar forest
investigations nor in our COSMO simulations.

As already mentioned, the Brewster angle e�ect can be observed in real life experi-
ments concerning either forest observations ([Freeman, 2007]) or even urban areas ones (see
[Thirion-Lefevre et al., 2015]). In our forest simulation studies, where the ground and the tree
elements are assumed to be lossy dielectric, the Brewster angle e�ect can be also observed in
certain cases. For instance, during the illumination of a forest of vertical aligned trunks by a
wave of 400 MHz under all possible angles of incidence within the [5◦, 85◦] domain, two sharp
drops in the HH − V V di�erence in backscattering were observed, as seen in the right plot of
Fig. 3.44. The �rst one corresponded to the re�ection of the wave on the cylindrical trunks and
the second to the re�ection on the ground. These results are comparable to the theoretical ones
concerning a lossy dielectric cylinder, as presented in the left plot of the same �gure. The two
drops in the VV backscattering, which is the primary Brewster angle e�ects, are usually outside
the bounds of the angles selected for radar observations. However, apart from these two energy
drops, there is a big di�erence between σ0HH and σ0V V along the whole frequency spectrum
emitted. In particular, there are two distinct frequency intervals, the [13◦, 30◦] and the [55◦, 85◦],
where σ0HH − σ0V V ≥ 10 dB. This di�erence can be regarded as a secondary Brewster angle
e�ect and because of its extent it is expected to be observed both during COSMO simulations
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and real radar experiments.
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Figure 3.44 � The Fresnel re�ection coe�cients for the theoretical test case of a circular cylinder over
the ground (left) and the di�erence in the co-polarized backscattering coe�cients concerning the COSMO
simulated observation, of a forest of cylindrical trunks (right). In both cases, there are two drops in the
backscattered power due to the Brewster angle e�ect. The �rst drop corresponds to the scattering with the
cylinders and the second to the ground re�ection. The frequency of the emitted wave was 400 MHz in both
experiments. For the theoretical case we had εg = 26.39− 3.17i for the ground and εcyl = 23.01− 11.71i
for the cylinder, whereas for the forest of trunks we had εg = 38.4 − 5.8i and εv = 13.1 − 5.87i. The
analogies between the results of the two cases are evident.

The Brewster angle e�ect in COSMO simulations

It was already highlighted in Section 3.2.1, that a signi�cant loss in the energy backscattered
in VV occurred when a signal under an incidence angle of 20◦ was emitted to a periodical
forest of trunks (see the middle plot of Fig. 3.2). After examining more thoroughly several
similar and not only cases, this fact was �nally attributed to the Brewster angle e�ect. In
what follows, we will exploit COSMO in order to check the occurrence of this e�ect, for several
forest arrangements. In the aforementioned �gure, the e�ect was observed in a periodical forest,
when it was illuminated under a small incidence angle with a low frequency wave, close to
400 MHz. As a �rst attempt to investigate the phenomenon, we will extend the angle domain
of interest and make our survey �ner. In saying so, the whole [5◦, 85◦] will be simulated with a
step of 1◦. The results following below, will be focused on the two sub-bands showing the most
interesting e�ects, the [400 MHz, 700 MHz] for the low frequencies and the [1.7 GHz, 2 GHz] for
the high ones. The forest examined was the same as previously, having mvol

v = mg = 40%.
The e�ect of the humidities on the σ0HH − σ0V V di�erence will not be thoroughly examined, as
it was the expected one. It means that a drop in the mg values was causing a decrease in θgB,
because of the permittivity values decrease and a decrease in mvol

v was causing an increase in the
complementary angle θvB. This means that the drier the ground and the vegetation, the closer
the two Brewster angles were and the widest the range of the angles where VV-HH≤ −10 dB
was. The two extreme cases will be highlighted only, one where both the ground and the
vegetation were dry and one where both were wet. The results from these cases will be used for
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con�rming some recent discoveries in the Brewster angle study.

Starting with a totally periodical forest with the trunks alone, we can see in Fig. 3.45
that there were existing two distinct areas of low VV backscattering, one around 19◦ − 20◦

and one around 75◦. In particular, the lowest values of the backscattered energy were
observed for an incidence angle of 20◦ and a frequency of 400 MHz, the exact case where
we �rst identi�ed that e�ect during our analysis. As a consequential outcome of these two
drops, the HH-VV di�erence was remaining high for a wide range of angles, even for these
commonly used during real radar forest investigations. If we move towards the upper part of
the COSMO frequency band, our remarks do not stand exactly. On the one hand, the �rst
sharp drop was smoothened and extended forming a �valley� of low di�erence values, centered
around 25◦. The lowest values did not exceed −10 dB a lot. On the other hand, the second
drop maintained its lowest values which were observed for angles closer to 80◦ and for f = 2 GHz.
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Figure 3.45 � The co-polarized backscattering coe�cients di�erence for a totally periodical forest of 63
trunks, as a function of the incidence angle. For the low frequencies (left) a big di�erence due to the
Brewster angle e�ect is present for all incidence angles, with the two minima having values way lower
than −10 dB. For the high frequencies (right) the di�erence is much smaller, the two drops are translated
with the �rst one - attributed to the vegetation scattering - being smoothened a lot.

The addition of branches to the trunks and the concealment of a potential target in the
forest, can change dramatically the scattering behavior of the trunks concerning the VV-HH dif-
ference. We have already seen that when branches were existing, the co-polarized backscattering
coe�cients were comparable in several cases, especially for high frequencies (see Section 3.2.3).
Indeed, as seen in Fig. 3.46, when 10 branches were added per trunk, the two simultaneous
characteristic drops of the previous cases disappeared. There existed just one drop around
20◦ for the low frequency observations, which was sharper the lower the frequency was, and a
moderate decrease around 75◦, which was evident over 1.8 GHz but it was hardly approaching
−10 dB. For the intermediate frequencies, the co-polarizations di�erence was very low and no
e�ect was observed. When the number of the branches was doubled, the Brewster e�ects were
smoothened even more, as observed in Fig. 3.47, and there was actually just the low frequency
drop due to the vegetation remaining, quite weak though. The positioning of a target in the

93



Chapter 3. Analysis of the forest backscattering with COSMO

scene had a similar e�ect to the one of the branches, almost neutralizing the Brewster e�ect in
high frequencies (see Fig. 3.48). Last, the change of the tree arrangement to a semi-periodical
or even a random one did not a�ect the Brewster angle e�ect almost at all (see Fig. 3.49).
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Figure 3.46 � The co-polarized backscattering coe�cients di�erence for a totally periodical forest having
63 trunks with 10 branches each one, as a function of the incident angle. The Brewster angle e�ect is now
disturbed, since there is just one drop corresponding to each frequency sub-band. For low frequencies (left)
the drop is centered around 20◦ and take values much close to −15 dB, whereas for the high frequencies
(right) it hardly approaches −10 dB and only for steep incidence angles.
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Figure 3.47 � The co-polarized backscattering coe�cients di�erence for a totally periodical forest having
63 trunks with 20 branches each one, as a function of the incidence angle. The extra branches added
smoothened the Brewster angle e�ect more, letting actually just one drop existing for low frequencies
only (left). For the highest frequencies (right) the di�erence is always much lower than −10 dB and the
Brewster angle e�ect due to the ground scattering is barely observable.
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Figure 3.48 � The co-polarized backscattering coe�cients di�erence for a totally periodical forest having
63 trunks, 10 branches per trunk and a target concealed in it, with respect to the incidence angle. The
target slightly enhanced the branches distortion of the Brewster angle e�ect in low frequencies (left) and
especially in high frequencies (right). It also made the signal and the co-polarizations di�erence much
more noisy than before.
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Figure 3.49 � The co-polarized backscattering coe�cients di�erence for a random forest of trunks alone,
as a function of the incident angle for low frequencies (left) and high frequencies (right). The change
in the forest arrangement did not in�uence the Brewster angle e�ect signi�cantly, as compared with the
results in Fig. 3.45.

From the above-mentioned results, we can conclude that the Brewster angle e�ect, when
present in radar forest investigations, is caused by the trunks-ground double scattering only. It
is the geometry of the this con�guration that governs this e�ect, which appears mainly whenever
the signal manages to reach to the trunks, i.e. when few branches exist or low frequencies
are emitted. The branches, when existing, they normalize the Brewster e�ect probably by
attenuating a part of the energy backscattered via the double bounces mechanism. The e�ect
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is mostly visible under certain angles of incidence, depending on the scene under study and
its permittivity characteristics. However, it has to be kept always in mind and taken into
consideration, since it can signi�cantly distort the forest response and complicate radar studies.
For example, the Brewster angle e�ect could lead to erroneous conclusions when results from
di�erent incidence angles are to be compared, as done in [Mladenova et al., 2013].

We will close this section by adding some comments on a recent work presented in
[Thirion-Lefevre et al., 2015]. In this study, a wide range of cases was examined not for the
primary Brewster e�ect, but for the secondary one. In the left plot of Fig. 3.50, the width
of the angle range where VV-HH≤ −10 dB is presented. We can see that for the case of
very low permittivity values, this angle range could reach 50◦ thus containing many of the
angles used in radar studies. For large permittivity values, that width decreases a lot. Two
corresponding cases, one of a very dry forest of trunks (mvol

v = mgrav
g = 10%) and one of a

wetter one (mvol
v = mgrav

g = 40%) are presented in the right plot of Fig. 3.50. The emitted
wave had a frequency of 400 MHz and the permittivities of the scene were εv = 2.24 − 0.2i
and εg = 11.4 − 2.83i for the dry case and εv = 13.1 − 5.9i and εg = 52.3 − 6.53i for the wet
case. The accord with the results from [Thirion-Lefevre et al., 2015] is total. For the case of the
dry forest, a very strong and combined double Brewster e�ect is present, causing the VV-HH
di�erence values to be inferior to −10 dB for all angles in the [30◦, 80◦] interval. On the contrary,
in the case of the wetter forest the two Brewster e�ects are distinct and only for angles around
the characteristic drops it is VV-HH≤ −10 dB.
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Figure 3.50 � The width of the angle domain where HH-VV≤ −10 dB with respect to the permittivity
(left) and the HH-VV values for the cases of a dry and a relatively wet forest illuminated by a wave of
400 MHz (right).

3.5 Conclusions

We will close this chapter by summarizing what was presented in the previous pages and what
can be done to complement these results. In Chapter 2 we evaluated, during the SA, the input
parameters importances and identi�ed the most critical among them for the model operation.
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After that, it was time to proceed to the veri�cation of these results and the examination and
analysis of the parameter speci�c e�ects. An analysis having three objectives was performed.
The �rst objective was to con�rm the SA results and examine the in�uence on the output that
the variation of the most important parameter (frequency, angle, age and vegetation humidity)
had. The e�ects of the branches addition and density, as well as that of the target existence
were also studied. Not a full physical analysis was performed, but a rather fast one, focused on
the main e�ects only. Second objective was to assess the physical interpretation of these e�ects,
whenever possible, in terms of scattering mechanisms or the geometry of the scene. The last
objective was to suggest proper radar con�gurations for an easier identi�cation of the discovered
e�ects.

What was achieved during this 3-step analysis was the discovery of certain e�ects which
could be undoubtedly assigned to their corresponding sources. Some of these e�ects were
evident in the frequency domain, while others were stronger in the time domain. The �cause
and e�ect� matchings thus attained, could be subsequently used in the planning of more focused
radar campaigns. Speci�c frequencies or polarizations could be favored in each observation,
with respect to the e�ect under study. It is of great interest to check in a future project the
extent and the validity of the conclusions drawn here, for di�erent angles (since just the 40◦

one was treated), di�erent combinations of the inputs, forest having branches of di�erent sizes
and leaves in all experiments, di�erent forest types supported by COSMO (e.g. tropical forests)
and on data from real forest radar observations also. Lastly, the Brewster angle e�ect during
COSMO simulations was examined and the cases when it can be signi�cant were highlighted.
The conclusions derived here will be in a later step used for the design of more focused and
adaptive radar observation strategies.
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4.1 Introduction

In the present chapter, the second statistical method which will be employed in our radar
simulation studies, that of surrogate modeling, will be presented. As we saw in the previous
chapters, the �rst statistical method applied on COSMO provided valuable information on
the model factors importances. These informations were subsequently veri�ed in Chapter 3,
in order to discover the exact parameters and forest elements e�ects, attribute their physical
interpretations and recommend the optimal con�gurations for their identi�cation during radar
studies. The latter aims to be integrated in the radar observation practice in a later step, in
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order to supplement it. Unfortunately, the necessary fast real-time analysis of the radar data, is
almost impossible, even when using numerical codes like COSMO. It is the use of a metamodel
that can help us surpass this di�culty. A model like this, can approximate the numerical code
values in very low computational time, based on a few simulation results only. Therefore it
could substitute COSMO in the design of an adaptive, in real-time, radar observation strategy
for forests.

In the upcoming sections, we will quickly review surrogate modeling and its most widely
applied methods. Continuing, the kriging interpolation method which will be applied to the
COSMO approximation will be treated. This method provides a measure of the approximation's
uncertainty, which can be used to construct more e�cient adaptive metamodels. A metamodel
like this will be tested on appropriate toy functions, before quali�ed to be used on COSMO.
Concerning the COSMO approximation, the metamodel will be used in the approximation of
the COSMO outputs corresponding exactly to the cases studied in Chapter 3. The possibility
to detect the e�ects of the important inputs and the forest elements on the outputs, will
be examined. The chapter will close with the conclusions derived and a discussion on the
limitations and constraints of the metamodel applicability.

4.2 Surrogate modeling

Surrogate Modeling (or metamodeling) emerged during the last decades of the previous century,
from the need to optimally design and perform the simulation experiments. The latter gradually
substitute physical experiments in many scienti�c domains. The simulation experiments are
used to study problems concerning physical phenomena that cannot be solved directly with
mathematical calculus. They can consider scenarios for many di�erent input values and study
what happens to the output. Nevertheless, the huge amount of data obtained from these exper-
iments and their heavy - often - computational load, impose the necessity to organize the way
these experiments are conducted. The methods to do that are grouped under the name of Design
of Experiments (DoE) - or Design and Analysis of Simulation Experiments (DASE) as suggested
in [Kleijnen, 2008] - and they aim to optimally design the experiments and to exploit their results.

One of the major issues of numerical modeling and DoE is the heavy computational load.
In several simulation experiments we deal with expensive-to-evaluate functions, where even
one single simulation can last several days or weeks. In cases like these, many di�erent input
con�gurations for the model, are hard to be examined. It is when the use of approximation
methods based on probabilistic surrogate models (also called metamodels) comes up with
some signi�cant advantages. These methods are faster and they also require fewer function
evaluations/simulations, since they take into account less inputs factors than the original model
does. A complex computer code can be replaced by a surrogate model which has to be as
representative as possible of this code and with good prediction capabilities. In addition, it
must require a negligible calculation time. These metamodels can help us explain the underlying
simulation behavior of a model and predict the expected output f (x) of its I/O function f , for
combinations of input values x that have not yet been simulated [Kleijnen, 2009]. Rendering
that way a view of the entire design space. Apart from prediction, the surrogate models
can be additionally used for validation of the simulation model, sensitivity analysis (SA) and
optimization [Kleijnen, 2007].
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4.3 Surrogate modeling methods

There exist several metamodeling techniques currently in use. In general, they consider the sys-
tem of the simulation experiment as a �black-box�, since usually no closed-form formulation or
gradient information of the objective function are available. The only information that we have
are the measurements of the system performance, which can be updated only by running new
simulations. The black-box assumption within a probabilistic frame can make up for the lack
of knowledge and the information shortage on the I/O function. Until recently, the majority
of the scienti�c publications on metamodels was focused on low-order Polynomial Regression

[Kleijnen, 2009]. These metamodels are �tted to data obtained from local or global experiments
of the simulation model and they are used for explanation of the model's behaviour and predic-
tion. The polynomial models can have any power for any factor and interactions of powers of
factors, but in practice mostly �rst and second order polynomials are used. If y = f (x) + ε is
the model response assuming an error ε, the polynomial prediction for the �rst and second order
are given by the following formulae [Simpson et al., 2001]:

ŷ = β0 +

k∑
i=1

βixi, ŷ = β0 +

k∑
i=1

βixi +

k∑
i=1

βiix
2
i +

k∑
i=1

k∑
j=1
i<j

βijxixj (4.1)

where xi are the factors-components of x and βi, βij are the polynomial coe�cients usually
determined by Least Squares Regression [Kleijnen, 2007] using the existing data.

A more recent metamodeling method which �ourishes since the beginning of the century and
can approximate functional data also, is the so-called kriging interpolation. Kriging is based on
Gaussian Random Processes (GRP) or Gaussian Random Fields (GRF)18 and it can be �tted
to data obtained from larger experimental areas, than the areas used in low-order polynomial
regression [Kleijnen, 2007]. If {f (xi)}ni=1 is the set of the already obtained simulations results,
then the kriging predictor for an unsimulated point x is given by:

f̂ (x) =
n∑
i=1

λif (xi) (4.2)

where λi are the so-called kriging coe�cients or weights. These weights are selected using
the Best Linear Unbiased Predictor (BLUP) which minimizes by de�nition the Mean Square

Error (MSE) of the prediction. The kriging weights are not constants as the βi and βij
ones, but they decrease with the distance between the point under prediction x and the
already simulated ones xi, i = 1, . . . , n [Kleijnen, 2007]. Moreover, kriging provides an estima-
tion of the prediction uncertainty, which can be used in adaptive strategies as we will see later on.

If the objective is to approximate scattered multivariate data, the Radial Basis Function

(RBF) method can be applied [Queipo et al., 2005]. The general form of a radial basis interpo-
lator is [Baxter, 1992]:

s (x) =
∑
i∈I

yiϕ (‖x− i‖) , x ∈ Rd (4.3)

18Random Processes are used when the model is a function of one variable (usually time) and Random Fields
when it is a function of more variables (usually spatial ones).
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where ϕ : [0,∞) → R is a �xed univariate function, I is the set of the so-called centers of the
radial basis function intepolant and the coe�cients yi are real numbers evaluated using the
simulation responses. There is no restriction on the norm ‖ · ‖ but the Euclidean norm is the
most commonly used. For the radial basis functions ϕ some of the most common choices are
the multiquadric, the thin plate splines, the inverse multiquadric and the Gaussian functions
[Baxter, 1992].

Other methods used for metamodeling are the Arti�cial Neural Networks, which are
composed by multiple linear regression models with a nonlinear transformation on the output
y (e.g. the sigmoid) [Simpson et al., 2001], [Rumelhart et al., 1994], and a quite recent one
providing also the �rst statistical moments of the output, as kriging does, is the Polynomial

Chaos Expansion (PCE) [Blatman, 2009]. Apart from these single surrogate methods, using
multiple surrogates can improve the global search capability in cases where sparse data exist,
but in the price of a much higher computational load.

So far, there is no conclusion about which metamodel is de�nitely superior to the others
[Wang and Shan, 2006]. Depending on the problem under consideration, a particular modeling
scheme may outperform the others and in general it is not known a priori which one should be
selected [Queipo et al., 2005]. However, kriging and low-order polynomials are the most widely
used. In the present dissertation, we will use the kriging interpolation. Firstly, because of its
ability to approximate data from large experimental areas and secondly because it can provide
a measure of the approximation uncertainty. The stepwise reduction of this uncertainty can be
a valuable tool for designing more sophisticated adaptive sampling techniques, which result in
more e�ective metamodels.

4.4 Kriging interpolation

Kriging, also known as spatial correlation modeling, is a probabilistic method which originated
from Geostatistics. It was designed for interpolating functions that show certain spatial
correlation. Its name was coined by G.Matheron in honor of D.Krige, who �rst applied the
empirical version of this method to estimate the most likely distribution of gold in an area, based
on a few samples only. Matheron himself established later the theoretical basis of the method
(see [Matheron, 1963] and [Matheron, 1969]). Kriging is based on GRF19 and its metamodels
can be �tted to data that are obtained from large experimental areas. These metamodels can
provide a cheap and accurate approximation of the objective function under study, together with
an estimation of the potential error of this approximation. The latter is the main advantage
of the method and together with the method's �exibility contributed to its quick expansion
during the last years. Nowadays kriging is used in several di�erent scienti�c �elds, both for
deterministic20 and stochastic simulations experiments, even in high dimensional cases.

19A GRF can be viewed as a function whose values are random variables that have a Gaussian (or normal)
distribution.

20It seems odd that a random metamodel can be applied to a deterministic simulation model. J.P.C. Kleijnen's
interpretation is that the deviations of the simulation output f from its mean µ form a random process, with
the characteristics of a stationary covariance process (with zero mean). f is assumed to be a sample path of
a second-order Gaussian random process F . If we denote as (Ω,A,P) the underlying probability space, this
amounts to assuming that ∃ ω ∈ Ω, such that F (ω, ·) = f (·) [Villemonteix et al., 2009].
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4.4. Kriging interpolation

The main idea of the method is to model the I/O function by a GRF. This provides a
probabilistic framework which accounts for the uncertainty stemming from the lack of informa-
tion on the system [Villemonteix et al., 2009]. The GRF is fully characterized by its mean and
covariance, which are both derived from the existing data. The covariance is strongly dependent
on the observation points and re�ects the correlation among them, which is usually assumed
stationary. Stationarity implies that only the distance between two points is important and
the covariance is invariant under translation. This assumption is being done for computational
reasons and not because it is always compatible with the physics of the problem.

Three steps are important while building a kriging metamodel:

1. the choice of the input variables,

2. the design of the input (sample) space and

3. the choice of the covariance function of the predictor.

There are many di�erent kriging methods, most of them concerning interpolation of scalar
values. Recently, some new implementations in approximating curves via the so-called functional

kriging, were carried out (see [Giraldo et al., 2007], [Delicado et al., 2009] and [Bilicz, 2011]).
However, scalar kriging methods still cover the needs of most applications, while keeping the
computational load su�ciently low. In our case, scalar kriging was �nally preferred to the
functional one, not only because of its simpler form and the much lower computational load, but
also because in our adaptive-cognitive strategy which will be presented in Chapter 5, the data
will be so sparse that no functional kriging method can be employed. For a review of the various
scalar kriging techniques that exist, the interested reader can refer to [Chilès and Del�ner, 1999].
In this study, the most common ones called Universal Kriging (UK) and Ordinary Kriging

(OK) will be employed. OK assumes a constant mean21 for the entire domain and a known
stationary covariance model. UK keeps the known stationary covariance model but it considers
a general polynomial trend model for the mean. Despite the existence of more complicated
kriging versions, these two are still the most widely applied in practice.

Kriging interpolation has the advantage of providing an estimation of the prediction
uncertainty via the variance of the prediction error, also called kriging variance. Apart from
assessing the overall quality of the approximation, this variance can be a powerful tool for
designing adaptive metamodeling strategies. In fact, adaptive sampling methods gain ground
recently against the traditional pre�xed sampling ones for two reasons. Firstly, because the
computer experiments proceed sequentially and so adaptive methods seem more �natural� for
them [Jin et al., 2002] and secondly because they are known to be more e�cient - they require
fewer observations - than �xed-sample procedures22 [Kleijnen and van Beers, 2004]. Various
ways to implement an adaptive design have already been tested, using di�erent measures of the
prediction uncertainty and reducing it sequentially. For example, the kriging variance was used
in [Bect et al., 2012] to estimate the probability of failure and in [Chevalier et al., 2014] for a
parallel stepwise uncertainty reduction schema. However, the cross-validation and jackkni�ng
estimation methods show superior performance than the kriging variance based sequential de-
signs in several cases [Kleijnen and van Beers, 2004]. So, a combination of kriging variance and

21As shown in [Chilès and Del�ner, 1999] the case of the known constant mean is equivalent to the case of zero
mean.

22Procedures with an a priori designed sample space which does not change during the prediction.
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the Leave-One-Out Cross-Validation error to sequentially expand the sample space by adding
one or several points at-a-time was adopted in [Le Gratiet and Cannamela, 2012], the kriging
variance with the probability density function (PDF) of the input parameter uncertainties and
the gradients of the kriging predictor were also used and compared in [Shimoyama et al., 2013]
and a �normalized� jackknife variance multiplied with the maximal minimum distance between
the observation points and the new point to be added in a functional kriging procedure were
selected in [Bilicz, 2011] and [Vaskó, 2011]. In this work, the latter one, already successfully
applied to COSMO approximations in [Vaskó, 2011], was quali�ed together with the product
of the jackknife variance with the original kriging one, to improve the prediction and de�ne its
con�dence intervals. This adaptive kriging method will be described in details in the upcoming
section.

4.5 Adaptive kriging

We have already mentioned that the kriging method is based on a GRF and its predictor is
a linear combination of the simulated values. As a consequence, kriging performance depends
on both the choice of the input values, where the observations are to be done, and the choice
of the covariance and mean of the GRF. For the input sample, a sequential design will be
generated, based on a small initial pre-�xed sample of observations. Concerning the mean of the
predictor, UK assumes a polynomial trend model, based on l linear independent monomials of
the components of x:

m (x) =
l∑
0

αigi (x) (4.4)

where αi are unknown coe�cients which will be estimated from the data. In case all gis are
constant, m (x) = µ is also constant and we have OK. About the covariance, since it is unknown
but has to �re�ect� somehow the spatial correlation of the observation points, a �exible function
has to be chosen. So that we can �tune� it to best �t our data via the covariance parameters
estimation. The Matérn covariance function is a good choice, since it o�ers the possibility to
adjust its regularity - and thus the prediction's smoothness - with just a single parameter23.
Other commonly used covariance models are the exponential, the spherical and the Gaussian
ones, which do not provide any control on the �exibility of the random �eld though. The
covariance is assumed stationary - only the distance between two points is of interest - and
anisotropic. Stationary because the non-stationary ones are seldom in practice (an example
of their use can be found in [Xiong et al., 2007]) and require a particularly di�cult parameter
estimation. Anisotropic because the model factors are of di�erent nature and their domains can
potentially vary a lot. The distance function that will re�ect the spatial correlation and also
introduce the anisotropy is de�ned as:

h (xi,xj) =

√√√√ d∑
k=1

(
xi,k − xj,k

ρk

)2

(4.5)

23As Michael Stein mentions, the Matérn covariance includes a parameter that allows any degree of di�erentia-
bility for the random �eld. It also includes the exponential covariance model as a special case and the Gaussian
model as a limiting case [Stein, 1999], two models that are also frequently used in metamodeling construction.
For more information see Appendix A.1 and [Stein, 1999].
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4.5. Adaptive kriging

where xi,k, xj,k are the k-th components of the xi and xj vectors respectively, ρk is the scaling
factor for the k-th component of the input vectors and d is the dimension of the metamodel
input space. The scaling factors stand for the sensitivity of the model to the di�erent inputs -
anisotropy. High ρk implies low sensitivity of the model to the corresponding input [Bilicz, 2011]
as seen also in Fig. 4.1. Using the distance in Eq. (4.5) the Matérn covariance model is given by
the formula:

k (xi,xj) ≡ k (h (xi,xj)) =
21−ν · σ2

Γ (ν)
·
(
2
√
νh (xi,xj)

)ν Kν (2√νh (xi,xj)
)

(4.6)

where ν is the parameter that controls the regularity of the covariance function and σ2 = k (0).
In Fig. 4.1, the e�ect of the di�erent values of ν on the Matérn covariance function is also shown.
Since the covariance is unknown, we have to estimate its parameters so that they will better �t
our model i.e. our observations. These covariance parameters (also called hyper-parameters)
are ν, σ2 and the scaling factors {ρk}dk=1 and their estimation will be done by the REstricted
Maximum Likelihood estimation (REML) method (see Appendix A.2). For the hyper-parameter
estimation, the Leave-One-Out Cross-Validation (LOOCV) method can be employed also24.
In our case, the LOOCV was giving similar or worse estimations for the hyper-parameters
than REML did and since REML is lighter from a computational point of view, it was �nally
preferred for our metamodel.
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Figure 4.1 � The Matérn covariance plot with respect to the distance h for di�erent values of the smoothing
parameter ν for ρk = 0.5 (left) and ρk = 2 (right). The variance was set σ2 = 1. It is obvious that the
highest the value for ρk, the less sensitive the covariance is to the distance, for the k-th input.

After de�ning the mean and the covariance of the model, kriging calculates the prediction
via the equation (4.2), using the data from the initial sample. The λi weights are selected so
that the interpolator is the BLUP of the forward function in the vector space generated by the
observations. This predictor25 is linear because it evaluates the forward function approximation
as a linear combination of the observations (equation (4.2)). It is also best because it minimizes

24Information about the Cross Validation method and a direct comparison with the Maximum Likelihood
Estimation can be found in [Bachoc, 2013].

25Predictors estimate random e�ects while estimators estimate �xed e�ects [Robinson, 1991].
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the Mean Squared Error (MSE) of the prediction:

min
λi∈[−1,1]
i=1,...,n

MSE
[
f̂ (x)

]
= min

λi∈[−1,1]
i=1,...,n

MSE

[
n∑
i=1

λif (xi)

]
= min

λi∈[−1,1]
i=1,...,n

E( n∑
i=1

λif (xi)− f (x)

)2


(4.7)
where x may be any input point in the experimental area. Moreover, this minimization must
account for the condition that the predictor is unbiased :

E
(
f̂(x)

)
= E (f(x)) (4.8)

where in deterministic simulation, as in our case, we can replace E (f(x)) with f(x), as every
simulation at x gives the same value f (x). It can be proved that the solution of the constrained
minimization problem de�ned by Eq. (4.7) and (4.8), given the mean in Eq. (4.4), implies that
the weights of the kriging linear predictor must satisfy the so-called universality condition (see
[Chilès and Del�ner, 1999] for more details):

n∑
i=1

λi = 1 or 1Tλ = 1 (4.9)

After specifying the kriging model to be used for the prediction, it is time to sketch out
the sequential procedure to be performed. In Fig. 4.2 its general �owchart is presented. The
loop opens with the generation of the initial sample. Then the simulations are run on the
sample points and the initial prediction is calculated via the simulations results. The estimation
of the initial prediction's uncertainty follows and if the terminal criterion of the loop is not
met, a new simulation point is added to the sample and the loops starts over again. If the
criterion is met, the prediction is the optimal one, with respect to our needs, and the loop closes.
The following paragraphs contain a thorough description of each step of this sequential procedure.

4.5.1 Initial prediction

Kriging is an exact interpolation method, so it needs the results of several simulation runs of
the model, in order to predict the function under study. The adaptive procedure requires as a
�rst step an initial prediction, based on the results of a sample adequately spread in the input
space. Despite the fact that the initial prediction will be improved later on, a good initial
prediction is never super�uous, as long as it does not require much computational time. Since
the most natural choice of a rectangular grid of points (also known as full factorial design)
requires many points to cover the input space, especially when the dimensions are increasing, a
Latin Hypercube Sample (LHS) is preferred. LHS consists in dividing the domain of each input
variable in N equiprobable strata, and in sampling once from each stratum. These samples are
proven able to cover the input space in a better way than the factorial designs do, i.e. using
less points [McKay et al., 1979]. Nevertheless, LHS alone does not ensure the proper �lling,
so a maximin criterion will be used. This criterion maximizes the minimum distance between
each new point with the already existing design [Fang et al., 2006] and it is available even as a
Matlab built-in function. The LHS generated is always within the unit hypercube as seen in
Fig. 4.3 for the 2-dimensional case, so in order to evaluate the appropriate forward function
values it is necessary to expand it to the original input space X. As mentioned before, kriging
is an exact interpolator and extrapolation is not recommended [Bachoc et al., 2014]. It is thus
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Figure 4.2 � The general �owchart of an adaptive metamodel.

necessary to supplement the sample with border points of the input space to achieve trustworthy
results. The resulting set contains n vectors Xn = {xi}ni=1 which gives us the vector of the
n observations fXn = (f(x1), . . . , f(xn))T . The mean for the universal kriging is given by Eq. 4.4.

After constructing the initial observation sample, in order to proceed to the prediction of
the I/O function at a point x ∈ X\Xn, we need to compute the n× n covariance matrix of this
sample space:

K = [k (xi,xj)] , i, j = 1, . . . , n

the covariance vector of the prediction point x:

k (x) = (k (x,x1) , . . . , k (x,xn))T

the matrix of the gi coe�cients of the observation points:

G =
(
g (x1)

T ,g (x2)
T , . . . ,g (xn)T

)T
(4.10)

where g (xi) =
(
gi0, g

i
1, . . . , g

i
l

)T
for the observation points xi, i = 1, . . . , n and the corresponding

vector g (x) = (g0, g1, . . . , gl)
T for the prediction point x. After these we are ready to compute

the kriging coe�cients λi (x) and the Lagrange multipliers µ (x) for the prediction point x, by
solving the following linear system (in Lagrangian form):(

K G

GT 0

)
·

(
λ (x)

µ (x)

)
=

(
k (x)

g (x)

)
(4.11)
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Figure 4.3 � A 15-point maximin LHS in a 2-D unit cube, as generated by the Matlab built-in function.

where 0 is a matrix of zeros. For OK, since the mean is constant we have G = (1, . . . , 1)T ,
g (x) = 1, µ (x) scalar and so the system in Eq.(4.11) becomes:(

K 1

1T 0

)
·

(
λ (x)

µ (x)

)
=

(
k (x)

1

)
(4.12)

The initial prediction for the I/O function is subsequently given by the formula
[Villemonteix et al., 2009]:

f̂ (x) = λ (x)T fXn (4.13)

The kriging property of exact interpolation results that ∀xi ∈ Xn, it is f̂ (xi) = f (xi) while for
all the other x ∈ X, it is f̂ (x) ' f (x).

4.5.2 Estimation of the uncertainty

A major advantage of the kriging metamodeling procedure is that it provides the prediction
together with an estimation of the its uncertainty. This quantity is not directly connected with
the prediction error:

ε (x) =
∥∥∥f̂ (x)− f (x)

∥∥∥ (4.14)

which cannot be evaluated without running a simulation at x. However, this uncertainty can
indicate whether a prediction is good or not. The prediction unertainty is given by the variance
of the prediction error called also kriging variance which is de�ned as [Villemonteix et al., 2009]:

σ̂2 (x) := E
[(
f̂ (x)− f (x)

)2]
= k (0) + λ (x)T Kλ (x)− 2λ (x)T k (x) (4.15)

From the system in (4.11), we have:

Kλ (x) + Gµ (x) = k (x)⇔ Kλ (x) = k (x)−Gµ (x) (4.16)
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and:
GTλ (x) = g (x)⇔ λ (x)T G = g (x)T (4.17)

and thus Eq. (4.15) takes the form:

σ̂2 (x) = k (0) + λ (x)T Kλ (x)− 2λ (x)T k (x)

(4.16)
= k (0) + λ (x)T k (x)− λ (x)T Gµ (x)− 2λ (x)T k (x)

(4.17)
= k (0)− λ (x)T k (x)− g (x)T µ (x)

(4.18)

and for the case of OK:
σ̂2 (x) = k (0) + λ (x)T k (x)− µ (x) (4.19)

If the kriging variance is high for a certain prediction, the variance of this prediction's error is
high, and thus the prediction is a non satisfying one.

Despite the fact that the kriging variance σ̂2 can indicate whether a prediction is poor or
not, it is not the best choice for designing adaptive schemas. Its main drawback is that in a
stationary case as ours, both the kriging weights and the kriging variance are shift invariant. So
there is no direct relation between the kriging variance and the location of input samples. It is
the mutual distance between two points that a�ects σ̂2 and the covariance function that links
it indirectly with the sample points, via the hyper-parameter estimation. In addition, it is also
proven in [den Hertog et al., 2004] that the kriging variance formula (4.15) underestimates the
true variance of the prediction error. Thus, in order to use the prediction uncertainty to locate
the new observation points during the adaptive sampling procedure in an optimal way, another
measure has to be introduced. Resampling methods, such as jackkni�ng or bootstrapping, can be
used instead and give better estimates as shown in [den Hertog et al., 2004], [Kleijnen, 2011] and
[Bilicz, 2011]. However, since these methods are based in resampling the original sample, extra
attention should be paid on the possibility to highly overestimate the error at an observation
point. In this work, the jackknife method which is an approximation of bootstrapping26 will be
used, because it is simpler than bootstrapping and computationally cheaper.

The jackknife variance

Jackknife is a technique for estimating the bias and the standard error of an estimate
[Efron and Tibshirani, 1994]. It is based on the evaluation of the so called reduced predictions

for every prediction point, by leaving out one observation at a time. Jackknife consists of the
following four steps :

1. Evaluating the i-th reduced prediction, by leaving out of the sample the i-th point:

f̂ (−i) (x) = λ(−i) (x)T f
(−i)
Xn

(4.20)

2. De�ning and calculating the pseudovalues, which are the di�erences between the prediction
based on the whole sample and those based on the reduced ones:

f̃ (−i) (x) = nf̂ (x)− (n− 1) f̂ (−i) (x) , i = 1, . . . , n (4.21)

26The interested reader can refer to [Shao and Tu, 2012] and [Efron and Tibshirani, 1994] for a thorough pre-
sentation of both jackknife and bootstrap, which are the most popular data-resampling methods used in statistical
analysis.
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The pseudovalues can be treated as though they were n independent and identically dis-
tributed (i.i.d.) data values.

3. Calculating the modi�ed prediction, which is the mean of the pseudovalues:

f̂jack (x) =
1

n

n∑
i=1

f̃ (−i) (x) (4.22)

4. Estimating the jackknife variance, by the standard error of the mean and using the variance
of the pseudovalues:

σ̂2jack (x) =
1

n (n− 1)

n∑
i=1

(
f̃ (−i) (x)− f̂jack (x)

)2
(4.23)

The index (−i) in the equations above, implies that the i-th observation is being ignored during
the calculations27. Jackknife, as a resampling method, can be sometimes misleading about
the real variance values around the observation point left out during each reduced prediction.
Nevertheless, the latter defect can be easily surpassed, as we will see in the next paragraph, and
jackknife can be a powerful tool to assist in improving the initial prediction during the adaptive
sampling.

4.5.3 Stepwise uncertainty reduction

When constructing a metamodel, the goal is to generate an input database which will be a kind
of a discrete representation of the I/O function. This can signi�cantly contribute in a better
prediction accuracy, but it cannot take place with the traditional �xed sampling designs. The
best way to design a representative input sample, is to start from a small but su�ciently spread
initial set and adaptively implement it using an appropriate criterion. The basic idea behind this
adaptive sampling is to locate where should the evaluation of the model be carried out optimally,
to improve our knowledge on the forward function, based on the previous observations and
predictions. The location of the new points to be simulated, can be discovered by the uncertainty
of the prediction. Each new sample point has to be a point where the prediction is poor. When
this point is added in the input sample and the new prediction is done, the prediction will be im-
proved and the uncertainty will be lower. Continuing like that, we reach to a stepwise uncertainty
reduction scheme. The last to be de�ned in this scheme is the terminal criterion of this adaptive
procedure, i.e. when no more points are needed. This terminal criterion could be either a maxi-
mum number N0 of extra points to be added, or a desired valueM for the prediction uncertainty.

The main tool for the uncertainty reduction, is the uncertainty itself. In the previous section
we explained why the jackknife estimation of the variance is the appropriate measure of this
uncertainty. Thus, we will �nd the new sample points in our adaptive procedure, where the
estimated jackknife variance is high. To surpass the problem of the possible large values around
the observation points, that can cause singularity to the matrices in Eq. (4.11) and (4.12), two
di�erent methods are proposed. The �rst uses the minimum Euclidean distance between the
new point and the sampled ones and the second the kriging variance as presented in Eq. (4.18)

27We take care not to ignore the observations done on the border of the input space, because they are indis-
pensable for the kriging predictor, since it is only an interpolator and not an extrapolator.
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or Eq. (4.19), depending on the kriging method. In both methods, the jackknife variance is
multiplied by either the minimum distance or the kriging variance which are both eliminated at
the already observed points of the input space. The new point to be added to the database is
subsequently selected as follows:

xn+1 = arg max
x∈X

[(
min

i=1,...,n
‖x− xi‖

)
· σ̂jack (x)

]
(4.24)

or

xn+1 = arg max
x∈X

(σ̂ (x) · σ̂jack (x)) (4.25)

The di�erence between the two criteria is that while in the Eq. (4.24) the exact euclidean
distance is used, in the Eq. (4.25) the distance corresponding to the hyper-parameter values of
both Eq. (4.5) and (4.6) estimated from the data is used via the kriging variance. This measure
is supposed to represent better the data and the I/O function properties than the euclidean
distance does. While testing these criteria on toy functions, we observed that they were giving
comparable results in terms of time and prediction quality. None of the two was generally
superior to the other, although in the examples of this dissertation the latter was selected since
it could provide satisfying con�dence intervals for the predictions.

By maximizing the products of Eq. (4.24) or (4.25), we ensure that both a high jackknife
variance and a high minimum distance from the already observed points or that both the variances
are high. We continue the aforementioned procedure of selecting new points and reducing the
prediction uncertainty, until a terminal criterion is met. This terminal criterion can be set as the
total number of the points in the input sample, or the level of prediction accuracy to be achieved.
For each new point added to the sample, we have to re-evaluate both the kriging prediction by
Eq. (4.13) and the jackknife variance by Eq. (4.23). As soon as the optimal input sample X
is complete, the same formulae will give us the �nal prediction and its level of uncertainty. If
the uncertainty is the product of the kriging and jackknife variances, it can be also used to
determine the con�dence intervals of the prediction. Otherwise, the square root of the kriging
variance (kriging standard deviation (std)) can be used. As already mentioned, we preferred the
square root of the product used in Eq. (4.25), to have the same units as the quantity of interest.
So the std σ̃ used was:

σ̃ (x) =
√
σ̂ (x) · σ̂jack (x) (4.26)

and the con�dence intervals ±σ̃ for each prediction point x are
(
f̂ (x)− σ̃ (x) , f̂ (x) + σ̃ (x)

)
.

Finally, our adaptive metamodeling method is complete and its detailed �owchart is presented
in Fig. 4.4.

4.6 Validation of the metamodel

The quality of a metamodel can be estimated using real simulation results either over the set of
all prediction points, or over a test sample of it. If the real values of all N prediction points are
known, the overall approximation error can be calculated using the Mean Squared Error (MSE)
or the Root Mean Squared Error (RMSE) given by the following formulae [Wackerly et al., 2002],
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Figure 4.4 � The �owchart representing the closed loop operation of our adaptive metamodel.

[Jin et al., 2002]:

MSE =
1

N

N∑
i=1

(
f̂ (xi)− f (xi)

)2
, RMSE =

√√√√ 1

N

N∑
i=1

(
f̂ (xi)− f (xi)

)2
(4.27)

Whenever an adaptive metamodel is employed, a way to quantify the improvement of the
initial prediction after the stepwise uncertainty reduction procedure is necessary. This can be
done by evaluating the Absolute Improvement (AI) of the prediction with respect to the RMSE.
The AI is calculated, using the RMSEin of the initial prediction and the RMSEfin of the �nal
one, by the formula:

AI =
|RMSEfin − RMSEin|

RMSEin
· 100% (4.28)

If simulation results are not available for all prediction points, test samples are usually gener-
ated to estimate the quality of the metamodel. This quality can be measured by the predictivity
coe�cient Q2, which gives the percentage of the output variance explained by the metamodel
and is de�ned as [Iooss et al., 2010]:

Q2 = 1−

∑ntest
j=1

[
f̂ (xi)− f (xi)

]2
∑ntest

j=1

[
f (xi)− 1

n

∑n
j=1 f (xj)

]2 (4.29)

where {xi}ntest
j=1 is a test sample independent from the input sample {xi}nj=1. The aforementioned

measures can be also used to compare the quality of di�erent metamodel predictions, of the
same I/O function and input sample, but based on di�erent variances for the uncertainty
reduction or di�erent gi monomials for the mean of the UK. In our work, the MSE, the RMSE
and the AI will be employed, since all prediction points will be simulated to check the absolute
error values for the veri�cation of the results. However, in potential applications of our method,
the predictivity coe�cient could also be used as few data are usually available in practice.
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4.7 Test of the adaptive metamodel on toy functions

After presenting in details our metamodeling method, we will test its e�ectiveness on toy func-
tions, as done for the SA method also. Two toy functions were selected, one having an 1-
dimensional input and the other a 2-dimensional one. Both functions show non-linear and
non-monotonic e�ects, which impose di�culties during the metamodel prediction and they are
commonly used for similar purposes. Despite the fact that in the present study 2-dimensional
metamodel predictions will not be tried on our numerical model, a 2-dimensional test was per-
formed. This was done in order to both check the metamodel capabilities and to open the ground
for high-dimensional COSMO applications in the future.

4.7.1 Approximating a 1-D non-linear test function

In the �rst test of our adaptive kriging method, we will try to approximate the 1D toy function
f plotted in Fig. 4.5 and de�ned as:

f(x) = x(1− x) sin (2πx) , x ∈ [0, 3]

The increasing oscillating nature of this function is a challenge for the �xed design prediction
models. Indeed, as seen in the left plot of Fig. 4.6, the initial kriging prediction based on 7
simulation points failed in approximating well the function values, despite the fact that they
were contained in the con�dence intervals. After adding the 10 adaptively chosen points via the
stepwise uncertainty reduction procedure, the kriging prediction achieved a very good accuracy
and almost coincided with the real function.
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Figure 4.5 � The plot of the 1-D non-linear test function.

Both ways to reduce the uncertainty presented in Eq. (4.24) and (4.25) were tested during
the adaptive sampling, providing similar results and comparable computational loads. For
the predictions presented in Fig. 4.6 and 4.7, the standard deviation σ̃ of Eq. (4.26) was used
to locate the new point to be added to the sample and its square root (std) was used to
estimate the con�dence intervals of the prediction. Fig. 4.7 shows that there was a general, not
absolute though, accordance between the oscillations of the absolute error and those of σ̃. This
accordance assisted in identifying the points where the error was high and considerably improve
the prediction. The MSE and the RMSE of the �nal prediction were MSE = 0.02762 and
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Figure 4.6 � The initial prediction with its con�dence intervals for the 1-D test function based on 7
simulation points (left) and the �nal prediction with its con�dence intervals, after adding 10 points using
adaptive sampling (right). The �nal prediction improved signi�cantly the initial one and succeeded in
almost coinciding with the real function.

RMSE = 0.0395 respectively, with the latter showing an absolute improvement of 99.88%. The
absolute error presented in the plots was calculated in all prediction points by the Eq. (4.14)
and it reached negligible levels after the �nal prediction. Lastly, in Fig. 4.8, a comparison of
the three std, the kriging σ̂, the normalized jackknife σ̂normjack and the product σ̃ of the jackknife
and the kriging ones is presented. It is obvious that the one approximating worse the absolute
error is the kriging variance. The other two approximated well the absolute error �uctuations
and gave comparable �nal predictions, as mentioned already.
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Figure 4.7 � The initial prediction for the 1-D test function based on 7 simulation points (left) and the
�nal prediction with the adaptively chosen extra points (right). Their absolute errors and σ̃ standard
deviations are presented below. The oscillations of the absolute error are well represented by σ̃ in general.
Therefore, the �nal absolute error after the adaptive sampling reached negligible levels.
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Figure 4.8 � The three uncertainties of the prediction together with the real absolute error. The kriging
variance (left) depends on the points distance only, while the normalized jackknife one (middle) and the
jackknife-kriging product (right) take into account the quality of the prediction also. Their oscillations thus
imitate better the absolute error's behavior and so they are more appropriate for the stepwise uncertainty
reduction procedure.

4.7.2 Approximating the irregular 2-D test function

After successfully testing our metamodel on the 1-D toy function, we will attempt now to ap-
proximate a common 2-dimensional test function, the so-called irregular test function which is
de�ned as [Iooss et al., 2010]:

firr(x, y) =
ex

5
− y

5
+
y6

3
+ 4y4 − 4y2 +

7x2

10
+ x4 +

3

4x2 + 4y2 + 1

with (x, y) ∈ [−1, 1]2. In Fig. 4.9 we can see the 3D plot of this function together with the
contour lines. The oscillating and non-linear nature of this function could challenge our adaptive
metamodel. The kriging approximation was attempted in order to predict the function values on
1000 points spread all over its domain. The initial sample contained 15 points only and another
35 were added adaptively. In Fig. 4.10 we can see and compare the contour plot of the poor
initial prediction with the real contour plot of f . After adding the adaptively chosen points, in
such a way that σ̃2 was reducing sequentially, a very good approximation was achieved. The
�nal prediction showed a MSE = 0.0405, a RMSE = 0.045 and it is presented in Fig. 4.11. The
AI with respect to the initial RMSE was almost 89% and the maximum �nal absolute error was
less than 0.17 (see Fig. 4.11).

4.8 Applicability of the metamodel on COSMO results analysis

The metamodel proposed in the previous sections, was proven capable in approximating
both the 1-D and the 2-D non-linear toy functions. It is now time to go on and verify the
applicability of this metamodel on COSMO and especially on the COSMO analyses carried
out and presented in Chapter 3. In saying so, we will check whether the metamodel is able
to substitute COSMO in the analysis procedure, while providing the same or comparable
conclusions with it. If the answer is positive, the ground opens for new faster, adaptive
and objective-driven analyses. In what follows the most characteristic and information pro-
viding quantities were approximated. The surrogate model was based on the model values
calculated on 20 simulation points, 7 initially generated by LHS and the rest selected in
such a way that the uncertainty of the prediction was reduced gradually. The calculation of
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Figure 4.9 � The 3D plot and the contour lines of the irregular test function. Its oscillating nature in
both dimensions, imposes di�culties to the approximation methods.
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Figure 4.10 � The contour plot of the initial prediction for the 2-D irregular test function based on 15
simulation points (left) and the real contour plot of the irregular function (right). The initial �xed sample
failed to well approximate the �uctuations of the irregular function.

this uncertainty was each time connected with the quantity under approximation, so that a
quicker reduction could be achieved. The scenes under study were the ones analyzed in the
corresponding cases in Chapter 3. The mean simulation time of a metamodel approximation
was about 210 sec, less than 1/40 of the simulation time required for COSMO to obtain
the real results. In what follows, only 1-dimensional COSMO approximations, with respect
to the frequency of the emitted wave, will be presented. The frequency is the easier radar
parameter to be changed in real-time. And since the long-term objective of the metamodel is
its incorporation in an adaptive radar strategy, these examples were selected to be presented only.
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Figure 4.11 � The contour plot of the �nal prediction for the 2-D irregular test function used 35 extra,
adaptively chosen, simulation points (left) and the real contour plot of the irregular function (right). After
the adaptive sampling procedure, the �nal prediction showed an AI of 89% and approximated well the real
function.

4.8.1 Detection of the model parameters e�ects

Let us start justifying the proposal of the metamodel utilization in the received signal analysis,
by the four model factors examined. Considering the whole frequency bandwidth for several in-
cidence angles, we can see in Fig. 4.12 that for the VV backscattering coe�cient, the metamodel
was able to predict the overall model behavior, albeit without being able to provide all the local
noisy oscillations. However, it could be successfully used to distinguish the angle e�ect on this
backscattering coe�cient and the global �uctuations with respect to the frequency, with just
a few of their simulated values. What is also obvious from this �gure, is that the metamodel
succeeded also in identifying the Brewster angle e�ect on σ0V V , present in the response of a
forest of trunks alone. The very weak energy returned to the radar in low frequencies under an
incidence angle of 20◦, is clearly observed even with this 20 frequency points based metamodel
prediction.

Similar results were obtained in the cases of the e�ects of the age and the moisture on
the received signal also. The overall behavior of the VH and VV backscattering coe�cients
could be clearly predicted, as seen in Fig. 4.13 and 4.14 respectively. Concerning the age
e�ect, once the appropriate quantity is selected to be approximated, namely σ0V H , even
the age of the forest could be roughly guessed. Since the huge drop in the backscattered
energy changes with respect to the age, as concluded in Section 3.2.2, and the metamodel
is able to provide information on the frequency of that drop (see Fig. 4.13), it can assist
in estimating the forest age. Considering vegetation humidity now, comparable conclusions
could be derived. As seen in Fig. 4.14, the driest forest stands can be easily identi�ed by
the σ0V V di�erent oscillations in the [0.4 GHz, 0.7 GHz] and [1.4 GHz, 1.7 GHz] frequency intervals.

4.8.2 Detection of the forest elements e�ect

The metamodel succeeded in approximating su�ciently COSMO, in order to detect the most
characteristic e�ects of the model parameters on the received signal. In this section, it will
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Figure 4.12 � The VV backscattering coe�cients for the whole COSMO frequency range and for 6 di�erent
angles of incidence ranging from 20◦ to 70◦ (left) and their kriging predictions based on 20 adaptively cho-
sen frequency points (right). The metamodel can provide an approximation showing the overall behavior
of the signals, in less than 1/40 of the time required for the simulations.
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Figure 4.13 � The cross-polarized backscattering coe�cients for the three stands having 10, 30 and 50
years of age respectively (left) and their kriging predictions based on 20 adaptively chosen frequency points
(right). The metamodel can provide an approximation showing the overall behavior of the signals and their
characteristic drops, in less than 1/40 of the time required for the simulations.

be tested on the approximation of the branches and target e�ects respectively. Firstly, the
e�ect of the branches existence was examined. The metamodel showed promising results both
in approximating the general behavior of the backscattering coe�cients and recognizing the
branches e�ect, as well as in the identi�cation of the dominant scattering mechanism of the
scene under study. In Fig. 4.15 we can see the estimation of the global �uctuations of σ0V V .
The branches e�ect on it, i.e. the slower decay for frequencies ≥ 1 GHz is clearly visible.
Additionally, in Fig. 4.16, the ability of the metamodel to predict the frequency where the
change of the dominant mechanism occurs, is depicted. This fact could be useful in cases
where the assumption of a dominant scattering mechanism is imposed for the decomposition of
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Figure 4.14 � The VV backscattering coe�cients for the three stands having mv = 20%, mv = 40% and
mv = 60% respectively (left) and their kriging predictions based on 20 adaptively chosen frequency points
(right). The metamodel can provide an approximation showing the overall behavior of the signals and
distinguishing them, in less than 1/40 of the time required for the simulations.

the scattering matrix, as for instance in the Freeman�Durden decomposition (see [Cloude, 2009]).

0.5 1 1.5 2

−40

−30

−20

−10

0

Frequency (GHz)

σ
0 V
V

(d
B
)

 

 

trunks only
trunks+branches

0.5 1 1.5 2

−40

−30

−20

−10

0

Frequency (GHz)

σ̂
0 V
V
(d
B
)

 

 

trunks only
trunks+branches

Figure 4.15 � The backscattering coe�cients in VV for the two forest arrangements having trunks only and
trunks with 10 branches each (left) and their kriging predictions based on 20 adaptively chosen frequency
points (right). The metamodel can provide a satisfactory approximation showing the overall behavior of
the σ0

V V values and the branches e�ect on it after 1 GHz, in less than 1/40 of the time required for the
full simulation.

For the case of the target e�ect investigation, the 20 frequency point metamodel succeeded
again in approximating su�ciently the backscattering coe�cient values under study, as seen in
Fig. 4.17 for the HH polarization. Despite the fact that branches existed, and the target e�ect
identi�cation was di�cult as explained in Section 3.2.4, the convergence of the co-polarized
backscattering coe�cients for high frequencies is clearly predicted and visible in Fig. 4.18. In
the next �gure, Fig. 4.19, we can see that the metamodel did also well in approximating the
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Figure 4.16 � The singe and double bounces as represented by the �rst two Pauli components values (left)
and their kriging predictions based on 20 adaptively chosen simulation points (right). The metamodel
approximation provides the overall behavior of the two �rst Pauli vector components and also the frequency
where the dominant scattering mechanism changes from double to single bounces, with a certain but very
small error.

smooth, close to constant, single bounces scattering in L-band. As stated in Section 3.2.4, the
ensemble of these two latter e�ects could most probably assure us about the existence of the
target and that was achieved with the metamodel, using just a few simulated values.
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Figure 4.17 � The HH backscattering coe�cients for a periodical forest of 63 trunks having 10 branches
each with and without a target hidden in it (left) and their kriging predictions based on 20 adaptively
chosen frequency points (right). The kriging metamodel succeeded in identifying the overall σ0

HH behavior,
especially the di�erent values �uctuations for the two forests in the 1.6−2 GHz sub-band, where the target
e�ect can be recognized.
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Figure 4.18 � The co-polarized backscattering coe�cients for a periodical forest of 63 trunks having 10
branches each with and without a target hidden in it (left) and their kriging predictions based on 20 adap-
tively chosen frequency points (right). The kriging metamodel succeeded in discovering the convergence
of the energy scattered in the co-polarizations, in high frequencies.
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Figure 4.19 � The SHH − SV V real values for a periodical forest of 63 trunks having 10 branches each
with and without a target hidden in it (left) and their kriging predictions based on 20 adaptively chosen
frequency points (right). The kriging metamodel approximating su�ciently the very smooth and close to
constant single bounces behavior in L-band.

4.8.3 Forest arrangement

In this last test of the metamodel's applicability, we will attempt to approximate the responses
of the four di�erent forest arrangements examined. These arrangements shared many common
scattering characteristics, especially the periodical and semi-periodical ones, who showed
di�erences very close or inferior to the radar measurements error. On the contrary, there
are some characteristics of the random forests scattering which could be potentially used for
a more focused radar observation of this kind of forests. In saying so, the increasing VV
backscattering in high frequencies and the low VH backscattering when branches exist. From
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Fig. 4.20 and 4.21 it is obvious that the 20-point kriging metamodel was able to detect the
random arrangements e�ects, with its approximations. Indeed, the slightly increasing VV
backscattering for frequencies of 1.5 GHz and higher is clearly visible in the right plot of
Fig. 4.20. Equally visible is the weaker VH backscattering of the random forest within the whole
COSMO frequency band, as seen in Fig. 4.21.
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Figure 4.20 � The VV backscattering coe�cients for the four di�erent forest arrangements (left) and their
kriging predictions based on 20 adaptively chosen frequency points (right). The three �rst arrangements
were periodical and semi-periodical with a displacement from the periodical position of 1 m and 2 m and
the last arrangement was a random one. All forests had 63 trunks and 10 branches per trunk. The
metamodel can provide an approximation showing the overall behavior of the signals, in less than 1/40
of the time required for the simulations. In addition, it succeeded in predicting the slightly increasing VV
backscattering of the random forest in high frequencies.
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Figure 4.21 � The cross-polarized backscattering coe�cients for the four di�erent forest arrangements
(left) and their kriging predictions based on 20 adaptively chosen frequency points (right). The three �rst
arrangements were periodical and semi-periodical with a displacement from the periodical position of 1 m
and 2 m and the last arrangement was a random one. The weaker scattering of the random forest for all
frequencies is clearly predicted by the metamodel.
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4.9 Discussion

All statistical methods that attempt to approximate the behavior of a function with just a few
of its values, show certain limitations. This is due to the generalizations and assumptions done,
because of the lack of information. Kriging is not an exception. Despite the fact that it is
widely used and validated, even in cases where the data do not follow Gaussian distributions,
there are many cases where it fails. In addition, there exist several open questions concerning
its construction and performance, which cannot be answered before applying the method. In
certain cases, these cannot be fully answered even after the method application. Some of these
open questions already date several years ago (see [Kleijnen, 2008]):

• Asymptotic proofs of sequential designs performances are missing; Do these designs ap-
proximate an optimal design?

• Is there a rule of thumbs for the size of the initial sample?

• Are there any optimal stopping rules for the sequential designs, based on measures of
accuracy?

Some other questions can complete this list:

• Is there an optimal uncertainty to be used in the sequential procedures and in the con�dence
intervals?

• Can we conclude in advance if a function can be approximated well by kriging or not?

The latter question especially is one of the most important ones in surrogate modeling
practice. In our case, we had to check if our adaptive kriging metamodel was able to approximate
the amplitude of the received electric �eld. This was the main tool necessary for the thorough
analysis of the forest backscattering and the design of our adaptive-cognitive observation
strategy. The answer however, as revealed in practice, was unfortunately negative. The
amplitude evaluated by COSMO under all polarizations, is varying too fast as seen in Fig. 1.15.
All interpolations attempted, failed in predicting the quantity oscillations in a much lower
computational time than that of the real simulations. In Fig. 4.22 we can see the approximation
of the response in VV coming from a very elementary scene generated by COSMO, by an
100-point based adaptive metamodel. It is obvious, that despite the large number of the
observation points used, the amplitude is not su�ciently predicted. Neither a SAR image can
be constructed based on these values, nor a correct time signal can be extracted. This fact
was more or less expected, since kriging assumes a spatial correlation between the points in the
input space, which is not the case for

∣∣Erpq (f)
∣∣. Indeed, even very close frequency points can

have very di�erent backscattering, which the metamodel cannot predict. The same conclusions
were derived for the phase of the received signal also. This failure led us eventually to apply the
metamodel to the �smoother� backscattering coe�cients and Pauli vector components only.

4.10 Conclusions

An adaptive metamodeling method for approximating a numerical model, was presented in the
previous pages. It was based on kriging interpolation and it was designed to provide a stepwise
uncertainty reduction for the prediction. The jackknife and the kriging estimations of the
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Figure 4.22 � The kriging prediction of the electric �eld amplitude in VV, done by an adaptive krig-
ing metamodel based on 100 observation points. The metamodel cannot approximate well the function
oscillations, despite the large input sample.

prediction uncertainty were used, to optimally choose the new simulation points to be added
to the sample. The adaptive metamodel thus constructed, was validated in approximating
some common toy functions. Subsequently its applicability in the COSMO results analysis
was checked and veri�ed. The metamodel managed to predict the global behavior of the
backscattering coe�cients and the Pauli vector components in all cases, losing though the local
noisy variations of these quantities. These predictions were achieved in a very low computational
time, using 20 frequency points only. The metamodel also succeeded in extracting physical
information from the predicted signal values, while following the suggestions for the radar
con�guration from the previous chapter. It identi�ed the characteristic e�ects on the signal
caused by the existence of the branches and the target, as well as these due to the variations of
the most important parameters. As a consequence, we can now proceed to the next step of our
project which is the design of an innovative radar observation strategy which will be based on
the metamodel operating frame and prediction capabilities and on the cognitive radar principle.
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5.1 Introduction

In this chapter, an innovative adaptive strategy to carry out radar observations of forests will be
proposed. This strategy takes advantage of the fact discovered in the previous chapter, that the
metamodel can identify fast some of the scene characteristic e�ects. The knowledge acquired on
these e�ects can be subsequently used to the design of a new, more focused signal to be emitted
in real-time. In order to optimally use the previous acquired knowledge on the forest under
study for the new signal design, the cognitive radar principle will be employed. This principle,
which has not been neither realized nor materialized yet, is going to be used here for the �rst
time, to our knowledge. The analogies between the metamodel and the cognitive radar general
principles, leads us to �t the cognitive radar idea to the global metamodel operating frame.
Thus, the metamodel will �nally assist in both aspects, as a global frame for our strategy and
as a tool which can accelerate the analysis done in the homonymous step of the strategy.

In the following paragraphs, a detailed presentation of the cognitive radar principle and our
radar observation strategy will be provided. The way S. Haykin envisaged his innovative cognitive
radar is explained together with the main operating principles. These principles are correspond-
ing to the adaptive metamodel operating principles and so they were both associated within the
metamodel operating frame. This frame served as the operating frame of our adaptive-cognitive
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strategy, which was tested on some characteristic examples-applications on simulated radar
observations of forests. These examples referred to certain objectives of the forest studies, as the
forest signature acquisition, the focus on the forest canopy or on the trunks and the detection of
a hidden target. They succeeded in justifying our proposed method which could hopefully open
the ground for reconsidering and improving the way radar observations are carried out nowadays.

5.2 Principles of cognitive radar

Radar campaigns up to now, are usually designed without taking into account the e�ect of
the environment under study. This is due to the fact that in many applications, little a priori

information of the scene exist. Thus, a certain waveform corresponding to the radar technical
requirements and the prede�ned objectives of the study is generated and emitted. During an
observation, several pulses are sent towards the scene, all of the same initial con�guration. The
radar return and the knowledge extracted, are not involved in the emission procedure. It is as
each new wave emission is the initial one and the object of interest is treated as a black-box
during the whole process.

The concept of the cognitive radar , as envisaged by S. Haykin in [Haykin, 2006], aspires to
correct this omission. This is a new framework for radar systems, which aims to adjust their
emitted signals with respect to the environment. The main idea of this innovative type of radar is
that the waveform emitted at time t+1, will be dependent on the radar returns at times t, t−1, . . .
and the analysis that has been done on these returns. In particular, S. Haykin suggested that a
cognitive radar should consist of [Haykin, 2006]:

1. intelligent signal processing,

2. feedback from the receiver to the transmitter and

3. preservation of the information content of radar returns.

So far, no system like the one described by Haykin has been materialized, despite the author's
optimism at that time. Several technical limitations are still to be surpassed, concerning both
the real-time analysis of the backscattered signal and the change of the radar con�guration.
Concerning the signal processing in real-time especially, the time needed for the interpretation
of the obtained data is prohibitive for the venture. It is exactlly where the metamodel can come
up with its fast prediction capabilities and accelarate this procedure. Additionally, the main
idea of the sequentials designs like the one we adopted in Chapter 4, is that �the observations
are analyzed - so the data generating process is better understood - before the next input
combination is selected� [Kleijnen, 2008]. This idea corresponds exactly to the main idea of the
cognitive radar. So the steps of the cognitive radar operation can be directly associated with
the main steps of the adaptive metamodeling procedure (see Fig. 4.4), as depicted in Fig. 5.1.
The outcome is a conjunction of the two methods, for the design of an adaptive-cognitive radar
observation strategy, which can be realized using the COSMO simulation capabilities. In the
following section, the exact way in which these methods were combined will be presented in
more details.
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Initial input vector Initial radar emission

Initial prediction Radar return

Prediction
uncertainty

Signal processing

New sample point New emission

Figure 5.1 � The rough �owcharts of an adaptive metamodel (left column) and a cognitive radar (right
column). The correspondences and the resemblance of the general idea between the two methods are
obvious, letting us combine them in an integrated adaptive-cognitive radar observation strategy.

5.3 Cognitive radar principle within the metamodel frame

As described before, a radar system observing an unknown distributed target like a forest,
treats its object of study as a black-box. No prior information is usually available and it is
after the end of the campaign, when all responses will be treated and analyzed together. On
the contrary, a cognitive radar could potentially start from a black-box and exploit any return,
in order to use the obtained knowledge to adaptively change the new emission con�guration.
The correspondence between the operation of this radar type and our proposed metamodeling
technique in Chapter 4 is obvious and depicted in Fig. 5.1. The initial prede�ned waveform to
be sent, would correspond to the initial �xed sample of the metamodel. Then the radar return
corresponding to the initial prediction would follow, full of information to be extracted during
the signal processing. This processing is analogous to the prediction analysis when estimating
the uncertainty. Finally, the discoveries of the analysis will be taken into account in the design
of the new signal, as the uncertainty is used for the detection of the new sample point. Both
loops can be continued iteratively till a terminal criterion is ful�lled. A cognitive radar can
be therefore incorporated directly within the adaptive metamodel operation frame. A general
�owchart representing this incorporation is sketched in 5.2.

The main constraints in the realization of a cognitive radar, are the time limitation for the
analysis of the backscattered signal, before emitting the new one, and the di�culty to obey
the changes of the radar con�guration imposed by the analysis, e.g. change of the frequency
or the polarization. A numerical model like COSMO, as more �exible and less expensive,
seems an appropriate tool for surpassing the di�culties in changing the radar con�guration.
Furthermore, as already presented, it is able to provide measurements concerning the di�erent
mechanisms of the forest backscattering, thus contributing to a deeper knowledge of the forest
structure and a more focused adaptation of the new waveform to our needs. As far as the time
limitation is concerned, the metamodel, apart from the provision of its adaptive frame, can
assist in accelerating the analysis of the received signal. It is able to provide fast predictions
for the quantities of interest, by interpolating in non-emitted frequencies. It can additionally
point out a proper con�guration for the new signal, so that the current predictions uncertainty
is reduced. However, the metamodel has to be explicitly connected with the initial objective
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End
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Figure 5.2 � The �owchart representing a realization of the cognitive radar based on the metamodel closed
loop operation.

and the possible intermediate ones, which will result from the update of the scene information.
Since it is able to predict several quantities concerning the backscattering, we have to de�ne
the ideal ones for approximation and uncertainty reduction, corresponding to each goal. To do
so, the information about the signal e�ects obtained during the analysis in Chapter 3, will be
taken into account and the suggested observation strategies will be adopted. The outcome is
presented in Fig. 5.3.

In the descriptive �owchart of our adaptive-cognitive observation strategy, only the frequency
and the polarization is changing before the new emission. This assumption is done, as these are
the easiest parameters to be changed in real-time radar investigations. In addition, most of the
forest e�ects on the received signal examined in Chapter 3, were considered under a constant
incidence angle of 40◦. In a more detailed future study, where more angles will be considered, a
2-dimensional metamodel can be employed and then the angle could be varying also for the new
emission. A fast real-time change of the incidence angle is not possible in real radar systems,
but if a numerical code is used this capability could be exploited. It is then the turn of the
radar engineers to make the seemingly impossible possible, as already done in certain cases before.

The four intermediate objectives de�ned in Fig. 5.3 after the initial radar return, are corre-
sponding to the examples presented in the upcoming section. The latter served in verifying the
applicability of our strategy, while exploiting the tools constructed and the conclusions extracted
during the whole project. In these examples the four possibilities examined were the following:

• to derive a fast forest signature,

• to study the branches e�ect and the change of the dominant scattering mechanism,
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Figure 5.3 � The detailed �owchart representing the analysis part of an adaptive radar observation,
which makes use of the cognitive radar principle. Four di�erent intermediate objectives lead to di�erent
observation strategies and thus designs of the new signal to be emitted.

• to detect a hidden target and

• to study the trunks and the extent of the Brewster angle e�ect.

For each objective, a di�erent frequency band was selected for the design of the new signal and
a di�erent measure of uncertainty. Whenever 2 or more uncertainties are to be employed in one
case, a combination of all could be preferred to be reduced, or the one showing the highest values.
After explaining the main principles of our strategy, we will now proceed to the presentation of
the examples.

5.4 Examples

In this section, the four di�erent examples of our adaptive and cognitive strategy for radar
observations of forests, will be presented. These examples were based on the scheme presented in
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Fig. 5.3 and they were conducted in such a way that the computational load was kept su�ciently
low. In saying so, the least simulation points (least frequencies possible) providing a satisfactory
prediction and the special e�ects recognition, were used. In all these examples, the quantities
studied were those who can be approximated by our metamodel, namely the backscattering
coe�cients and the Pauli vector components. The most important quantities, the amplitude and
the phase of the received signal, could not be part of the quickly predicted magnitudes, because
of their fast oscillating nature (as seen in Section 4.9).

5.4.1 Acquisition of a fast forest signature

For the �rst example demonstrating the utility of our proposed observation strategy, we
attempted a fast acquisition of the forest signature in the frequency domain. This signature
includes the way the forest scatters in all polarization combinations and scattering mechanisms.
The initial predictions were based in 5 initial frequency points - selected via LHS - and even
if they did not approximate well the studied quantities, they provided some rough information
about them. In saying so, what kind of general signal characteristics exist, what are the
levels of the predicted quantities values and in which frequency intervals there is the highest
uncertainty. These predictions, together with their ±σ̃ con�dence intervals are presented in
Fig. 5.4 and their uncertainties in Fig. 5.5. The uncertainties σ̃2 were normalized by the mean
absolute value of their corresponding quantities, in order to be comparable. They came up
with some meta-information concerning the scene, by indicating that the new frequencies to be
emitted should be mostly contained in two distinct intervals. The �rst around 1 GHz, where the
change of the scattering mechanism occurs if branches exist and the other in high frequencies
≥ 1.5 GHz, in order to study more the forest canopy. This kind of information could be taken
into account in real-time and focus the new emissions into a smaller frequency sub-band, as we
will see in the next paragraph.

0.5 1 1.5 2
−25

−20

−15

−10

−5

0

Frequency (GHz)

σ
0 H
H

(d
B
)

 

 

Confidence intervals
σ
0
HH

Prediction
Observation points

0.5 1 1.5 2

−40

−30

−20

−10

0

Frequency (GHz)

σ
o V
H

(d
B
)

 

 

Confidence intervals
σ
0
V H

Prediction
Observation points

0.5 1 1.5 2
−25

−20

−15

−10

−5

0

Frequency (GHz)

S
H
H
−
S
V
V

(d
B
)

 

 

Confidence intervals
SHH −SV V

Prediction
Observation points

Figure 5.4 � The initial predictions for σ0
HH (left), σ0

V H (middle) and SHH − SV V (right) with their
con�dence intervals ±σ̃, based on 5 simulation points. The prediction is not a satisfactory one, since
there are real function values even out of the con�dence intervals.

During the sequential sampling procedure, 10 frequency points adaptively chosen were
added to the initial 5-point sample. The uncertainty used was the σ̃2 corresponding to the
σ0V H prediction, which showed the highest normalized values, as seen in Fig. 5.5. After the
10 extra points were added, the sample was ready to be used for the �nal prediction on 826
frequency points. All quantities were satisfactorily approximated, in less than 1/50 of the time
necessary for the simulation on all the prediction points. The σ̂0V H prediction especially, showed
an absolute error much less than 1 dB within the whole frequency spectrum, as seen in Fig. 5.6.
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Figure 5.5 � The initial normalized uncertainties corresponding to σ̃ for σ0
HH (left), σ0

V H (middle) and
SHH − SV V (right), based on 5 simulation points. The frequency intervals where the uncertainty is high,
can provide some meta-information on the scene and suggest the con�guration of the new signal to be
emitted.

Limiting the frequency spectrum to a certain band, during the adaptive sampling procedure,
was also attempted. Let us assume that information concerning the L-band for example, are
needed. We can then keep the initial sample points contained in this band and construct the
�nal sample by adding the necessary border point (1 GHz)28 and the rest of the extra points
adaptively chosen within this narrower band. Such a case is presented in Fig. 5.7, where the
single bounces scattering is approximated. The �nal absolute error was again lower than 1 dB.
It worths mentioning again, that in the �nal predictions presented, the adaptively chosen points
were not the same. Despite the fact that most of the extra points in the �rst case were in
L-band, they were almost all of them around 1.5 GHz, whereas in the second case the majority
of the points was around 1.2 GHz. This di�erence can be attributed to the di�erent information
necessary to be extracted in each case and is characteristic of the cognitive way of conducting
the extra simulations. Before proceeding to the next example, we have to say that this one was
corresponding to a 30 years old periodical forest 40 m × 50 m, containing 63 trunks having 20
branches each and illuminated under an incidence angle of 40◦. The rest of the scene parameters
were the same as in Table 3.1.

5.4.2 Focusing on the branches e�ect

In this second example of our adaptive-cognitive strategy, the object of interest was the same
forest as in the previous case, having 10 branches per tree this time. Here we will focus on
the upper level of this forest, which was containing the branches. An initial waveform was
emitted, so that we could have enough information to assume the existence of branches or
not. Then a second more focused observation was performed, to identify the exact in�uence of
the branches on the forest response and especially on the scattering mechanisms. The initial
signal consisted of 10 frequency points and it was sent under a 40◦ angle of incidence. The
simulated values obtained, were used for the initial kriging predictions of the backscattering
coe�cients and the Pauli vector elements values, along the whole COSMO band. These
predictions, presented in Fig. 5.8, showed a relatively strong cross-polarized signal, together
with a change of the dominant scattering mechanism from the double bounces to the single
ones, around 1.1 GHz. Considering the conclusions extracted in Section 3.2.3, we can state

28As explained in Chapter 4, kriging needs border points because it fails in extrapolating.
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Figure 5.6 � The �nal prediction for σ0
V H with its con�dence intervals ±σ̃ (left) and the same prediction

with the corresponding absolute error (right). The prediction was based on 5 initial simulation points
and 10 adaptively chosen, so that the corresponding uncertainty was sequentially reduced. This prediction
achieved a satisfactory accuracy, since the absolute error was always inferior to 1 dB.
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Figure 5.7 � The �nal prediction for SHH−SV V in L-band together with its con�dence intervals ±σ̃ (left)
and the same prediction with the corresponding absolute error (right). The prediction was based on the 3
initial simulation points contained in L-band and 10 adaptively chosen, so that the lower border point is
also simulated and the corresponding uncertainty was sequentially reduced. The �nal prediction showed
an absolute error always inferior to 1 dB.

that these information lead to the conclusion that branches were existing in the forest ob-
served. As a consequence, taking into account the knowledge just obtained that branches
exist, a new signal to be emitted was designed so that it was best �tted to our updated
objective, that of the branches study. The adaptive sampling which pointed out the new
frequencies that should be emitted, took place along the 0.8 − 1.3 GHz frequency interval. It
provided 5 extra points, which completed the 3 points of the initial sample space contained
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in this sub-band. The uncertainty had to correspond to one of the two �rst Pauli vector
components, since the dominant scattering mechanisms were the subject of the study. Here the
one of the SHH−SV V prediction was preferred, because of the SHH−SV V non-monotonic nature.
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Figure 5.8 � The initial predictions for the backscattering coe�cients (left) and the �rst two Pauli vector
components (right). These predictions were based on 10 simulated points.

The �nal prediction for the Pauli vector components, which was based on 8 simulation points
only, is presented together with the real values in Fig. 5.9. Despite the small number of the
simulation results used, the �nal predictions were more than satisfying compared to the real
values. The quantities variation ranges were provided and the point where the change of the
dominant scattering mechanism - from the double bounces to the single ones - takes place was
predicted with an accuracy of 99.82% (see Fig. 5.9). For an even better accuracy, since not always
such a strong accuracy is achieved, we could have narrowed more the frequency band to 1 −
1.2 GHz, during the adaptive sampling strategy. The absolute errors of the �nal approximations
for both SHH+SV V and SHH−SV V , as calculated over more than 800 points, were not exceeding
0.4 dB (see Fig. 5.10), being much lower that the 1 dB minimum radar error.

5.4.3 Strategy for target detection

One of the main objectives of forest observations by radars, is the detection of a target
concealed in a forest environment. As we have already seen in Section 3.2.4, this task could
be a rather challenging one, even when just trunks and branches exist to cover the target.
Based on the conclusions of the above-mentioned section, we will de�ne an adaptive strategy
which will enable the possibility to con�rm the existence of a hidden target with just a few
frequencies emitted. In a later step, a more thorough and focused observation can follow,
to discover the exact location of the target if possible. The scene was the same as in the
previous example, having now a spherical target of a 2 m radius placed between the fourth
and �fth trunks lines in the site dimension (see Fig. 3.18). As a �rst step of our strategy,
an initial 10 frequencies observation was performed. The data from this observation were
subsequently used for the metamodel predictions of all outputs. Since the target e�ect is not
very distinguishable when branches exist, all these quantities needed to be studied, in order to
exploit any possible clue of the target existence. As seen in Fig. 5.11, the metamodel predicted
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Figure 5.9 � The predicted values for the double and single bounces within the 0.8 − 1.3 GHz frequency
interval (left) and the corresponding real values (right). The point where the change of the dominant
scattering mechanism happens, is predicted with an accuracy of about 99.8%, even if just 8 simulation
results were used.
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Figure 5.10 � The errors of the �nal 8-point prediction for the two �rst Pauli vector components. Along
the desired band, where the 5-point sequential sampling was conducted, the error is not exceeding 0.4 dB
for both quantities. The depicted results are these obtained after passing a moving average �lter of span
5, over the data.

similar HH and VV backscattering above 1.5 GHz, as well as a more or less constant single
bounce scattering (SHH −SV V ) after 1 GHz. These e�ects are closely related with the existence
of a spherical target in the forest, as explained in Section 3.2.4 and depicted in Fig. 3.21 and 3.22.

In order to proceed with our investigation, the radar con�guration proposed in Section 3.2.4
for the target e�ect recognition will be selected. In saying so, we are going to focus to the
1.4 − 2 GHz sub-band and improve the initial prediction for both co-polarized backscattering
coe�cients. To the 4 points from the initial sample found in the 1.4−2 GHz, we will add 5 extra
ones adaptively chosen, so that both uncertainties of the σ0pp predictions will be sequentially

134



5.4. Examples

0.5 1 1.5 2

−40

−35

−30

−25

−20

−15

−10

−5

Frequency (GHz)

σ̂
0 p
q

(d
B
)

 

 

σ̂
0
HH

σ̂
0
V V

σ̂
0
V H

0.5 1 1.5 2

−40

−30

−20

−10

0

Frequency (GHz)

k̂
P
i
(d
B
)

 

 

SV V +SHH

SV V −SHH

Figure 5.11 � The initial predictions for the backscattering coe�cients (left) and the �rst two Pauli vector
components (right). These predictions were based on 10 simulated points.

reduced. The results obtained after the �nal prediction are shown in Fig. 5.12, together with
the real values. The �nal approximation was a very good one, as in both plots the quantities al-
most coincide. Both absolute errors were much lower that the radar measurements error, hardly
reaching 0.5 dB (see Fig. 5.13). Therefore, the new information revealed by the �nal prediction
con�rm our initial suspicion that a target is found among the trees. After this cognitive observa-
tion, we can also continue the investigation of the scene, in order to attempt the localization of
the target. However, to do so many simulation points will be needed in order to extract a time
signal with a good resolution like the one in Fig. 3.41.
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Figure 5.12 � The �nal prediction for the co-polarized backscattering coe�cients in the limited band
1.4− 2 GHz, after adding 10 extra simulation points (left) and their real values (right).
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Figure 5.13 � The errors of the �nal prediction for the two co-polarized backscattering coe�cients focused
on the upper part of the COSMO frequency band. Along this desired sub-band, where the 10-point se-
quential sampling was conducted, the error hardly reaches 0.5 dB. The depicted results are these obtained
after passing a moving average �lter of span 5, over the data.

5.4.4 Low frequency strategy for penetration and Brewster e�ect study

The last example of our radar strategy is focused on the lower part of the forest. The part
where the trunks dominate the backscatter and the Brewster angle e�ect is visible, due to
the local trunk-ground dihedral con�gurations. The same scene as in the second example will
be observed and the same initial approximation will be also used. If we take a look again at
Fig. 5.8, we can see that the initial kriging approximation predicts a high di�erence between the
co-polarized backscattering coe�cients for low frequencies. This e�ect reminds as the results
presented in Section 3.4 and it could be attributed to the Brewster angle e�ect. In particular,
the Brewster e�ect due to the vegetation, since an angle of 40◦ could be mostly a�ected by
the complementary θvB = π

2 − tan−1
√
εv angle of the Equation (3.3). In that case, it could be

interesting to focus on the bottom layer of the forest containing the trunks and check how the
co-polarized di�erence evolves.

In order to make the wave penetrate the canopy and reach the trunks, we will focus our
study on P-band. It means that we will keep only the simulated points contained in it and we
will run the adaptive sequential sampling in this band. We need again to pay attention that the
border points are contained in the sample, so that kriging will not need to extrapolate the values.
The approximated quantity was the σ0HH − σ0V V di�erence and its corresponding uncertainty
was used for the 10-point adaptive sampling. The results of the focused study in P-band are
presented in Fig. 5.14. As seen in the right plot, the �nal prediction based on 14 frequency
points in total, approximated well the HH-VV backscattering di�erence, with an absolute error
much less than 1 dB. Nonetheless, some of the real values local oscillations failed to be within
the ±σ̃ con�dence intervals. The latter did not a�ect signi�cantly the result, as the general
behavior and the level of the co-polarized di�erence is obvious in the left plot. The highest
di�erence values are observed for frequencies of 400 MHz and less, while the e�ect decays as we
move towards the upper part of the frequency band. This di�erence is not signi�cantly high,
however at 40◦ we expect to see only the secondary Brewster e�ect as stated in Section 3.4.
Moreover, branches exist in our scene and they �disturb� the dihedral trunk-ground geometry,
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which favors the Brewster e�ect. Therefore, a constant σ0HH − σ0V V di�erence of more than
7−8 dB along the [350− 450 MHz] interval, as predicted by our metamodel, could be reasonably
attributed to the Brewster angle e�ect.
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Figure 5.14 � The �nal prediction for σ0
HH−σ0

V V within the P-band, together with its con�dence intervals
±σ̃ (left) and the same prediction with the corresponding absolute error (right). The prediction was based
on the 4 initial simulation points contained in P-band and the 10 adaptively chosen ones. This prediction
achieved a very good accuracy with an absolute error much lower than 1 dB, although the con�dence
intervals could not contain all the local oscillations.

5.5 Conclusions

An innovative radar observation strategy was proposed in this chapter. It was based on the
cognitive radar principle and the metamodeling techniques developed in this work. So we started
with the presentation of the cognitive radar and the novelty it introduces, i.e. the sequential
observations which take into account the e�ect of the environment. The main idea of this
radar operation accords with the basic idea of our metamodel adaptive sampling. Therefore, a
combination of these two methods was attempted. In saying so, the cognitive radar principle
was incorporated in the metamodel frame, in order to realize an adaptive observation scheme.
To complete this scheme, we used information from Chapter 3 to de�ne certain strategies for
the sequential observations. Each objective was connected with a forest e�ect and a certain
radar con�guration to be selected. To accelerate the analysis of the received signals and make
the real-time operation feasible, we employed again the metamodel and its fast predictions. The
metamodel uncertainty was connected with a di�erent quantity each time. The choice of this
quantity was depending on the scene information, re�ecting thus the cognitive radar principle.
The strategy �nally de�ned, could stand as an elementary attempt towards a cognitive radar.
This strategy was checked in four di�erent examples. These examples were corresponding to
forest e�ects already studied in this dissertation, such as the branches or the target e�ect on
the forest response. Our innovative method succeeded in sequentially improving our knowledge
on the scene under study, by identifying the forest e�ects, while taking into account the already
obtained results.
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In this last chapter of the dissertation, the work done and presented in the previous pages
will be overviewed and concluded. The main points, contributions, results and inferences will be
summarized, to provide a global view and highlight the �spine� of the project. The conclusions
will be subsequently followed by a list of suggestions and ideas for future work. These perspectives
aspire to complement the work carried out and presented here and, if possible, to bring it closer
to the real radar investigation practice.

6.1 Conclusions

During this project, we introduced some mathematical tools and methods widely used in
Design and Analysis of Simulation Experiments, to the radar observation practice. It was the
�rst time, to the best of our knowledge, that similar statistical tools were used in analyzing
radar data. In doing so, the aim was to initiate a discussion about reconsidering the way
radar forest investigations take place nowadays. For that reason, a new strategy, based on the
mathematical tools introduced, was suggested and tested in the previous pages. Instead of
real datasets, the COSMO numerical model, which simulates forest microwave observations,
was used in our strategy. COSMO is able to calculate the forest backscattering for numerous
di�erent input values, concerning both the radar and the forest parameters. Therefore, a big
number of di�erent forest arrangements was examined, under di�erent radar con�gurations.
The initial goal of obtaining these large datasets was to use SA techniques in order to identify
the importance of each parameter e�ect on the forest backscattering.

For computational reasons, a screening SA was selected to be performed on our model,
namely the so-called Elementary E�ects method. This qualitative method provides a list of the
most important model factors, with a few simulations and a low computational cost. Indeed,
in our case it succeeded in identifying the parameters a�ecting mostly the outputs and those
showing certain non-linear and interaction e�ects. Based on the SA results, we discovered that
the frequency and the incidence angle are the most important COSMO factors overall. As far as
the scene is concerned, the age and the moisture of the vegetation showed the biggest in�uence
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on the outputs. On the contrary, other factors such as the ambient temperature and the sand
and clay content of the ground, showed an almost negligible in�uence.

Despite the wide veri�cation of the EE method in SA applications, its results concerning
COSMO were proceeded to be further analyzed. In saying so, the most important parameters
had to be quali�ed as such and the extent of their e�ects had to be examined in di�erent forest
scenes. This examination concerned the in�uence on the backscattered signal in both frequency
and time domains. In most cases, a certain e�ect was �nally attributed to each parameter and
the physical interpretation was provided. The same analysis was later performed on the e�ects
of the forest elements, i.e. trunks, branches and target, and of the di�erent forest arrangements,
i.e. periodical, semi-periodical and random. The most important outcome of these analyses was
the discovery of certain frequency sub-bands and polarizations which favor the identi�cation and
study of the important e�ects. For instance, if the goal is to study the change of the dominant
scattering mechanism due to the branches e�ect, the interval [0.9, 1.3]GHz is recommended.
If the existence of a spherical target is to be deduced, the upper part of the L-band is
preferred, where the forest scatters the same in both HH and VV, due to the target. These
discoveries would be valuable in the design of innovative adaptive radar strategies. However, a
strategy like this could not be realized if a way to accelerate the signal analysis was not available.

Surrogate modeling was the second mathematical method from the Design and Analysis
of Simulation Experiments, which was employed in this work. The kriging method we used is
very popular in various scienti�c domains, for building statistical approximation metamodels of
numerical codes. These metamodels can be used to understand and reconsider the numerical
model, as well as to predict its non-simulated values. The most powerful and �exible metamodels
are the adaptive ones, which are �tted to the numerical model by sequentially reducing the
uncertainty of the prediction. In our case, a model like this was proven capable of approximating
several of the COSMO outputs, such as the backscattering coe�cients and the Pauli vector
components in the frequency domain. In addition, its capability to assist the backscattered sig-
nal analysis and identify the major forest e�ects, using only a few simulation points, was veri�ed.

Combining all the previous conclusions and results with the cognitive radar principle, we had
all the necessary tools to design an innovative strategy for adaptive radar observations of forests.
This strategy was based on the incorporation of the cognitive radar principle in the metamodel
operational frame. All previous achievements were employed in the design and realization of
this strategy. The suggestions for the radar con�gurations resulting from the signal analyses,
were adopted with respect to the observation objectives. The metamodel was used again in a
smaller scale, to predict the forest signature, to accelerate the real-time signal analysis and thus
to assist in identifying the forest elements e�ects. Finally, its stepwise uncertainty reduction
scheme together with the previous analyses information were responsible for the cognitive aspect
of this strategy.

6.2 Perspectives

Since this work served as a �rst step towards an innovative way to consider, design and perform
radar experiments, without always following the standard radar formalism, it leaves open ground
for complementation. Problems and constraints faced during the realization of this project on
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the one hand, and potential extensions on the other, set the new perspectives for the future
research. The most straightforward extensions, would be the application of what has been done
on more detailed forest scenes, i.e. branches existing in all cases and forests with more layers
containing secondary branches and leaves also, even if the last are not expected to contribute
signi�cantly in the COSMO operating frequencies. Moreover, as COSMO can generate three
di�erent tree crown types, it would be interesting in examining their e�ect in high frequencies
where not that much penetration occurs. The Brewster angle e�ect needs a more profound
analysis also. The study of this e�ect in forested areas started to develop recently and so there is
still enough �space� for new discoveries. As far as the target is concerned, since spherical targets
are not common in FOPEN applications, di�erently shaped-targets have to be examined also,
hidden under foliages of various densities. Other polarimetric and interferometric tools such as
the covariance matrix, the entropy or the interferometric coherence could be also introduced, to
integrate our method from a radar scientist point of view also.

In forest radar investigations, one of the main issues, apart from the target detection, is to es-
timate the forest ecological characteristics. Especially the aboveground biomass, which controls
the global carbon emission. To do so, the estimation of several forest parameters, such as the
age, density and humidity values is indispensable. Thus, the solution of the inverse problem us-
ing the metamodel for retrieval purposes in low computational time, is an interesting potentiality.

As far as the metamodel approximation of COSMO is concerned, the most important and
also hard issue to be resolved is the prediction of the backscattered electric �eld. We explained
in Chapter 4, that the amplitude and the phase of the received signal were oscillating too fast
to be satisfactorily interpolated, in reasonable computational time, by our adaptive kriging
metamodel. However, if this will could be successfully done in the future, it would open
the ground for a fast improvement of the construction of a SAR image of the scene and the
realization of a fully cognitive radar. A radar that will be able to provide all quantities necessary
for a thorough analysis of the signal, even in time domain, with the low computational load
guaranteed by the metamodel.

Another perspective could also be the redesign of COSMO to allow di�erent functionalities.
COSMO evaluates the received signal which have been modi�ed twice by the forest, once while
travelling within the scene towards the ground and then back to the radar. So throughout this
work, the forest 2-way modi�cation on the signal was examined. It would be really interesting
to complement COSMO in such a way that the 1-way modi�cation of the forest would be
available. This could facilitate the investigation, in FOPEN studies, of the forest e�ect on the
emitted signal, before the latter arrives to the target. That way, the target backscattering
would be easier to be isolated and well identi�ed. The information on the 1-way modi�cation
of the forest could open also the ground for designing special waveforms which would be able to
�compensate� this forest e�ect during a cognitive observation.

All the aforementioned perspectives refer to simulation studies. These studies are of great
importance but they cannot fully substitute real measurements. No matter how extensively
validated a model is, it is of great importance to complement our knowledge and verify the
usefulness of our methods on real data. It is true that certain limitations exist and pose
di�culties to such an attempt. Firstly, not all cases considered in this dissertation were realistic.
In addition, real forest data are in general sparse and hard to obtain. Nevertheless, it is
necessary to verify the plausibility of our conclusions at least on the close to reality examples
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considered. That could potentially serve as a preparatory step for the actualization of a real
cognitive radar, provided that several technical issues would be solved in the meantime.
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A.1 Matérn covariance function

For the complex random vectors x and x′, the covariance function of a zero-mean process f is
de�ned as:

k
(
x,x′

)
= E

[
f (x) f∗

(
x′
)]

(A.1)

where f∗ denotes the complex conjugate of f . In surrogate modeling stationary covariances
are mostly used. Stationarity stands for the property of the second-order or weak stationarity,
which implies that both the �rst two moments of the joint bivariate distribution (f (x) f∗ (x′))
depend only on the spatial separation ‖x− x′‖ i.e. the length of this vector. The covariance
function is then a function of h = ‖x− x′‖ and it can be written as a function of a single
argument k (h) ([Rasmussen and Williams, 2006]). If in addition the covariance function is
supposed to be anisotropic, it means that it also depends on the direction of the ‖x− x′‖
vector [Haskard, 2007], since the di�erent inputs/coe�cients of x are not of the same nature
and thus the function does not behave in the same way along all the dimensions of the input space.

The Matérn covariance function is an example of a stationary covariance function, which
can be both isotropic and anisotropic, depending on the model under study. It was introduced
during the 60's as the natural correlation for spatial processes. If h = ‖x− x′‖ ≥ 0 is the
distance between two observation points, the isotropic Matérn covariance function is given by
([Stein, 1999], [Villemonteix et al., 2009]):

k (h) =
σ2

2ν−1Γ (ν)

(
2
√
νh

ρ

)ν
Kν
(

2
√
νh

ρ

)
(A.2)

where σ2 is the variance of the model, σ2 = k (0), ν > 0 is a parameter controlling the smoothness
of the underlying process as [ν] 29 determines the number of times the underlying spatial process
is mean-square di�erentiable (the larger the ν the smoother the process is), ρ > 0 is a distance

29With [ν] the integer part of ν is denoted.
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parameter which measures the decay of the correlation with distance (which in our case, where
anisotropicity is assumed, we will include within the distance function) and Kν is a modi�ed
Bessel function. The Matérn correlation family can give for di�erent values of ν the exponential
correlation function (if ν = 1

2), the Whittle's elementary correlation function (if ν = 1) and it
approaches the Gaussian one when (if ν →∞) [Haskard, 2007].

A.2 REstricted Maximum Likelihood estimation (REML)

The REML is an extension of the more general Maximum Likelihood Estimation (MLE), which
is a very common estimation method in Statistics (see [Stein, 1999] for more information). In
ordinary kriging, as already mentioned, we assume that the vector of the observation has a
Gaussian distribution with unknown mean, which is also a subject of maximization during
the MLE. To suppress the unknown mean from the MLE, in order to decrease the unknown
quantities under estimation, we transform the Gaussian distribution to a zero-mean one - main
idea of the REML. This linear transformation is performed using the QR-decomposition of
p = 1 30

In order to estimate now the vector of the hyper-parameters θ =
(
σ20, ν, ρ1, . . . , ρd

)
of our

model, we need to assign to it an initial set of values and to evaluate the covariance matrix K

for them. Using a rule of thumbs, we assume that ν = 3
2d where d is the dimension of the input

space, the σ20 is the variance of the observations and each ρk is equal to the half of the interval
diameter corresponding to xk. The likelihood function for the REML method is then given by
[Bilicz, 2011]:

L
(
θ|WfX

)
=

1√
(2π)(n−1)

∣∣∣W K WT
∣∣∣ exp

[
−1

2

(
WfX

)T (
W K WT

)−1 (
WfX

)]
(A.3)

where K is actually K (θ). The REML method estimates the covariance parameters so that the

probability density of the data is maximized. We will denote by θ̂ =
(
σ̂20, ν̂, ρ̂1, . . . , ρ̂d

)
the vector

of these optimal covariance parameters values evaluated by:

θ̂ = arg max
θ

[
π (θ) · L

(
θ|WfX

)]
(A.4)

where π (θ) is a regularizing factor that uses the a priori knowledge of the hyper-parameters, in
order to avoid the ill-conditionedness of the K matrix. Since we usually don't have any a priori

knowledge of these parameters, we assume a multivariate Gaussian distribution for them. The
initial value is the mean of this distribution and we choose a desired variance which controls the
�freedom� of the estimator 31. So:

π (θ) =
N+2∏
i=1

1√
(2π)σ2pr,j

exp

[
−(θi − θpr,i)2

2σ2pr,j

]
30In the more general case of universal kriging p = p (x) = (p1 (x) , . . . , pl (x)) a vector of l known low-order

monomials of x that give the unknown mean of the quantity under study by the formula m (x) = βTp (x), where
β is a vector of unknown constants. The REML helps us suppress the coe�cients of β that should be also
estimated if the mean is not zero [Bilicz, 2011].

31 In general, we choose an appropriate variance so that the hyper-parameters values will not be far from the
�rational� region around the initial values.

144



A.2. REstricted Maximum Likelihood estimation (REML)

where the pr index distinguishes the mean and the variance of the prior hyper-parameters dis-
tributions.
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Titre : De l'utilisation de la méta-modélisation pour la modélisation et l'analyse de la réponse
radar des forêts

Mots-clés : signature radar de la forêt, caractérisation de la forêt, analyse de sensibilité, plans
d'expériences numériques séquentiels, métamodèle, krigeage, observations séquentielles, radar cog-
nitif

Résumé : Dans ce travail, une nouvelle ap-
proche de conduite des observations radar de
la forêt est proposée. Elle combine des méth-
odes statistiques pour l'analyse de sensibilité
et les plans d'expériences numériques séquen-
tiels et un code de calcul simulant la rétrodif-
fusion d'une forêt en vue de l'élaboration d'un
modèle approché (métamodèle) à moindre coût
numérique. L'introduction de ces outils math-
ématiques a pour objectif d'aider à la plani�-
cation et à l'exécution des simulations radar et
à l'organisation et l'analyse de leurs résultats.
D'une part, les techniques de l'analyse de sen-
sibilité sont appliquées a�n de classer par ordre
d'importance les paramètres d'entrée du mod-

èle et d'identi�er les paramètres de la forêt les
plus signi�catifs ainsi que leurs e�ets sur le sig-
nal radar. D'autre part, la construction d'un
métamodèle adaptable accélère le code de cal-
cul, en préservant la physique du phénomène.
Le cadre opérationnel de ce modèle approché
sert �nalement à introduire le principe du radar
cognitif dans notre stratégie. Dans ce cas, une
analyse rapide du signal reçu est nécessaire pour
concevoir, en temps réel, le nouveau signal à
émettre. De cette façon, les observations du
radar simulées incluent en temps réel l'e�et de
l'environnement illuminé grâce aux simulations
plus rapides et ciblées.

Titre : On the use of metamodeling for modeling and analysis of the radar response of forests

Keywords: forest radar signature, forest characterization, sensitivity analysis, adaptive design
of simulation experiments, metamodel, kriging, sequential observations, cognitive radar

Abstract: In this work, a new approach to
conduct the radar observations of forests is pro-
posed. It combines statistical methods for sen-
sitivity analysis and adaptive design of simula-
tion experiments and a numerical code simulat-
ing the forest backscattering for the use of an
approximate model (metamodel) with less com-
putational cost. The introduction of these math-
ematical tools has as an objective to assist the
design and the execution of radar simulations
and the organization and analysis of their re-
sults. On the one hand, the sensitivity anal-
ysis techniques are applied in order to classify
the input parameters by means of their impor-

tance and to identify the most signi�cant forest
parameters as well as their e�ects on the radar
signal. On the other hand, the construction of
an adaptive metamodel accelerates the simula-
tion model, while keeping the physics of the phe-
nomenom. The operational frame of this approx-
imate model serves �nally in the introduction of
the cognitive radar principle in our strategy. In
that case, a fast analysis of the received signal is
necessary to design, in real-time, the new signal
to be emitted. That way, the simulated radar
observations take into account in real-time the
e�ect of the illuminated environment, thanks to
the more focused and fast simulations.
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